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Resumo 

As mudanças climáticas, a crescente procura por energia e a segurança de abastecimento estão 

a modificar a operação e o planeamento das redes de distribuição, especialmente pela 

necessidade de integração em larga escala de fontes de energia renováveis. O aumento desses 

recursos energéticos sustentáveis gera enormes desafios a nível técnico no sistema, atendendo 

a que o operador do sistema de distribuição tem o dever de manter a integridade e a 

estabilidade da rede, bem como a qualidade de energia entregue aos consumidores. Portanto, 

os sistemas de energia elétrica existentes devem passar por um eminente processo de 

transformação para que as limitações atuais sejam devidamente atenuadas ou mesmo evitadas, 

esperando-se assim chegar ao paradigma das redes elétricas inteligentes. 

Para as redes de distribuição acomodarem fontes variáveis de energia renovável, novas e 

emergentes opções de flexibilidade, que dizem respeito à geração, carga e à própria rede, 

precisam de ser desenvolvidas e consideradas na operação ótima da rede de distribuição. Assim, 

a gestão das opções de flexibilidade deve ser cuidadosamente efetuada para minimizar os 

efeitos secundários como o aumento dos custos, agravamento do perfil de tensão e o 

desempenho geral do sistema. Desta perspetiva, é necessário entender como uma rede de 

distribuição pode operar de forma ótima quando se expõe a uma integração em larga escala de 

fontes variáveis de energia renovável. Devido à variabilidade e incerteza associadas a estas 

tecnologias, novas metodologias e ferramentas computacionais devem ser desenvolvidas para 

lidar com os desafios subsequentes. Desta forma, as opções de flexibilidade existentes e 

emergentes devem ser implantadas para gerir a incerteza e variabilidade das fontes de energia 

renovável, mantendo o necessário balanço entre carga e geração.  

Nesta tese é feita uma análise extensiva das principais tecnologias que podem providenciar 

flexibilidade aos sistemas de energia elétrica, e as suas contribuições para a operação ótima 

dos sistemas de distribuição, tendo em consideração a natureza estocástica dos recursos 

energéticos intermitentes e outras fontes de incerteza. Adicionalmente, este trabalho contém 

investigação detalhada sobre como o sistema pode ser otimamente gerido tendo em conta estas 

tecnologias de forma a que a uma maior percentagem de carga seja fornecida por fontes 

variáveis de energia renovável, mantendo a fiabilidade, estabilidade e eficiência do sistema. 

Por esse motivo, novas metodologias e ferramentas computacionais usando programação 

estocástica são desenvolvidas para modelizar a variabilidade e incerteza inerente à geração 

eólica e solar. A convergência para uma solução ótima é garantida usando programação linear 

inteira-mista para formular o problema.  
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Abstract 

The concerns surrounding climate change, energy supply security and the growing demand are 

forcing changes in the way distribution network systems are planned and operated, especially 

considering the need to accommodate large-scale integration of variable renewable energy 

sources (vRESs). An increased level of vRESs creates technical challenges in the system, bringing 

a huge concern for distribution system operators who are given the mandate to keep the integrity 

and stability of the system, as well as the quality of power delivered to end-users. Hence, 

existing electric energy systems need to go through an eminent transformation process so that 

current limitations are significantly alleviated or even avoided, leading to the so-called smart 

grids paradigm. 

For distribution networks, new and emerging flexibility options pertaining to the generation, 

demand and network sides need to be deployed for these systems to accommodate large 

quantities of variable energy sources, ensuring an optimal operation. Therefore, the 

management of different flexibility options needs to be carefully handled, minimizing the side-

effects such as increasing costs, worsening voltage profile and overall system performance. From 

this perspective, it is necessary to understand how a distribution network can be optimally 

operated when featuring large-scale vRESs. Because of the variability and uncertainty pertinent 

to these technologies, new methodologies and computational tools need to be developed to deal 

with the ensuing challenges. To this end, it is necessary to explore emerging and existing 

flexibility options that need to be deployed in distribution networks so that the uncertainty and 

variability of vRESs are effectively managed, leading to the real-time balancing of demand and 

supply. 

This thesis presents an extensive analysis of the main technologies that can provide flexibility 

to the electric energy systems. Their individual or collective contributions to the optimal 

operation of distribution systems featuring large-scale vRESs are thoroughly investigated. This 

is accomplished by taking into account the stochastic nature of intermittent power sources and 

other sources of uncertainty. In addition, this work encompasses a detailed operational analysis 

of distribution systems from the context of creating a sustainable energy future.  

