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Abstract. The aim of this work is the development of Source Routing Minimum 

Cost Forwarding (SRMCF) protocol over IPv6 over the TSCH mode of IEEE 

802.15.4e (6TiSCH), evaluating the performance of these protocols for the In-

ternet of Things (IoT), and different healthcare, medical monitoring and urban 

mobility applications. To perform this evaluation, this work is making use of 

the OpenWSN project platform, which implements IEEE 802.15.4e in an open 

source environment. The evaluation process is also being done in the most re-

cent version of the OpenMote-B platform. Another goal of this research is to 

give contribution to the investigation of the applicability of quality of service 

(QoS) applied to the IEEE 802.15.4e standard. In the present stage of develop-

ment, the efforts are concentrated on the programming of the required code, and 

the adaptation of the OpenWSN stack. Experimental results have shown that 

the proposed protocol is capable of reducing Packet Loss Ratio (PLR) and en-

ergy consumption in comparison to the Routing Protocol for Low Power and 

Lossy Networks (RPL). In the next steps the team will also investigate the pos-

sibilities to explore long range routing techniques using the OpenMote plat-

forms, together with xBee, LoraWAN, Raspberry PI and Arduino platforms. 

Keywords: IEEE 802.15.4e, Minimum Cost Forwarding, Sensor Network, 

6TiSCH. 

1 Introduction 

This work intends to implement SRMCF protocol over 6TiSCH and evaluating its per-

formance by using the OpenMote B platforms [http://www.openmote.com/]. It is based 

on the results of a short-term scientific mission (STSM) from COST CA 15104 

IRACON during 2017 that took place at University of Banja Luka as a joint activity 

with researchers from University of Beira Interior (UBI). 

mailto:fjv@ubi.pt


2 

A routing protocol is needed to establish end-to-end data delivery. Recent researches 

have addressed the development of energy efficient protocols with the aim of finding 

routes in the networks that minimize energy consumption in nodes with small energy 

resources [1]. SRMCF is an extension of Minimum Cost Forwarding protocols (MCF) 

and it is proposed to reduce energy consumption and PLR expending the lifetime of 

devices in a Wireless Sensor Network (WSN).  

The main idea behind MCF is to find the path with minimum cost in a large sensor 

network [2]. By performing this task, these protocols can compute the effects of delay, 

throughput and energy consumption in communications between a node and the sink. 

The operation of MCF protocols usually comprises two phases [3]. The first phase con-

sists of setting up the cost values to all nodes by broadcasting a message from the sink 

node, which allows other nodes to adjust their costs according to the received messaged. 

Next, the source will broadcast the intended message to its neighbors and the nodes that 

receive the message add their transmission costs. Finally, the node checks the cost in 

the packet and if the remaining cost is not sufficient to reach the destination, the packet 

is dropped. Nowadays, WSNs are applied in a variety of scenarios including healthcare, 

medical monitoring with the so-called wireless body sensor networks (WBSNs) or 

Medical BANs [1], and urban mobility applications. 

Low-power WSNs use a radio transmission technology based on the IEEE.802.15.4-

2006 standard, which defines a physical layer and a MAC layer to control the access to 

wireless medium. The fundamental principle of this standard has in it an intrinsic flaw 

because it requires wireless devices to keep listening, since they do not know when 

their neighbors will transmit a message. The IEEE.802.15.4e standard tries to deal with 

this flaw by altering the MAC protocol while preserving the physical layer [4]. The 

latter standard implements a schedule that tells the devices in the network when they 

should transmit, receive or go to sleep. 

Power consumption in sensor nodes is mainly due to the presence of a radio trans-

ceiver which plays a decisive role as IoT devices become increasingly more present in 

everyday applications. Also, recent advances in the production and miniaturization of 

electronic circuits are causing an increase on the deployment of WSNs. 

The OpenWSN project implements the IEEE.802.15.4e Time Slotted Channel Hop-

ping (TSCH) protocol [5] and allows the use of IPv6 communication. This project is 

considered in the present work to evaluate SRMCF alongside the most recent version 

of the OpenMote B platform. 

The rest of the paper is structured as follows. Section II gives an overview of SRMCF 

while the OpenWSN stack is analyzed in section III. Section IV addresses the process 

of development and integration of the proposed protocol with the OpenWSN stack. 

