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Resumo alargado 

O mercado de anticorpos monoclonais (mAbs – do inglês monoclonal antibodies) tem 

vindo a crescer exponencialmente ao longo das últimas décadas devido à elevada capacidade 

de resposta, selectividade, e robustez destas biomoléculas. O número de áreas de aplicação 

terapêutica dos mAbs tem também vindo a aumentar, sendo o cancro e as doenças autoimunes 

as mais representadas. Existem actualmente mais de 50 produtos aprovados e comercializados, 

representando uma receita de cerca de 100 mil milhões de dólares em vendas. Deste modo, 

devido à elevada procura e concomitante necessidade de aumento da produção destas 

biomoléculas, a indústria farmacêutica tem estado em constante evolução e optimização dos 

processos de produção e purificação de mAbs. Existem ainda critérios cada vez mais apertados 

para o controlo de qualidade destas biomoléculas por parte das principais agências reguladoras 

mundiais, nomeadamente a U.S. Food and Drug Administration (FDA) e a Agência Europeia do 

Medicamento (EMA – do inglês European Medicines Agency), de modo a assegurar a formulação 

de um produto seguro e de elevada pureza. É, por isso, necessário haver uma compreensão 

completa de todos os passos envolvidos em toda a cadeia de produção de anticorpos 

monoclonais.  

Um dos passos mais críticos, dispendiosos, e limitante é o passo de captura dos 

anticorpos durante a fase de purificação, nomeadamente o uso de cromatografia de afinidade 

com resinas de proteína A. A cromatografia de proteína A é o método mais aplicado para a 

purificação de anticorpos devido à sua elevada selectividade e também devido à sua robustez. 

As resinas de cromatografia utilizadas têm elevadas capacidades de ligação dinâmica, muito 

devido ao facto de os seus ligandos serem cadeias com múltiplos locais de ligação. Apesar da 

ligação dos anticorpos à proteína A ser amplamente conhecida, ainda não existe muita 

informação acerca do mecanismo através do qual a interação ocorre. Há certos aspectos como 

a estequiometria, a ligação preferencial, e a orientação tanto da cadeia de proteína A como do 

anticorpo que ainda não estão muito claros. Este conhecimento pode ser utilizado para 

optimizar a performance da captura de mAbs, quer seja através do melhoramento das resinas, 

quer seja através da minimização de custos devido a melhores previsões através do 

estabelecimento de modelos que incorporem estes parâmetros. 

Na cromatografia de proteínas são utilizados alguns sensores que têm por base fornecer 

informação acerca da concentração (UV), pureza (cromatografia de exclusão molecular em 

HPLC – SEC-HPLC do inglês), potência (ressonância de plasma de superfície – SPR do inglês), e 

estrutura (dicroísmo circular – CD do inglês e dispersão de luz por ângulo múltiplo – MALS do 

inglês). No entanto, todos estes sensores recolhem informação após as moléculas terem passado 

pela coluna de cromatografia operando online no sistema, ou então são usadas offine. Nenhum 

dos detectores fornece informação sobre a ligação anticorpo-proteína A realmente in situ.  

Este trabalho de doutoramento teve como objectivo a compreensão da interacção entre 

anticorpos e resinas de proteína A com recurso a técnicas de operação in situ, de modo a poder 
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estabelecer um modelo que consiga prever a adsorção de anticorpo, a sua organização 

estrutural aquando da ligação, a sua migração ao longo da coluna, a sua eluição e consequente 

pureza e potência. Para tal, foram usadas duas resinas de proteína A comerciais (MabSelect 

SuRe e TOYOPEARL AF-rProtein A HC) conhecidas pelas suas cadeiras com múltiplos domínios 

de ligação (4 e 6, respectivamente) e foi utilizado um mAb comercial (trastuzumab). 

 A microcalorimetria de fluxo (FMC – do inglês) foi usada extensivamente para obter os 

parâmetros termodinâmicos associados à adsorção de anticorpos às resinas de proteína A. O 

microcalorímetro consiste numa coluna cilíndrica de 6 mm de diâmetro interno e 6 mm de 

altura com dois sensores térmicos acoplados às paredes da coluna capazes de detectar 

pequenas variações de potencial durante o processo cromatográfico. O perfil de adsorção 

mostrou ser de natureza exotérmica com dois passos subjacentes. Um primeiro momento é 

relativo à ligação em si, que resulta em grandes libertações de calor. Posteriormente, há uma 

reorganização dos anticorpos nos ligandos de modo a arranjarem a posição energeticamente 

mais favorável. 

 De modo a caracterizar as alterações estruturais do complexo anticorpo-proteína A e 

avaliar a sua influência na topologia da superfície na adsorção, foi utilizada a técnica difracção 

de raios-X de pequeno ângulo (SAXS – do inglês small angle X-ray scattering). Foi usado um 

pequeno capilar de quartzo transparente aos raios-X em que foram empacotadas as resinas de 

proteína A. Foi possível acompanhar a formação da camada de anticorpo à superfície das resinas 

à medida que o anticorpo era introduzido. Foi demonstrada a possibilidade de ligação 

heterogénea dependendo da saturação da resina. Um modelo aplicado para interpretar os 

resultados foi o “broken rod model”, que sugere que as moléculas de anticorpo se ligam aos 

ligandos de proteína A no domínio mais exterior. Uma investigação posterior envolvendo 

diferentes concentrações de anticorpo foi realizada para avaliar a estequiometria de ligação 

em diferentes zonas da isotérmica. Os dados experimentais foram comparados com modelos 

cristalográficos reproduzindo o anticorpo e uma cadeia com quatro domínios de ligação 

semelhante à usada na resina MabSelect SuRe. Foi verificado que a baixas concentrações a 

estequiometria mais favorável é de 1:1 e que a concentrações intermédias 2:1 torna-se mais 

favorável, sendo sempre uma mistura de ambas. A estequimetria 3:1 foi igualmente testada e 

tida como possível, mas posteriormente desconsiderada como provável devido aos elevados 

efeitos estéricos presentes, pelo que esta condição carece de uma modelação mais avançada 

para poder ter em conta a flexibilidade das moléculas. Todos estes resultados confirmam a 

natureza heterogénea das resinas de proteína A. 

A abordagem oferecida por esta tese permitiu avaliar in situ a adsorção de anticorpos 

a proteína A durante o passo cromatográfico de afinidade, no entanto pode ser aplicada a 

qualquer tipo de cromatografia e para qualquer tipo de biomolécula,  permitindo assim, abrir 

portas a uma investigação mais aprofundada para todos os tipos de cromatografia de alta 

relevância industrial, onde compreender o mecanismo de ligação biomolécula-ligando é de 

extrema importância. 
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Abstract 

The monoclonal antibody market has been growing rapidly in the past decades, and the 

number of therapeutic areas where monoclonal antibodies (mAbs) are employed has been 

increasing, with cancer and autoimmune diseases being the most represented. There are 

already more than 50 approved products, representing a staggering $100 billion in global sales. 

Because of this high demand, antibody manufacturing has been in constant evolution and asking 

for new, more efficient, and more optimized methods to be applied both in the upstream and 

downstream processing. 

Protein A chromatography is step of choice of most of the pharmaceutical companies 

for the antibody capture in the downstream processing. It is a core unit operation that has been 

in constant evolution, with the new resins coming to the market having higher binding 

capacities than their predecessors and improved alkaline stability. Despite of this extensive 

improvement in Protein A resins, there are still some aspects that lack understanding and deep 

investigation, specifically the mechanism of interaction between the antibodies and the Protein 

A ligands, both under linear and overloaded conditions. This knowledge can be used for further 

enhancement of performance in the mAbs capture step. 

The knowledge accumulated during the last decades by studying chromatography for 

proteins bioprocess development has shed some light to the mechanistic understanding of 

protein–ligand interactions, though based on indirect measurements. Chromatography 

processes in general are characterized with online and offline sensors that probe the 

concentration (UV detector), purity (SEC-HPLC), potency (SPR), and structure (MALS, CD) of the 

product, as well as conductivity and pH that can be measured directly in the chromatography 

stations (ÄKTA). However, none of these probes operate in situ, i.e. in the chromatographic 

column where the interaction occurs. The online sensors tackle the elution peak, and the offline 

sensors analyse the sample afterwards. Therefore, this research consists in a biophysical study 

on the antibody adsorption to commercial Protein A resins with in-situ sensors, which resulted 

in an improved understanding of antibody–Protein A interactions, both under linear and 

overloaded conditions.  

Flow microcalorimetry was extensively used to retrieve the thermodynamic parameters 

during antibody adsorption. The microcalorimeter consists on a ID 6 mm × 6 mm column with 

two thermistors coupled on the column walls that are able to detect small changes in potential 

during a chromatographic process. The application of the technique to two commercial Protein 

A resins (MabSelect SuRe with a tetrameric Protein A ligand and TOYOPEARL AF-rProtein A HC 

with a hexameric Protein A ligand) showed an adsorption profile of exothermic nature with two 

sub-processes involved. The first and stronger moment was associated to the adsorption process 

itself. The second moment, less energetic, was associated either to reorganization of the 

antibody layer and the Protein A chain upon binding, or to antibody binding to a ligand where 
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an antibody molecule would already be bound. These interpretations were reinforced by the 

small angle X-ray scattering (SAXS) studies. 

To characterize the changes in the antibody-Protein-A ligand complex and evaluate the 

influence of the surface topology on adsorption, SAXS was employed using a miniaturized, X-

ray-transparent chromatography column packed with the resin. In this way, the protein 

absorption process could be followed and the formation of a protein layer on the 

chromatography resin fibres can be observed at the nanoscale and in a time-resolved manner. 

For the first time it was possible to directly correlate the nanostructure changes inside the 

column, upon adsorption and during elution. It was demonstrated the possibility of 

heterogeneous binding throughout the bead network depending on the resin saturation. By 

application of the broken rod model and under resin saturation it was proposed that an average 

of 1.2 antibodies adsorb per Protein A ligand in MabSelect SuRe at the outermost domains. 

Further investigation was performed at different surface concentrations in order to evaluate 

differences in the organization and stoichiometry in the different zones of the isotherm. The 

experimental data, analysed by the pearl necklace model, was compared with crystallographic 

structures of an IgG1 and a tetrameric chain of the B domain of Staphylococcal Protein A (the 

native form of the Protein A ligand present in MabSelect SuRe). It was found that at low 

isotherm concentrations the antibody to Protein A ratio was 1:1 and that at intermediate and 

high concentrations the 2:1 stoichiometry became favoured. The stoichiometry of 3:1 was also 

tested but was disregarded because of the strong steric effects. 

The offered approach in this thesis follows the adsorption process in situ, in the column 

and opens up new prospects to deeper investigation of all modes of chromatography of high 

industrial relevance, where the understanding of biomolecule–resin mechanism of interaction 

is of utmost importance. 
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(dark red to bright red lines) are compared to radial density distributions 

(blue line) computed from random walk models. The data enumerated 1-

9 correspond to different antibody bulk concentrations, with the 

correspondence given in the text.  

 

116 
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1. Downstream processing of monoclonal antibodies 

1.1. Monoclonal antibodies 

In 1984, the Nobel Prize in Physiology or Medicine was awarded to the immunologists 

Georges J. F. Köhler and César Milstein for an innovative approach on “the manufacture of 

predefined specific antibodies by means of permanent tissue culture cell lines” – the hybridoma 

technique (Köhler & Milstein, 1975).  

Antibodies are produced by white blood cells called B-lymphocytes. When the immune 

system recognizes a substance as foreign (called antigen) the B-lymphocytes are induced to 

produce antibodies against that specific antigen. In their study, Köhler and Milstein developed 

a method to fuse in culture antibody-producing B-lymphocytes of a mouse immunized with the 

targeted antigen with immortal tumor cells from mouse myeloma. The resulting cell line was, 

and still is, called hybridoma. These cells are therefore immortal (characteristic derived from 

the tumor cells) and producers of antigen-specific antibodies (derived from the original B-

lymphocytes) (Ezzell, 2001; Van Dijk & Van De Winkel, 2001). This was the cornerstone to the 

manufacturing of monoclonal antibodies (mAbs). Figure I.1 represents the traditional technique 

to form the hybridoma cell line.  

MAbs are produced continuously due to the hybridoma immortal characteristic. 

However, the greatest challenge in the expression of mAbs from hybridoma is that part of this 

cell line is of murine origin. This translates in limitations in the therapy, such as reduced serum 

half-life and a weak immune response, but mostly they can cause a human anti-mouse antibody 

reaction. In the most extreme cases these allergic reactions can cause kidney failure and, 

ultimately, death (ElBakri, Nelson, & Abu Odeh, 2010; Ezzell, 2001). The key to overcome this 

issue is to make the antibody more human though hybridization or humanization techniques. 

Hybridization techniques involve replacing regions of the murine antibodies (with exception to 

the Fab regions) with human parts, leading to a chimeric antibody ~66% human and ~33% mouse. 

Humanization involves selectively replacing the mouse parts with human parts (including the 

Fab regions) using genetic engineering, leading to an antibody ~90% human. In 2001, Karpas et 

al. were able to generate a fully human monoclonal antibody “from human myeloma line 

suitable for hybridoma” (Karpas, Dremucheva, & Czepulkowski, 2001). Since then, the approved 

human mAbs have already outnumbered the other three mAb types. Figure I.2 shows a 

representation of the human and mouse parts present in the four types of mAbs (Ezzell, 2001).  
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Figure I.1 – Schematic representation of mouse hybridization in the manufacturing of monoclonal antibodies (adapted 

from Ezzell, 2001). 
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Figure I.2 – Representation of the types of mAbs according to its origin (adapted from Ezzell, 2001). 

The first commercialized therapeutic mAb product was Orthoclone OKT3 back in 1986. 

This mAb was used in the prevention of kidney transplant rejection (Ecker, Jones, & Levine, 

2015). Since 1986, the monoclonal antibody market has dramatically increased. However, the 

predictions were not entirely accurate. In 2001 analysts predicted that 100 mAbs would be on 

the market by the year 2010 (Ezzell, 2001). However, in 2008, despite nearly 150 human mAbs 

were entering clinical studies, only 20 had been approved and were on the market (and not 

only human). As of 2017 there are 50 products that have been approved by both the U.S. Food 

and Drug Administration (FDA) and the European Medicines Agency (EMA). Table I.1 summarizes 

the approved mAbs by both agencies along with their therapeutic indications, manufacturing 

company, expression cell line, and type of mAb (Ecker et al., 2015; Elvin, Couston, & van der 

Walle, 2013).  

In recent years, mAbs cover already a wide range of therapeutic areas, being oncology, 

autoimmune and inflamm atory diseases the most predominant (Elvin et al., 2013). The 

antibody market has been rapidly growing. In 2010, the mAb market returned a global sales 

revenue of 43 billion U.S. dollars (Elvin et al., 2013). In 2013 it reached $75 billion. Also, from 

the top ten biopharmaceuticals with the most revenue worldwide in 2016, four are mAbs 

(Morrison & Lähteenmäki, 2017): Humira® (Abbvie) (#1), Rituxan® (Roche/Genentech) (#3), 

Avastin® (Roche/Genentech) (#5) and Herceptin® (Roche/Genentech) (#6).  
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Table I.1 - Table of approved mAbs as of 2017 (adapted from (Ecker et al., 2015) and from the Animal Cell Technology Industrial Platform, viewed 19 December 2018, 

<http://www.actip.org/products/monoclonal-antibodies-approved-by-the-ema-and-fda-for-therapeutic-use/>). 

Trade name 
International 

Non-proprietary 
Name  

Company Target Type 
EMA 

approval 
FDA 

approval 
Cell line 

Therapeutic 
indication(s) 

ABthrax® Raxibacumab 
Human Genome 

Sciences 

Bacillus 
anthracis 
protective 

antigen 

Human IgG1 
Not 

approved 
2012 NS0 

Prevention and 
treatment of inhalation 

anthrax 

Adcetris® Brentuximab Seattle Genetics CD30 Chemeric IgG1  2012 2011 CHO 
Hodgkin lymphoma, 
systemic anaplastic 
large cell lymphoma 

Amjevita® Adalimumab Amgen Europe TNFα Human IgG1 2017 2016 CHO 

Arthritis; rheumatoid 
arthritis; ulcerative 

Crohn’s disease; 
psoriasis; 

Arzerra® Ofatumumab 
Genmab and 

GSK 
CD20 Human IgG1 2010 2009 NS0 

Chronic lymphocytic 
leukemia 

Avastin® Bevacizumab 
Genentech 

(Roche) 
VEGF 

Humanized 
IgG1 

2005 2004 CHO 

Metastatic colorectal 
cancer; lung cancer; 

metastatic breast 
cancer 

Benlysta® Belimumab HSG, GSK BLyS Human IgG1 2011 2011 NS0 
Systemic lupus 
erythematosus 

Bexxar® Tositumomab Corixa and GSK CD20 Murine IgG2a 
Not 

approved 
2003 Hybridoma 

Non-Hodgkin’s 
lymphoma 

Blincyto® Bevacizumab Amgen Europe CD19 BiTEs 2015 2014 CHO 
Precursor cell 

lymphoblastic leukemia-
lymphoma 

Campath® Alemtuzumab 
Millennium 

Pharmaceuticals 
and Genzyme 

CD52 
Humanized 

IgG1 
2001 2001 CHO 

B-cell chronic 
lymphocytic leukemia 

http://www.actip.org/products/monoclonal-antibodies-approved-by-the-ema-and-fda-for-therapeutic-use/
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Cimzia® 
Certolizumab 

pegol 
UCB TNFa 

Humanized IgG 
Fab fragment 

2009 2008 E. coli 
Chron’s disease; 

rheumatoid arthritis 

Cinqair™ Reslizumab 
Teva 

Pharmaceuticals 
Limited 

IL-5 Human IgG4/κ 2016 2016 NSO Asthma 

Cosentyx™ Secukinumab 
Novartis 

Europharm 
interleukin-17A Human IgG1/κ 2015 2015 CHO 

Arthritis; psoriatic 
psoriasis; spondylitis; 

ankylosing 

Cyramza Ramucirumab Eli Lilly VEGF Human IgG1 2014 2014 NS0 Stomach neoplasms 

Darzalex® Daratumumab Janssen-Cilag CD38 Human IgG1/κ 2016 2015 CHO Multiple myeloma 

Empliciti Elotuzumab 
Bristol-Myers 

Squibb 
SLAMF7 Human IgG1 2016 2015 NS0 Multiple myeloma 

Entyvio® Vedolizumab Takeda Pharma Integrin-α4β7 HumanizedIgG1 2014 2014 CHO 
Colitis; ulcerative 
Crohn’s disease 

Erbitux® Cetuximab 
ImClone, Merck 
Serono and BMS 

EGFR Chimeric IgG1 2004 2004 Sp2/0 
Head and neck cancer; 

colorectal cancer 

Gazyvaro® Obinutuzumab Roche CD20 
Humanized 

IgG1 
Not 

approved 
2013 CHO 

Chronic lymphocytic 
leukemia 

Herceptin® Trastuzumab 
Genentech 

(Roche) 
HER-2 

Humanized 
IgG1 

2000 1998 CHO 

Breast cancer; 
metastatic gastric or 

gastroesophageal 
junction 

adenocarcinoma 

Humira® Adalimumab Abbott TNFα Human IgG1 2003 2002 CHO 
Rheumatoid arthritis; 
ankylosing spondylitis; 

Crohn’s disease 

Ilaris® Canakinumab Novartis IL-1ß Human IgG1 2009 2009 Sp2/0 

Tumor necrosis factor 
receptor associated 
periodic syndrome; 

familial mediterranean 
fever 
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Inflectra Infliximab 
Hospira UK 

Limited 
TNFα 

Chimeric 
human-murine 

IgG1 
2013 2016 

Sp2/0-
Ag14 

Spondylitis; arthritis; 
rheumatoid colitis; 
ulcerative arthritis; 

psoriasis 

Kadcyla® 
Trastuzumab 
emtansine 

Roche HER2 
Humanized 
IgG1 as ADC 

2013 2013 CHO Breast cancer 

Keytruda® Pembrolizumab 
Merck Sharp & 
Dohme Limited 

PD-1 Human IgG4 2015 2014 CHO Melanoma 

Lartruvo Olaratumab Eli Lilly PDGFR-α Human IgG1 2016 2016 CHO Sarcoma 

Lemtrada® Alemtuzumab Sanofi CD52 
Humanized 

IgG1 
2013 2014 CHO Multiple sclerosis 

Lucentis® Ranibizumab 
Genentech 

(Roche) 
VEGF-A 

Humanized 
IgG1 Fab 
fragment 

2007 2006 E. coli 
Neovascular age-related 
macular degeneration 

Nucala Mepolizumab GlaxoSmithKline IL-5 Human IgG1/κ 2015 2015 CHO Asthma 

Opdivo Nivolumab 
Bristol-Myers 

Squibb Pharma 
PD-1 Human IgG4 2015 2015 CHO 

Carcinoma; lung 
carcinoma; renal cell 

Hodgkin disease 
melanoma 

Orthoclone 
OKT3® 

Muromonab-CD3 

Centocor Ortho 
Biotech 

(Johnson & 
Johnson) 

CD3 Murine IgG2a 1986 1986 Hybridoma 
Transplantation 

rejection 

Perjeta® Pertuzumab Roche HER2 
Humanized 

IgG1 
2013 2012 CHO Breast cancer 

Portrazza Necitumumab Eli Lilly EGFR Human IgG1 2016 2015 NS0 
Carcinoma, non-small-

cell lung 

Praluent Alirocumab 
sanofi-aventis 

groupe 
PCSK9 Human IgG1 2015 2015 CHO Dyslipidemias 

Praxbind® Idarucizumab 

Boehringer 
Ingelheim 

International 
GmbH 

dabigatran 
etexilate 

Human FaB 2015 2015 CHO Hemorrhage 
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Prolia® Denosumab Amgen RANKL Human IgG2 2010 2010 CHO Osteoporosis 

Proxinium® Catumaxomab 
Viventia (Eleven 
Biotherapeutics) 

EpCAM 
Humanized 

MAb 
2005 2005 CHO Head and neck cancer 

Remicade® Infliximab 

Centocor Ortho 
Biotech 

(Johnson & 
Johnson) 

TNFα Chimeric IgG1 1999 1998 Sp2/0 

Crohn’s disease; 
ulcerative colitis; 

rheumatoid arthritis; 
psoriatic arthrits 

Removab® Catumaxomab Fresenius EpCAM and CD3 
Trifunctional 
MAb IgG2a / 

IgG2b 
2009 

Not 
approved 

Mouse 
hybridoma 

Malignant ascites in 
patients with positive 

carcinomas 

Remsima® Infliximab 
Celltrion 

Healthcare 
TNF-alpha 

Chimeric IgG1 
Ab 

2013 
Not 

approved 
CSC-

Ps0006 

Spondylitis; ankylosing 
arthritis; rheumatoid 

colitis; psoriatic 
psoriasis 

ReoPro® Abciximab 

Centocor Ortho 
Biotech 

(Johnson & 
Johnson), Elli 

Lily 

GPIIb/IIIa 
Chimeric IgG1 

Fab 
1995 1994 Sp2/0 High risk angioplasty 

Repatha® Evolocumab Amgen LDL-C / PCSK9 Human IgG2 2015 2015 CHO 
Dyslipidemias; 

hypercholesterolemia 

Rituxan® 
MabThera® 

Rituximab 
Biogen Idec, 
Genentech 

(Roche) 
CD20 Chimeric IgG1 1998 1997 CHO 

Non-Hodgkin’s 
lymphoma; lymphocytic 
leukemia; rheumatoid 

arthritis 

RoActemra® Tocilizumab Chugai (Roche) IL-6 receptor 
Humanized 

IgG1 
2009 2010 CHO Rheumatoid arthritis 

Simponi® Golimumab 

Centocor Ortho 
Biotech 

(Johnson & 
Johnson) 

TNFa Human IgG1 2009 2009 Sp2/0 
Rheumatoid arthritis; 

psoriatic arthritis; 
ankylosing spondylitis 

Simulect® Basiliximab Novartis CD25 Chimeric IgG1 1998 1998 NS0 
Reversal of 

transplantation 
rejection 
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Soliris® Eculizumab 
Alexion 

Pharmaceuticala 
Complement C5 

Humanized 
IgG2/4 

2007 2007 NS0 
Paroxysmal nocturnal 

hemoglobinuria 

Stelara® Ustekinumab 

Centocor Ortho 
Biotech 

(Johnson & 
Johnson) 

IL-12 / IL-23 Human IgG1 2009 2009 Sp2/0 Plaque psoriasis 

Sylvant® Siltuximab 
Janssen-Cilag 
International 

cCLB8 Chimeric IgG1κ 2014 2014 CHO 
Giant lymph node 

hyperplasia 

Synagis® Palivizumab 
MedImmune, 

Abbott 
F-protein of RS 

virus 
Humanized 

IgG1 
1999 1998 NS0 

Respiratory syncytial 
virus 

Tysabri® Natalizumab 
Biogen Idec and 

Elan 
VLA-4 

Humanized 
IgG4 

2006 2004 
Murine 

myeloma 
Multiple sclerosis; 
Crohn’s disease 

Vectibix® Panitumumab Amgen EGFR Human IgG2 2007 2006 CHO 
Metastatic colorectal 

carcinoma 

Vervoy® Ipilimumab BMS CTLA-4 Human IgG1 2011 2011 CHO Melanoma 

Xolair® Omalizumab 
Genentech 
(Roche) and 

Novartis 
IgE 

Humanized 
IgG1 

2005 2003 CHO Asthma 

Zevalin® 
Ibritumomab 

tiuxetan 
Biogen Idec CD20 Murine IgG1 2004 2002 CHO 

Non-Hodgkin’s 
lymphoma 

Zinplava™ Bezlotoxumab 
Merck Sharp & 
Dohme Limited 

C. Difficile; 
toxin B 

Human 
monoclonal 
antitoxin 
antibody 

2017 2016 CHO 
Enterocolitis; 

pseudomembranous 
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1.1.1. Trastuzumab 

Trastuzumab (Genentech, South San Francisco, CA, USA) was the monoclonal antibody 

used in the present study. It is a DNA-derived recombinant immunoglobulin G1 (IgG1) of the 

subclass kappa that binds to the HER2 receptors overexpressed in the breast cancer cells 

(Goldenberg, 1999). HER2 (also known as Neu, ERBB2) is a proto-oncogene that encodes a 

transmembrane glycoprotein receptor tyrosine kinase similar to the human epidermal growth 

factor receptor 2, HER2 (or Erb-B2 receptor tyrosine kinase 2). HER2 is located on the cell 

surface, interacting with growth factors. An overexpression is correlated with the presence of 

primary human breast carcinomas (Cho et al., 2003; Goldenberg, 1999) and its amplification 

serves better as prognostic to lymph-node positives than other factors like hormonal-receptor 

status (Slamon et al., 1987).  