The roles of different flexibility options are analyzed in such a way that a major percentage of 

load is met by variable RESs, while maintaining the reliability, stability and efficiency of the 

system. Therefore, new methodologies and computational tools are developed in a stochastic 

programming framework so as to model the inherent variability and uncertainty of wind and 

solar power generation. The developed models are of integer-mixed linear programming type, 

ensuring tractability and optimality. 
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Chapter 1 

Introduction 

1.1 Background 

It is now widely accepted that integrating variable renewable energy sources (vRESs) in power 

systems is inevitable to meet a growing demand for electricity, enhance energy security and 

reduce the heavy dependence on fossil fuels to produce electricity, which are associated with 

high carbon footprint. Many states, as in the European Union (EU), are now forging ahead with 

ambitious vRES integration targets aiming to achieve a substantial reduction of greenhouse gas 

emissions (GHGs). The integration of vRES technologies is expected to lead to 80% to 95% 

reduction of GHG emissions by 2050 [1]. One eminent fact about these technologies is that they 

depend on the availability of primary energy resources such as wind speed and solar irradiation, 

which are unevenly distributed over a wide geographical area. This means distributed (rather 

than centralized) development of such resources could be more convenient, efficient and even 

cost-effective despite the economies-of-scale. The main reason for this is because distributed 

generations are installed in places closer to demand, which means they are often connected to 

distribution networks. If this is executed in a well-coordinated manner, vRESs can bring vast 

benefits to the systems as a whole in terms of improved efficiency, deferred transmission 

investments, reduced use of fossil fuels for energy production and therefore lower GHG 

emissions [2]. Hence, distribution networks are expected to accommodate more and more 

vRESs.  

Current trends generally show that the share of vRESs in the overall energy consumption is 

rapidly increasing in many power systems globally amid a number of barriers. However, the 

intermittent nature of such resources means a large-scale integration creates technical 

problems in the systems. Electrical distribution network systems are especially experiencing 

unprecedented challenges due to the increasing penetration level of distributed power 

generation sources of variable in nature, particularly, wind and solar. In other words, 

distributed generations (DGs) are attracting a lot of attention from policy makers and planners 

to meet the increased demand for electricity in the future. There is nowadays a growing trend 

of adding more new DG capacities than centralized generation capacities. This brings serious 

concerns to grid operators, though. The partially unpredictable nature of power generation 

from the key renewable type DGs may endanger the stability and integrity of power systems as 

a whole, and distribution systems in particular. This may also deteriorate the quality of power 

delivered to consumers. 
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Because of these concerns, future distribution grids should be prepared to handle the ongoing 

transformation process of power generation from the traditionally centralized to a more 

distributed and small power productions. Nonetheless, conventional distribution systems are 

not designed to manage this, and as a result, regulators often impose a maximum penetration 

limit which does not help further development of distributed vRESs. But distribution network 

systems are slowly evolving to smart grids, which are adequately equipped with the necessary 

tools and mechanisms to accommodate large-scale vRESs while minimizing their side-effects 

mentioned earlier. In this chapter, flexibility options that can support the much-needed 

integration and efficient utilization of large-scale vRESs in the future distribution systems are 

explored and discussed. The assessment also includes managing the negative impacts of vRESs, 

induced by their high variability and uncertainty, by means of various flexibility options.  

For this purpose, this thesis performs optimal management of distribution systems via an 

appropriate mathematical optimization – a stochastic mixed integer linear programing  

(S-MILP) – for deploying different flexibility options along with vRESs. The work here aims to 

address the operation issues that can occur in distribution systems due to the high-level 

variability and uncertainty of vRESs. The analysis is made from the economic and technical 

point of view. In particular, this thesis makes an extensive analysis on the impacts of vRESs on 

the overall performance of the system such as voltage profile, losses, costs, system reliability 

stability and power quality. In addition, the contributions of different flexibility options in 

enabling high penetration of vRESs and their wide-range benefits are assessed thoroughly. 

1.2 The Need for Flexibility Options in Distribution Systems 

Because of the reasons mentioned earlier, an increasing level of DGs is being connected to 

distribution systems. The fact that these are based on erratic power sources (wind and solar, 

for example) is creating technical problems in such systems. Grid operators are especially 

concerned as the conventional means of overseeing the network systems are now becoming 

insufficient to keep a healthy operation of such systems. The main reason for this boils down 

to the partially unpredictable nature of these energy resources. In such circumstances, proper 

management mechanisms need to be put in place so as to seamlessly accommodate large-scale 

vRES type DGs. This is critical to address a multitude of global concerns, partly described in the 

previous section.  

In general, there is an increased need for flexibility in distribution systems to counterbalance 

the continuous fluctuations in RES power productions and even demand [3], [4]. Traditionally,   

demand-generation balancing is handled by conventional power plants. However, in the 

presence of high level vRESs, this approach may be prohibitively expensive or even not 

sufficient to provide the standard balancing service level.  
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Increasing levels of vRESs in the system decreases the effectiveness of existing flexibility 

mechanisms attributed to the traditional system, mainly due to the intermittent nature of 

renewables. In other words, the system needs a higher level of flexibility to be able to 

guarantee standard system reliability as the variation increases (both in supply and demand). 