Section V describes the OpenMote platforms and parameters settings. Section VI pre-

sents the preliminary results. Finally, section VII draws conclusions and discusses the 

possibilities for future work. 
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2 Source Routing Minimum Cost Forwarding  

SRMCF is classified as a reactive protocol, a class of protocols that avoid saving infor-

mation about network topology in the devices. One example of these protocols is the 

Gossiping algorithm [6], in which messages forwarded from nodes are sent with some 

probability, to avoid overhead. In general, in reactive protocols there are two types of 

information traffic. First, there is the traffic between base station (BS) and sensor nodes 

(SN), when nodes send acquired information to the sink node and receive information 

from it. Next, there is traffic between sensor node, when these nodes get information 

data, topology, connections etc.  

 In SRMCF protocols, sensor nodes use the MCF protocol to send packets to the base 

node. However, in this protocol the SN needs to keep information about minimum cost 

path. The idea of SRMFC is that packets generated at the BS contain information about 

the path, so that SN can use the path information present in the header to route packets, 

such as in Dynamic Source Routing Protocol (DSR) [7]. The BS is required to have a 

routing table containing path information that is sent from itself to SN [8] by adding 

this information to the headers of the packets that are sent in unicast messages. 

 As a consequence of the SRMCF topology, packets coming from the BS and packets 

coming from SN have different routing algorithms and also different packet headers. 

Intermediate nodes are required to identify the appropriate routing scheme based on the 

type of the message [9]. Data transmission always uses unicast messages. This protocol 

also supports broadcast messages to perform cost advertisement and cost request. Cost 

advertisement is generated when BS starts up or when a SN acquires a new cost value, 

while all SN can broadcast cost request messages [6].  

 The operation of SRMCF protocol starts with a setup phase, when nodes define their 

cost to communicate with the BS and the routing table is created. The first part is similar 

to minimum cost forwarding back-off algorithm, where each node sets its own initial 

cost as ∞ and the cost to communicate with the BS is equal to 0 [3].  When a node 

receives a cost value, it compares the received cost with its own cost. If the received 

value is larger than its own value, the current node value is updated with the new value, 

which is then broadcasted. This process is executed until all nodes can set up their val-

ues to the minimum. 

 Every time a node needs to change its initial value, in the previous first phase, it 

sends a packet with its ID and addresses it to a near-node. This node adds its own ad-

dress to the payload and sends this payload to the next node, until the message finally 

reaches the BS that will now be able to identify all the nodes in the minimum cost path 

by their IDs and store this information. Fig. 1 shows the described setup phase. 

 The protocol developed during the STSM that inspired the present work is also ca-

pable of performing link failure recover. To performer this task, the algorithm keeps a 

watchdog timer in which each node monitors the activity of its near-node. 
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Fig. 1. Network setup phase in SRMCF protocols. 

If a node does not respond during the requested time, its near node begins to broadcast 

cost request messages, so that the network can reestablish the routing information. 

3 OpenWSN Protocol Stack  

The OpenWSN project is an implementation of the IEEE.802.15.4e standard that allows 

users to investigate this standard in the context of low-power device-based networks. It 

is also heavily based on the concept of IoT, which means that it brings several IoT based 

standards, such as Routing Protocol for Low Power and Lossy Networks (RPL), Con-

straint Application Protocol (CoAP) and IPV6 over Low-Power Wireless Personal Area 

Network (6LoWPAN). All these standards and the fact that the project can be easily 

accessed by researchers make the OpenWSN the perfect tool for implementing and 

testing algorithms over the IEEE.802.15.4e standard. The structure of the OpenWSN 

stack is illustrated in Fig. 2. 

