
MSP430 MICROCONTROLLERS ESSENTIALS - A NEW APPROACH FOR THE
EMBEDDED SYSTEMS COURSES: PART 2 - SYSTEM AND PERIPHERALS

Pedro Dinis Gaspar, António Espírito Santo and Bruno Ribeiro

Electromechanical Engineering Department, Engineering Faculty, University of Beira Interior
Edifício 1 das Engenharias, Calçada do Lameiro, 6201-001 Covilhã, Portugal

phone: + (351) 275329759, fax: + (351) 275329972, email: dinis@ubi.pt, aes@ubi.pt, bruno@ubi.pt

ABSTRACT
This paper presents the second part of a new approach for
embedded systems courses appropriate for both high school
and undergraduate classrooms, that has been conceived
and designed to accomplish these goals, while motivating
and equipping this next generation of engineers to rise to
future challenges.
Part 1 of this paper presented the outline of the course, its
structure, and the initial subjects covering an introductory
overview in logic design and embedded processors and a
description of the available software and hardware
development tools for the MSP430. This second part
describes the MSP430 Architecture, Device Systems and
Operating Modes, General purpose Input/Output and all
the peripherals integrated in the MSP430 family devices.
The course structure was defined in order to be easy to
understand and provide a logical flow along the topics, as
it mostly progresses from simple topics to more advanced
ones. The developed materials include slides for class room
teaching, explanatory documents for student and educators
future reference, laboratories, tests, programs and
application examples after each chapter. Each module is
dedicated to a specific aspect of the MSP430 device,
including the description of a range of peripherals.

1. INTRODUCTION

In Part 1 of this paper were presented the outline of the
course, its structure, and the initial subjects covering an
introductory overview in logic design and embedded
processors and a description of the available software and
hardware development tools for the MSP430. This 2nd part
describes the MSP430 Architecture, Device Systems and
Operating Modes, General purpose Input/Output and all the
peripherals integrated in the MSP430 family devices.

2. COURSE OUTLINE

The course structure was defined in order to be easy to
understand and provide a logical flow along the topics, as it
mostly progresses from simple topics to more advanced
ones. Although it was primary developed to support
teaching activities, it intends also to be helpful to existing
embedded system designers or to those people new to ES
such as college students, high school and middle school
students, and other hobbyists who wish to make their own
projects enabling them to learn about how to use efficiently

in short time a MSP430 family device.

Each section contains a topic devoted to laboratory
exercises. As the course intends to be helpful also to those
people that does not has any background on the applications
development for this microcontroller, the code is already
given, being only asked to the student to fill in the blank
code devoted to the configuration of the specific peripheral.
However and for pedagogy reasons, is more challenging for
senior students to state only the requirements and let them
figure how to code. For these advanced students, a blank
slate will force them to think how to structure the program
code and what function/block needs to setup, instead of
think for themselves how to program the code that will
perform the task. At the end of each section are included
Quiz and FAQ sections to provide a insight and a self
evaluation of the main topics presented in the section
completed with some questions and difficulties that usually
arise using the MCU peripherals.

2.1 MSP430 Architecture

This section begins to show the available CPUs and
peripheral devices at the beginning in an overview before it
is handled in the various chapters in detail. It provides a
comprehensive description of the MSP430 architecture,
covering its main characteristics: (1) address space
(describing the interrupt vector table, flash/ROM,
information and boot memories for flash devices, RAM,
peripheral modules and special function registers); (2) the
orthogonal (and simply programmable) RISC structure of
RISC 16-bit Central Processing Unit (CPU) compared to
the CISC-extensions of the (CISC) 16-bit MSP430X CPU.
As a general rule, the CPUX architecture is present in
devices that have greater than 64kB flash memory size,
clarifying on where devices the CPUX is present; (3) the
seven addressing modes (Register; Indexed; Symbolic;
Absolute; Indirect register; Indirect auto increment;
Immediate) either supported for the source operand and for
the destination operand, presenting as example the number
of CPU clock cycles required for an instruction, depending
on the instruction format and the addressing modes used;
and the (4) instruction set composed of 27 base op-codes
and 24 emulated instructions. These topics are exposed
gathering the information presented by [1-6].