This is one of the key challenges of integrating vRESs. Therefore, new flexibility options are 

needed to manage the real-time imbalances in demand and power production. This way, the 

security of electric supply, stability and power quality can be guaranteed.  

Flexibility can be defined as the ability of power systems to efficiently manage its own 

resources in the event of continuous changes in power supply and demand sides. In this regard, 

voltage and frequency controls are the primary resources to face uncertainty and variability 

[5], [6]. In addition, another power system resource useful for handling the imbalances as a 

result of unpredictable changes in the system (either from supply, demand or both sides) is the 

network reserve capacity. Nonetheless, power system flexibility can be affected by many 

factors such as the amount of reserve capacity, the ramp rates of generators, the type of 

generation, the availability of generation, interconnection with other power systems, capacity 

of interconnections, etc. [7]. These are traditional mechanisms to deal with imbalances mainly 

caused by traditional sources of uncertainty and variability. Conventional power plants can add 

reserve capacity to the system but the inherent variability and uncertainty of vRESs definitively 

change the operation of distribution networks. Under these circumstances, it may not be 

economical for conventional power plants to offer spinning reserves. This would be costly 

because of a possibly increased use of fossil fuels for providing the huge requirement of spinning 

reserves to a vRES rich systems [8].  

The fact that the energy sector is transforming to a new paradigm with improved energy 

efficiency and environmentally friendly technologies to produce energy at reasonably priced 

tariffs [9] brings both opportunities and challenges. Flexibility options will be highly needed to 

address those challenges and reap the benefits. The system-wide reliability, efficiency, 

reduction of GHGs and affordability of energy can be achieved by deploying and coordinating 

different flexibility options such as energy storage systems (ESSs), switchable capacitor banks 

(SCBs), demand response (DR) and others. These technologies substantially enhance the 

flexibility of the system and its ability to continuously maintain a standard level of service in 

the face of large fluctuations in the supply and demand [10], [11].  

Given the background above, the question of having adequate renewables to meet the 

electricity demand requires one to have sufficient flexibility technologies to balance 

forecasting errors and fluctuations [12]. These flexibility options can be provided by energy 

storage media, network, demand and supply sides as shown in Figure 1.1. For example, from 

the network side, the network system can dynamically change its topology, and effectively 

adapt to changing operational situations. 
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Figure 1.1 - Identifying power system flexibility options. 

 

The more frequent the reconfiguration is, the better the contribution of such a flexibility 

mechanism will generally be. From the supply side, the traditional flexibility service in the 

form of spinning reserve provided by conventional generators is one example. Others include 

curtailment of variable power and reactive power control. On the demand side, some flexibility 

options are demand response, energy efficiency and electric vehicles. 

1.2.1  Challenges in Variable Energy Sources Integration 

Traditionally, distribution systems are built to serve the peak demand, and fulfill reliability and 

quality requirements, in a radial structure [13]. The role of distribution operators has so far 

been mainly to construct, maintain and manage outages of their distribution network assets 

[13]. However, with the advent of new technologies and new consumption forms as well as 

increasing penetration of DGs, there is a growing need to structurally change this conventional 

business model. Under this circumstance, distribution grids are expected to support bi-

directional power flows, which is completely different from the way these are designed to 

operate. This is increasingly becoming a concern for grid operators as this new role complicates 

the operation of such grids. As a result, the architecture of distributions systems needs to 

change to effectively overcome the limitations and address the operators’ concerns. The 

systems need to adopt modern technologies after careful planning and be equipped with 

necessary tools for their efficient operation. This is important to deal with compounded issues 

pertaining to the political, social, economic and environmental concerns, as well as meet rising 

demand for energy and sustainable development goals [14]. 
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Generally, the integration of variable energy sources has several challenges and barriers, which 

can be categorized as technical, economic, social, political, financial, policy and regulatory 

aspects [15]–[24]. These are summarized in Figure 1.2. The technical challenges and barriers 

are already discussed. The financial markets, such as banks, investors or capital firms are the 

main contributors for economic growth as they define the technological trajectories [15]. 

Because of this, they can provide a fundamental element to any strategy in the direction of a 

more sustainable future. Understanding the importance, profile and information that an 

investor needs is critical to formulate renewable energy source (RES) policies and strategies. 

In this context, it is expected that the challenges with integration of variable energy sources 

are related with cost benefit scenario, policies and social acceptance analysis as can be seen 

in Figure 1.2.  