 The MAC sub-layer of the stack uses IEEE.802.15.4e TSCH. While this implemen-

tation preserves some characteristics of the IEEE.802.15.4 standard, such as Carrier 

Sense Multiple Access Collision Avoidance (CSMA/CA), which uses the concept of 

self-interference cancellation to detect collisions [10]. It also brings great improve-

ments, such as the use of channel hopping, which allows persistent multi-path fading 

and increases interferences immunity [5]. The stack also brings the uRES protocol im-

plemented in it. uRES is used to ensure that nodes can agree in message exchange that 

occurs in two-way communications, since the IEEE.802.15.4e standard by itself has no 

means to allow efficient data transport over multi-hop paths [5]. This part of the stack 

may be regarded as a Logical Link Control (LLC) layer. Also, there is a schedule mech-

anism implemented to allow nodes to identify actions to be taken based on the slots of 

the frame in which time is sliced in the IEEE.802.15.4e standard. 
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Fig. 2. OpenWSN protocol stack [11]. 

In the next layer, the stack implements 6LoWPAN as adaptation layer [12]. This layer 

allows the stack to compress the IPv6 headers. This procedure ensures that frames from 

the IEEE.802.15.4e standard have a length of 127 bytes, at most, and reduces the vol-

ume of information required for transmission [11]. Basically, the underling idea is to 

remove information that is not crucial from the headers while compressing other infor-

mation, such as source and destination address. The stack also has a mechanism called 

Low-Power Border Router (LBR) which inflates the headers back to the standard size 

of the IPv6 headers [13]. 

RPL is implemented in the next level. It is responsible for the routing topology of 

the stack. This protocol is designed by the IETF ROLL working group and is especially 

developed to work with low-power networks. RPL uses the concept of Direct Acyclic 

Graph (DAG), where a node acts as the root of the topology [14]. Each node in the 

network receives a rank that keeps the position of that node in the network. These ranks 

increase in the downward direction. There are two types of messages within this con-

cept. The first is the DAG Information Object (DIO), which is a control message that 

helps the protocol to build the DAG. The next message type is the Destination Adver-

tisement Object (DAO), which is a unicast control message from nodes to its parents 

that allows intermediate nodes to recover information about the reverse path of the 

packet [15]. 

Finally, the OpenWSN stack implements CoAP [16]. This protocol is constructed as 

a header which is placed upon the User Datagram Protocol (UDP) and allows the im-

plementation of applications that can be uploaded to motes to explore several features 

of hardware and software. 
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4 Protocol Implementation and Details 

This section gives details about the process of code development and integration within 

the OpenWSN stack. The starting point was the analysis of the work previously devel-

oped, which was performed using the OMNeT++ simulator [17] and the C++ program-

ing language. This code is composed of functions to deal with messages from upper 

layers, messages from lower layers, messages from SN to BS, messages from BS to 

SN, self-messages, control messages, and back-off timer. 

The first step in this new phase was the development of the described functions in 

the C programming language. The OpenWSN stack uses the concept of modules. This 

means that every feature of the stack can be separately worked and then integrated with 

other layers, what helps to deal with the fact that C is not an object-oriented language. 

Considering this characteristic, the functions have been implemented in a source file 

and a header file was associated to hold prototype functions and variables to be accessed 

by other modules. Fig. 3 illustrates the placement of the SRMCF module inside the 

stack. 

 

 
 

Fig. 3. SRMCF protocol inside OpenWSN stack. 

The OpenWSN project is subdivided into firmware and software components [4]. The 

firmware sub-project contains code that run in the devices and it is where the main part 

of the implementation process was developed. The original RPL inside this sub-project 

can deal with message exchanges from BS to SN and from SN to BS in one source 

code. However, as in SRMCF BS and SN have different routing algorithms, it has been 

necessary to create two different source codes to be uploaded to each type of device. 

This fact creates the need for keeping two versions of the firmware, one to hold the 

routing algorithm to be applied in the SN, and another to deal with the BS.  

The process of integration also requires modifications in several source files and 

modules of the stack. There is a need to create pointers and instances to the new module, 

and place them in certain modules while identifying functions that are specifically de-

signed for RPL, since the goal is to replace the tasks performed by this protocol. 

Once the source code is finished and compiled, one way to verify the exchange of 

message between nodes is using the Open Visualizer (OV). OV is part of the software 

sub-project and runs in the computer. It has several functionalities, such as the possi-

bility to define a parent node, visualization of traffic between nodes and identifications 



7 

of a node by its MAC address. Fig. 4 shows the Open Visualizer with two OpenMotes 

B connected to it. It is possible to observe how the OV identifies the motes by the MAC 

address from which one can obtain the IPv6 address. 