The construction of trastuzumab (Goldenberg, 1999) is based on the humanized 

antibody humAb4D5 (Carter et al., 1992), which predecessor was the murine mAb mumAb4D5 

which directs against the extracellular domain of the human epidermal growth factor receptor 

2 (p185HER2), inhibiting the proliferation of tumor cells overexpressing this protein (Carter et 

al., 1992).  

Trastuzumab has been approved in 1998 by the FDA and in 2000 by the EMA, and it is 

used in treatments for breast cancer, being the 4th largest-selling mAb and the 6th in the 

biopharmaceutical global market generating a revenue of $6,900 million worldwide (Morrison 

& Lähteenmäki, 2017) (Table I.2).   
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Table I.2 – Table of the top 10 biopharmaceuticals by revenue (adapted from (Morrison & Lähteenmäki, 

2017)). 

Name Lead company Molecule type 
2016 worldwide 
sales ($ millions) 

Humira AbbVie mAb 16,078 

Harvoni 
Gilead 

Sciences 
Small 

molecule 
9,081 

Rituxan 
(rituximab) 

Roche mAb 7,454 

Revlimid Celgene 
Small 

molecule 
6,974 

Avastin Roche mAb 6,901 

Herceptin Roche mAb 6,900 

Enbrel Amgen Protein 6,817 

Prevnar 13 Pfizer Vaccine 5,718 

Lantus (insular 
glargine injection) 

Sanofi Peptide 5,287 

Neuplasta 
(pegfilgrastim) 

Amgen Peptide 4,658 

1.2. Protein A chromatography 

Protein A chromatography has been optimized over the years and is now the best 

established technique for antibody capture directly from cell culture supernatant at a pH close 

to physiological conditions (Bolton, Street, & Mehta, 2016). At these conditions, the antibodies 

bind reversibly to the Protein A ligands (Shukla, Hubbard, Tressel, Guhan, & Low, 2007). In a 

single step a high degree of purity and recovery can be achieved (Fahrner et al., 2001; Shukla 

et al., 2007). In a review paper, Pete Gagnon names three features that contribute to Protein 

A resins dominance in antibody purification market: induced fit; multi-point attachment and 

ligand flexibility; and a long track of years of vendor competition to maximize capacity 

(Gagnon, 2012).  

Despite all the advantages of Protein A chromatography, it has also some limitations, 

starting with the cost of the resin, which is the most expensive material in the purification of 

mAbs (Z. Liu, Mostafa, & Shukla, 2014). This leads to the search for strategies for column 

reutilization. Another limitation is the fact that elution needs to be carried at low pH, which 

also works as a viral inactivation step, but generates aggregates (Kelley, 2009; H. F. Liu, Ma, 

Winter, & Bayer, 2010; Shukla et al., 2007). Some impurities are removed to some extent from 

the cell supernatant during the capture, intermediate, and polishing steps, namely host cell 

protein (HCP), DNA, viruses, endotoxins, and aggregates (H. F. Liu et al., 2010). Others are 

introduced during the purification process itself and should also be taken into account, such 

as: leached Protein A, antibody aggregates, buffers, and detergents (H. F. Liu et al., 2010). 

However, subsequent intermediate and polishing steps will tackle the remainder impurities 

(Shukla et al., 2007). 
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Sanitization is a very important step of antibody-Protein A capture step. The cleaning-

in-place (CIP) step consists in the use of harsh cleaning agents or detergents for the removal of 

tightly bound or precipitated contaminants. The use of such agents, like sodium hydroxide 

(NaOH), can ultimately lead to loss in the binding capacity (Hober, Nord, & Linhult, 2007; M. 

S. Lin et al., 2007; Linhult et al., 2004; Yang, Biswas, & Chen, 2003) and lifetime (Hahn et al., 

2005a; Hale, Drumm, Harrison, & Phillips, 1994; Jiang, Liu, Rubacha, & Shukla, 2009). NaOH at 

0.1 up to 0.5 M are the most used column sanitization conditions, being also effective in the 

inactivation of bacteria, viruses, and endotoxins (Hober et al., 2007). 

In the development of a Protein A capture step, one has to take certain factors into 

consideration such as column dimensions, flow rate, resin cost, and processing time (H. F. Liu 

et al., 2010). Commercial resins change in their backbone, bead and pore size, and source of 

Protein A and chain length. The choice of a Protein A resin and its characteristics depends on 

the application. In early clinical development high dynamic binding capacity has to be 

considered, and in commercial operations the choice would lie more on a resin with decreased 

processing time (due to economic reasons) (Ghose, Nagrath, Hubbard, Brooks, & Cramer, 2004; 

Z. Liu et al., 2014). Considering the costs of Protein A resins, the production rate is an important 

parameter to take into consideration. High dynamic binding capacities help minimizing the 

resin volumes needed and the ability to withstand high flow rate helps reducing the cycle times. 

1.2.1. Recombinant Protein A resins 

Native Protein A is found in the cell wall of Staphylococcus aureus. It has 42 kDa and 

contains five homologous IgG-binding domains; from the N-terminal: E, D, A, B, and C. All these 

domains have high selectivity and strong affinity to every IgG isotype, with exception to IgG3.  

Protein A chromatography is acknowledged as the most costly step in downstream 

processing, mostly because the resins are not used to their full lifetime extent (Z. Liu et al., 

2014). Early generations of Protein A resins contained as a ligand native forms of Staphylococcal 

Protein A  (Pabst, Thai, & Hunter, 2018). In the current resins, manufacturers have made some 

improvements namely in the binding capacity and alkaline stability.  

Through certain point mutations in the Protein A domains alkaline stability was 

drastically improved, resins now are able to withstand higher sodium hydroxide concentrations 

for short periods of time for more than 150 CIP cycles without capacity loss (Z. Liu et al., 2014; 

Pabst et al., 2018). 

Increased dy namic binding capacity was achieved by improving static binding capacity 

by ligand modification with the implementation of repetitive units of Protein A antibody-

binding domains (Müller & Vajda, 2016; Roman & Berensmeier, 2014) and with increase in ligand 

density (McCue, Kemp, Low, & Quiñones-García, 2003). Dynamic binding capacity (DBC) was 

also increased by reducing mass transfer resistance (Hahn et al., 2005; Hahn, Schlegel, & 

Jungbauer, 2003; Z. Liu et al., 2014; Perez-Almodovar & Carta, 2009). 
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Two of the commercially available Protein A resins most used for antibody capture 

directly from feedstocks are MabSelect SuRe (GE Healthcare) and TOYOPEARL AF-rProtein A HC 

(Tosoh). In the manufacturing of MabSelect SuRe, the native Protein A B domain was 

synthetically modified generating the so called Z domain. Each ligand comprises four repetitive 

units of the Z domain. TOYOPEARL AF-rProtein A HC contains a ligand of six repetitive units of 

the synthetically engineered Y domain, derived from the native C domain. 

1.2.2. IgG-Protein A complex 

As mentioned, mAbs are in their great majority full human or humanized IgGs. IgGs are 

a group of large globular proteins constituted by three subunits: two identical antigen-binding 

fragments (Fab) and one easily crystallizable fragment (Fc) (Salvalaglio, Zamolo, Busini, 

Moscatelli, & Cavallotti, 2009; Sandin, Öfverstedt, Wikström, Wrange, & Skoglund, 2004; 

Saphire et al., 2003). The Fc is connected to the Fab domains by a hinge region that consists of 

two disulphide bridges between cysteine residues, granting the antibody flexibility depending 

on the length of the hinge. The light and heavy chains are also connected by a disulphide bridge. 

This region is primarily where the different IgG subclasses differ (Rayner et al., 2015). The 

hinge length is connected to the IgG functionality and naturally with their flexibility. Of the 

four subclasses of IgG, IgG1 is the most abundant in the serum. This subclass corresponds to 

~68% of the mAbs in the market, namely because it binds to every class of Fcγ receptor and 

because of the high specificity and affinity of the antigen to their Fab (Rayner et al., 2015). A 

representation of an IgG1 can be seen in Figure I.3 (1HZH.pdb). 

The antibody binding to Protein A occurs through a hydrophobic region between CH2 

and CH3 domains of the Fc known as “consensus binding site” (CBS) through van der Waals and 

electrostatic interactions in the CH2 domain, and through electrostatic interactions in the CH3 

domain (Deisenhofer, 1981; DeLano, Ultsch, de Vos, & Wells, 2000; Gagnon, Nian, Leong, & 

Hoi, 2015; Salvalaglio et al., 2009; Shukla et al., 2007). Figure I.4 shows a representation of 

the antibody-binding B-domain of Protein A bound to the Fc region through the hinge between 

CH2 and CH3 (the crystallographic structure was developed by Deisenhofer, 1FC2.pdb) 
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Figure I.3 – A) Crystallographic structure of an IgG1 (1HZH.pdb) showing the fragment crystallizable region (Fc) and 

the antigen-binding fragment (Fab). The antibody is subdivided into two heavy chains and two light chains, represented 

with the lower index H and L respectively. The constant and variable regions are also indicated with C and V 

respectively. Linked to the N-terminus of each of the heavy chains in aspargine 297 are a series of carbohydrates, 

which have a core common to all human IgG; B) Core of glycans bound to Asn 297 of the heavy chains. 
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Figure I.4 – Crystallographic representation of the Protein A antibody-binding B-domain to the Fc region in the hinge 

between CH2 and CH3 (1FC2.pdb). 
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2. Understanding protein adsorption 

The importance of mAbs to the therapeutic market has been increasingly growing 

(Marichal-Gallardo & Álvarez, 2012; Morrison & Lähteenmäki, 2017) with associated need for 

the production of high product volumes. Besides, downstream scientists and engineers face a 

plethora of other technical, economic, and product safety challenges imposed by regulatory 

agencies. The internationally accepted regulatory approaches for the manufacturing of 

pharmaceuticals require a control through Quality by Design (QbD) and Process Analytical 

Technology initiatives (PAT) (Mhatre & Rathore, 2009). These initiatives request a deep 

understanding of the biomolecule critical quality attributes affecting its safety and efficacy 

profile as well as a comprehension of the process design space, where the final product meets 

the necessary criteria for efficiency and safety. These requirements have rendered univariate 

optimization and trial-and-error-based chromatographic process development largely obsolete 

(Hanke & Ottens, 2014), calling for the use of mechanistic approaches, derived from 

fundamental principles and reflecting a higher level of understanding.  

Studying preparative chromatography involves a detailed investigation of the physical 

chemistry fundamentals, considering the equilibrium and the kinetic effects. Most mechanistic 

approaches describing chromatographic separations consist of two parts: equations describing 

the fluid flow and mass transfer in the column, and a model to describe the interactions 

between the sample and the support in the form of adsorption isotherms. Furthermore, for the 

establishment of consistent models, the biomolecule–resin mechanism of interaction should be 

understood. 

In particle chromatography, protein adsorption to stationary phases is a complex 

phenomenon that comprises multiple steps and depends on various factors. Giorgio Carta and 

Alois Jungbauer describe extensively in their book “Protein Chromatography” (Carta & 

Jungbauer, 2010), in the chapter of Adsorption Equilibria, factors present during protein 

adsorption that affect prediction theoretical models, namely: 1) heterogeneous distribution of 

the charged and the hydrophobic groups in the proteins (proteins cannot be considered 

spherical particles with homogeneous binding character); 2) protein unfolding upon adsorption 

(the adsorbed molecules become structurally different from molecules in the equilibrium); 3) 

protein self-association and repulsive interactions; 4) exclusion effects due to resin pore size 

distribution; 5) diffusional resistance due to limitations associated to the binding kinetics. 

In light of these set of factors, it is understandable why predicting protein adsorption 

in equilibrium is cumbersome and empirical models become useful. The use of hybrid 

procedures combining modeling with an experimental approach can help predicting key 

parameters associated with preparative chromatography. 
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2.1. Isotherms 

Resin process performance is determined, as previously mentioned, by equilibrium and 

kinetics factors. Equilibrium factors, like selectivity and binding capacity, are controlled by the 

nature, selectivity, and concentration of the binding ligands, by the accessible surface area, 

and by the nature of the resin backbone. The relationship between a molecule adsorbed to a 

stationary phase and its concentration in equilibrium with the mobile phase at constant 

temperature is given by the adsorption isotherm.  

The Langmuir isotherm is the most used model to describe antibody adsorption to 

Protein A resins, even though Protein A resins are of heterogeneous binding nature (Carta & 

Jungbauer, 2010; Perez-Almodovar & Carta, 2009). In a single component system (and using as 

example the affinity chromatography system between antibody and Protein A), there is a 

stoichiometric association of an antibody, 𝐴, with the Protein A ligands, 𝐵. The formation of 

the complex 𝐴𝐵 can be described in equilibrium as follows: 

𝐴 + 𝐵  𝐴𝐵
𝑘𝑑
← 

𝑘𝑎
→      (1) 

where 𝑘𝑎 and 𝑘𝑑 would respectively represent the on and off rate constants for the binding 

(association) and desorption (dissociation) rate of antibody to Protein A. The complex formation 

rate can be described by: 

𝜕[𝐴𝐵]

𝜕𝑡
= 𝑘𝑎[𝐴][𝐵] − 𝑘𝑑[𝐴𝐵]     (2) 

where 𝑡 is the time; and the square brackets represent the concentrations of the involved 

species. The representation of the complex formation rate by the Langmuir kinetic model is 

given by: 

𝜕𝑞

𝜕𝑡
= 𝑘𝑎(𝑞𝑚 − 𝑞)𝐶 − 𝑘𝑑𝑞     (3) 

where 𝑞 is the amount of adsorbed antibody to the ligands, i.e., the representation of the 

complex 𝐴𝐵, with [𝐴𝐵] =  𝑞; 𝐶 is the antibody concentration in equilibrium with the mobile 

phase, i.e., [𝐴] = 𝐶; and 𝑞𝑚 is the maximum binding capacity of the resin for the antibody, so 

that the number of free ligands 𝐵 is given by [𝐵] = 𝑞𝑚 − 𝑞. 

In equilibrium, where 
𝜕𝑞

𝜕𝑡
= 0 holds true, Eq. (3) can be rewritten as: 

𝑞 =
𝑞𝑚𝐶
𝑘𝑑
𝑘𝑎

+𝐶
      (4) 

Substituting 𝑘𝑑 𝑘𝑎⁄  with 𝐾𝐷, the equilibrium dissociation constant that is obtained by 

the ratio between the off and on rate constants, it gives the equation of the Langmuir isotherm: 
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𝑞 =
𝑞𝑚𝐶

𝐾𝐷+𝐶
      (5) 

The dissociation constant 𝐾𝐷 is given in mg/mL (or mol/L) is the equilibrium 

concentration at which the surface concentration, 𝑞, is half of the maximum binding capacity, 

𝑞𝑚. It is the inverse of the affinity constant 𝐾𝐴, which represents the affinity of the resin for 

the molecule and is expressed in mL/mg (or M-1). The affinity constant of Protein A resins for 

the Fc part of human IgG1, IgG2, and IgG4 is in the range of 700 g/L or 108 M-1 (Hober et al., 

2007; Jendeberg et al., 1997). With 𝐾𝐷 =
1

𝐾𝐴
, the Langmuir isotherm can be rewritten as:  

𝑞 =
𝑞𝑚𝐾𝐴𝐶

1+𝐾𝐴𝐶
      (6) 

Figure I.5 shows representations of typical Langmuir isotherms. It can be seen how 

different values for the parameters 𝐾𝐷 and 𝑞𝑚 affect the isotherm behaviour.  

 

 

Figure I.5 – Representation of adsorption isotherms and the contribution of its parameters to the adsorption 

behavior. 

As the equilibrium concentration tends to zero (𝐶 → 0), the isotherm approaches its 

linear region, with: 

𝑞 = 𝑞𝑚𝐾𝐴𝐶      (7) 

As the equilibrium concentration tends to infinity (𝐶 → ∞), the isotherm approaches 

the maximum capacity, with: 
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𝑞 = 𝑞𝑚       (8) 

The isotherm parameters can be determined by fitting the experimental data of 

adsorbed concentration at each liquid phase concentration with linearized forms 
𝑞
𝐶⁄  𝑣𝑠 𝑞 

(Scatchard plot, Eq. (9)) or 𝐶 𝑞⁄  𝑣𝑠 𝐶 (Eq. (11)) of the Langmuir isotherm: 

𝑞

𝐶
=

𝑞𝑚

𝐾𝐷
−

𝑞

𝐾𝐷
      (11) 

𝐶

𝑞
=

𝐶

𝑞𝑚
+

𝐾𝐷

𝑞𝑚
      (12) 

Other isotherm that can be applied to model antibody adsorption to Protein A is the bi-

Langmuir isotherm. This model considers energetic heterogeneity of the binding sites and the 

possibility of interactions between adsorbed species. The general equation for this isotherm is 

the following: 

𝑞 = ∑
𝑖=1

2

𝑞𝑚,𝑖𝐾𝐴,𝑖𝐶/(1 + 𝐾𝐴,𝑖𝐶)     (13) 

2.2. Mass transfer 

Mass transfer effects, which are also determinant to resin process performance, control 

the rate or kinetics factors in adsorption process. These factors are controlled by the particle 

size, by the pore size, and the porosity or pore network connectivity (Carta, Ubiera, & Pabst, 

2005). 

Figure. I.6 shows the relationship between the reduced height equivalent to a 

theoretical plate and the reduced linear velocity 𝑣′. The reduced velocity is given by: 𝑣′ =

𝑣 𝑑𝑝 𝐷0⁄ , where 𝑣 is the linear velocity, 𝑑𝑝 is the particle diameter, and 𝐷0 is the diffusivity in 

free solution. 

In industrial applications, for the processing of biopharmaceuticals, stationary phases 

usually consist of particles in the size range of 20-100 µm, the diffusivity in free solution is in 

the order of magnitude of 10-7 cm2/s, and the employed linear velocity is in the range of 100-

500 cm/h. Therefore, reduced velocity values would be in a range greater than 𝑣′ = 100, where 

chromatography is almost only controlled by mass transfer (Carta et al., 2005). 
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Figure I.6 – Generalized van Deemter equation and plot and the controlling mechanisms in each range. 

Mass transfer is an important driving parameter in Protein A chromatography. The rate 

at which a molecule adsorbs to porous stationary phase packed bed highly depends on the 

resistances faced along the way. Two types of resistances control overall mass transfer: 

external transport and intraparticle transport. The external transport in the fluid is associated 

with the film resistance and dependent on convection, which is controlled by the mobile phase 

velocity. The intraparticle transport occurs through diffusion which can occur either in the 

particle pores (pore diffusion – and the driving force being the molecule concentration gradient 

in the pores liquid) or in the adsorbed phase (solid diffusion - and the driving force being the 

molecule concentration gradient in the adsorbed phase). In addition, mass transfer through all 

these transport mechanisms is dependent on the kinetic resistance to binding in the resin 

surface (Carta et al., 2005). 

2.2.1. External transport 

The liquid transport over the length of one particle is fast in industrial applications. 

With typical operating conditions like linear velocity at 150 cm/h in a column packed with beads 

of the 100 µm range and an extraparticle porosity, 𝜀, of 0.4 (𝜀 ranges from 0.3 to 0.4 in randomly 

packed beds of spherical particles, being independent of the particle size), the time that fluid 

takes to convectively go around such particle is approximately 0.1 s, with 𝑡 =
𝜀𝑑𝑝

𝑣
. Since this 

process is much faster than protein adsorption, one can consider the protein concentration in 

the liquid surrounding the particle at each moment as uniform (Carta & Jungbauer, 2010). In 

this case, the mass transfer rate, 𝐽, at the particle surface is driven by the difference between 

the concentration in the liquid and the concentration adsorbed at the particle surface: 

𝐽 = 𝑘𝑓(𝐶 − 𝐶𝑠)      (14) 
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where 𝐶𝑠 is the concentration at the particle surface, and 𝑘𝑓 is the film mass transfer coefficient 

given by the ratio of the diffusivity in free solution 𝐷0 and the steady state diffusion over a thin 

stagnant film of thickness δ: 𝑘𝑓 = 
𝐷0

δ
. The diffusivity in free solution for antibodies was 

estimated from Tyn and Gusek with a value of 𝐷0 = 3.7 × 10−7 𝑐𝑚2/𝑠 (Tyn & Gusek, 1990). 

In process applications, protein chromatography is driven by laminar flow and the mass 

transfer coefficient in packed beds can be correlated with engineering parameters such as the 

Sherwood, Schmidt, and Reynolds numbers, as approached by Wilson and Geankoplis (Wilson & 

Geankoplis, 1966): 

𝑆ℎ =  
1.09

𝜀
𝑅𝑒0.33𝑆𝑐0.33      (15) 

where the Sherwood, Schmidt, and Reynods number are respectively 𝑆ℎ =
𝑘𝑓𝑑𝑝

𝐷0
=

𝑑𝑝

δ
, 𝑆𝑐 =

𝜂

ρ𝐷0
, 

and 𝑅𝑒 =
ρu𝑑𝑝

𝜂
, where 𝜂 is the viscosity, 𝜌 is the solution density, and u is the linear velocity. 

The Sherwood number is the correlation between convective mass transfer and diffusive mass 

transfer, or simply the ratio of the particle diameter between the film thickness. The Schmidt 

number is also a dimensionless parameter that is determined by physical properties. It 

represents the correlation between the kinematic viscosity (ratio between viscosity and 

density) of the fluid and mass diffusivity in free solution.  The Reynolds number is determined 

by the flow conditions. With Reynolds number one can determine the proportion of convective 

flow to turbulent flow over the length of a particle considering a certain linear velocity.  

However, for molecules of the colloidal size like therapeutic proteins where external 

mass transfer is not a driving factor and for the particle sizes employed in industrial 

chromatography, the external mass transfer coefficient in agitated vessels can be defined as: 

𝑆ℎ = 2 + 0.52 [
ρ(𝜀𝑑𝑝

4)
0.33

𝜂
]

0.52

𝑆𝑐0.33    (16) 

where 𝜀 is the agitation power input per mass of liquid. 