Policies and regulations have unexpected, and sometimes counterproductive, effects on 

integrating RESs. It is necessary for policy makers to study the system by modeling the 

interactions between different parts of the system and different policies adopted in order to 

accommodate a large-scale integration of vRESs [25]. Although there are very supportive 

contributions from different nations, we face a regulatory framework that comprises laws to 

overall support RESs but there is no long-term planning because the approaches and framework 

conditions are always changing [26]. As the network requires to build and operate complex 

systems involving many corporations, these changing conditions does not permit a system to 

function effectively [26]. Policies for renewable energy integration are being promoted to 

diffuse renewable energies within power systems though their effectiveness to accommodate 

large-scale integration remains subject to uncertainty [27]. For instance, states often try to 

assist countries that import laws from others and do not adapt the framework to their reality 

[26]. The lack of planning combined with inappropriate incentives can result in financial 

problems limiting the progress of companies. Lack of qualified persons combined with the 

absence of information about markets, operation, planning and potential customers are other 

barriers to growth of vRESs. The slow rate of decentralized energy systems could be purposely 

due to fear of losing control with power shifting to new competitors and their pioneering 

business models [26]. For example, “investment in oil and gas infrastructure and exploration in 

2012 was about US$ 650 billion, and on the flip side, investments in vRESs was only US$ 244 

billion” [28]. 

Among the aforementioned challenges, the technical ones present serious problems in the 

network systems. In the absence of adequate countering mechanisms, the level of vRES power 

absorbed by such systems could be insignificant, which hardly help to achieve the targets set 

forth by regulators and policy makers. This thesis explores ways to address these issues by 

means of deploying different flexibility options. 
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Figure 1.2 - Challenges on integrating vRES. 

 



7 

 

1.2.2 Emerging Energy Consumption Forms 

The electric sector is undergoing rapid changes with a paradigm shift in three fronts: 

generation, network and demand sides. Much has been said in the previous sections of this 

chapter about the growing changes on the generation side. The demand side is also experiencing 

rapid transformations. This means that along with the current evolution of the electric sector 

and society, new forms of consumptions are emerging and other forms are moving from parallel 

sectors to the energy sector. For example, new and increasing consumption styles include e-

mobility (such as electric vehicles), power-to-X (an initiative to convert electricity to other 

forms of energy), etc. These can be broadly grouped into three categories: the demand 

response, electric vehicles and power-to-X, as shown in Figure 1.3. The category of demand 

response according [29] can be divided into three new sub categories, industry intensive energy 

demand, demand management in services and households and smart applications. The latter 

stems from the changes that are being made in the electricity sector by transforming the 

traditional networks into smart grid, taking advantage of the new communication capabilities 

that are being integrated into the system. The remaining subcategories arise from the 

electrification of other sectors such as, the transportation and the heating/cooling sectors [29]. 

 
Figure 1.3 - New emerging forms of energy consumption. 
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1.2.3 Risk Posed by Increasing Uncertainty and Variability 

Variable RESs are not always available when needed. They are subject to high level variability 

and uncertainty. Variability is related to the natural variation, for instance, of wind or sun to 

produce energy, meaning that the produced energy can fluctuate in certain quantity over 

regular time intervals. Uncertainty refers to the partially unpredictable nature of the uncertain 

parameters. As a result, daily and seasonal effects and limited predictability turns vRESs as 

highly intermittent generation sources [27].  Hence, as they are intermittent, they are not 

dispatchable as we cannot have control over the power output. Because of these reasons, in 

the absence of proper strategies, integration of vRESs can pose significant operational risk, 

making system voltage and frequency controls very difficult. This is because increasing 

penetration of vRESs increases fluctuations and creates big and uncertain generation-demand 

imbalances [30]. This leads to power quality and stability concerns. Grid disturbances, for 

instance, short-circuit faults can cause voltage sags and frequency variations, sending them 

both off the standard limits. Generally, increased levels of vRESs may cause more complex  and 

uncertain operation situations [30]. Accordingly, there is a need for proper planning and 

decision making to face uncertainties for achieving optimal vRES integration [31].   

Power quality issues when integrating vRES encompass the following important issues:  

(1) voltage and frequency oscillations triggered by non-controllable vRESs and by power grid 

disturbances, and (2) harmonics that are introduced by the electronic converters used in vRESs, 

that are necessary for adapting fluctuating production with grid requirements [30], [32].  

Because of the intermittence of vRESs, one way to control power output is simply by curtailing 

the power production. Nonetheless, it is not an effective way since the curtailed energy could 

be stored and used on latter moments, not only for demand supply but also for voltage and 

frequency control of the power output.  

In order to face voltage and frequency problems, utilities have introduced various grid codes 

for connecting vRESs to power systems. The regulatory framework of the grid codes are defined 

by the system operators to outline the duties and rights of all loads and power generation 

connected to the transmission and distribution systems [33]. Previously, the large-scale 

integration of vRESs, grid codes did not include regulations for wind and solar systems because 

the installed generation was very insignificant compared to the traditional generation systems. 