 

Fig. 4. OpenMote B devices connected to the Open Visualizer (identified by their MAC ad-

dresses). 

5 Testbed and Settings 

OpenMote is an open-source prototyping platform especially designed for the industrial 

Internet of Things and it is the latest generation of “Berkeley motes”. The OpenMote-

CC2538, which is probably the most well-known version of this platform, was, at first, 

composed of an entire ecosystem where the mote itself was the core of the system and 

it was followed by other devices, such as a base to allow communication during code 

development, an USB based interface designed for ease-of-use by end users and a base 

to provide power and some basic sensing capabilities through temperature and humidity 

sensors These motes features a 32 bit ARM Cortex-M3 microcontroller with a radio 

transceiver of -97 dBm sensitivity level and + 7 dBm power transmission [4].   

The new versions of the OpenMote platform incorporate most of the above-men-

tioned features in one single device, what has made code development even more dy-

namic. These new motes have two radio transceivers that operate at 2.4 GHz and sub-

GHz frequency bands. In the Telecommunications laboratory of Instituto de Teleco-

municações/Universidade da Beira Interior there is a kit of ten units of these motes that 

are used in experimental research. These motes are shown in Fig. 5. 

To evaluate the work and performance of the protocol developed, the code has been 

uploaded to the motes, with one mote receiving the code related to the BS whilst being 

connected to the host computer running Ubuntu 16.04.04 LTS via USB cable. 
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Fig. 5. OpenMote B devices from the Instituto de Telecomunicações (IT) of the Universidade da 

Beira Interior. 

The first evaluation consists of sending data packets to a mote while waiting for the 

reply, to verify the correct transmission of information. Next, traffic is generated and 

recorded in the motes’ network for different test cases. The traffic of information con-

sists of payloads that are sent by the BS which waits for the reply. To perform the last 

test, firmware parameters are adjusted to create two scenarios of evaluation, as sug-

gested in [5], as follows: 

 Scenario 1: Slot frame length = 20 slots, number of active timeslots in slot frames = 

14 slots. 

 Scenario 2: Slot frame length = 9 slots, number of active timeslots in slot frames = 

5 slots. 

  These test scenarios allow the measurement of PLR and throughput. The modifica-

tions in payload size and time of transmission require the recompilation of the firmware 

subproject in each test. As the proposed tests are similar to those performed in previous 

works found on the literature, using the OpenWSN stack and RPL [5] they allow for 

the comparison of the data obtained, what justify the chosen scenarios.  

OpenWSN implements the IPv6 ping function, which makes possible to send a re-

quest to a specific device and observe the time it takes to reply. It is also possible to use 

a sniffer software, such as Wireshark, to analyze packet content, time of transmission 

and reply, as well as loss of packets. 

6 Preliminary Analysis and Results 

The network behavior depends on the number of hops. The results in this section con-

siders a maximum of two hops. Tests with more hops have shown the occurrence of 

link failures that indicate the need to improve the failure recover mechanism. 

The first phase of this analysis has consisted in verifying the correct behavior of the 

code. To perform this first evaluation, one mote received the algorithm for the BS and 

another mote received the algorithm for the SN. The BS was connected to the host 
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computer. Next, the IPv6 ping was used to verify if the motes were able to receive 

packets and send responses. The early stages of code development had indicated that 

for the stack to work with the new version of the OpenMote B, the baud rate had to be 

adjusted in some of the modules.  

Finally, test scenarios 1 and 2 have been applied. The original RPL of the OpenWSN 

stack has also been applied in order to evaluate the performance of the two protocols 

under the considered parameters. Results are shown below. 

 

6.1 Test Scenario 1 

This test considers hop distances of 1 and 2 with payload sizes of 20 bytes and 30 bytes, 

with 300 ms of inter-packet time. Tables 1 and 2 show PLR for the SRMCF while 

Tables 3 and 4 show throughput [kb/s] for test scenario 1. 