2.2.2. Intraparticle transport 

As mentioned, intraparticle transport can occur inside the pores or at the surface of 

the adsorbent, named as pore diffusion and solid diffusion respectively. When pore and solid 

diffusion are assumed, the mass transfer equation for spherical particles is the following (Carta 

et al., 2005): 

𝜕𝑞

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
[𝑟2 (𝜀𝑝𝐷𝑝

𝜕𝑐

𝜕𝑟
+ 𝐷𝑠

𝜕𝑞

𝜕𝑡
)]     (17) 

𝑡 = 0, 𝑐 = 0, 𝑞 = 0 



 23 

𝑟 = 0, 
𝜕𝐶

𝜕𝑟
= 0 

𝑟 = 𝑟𝑝, 𝜀𝑝𝐷𝑝
𝜕𝐶

𝜕𝑟
+ 𝐷𝑠

𝜕𝑞

𝜕𝑟
= 𝑘𝑓(𝐶 − 𝑐)    (18) 

where 𝜀𝑝𝐷𝑝 and 𝐷𝑠 are the diffusivities in the pore and in the adsorbed phase respectively, 𝑟𝑝 

is the particle radius, 𝐶 is the protein concentration in the bulk, and 𝑐 is the protein 

concentration in the pore liquid. When 𝐷𝑠 = 0, the mass transfer is driven uniquely by pore 

diffusion. When 𝜀𝑝𝐷𝑝 = 0, it is a solid diffusion controlled process. The diffusivities in the pore 

and in the adsorbed phase are related with the overall effective pore diffusivity as: 

𝐷𝑒 = 𝜀𝑝𝐷𝑝 + 𝐷𝑠
𝜕𝑞

𝜕𝑐
     (19) 

where 𝜕𝑞 𝜕𝑐⁄  is the slope of the isotherm in the linear zone.  

Pore diffusion reports the transport of the molecules in pores large enough not to have 

interaction with the solute molecules. The mass transfer rate, 𝐽, in the pore liquid is defined 

in terms of the effective pore diffusivity, 𝐷𝑒, and is given by:  

𝐽 = −𝐷𝑒∇𝐶      (20) 

where ∇𝐶 is the solute concentration gradient in the pore liquid. 𝐷𝑒 is related to the 

intraparticle porosity, 𝜀𝑝, the tortuosity factor, 𝜏𝑝, and the diffusional hindrance coefficient, 

𝜓𝑝, and is therefore smaller than the molecule diffusivity in free solution, 𝐷0 (Carta & 

Jungbauer, 2010): 

𝐷𝑒 =
𝜀𝑝𝐷0

𝜏𝑝
𝜓𝑝      (21) 

The intraparticle porosity is the space of liquid available within the particle. The 

tortuosity is given by a factor between the effective diffusion path the solute travels along a 

random orientation of the pores in a bead and a straight-line trajectory to travel along the 

bead. These two parameters have a certain correlation. In particles with randomly distributed 

internal structure the larger the 𝜀𝑝the smaller the 𝜏𝑝. In protein chromatography, 𝜏𝑝 typically 

ranges between 1.5 and 4. With tortuosity values larger than 4, pore diffusion becomes very 

restricted. Values lower than 1.5 are usually associated with pore diffusion no longer controlling 

mass transfer. The hindrance coefficient, 𝜓𝑝, considers the hydrodynamic resistance during the 

molecule diffusion, and takes into account that the molecules cannot get to a distance any 

closer to the pore wall than its radius. 𝜓𝑝 is related to some extent to the ratio between the 

protein radius and the pore radius: 𝜆 = 𝑟𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑟𝑝𝑜𝑟𝑒⁄ . Different equations were developed for 

large (Brenner & Gaydos, 1977) or small (Anderson & Quinn, 1974) 𝜆 values: 
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𝜓𝑝 = (1 +
9

8
𝜆 𝑙𝑛𝜆 − 1.539𝜆) for 𝜆 < 0.2     (22) 

𝜓𝑝 = 0.865(1 − 𝜆)2(1 − 2.1044𝜆 + 2.089𝜆3 − 0.984𝜆5) for 𝜆 > 0.2  (23) 

Figure I.7, adapted from (Carta & Jungbauer, 2010), plots Eqs. (22) and (23), giving the 

diffusional hindrance coefficient as a function of the ratio between the protein and the pore 

radii. As seen, the steric hindrance is decreased by the increase in the ratio between the protein 

radius and the particle pore radius. To avoid excessive diffusional hindrance, 𝜓𝑝 has to be 

greater than 0.5, which means 𝜆 < 0.125. Therefore, for practical applications in the 

purification of an antibody (Mw = ~150 kDa) that has a hydrodynamic radius of approximately 5 

nm, the average pore radius has to be at least 40 nm. 

 

 

Figure I.7 – Diffusional hindrance coefficient vs. ratio of protein and pore radii. 

2.2.3. Antibody transport in Protein A chromatography 

Some models have been employed to characterize antibody uptake by Protein A resins 

of spherical particles in terms of the resistance the antibody faces along the way. Pore diffusion 

is the dominant intraparticle transport mechanism in the kinetics of antibody binding to Protein 

A resins (Hahn et al., 2005). This diffusion in the liquid-filled pores is expressed in terms of the 

pore fluid concentration gradient (Weaver Jr. & Carta, 1996). There is also a certain 

contribution of the antibody-Protein A complex formation kinetics (Perez-Almodovar & Carta, 

2009).  

Researchers have demonstrated that various models can predict well mass transfer of 

antibody in Protein A resins, namely the pore diffusion model, the shrinking core model, and 
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the heterogeneous binding model (Perez-Almodovar & Carta, 2009). All three consider pore 

diffusion as the main driving mechanism for mass transfer, but differ in the assumptions for 

equilibrium and kinetics. Both the pore diffusion model and the shrinking core model consider 

that the antibody binding sites are homogenous, which in fact is not entirely true. On the other 

hand, the heterogeneous binding model, as mentioned, is named for assuming the existence of 

heterogeneous binding sites in Protein A resins. In their studies, Carta and co-workers have 

found that the first two models lack accuracy to predict adsorption at high antibody 

concentrations. Only the heterogeneous binding model is capable of describing the overall 

adsorption kinetic behaviour, both at small time scales (where the other models are also valid) 

where the antibody binds to the fast (high energy) binding sites and adsorption is dominant, 

and at longer time scales where the slow (low energy) binding sites are also occupied and mass 

transfer is dominant (Perez-Almodovar & Carta, 2009a). 

2.2.3.1. Pore diffusion model 

The pore diffusion model assumes that there is an equilibrium between the adsorbed 

solute and that in the pore liquid at each radial position of the particle (Weaver Jr. & Carta, 

1996). It assumes a Langmuir isotherm type, but neglects the kinetic resistance to binding. 

Protein uptake kinetics in spherical particles of radius 𝑟𝑝 in a closed batch system is described 

by the following equations and boundary conditions (Perez-Almodovar & Carta, 2009): 

𝜀𝑝
𝜕𝑐

𝜕𝑡
+ (1 − 𝜀𝑝)

𝜕𝑞

𝜕𝑡
=

𝐷𝑒

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐

𝜕𝑟
)    (24) 

𝑡 = 0, 𝑐 = 0, 𝑞 = 0 

𝑟 = 0, 
𝜕𝐶

𝜕𝑟
= 0 

𝑟 = 𝑟𝑝, 𝐷𝑒
𝜕𝐶

𝜕𝑟
= 𝑘𝑓(𝐶 − 𝑐)  

where 𝑐 is the concentration in the pore liquid. 

At initial conditions, the conservation equation is the following: 

𝜕𝐶

𝜕𝑡
= −

3𝑘𝑓

𝑟𝑝

𝑣

𝑉
(𝐶 − c|𝑟 = 𝑟𝑝)     (25) 

𝑡 = 0, 𝐶 = 𝐶0 

where 𝑣 is the volume of resin, 𝑉 is the volume of bulk liquid, c|𝑟 = 𝑟𝑝 is the concentration at 

the particle surface (where the radial position equals the radius of the particle), and 𝐶0 is the 

initial concentration in the bulk liquid. 
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2.2.3.2. Shrinking core model 

The shrinking core model assumes a rectangular isotherm, neglects the amount of 

protein in the interstitial liquid of the bead pores, and also neglects the kinetic resistance to 

binding (Perez-Almodovar & Carta, 2009; Zandian & Jungbauer, 2009). For rectangular 

isotherms, like antibody uptake by Protein A resins, batch adsorption in a finite bath can be 

defined with the batch pore diffusion model. This model was first developed by Teo and 

Ruthven (Teo & Ruthven, 1986) and then applied by other authors: 

𝐶0

𝑞

𝐷𝑒𝑡

𝑟𝑝
2 = (1 −

1

𝐵𝑖
) 𝐼2 − 𝐼1      (26) 

where 𝐵𝑖 is the Biot number, and 𝐼1 and  𝐼2 are simplified adimensional parameters given by:  

𝐼1 =
1

6𝜆𝛬
𝑙𝑛 [

𝜆3+𝛽3

𝜆3+1
(
𝜆+1

𝜆+𝛽
)
3

] +
1

𝜆𝛬√3
[tan−1 (

2𝛽−𝜆

𝜆√3
) − tan−1 (

2−𝜆

𝜆−√3
)]   (27) 

𝐼2 =
1

3𝛬
𝑙𝑛 (

𝜆3+𝛽3

𝜆3+1
)      (28) 

where 𝛽 = (1 −
𝑞̅

𝑞𝑚𝑎𝑥
)
1
3⁄

 and 𝜆 = (
1

𝛬
− 1)

3

, and where 𝛬 is the normalized phase ratio given by 

𝛬 =
𝑣𝑞𝑚

𝑉𝐶0
, 𝑞̅ is the average concentration in the particle, 𝑞𝑚 is the maximum binding capacity of 

the resin, 𝑣 is the resin volume, 𝑉 is the mobile phase volume. The Biot number is given by 𝐵𝑖 =

𝑘𝑓𝑟𝑝

𝐷𝑒
. 

2.2.3.3. Heterogeneous binding model 

The heterogeneous binding model assumes that there is a heterogeneous distribution 

of the binding sites because of the reduced accessibility of the antibody to the binding sites, 

and considers the kinetic resistance to binding. The binding sites are considered independent, 

but are assumed to have the same affinity (same K value) for the solute only with fast and slow 

binding kinetics (Perez-Almodovar & Carta, 2009). This model describes protein uptake by the 

following equations and boundary conditions: 

𝜀𝑝
𝜕𝑐

𝜕𝑡
+

𝜕(𝑞1+𝑞2)

𝜕𝑡
=

𝐷𝑒

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐

𝜕𝑟
)     (29) 

𝑟 = 0, 
𝜕𝐶

𝜕𝑟
= 0 

𝑟 = 𝑟𝑝, 𝐷𝑒
𝜕𝐶

𝜕𝑟
= 𝑘𝑓(𝐶 − 𝑐)     (30) 

𝜕𝑞1

𝜕𝑡
= 𝑘1 [(𝑞𝑚1 − 𝑞1)𝐶 −

𝑞1

𝐾𝐴
]     (31) 
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𝜕𝑞2

𝜕𝑡
= 𝑘2 [(𝑞𝑚2 − 𝑞2)𝐶 −

𝑞2

𝐾𝐴
]     (32) 

where 𝑘1 and 𝑘1 are the binding rate constants for the fast and slow kinetics independent 

sites, 𝑞1 and 𝑞2 are the surface concentration at those sites respectively, and 𝑞𝑚1 and 𝑞𝑚2 are 

the maximum capacity at those sites, with 𝑞𝑚1 + 𝑞𝑚1 = 𝑞𝑚. 

At initial conditions, the conservation equation is the same as in the pore diffusion 

model: 

𝜕𝐶

𝜕𝑡
= −

3𝑘𝑓

𝑟𝑝

𝑣

𝑉
(𝐶 − c|𝑟 = 𝑟𝑝)     (33) 

2.3. Thermodynamics 

With the constrains from the regulatory agencies like FDA and EMA through Quality by 

Design (QbD) and Process Analytical Technology (PAT) in the biopharmaceutical manufacturing, 

there has been an increased need in process and product understanding (Hanke & Ottens, 2014). 

Mechanistic models and the use of hybrid procedures combining modelling with an experimental 

approach are on the rise to replace the pure statistical and empirical approaches to accurately 

predict and optimize those processes, calling, as mentioned, for an improved understanding of 

the protein–resin interactions.  

Thermodynamic analyses of biomolecule adsorption have helped to elucidate complex 

adsorption mechanisms in liquid chromatography (F.-Y. Lin, Chen, & Hearn, 2002). 

Thermodynamics gathers complex information about the events at the molecular level that 

take place in a chromatography column. The methods that are employed to retrieve the 

thermodynamic quantities associated to a chromatographic process are obtained from batch 

equilibrium experiments, by analyses of data presented as van’t Hoff plots, or from 

microcalorimetric measurements. 

2.3.1. Analysis based on the thermodynamic equilibrium constant 

The spontaneity of a process is determined by the Gibbs energy change, ∆𝐺, and is 

given by the following equation: 

∆𝐺 = ∆𝐺0 + 𝑅 𝑇 𝑙𝑛 𝑄      (34) 

where 𝑄 is the reaction quotient, ∆𝐺0 the Gibbs energy change at standard temperature and 

pressure, 𝑅 is the universal gas constant, and 𝑇 is the temperature. In equilibrium we have 

∆𝐺 = 0 and 𝑄 becomes 𝐾, the thermodynamic equilibrium constant, and thus: 

∆𝐺0 = −𝑅 𝑇 𝑙𝑛 𝐾      (35) 
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In a system at constant temperature and pressure and according to the first law of 

thermodynamics, the Gibbs energy change is given by (Gibbs, 1873): 

∆𝐺 = ∆𝐻 − 𝑇 ∆𝑆      (36) 

where ∆𝐻  is the enthalpy change and ∆𝑆 is the entropy change. At standard temperature and 

pressure conditions:  

∆𝐺0 = ∆𝐻0 − 𝑇 ∆𝑆0      (37) 

According to the second law of thermodynamics, a spontaneous process will return a 

negative value of ∆𝐺. Gibbs energy is useful because it incorporates both enthalpy and entropy. 

In some interactions, the enthalpy and entropy contributions reinforce each other. If ΔH is 

negative and ΔS is positive then ΔG is a negative quantity, and the process is favoured. In other 

interactions, enthalpy and entropy may have to balance each other out, i.e., that is, ΔH and -

TΔS have different signs. In such cases, the spontaneity of the interaction is determined by the 

magnitudes of ΔH and TΔS. If |ΔH |>>|TΔS |, then the reaction is said to be enthalpy driven 

because the negative signal of ΔG is predominantly determined by ΔH. Conversely, if |TΔS | 

>>|ΔH |, then the process is an entropy-driven one. 

Combining Eqs (35) and (37): 

𝑙𝑛 𝐾 =
∆𝐻0

𝑅 𝑇
−

∆𝑆0

𝑅
     (38) 

The value for the thermodynamic equilibrium constant, can be obtained both from the 

isotherm or with van’t Hoff plots. From the van’t Hoff equation, a temperature dependence of 

the retention factor 𝑘′ can be obtained and the thermodynamic parameters can be calculated 

from indirect methods. The thermodynamic equilibrium constant 𝐾 is linearly related to the 

retention factor through the temperature-independent phase ratio 𝜙 (i.e., the ratio between 

the volume of stationary phase and mobile phase): 𝑘′ = 𝐾 𝜙. Therefore, when enthalpy and 

entropy changes are independent from the temperature, they can be obtained by correlating 

Eq. (38) with the retention factor, giving:  

𝑙𝑛 𝑘′ = −
∆𝐻0

𝑅

1

𝑇
+

∆𝑆0

𝑅
+  𝑙𝑛 (𝜙)     (39) 

Csaba Horváth and co-workers determined enthalpy and entropy changes considering 

their dependence from temperature (Haidacher, Vailaya, & Horváth, 1996). Under that 

condition, the integrated form of Kirchoff’s law is applied to obtain standard enthalpy and 

entropy, provided that the heat capacity ∆𝐶𝑝
0 is temperature-independent: 

∆𝐻0 = ∆𝐶𝑝
0(𝑇 − 𝑇𝐻)     (40) 
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∆𝑆0 = ∆𝐶𝑝
0 𝑙𝑛 (

𝑇

𝑇𝑆
)     (41) 

where 𝑇𝐻 and 𝑇𝑆 are the temperatures at which ∆𝐻0 and ∆𝑆0 are zero, respectively. Therefore, 

the retention factor can be plotted in terms of temperature dependence through the usually 

termed logarithmic relationship (F.-Y. Lin et al., 2002) 

𝑙𝑛 𝑘′ =
∆𝐶𝑝

0

𝑅
(
𝑇𝐻

𝑇
− 𝑙𝑛

𝑇𝑆

𝑇
− 1) +  𝑙𝑛 (𝜙)    (42) 

However, heat capacity as a temperature-independent parameter is a crude 

assumption. The equation was then formulated to correct for the temperature dependency of 

∆𝐶𝑝
0 (F.-Y. Lin et al., 2002): 

𝑙𝑛 𝑘′ = 𝑎 +
𝑏

𝑇
+

𝑐

𝑇2
+  𝑙𝑛 (𝜙)    (43) 

The thermodynamic parameters obtained by fitting Eq. (33), often called the quadratic 

relationship, to the experimental chromatographic retention data to be used to determine the 

thermodynamic quantities by the following relationships:  

∆𝐻0 = −𝑅 (𝑏 +
2𝑐

𝑇
)      (44) 

∆𝑆0 = 𝑅 (𝑎 −
𝑐

𝑇2
)      (45) 

∆𝐶𝑝
0 =

2𝑅𝑐

𝑇2
       (46) 

From the aforementioned information we found that thermodynamic quantities 

associated with the chromatographic process may be obtained from both batch equilibrium 

experiments and by analyses of data presented as van’t Hoff plots (F.-Y. Lin et al., 2002). 

Nevertheless, the resolution with which variations in thermodynamic behaviour, as a function 

of protein loading and temperature, can be detected by batch equilibrium experiments is 

limited, and the indirect method of van’t Hoff analysis may be complicated by the presence of 

multiple sub-processes associated with adsorption. 

2.3.2. Microcalorimetric measurements 

Unlike other methodologies to assess the thermodynamic parameters associated to 

adsorption events in liquid chromatography, microcalorimetric techniques do so by direct 

measurement of the enthalpy (Blaschke, Werner, & Hasse, 2013; F.-Y. Lin et al., 2002). 

Isothermal titration calorimetry (ITC) is a microcalorimetric technique that probes the 

interaction mechanisms between molecules and the resin in terms of adsorption enthalpy 

change (Blaschke et al., 2013). A vessel with the resin in suspension is inserted to a 
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thermometric activity monitor (TAM) and the protein solution is injected. The TAM measures 

directly the heat of adsorption of the system and can also detect the heat of dilution that has 

to be taken into account for proper analysis. The enthalpy change of adsorption can be 

determined by the following equation: 

𝑄𝑎𝑑𝑠 = 𝑣 𝑞 ∆𝐻𝑎𝑑𝑠     (47) 

where 𝑄𝑎𝑑𝑠 is the heat associated to the interaction between the molecule and the resin, 𝑣 is 

the volume of the resin, 𝑞 is the amount of molecule bound per volume of resin, and ∆𝐻𝑎𝑑𝑠 is 

the enthalpy change of the adsorption of the molecules to the resin. The resulting ∆𝐻𝑎𝑑𝑠 is the 

product of a series of contributions, such as the heat of the interaction itself, the heat of 

dilution, the heat associated to the desolvation of molecule and resin, and the heat associated 

to the conformation change or reorientation of the adsorbed molecules on the surface of the 

resin (Silva, Marques, Thrash, & Dias-Cabral, 2014).  

However, ITC is a technique that operates in the static mode, being limited to the 

thermodynamics attributed to equilibrium and lacking the information associated to mass 

transfer. It also does not provide insight about the desorption process.  

In 1958, Groszek established the flow microcalorimetry (FMC) as a microcalorimetric 

technique to estimate the heats of wetting of silica gel by a number or organic liquids (Groszek, 

1958). He constructed an apparatus (flow microcalorimeter) consisting of a cell of cylindrical 

volume that could be filled with an adsorbent. Thermocouples were placed surrounding the cell 

and in contact with the adsorbent and a glass jacket (later replaced with 

polytetrafluoroethylene (PTFE)) was used for insulation. The main feature of this equipment 

was the possibility of liquid to flow through the packed column and the wetting temperature is 

detected by the thermocouples. Years later the company Microscal developed the first 

commercial flow microcalorimeter. Scientists then started to use it as a tool to investigate the 

adsorbate-adsorbent phenomena on the fundamental level to obtain the thermodynamic 

parameters during adsorption and desorption in chromatographic processes (Aguilar, Twarda, 

Sousa, & Dias-Cabral, 2014; Dias-Cabral, Pinto, & Queiroz, 2002; Groszek, 1998; Raje & Pinto, 

1998; Silva et al., 2014; M E Thrash Jr., Phillips, & Pinto, 2005; Marvin E Thrash Jr. & Pinto, 

2001; M E Thrash Jr & Pinto, 2002).  

The flow microcalorimeter is operated similarly to a liquid chromatography station. The 

cell is packed with the adsorbent, equilibrated with the running buffer through syringe pumps, 

and the sample is injected. The resulting heat signal gives valuable information regarding the 

mass transfer processes and the molecule binding kinetics to the surface of the adsorbent.  

The adsorption process consists of multiple steps involved that have thermodynamic 

significance. There are processes that are source of energy (exothermic processes) and others 

that require energy to occur (endothermic processes). Examples of endothermic processes are 

the desolvation (release of water molecules and ions) of the molecule and the adsorbent, the 

rearrangement of water molecules at the surface, the alteration of molecules conformation, 
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the reorientation of the molecules at the surface, the repulsive forces between two molecules. 

The binding itself of the molecule to the adsorbent causes a release of energy, being thus of 

the exothermic nature. The overall adsorption process is an overlap of these multiple factors. 

If the resulting enthalpy is negative and |ΔH |>>|TΔS |, the overall process is said to be 

enthalpy driven. If, on the other hand, the endothermic contributors overwhelm the 

exothermic, the process has to be entropy driven so that Eq. (37) holds true.  

FMC is established as a sound and robust online and in situ sensor that is employed to 

retrieve the thermodynamic parameters simulating a liquid chromatography system without 

being invasive for the molecule nor interfere with the nature of the binding and elution process. 

Therefore, the gathered data will enable a better understanding of the thermodynamics of the 

adsorption mechanisms and can be implemented in models that will help to monitor the 

purification process in situ and contribute to its optimization. 

2.4. Small angle X-ray scattering 

Small angle X-ray scattering (SAXS) is a powerful and robust technique to analyze the 

three-dimensional (3D) structure of particles of the colloidal size (Bernadó, Mylonas, 

Petoukhov, Blackledge, & Svergun, 2007; Kikhney & Svergun, 2015). It is a method that has 

been used to obtain knowledge about the structure of proteins (Mertens & Svergun, 2010), 

membranes (Zong et al., 2002), polymers (Zong et al., 2002), etc. It has not, however, been 

much used to study the adsorption phenomena of molecules to adsorbent on a chromatography 

basis. Unlike other light scattering techniques like X-ray crystallography, SAXS does not require 

crystallization, nor pre-sample treatment like cryo-electron microscopy.  

SAXS consists in the use of a collimated monochromatic X-ray beam that will illuminate 

a sample loaded in a quartz capillary (Kikhney & Svergun, 2015; Tian, Langkilde, Thorolfsson, 

Rasmussen, & Vestergaard, 2014). The beam will hit the sample, some light is absorbed and 

some photons are scattered with an angle 2𝜃, depending on the sample composition, and will 

be collected by a detector place at an adjustable distance from the sample (the longer the 

distance the smaller the angles that can be resolved). The subtraction of the scattering pattern 

of a reference (the solution buffer) from scattering pattern of the sample will originate the 

scattering signal of the sample. Figure I.8 shows a schematic representation of SAXS. 
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Figure I.8 – Schematic representation of SAXS principle. 

The scattering intensity 𝐼 is the output information and the curves are plotted against 

the scattering vector 𝑞 (Kikhney & Svergun, 2015). The characteristic curve of the scattering 

intensity of a globular protein, plotted in terms of 𝐼(𝑞) 𝑣𝑠 𝑞, is represented in Figure I.9. 