This situation has been changing in recent years as the level of vRESs integrated in distribution 

grids is on the rise. Such a massive integration of vRESs creates genuine stability concerns in 

the system due to the negative impacts of large solar and wind power plants. These concerns 

are related with voltage and frequency drops in the presence of a fault or high winds, making 

wind turbines stall, that can lead to outages [33].  
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Accordingly, rigorous technical requirements are enforced to protect networks to contrast to 

these threats. As an example, wind power plants are required to withstand various grid 

disturbances and contribute to the stability of the system and provide ancillary services. The 

technical challenges that vRES introduces to electrical power systems increases the need for 

high level flexibility from other parts of the systems and flexibility through interaction with 

other energy sectors, like heating sector, natural gas and interaction between transportation 

and distribution systems [25]. 

1.2.4 The Path Towards More Flexible and Smarter Grids 

Given the new developments from the demand and supply sides, distribution network systems 

need to undergo the necessary transition to more flexible and smarter grids. Future grids will 

be equipped with different types of flexibility options such as energy storage systems (ESSs), 

reactive power sources such as switchable capacitor banks (SCBs), demand response (DR) and 

dynamic network reconfiguration (DNR). Moreover, a coordinated deployment and scheduling 

of flexibility options are needed to optimally manage an increased penetration of vRES in 

distribution systems. For example, energy storage systems can be added onsite for frequency 

control and add quick reserve capacity to the system. ESSs can also provide other services. 

Their fast response means that they can be part of the ancillary services (frequency control) 

and suited to black-out restart of the system. The operation principle of ESSs is to store 

excessive energy during the low demand period that will be utilized in periods of high demand.  

Load flexibility options like demand response (DR) can also enhance the integration of vRESs, 

giving the control of operation of contracted services to a new competitor, named aggregator. 

From the network side, one example of potential flexibility option is dynamic reconfiguration 

of the distribution network system. Dynamic reconfiguration can play substantial role in 

improving reliability, increasing RES penetration and minimizing power losses. Switchable 

capacitor banks can also provide adequate flexibility to the system, enhancing stability and RES 

integration level.  

Flexibility options form important components of power systems and play important roles in 

the transformation of current electric power systems to smarter grids in the future. Most 

current systems are based on fossil fuels. Yet, the recent trend of system evolution shows that 

future grid systems will be based on the efficient accommodation of large scale variable 

renewable energy sources [34]. The existence of sufficient operational flexibility is a necessary 

prerequisite for the efficient large-scale integration RES energy in such network systems. 

Flexibility is not only necessary to mitigate supply variations due to increased uncertainties but 

also the variations in from demand side due to new and relatively unpredictable energy 

consumption forms. This is graphically illustrated in Figure 1.4. 
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Figure 1.4. - Flexibility options and smart grids. 

Therefore, future power grids need to become smarter, allowing multi-directional power flows, 

and allowing consumers to no longer have a passive role instead to play an active role in the 

electricity markets [11], [35], [36, p. 21]. Intelligent infrastructures are being developed both 

at the distribution and transmission levels. Intelligent network projects are being generalized 

around the world, where budgets have kept on increasing almost exponentially from 2006 [12]. 

However, the development of smart grids faces a significant set of challenges. In particular, 

standardization of communication and operational protocols, which will play a key role in future 

networks, is yet an ongoing process. Energy consumption optimization should be based on near-

real time, which requires well-developed communication framework to facilitate the active 

interactions between producers and consumers. In order to select these communications 

individually, standardized protocols already exist. However, these are limited to a single 

domain [37]. With regard to the introduction of smart grids, one of the key tasks in the near 

future is the establishment of an interactive bidirectional communication system from the 

generation to the final consumer. 

Having smart grids in perspective, the main ways to introduce flexibility into the electrical 

system are through the introduction of fast markets, flexible generation (e.g. gas and water), 

demand side management, energy storage systems and interconnections. The smart grids in 

combination with all other forms of flexibility options mentioned previously will considerably 

increase the flexibility of the system, overcome congestion in the network systems, either by 

changing flexible loads from peak periods to periods with less congestion, or through the control 

of the network power flow due to the integration of large-scale renewables in the near future, 

among others. This leads to the creation of a more flexible and manageable network. However, 

the costs and benefits associated with the development of smart grids and network flexibility 

have direct and indirect effects, as can be seen in the scheme of Figure 1.5. 
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Figure 1.5 - Comparison of potential costs and benefits of developing smart grids and 

flexibility. 

With regard to integrated solutions for low carbon emissions, Smart Grids will be a key element 

in the implementation of modern technologies. The need for flexibility resulting from the 

integration of renewable energies, demand and contingencies can be met in different ways, 

including through flexible generation, response to demand, energy storage and 

interconnections of the electrical networks. All this makes it a key component for the 

emergence of Smart Grids. 

1.3 Research Motivation and Problem Definition 

Existing electrical distribution network systems may become unsustainable in the future if 

nothing is done. This is because they are not capable of managing the growing need of 

integrating variable energy sources to address a multitude of global as well as local concerns. 