2.2 Device Systems and Operating Modes

The internal device systems of the MSP430 are described in
this section based on the information provided by [1-6]. It
includes a description of the internal system reset and clock
sources (low/high frequency oscillator - LFXT1; second
crystal oscillator - XT2; digitally-controlled oscillator –
DCO; frequency locked loop – FLL; and internal clock
signals). The MSP430 supports interrupts, that is, events
that occur sporadically and need to be processed
immediately. The interrupt sources, both external and
internal, cause the CPU to suspend execution of the current
task, re-direct program flow to an interrupt service routine
devoted to the specific event, then resume the former task.
How the microcontroller responses to an interrupt may
dictate its performance and how the software needs to be
written. This section covers all of the above points
describing the interrupts management depending on their
type (reset; (non)-maskable interrupts (NMI) by Global
Interrupt Enable -GIE; maskable interrupts by GIE) and
source (internal and external), extending them to the low
power operating modes that are one of the main features of
the MSP430. This section focuses the internal device
systems supported by the MSP430 families that are used
with the hardware development tools (2xx and 4xx
families). The 16-bit watchdog timer (WDT) module that
can be used as a Processor supervisor (supervise the correct
operation of the application software) or Interval timer
(configured as an independent interval timer, to perform a
“standard” periodic interrupt on counter overflow) is also
described. The following topic covers the description of the
Supervisory Voltage System (SVS) module used to monitor
the supply voltage or an external voltage. The section ends
with one of the main features of the MSP430 families,
which are their low power consumption (around 1
mW/MIPS or less). This is increasingly important with the
growth of battery operated embedded systems devices.
Although the MSP430 families are designed for low power

consumption, it should borne in mind that this goal can only
be accomplished using a design utilizing low power
operating modes. The total power consumption depends on
several factors: clock frequency, ambient temperature,
supply voltage, peripheral selection, input/output usage and
memory type. The MSP430 architecture allows six
operating modes. Five of these modes are suitable for low
power consumption operation. These modes are configured
by the Status Register bits. In Figure 1 are shown 2 slides
covering different topics exposed during this section.

2.3 General purpose Input/Output

This section starts with a description of one of the simplest
integrated peripherals of the MSP430 – the General
Purpose 8-bit Input Output (GPIO) [1-3]. The Input/Output
(I/O) ports can be configured as interruptible or non-
interruptible. Additionally, the port pins can be individually
configured for general-purpose use, or as special function
I/Os, such as USARTs, comparator signals and ADCs.
Following the technical details, there is the first in a series
of hands-on laboratories. The laboratory uses the input lines
to read the state of push button switches and uses the output
lines to feed light emitting diodes (LEDs). The first hands-
on laboratory consists of configuring the I/O ports, setting
up the input lines to read push buttons and the output lines
to feed LEDs. The following exercises have been developed
for the three hardware development tools. The first to be
discussed is the MSP-EXP430FG4618 Experimenter’s
board. Modifications are later made to suit the other
development boards. The main differences between the
boards are related to the specific ports in which the buttons
and LED are (or can be) connected. For the development of
this laboratory, Code Composer Essentials v3 has been
used. In Figure 2 are shown the slides covering the
laboratory statement and part of its solution for the eZ430-
RF2500 hardware tool.

Figure 1 – Course slides covering topics of the Device Systems and Operating Modes section.

Figure 2 – Slides of the laboratory included in the General purpose Input/Output section.

2.4 Timers

Correct system timing is a fundamental requirement for the
proper operation of a real-time application. The timing
definition can dictate how the data information processed
during the execution of the application program. The clock
implementations vary between devices in the MSP430
family [1-2]. Each device provides different clock sources,
controls and uses. This section discusses the clock controls
included in the platforms used. The MSP430 4xx family
has two general-purpose 16-bit or 8-bit counters and event
timers, named Timer_A, Timer_B, and a Basic Timer. The
Basic Timer module is only implemented in 4xx devices.
The 2xx device family also has Timer_A and Timer_B, but
the clock signals are provided by the basic clock module+.
The timers may receive an internal or external clock.
Timer_A and Timer_B also include multiple independent
capture and compare blocks, with interrupt capabilities. The
capture and compare blocks are suited for applications such
as timed events and Pulse Width Modulator (PWM)
respectively. Timer_A and _B have several operating
modes each one with its own characteristics. As the
different system clocks sources that allow the CPU and
peripherals to operate, depending on the device in the
MSP430 family were described, this section will focus
mainly on the configuration and operation of timers and
their different uses.