 

 

Figure I.9 – Characteristic scattering intensity curve of a globular protein. 

This information is retrieved in reciprocal space in terms of 𝑞, which is defined as  

𝑞 = 4𝜋
sin𝜃

𝜆
      (48) 

where 𝜆 is the wavelength of the X-ray beam.  
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To translate from the reciprocal space to the real space and have a distribution of the 

sample size, a Fourier transform has to be applied to the scattering intensity (Kikhney & 

Svergun, 2015; Mertens & Svergun, 2010): 

𝐼(𝑞) = 〈𝐼(𝑞)〉Ω = 〈𝐴(𝑞)𝐴 ∗ (𝑞)〉Ω     (49) 

where the angle brackets represents the spherical average (considering a globular particle), 

and the scattering amplitude 𝐴(𝑞) is the Fourier transform of the excess electron density: 

𝐴(𝑞) = ℑ[𝜌(𝑟)] = ∫Δ𝜌(𝑟)𝑒𝑖𝑞𝑟 𝑑𝑟    (50) 

where Δ𝜌(𝑟) = 𝜌(𝑟) − 𝜌𝑠, 𝜌(𝑟) and 𝜌𝑠 are the electron density of the particle and the solvent 

respectively, and 𝑟 is the electron position over the radius of the particle. 

Figure I.10 is the real space representation of the scattering intensity plots of Figure 

I.9, where the zeros of the function represent the longest distance between two scattering 

points, and the maxima the most represented distance between two scattering points. 

 

 

Figure I.10 – Representation in real space of the density distributions from Fig. I.7. 

For systems where the scattering is identical for every component, the intensity signal 

is given by the spherical average of one single particle. For systems where the components do 

not scatter in an identical manner, the scattering intensity is given by the average of the whole 

ensemble. Regardless of the type of system, SAXS allows us to obtain certain structural 

parameters useful to characterize a molecule or a system (the complex protein-ligand in 
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chromatography), like the molecular weight, the maximum dimension, hydrodynamic radius, 

radius of gyration, etc (Kikhney & Svergun, 2015; Rambo & Tainer, 2013).  

Unlike other sensors employed in chromatography stations, SAXS gathers information in 

situ, being valuable to the understanding of the evolution of the adsorption layer thickness of 

protein at the surface of the resin as the process occurs. It is also possible to estimate the 

stoichiometry of protein to ligand in the case of heterogeneous biding. SAXS is therefore a 

powerful tool to help monitor the protein-ligand complex formation during a chromatographic 

step.  
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3. Objectives 

This research thesis has the fundamental goal of studying the biophysical nature of 

binding of monoclonal antibodies to Protein A resins during the capture step in the downstream 

processing of these biopharmaceuticals.  

Because of the regulatory constraints, pharmaceutical industry is required to monitor 

and understand every step in the biopharmaceuticals manufacturing pipeline. However, its 

performance cannot be fully exploited if the process is poorly understood. Being Protein A 

chromatography a core technology in downstream processing and the most employed unit 

operation in the capture of antibodies, it is of utmost importance the exhaustive comprehension 

of the antibody-Protein A complex formation.  

In this work we relied on flow microcalorimetry (FMC) and small angle X-ray scattering 

(SAXS) as in situ monitoring techniques to study the antibody-Protein A complex. FMC has 

thermal sensors implemented in a cylindrical cell mimicking a chromatography column and is 

able to trace adsorption in terms of the associated enthalpy. SAXS is able to access structural 

parameters and measure distances and sizes on the nano-scale. 

These tools were chosen for their potency, accuracy, and, most of all, for their in situ 

characteristic. In chromatographic applications online sensors are widely implemented (such as 

UV, pH, and conductivity), however none is known to track binding and elution in situ, i.e., 

within the chromatography column.  

In this study, two commercially available Protein A resins will be used: MabSelect SuRe 

and TOYOPEARL AF-rProtein A HC; and the antibody of interest will be trastuzumab. This work 

has the aim to study in terms of biophysics the adsorption phenomena involved in the antibody 

binding to Protein A. Namely, specific goals of this project involve: 

- Determining equilibrium and kinetic parameters of antibody adsorption to Protein 

A resins, such as the affinity constant, the effective diffusivity, and the film mass 

transfer coefficient; 

- Evaluating thermodynamic parameters, such as enthalpy, entropy, and Gibbs 

energy of adsorption during the establishment of the antibody-Protein A complex;  

- Assessing the importance of bead size, intraparticle porosity, and ligand chain 

length to the binding; 

- Visualizing the evolution of the antibody layer thickness with the surface 

concentration; 

- Obtaining an overview of the structural rearrangement of the antibodies at the 

surface of the Protein A resins; 

- Assessing the antibody-ligand stoichiometry at different concentrations in 

multimeric Protein A chains; 

- Understanding the importance of the Protein A chain length and therefore the 

number of binding sites in the resin capacity. 
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Results 

The high demand of large amounts of pure and safe mAbs has resulted in more extensive 

and thorough research on the topic of purification of these products. For the purification 

capture step, Protein A chromatography resins have been fully exploited because of their 

robustness and selectiveness for most of the antibody isoforms. With a long track of years of 

research on this topic, the cornerstones for Protein A chromatography have already been laid, 

namely in terms of resins binding capacity, affinity, stability, and life time. Nevertheless, 

aspects like the structural organization of the antibodies upon binding, antibody to ligand 

stoichiometry, ligand orientation and accessibility still require deeper investigation and lack 

valuable input.  

This research resulted in a contribution for a slightly better understanding of antibody-

ligand binding from a structural and thermodynamic point of view, with the publication of three 

scientific articles. Considering that the two commercial Protein A resins used (GE’s MabSelect 

SuRe and Tosoh’s TOYOPEARL AF-rProtein A HC) differ both in the backbone composition and 

in the number of the Protein A ligand binding sites, the focus of the publications was in 

evaluating the differences in the antibody binding between the two resins.  

More specifically, the evolution of the antibody adsorption layer thickness was 

monitored during the chromatographic step. This is an important parameter because it allows 

to have an idea on the binding orientation of the antibodies and on the attachment orientation 

of the Protein A to the backbone, and ultimately provide some input to the effective pore size, 

which could sterically influence the migration of subsequent molecules. At this point, the 

thermodynamic investigation provided information about the presence of reorganization 

processes involved after adsorption. The kinetics studies showed that the antibody uptake is 

dependent on the equilibration time and follows heterogeneous binding at high concentrations 

due to the fact that the resins have multiple potential binding sites per ligand. Finally, the 

evaluation of antibody to ligand stoichiometry confirmed that in fact multimeric Protein A 

ligands can bind more than one antibody molecule depending on the concentration and that 

there are preferred binding orientations. 

Below are listed the main findings of each individual scientific publication within the 

framework of this thesis:  

Publication I – “Antibody adsorption in Protein A affinity chromatography – 

In situ measurement of nanoscale structure by small angle X-ray scattering” 

In this publication we intended to characterize structural changes occurring during the 

Protein A capture step of an antibody. We wanted to see how the adsorption layer thickness 

would evolve from loading to elution. In addition, we wanted to extract the system’s structural 
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parameters from the scattering profiles, such as the correlation length and the system 

dimensionality. 

SEM images from MabSelect SuRe beads were acquired and we created a model to 

characterize the internal structure of the agarose backbone with infinitely long cross-linked 

cylinders of characteristic thickness subdivided in two types: strands and junctions, with a 

junction being the cross-link of two or more strands. 

We found that the average radius of the agarose fibres was 12 nm, while upon loading 

with antibody the thickness would increase 5.5 nm and 10.4 nm for strands and junctions 

respectively, with layer regeneration after elution. Given the fact that the antibody has a 

hydrodynamic diameter of 11.5 nm, we believe that we are probing the thickness and not the 

length of the antibody, suggesting that the Protein A chain would not be in a fully stretched 

position but more on a tilted orientation.  

We hypothesized that on average 1.2 antibody molecules would bind to the Protein A 

tetrameric chain, and they would bind preferably to the outermost domains. 

Publication II - “Antibody binding heterogeneity of Protein A resins”  

In this publication we intended to characterize the antibody binding to two Protein A 

resins (MabSelect SuRe and TOYOPEARL AF-rProtein A HC) of different chain length, particle 

size, porosity, and backbone in terms of adsorption energy and uptake kinetics.  

The isothermal adsorption profile showed high affinity with a rectangular profile, 

typical for Protein A chromatography, of both resins to the antibody. At higher equilibrium 

concentrations, two steps are seen as opposed to a classic Langmuir isotherm. Given the fact 

that these synthetically engineered resins have multiple antibody binding sites in each chain 

(MabSelect SuRe has a tetrameric Protein A chain and TOYOPEARL AF-rProtein A HC has a 

hexameric Protein A chain), binding is of the heterogeneous nature with high and low energy 

binding sites. 

Antibody uptake kinetics follows the shrinking core model at low equilibrium times, 

consistent with what is expected in Protein A affinity chromatography. However, during longer 

equilibrium the shrinking core model fails to predict adsorption, presenting lower diffusivity. 

We believe that as the ultimate capacity is attained, steric effects derived from already bound 

molecules may influence binding of subsequent antibody molecules to the other binding 

domains of the same Protein A chain. 

Microcalorimetry showed that antibody adsorption is an overall exothermic process 

which can be subdivided in two sub-steps in terms of the process associated energy. The first 

moment represent antibody binding to high energy Protein A sites. The second is associated to 

the energy associated to antibody reorganization in the ligand. The evolution of enthalpy as 

function of antibody surface concentration also indicates the heterogeneity of binding sites 
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Publication III - “The pearl necklace model in Protein A chromatography – 

molecular mechanisms at the resin interface” 

In this publication we intended to characterize antibody binding to MabSelect SuRe 

resin in terms of stoichiometry of antibody to Protein A chain, binding orientation, and 

preferred binding site in the chain.  

SAXS was used to assess the radial density distributions from the antibody-Protein A 

complex at different equilibrium and surface concentration and compare them to the radial 

density distributions computed from crystallographic structures of the antibody and Protein A 

domains.  

We rendered different binding orientations and stoichiometry and saw that at low 

isotherm concentrations the most probable stoichiometry is 1:1 with the antibody bound to one 

of the outermost Protein A domains of the tetrameric chain. At intermediate concentrations in 

a 1:1 stoichiometry the innermost domain is the most probable binding site to the antibody. At 

saturation, the outermost ligand becomes favoured again. 

The binding of two antibody molecules to one single Protein A chain (2:1 stoichiometry) 

becomes probable at high concentrations (biologically there would be a mixture of 1:1 and 2:1 

configurations). In this case the antibody molecules would have a greater probability to be 

bound to the two outermost Protein A domains. These findings may support the idea that the 

steric hindrance from the agarose would be greater than the hindrance from the proximity of 

another antibody molecule. 

3:1 stoichiometry configuration was also tested. There is a better match at higher 

concentrations than at low, however the results are not strong enough to argue in favour of 

this possibility. The steric effects are too high and the configurations are densely packed. We 

would need to consider true molecular dynamic simulations to account for those factors.  

The possibility of 2:1, and to some extent also 3:1, configurations helps to strengthen the 

heterogeneous binding nature of this Protein A resin. In every scenario, the best fits were 

obtained with the Protein A chain in a hook-like conformation as opposed to a fully stretched 

position.  
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Abstract  

Protein-A chromatography is the most widely used chromatography step in downstream 

processing of antibodies. A deeper understanding of the influence of the surface topology on a 

molecular/nanoscale level on adsorption is essential for further improvement. It is not clear if 

the binding is homogenous throughout the entire bead network. We followed the protein 

absorption process and observed the formation of a protein layer on fibers of chromatography 

resin in a time-resolved manner in nanoscale. To characterize the changes in the antibody-

protein-A ligand complex, small angle X-ray scattering was employed using a miniaturized, X-

ray-transparent chromatography column packed with a MabSelect SuRe resin. Antibody-free 

MabSelect SuRe resin fiber had an average radius of 12 nm and the protein layer thickness 

resulting from antibody adsorption was 5.5 and 10.4 nm for fiber and junctions respectively 

under applied native conditions.  We hypothesize that an average of 1.2 antibodies were 

adsorbed per protein-A ligand tetramer bound to the outermost units. In contrast to previous 

studies, it was therefore possible for the first time to directly correlate the nanostructure 

changes inside the column, which is otherwise a black box, with the adsorption and elution 

process.  

Keywords 

Agarose; immunoglobulin; protein-A chromatography; protein layer thickness; small angle X-

ray scattering 
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1.1. Introduction 

Although protein-A affinity chromatography is the most commonly employed method 

for the purification of antibodies, the adsorption process on the nanoscale is yet not well 

understood. Previous models rely on the crystal structure of the protein-antibody complex 

(Deisenhofer, 1981; Graille et al., 2000; Deis et al., 2015; Sauer-Eriksson et al., 1995), or the 

amount of adsorbed antibody from bulk solution (Ghose et al., 2007). However, direct 

information about the structural changes inside the column during the adsorption process 

requires a method capable of following the process in-situ and on the nanoscale length. This is 

a challenging task, since the investigation has to be performed in a time resolved way and 

under native process conditions. Despite great progress in understanding the nature of 

interactions between antibody and affinity resins during the purification step, previous 

investigations heavily depended on empirical methods such as comparison of the sensors signals 

before and after chromatography column (Iyer et al., 1999; Orellana et al., 2009; Gerontas et 

al., 2013; Mallik & Hage, 2006). This leaves the structural changes inside the chromatography 

column, where the actual process happens, unclear, thus creating “missing link”.   

Full-length protein-A from Staphylococcus aureus is composed of five homologous 

binding domains (Lofdahl et al., 1983); however, to improve its selectivity and alkaline 

stability, protein-A ligands used in chromatography are made from engineered domains (most 

popularly derived from the B-domains or the C-domain) (Muller & Vajda, 2016) immobilized on 

chromatographic supports, such as agarose or hydroxylated methacrylic polymer (Boschetti & 

Jungbauer, 2000).  

Protein layer thickness refers to the amount of protein adsorbed at a solid surface and 

its positioning toward it, and has been the subject of numerous studies in the last five decades 

(Rabe et al., 2011; Vogler, 2012). However, for more complex systems, such as protein-A 

chromatography resin, in which antibody is adsorbed to the surface via ligand-mediated 

interactions, the applicable research methods are greatly limited. Mazzer et al. (Mazzer et al., 

2017) proposed neutron reflectivity measurements to probe the protein-A–antibody complex 

arrangement at the solid-liquid interface. However, they immobilized protein-A ligands on the 

silicon surface, compromising the native state of the chromatography bead backbone and 

performed the experiment in batch mode. Also other methods used for the structural 

determination of protein-surface interactions require a sample pretreatment resulting in non-

native process conditions as described in the review by Rabe et al. (Rabe et al., 2011).  

In the present study, we followed antibody layer formation in situ and their adsorption 

and desorption kinetics on a protein-A chromatography resin during a typical purification run. 

We used MabSelect SuRe (GE Healthcare), a popular protein-A chromatography resin, as the 

model system and small angle X-ray scattering (SAXS) as the probing method. Cross-linked, 

porous agarose beads 85 µm in diameter are characterized by a rigid, high-flow backbone matrix 

and a tetrameric ligand of synthetically engineered B-domains, called Z-domain, able of binding 

up to  immobilized via short linkers (Ghose et al., 2014; Wolfram Research 2018). From 
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equilibrium binding capacity and ligand density it was derived that on average 3.3 antibody 

molecules are bound to one MabSelect SuRe protein A ligand (Ghose et al., 2007; Jungbauer & 

Hahn, 2004). 

SAXS is a powerful technique for probing the structural properties of materials on the 

nanoscale and ideally suitable for non-destructive in-solution experiments. The technique is 

based on elastic scattering of X-ray photons by electrons, which provides information about 

fluctuations in electron density within illuminated sample volumes. The use of brilliant 

synchrotron radiation facilities allows time-resolved studies on versatile materials, making it 

an excellent tool for investigating the development of protein layer thickness and its kinetics 

under native chromatography conditions (Blanchet & Svergun, 2013). SAXS is routinely applied 

to study conformational changes to the proteins directly after elution from the column in HPLC-

SAXS modes (Brookes et al., 2013) like HIC-SAXS (Kulsing et al., 2016), SEC-SAXS (Ryan et al., 

2018; O'Brien et al., 2018)as well as to study structure of porous materials often with the 

combination of other structural characterization methods like Scanning Electron Microscopy 

(SEM) (de Coelho Escobar & dos Santos, 2014). However, the method to follow the adsorption 

process in-situ in the column by SAXS opens up a new avenue to deeper investigation of all 

modes of chromatography.   

1.2. Methods and methods 

1.2.1. Materials  

For protein-A chromatography, an agarose-based resin (MabSelect™ SuRe™, GE 

Healthcare) was used. The model protein used for this investigation was 13 mg/mL Herceptin® 

(Trastuzumab – humanized IgG1) solution from Roche dialyzed into running buffer (0.01 mM 

phosphate buffer with 150 mM NaCl, pH 7.4). The quality of the antibody solution was assessed 

on SEC column (Supplementary Fig.II.S.1). No dimerization of protein solution was observed. 

Sodium phosphate dibasic, sodium dihydrogen phosphate, sodium chloride, and glycine-HCl 

were purchased from Merck Millipore. 

1.2.2. Chromatography column for in situ small angle X-ray scattering 

A miniature chromatography column was built in our laboratory for simultaneous 

chromatography runs and in situ characterization by SAXS (Fig. II.1.1). The column resembled 

a conventional HPLC column, a cylinder filled with a stationary phase closed with a frit at the 

bottom. A capillary (Hilgenberg GmbH – mark tube from quartz glass) with 1.5 mm diameter 

and 10-µm thick glass walls to reduce the absorbance of X-rays was glued into a metal housing 

for protection. A gap in the metal housing allowed undisturbed passing of photons. The SAXS 

column was connected to an ÄKTAprime plus chromatography system via HPLC connectors for 

flow-through experiments and placed in the incident X-ray beam for in situ measurements. A 
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280 nm UV signal was collected downstream of the column. The resulting UV chromatographs 

were time-corrected based on the additional volume between the column and UV sensor. 

 

 

Figure II.1.1 – Schematic of a SAXS column. 

1.2.3. Protein-A chromatography run 

The chromatography run included equilibration of the SAXS column with running buffer 

(0.01 mM phosphate buffer with 150 mM NaCl, pH 7.4), injection of 4 mg of monoclonal antibody 

standard solution from the loop to oversaturate the column, washing off unbound free 

antibodies, and a subsequent elution step with 0.1 M glycine buffer (pH 3.5).  A constant flow 

rate of 0.1 mL/min was applied throughout chromatography run. Both conductivity and UV 280 

nm signal were collected (Supplementary Table II.S.1). 

1.2.4. In situ X-ray characterization  

In situ on-line characterization of the protein-A chromatography process by SAXS was 

performed at the European Synchrotron (ESRF, Grenoble, France), beamlines BM26B (Portale 

et al., 2013) and BM29 (Pernot et al., 2013). Scattering images with an exposure of 1 s were 

collected every second throughout the protein-A chromatography purification process using a 

2D detector (Pilatus 1M) at a photon energy of 12 keV (λ=1.033 Å) and sample to detector 

distance of 5 m. The 2D images were further processed using an ESRF integrated data reduction 

system to obtain plots of the intensity dependence on scattering vector q, defined as 𝑞 =

4𝜋 sin(𝜃) /𝜆, where 2θ is the scattering angle. The q range used for data evaluation was 

trimmed to 0.03 to 1.83 nm-1 to exclude noisy data. Subsequent data processing and model 

fitting was performed in Mathematica 11.2 (Wolfram Research 2018). Measurements were 
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repeated several time to ensure reliable results, in particular since the signal from the resin 

was superimposed on the signal from the protein layer. The same data features were 

reproducibly found throughout all scattering measurements, thus allowing the extraction of 

subtle changes. From all measurements performed, only one typical set is presented in this 

manuscript. Results from multiple experiments are available in the Supplementary 

(Supplementary Fig. II.S.2). 

1.2.5. Scanning electron microscopy of agarose  

In order to visualize the inner structure of the agarose network in MabSelect SuRe resin, 

a modified drying protocol was applied (Nweke et al., 2017). Agarose beads were transferred 

into 2.3 M sucrose solution, which worked as a cryo-protectant, and flash-frozen using liquid 

nitrogen. A solid bead drop was then cut using an MT-990 Motorized Precision Microtome from 

RMC Boeckeler equipped with a tungsten carbide knife. The 30-µm-thick bead slices were 

collected and dehydrated in graded ethanol series prior to drying with CO2 solution using a 

Critical Point Dryer Leica EM CPD030. The resulting dried agarose bead slices were transferred 

to an aluminum slab and sputter coated with an Au layer approximately 4 nm thick prior to 

visualization using the Scanning Electron Microscope Quanta™ 250 FEG from FEI under high 

vacuum conditions. 

1.3. Results and Discussion 

1.3.1. Protein-A chromatography and in situ small angle X-ray scattering  

Protein-A chromatography was performed with a miniature column built in our 

laboratory for simultaneous chromatography runs and in situ characterization by SAXS. A flow 

experiment was chosen over regular batch study, as it ensures a constant amount of resin within 

the illuminated volume of X-ray beam throughout the chromatography run. Such approach 

guarantees that the observed changes in the scattering profiles are exclusively caused by 

introduced protein or its interactions with chromatography resin. Moreover, flow experiments 

allow studying not only adsorption phenomenon like in batch mode, but also the desorption 

strengthening our understanding on the whole process. Scattering profiles representing 

structural changes inside the chromatography column were recorded every second in situ 

throughout the protein-A chromatography run using SAXS. The product was characterized by a 

UV sensor further downstream in order to correlate the chromatogram with the SAXS results. 

To ensure protein saturation of the resin binding sites within the SAXS column, the capacity of 

the resin at given conditions and flow rate was exceeded, which was represented as a sharp 

peak in the UV data phase called “wash” (Fig. II.1.2A). Note that the amount of protein 

absorption achieved in this way may be different from the maximal possible amount that is 

calculated from the isotherm at equilibrium conditions, but corresponds to the maximum under 

the given circumstances, as it would occur in an industrial process. Free, unbound antibodies 



 59 

present in the column were washed off using running buffer to ensure that only bound protein 

and the resin contributed to the scattering profile at this stage of the protein-A run. Elution of 

the bound protein from the protein-A resin was achieved by lowering the pH on the column to 

disrupt the affinity of antibodies towards protein-A ligands. 

 

 

Figure II.1.2 - A: Chromatograph of the 280 nm UV signal (green) and conductivity (brown) for the protein-A run. B: 

Scattering profiles for antibody-free MabSelect SuRe resin (blue) and saturated resin (orange). The transition of the 

shoulder visible at q=0.2 nm-1 for antibody-free resin to saturated resin is highlighted by the arrow. Additionally, regions 

for dimensionality and Porod fits are indicated. 

In Figure II.1.2B, representative SAXS curves (the same for multiple performed 

experiments) are shown for the antibody-free MabSelect SuRe taken from the “injection” or 

“regeneration” phase and the corresponding saturated resin from the “wash” and “elution” 

phases before the elution peak. The shoulder present at q = 0.2 nm-1 representing resin feature 

(blue curve) clearly moves to a smaller q during saturation (orange curve), indicating an 

increase in the analyzed system size according to the reciprocal nature of Bragg’s law. 

Furthermore, the intensity at the higher q (q = 0.6 nm-1) becomes stronger during protein 

loading. Antibodies have a radius of gyration of roughly 5 nm (Pilz et al., 1980), which leads to 

a SAXS signal in this region. Therefore, we attribute this part of the SAXS curve to the presence 

of antibodies and denote it in the figure as an antibody peak. In contrast, the shoulder at the 

lower q is also present without protein and attributed to the resin (with and without bound 

protein).  

1.3.2. Small angle X-ray scattering parameters reflecting protein adsorption 

In addition to the qualitative changes in the SAXS curve upon protein adsorption and 

elution, quantitative parameters have to be extracted from different parts of the SAXS curve 

to follow the structural changes during purification.  

1.3.2.1. Dimensionality 
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At very low q, decay of the SAXS curve is given by the dimensionality of the scatterer: 

𝐼(𝑞)~𝑞−𝐷, where D corresponds to 0 for spheres, 1 for rod-like scatterers, and 2 for plate-like 

scatterers. In a double logarithmic plot, D is given by the slope of the curve (Fig. II.1.2B). The 

slope changes from 1.6 in the antibody-free resin to 2 in the saturated resin, which corresponds 

to a change from slender to thicker fibers and is in good agreement with the actual structure 

of MabSelect SuRe.  