The concerns surrounding climate change, energy security and growing demand for electricity, 

are forcing dramatic changes to the way distribution networks are planned and operated. This 

is a result of large-scale integration of variable renewable energy sources at distribution levels.  
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An increased level of such energy sources creates technical challenges in the system, a huge 

concern for distribution system operators (DSOs) who are given the mandate to keep the 

integrity and stability of the system as well as the quality of power delivered to the end-users. 

Hence, existing network systems need to go through a series of eminent transformation 

processes so that current limitations are significantly alleviated or even avoided. This is 

expected to slowly but surely lead to the so-called smart grids. Some advantages related to 

smart-grids are reduction of greenhouse gas (GHG) emissions, demand side management, 

encouraging energy efficiency, improving reliability and power delivery as well as creating the 

necessary platform to easily integrate distributed generations (DGs) [38], [39].  

For distribution networks to accommodate large quantities of variable energy sources, new and 

emerging flexibility options pertaining to the generation, demand and network sides need to 

be deployed in the entire grid to ensure its seamless and optimal operation. Clearly, the 

management and coordination of various flexibility options needs to be carefully handled by 

minimizing the side-effects such as increasing costs, worsening voltage profile and overall 

system performance, etc. This research work mainly focuses on flexibility options that can be 

provided by the network itself but with some coordination with those provided by the remaining 

two. Such analysis is supported by optimization models formulated here in a stochastic 

framework. It can be understood that the whole approach in this thesis emulates the so-called 

smart grids concept.  

Smart grids are systems that incorporate dynamic optimization of the grid operation. This can 

involve, for example, dynamic reconfiguration processes and demand-side management, with 

digital communication and smart meters facilitating these processes [38]. From this context, 

the work here develops an optimization model that ensures an optimal operation of distribution 

networks with large quantities of vRESs and taking into consideration the stochastic behavior 

of the system. This can be regarded as the first step to understand the major considerations to 

evolve from the traditional distribution network to a smarter distribution network. 

A key factor to evolve to a smart-grid can be the transformation from a radial network to a 

meshed one. This is deemed to increase network-related flexibility in the system, leading to 

higher integration of distributed generations of vRES type. As the source of energy is not limited 

to the traditional power generations, with the operation of wind, solar or biomass power 

technology, optimal allocation of distributed renewable generation can effectively relieve the 

energy crisis mainly in terms meeting increasing energy demand and reducing the GHG 

emissions [40]. One of the major concerns associated with variable energy sources is their 

intermittent nature, which endangers the quality and stability of power grids.  
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However, an optimal deployment of flexibility options such as Energy Storage Systems (ESSs), 

Dynamic Reconfiguration (DR) and Demand-Side Management (DSM) can positively influence the 

operational requirements in such grids. The challenges with demand coordination complexity, 

diversification and stability of power supply, efficiency and economic problems are stated in 

[41]. 

From this perspective, it is necessary to understand how a distribution network system can be 

optimally operated when featuring large-scale variable RESs. Because of the variability and 

uncertainty pertinent to these technologies, new methods and tools need to be developed to 

deal with the ensuing challenges. To this end, emerging and existing flexibility options need to 

be deployed to manage the uncertainty and the variability of variable RESs and keep the 

balance between demand and supply in real-time [7].  

For example, integrating ESSs can help to smooth power output from variable RESs and, at the 

same time, reduce marginal costs of the system because cheap energy is stored when energy 

production is higher than actual demand. Another way to provide system-wide flexibility is via 

demand side management, one of which is to shift certain percentages of non-critical demand 

to a period with low tariffs, bringing economic benefits to end users and operational benefits 

to the network system. In line with this, the thesis work carries out an extensive analysis of the 

main technologies that can provide flexibility, and their contributions to the optimal operation 

of distribution network systems. This is accomplished by taking into account the stochastic 

nature of intermittent power sources and other traditional sources of uncertainty. In addition, 

the work encompasses detailed investigation of the system featuring these technologies in such 

a way that a major percentage of demand is met by variable RESs while the reliability, stability, 

efficient and economic operation of the grid is maintained at standard levels. 

1.4 Research Questions, Objectives and Contributions of the 

Thesis 

This thesis comes up with the intention of analyzing flexibility options in order to achieve 

maximum vRES power utilization in a short term operation scheme of distribution networks. 

Such an analysis is made taking into consideration the operational variability and uncertainty 

associated with vRES power generation.  

The objective of this thesis is to increase the utilization level of vRES power (wind and solar) 

deployed in distribution networks with the support of various flexibility options. This is done 

by maintaining the standard levels of power quality and stability of the distribution network, 

and minimizing operation related costs.  
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The following research questions are addressed in this thesis: 

• What are the main existing and emerging flexibility options that can be deployed in 

power systems to support the integration of “carbon-free” and variable power 

production technologies? What are the main challenges and opportunities  

associated with various flexibility options provided by different technologies? 