The first hands-on laboratory consists of configuring the
LCD_A controller of the MSP430FG4618 device of the
Experimenter’s board to put a message on the display using
the CCE software development tool. The next laboratory
implements a memory clock using the features provided by
Timer1. The clock is updated once every second by the
Basic Timer1 interrupt service routine (ISR). This
procedure also performs switching of LED1. In order to
evaluate the execution time of the routine, LED2 is kept
active during the execution of the ISR. When the ISR has
completed, the device goes into low power mode, until the
new interrupt wakes it up. The Real Time Clock (RTC) has
a 32-bit counter, to automatically control the clock
calendar. This peripheral is present on the MSP430FG461x
devices. The application developed in the previous

laboratory will now be modified to incorporate this module
in an additional laboratory exercise. The following
laboratory exercise consists in building a memory clock
similar to the one that was developed using the Basic
Timer1, but now making use of Timer_A, configuring it to
generate an interrupt once every 100 msec. The ISR
manages the memory clock. LED1 and LED2 are used to
monitor the operation of the system state. The purpose of
the next laboratory exercise is to build a sound generator
using Timer_B. The pulse-width modulation (PWM) signal
produced by this peripheral drives the buzzer, producing a
sequence of musical notes at regular time intervals. At the
same time, LED1 and LED2 switch state alternately. The
volume of sound produced by the buzzer can be controlled
by push buttons SW1 and SW2. The hands-on laboratories
topic finishes with the development of an application
designed to measure a PWM signal frequency. The
frequencies generated are acquired (from the signal
generator equipment) or read (from a file if the previous
equipment isn't available) and updated with a fixed time
period using the features of CCE. The measured value is
shown on the LCD in Hz.

2.5 LCD Controller

The Liquid Crystal Display (LCD) controller, which is
incorporated into several devices in the MSP430 family
(’3xx and ’4xx) [2], provides a rapid and simple way to
interface between a program and an LCD display. The LCD
controller controls the LCD display, generating voltage
signals for the segments. It supports static and multiplexed
display interfaces (2 mux, 3 mux and 4 mux). This section
describes in detail the LCD driver interface and LCD_A
controller, both of which are implemented in the
MSP430FG4618 device on the Experimenter's board. The
hands-on laboratory consists of configuring the LCD_A
controller of the MSP430FG4618 device of the
Experimenter’s board to display a message on the LCD
display. Figure 3 shows the slides covering the laboratory
steps to configure the LCD controller as well part of its
solution for the experimenter's board hardware tool.

Figure 3 – Slides of the laboratory included in the LCD Controller section.

2.6 Direct Memory Access (DMA)

The MSP430 is well suited to low-power applications, and
the Direct Memory Address (DMA) controller is a very
useful facility to have in order to achieve this. This module
is supported by some devices in the MSP430 family
providing the capability to move data from one location to
another, without CPU intervention. This increases the
throughput of peripheral modules and also allows the CPU
to remain in a low-power mode, without needing to wake
up to perform the data transfer. This gives the benefit of
reduced power consumption. Data transfers to/from
peripherals can be initiated by external and internal events,
using triggers.

This section covers DMA operation, supported addressing
and transfer modes, trigger selection, channel priorities and
DMA controller interrupts. It ends with a laboratory
exercise, where the data transfer between two regions of
memory is analyzed. The order of transfer is controlled by
software. The DMA controller is used to automatically
transfer data between data memory and the DAC12 data
register. A sinusoidal waveform is produced at the output of
the DAC, without CPU intervention. The development of
this section is based on the MCU user guides [1-2] and on
technical books [4-5, 7-8].