1.3.2.2. Correlation length estimate 

The parameter that qualitatively describes structural changes as an estimate of the 

intensity-averaged electron density fluctuations throughout illuminated sample volume is lCH* 

(Eq. 1)  

𝑙𝐶𝐻
∗ =

𝜋

𝑄
∙ ∫ 𝐼(𝑞) ∙ 𝑞 ∙ 𝑑𝑞

𝑞𝑚𝑎𝑥

𝑞𝑚𝑖𝑛
,   where   𝑄 = ∫ 𝐼(𝑞) ∙ 𝑞2 ∙ 𝑑𝑞

𝑞𝑚𝑎𝑥

𝑞𝑚𝑖𝑛
  (1) 

where lCH
* is the mean correlation length estimate and Q is the invariant.  

Unlike the radius of gyration determination, which requires fitting according to 

Guinier’s approximation, the correlation length is calculated based on the integral of the 

scattering profile and thus is less sensitive to noisy data (O. Glatter, 1982; Ehmann et al., 2015). 

Moreover, in contrast to the Guinier approximation, evaluation of the correlation length does 

not require the sample to be dilute.  

1.3.2.3. Fractal dimension and surface roughness 

The higher q portion of the scattering curve (𝑄(𝑟) >>1) is generally determined by 

Porod’s law, according to which the scattered X-ray intensity decreases with q-4 for smooth 3D 

objects, but the exponent can also deviate from 4 in the case of a volume or surface fractal. 

The antibody-free resin has an exponent close to 4, which then approaches 3.5 during protein 

adsorption. Surface fractals have values between 3 and 4, which clearly indicate increased 

surface roughness. The q region used for Porod fitting is shown in Supplementary Figure II.S.3. 

1.3.3. Time evolution of small angle X-ray scattering parameters 

All of the above SAXS parameters were quantitatively evaluated at each time point 

during a protein-A chromatography run using Mathematica software (Wolfram Research 2018) 

and could be exactly correlated with the purification steps by simultaneous UV analysis (Fig. 

II.1.3). Both SAXS parameters and UV signal clearly responded to the process of loading antibody 

solution on the column and reached a plateau as soon as the resin was saturated. Since the 

amount of the chromatographic resin within a column is constant in time, all the changes in 

fitted SAXS parameters have to be caused by loaded and discharged protein solution or its 
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interactions with the resin. This assumption is also validated by the fact that all of mentioned 

parameters come back to their initial values after the protein elution. 

 

 
Figure II.1.3 - Comparison of overall fitting parameters for the SAXS time series overlaid on top of the UV signal.  

 

The saturated resin SAXS signal after the “wash” phase is characterized by plumper 

resin fibers (higher dimensionality) with longer correlation length (larger lCH
*). Notably, the 

dimensionality and correlation length, although extracted from different features of the SAXS 

curve, proceed in parallel throughout the chromatography process, confirming the evolution 

from slender to plumper fibers via adsorption of protein. Therefore, the development of lCH
* is 

attributed to the presence of an antibody layer on top of the chromatographic resin.  

The fractal dimension sharply decreases after injection, which corresponds to an 

increasing surface roughness in the saturated resin, and reaches a plateau in parallel with the 

other parameters. After elution of the bound antibodies from the SAXS column, all parameters 

gradually returned to their initial values. The final scattering profile after regeneration of the 

MabSelect SuRe resin with the running buffer resulted in a signal identical to the initial signal 

(χ2 = 0.01), indicating that the system fully recovered and was ready for the next 

chromatographic run.  

Therefore, we have shown with a simple fitting routine that we can follow the protein-

A purification process in situ using SAXS as a probing method. Moreover, the method allowed 

us to identify and initially characterize structural changes in the system due to adsorption and 

also desorption phenomena using the “model-free” approach that is independent of the 

detailed structure of the analyzed system and requires no data modeling. 

Note, that due to the relatively low concentration of monoclonal antibodies in the bulk 

solution (and the low x-ray contrast of protein with respect to water), the main signal comes 

from the resin in the beam and the monoclonal antibodies tightly packed to it. It contributes 
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to the scattering profiles so much that it completely overshines the signal from the freely 

floating monoclonal antibodies (see also Supplementary Fig. II.S.4).  

1.3.4. Protein layer thickness 

As the analysis of general SAXS parameters allows us to follow adsorption processes in 

a time-resolved manner by applying a simple fitting routine, quantitative information on layer 

thickness and its development depend on the resin structure and, therefore, requires the use 

of a structural model. Thus, we studied the morphology of the virgin resin using scanning 

electron microscopy (SEM). Images were recorded on cryo-cut beads clearly showing the 

agarose internal network (Fig. II.1.4A).  

 

Figure II.1.4 - A: An overlay of Euclidean circles representing the feature diameters within the first plane of the 

MabSelect SuRe internal agarose network over a SEM picture. Green circles represent radii between 3 and 15 nm, red 

circles represent radii of 15 to 70 nm. B: A histogram of normalized radii distribution from the semi-automated feature 

detection algorithm. Green peak is attributed mean fiber thickness, the red peak to junctions between strands. 

1.3.4.1. Structural analysis of resin 

For further analysis, a semi-automated algorithm for SEM image processing was applied 

to obtain a general overview of size distribution within the internal structure of the MabSelect 

SuRe agarose network. First, the SEM image from MabSelect SuRe was binarized and processed 

(erosion, Gaussian filters) to visualize the strands and junctions in the first plane of the picture. 

Next, circles were automatically assigned for the binarized features with diameters 

corresponding to the locally longest Euclidean distances between “no data” points. The 

histogram of all radii within an analyzed image (Fig. II.1.4B) represents the normalized 

distribution of all feature radii between 3 and 70 nm (1 nm bin width). Roughly two populations 

were identified: the peak at ~11 nm attributed to the mean fiber thickness, and the broader 

peak centered at ~30 nm attributed to junctions between strands. The results are biased by 

the applied analytical method and some of the values may be overpopulated due to the 

irregularity in their shape.  
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1.3.4.2. Broken rod model 

The internal structure of the MabSelect SuRe agarose backbone can be approximated 

by the so-called broken rod model based on a system consisting of long agarose fibers 

approximated with infinitely long cylinders characterized by the cross-sectional radius R1 and 

cross-linked junctions with radius R2 (Fig. II.1.5). The scattered intensity is then given by I(q) 

(Eq. 2). 

𝐼(𝑞)~∑ 𝑘𝑖/𝑞 [
𝐽1(𝑞𝑅𝑖)

𝑞𝑅𝑖
]
2

2
𝑖=1      (2) 

where ki denotes the relative weights of cylinder radii R1 and R2, and J1(x) is the Bessel 

function of the first kind for infinitely long cylinders (L>>R). Assuming a distribution of R1 and 

R2 about a mean value, we obtain Eq. 3. 

𝐼(𝑞)~∑ 𝑘𝑖/𝑞 ∫ [
𝐽1(𝑞𝑥)

𝑞𝑥
]
2

∙ 𝐺(𝑥)𝑖𝑑𝑥
∞

0
2
𝑖=1      (3) 

where G(x) is the normal distribution of each radius separately as determined in Eq. 4: 

𝐺(𝑥)𝑖 =
1

√2𝜋𝜎𝑖
2
∙ 𝑒

−
(𝑥−𝜇𝑖)

2

2𝜎𝑖
2

     (4) 

where µi is the mean of the distribution and σi
2 is the variance. 

Although the broken rod model is certainly idealized, it has already been applied 

successfully to analyze the gelation process of polysaccharide gels, such as alginate (Yuguchi 

et al., 2016; Yuguchi et al., 2000; Stokke et al., 2000) or sorbitol (Maeda et al., 1999), to obtain 

insight into the kinetics of gel formation and structural information about fiber diameter 

throughout the process. The model assumes that infinitely long agarose strands of characteristic 

diameter are interconnected, creating nodes of different thickness denoted as junctions and, 

therefore, approximated as two populations of rigid cylinders (Fig. II.1.5). Similar models built 

on polydisperse cylinders were also used for other agarose-based chromatographic materials 

characterization using small angle neutron scattering (Koshari et al., 2018). The broken rod 

model, however, demonstrated a superior fit to experimental data (Fig. II.1.6A) (a comparison 

to other models is shown in the supplementary information, Supplementary Table II.S.2 and 

Supplementary Fig. II.S.5). 
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Figure II.1.5 - Visual representation of the broken rod model for an agarose network with infinitely long fibers cross-

linked to create junctions. Red, center of agarose fibers in the first plane; blue, edges of fibers. 

 

Figure II.1.6 - A: Fit of broken rod model (black) to corresponding scattering profiles. Due to good agreement between 

data and fit it lays directly on top of the data points. B: Evolution of the radii of strands (blue) and junctions (purple) 

with their corresponding size distribution during a protein-A chromatography run. 

1.3.4.3. Protein layer thickness 

The broken rod model was used to quantitatively evaluate the evolution of resin strand 

and junction thickness during adsorption and desorption in the chromatography run. According 

to the broken rod model, the antibody-free MabSelect SuRe resin is characterized by an average 

cylinder radius of 11.8 and 28.6 nm for agarose strands and junctions, respectively for all 

performed measurements, which is in a good agreement with both the literature (Nweke et al., 

2017) and visual examination of SEM micrographs (Fig. II.1.4A). Upon saturation of the 

chromatographic resin with an antibody solution, as indicated by the first peak in the UV 
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spectrum (Fig. II.1.2A), the agarose strand radius increased 250 s after the protein injection, 

and then plateaued until protein elution. The difference in the values between antibody-free 

and saturated agarose strands of 5.5 nm (Table II.1.1) was attributed to so-called protein layer 

thickness, an important mechanistic parameter that could potentially indicate a change in the 

conformation of the adsorbed protein or in the protein orientation within the layer. The 

resulting protein layer thickness for junctions was calculated as being almost twice as long. The 

difference in protein layer thickness for strands and junctions could be explained by a steric 

hindrance effect in which cross-linked strands block certain positions of the antibody-protein-

A complex, promoting antibody binding to protein-A ligand units further away from the surface 

of junctions. As presented in Fig. II.1.6B, values for the strand and junction radii gradually 

return to their initial values due to subsequent elution steps. Therefore, performing 

measurements in flow instead of batch mode, we not only assessed native process conditions, 

but also examined both adsorption and desorption structural changes on nanometer scale. 

Table II.1.1 - Comparison of the radii of strands and junctions according to the broken rod model and resulting protein 

layer thickness. 

 
Strand radius ± 

distribution, nm 

Junction radius ± 

distribution, nm 

Antibody-free resin 11.8±3.1  28.7±8.1 

Saturated MabSelect SuRe 

resin 
17.3±5.0  39.1±11.2 

Resulting protein layer 

thickness 
5.5±5.9  10.4±13.8  

 

The broken rod model readily provides insight into the protein layer thickness and its 

kinetics in the MabSelect SuRe resin system. The model also allows speculation about the 

structural changes within a very complex system. We suggest the following structural 

interpretation of the protein layer thickness results (Fig. II.1.7). Agarose strands (11 nm mean 

radius) are grafted with protein-A tetramer ligands, which have a length of approximately 10 

nm when stretched (single unit of Staphylococcus aureus protein-A has a length of 3 nm, 

PDB:1BDD (Gouda et al., 1992)). According to the broken rod model, the radius of antibody-

free MabSelect SuRe strands is 11.8 ± 3.1 nm; thus, protein-A ligands contribute only slightly, 

if at all, to the strand thickness derived from the SAXS scattering profile. A possible explanation 

would be a relatively low spatial grafting density of protein-A ligands on top of the agarose 

strand surface. Moreover, a high degree of ligand flexibility can smear the protein-A 

contribution to the resulting SAXS scattering profiles. When saturated, the MabSelect SuRe 

strand radius increases to 17.3 ± 5.0 nm. The resulting protein layer thickness is caused by the 

attachment of antibody moieties to protein-A ligand units via Fc-mediated binding, which 

stiffens their structure. Knowing the amount of protein adsorbed (the elution peak area from 

the chromatograph), the binding capacity is calculated to be ~35 mg of antibodies per milliliter 
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of MabSelect SuRe resin. Taking into account molecular weights of 150 and 26.7 kDa for 

monoclonal antibody and protein-A ligand, respectively, we estimate 1.2 molecules of 

antibodies bound to each protein-A ligand tetramer (taking 5.6 mg of protein-A ligand per 

milliliter of MabSelect SuRe resin) (Hans J. Johansson, 2009; Weinberg et al., 2017). Therefore, 

we conclude that there are 10 possible binding configurations for one or two antibodies in 

complex with protein-A ligand, which explains the slightly greater distribution of sizes for 

agarose strands when saturated with antibodies. The resulting protein layer thickness of 5.5 ± 

5.9 nm is well below the average diameter of IgG1 protein (11.5 nm, PDB: 1HZH) (Saphire et 

al., 2001). 

 

Figure II.1.7 - Structural interpretation of protein layer thickness development throughout the protein-A 

chromatography run. Protein-A ligand tetramers (in red) are attached to the agarose strand (orange). All entities are 

in scale to facilitate size comparison. 

The distribution indicates that there are places on agarose strands at which no protein 

is present, up to a protein layer thickness of approximately 12 nm, matching the width of IgG. 

Potentially, the above consideration would suggest that antibodies are positioned in proximity 

to and facing the agarose fiber surface, so that we are probing the thickness and not the length 

of the antibody. However, the significant size distribution of protein layer thickness derived 

from the additive nature of combining distributions ((σz)2= (σ1)2 + (σ2)2) would also allow other 

configurations with antibodies positioned side-on close to the surface, but tilted, though there 

is a lower probability of their occurrence. To position antibody parallel to an agarose strand in 

proximity of the surface, the antibody-protein-A complex has to possess high bending and 

rotation freedom, which would only be possible if the antibody is bound to the outermost units 

of a protein-A ligand tetramer.  Similar observations were made using neutron reflectivity to 

measure protein-A-antibody complex distance on a silica surface (Mazzer et al., 2017); Mazzer 
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et al. suggested that two IgG molecules are bound to a protein-A tetramer ligand with “a 

somewhat skewed orientation and close proximity to the silica surface”. They also concluded 

that antibody was bound to the protein-A ligand tetramer domain in a side-on to tilted 

orientation further from the silica interface. Having similar conclusions to ours, Mazzer’s work 

strengthens our reasoning, especially as they worked in the idealized and therefore easier to 

characterize environment in batch mode with protein-A ligands immobilized on silicon wafer 

instead of native chromatography resin under flow conditions.   

The nature of junctions is harder to decipher, as they are less consistent in shape and 

size and we do not know if the protein-A ligand grafting density is the same as for strands. 

Thus, junctions have a considerable size distribution of 28.7 ± 8.1 nm, which is even higher 

when junction ligands are saturated with antibodies (39.1 ± 11.2 nm). Therefore, the protein 

layer thickness for a junction is 10.4 ± 13.8 nm, approximately twice as thick as strands. The 

above data are suggestive of a different profile of the antibody-protein-A ligand complex 

structure for many ligands available on the surface of junctions compared to those on strands. 

Some of the ligand units may not be available for antibody binding due to a steric hindrance 

effect of cross-linking strands blocking likely more energetically favorable binding sites, which 

would explain different sizes and the substantial size distribution of junction protein layer 

thickness.  

A small angle scattering investigation on the similar agarose-based chromatography 

resin was reported by Koshari et al. (Koshari et al., 2018), where they investigated among 

others SP Sepharose FF resin using neutrons. SP Sepharose FF is a cation exchanger resin based 

on 4% cross‐linked agarose like the backbone of MabSelect SuRe resin, therefore one would 

expect similar scattering profiles and subsequent structural parameters for both of them. 

However, both the applied methodology and results show significant discrepancies between our 

work and Koshari’s. Koshari used polydisperse cylinder model resulting in mean cylinder radii 

of around 1 nm reasoning it to be a rigid single or double helices from agarose within strand, 

whereas with the broken rod model we obtained a strand radius of almost 12 nm, which is in 

hand with literature and SEM investigation. Moreover, within the broken rod model we assumed 

not only infinitely long cylinders instead of artificially setting them to 1000 nm in length, but 

also used two populations of cylinders to account for junctions which played important role in 

the architecture of cross-linked agarose beads. This resulted in a better fit of the model to the 

data as visually compared to fits reported in Koshari’s paper and more consistent results of 

strands and junctions’ radii.  It should be noted, however, that Koshari et al. did their study 

with SANS, while ours was performed with SAXS; therefore, the different size of the observed 

resin fibrils/strands might be due to the different contrast for neutrons and x-rays, in particular 

since they used D2O as a solvent, thus potentially enhancing the contrast between individual 

fibrils (single or double helices) within a single resin strand. 

Irrespective of the applied model, the agarose network with its stands and junctions 

exhibit a quite distinctive surface topology with two different adsorption sites showing layers 

of different thickness. The developed methodology could be applied to any other 
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chromatography method such as ion-exchange, hydrophobic interaction or multimodal 

chromatography with agarose backbone.  

1.4. Conclusions 

Using a simple fitting routine without any further modeling can follow the structural 

changes occurring in situ in a miniaturized chromatography column.  An entire chromatography 

run from equilibration, through loading and washing, to elution can be observed in-situ under 

native conditions using SAXS as a probing method. Moreover, based on the SEM micrographs, 

we created a model allowing us to characterize the internal structure of the MabSelect SuRe 

agarose network with infinitely long cross-linked cylinders of characteristic thickness 

representing strands and junctions within the system. We monitored the development of the 

radii of these cylinders throughout a protein-A chromatography run and found that the agarose 

strands have an average radius of 11.8 nm, while upon saturation with antibodies the difference 

was identified as the protein layer thickness (5.5 nm and 10.4 nm for strands and junctions 

respectively). Based on the information on the system’s components and parameters, we 

hypothesize that an average 1.2 antibodies are bound to each protein-A ligand tetramer. Most 

likely, they are bound to the outermost units within tetramer ligands from the agarose surface 

and the whole complex is parallel to the surface in its proximity, where we probed the antibody 

thickness in side-on or tilted orientation. 
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1.6 Supplementary Information 

 

Figure II.S.1 - Size exclusion chromatography of Herceptin solution showing single peak, which indicates that used 

antibody solution was monomeric. 

Table II.S.1 - A default program for protein-A chromatography runs. CV stands for column volume, %B means percentage 

of elution buffer in the flow. Scattering profiles were collected every second throughout the run. Change to A and B 

means rapid flush of the pump with corresponding buffer A- running buffer, B- elution buffer. It was implemented into 

the system due to low flow rates that prevent fast exchange of the pump volume. 

 

cv
volume 

[mL]
time [s]

accumulative 

time [s]
%B

equilibration 4 0.8 4 0 0

loading 0.25 1.25 4 0

washing 4 0.8 4 5.25 0

change to B 5 1 5 9.25 100

elution 15 3 15 14.25 100

change to A 0.1 29.25 0

equilibration 15 3 15 29.35 0

end 44.35 0

2661
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Figure II.S.2 - Comparison of protein-A runs A,B from BM26B beamline and C from BM29 at ESRF, France. Top panel 

presents fitting parameters like Porod exponent (red), correlation length (purple) and dimensionality (blue), whereas 

bottom panel shows corresponding UV 280 nm signal (green) and conductivity (brown). Note, that different 

chromatography system used at BM29 resulted in different spreading of the features in chromatograph, but similar 

values for Power law fitting. 

 

Figure II.S.3 - Scattering profile for antibody-free MabSelect SuRe resin in blue, region where Porod was fitted in 

orange. 
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Figure II.S.4 - Overlay of scattering profiles from 125s to 1000 s every 10 s. The peak for the overload in UV is visible 

at 132s. No difference is seen between the scattering patterns during overloading, which indicates that freely floating 

monoclonal antibodies are not visible in our SAXS signal due to the low concentration in bulk solution.  

Table II.S.2 - Summary of data modelling with various models representing Chi^2 analysis and resulting radii. 

 

 

 

Figure II.S.5 - Comparison of different model fits (in black) to Antibody-free (blue) and Saturated (orange) MabSelect 

SuRe resin scattering profiles. 

radius 1 radius 2 chi^2 radius 1 radius 2 chi^2

Broken rod 11.8 28.7 53.3 17.3 39.1 2.2

two 1000 nm 

cylinders with 

distribution

7.1 32.8 168 337.3 59.8 537.8

single 1000 nm 

cylinder with 

distribution

15 - 164.6 185.2 - 816.7

Antibody-free MabSelect Saturated MabSelect SuRe
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Abstract 

Protein A affinity chromatography is a core unit operation in antibody manufacturing. 

Nevertheless, there is not enough understanding of in-column antibody adsorption in the 

Protein A capture step. This work aims to investigate in situ the establishment of an antibody 

(trastuzumab) layer during Protein A chromatography both in terms of energetic contributions 

and uptake kinetics. Flow microcalorimetry is employed as a technique with an in situ operating 

detector which provides understanding on the thermodynamics of the adsorption process. In 

addition, the antibody uptake rate is also investigated in order to establish a correlation 

between its diffusion on the stationary phase and the associated thermodynamics. Two resins 

with different particle sizes, intraparticle porosities, and Protein A ligand structure were 

studied: the synthetically engineered B-domain tetrameric MabSelect SuRe and synthetically 

engineered C-domain hexameric TOYOPEARL AF-rProtein A HC. The uptake rate follows a pore 

diffusion model at low equilibrium time, showing a slower diffusivity after a certain time 

because of the heterogenous binding nature of these two resins. In addition, the 

microcalorimetric studies show that adsorption enthalpy is highly favourable at low isotherm 

concentrations and evolves towards an equilibrium with the increasing of surface 

concentration. These data suggest that the relationship between adsorption enthalpy and the 

establishment of the antibody layer in the Protein A chain is consistent with heterogeneous 

adsorption. 

Keywords 

Monoclonal antibodies, affinity chromatography, Protein A, adsorption enthalpy, flow 

microcalorimetry, uptake kinetics  
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2.1. Introduction  

Monoclonal antibodies are an ever-growing market, representing already nearly half of 

the total sales of biopharmaceuticals (Ecker, Jones, & Levine, 2015; Morrison & Lähteenmäki, 

2017).  Protein A affinity chromatography is by far the most important and most frequently 

applied chromatography step in manufacturing biopharmaceuticals, being a core technology in 

downstearm processing of antibodies, Fc fusion proteins and antibody fragments (Shukla, 

Hubbard, Tressel, Guhan, & Low, 2007). The method is popular due to its high selectivity, high 

capacity, and robustness (Hober, Nord, & Linhult, 2007; Shukla et al., 2007). Several decades 

of development maturated the available materials and protocols. Originally, wild type 

Staphylococcal protein A composed of five different antibody-binding domains (A, B, C, D, E) 

was immobilized and used for affinity capture (Boyle, 1990; Uhlén et al., 1984). Currently, also 

engineered variants are available, with improved alkaline stability. Two of the most popular 

ones are the tetrametric Z form derived from the B-domain, and the hexameric Y-domain, a 

mutant from the C-domain. Each domain consists of three α-helices, which bind to the CH2 

region in the Fc part of the antibody (DeLano, Ultsch, de Vos, & Wells, 2000; Salvalaglio, 

Zamolo, Busini, Moscatelli, & Cavallotti, 2009).  

At ligand saturation, 2-3 of these binding sites or domains are occupied (Ghose, 

Hubbard, & Cramer, 2007). Attempts have been made with molecular dynamics simulation to 

understand the steric hindrance, as accessibility of the sites affects the antibody binding 

process/kinetics (Salvalaglio et al., 2009; Yu et al., 2016). It has been proposed that mainly 

interactions of hydrophobic nature, salt bridges and hydrogen bonding contribute to binding to 

Protein A (Ghose, Allen, Hubbard, Brooks, & Cramer, 2005; Li, Dowd, Stewart, Burton, & Lowe, 

1998). There are also reports stating that the antibody undergoes a slight conformational 

change during the interaction with the Protein A ligand (Gagnon, Nian, Leong, & Hoi, 2015; 

Mazzer, Perraud, Halley, O’Hara, & Bracewell, 2015). Thus, it is clear that several sub-

processes are involved in antibodies binding to Protein A ligands (Lin, Chen, & Hearn, 2002). 