• From the existing and emerging flexibility options that can facilitate the  

integration of large-scale vRESs in the next-gen distribution systems, what are the 

best combinations of flexibility options that maximize the utilization level of  

vRES power? 

o From a quantitative and qualitative viewpoint, what are the impacts of 

deploying flexibility options such as Demand Response, Energy Storage Systems 

and Dynamic Reconfiguration on the overall operational  

performance of the system? 

o What is the level of flexibility that a dynamically changing network can provide 

and what is its impact on vRES utilization level? 

The main objectives of the PhD thesis are highlighted below: 

1) To carry out state-of-the-art literature review on the technological advances of 

flexibility options to transform current distribution network systems into standalone 

smart systems, capable of accommodating large-scale distributed variable energy 

sources (wind and solar, in particular). 

2) To develop appropriate stochastic optimization models for optimally managing next-

gen distribution network systems featuring large-scale intermittent power and other 

distributed energy resources. 

3) To explore new distribution network flexibility options for maximizing the utilization 

of variable renewable energy sources. 

4) To carry out an extensive analysis regarding the costs and the benefits of meshed 

operation of distribution network systems on the penetration level of variable energy 

resources. 
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The contributions of this thesis are summarized as follows: 

• A comprehensive survey of flexibility options, pertaining to demand-side, supply-side, 

network-side and other sources, for large-scale integration of low carbon technologies. 

This contribution is published in Renewable and Sustainable Energy Reviews – 

ELSEVIER [43]. 

• The development of an operational model featuring large-scale intermittent power 

sources with the help of various flexibility mechanisms. This contribution is published 

in a Book Chapter in SPRINGER [44]. 

• The development of a stochastic MILP operational model considering Demand Response, 

Energy Storage Systems, and Dynamic Reconfiguration to support more integration of 

vRESs. This contribution is accepted for publication in the IEEE Transactions on 

Sustainable Energy. 

• The presentation of a stochastic MILP operational model to increase the use of 

renewable energy in daily use, taking advantage of the new technologies, where, 

distribution systems can be operated in a meshed manner considering several levels of 

complexity. This contribution is accepted for publication in Energies (Open Access 

Journal). 

1.5 Methodology 

In this thesis, the mathematical models developed are based on well-established methods, 

specifically, mixed-integer linear programming (MILP) and multi-objective optimization.  

To achieve the objectives set in this thesis, appropriate optimization tools, methods and 

solution strategies are developed to evaluate the operation of distribution networks under 

uncertainty, variability and a variety of flexibility options over a 24-hour time-period.  

The optimization models are implemented and coded in GAMS™ and solved using CPLEX™ mostly 

by invoking default parameters.  

1.6 Notation 

The present thesis uses the notation commonly used in the scientific literature, harmonizing 

the common aspects in all sections, wherever possible. However, whenever necessary, in each 

section, a suitable notation may be used. The mathematical formulas will be identified with 

reference to the subsection in which they appear and not in a sequential manner throughout 

the thesis, restarting them whenever a new section or subsection is created. 
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Moreover, figures and tables will be identified with reference to the section in which they are 

inserted and not in a sequential manner throughout the thesis. Mathematical formulas are 

identified by parentheses (x.x.x) and called “Equation (x.x.x)” and references are identified 

by square brackets [xx]. The acronyms used in this thesis are structured under synthesis of 

names and technical information coming from both the Portuguese or English languages, as 

accepted in the technical and scientific community. 

1.7 Organization of the Thesis 

This thesis encompasses five chapters, organized as follows: 

Chapter 1 introduces this thesis. The content in this chapter starts with a background. This is 

then followed by brief descriptions of research motivations and problem definition. Then, the 

research questions, objectives and contributions are provided. The methodology in this thesis 

is subsequently presented, followed by notation assumed in this thesis. This first chapter is 

concluded by delineating the organization of the thesis.  

In Chapter 2, a wide-range summary of flexibility options is presented. At first, flexibility 

options are framed in the context of integration and utilization of vRES power generation at 

distribution network level. Then, a full characterization of different flexibility options in 

different sides of a power system is presented.  

In Chapter 3, the operation model developed in this thesis is introduced, describing the 

stochastic framework in which the model is formulated. The methods used for handling 

uncertainty and variability are fully presented in this chapter. This is followed by case studies 

intended for understanding the impacts of flexibility mechanisms in terms of operating 

distribution system with large-scale vRESs. The case studies involve two standard IEEE test 

systems, the 41-bus and the 119-bus distribution networks. 

A meshed network operation as a way of flexibility is introduced in Chapter 4. The problem is 

formulated also as a multi-scenario optimization problem, accounting for uncertainty and 

variability in the model. To demonstrate the benefits, the same 119-bus distribution network 

is used in the analysis.  