Table 1. PLR for test scenario 1 and SRMCF 

Hop Count 
Payload size 

20 bytes 30 bytes 40 bytes 

1 0.11% 0.10% 0.51% 

2 0.23% 0.67 0.70% 

Table 2. PLR for test scenario 1 and RPL 

Hop Count 
Payload size 

20 bytes 30 bytes 40 bytes 

1 0.13% 0.10% 0.70% 

2 0.40% 0.85% 0.88% 

Table 3. Throughput [kb/s] for test scenario 1 and SRMCF 

Hop Count 
Payload size 

20 bytes 30 bytes 40 bytes 

1 0.60 0.68 0.82 

2 0.65 0.80 0.88 

Table 4. Throughput [kb/s] for test scenario 1 and RPL 

Hop Count 
Payload size 

20 bytes 30 bytes 40 bytes 

1 0.50 0.80 0.98 

2 0.52 0.75 0.99 

 

In scenario 1, it is possible to notice how PLR increases for higher hop counts. One 

aspect to be considered is how the OpenWSN firmware behaves with different inter-

packet times, and how results can be analyzed when inter-packet times that are too 
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small. For this test scenario, it can be observed that PLR is smaller for SRMCF in com-

parison with RPL. Also, higher PLR can be caused by mote queue overflow, since this 

queue has a limit, in this version of the stack.  

 

6.2 Test Scenario 2 

This test scenario considers hop distances 1 and 2 with payload sizes of 30 bytes and 

300 ms of inter-packet time. Tables 5 and 6 show the PLR while Tables 7 and 8 show 

the throughput [kb/s] for the SRMCF and RPL protocols in this test scenario. 

Table 5. PLR for test scenario 2 and SRMCF 

Hop Count Payload size = 30 bytes 

1 0.30% 

2 0.63% 

Table 6. PLR for test scenario 2 and RPL 

Hop Count Payload size = 30 bytes 

1 0.30% 

2 0.70% 

Table 7. Throughput [kb/s] for test scenario 2 and SRMCF 

Hop Count Payload size = 30 bytes 

1 0.40 

2 0.49 

Table 8. Throughput [kb/s] for test scenario 2 and RPL 

Hop Count Payload size = 30 bytes 

1 0.50 

2 0.50 

 

The analysis of the results presented on Tables 5 and 6 show that SRMCF and PRL 

present the same values of PLR for one hop.However, for distances of two hopes 

SRMCF presents a slightly better performance. 

7 Conclusions and Future work 

This work has just presented the analysis and practical results of the implementation of 

SRMCF in the OpenWSN stack. The performance analysis has shown the potential of 

the proposed protocol. It has also been possible to observe how the different character-

istics of the studied stack may influence communication between motes. It was shown 
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how slot frame length influences network performance, mainly because 6TiSCH sched-

ule algorithm depends on the characteristics of active slots. However, the fact that the 

stack uses static scheduling makes the influence of characteristics such as slot frame 

length less significative in network performance. These facts indicate that, to maximize 

the performance of IoT base networks while using the OpenWSN stack, one must con-

sider the size of the network and requirements for the transmission time. 

As the proposed algorithm brings the potential for more efficient communications 

among wireless sensor motes, reducing packet collisions and energy consumption, it 

can enhance data traffic among IoT devices in healthcare, medical monitoring and ur-

ban mobility applications, whose deployment scenarios are characterized by the exist-

ence of interferers and obstacles that tend to increase the packet loss ratio. Besides, 

OpenWSN OS already implements IPv6, what brings advantages when one considers 

the context of IoT devices and the constant increasing in the number of devices con-

nected to wireless networks. 

The next steps in this research will be the development of functions more suitable to 

deal with link failure recovery and control data forwarding. Link recovery is a crucial 

part in SRMCF, because once motes in the network have suffered a failure, the network 

is required to recalculate path costs and send this new information to BSs, so that the 

cost table in it can be updated. The creation of a new graphical interface is also neces-

sary so that one can execute simulations in the graphical environment. Once these fea-

tures are fully implemented it will be possible to evaluate the performance of the pro-

posed protocol in comparison to RPL implemented in the OpenWSN stack. 

  Another feature that can be explored in future work is the development of QoS upon 

the proposed stack by performing the necessary changes in the algorithm. The team will 

also make use of the developed protocol to explore long range communications. The 

main idea behind this part of the work is to use the OpenMote platform to interoperate 

with LoraWAN modules that allow long range communications, e.g., to control swarms 

of aerial or aquatic drones [18]. 
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