Besides the adsorption process itself, which may involve desolvation of both protein and ligand 

before the favourable interaction, conformational changes also have an effect in binding.  

Thermodynamic analyses of biomolecule adsorption have been facilitating the 

elucidation of complex adsorption mechanisms. Often neglected, enthalpy was proven to be 

highly dependent on the loading/saturation of the surface. It has also been observed that after 

adsorption on ion exchange and hydrophobic interaction chromatography, protein rearranges 

at the surface and a strong entropic contribution, depending on the system, may be involved 

(Lin et al., 2002; Ueberbacher, Rodler, Hahn, & Jungbauer, 2010).  

To provide insight into the thermodynamic properties of adsorption processes, 

microcalorimetric methods have been proven to be reliable methodologies. Mainly two 

techniques have been used for this purpose: isothermal titration calorimetry (ITC) and flow 

microcalorimetry (FMC). The adsorption enthalpy, measured by ITC offers an excellent insight 

into the binding strength, however further information cannot be inferred. FMC on the other 
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hand, is able, to some extent, to dissect the sub-processes involved in the interaction between 

the biomolecule and the resin and as a consequence to discriminate between different energy 

sources. The technique has been used, with good results, to study the adsorption 

thermodynamics of biomolecules on ion exchange (Silva, Marques, Thrash, & Dias-Cabral, 2014), 

hydrophobic interaction (Aguilar, Twarda, Sousa, & Dias-Cabral, 2014) and mixed-mode 

chromatography (Rosa, da Silva, Aires-Barros, Dias-Cabral, & Azevedo, 2018). Flow 

microcalorimetry simulates lab-scale chromatography and implies that the system is in 

equilibrium. The adsorption process, the rearrangement of water molecules, the alteration of 

protein conformation, the reorientation of the protein molecules at the surface, the 

desolvation of proteins and ions are some of the major contributors to the heat exchange 

associated with the overall adsorption process. These different energy sources can be dissected 

and accounted for (Lin et al., 2002). The fact that flow microcalorimetry considers mass 

transfer implications for simulating a dynamic chromatography system allows it to be on the 

cutting-edge of online and in situ monitoring of an adsorptive process. With the use of flow 

microcalorimetry we are one step closer to understanding how the adsorption enthalpy changes 

with the loading concentration and how thermodynamics of these processes are influenced by 

the type of resin, both under linear and overloaded conditions. 

Combining together the data provided by FMC, equilibrium binding (adsorption 

isotherm), and uptake kinetics, the antibody-Protein A binding process is characterized. We 

have selected two of the most important commercially available Protein A chromatography 

media: MabSelect SuRe and TOYOPEARL AF-rProtein A HC to determine the thermodynamic 

parameters for antibody-Protein A interaction. Mabselect SuRe is an alkaline stable tetramer 

and TOYOPEARL AF-rProtein A HC an alkaline stable hexamer. The ligands are immobilized on 

crosslinked agarose (MabSelect SuRe) or a methacrylate polymer bead (TOYOPEARL). In addition 

to the different ligand structure, these two resins differ in average particle size; MabSelect 

SuRe 85 µm and TOYOPEARL AF-rProtein A HC 45 µm, which has a great influence in the uptake 

kinetics (Tao, Perez-Almodovar, Carta, Ferreira, & Robbins, 2011). The antibody binding 

kinetics to the Protein A ligands is reported as diffusional mass transfer controlled (Hahn et al., 

2005). The formation of antibody-Protein A complex and the displacement kinetics is limited 

by pore diffusion (Perez-Almodovar & Carta, 2009; Tao et al., 2011). 

2.2. Materials and Methods 

2.2.1. Materials 

The monoclonal antibody trastuzumab was purchased from Roche (Basel, Switzerland) 

(Lot. B1050B07). All the following reagents were purchased from MilliporeSigma (Burlington, 

MA, USA): sodium phosphate dibasic (Na2HPO.2H2O) (Lot.K450726804049), sodium dihydrogen 

phosphate (NaH2PO.2H2O), (Lot.K93717142706), glycine (C2H5NO2) (Lot.VP614601407), and 

sodium chloride (NaCl) (Lot.K48705904713). 
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2.2.2. Adsorption isotherms 

The adsorption isotherms were measured by mass balance determination after 24 hours 

incubation of antibody in MabSelect SuRe (GE Healthcare, Uppsala, Sweden) (Lot. 10247535) 

and TOYOPEARL AF-rProtein A HC-650F (Tosoh, Tokyo, Japan) (Lot. 65RPHFA02Y) resins. The 

incubation was conducted in a 96-multi well plate (Greiner, Kremsmünster, Austria). The resin 

volume was 0.025 mL and the volume of a protein stock was adjusted with Na-phosphate buffer 

0.02 M + NaCl 0.15 M at pH 7.4 in each well to reach the concentration range 0.01-10 mg.mL-1 

in a final bulk volume of 0.25 mL. The samples were incubated for 24 h in a thermomixer 

(Thermo Fisher Scientific, Waltham, MA, USA) at 20 oC and 900 rpm. After incubation, the 

supernatant was filtered with HPLC-grade Millex-GV syringe filter (PVDF membrane pore size: 

0.22 µm) (MilliporeSigma) and the equilibrium bulk protein concentration was measured at Abs 

280 nm using a UV plate reader (Tecan, Männedorf, Switzerland).  

2.2.3. Batch uptake kinetics 

The antibody uptake as function of time by MabSelect SuRe and TOYOPEARL AF-rProtein 

A HC was obtained in agitated vessels. A slurry of 50% resin was prepared in Na-phosphate 

buffer 0.02 M + NaCl 0.15 M at pH 7.4 and 0.25 mL of slurry added to every vessel. Two initial 

protein phase concentrations were studied: 𝐶0 = 0.75 mg.mL-1 and 𝐶0 = 1.5 mg.mL-1. The 

solution volume was respectively 20 mL and 10 mL. The suspensions were recirculated for 24 h 

at 200 rpm and the bulk protein concentration was measured by recirculating the sample 

through the U9-L UV monitor of an ÄKTA Pure (GE Healthcare). 

2.2.4. Flow Microcalorimetry 

The heat exchange experiments of antibody adsorption on Protein A resins were 

conducted in a flow microcalorimeter (Microscal FMC 4 Vi, Microscal Limited, London, UK). The 

microcalorimeter contains a 0.171 mL cell that was packed as a standard chromatography 

column with the MabSelect SuRe and TOOYPEARL AF-rProtein A HC resins in Na-phosphate 

buffer 0.02 M + NaCl 0.15 M at pH 7.4 (running buffer). The cell is coupled with two thermistors 

sensitive enough to detect the power change (µW) occurring during the adsorption process. The 

operating temperature was 25±1 oC. The system was equilibrated with running buffer at 1.5 

mL.h-1 during 10 CV. The antibody feed concentrations ranged from 1 to 30 mg.mL-1, resulting 

in loadings up to 27 mg.mL-1 packed bed for MabSelect SuRe and up to 17 mg.mL-1 for 

TOYOPEARL AF-rProtein A HC. The injection volume was 0.1 mL in every experiment. During 

the process the thermistors detect a change in potential, convert it into power and transmit it 

to the software (CALDOS 4, Microscal Limited) which records the thermogram signal along the 

time span of the process (the calorimeter is operated in the heat conduction mode). After 

injection and binding, a washing step is carried with high salt buffer (Na-phosphate buffer 0.02 
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M + NaCl 2 M pH 7.4), followed by elution at low pH (glycine 0.1 M pH 3.0). The sanitization 

process was carried with NaOH 0.1 M, followed by ultrapure water and ethanol 20%.  

2.2.5. HPLC analysis 

Antibody concentration was measured using a CIM® n-Protein A monolith disk (BIA 

Separations, Ajdovščina, Slovenia), 12.0 mm ID × 3.0 mm, in a HPLC system (Shimadzu LC-2010A 

HT, Kyoto, Japan). The system was equilibrated with Na-phosphate buffer 0.03 M + NaCl 1 M 

pH 7.5 during 10 CV. The injection volume was 0.1 mL and elution was carried with HCl pH 2 in 

a step gradient during 20 CV. 

2.3. Results and Discussion 

2.3.1. Langmuir adsorption isotherms 

The adsorption isotherms for the two Protein A affinity resins (MabSelect SuRe and TOYOPEARL 

AF-rProtein A HC) are shown in Figure II.2.1. The Langmuir equation was used to fit the 

experimental data. It describes the protein adsorbed to the resin, 𝑞, in equilibrium with the 

solution concentration, 𝐶, and is given by: 

 𝑞 =
𝑞𝑚𝐶

𝐾𝐷+𝐶
     (1) 

where 𝑞𝑚 gives the maximum adsorbed capacity and 𝐾𝐷 is the dissociation constant. 

 

 

Figure II.2.1 - Adsorption isotherms of antibody in Na-phosphate buffer 0.02 M + NaCl 0.15 M at pH 7.4 on the resins 

MabSelect SuRe (full triangles) and TOYOPEARL AF-rProtein A HC (full circles). Incubation of 0.01-10 mg.mL-1 antibody 

in a bulk volume of 0.25 mL with 10% resin for 24 h at 250 rpm. Data were fitted with Langmuir model for MabSelect 

SuRe (dashed line) and TOYOPEARL AF-rProtein A HC (full line). 
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The isotherms show highly favourable adsorption, as expected for Protein A affinity 

chromatography (Hahn et al., 2005; Müller & Vajda, 2016). Both Langmuir fits present a 

rectangular shape that levels between 0.2 and 0.4 mg.mL-1 equilibrium concentration 

depending on the resin. The isotherms are highly favorable, with TOYOPEARL AF-rProtein A HC 

presenting a higher equilibrium binding capacity (𝑞𝑚  = 96 mg.mL-1 packed bed) and higher 

affinity (with and 𝐾𝐷 = 0.0042 mg.mL-1) than MabSelect SuRe (𝑞𝑚 = 79 mg.mL-1 packed bed 

and 𝐾𝐷 = 0.0079 mg.mL-1). The isotherm data denotes a second increase in q values for 

equilibrium concentrations higher than 0.3 mg.mL-1, which is more clearly seen in the 

TOYOPEARL AF-rProtein A HC isotherm. This behavior in the isotherm was also seen in a recent 

study by Pabst et al. (Pabst, Thai, & Hunter, 2018). It is well described that the Langmuir 

isotherm assumes monolayer coverage and energetic equivalence of all the binding sites (Bellot 

& Condoret, 1993; Carta & Jungbauer, 2010). Nonetheless, this isotherm has been used to 

model antibody adsorption to Protein A chromatography resins (Hahn, Schlegel, & Jungbauer, 

2003; Pabst et al., 2018; Perez-Almodovar & Carta, 2009), known for their heterogeneous 

binding characteristic due to the multimeric chains, with high energy (also called fast) and low 

energy (also called slow) binding sites (Ljungquist, Jansson, Moks, & Uhlén, 1989; Pabst et al., 

2018; Perez-Almodovar & Carta, 2009). Therefore, antibody binding to more than one domain 

of the Protein A chain is possible (Ghose et al., 2007; Ljungquist et al., 1989; Perez-Almodovar 

& Carta, 2009). Thus, the slight deviation from the Langmuir model seen in the isotherm (Fig. 

II.2.1) and in Pabst et al. work (Pabst et al., 2018) at high concentrations could be associated 

to the heterogeneity of the multimeric Protein A ligand, which in the present study is more 

visible in presence of TOYOPEARL AF-rProtein A HC resin as it has a hexamer structure compared 

to the tetramer of Mabselect SuRe. 

2.3.2. Batch uptake kinetics – shrinking core model 

For rectangular isotherms, like in the antibody uptake by Protein A resins, batch 

adsorption in a finite bath can be defined with the shrinking core model, which considers pore 

diffusion as the dominant transport mechanism. 

Pore diffusion in chromatography media is usually defined through the effective 

diffusivity, 𝐷𝑒 (Carta & Jungbauer, 2010), which is highly dependent on tortuosity (molecule 

path is longer than a straight trajectory), steric hindrance (associated with the ratio of 

molecule to pore size), and matrix porosity (Carta & Jungbauer, 2010). MabSelect SuRe shows 

a greater effective diffusivity than TOYOPEARL AF-rProtein A HC for both 𝐶0, as seen in Table 

II.2.1, where the parameters fitted by the shrinking core model for both resins can be found. 

In spite of the larger particle size of MabSelect SuRe (Ø = 85 µm), these greater 𝐷𝑒 values can 

be related to the larger intraparticle porosity (𝜀𝑝 = 0.76) compared to TOYOPEARL AF-rProtein 

A HC (Ø = 45 µm and 𝜀𝑝 = 0.36) (Pabst et al., 2018; Perez-Almodovar & Carta, 2009). 
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Table II.2.1 – Summary of the fitted parameters of the pore diffusion model of antibody uptake kinetics by MabSelect 

SuRe and TOYOPEARL AF-rProtein A HC. 

Parameters MabSelect SuRe TOYOPEARL AF-rProtein A HC 

𝑪𝟎 (mg.mL-1) 0.72 1.40 0.74 1.37 

𝒒𝒎𝒂𝒙 (mg.mL-1 resin) 55.7 53.4 77.5 75.4 

𝑫𝒆 (cm2.s-1) 3.3×10-8 3.3×10-8 1.7×10-8 1.2×10-8 

𝒌𝒇 1.25×10-3 1.25×10-3 2.37×10-3 2.37×10-3 

 

The shrinking core model was first developed by Teo and Ruthven (Teo & Ruthven, 1986) and 

then applied by other authors (Perez-Almodovar & Carta, 2009; Zandian & Jungbauer, 2009), 

and the general equation is as follows: 

𝐶0

𝑞

𝐷𝑒𝑡

𝑟𝑝
2 = (1 −

1

𝐵𝑖
) 𝐼2 − 𝐼1     (2) 

where 𝐶0 is the initial protein concentration in the mobile phase, 𝐷𝑒 is the effective 

diffusivity, 𝑡 is the time, 𝑞 is the adsorbed protein, 𝑟𝑝 is the particle radius, 𝐵𝑖 is the Biot 

number, and 𝐼1 and  𝐼2 are simplified dimensionless parameters given by:  

𝐼1 =
1

6𝜆𝛬
ln [

𝜆3+𝛽3

𝜆3+1
(
𝜆+1

𝜆+𝛽
)
3

] +
1

𝜆𝛬√3
[tan−1 (

2𝛽−𝜆

𝜆√3
) − tan−1 (

2−𝜆

𝜆−√3
)]   (3) 

𝐼2 =
1

3𝛬
ln (

𝜆3+𝛽3

𝜆3+1
)      (4) 

where 𝛽 = (1 −
𝑞̅

𝑞𝑚𝑎𝑥
)
1
3⁄

 and 𝜆 = (
1

𝛬
− 1)

3

, and where 𝛬 is the normalized phase ratio 

given by 𝛬 =
𝑣𝑞𝑚𝑎𝑥

𝑉𝐶0
, 𝑞̅ is the average concentration in the particle, 𝑞𝑚𝑎𝑥 is the maximum binding 

capacity of the resin, 𝑣 is the resin volume, 𝑉 is the mobile phase volume. The Biot number is 

given by 𝐵𝑖 =
𝑘𝑓𝑟𝑝

𝐷𝑒
, where 𝑘𝑓 is the film mass transfer coefficient. 

Antibody uptake kinetics by MabSelect SuRe and TOYOPEARL AF-rProtein A HC was 

measured at different initial concentrations (𝐶0 = 0.75 mg.mL-1 and 𝐶0 = 1.5 mg.mL-1). The data 

were plotted in terms of the adsorbed concentration and the dimensionless solution 

concentration over time and is shown in Figs. II.2.2A and II.2.2B. The represented solid lines 

show the uptake prediction based on the application of the aforementioned shrinking core 

model. This model considers a single type of adsorption site with infinite affinity, where the 

molecule is first adsorbed at the surface and then the front migrates towards a protein-free 

centre of the particle. Steric hindrance in this pore diffusion-controlled process is caused by 

the bound antibodies at the pore entrance, leading to a slower migration front towards the 
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centre of the pore (Perez-Almodovar & Carta, 2009).  For both resins it can be seen that the 

model predicts well the uptake rate at early equilibration time but the rate slows down as the 

ultimate capacity is attained. The same behavior was found by Carta and co-workers when 

modeling antibody adsorption to Protein A by the shrinking core model (Perez-Almodovar & 

Carta, 2009). In addition to this model, Carta’s group also employed other models driven by 

pore diffusion to analyse the adsorption process, namely the pore diffusion model, and the 

heterogeneous binding model. The models differ on the kinetic resistance considerations and 

the accessibility of the pores. The authors found that despite all three models being able to 

correctly predict antibody binding at low concentrations, the first two returned some deviations 

at high concentrations. Only the heterogeneous binding model was able to adjust precisely, 

suggesting that it is unlikely that all the binding sites are homogeneous. There is a distribution 

between the aforementioned fast and slow binding sites. Therefore, only the kinetic filling of 

the high affinity sites may be well represented by the shrinking core model (Hahn et al., 2005; 

Perez-Almodovar & Carta, 2009). 

 

 

Figure II.2.2 - Batch adsorption kinetics of antibody at 𝐶0 = 0.75 mg.mL-1 and 𝐶0 = 1.5 mg.mL-1 in Na-phosphate buffer 

0.02 M + NaCl 0.15 M at pH 7.4 on the resins MabSelect SuRe (MSS) and TOYOPEARL AF-rProtein A HC (TP PA); a) 

adsorbed concentration, 𝑞, over time; b) dimensionless solution concentration, 𝐶 𝐶0⁄ , over time. Solid lines represent 

the uptake prediction based on the shrinking core model. 

2.3.3. Adsorption heat profile 

By reproducing lab-scale conditions of a regular chromatography system, flow 

microcalorimetry is a powerful tool to characterize a chromatographic process with respect to 

the associated thermodynamics. We have already successfully investigated the energy profile 

in the purification of other biomolecules, namely lysozyme (Silva et al., 2014), plasmid DNA 

(Aguilar et al., 2014) and mAbs (Rosa, da Silva, Aires-Barros, Dias-Cabral, & Azevedo, 2018), 

and concluded that biomolecule purification in liquid chromatography is a complex process that 

should be carefully interpreted. The adsorption of a biomolecule to a ligand in a 

chromatographic process has different characteristics from a batch process both in terms of 

mass transfer properties and associated energy. It has been described that there are multiple 
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factors and subprocesses influencing protein adsorption in chromatography with both favorable 

and unfavorable contributions to the process. All these contributions have a thermodynamic 

significance regardless of their source. The possibly existing subprocesses underlying the 

interaction between a protein and the resin may involve, depending on the type of interaction 

(F.-Y. Lin et al., 2002): 1) dehydration and/or removal of the electric double layer of the 

biomolecule and sorbent; 2) interactions between the biomolecule and the sorbent; 3) 

structural rearrangement of the biomolecule upon adsorption; 4) rearrangement of the 

excluded water or ion molecules in bulk solution. Protein and surface desolvation are the major 

contributors for entropy increase and for endothermic energy. The release of co-ions and 

dehydration is usually more prominent in ion exchange. In Protein A affinity chromatography, 

as previously mentioned, protein-ligand binding is a result of different types of interactions, 

namely interactions of hydrophobic nature, van der Waals forces, and hydrogen bonding (Ghose, 

Allen, Hubbard, Brooks, & Cramer, 2005; Li, Dowd, Stewart, Burton, & Lowe, 1998). The 

occurrence of interactions of exothermal nature contribute majorly to the adsorptive process 

enthalpy (Katiyar, Thiel, Guliants, & Pinto, 2010). Antibodies bind to Protein A at neutral 

conditions, under which the highly conserved histidyl residue at the Protein A binding site 

interacts with the uncharged CH2-CH3 Fc region in the antibody (Ghose et al., 2005). Therefore, 

endothermic desolvation heats are not likely to be very prominent, which is attested by the 

obtained thermograms (Figs. II.2.3 and II.2.4). 
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Figure II.2.3 - Heat exchange profile of antibody adsorption on MabSelect SuRe at concentrations in the linear range 

of the isotherm for different surface concentrations: a) 1.0 mg.mL-1 resin; b) 5.4 mg.mL-1 resin; c) 10.9 mg.mL-1 resin; 

and d) 26.6 mg.mL-1 resin. Equilibrium with Na-phosphate buffer 0.02 M + NaCl 0.15 M at pH 7.4 and 0.01 mL antibody 

injection prepared in the same buffer; flow rate was 1.5 mL.h-1. Peak deconvolution was done with EMG functions using 

PaeakFit v4 software, with the first peak shown in a blue dashed curve, the second peak in a red dashed curve, and 

the overall net heat in a black full curve. The bed volume starting in the first moment of contact between the antibody 

and the adsorbent is shown in a black dashed line, and the antibody injection pulsed is shown in a black dotted line. 

 

 

Figure II.2.4 - Heat exchange profile of antibody adsorption on TOYOPEARL AF-rProtein A HC at concentrations in the 

linear range of the isotherm for different surface concentrations: a) 1.8 mg.mL-1 resin; b) 5.4 mg.mL-1 resin; c) 10.1 

mg.mL-1 resin; and d) 13.7 mg.mL-1 resin. Equilibrium with Na-phosphate buffer 0.02 M + NaCl 0.15 M at pH 7.4 and 

0.01 mL antibody injection prepared in the same buffer; flow rate was 1.5 mL.h-1. Peak deconvolution was done with 

EMG functions using PaeakFit v4 software, with the first peak shown in a blue dashed curve, the second peak in a red 

dashed curve, and the overall net heat in a black full curve. The bed volume starting in the first moment of contact 

between the antibody and the adsorbent is shown in a black dashed line, and the antibody injection pulsed is shown in 

a black dotted line. 

The measured heat exchange profiles are shown in Figure II.2.3A-D (MabSelect SuRe) 

and Figure II.2.4 A-D (TOYOPEARL AF-rProtein A HC). A black dashed bar indicating the bed 

volume is shown in every graph (0.171 mL, corresponding to 6.8 min of residence time at the 

operation volumetric flow rate of 1.5 mL.h-1) starting at the moment that the migration front 

of the injection pulse first enters the bed. It is also shown a black dotted bar indicating the 
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injection pulse (0.1 mL). In every experiment, the signal presents a maximal energy release 

followed by a tailed heat dissipation until zero. Because of the associated tailing, the signal 

was deconvoluted in two peaks to discriminate between the different substeps occurring during 

the adsorption process. PeakFIT software (Systat Software, Inc., Chicago, IL, USA) was used for 

this purpose and the Exponentially Modified Gaussian function was applied.  

The antibody adsorption to both resins has an overall exothermic heat exchange profile 

characteristic of the type of interactions present. The signals start with a shallow release of 

energy as the antibody sample reaches the column. The first exotherm peaks at the time the 

injection pulse completes the first column volume. The second peak starts at the time the first 

peaks, so it is mostly generated after the end of the antibody pulse. For both resins, the 

magnitude of the signals increases with the increase of the loading and the first exotherm 

translates an event with a greater release of energy than the second exotherm.  

All the microcalorimetry measurements were conducted in the linear range of the 

isotherm and at 6.8 min residence time. According to the shrinking core model, when the 

antibodies in a sample reach the adsorbent they bind to the first Protein A ligands at the surface 

of the beads with the subsequent molecules binding to the inner ligands until reaching the 

centre of the particle. In a recent study we concluded that in the linear range of the isotherm, 

the antibodies would bind preferably to the outermost domains in an average stoichiometry of 

1:1 or lower (Silva et al., 2019). Therefore, the reorientation/rearrangement of the molecules 

upon binding is more favorable than multilayer formation. The energy for this rearrangement 

would be given by the decrease of enthalpy from the first to the second observed exothermic 

event (Suzuki, 1990). All these changes are energetically significant and help explaining tailing 

beyond residence time towards the establishment of a favorable arrangement of the adsorbed 

antibody molecules at the surface. It is also observed that the tailing profile in TOYOPEARL AF-

rProtein A HC is longer than in MabSelect SuRe, in accordance with the lower effective 

diffusivity results from the uptake studies and the differences in the Protein A ligand size.  

In conclusion, the first exotherm results from the first contact of the antibodies with 

the ligand and the second exotherm could result from the rearrangement of the adsorbed 

molecule within the same ligand. Also, as mentioned, having multiple binding sites per Protein 

A ligand is a source of heterogeneous binding, with high and low energy sites. So, the binding 

of antibody is likely a stochastic phenomenon in which the distribution of the binding energy 

determines the probability of concomitant binding events (Silva et al., 2019).   