2.7 Hardware Multiplier

The MSP430 hardware multiplier is a peripheral device and
does not constitute part of the MSP430 CPU. It allows the
multiplication of both signed (MPYS) and unsigned (MPY)
numbers to be carried out. The multiply and accumulate
(MAC) operation is also supported, which is useful for
implementing digital signal processing (DSP) tasks such as
Finite Impulse Response (FIR) filters. The laboratory
exercise explores the hardware multiplier peripheral. It is
composed of three different tasks, each of which evaluates
a different characteristic of the hardware multiplier
peripheral: multiplication operation execution time, with
and without the hardware multiplier and the differences

between the use of the operator “*” and direct write to the
hardware multiplier registers. The task operational analysis
is performed, in which the active power and the RMS value
of an electrical system are calculated. The execution times
are measured using an oscilloscope. The bibliography
references that support this section are the same as the
previous one.

2.8 Flash Programming

To use the MSP430 in a stand-alone embedded application,
the application code needs to be stored in flash memory.
The MSP430 flash memory module is bit-, byte-, and word-
addressable and programmable, using a controller that
supervises the programming and erase operations. The
controller has three (or four) registers, a timing generator,
and a voltage generator to supply program and erase
voltages. This section covers flash memory module
operation and segmentation, and finishes with a laboratory
exercise. Two different methods of writing to the flash
memory are studied in this laboratory. The first method
requires the CPU execution of the code resident in flash
memory, so whenever a flash write or erase operation
occurs, the CPU access to this memory is automatically
inhibited. The operation of this device is monitored using a
digital output port (P2.1). The consequences of this
procedure are discussed. In the second part of the
laboratory, the flash write and erase operations are
conducted with the CPU executing the code resident in
RAM. The important details are highlighted such as special
procedures required by the process. The routines to run
from RAM must be identified. The application must begin
by copying the routines from flash to RAM. The
bibliography references supporting this section are the same
as the previous one. Figure 4 include slides where the flash
memory controller registers bits are exposed.

Figure 4 – Slides of the covered topics in the Flash Programming section.

3. CONCLUSIONS

It was presented the teaching structure in the lectures that
use microprocessors at the undergraduate and graduate
Electrical related courses at the University of Beira Interior,
Portugal that make use of microcontrollers, including
signatures such as, Instrumentation and Measurements;
Data Acquisition; Automation and Robotics; Industrial
Informatics; Real Time Systems; Embedded Systems;
Bionic Systems and Monitoring and therapy medical
portable devices. The former last five signatures integrate
several knowledge that are acquired during the courses.

The first part of this paper presented the outline of the
course. Particularly, its structure, and the initial subjects
covering an introductory overview in logic design and
embedded processors and a description of the available
software and hardware development tools for the MSP430.

This second part describes the MSP430 Architecture,
Device Systems and Operating Modes, General purpose
Input/Output and all the peripherals integrated in the
MSP430 family devices.

The projects development making use of the
microcontroller has proven to be a valuable teaching tool
for motivating and stimulating the students, allowing the
reinforcement of several key concepts discussed in
undergraduate signatures. With this pedagogical approach,
the students gain much more experience since they are
challenged to develop, not overwhelming, but much more
complex projects, while keeping them motivated.

ACKNOWLEDGMENTS

The authors thank the support given by Texas Instruments;
and particularly the help provided by Robert Owen (TI
University Programme Manager).

REFERENCES

[1] Texas Instruments, MSP430x2xx Family, User’s
Guide. SLAU144E, Texas Instruments, 2008.

[2] Texas Instruments, MSP430x4xx Family, User’s
Guide. SLAU056G, Texas Instruments, 2007.

[3] Texas Instruments, MSP430x5xx Family, User's Guide.
SLAU208, Texas Instruments, June 2008.

[4] F. Pereira, Microcontroladores MSP430: Teórica e
prática. 1ª Ed. Editora Érica, São Paulo, Brasil, 2005.

[5] J. Luecke, Analog and digital circuits for electronic
control system applications: Using the TI MSP430
microcontroller. Elsevier, Embedded Technology
Series, 2005.

[6] M. Mitchell, "MSP430F2xx family enhancements and
features," SLAP111, in Proc. ATC 2006 – MSP430
Advanced Technical Conference, Texas Instruments,
Sonthofen, Germany, 2006.

[7] C. Nagy, Embedded systems design using the TI
MSP430 series. Elsevier, Embedded Technology
Series, 2003.

[8] J. H. Davies, MSP430 Microcontroller basics. Elsevier
Science, Newnes, 2008.