2.3.4. Adsorption enthalpy 

The adsorption enthalpy of a given process is determined by the ratio between energy 

(integration of the heat exchange curve) and mole of adsorbed product.  

∆𝐻𝑎𝑑𝑠 =
𝑄𝑎𝑑𝑠

𝑣𝑞
       (5) 
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where 𝑄𝑎𝑑𝑠 represents the net heat of adsorption, 𝑣 the resin volume, and 𝑞 the adsorbed 

protein amount per sorbent volume.  

The Gibbs free energy, ∆𝐺, at any moment of the association/dissociation process is 

given by:  

∆𝐺 = ∆𝐺0 + 𝑅𝑇𝑙𝑛𝑄      (6) 

where ∆𝐺0 represents the standard Gibbs energy, 𝑅 is the universal gas constant (8.314 J.K-

1.mol-1), 𝑇 is the temperature in Kelvin, and 𝑄 the reaction quotient defined as the ratio 

between the complex protein-ligand concentration and the product of the protein 

concentration and ligand concentration. When the system is in equilibrium, 𝑄 can be defined 

as 𝐾, the reaction equilibrium constant, and ∆𝐺 = 0, giving: 

∆𝐺0 = −𝑅𝑇𝑙𝑛𝐾      (7) 

The change in the standard Gibbs free energy of an adsorptive process that can be 

reversible is given by: 

∆𝐺0 = ∆𝐻0 − 𝑇∆𝑆0      (8) 

where ∆𝐻0 represents the change in standard enthalpy (J.mol-1), and ∆𝑆0 the change in 

standard entropy (J.K-1.mol-1) of the process. Combining Eqs. (7) and (8), it is possible to 

calculate the change in standard entropy for the reaction. 𝐾 can be extrapolated from 𝑞/𝐶 for 

infinite dilution, according to Eq. (9): 

𝐾 = lim
𝐶→0

𝑞

𝐶
       (9) 

Figures II.2.5A and II.2.5B show the antibody adsorption enthalpy for a range of surface 

concentration. The enthalpy values were calculated integrating the heat signals from Figures 

II.2.3 and II.2.4 dividing by the respective molar amount of adsorbed antibody. Blue crosses and 

green full circles represent the enthalpy derived from the first and second peak respectively, 

and the red full triangles the net enthalpy of the whole adsorptive interaction.  
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Figure II.2.5 - Enthalpy of adsorption of antibody over surface concentration on a) MabSelect SuRe and b) TOYOPEARL 

AF-rProtein A HC. Enthalpy values were determined by integrating the heat profile curves from Figs. II.2.3 and II.2.4 

and normalized for the adsorbed moles of antibody. The enthalpy associated to the first peak is shown in blue full 

circles, the enthalpy derived from the second peak in red crosses, and the overall adsorption enthalpy in full black 

triangles.  

From Eqs. (7) and (9) the Gibbs free energy was determined for infinite dilution, with 

∆𝐺0 = -22.8 kJ.mol-1 for MabSelect SuRe and ∆𝐺0= -24.9 kJ.mol-1 for TOYOPEARL AF-rProtein A 

HC. The two ∆𝐺0 values are highly similar because at infinite dilution ∆𝐺0 values translate only 

the specific interaction between the antibody and the Protein A, the primary event present in 

both resins.  

It can be seen that both resins show a similar trend in the adsorption enthalpy, with 

greater enthalpy values at the very low linear range of the isotherm, with TOYOPEARL AF-

rProtein A HC showing higher exothermic adsorption enthalpy values than MabSelect SuRe. If 

every binding site would be energetically equivalent, if the structure and the orientation of the 

adsorbed molecules would be independent of surface coverage, and if the adsorbed protein 

molecules would not interact laterally, the molar adsorption enthalpy would be invariant 

throughout the entire surface coverage (Norde, 1992). Given the fact that these concentrations 

are in the linear range of the isotherm, lateral interactions between adsorbed species are not 

likely to be prominent. Therefore, the heterogenous binding nature of the resins has to be a 

key element for the greater molar enthalpy values at low concentration. Conformational 

changes of the antibody upon adsorption are also probable at low surface coverage, as found 

by Beyer and Jungbauer, but they depend on the hydrophobicity of the ligands (Beyer & 

Jungbauer, 2018). TOYOPEARL AF-rProtein A HC has a greater enthalpy change possibly because 

of the greater number of binding possibilities when compared to MabSelect SuRe. After a certain 

surface concentration, but still in the linear range of the isotherm, the associated molar 

enthalpy tends to a stabilization. Therefore, the overall process enthalpy converges towards 

an energetic equilibrium.  
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2.4. Conclusions 

The goal of this work was to understand antibody binding to Protein A resins in terms 

of its associated energy and kinetics. We showed the intrinsic link between surface 

concentration of biomolecules on chromatography resins and the necessary energy for 

adsorption. It seemed clear that the interaction between antibody and Protein A ligands upon 

loading is highly favorable at the studied low equilibrium concentrations. The antibody 

adsorption process can be subdivided into two sub-steps: a first moment of interaction and 

binding to a highly energetic Protein A binding site, and another moment of a rearrangement 

of the bound molecule in the ligand. These two sub-steps are energetically significant and 

evolve towards energy stabilization with surface concentration. At low equilibrium times, the 

antibody binding follows the shrinking core model, but when enough time is given to the 

adsorbed molecules to be in equilibrium with the unbound the model becomes less accurate 

because of the heterogeneity binding nature of MabSelect SuRe. Microcalorimetric data is a 

valuable addition for the uptake rate studies, suggesting also a heterogenous nature of the 

binding sites on the surface of this type of affinity resins.  
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Abstract 

Staphylococcal Protein A chromatography is an established core technology for 

monoclonal antibody purification and capture in downstream processing. MabSelect SuRe 

involves a tetrameric chain of a recombinant form of the B domain of staphylococcal Protein 

A, called Z domain, however little is known about the stoichiometry, binding orientation, or 

preferred binding. We analyzed small-angle X-ray scattering data of the antibody–Protein A 

complex immobilized in an industrial highly relevant chromatographic resin at different 

antibody concentrations. From scattering data, we computed the normalized radial density 

distributions. We designed 3D models with protein data bank crystallographic structures of an 

IgG1 (the isoform of trastuzumab, used here) (Protein Data Bank: 1HZH) and the staphylococcal 

Protein A B-domain (the native form of the recombinant structure contained in MabSelect SuRe 

resin) (Protein Data Bank: 1BDD). We computed different binding conformations for different 

antibody to Protein A stoichiometries (1:1, 2:1, and 3:1) and compared the normalized radial 

density distributions computed from 3D models with those obtained from experimental data. 

In the linear range of the isotherm we favor a 1:1 ratio, with the antibody binding to the outer 

domains in the Protein A chain at very low and at high concentrations. In the saturation region, 

a 2:1 ratio is more likely to occur. A 3:1 stoichiometry is excluded because of steric effects. 

Keywords 

Monoclonal antibodies, staphylococcal Protein A, affinity chromatography, small-angle X-ray 

scattering, radial density distribution, pearl necklace model 
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3.1. Introduction 

Staphylococcal Protein A chromatography is the capture step of choice in the 

manufacturing of monoclonal antibodies because of its high selectivity and robustness (Hahn et 

al. 2005, 2006; Shukla et al. 2007). Staphylococcus aureus Protein A is a cell wall 56-kDa protein 

with five homologous binding domains, designated as E, D, A, B, and C, in order from the N-

terminal (Ghose et al. 2005; Graille et al. 2000; Hober, Nord, & Linhult 2007; Starovasnik et al. 

1999; Uhlén et al. 1984). MabSelect SuRe (GE Healthcare) is one of the most widely used Protein 

A resins. It has a tetrameric chain of synthetically engineered Z-domains, which are derived 

from the B-domain with point mutations to improve alkaline stability (Ghose et al. 2005).  

Protein A binding to immunoglobulins G (IgG) occurs through the hydrophobic region 

between the CH2 and CH3 domains of the Fc, known as consensus binding site (Deisenhofer 1981; 

DeLano et al. 2000; Gagnon et al. 2015; Salvalaglio et al. 2009; Shukla et al. 2007). Despite 

having physical-chemical properties that make it prone to establishing hydrogen bonds and 

electrostatic interactions, it is because of its exposed hydrophobic moiety that the consensus 

binding site shows preferential binding with Protein A ligands (Salvalaglio et al. 2009). 

Regardless of the abundant information regarding Fc recognition by Protein A, antibody 

structural rearrangement upon adsorption to Protein A ligands and the associated stoichiometry 

are not fully understood. However, some authors have reported the possibility of multiple 

binding to Protein A chains, but with Protein A in solution (Ghose, Hubbard, & Cramer 2007). 

Others have also addressed this issue, reporting the possible antibody binding orientations of 

an IgG4 to immobilized Protein A in silica (Mazzer et al. 2017).  

Molecular models have been applied to study antibody form and flexibility in aqueous 

solutions (Brandt, Patapoff, & Aragon 2010; Sandin et al. 2004) for a better understanding of 

antibody aggregate adsorption to Protein A resins (Yu et al. 2016) and to characterize the nature 

of antibody binding to Protein A (Salvalaglio et al. 2009; Zamolo et al. 2008). Cavallotti and co-

workers (Salvalaglio et al. 2009; Zamolo et al. 2008) have described which regions and amino 

acids play a major role in the interaction with chromatography matrices based on the crystal 

structure of CH2 and CH3 of an IgG1 coupled with fragment B of Protein A determined by 

Deisenhofer (Deisenhofer 1981) (PDB: 1FC2). However, despite this high economic value, a real 

3D structure of the antibody-staphylococcal Protein A complex based on experimental data at 

different antibody loadings has not been elucidated. The current state-of-the art on antibody-

Protein A conformations is solely attributed to computational simulations (Busini et al. 2006; 

Salvalaglio et al. 2009).  

Here we present a methodology capable to experimentally assess normalized radial 

densities of antibody-Protein A conformations at a resin surface by small angle X-ray scattering 

(SAXS). SAXS provides information at the structural level of particle systems of the colloidal 

size (to thousands of angstroms, Å), such as antibodies (Boldon, Laliberte, & Liu 2015; Glatter 

and Kratky 1982) SAXS is based on the concept that a particle of relatively greater size than 

the X-ray wavelength will scatter the incident X-ray. Based on the scattering intensity, it is 
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possible to assess form, shape, and size of the scatterer. Therefore, it would be possible to 

establish an approximation of the “spatial extension of the particle” (Glatter and Kratky 1982). 

SAXS can provide information from a dynamic system and take into account molecular flexibility 

and different configurations (Boldon, Laliberte, & Liu 2015).  

The aim of our work was to investigate the adsorption of a monoclonal antibody to 

MabSelect SuRe. More concisely, we sought to obtain an overview of the structural 

rearrangement of the antibodies in the tetrameric Protein A and to estimate the evolution of 

surface layer thickness with antibody concentration, as well as the antibody–ligand 

stoichiometry. We compared the antibody-Protein A complex radial densities provided by SAXS 

with theoretical configurations (Protein A B domain from the crystal structure 1BDD and the 

antibody from the crystal structure 1HZH from Protein Data Bank (PDB)) and spatial 

rearrangement of antibodies and staphylococcal Protein A ligands using a molecular model 

approach. We implemented this model to simulate different binding orientations of a 

crystallographic structure of an IgG1 to a tetrameric B-domain Protein A chain attached to an 

agarose structure to mimic the experimental system of a monoclonal antibody to MabSelect 

SuRe. In the present work, the methodology is explored on this very specific system of high 

industrial relevance, but it is also applicable to a broad range of protein-surface adsorption 

systems and can improve the understanding of protein binding in those systems. 

3.2. Materials and Methods 

3.2.1. Materials 

Trastuzumab was purchased from Roche (Basel, Switzerland) (Lot. B1050B07). All the 

following reagents were purchased from MilliporeSigma (Burlington, MA, USA): sodium 

phosphate dibasic (Na2HPO.2H2O) (Lot. K450726804049), sodium dihydrogen phosphate 

(NaH2PO.2H2O) (Lot. K93717142706), glycine (C2H5NO2) (Lot. VP614601407), and sodium 

chloride (NaCl) (Lot. K48705904713). MabSelect SuRe resin was purchased from GE Healthcare 

(Uppsala, Sweden) (Lot. 10247535). 

3.2.2. Adsorption isotherms 

The antibody solutions were prepared in 0.02 M phosphate buffer with 0.15 M sodium 

chloride at pH 7.4 in a range from 0.01 to 10 mg/mL. A volume of 0.025 mL of resin was added 

to the antibody solution with a total volume of 0.25 mL. The samples were incubated for 24 h 

in a thermomixer (ThermoScientific) at 20°C and 900 rpm. After incubation the bulk 

concentration was measured at Abs 280 nm using a UV plate reader (Tecan). 
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3.2.3. Scanning electron microscopy 

The MabSelect SuRe beads were first submerged in a cryoprotectant 2.3M sucrose 

solution. The sample was then frozen with liquid nitrogen and the beads cut into slices 30 µm 

thick using a tungsten carbide knife in a MT-990 Motorized Precision Microtome (RMC 

Boeckeler). The bead slices were dehydrated with ethanol series and then dried with CO2 in a 

Critical Point Dryer Leica EM CPD030. For the visualization, we used a Scanning Electron 

Microscope Quanta™ 250 FEG, and the dried slices were placed on an aluminum slab and coated 

with a gold layer. 

3.2.4. SAXS 

The SAXS measurements were performed in the beamlines BM26B (Portale et al. 2013) 

and BM29 (Pernot et al. 2013) at the European Synchrotron Radiation Facility, Grenoble, 

France. The antibody sample preparation followed the same procedure as for the adsorption 

isotherm measurements. After the incubation, the solution was resuspended, and 100 µL of 

incubated sample was loaded into a quartz capillary. The capillary was then placed aligned to 

the beam. The scattering images were collected in 10 frames at 1-s exposure each using Pilatus 

1M detector at 12keV (λ=1.033Å).  

3.3. Modeling 

SAXS is a powerful and effective technique for determining molecule shapes and sizes 

at the nanoscale length. This approach measures the scattering intensity 𝐼(𝑄) function of a 

scattering vector 𝑄 resulting from a scattering angle 2𝜃, at a given wavelength λ, where 𝑄 =

4𝜋 sin 𝜃 /𝜆. 𝑄 values are correlated to real-space distances 𝑑 with 𝑑 = 2𝜋/𝑄 (Glatter and Kratky 

1982; Hayter and Penfold 1983; Zhang et al. 2007). 

3.3.1. A fractal pearl necklace model 

The antibody binds to Protein A ligands and a complex is formed. This complex can be 

described by its characteristic pair density distribution. The Fourier transform of the pair 

density distribution gives the form factor, 𝑃(𝑄), which is the scattering intensity of the complex 

according to its characteristics, such as shape, size, or concentration. Additionally, pair density 

distributions of complexes randomly arranged in the fractal network of the agarose resin 

contribute to the structure factor, 𝑆(𝑄), and can be described by 𝑝𝑆(𝑟) ∝ 𝑟𝐷𝑓exp(−𝜅𝑟). Under 

the assumptions of the scattering theory, the scattering intensity of the whole system is not 

more than the product of the form and structure factor: 𝐼(𝑄) = 𝑃(𝑄)𝑆(𝑄). The scattering 

intensity curve is obtained by: 

𝐼(𝑄) = ℱ(𝑝(𝑟))[𝑄] = ∫
0

∞
 𝑑𝑟 𝑝𝑃(r) 𝐽1 2⁄ (𝑄𝑟)/(𝑄𝑟)

1 2⁄  𝑄−(𝐷𝑓+1)    (1) 
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where 𝐽1 2⁄  is a Bessel function of the first kind of order ½. The form factor is the Fourier 

transform of the radial density distribution: 𝑃(𝑄) = ℱ (𝑝𝑝(𝑟)) = ∫
0

∞
𝑑𝑟 𝑝𝑝(r) 𝐽1 2⁄ (𝑄r)/(𝑄𝑟)1 2⁄ . 

The structure factor is the Fourier transform of the pair density distribution of the fractal 

network: 𝑆(𝑄) = ℱ(𝑝𝑆(𝑟)) ∝ 𝑄−(𝐷𝑓+1). 

It is challenging to normalize any scattering intensity. The scattering intensity depends 

on the chemical contrast of each entity and may decrease despite the increasing number of 

scatterers. We shift the normalization issue to real space. We introduce the normalized pair 

density distribution of spherical hulls 𝑝𝑝(𝑟, 𝑅) ∝ r/𝑅2 H(2 R − r) and hereby enforce radial 

symmetry. It is an essential step that solves the normalization problem in a very elegant way. 

We define our working equation as: 

𝐼(𝑄)𝑄(𝐷𝑓+1) ∝ ∫
0

∞
𝑑𝑅 4𝜋 𝑅2 𝑝′(R)|𝐽1/2(𝑄R)/(𝑄𝑅)

1 2⁄ |2    (2) 

The variable 𝑅 is the measured distance from the scattering site relative to the 

backbone of the agarose. This mathematical model resembles a fractal folded pearl necklace, 

made from pearls with an average radial density distribution of matter, 𝑝′(R).  

3.3.2. The fractal network of the resin imposes a fractal structure factor 

In the present case, we monitor antibody adsorption at high concentrations. Thus, the 

antibody concentration in the proximity of the surface is high. This is the reason why the infinite 

dilution argument no longer holds true. We have to take into account complex-complex pair 

density distributions. It seems appropriate to characterize their structure by the fractal pair 

density distribution: 𝑝𝑆(𝑟) ∝ 𝑟𝐷𝑓exp(−𝜅𝑟), with 𝜅 as the screening length. Then, the structure 

factor of protein ligand complexes resembles:  

𝑆(𝑄) = ℱ(𝑝𝑆(𝑟))[𝑄] = ∫
0

∞
𝑝𝑆(𝑟)𝐽1/2(𝑄𝑟)/(𝑄𝑟)

1/2    (3) 

It is a sin-transform of the fractal pair density distribution: 

ℱ𝐷=3(𝑝(𝑟))[𝑄] = 𝐶𝐷𝑓/(𝜅
2 + 𝑄2)(𝐷𝑓+1)/2sin ((𝐷𝑓 + 1)tan−1 (

𝑄

𝜅
))   (4) 

where 𝐶𝐷𝑓 is a proportional constant of the gamma function Γ: 𝐶𝐷𝑓 = √
2

𝜋

Γ(𝐷𝑓+2)

𝜅
𝐷𝑓+1𝐷𝑓+1

. In the case 

of infinitely small 𝜅, it simplifies to: ℱ(𝑝(𝑟))[𝑄] ∝ 1/𝑄𝐷𝑓+1.  

3.3.3. Bi-Langmuir adsorption 

MabSelect SuRe is known for its tetrameric chain of B-domain–derived ligands. These 

four theoretical antibody binding domains may be a source of energetic heterogeneity. 
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Therefore, the Langmuir isotherm may incorrectly predict adsorption for this system. High 

energy adsorption sites become saturated (i.e., are occupied first) at low concentrations, while 

at high concentrations, molecules adsorb to high and low energy sites (Gritti & Guiochon 2010). 

The system is better described by a bi-Langmuir model, which takes into account this possible 

heterogeneous adsorption as it is based on the coexistence of two (or more) independent non-

cooperative sites (Bellot & Condoret 1993; Gritti & Guiochon 2005). The amount of adsorbed 

protein 𝑞 in equilibrium with equilibrium solution concentration 𝐶 is modeled by:  

𝑞 = ∑
𝑖=1

2

𝑞𝑖,𝑚𝑏𝑖𝐶/(1 + 𝑏𝑖𝐶)      (5) 

where 𝑞𝑖,𝑚 gives the maximum adsorbed capacity at any site, and 𝑏𝑖 values are the sample 

equilibrium constants between the bulk solution and the multiple adsorption sites and 𝑏𝑖 > 0. 

3.4. Results and Discussion 

The scope of this work is to understand the rearrangement and orientation of antibodies 

on MabSelect SuRe. SAXS is the fingerprint technique used here, and antibody–Protein A 

interaction data interpretation was done in terms of radial density distribution. We computed 

hypothetical 3D models and thereof radial density distributions. We compared the results to 

radial density distributions we computed from experimental scattering data. We found favored 

binding orientations and stoichiometry. Scanning electron microscopy (SEM) imaging was 

employed to validate the determination of the structure factor of a defined fractal network 

composed by the resin’s cross-linked agarose. 

3.4.1. Scattering profiles 

The SAXS data were analyzed according to the theory drafted in the theory section and 

outlined in Figure II.3.1. In the present work, we assumed that the scattering intensities could 

be split into a product of form and structure factors. This simplification was made because of 

the different scales of the radial density distribution of both the antibody Protein A–ligand 

complex and the distribution of these particular complexes in the resin. The form factor, 𝑃(𝑄), 

computed from the radial density distribution, mimics the statistics of the distances measured 

within the antibody–Protein A ligand complex, with a typical distribution as depicted in Figure 

II.3.1A. The red disk is a schematic representation of the Protein A ligand; the larger green disk 

mimics the immobilized antibody. The structure factor, 𝑆(𝑄), takes into account the 

distribution of these complexes throughout the resin network, with a possible arrangement 

shown in red in Figure II.3.1B. We assume a random distribution of ligands, and it is the 

particular structure of the resin that imposes the characteristic shape of the pair density 

distribution from that the antibody–ligand complex structure factor is computed.  
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Figure II.3.1 - Schematic representation of the antibody (green disks) complexed with the Protein A ligand (red disks), 

their distribution across the resin network (grey rectangles), and the respective pair density distributions for form and 

structure factors. A) The green line is the hypothetical pair density distribution 𝑝𝑝(r) of the antibody in reference to 

the ligand; B) the hypothetical pair density distribution, 𝑝𝑠(r), of the agarose is presented by the red line. The 

hypothetical 𝑝𝑝(r) is superimposed by a green line for scale. The slope of the tangent at small r to 𝑝𝑠(r) is the fractal 

dimension 𝐷 of the agarose network.  

3.4.2. SEM 

Parallel to SAXS data, we used SEM to visualize the agarose beads of MabSelect SuRe. 

From the SEM image, we could computationally generate the structure factor of the fractal 

network and compare it with the obtained value from SAXS. 

Figure II.3.2A shows a SEM image of MabSelect SuRe resin’s network. The magnification 

indicates a typical diameter of approx. 34 nm. The SEM image was binarized, resulting in Figure 

II.3.2B, where grey areas indicate the agarose network and white areas mark the pores. From 

the binarized image, we chose 10,000 sites randomly distributed in two zones. First, we 

constrained the site choices to the grey areas, i.e., the agarose network, and displayed them 

with red dots in Figure II.3.2C. Then, we randomly chose pixels from both the grey and the 

white areas (random noise over the whole picture), marking them with blue dots in Figure 

II.3.2D; these are considered white noise. Figure II.3.2E is a magnified overlay of Figure II.3.2C 

and D. From Figure II.3.2E, we computed the normalized pair density distribution to the same 

amount of relative distances from the red and blue sites and plotted them in Figure II.3.2F. 

The pair density distribution can be estimated with 𝑝𝑆(𝑟) = 𝑟𝐷𝑓. Therefore, from these pair 

density distributions, we computed the dimensionality 𝐷𝑓 of the system. Whereas the white 

noise data gave a value 𝐷𝑓 = 1.0, the fractal dimension of the agarose network returned a value 

𝐷𝑓 = 0.74, both represented as the slope of the fit curve to the data in Figure II.3.2G. The pair 

density fluctuations were determined with Δ𝑝𝑆(𝑟) = 𝑟0.74 − 𝑟1.0. It is an approach to estimate 

the average pore form and average pore sizes at small scale. Figure II.3.2H shows the pair 

density fluctuations of the MabSelect SuRe resin as assessed by the SEM image, with the typical 

small pores close to 80 nm in diameter (Pabst, Thai, & Hunter 2018). 
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Figure II.3.2 - A) SEM image of MabSelect SuRe resin. The red scale bar indicates a 500 nm distance. The insert is a 

magnification of a typical agarose strand. Strands are up to 34 nm in diameter. B) Binarized SEM image. The pores are 

identified as white areas and the agarose as grey. C) Random choice of 10000 pixels distributed across the agarose 

fractal network (red); D) random choice of 10000 pixels of SEM image (agarose fractal network and the pores – white 

noise) (blue); E) Magnification of the overlay of C) and D), where the red dots represent the random distribution of the 

agarose, and the blue dots the random distribution of the agarose and the pores; F) pair density distribution of both 

the fractal network (red) and white noise (blue); G) determination of the dimension of the fractal network (D = 0.74) 

and white noise (D = 1.02); H) subtraction of the pair density distribution of the fractal network and white noise: pore 

size distribution, with the largest being 80 nm. 

3.4.3. Antibody solution  

To appropriately describe the adsorption mechanism, it is essential to evaluate the 

antibody state of aggregation at the used solution concentrations. The form factor of the 

antibody was computed from measurements of antibody in solutions at 8 mg/mL, 16 mg/mL, 

and 30 mg/mL. Figure II.3.3A shows in the insert the scattering intensity curves from the 

antibody in solution samples and the respective pair density distribution, as well as the pair 

density distribution of two antibody crystallographic structures (PDB: 1IGT – IgG2, and PDB: 

1HZH – IgG1) to complement SAXS data evaluation.  
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Figure II.3.3 - A) Normalized scattering intensity (insert) from antibody in solution at 8 mg/mL (green), 16 mg/mL 

(red), and 30 mg/mL (blue). The respective pair density distributions plotted with the pair density distribution from 

the crystallographic structures 1HZH and 1IGT; B) overlay of the pair density distribution from the crystallographic 

structures 1HZH and 1IGT with the pair density distribution of the subtracted scattering intensities from the antibody 

in solution at 16 mg/mL and 8 mg/mL. We corrected the scattering data of 36 mg/mL by a factor to 𝑆(𝑄) = 𝑄−0.3. 

The pair density distributions from the crystallographic structures were computed from 

the centroids of the amino acids. They present maxima at 3 and 7 nm values that in literature 

are associated to the hydrodynamic radius of an IgG1 and would match well with the 

experimental data for the antibody in solution (Gagnon et al. 2015). Pair densities can be found 

up to relative distances of 12 nm. Indeed, this value is an estimation of the hydrodynamic 

diameter of the antibody in solution considering all the associated intrinsic flexibility (Gagnon 

et al. 2015; Gagnon & Nian 2016). 

The relative pair density 𝑝𝑃(𝑟) from the experimental samples show, however, a tailing 

profile up to relative distances larger than the antibody size. This behavior may be 

characteristic of pair-wise interactions between molecules in solution that are near each other 

and consequently these additional relative distances contribute to the scattering signal. It 

would be as well valid to accuse a certain biologic flexibility of the antibody molecules in 

solution (Boldon, Laliberte, & Liu 2015), opposed to their rigid structures in crystals. Indeed, 

one of the advantages of SAXS over crystallographic data in terms of distance assessment 

measurements relies on the fact that the scattering intensity of a particle is measured in 

solution. Both interpretations, the pair wise interactions of antibody molecules and the 

flexibility of a monomer, are attributed similarly to the scattering intensity. Both contributions 

can be addressed by a factor ∝ 𝑄𝐷. The physical interpretation of the exponent 𝐷 differs 

though. First, in the case of pair wise interactions, it would be the parameter of an interaction 

potential. Second, it would be interpreted as a measure of size distributions of the protein 

taking into account the intrinsic biological flexibility of the monomer. Both interpretations 

impacted the possible adsorption process.  

We suggest a different evaluation. To assess the pair density distributions of the 

monomeric form, we subtracted the appropriately normalized pair densities from the sample 
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at solution concentration 8 mg/mL from that at solution concentration 16 mg/mL. The signal 

is plotted in Figure II.3.3B along with the pair density from the crystallographic structures. The 

results match the crystallographic data and we may argue that up to 16 mg/mL protein solutions 

are monomeric. Consequently, we anticipate, that antibody monomers adsorb and that the 

tailings in pair densities are due to parasitic background. For 30 mg/mL we indeed do monitor 

a factor of  𝑄−0.3. However, 16 mg/mL is well above the antibody starting concentration at 

which we perform our measurements.  

3.4.4. The structure factor 

The scattering intensity of the antibody adsorbed to the Protein A ligand at the resin 

surface was measured and plotted in Figure II.3.4A. The black curve corresponds to the 

MabSelect SuRe resin scattering intensity. Brighter red curves correspond to scattering intensity 

of MabSelect SuRe resins that have been incubated with a range of antibody concentrations.  

 

 

Figure II.3.4 - A) The scattering intensity, 𝑷(𝑸), given as a function of the scattering vector, 𝑸 [1/nm], from antibody 

bound to MabSelect SuRe 0-80 mg/mL resin by gray disks. Fits are represented in black and evolve towards red with 

increasing antibody concentration. Insert shows the raw experimental datasets. The fractal dimension (D = 0.8) is 

determined from the slope of scattering data from blank resin at low Q (red dashed line); B) Radial density distribution 

computed from the scattering intensity plots from blank resin and antibody bound to MabSelect SuRe 0–80 mg/mL resin. 

The resin signal is represented in black and evolves towards red with increasing surface concentration. 

The structure factor dimension can be determined by calculating the absolute 

tangential slope to the low 𝑄 range of the scattering intensity of the resin. We found 𝐷𝑓 = 0.8, 

which is in good agreement with the calculated value from the SEM image (𝐷𝑓 = 0.74). The 

computed fractal dimension from the fractal network of the SEM image matches the estimated 

fractal dimension we found from the low 𝑄 range of the experimental scattering intensities 

because both are 2D projections. One is an Abel transformation of the 3D pair density 

distribution and the other a binarized microscopy image of a 2D cut of the resin.  
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To assess the form factor contribution of the antibody–ligand complex distributed 

across the resin network at different equilibrium concentrations, we corrected the 

experimental scattering intensity 𝐼(𝑄) by the fractal structure factor 𝑆(𝑄) ∝ 1/𝑄1.8. The 

resulting 𝑃(𝑄) is seen in Figure II.3.4A, where the experimental data are represented with grey 

disks and the curve fits with dashed lines. The signal fluctuations are visible along the different 

𝑄 ranges, a sign of different surface coverage by the antibody as a function of its bulk 

concentration.  

3.4.5. The appropriate normalization of radial densities 

A standard approach for background correction was to subtract the scattering intensity 

of the antibody-free resin sample from all of the complement data by 𝐼𝑐(𝑄) = 𝐼(𝑄) − 𝑐𝐼𝑏(𝑄) and 

then perform the inverse Fourier transform of the remaining scattering intensity: 𝑝(𝑟) =

ℱ−1(𝐼𝑐(𝑄)). However, this approach is biased because of the adjustment of factor 𝑐 by matching 

both scattering curves at high 𝑄 range.  

We propose a modified approach for a more realistic background correction. First, we 

corrected all scattering intensities by the structure factor, 𝑆(𝑄), and then computed the radial 

density distributions: 𝑝(𝑟𝑐) = ℱ−1(𝑃(𝑄)). Figure II.3.4B shows the radial density distributions, 

𝑝(𝑟𝑐), from the scattering intensity profiles of antibody adsorption to MabSelect SuRe at the 

concentrations displayed in Figure II.3.4A. As in Figure II.3.4A, the curves go from black to red 

with increasing antibody concentration, with the black curve indicating the radial density 

distribution of the antibody-free resin sample. The resin signal (black line) has a maximum at 

5-6 nm, which can be interpreted as the minimum radius of an agarose strand. We assume that 

the antibody molecules bind to the Protein A ligands and do not penetrate the cross-linked 

agarose strand. Therefore, the radial density distributions for every antibody concentration 

needs to match until 6 nm, resulting in the normalization of the radial density distributions.  

3.4.6. Background corrected radial density distribution 

To background-correct the normalized radial density distributions we subtracted the 

normalized radial density distribution of the resin from the normalized radial density 

distribution of the signals from samples with antibody bound to Protein A. The normalized and 

background corrected pair density distributions are shown in Figure II.3.5A. It shows the radial 

density distribution for different antibody concentrations. The most distinct feature is the 

increasing magnitudes with the increasing antibody concentration. The net area of the profiles 

resemble the surface excess, given by Γ.  
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Figure II.3.5 - A) Background-corrected radial density distributions, 𝑝′(R). B) Surface excess computed from the 

normalized areas from 𝑅2 𝑝′(R) as a function of antibody equilibrium concentration (red disks). Adsorbed amount 

derived from the equilibrium state of the samples before X-ray exposure (blue disks). The insert shows the experimental 

determined adsorption isotherm of antibody adsorption to MabSelect SuRe (blue disks). 

3.4.7. Assessing the surface excess 

If plotted with respect to the equilibrium bulk concentration of the antibody, the net 

area of the normalized radial density distribution profiles give a surface excess adsorption 

isotherm. The normalization of the isotherm was done in respect to the value at the highest 

concentration (Figure II.3.5B). The normalized surface excess values computed from the radial 

density distributions are shown in red, and the normalized isotherm derived from the 

equilibrium state of the samples before X-ray exposure is given in blue. This match supports 

the approach of how to assess radial density distributions from scattering intensity data.  

Figure II.3.5B also shows an insert with the experimentally determined adsorption 

isotherm. It follows the favorable binding rectangular profile characteristic of Protein A resins 

in the antibody uptake. At equilibrium, the data show a second plateau to greater qmax. The 

data were fitted with a bi-Langmuir model, as described in the Theory section. Results favor a 

multi-point attachment due to heterogeneous binding sites with a weaker binding of a second 

antibody molecule to the Protein A ligand (Bellot & Condoret 1993). But how in particular does 

it bind and how is the form of the antibody-Protein A complex affected? 

3.4.8. Form of antibody-Protein A 3D complex by molecular simulation 

MabSelect SuRe is a tetrameric Protein A chain, thus multipoint attachment is 

theoretically possible (Gagnon & Nian 2016; Ghose, Hubbard, & Cramer 2007; Mazzer et al. 

2017). Focused research is lacking. We have addressed it on basis of the normalized and 

background-corrected radial pair densities at different antibody bulk concentrations.   
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3.4.8.1. Antibody–Protein A–agarose complex 

To visualize SAXS data, and to ease or support their interpretation, we perform model 

simulations. They are a powerful tool to help the interpretation of the nature of the present. 

In this work, we modeled the antibody–Protein A complex form by a rigid body approach. 

As already mentioned, MabSelect SuRe Protein A chain is a recombinant polymer of four 

units of staphylococcal Protein A B-domain, called the Z-domain. This Z-domain is engineered 

through a point mutation of the B-domain to give the ligand improved alkaline stability (Ghose 

et al. 2005). To mimic as closely as possible the chromatographic system involved in this work, 

we used the crystallographic structure of Protein A B-domain (PDB: 1BDD) and built a four-

fragment chain.  

The model used to represent MabSelect SuRe agarose was kindly provided by Carlo 

Cavallotti from his group’s publication (Salvalaglio et al. 2009), because they have recently 

employed such a model to predict which amino acid residues contribute the most to IgG binding 

to Protein A. The construct of this agarose model is described in detail in Ref. (Busini et al. 

2006). The tetrameric Protein A chain was covalently linked to the agarose with an ester bond, 

and no spacer was introduced. 

The final part of the model were the antibodies. We used the crystal structure of an 

IgG1 (PDB: 1HZH) and bound them through the consensus binding site located between the CH2 

and CH3 Fc domains to the Fc binding site of one of Protein A B-domains. Deisenhofer has 

determined a complex of one half of the antibody Fc fragment and one Protein A B-domain 

(PDB: 1FC2) (Deisenhofer 1981). Our model matched Deisenhofer’s proposed structure. 

3.4.8.2. Random sampling 

After designing the model complex, we ran simulations. We employed a rigid body 

random walk model in which we did not enable flexibility of any of the different species. All 

system components were considered rigid entities. Different orientations of the Protein A 

fragments and the antibodies were allowed. Each Protein A fragment is considered as a single-

point attachment domain to the antibody. Therefore, in the whole chain there are four 

potential binding sites; one per fragment.  

The first set of molecular simulations regarded the binding of one antibody molecule 

to the Protein A chain. We simulated a library of at least 10,000 potential forms of antibody in 

complex with the Protein A tetramer ligands. From the conformations, we assessed the 

respective radial density distributions. Figure II.3.6A shows the rigid body models of a selected 

conformation and Figure II.3.6B shows the radial density distributions of 1:1 antibody to Protein 

A chain stoichiometry.  
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Figure II.3.6 - Rigid body models and radial density distributions of 1:1 antibody to Protein A stoichiometry. A) Selected 

configuration of the complex; the grey bead model indicates the resin; the red bead models mimic the MabSelect SuRe 

Protein A tetrameric chain; the green bead model marks the antibody. B) Radial density distributions computed from 

SAXS data (dark red to bright red lines) are compared to radial density distributions (blue line) computed from random 

walk models. The data enumerated 1-9 correspond to different antibody bulk concentrations, with the correspondence 

given in the text. 

With increasing equilibrium concentration (we number them from 1 to 9 in Figure 

II.3.6B), the best results for 1:1 antibody–Protein A stoichiometry show a binding preference 

for the: 4th (solution 1: C = 0.01 mg/mL; q = 25.8 mg/mL resin ),  3rd (solution 2: C = 0.01 

mg/mL; q = 25.8 mg/mL resin), 1st (solution 3: C = 0.01 mg/mL; q = 25.8 mg/mL resin), 1st 

(solution 4: C = 0.01 mg/mL; q = 38.7 mg/mL resin), 3rd (solution 5: C = 0.1 mg/mL; q = 64.5 

mg/mL resin), 3rd (solution 6: C = 1.2 mg/mL; q = 80.0 mg/mL resin), 3rd (solution 7: C = 2.7 

mg/mL; q = 80.0 mg/mL resin), 4th (solution 8: C = 4.7 mg/mL; q = 80.0 mg/mL resin), and 3rd 

(solution 9: C = 5.6 mg/mL; q = 80.0 mg/mL resin) domain counting from the agarose surface. 

The obtained preferential binding is speculative as it does not take into account any energy 

minimization. Simulations indicate that at low bulk concentrations and very low surface 

concentrations (solutions 1 and 2) the antibody binds to the outermost ligands (4th and 3rd) but 

finds itself in the proximity of the first ligand. Engineered Protein A in commercial media has 

a tentacle form and the chain can be extended in the surface (Gagnon & Nian 2016). We have 

implemented the possibility for the Protein A chain for a loop-like conformation (see its form 

in Figures II.3.6, II.3.7, or II.3.8). Within our random walk model the Protein A chain is flexible 

and a transfer from the outermost to the innermost ligand seems feasible. Biologically, antibody 

dual-site binding to Protein A is possible (Gagnon & Nian 2016). With increasing surface 

concentration but still at low equilibrium concentration (solutions 3 and 4), the first ligand is 

the most favored. At elevated concentrations (solutions 5-9) the outermost become favored 

again. At these concentrations the radial densities of the simulated configurations lack the 



 116 

tailing we find in the experimental data, as seen in Figure II.3.6B. Therefore, a second antibody 

molecule to recover this particular tailing is needed.   

Following a 1:1 stoichiometry, we attached two antibody molecules to every possible 

combination of B fragments and allowed every possible orientation. Figure II.3.7A shows 

possible orientations of two antibody molecules bound to the inner and outermost fragments in 

the Protein A. Again, the radial density distributions of these models were determined and 

scanned for similarity to radial densities computed from the experimental SAXS data. Figure 

II.3.7B shows the radial density distributions of this 2:1 stoichiometry.  

 

 

Figure II.3.7 - Rigid body models and radial density distributions of 2:1 antibody Protein A stoichiometry. A) Selected 

configuration of the complex; the grey bead model indicates the resin; the red bead models mimic the MabSelect SuRe 

Protein A tetrameric chain; the green bead model marks the antibody. B) Radial density distributions computed from 

SAXS data (dark red to bright red lines) are compared to radial density distributions (blue line) computed from random 

walk models. The data enumerated 1-9 correspond to different antibody bulk concentrations, with the correspondence 

given in the text. 

Antibody molecules bound to the two outermost fragments returned the best radial 

density distributions, matching the distribution at high antibody concentration provided by 

SAXS. It can be assumed that the steric hindrance from the agarose would be greater in 

comparison to the resulting hindrance of the close proximity of another antibody molecule. The 

radial density distributions at this moment showed a maximum detected relative distance at 

around 21 nm. This value could correspond to the largest possible scattering distance between 

the two antibody molecules (approximately the sum of two hydrodynamic radius) or the 

distance from the most external antibody to the agarose.  
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These modeled data support the isotherm prediction.  At saturation more than one 

antibody molecule can bind to the Protein A ligands with the support of binding heterogeneity 

proposed by bi-Langmuir isotherm model. Data based on equilibrium binding capacities 

definitely support the idea that two antibody molecules can be bound to the MabSelect SuRe 

ligand. This was already suggested by other authors with Protein A in solution studies (Ghose, 

Hubbard, & Cramer 2007) and with neutron reflectivity studies with Protein A attached to silica 

(Mazzer et al. 2017). 

Finally, we ran models with three antibody molecules bound to different Protein A 

fragments within the same chain. The configurations computed are densely packed. Figure 

II.3.8A shows a selected configuration of these models. Figure II.3.8B shows the radial density 

distributions of this stoichiometry overlapped with experimental data. 

 

 

Figure II.3.8 - Rigid body models and radial density distributions of 3:1 antibody Protein A stoichiometry. A) Selected 

configuration of the complex; the grey bead model indicates the resin; the red bead models mimic the MabSelect SuRe 

Protein A tetrameric chain; the green bead model marks the antibody. B) Radial density distributions computed from 

SAXS data (dark red to bright red lines) are compared to radial density distributions (blue line) computed from random 

walk models. The data enumerated 1-9 correspond to different antibody bulk concentrations, with the correspondence 

given in the text. 

We are convinced that a 3:1 stoichiometry possibility can be excluded because of steric 

effects. We would need to consider all atomistic pair wise interactions to argue their feasibility. 

In the present work, we limited ourselves to geometrical considerations. 
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3.5. Conclusions 

In this work we experimentally assessed radial density distributions and, on basis of this 

experimental value, hypothesized possible antibody-Protein A forms and configurations in a 

chromatographic resin. 

We used small angle X-ray scattering as experimental method to model and speculate 

on the 3D form of antibody in solution and after binding to tetrameric staphylococcal Protein 

A in MabSelect SuRe. We compared the experimentally assessed radial density distribution with 

ones computed from molecular simulations. Computational models were restricted to 

crystallographic data and to data derived from molecular dynamic simulations.  

We reason that the antibodies bind to the Protein A ligand at different stoichiometries 

because of the existence of heterogeneous binding sites. At low antibody concentrations (< 40 

mg/mL resin) we argue that the probable binding stoichiometry is 1:1, whereas at higher 

concentrations (> 40 mg/mL resin) a 2:1 stoichiometry is favored. At low concentrations, and 

assuming a 1:1 stoichiometry, the random walk models point towards configurations where the 

antibody binds at the outermost ligands at very low and at high concentrations and in 

perpendicular form in respect to the surface. At 2:1 stoichiometry, we favor propeller-like 

configurations of the immobilized antibodies, which are more preferentially bound to the 1st 

and 4th ligand. From our data, a 3:1 stoichiometry, albeit theoretically possible, is excluded 

here because of the steric effects. We are convinced that our paper, in which we outlined how 

to rationally assess 3D forms of the antibody-Protein A complexes at different antibody 

concentrations next to a resin surface, will trigger the rational design of this technology of high 

industrial relevance. Our experimental design can be potentially used to investigate molecule 

binding on other chromatographic systems in terms of stoichiometry, binding configurations, 

and distal spacing. Therefore, it can be implemented as a monitoring tool in industrial 

applications where it is necessary to purify large amounts of product while obeying to certain 

Quality by Design parameters.  
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Conclusions 

The monoclonal antibody is an increasing market, contributing significantly to the 

global sales revenue of biopharmaceuticals. Therefore, and also given the wide range of the 

potential therapeutic applications of mAbs, pharmaceutical industry is becoming constantly 

subjected to regulatory constrains to ensure product quality and safety criteria are met.  

One of the most important unit operations in the downstream processing of mAbs is 

their direct capture from cell supernatant, with Protein A chromatography being unarguably 

the most employed and robust method for antibody capture. However, antibody adsorption to 

Protein A resins is a complex process that requires full understanding.  

This doctoral thesis had the main goal to understand from a biophysical standpoint the 

adsorption process of a commercially available therapeutic antibody to Protein A resins during 

the capture step of its purification. This work intended to highlight the importance of 

monitoring a chromatographic step in situ and provide valuable information regarding the 

binding process for a better understanding and optimization.  

From the publications listed above, it was possible to have a thermodynamic, kinetic, 

and structural fingerprint of the antibody binding process to Protein A resins with different 

ligand structure and backbone nature.  

The calorimetric studies showed that adsorption can be discriminated in two sub-

processes of exothermic nature; binding and reorganization are the two proposed sources for 

the changes in enthalpy in this process. Also, the binding kinetics showed different effective 

diffusivities associated with equilibrium time; faster kinetics following the shrinking core model 

at early equilibrium times, and slower kinetics as the ultimate capacity is attained, consistent 

with the binding heterogeneity of the two resins studied. This conclusion was reinforced by the 

flow microcalorimetry studies. 

SAXS was a valuable tool to assess the adsorption layer thickness, which was established 

as a 5.5 nm increase (the antibody hydrodynamic radius) with antibody loading and it was seen 

that it regenerates after elution. That led to the interpretation that the Protein A ligand in 

MabSelect SuRe has a preferred hook-like conformation as opposed to be fully stretched upon 

antibody binding. 

SAXS also confirmed the possibility of antibody binding to MabSelect SuRe in multiple 

stoichiometry in batch operations depending on the isotherm region associated to the 

heterogeneous binding nature. A key fact is that regardless of the concentration, there would 

always be a mixture of different stoichiometry, depending on the ligand accessibility. However, 

it was found that at lower concentrations a 1:1 antibody to Protein A chain stoichiometry is 

favoured, and at higher concentrations 2:1 becomes more probable. 3:1 conformations, despite 

being possible at high binding capacity, were shown to be unlikely because of associated steric 

effects. Nevertheless, the proposed model still lacks the flexibility given by true molecular 

dynamic simulations. 
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The main conclusion of this thesis derived from the results of the experimental 

methodology is the heterogeneous biding nature of multimeric Protein A resins. It is suggested 

that the antibody adsorption is a stochastic phenomenon where the distribution of binding of 

the first molecules determines the binding probability of the subsequent. The small but 

valuable contribution from this thesis could potentially lead to a better understanding of 

Protein A chromatography and could help to predict any parameter associated to the capture 

step of mAbs at any point of the process.  
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Future perspectives 

This work consisted in a deep calorimetric and structural investigation regarding 

antibody adsorption to Protein A in commercial synthetically engineered resins, in which it was 

proved the heterogeneous binding nature of such resins. With the antibodies having the 

possibility to bind to more than one domain in a single Protein A chain, it would be of utmost 

importance to link the thermodynamic data obtained to every possible conformation and 

stoichiometry. By doing this, it would be possible to discriminate at any surface concentration 

how favorable would be for the antibody to bind to any given Protein A domain. 

The structural analysis by SAXS of antibody binding to TOYOPEARL AF-rProtein A is 

already under evaluation. The experiments were performed but the scattering intensity signal 

is smeared by the noise contribution of the less porous methacrylate-based backbone of this 

resin. So, a different model than the one used for MabSelect SuRe results interpretation has to 

be used. In addition, it would be of interest to perform a true molecular dynamics simulation 

with applied coarse grain force fields. In this way, the models representing the antibody and 

the resin would be approximate to the real conditions in chromatography.  

Another valuable input to understand and optimize resin utilization by the antibody is 

the ligand density and ligand distribution in the backbone of the resin. It is important to 

understand its contribution to the steric hindrance associated to antibody molecules binding in 

the neighboring ligands. In ongoing studies, the resin backbone was modelled subdivided into 

clusters of spherical dimensions of the polymer (agarose or poly-methacrylate) thickness along 

the cross-linked network. The number of ligands per one of these spheres was already 

extrapolated in order to build a model that can mimic the entire bead piece by piece with the 

appropriate ligand distribution and binding capacity and see how the antibody molecules 

respond to their vicinity. By knowing this, resin manufacturers can exploit ligand accessibility 

and improve binding capacity and the costumers could potentiate the extent of the resin and 

optimize its limitations. 

  



 128 

  



 129 

 