Chapter 5 provides some concluding remarks drawn from the analysis made in this thesis.  The 

scientific contributions from this research work are summarized in this chapter, supported by 

the publications in journals with high impact factor (first quartile), and book chapters or in 

conference proceedings of high standard.  Indications for future works in this field of research 

are also presented in this chapter.  
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Chapter 2 

Flexibility options for supporting the low-carbon 
energy future 

This chapter presents an extensive and critical review of the main existing and emerging 

flexibility options that can be deployed in power systems to support the integration of 

“carbon-free” and variable power production technologies. Starting from a broader definition 

of flexibility, this chapter highlights the growing importance of such flexibility in renewable-

rich energy systems and provide insights into the challenges and opportunities associated with 

various flexibility options provided by different technologies. The chapter also summarizes 

the main barriers to the deployment of more flexibility options. 

 

2.1 Introduction 

Driven by several factors such as favorable RES integration policies and growing environmental 

concerns, investments in variable RESs such as wind and solar have been recently outpacing 

investments in conventional ones. And, this trend is largely expected to continue even in a 

more pronounced manner amid the ambitious emission reduction targets put in place by many 

states across the world. The European Union (EU), for example, has a target to reduce 

greenhouse gas (GHG) emissions in 2050 by 80 to 95% compared to the 1990 levels. This can 

only be achieved by integrating “clean” energy technologies, mainly, wind and solar [45]. In 

particular,  wind and solar power sources are expected to provide half of the electricity 

consumption in the EU by 2050 [45]. This indicates that the installed capacities of wind and 

solar technologies will have to dramatically increase in the near future both at transmission 

and distribution levels [46], [47]. Increased quantities of such resources creates enormous 

technical challenges especially in distribution systems [48]. This is because conventional 

distribution networks are simply not designed to accommodate generation sources. The 

presence of generation sources means distribution systems will face bidirectional power flows, 

making control, safety and flexibility more relevant issues [48].  Under these circumstances, 

maintaining the standard levels of reliability, security and power quality is not an easy task 

[46], [49]. To effectively integrate wind and solar power, additional reserve capacity is needed 

[50], [51]. It is known that conventional power plants often provide majority of the reserve 

capacity needed in power systems. But this may not be sufficient in the future because of the 

inherent variability and uncertainty of wind and solar which dramatically increase the amount 

of reserve required to maintain a healthy operation of the system.  
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Moreover, under such circumstances, the traditional way of firming reserves may not be 

economical in the first place, and environmentally friendly in the second place [50], [51], [52]. 

However, the use of various flexibility options can substantially reduce the negative effects of 

integrating RESs such as this one. Note that flexibility should be understood as the ability of a 

power system to cope with the imbalances in generation and demand created as a result of 

abrupt changes in system conditions (which are triggered by unpredictable nature of some 

renewable power generation sources, contingency situations, etc.). Traditionally, such 

flexibility is largely provided by conventional power sources. However, due to the advent of 

new technologies and concepts such as demand response, this role has been changing especially 

in recent years. There are various emerging technologies that can provide efficient flexibility 

options (which are the subject of this chapter). Therefore, the future energy sector is expected 

to provide secure, reliable and affordable energy services to end-users.  For this, the sector 

needs to be highly efficient and possess environmentally-friendly energy sources [53]. In this 

context, flexibility options play a crucial role in achieving the required efficiency, reliability, 

cost effective tariffs for end-users and simultaneously reducing GHG emissions worldwide.   

The unique feature of power systems is the need to match demand and supply in real time. 

Power systems require flexibility to continuously match demand with supply both of which are 

subject to high level variation and uncertainty [54], [55]. When the penetration level of 

renewables gets higher and higher, traditional flexibility mechanisms (mostly provided by 

conventional power plants) are not simply sufficient. New flexibility options are required to 

ensure a proper balance between supply and demand [42], [54]. Another issue is that 

sustainable energy management endeavors are being affected by an increased demand, 

ineffective production practices and insufficient power supply [56]. The flexibility options can 

take part in efficient strategies to integrate variable RESs in power grids [49]. Flexibility options 

are resources that help the system to effectively deal with imminent changes in operational 

conditions [42], [49], [57] . Such flexibility is also associated with frequency and voltage 

control, a useful tool in handling uncertainty and variability of power systems and ramping 

rates [51], [52], [54], [57]. Flexibility options can also be used to defer investments in certain 

components of power systems, which implies that such systems operate optimally [57], [58]. 

Correspondingly, an increased usage of carbon-free technologies requires greater flexibility, 

and enhances the “active management and better use of existing network-related resources” 

[59], [60]. Flexibility options can be provided by technologies deployed at the supply, network 

and/or demand sides. The present work largely structures the flexibility options based on such 

hierarchical classifications. The flexibility options from the supply side, which will be shortly 

discussed in this chapter, include enhanced ramping capabilities of conventional power plants, 

flexible generation, diversification of power generation, wide-area generation expansion, RES 

power curtailment, etc.  
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Flexibility mechanisms on the demand side such as demand response, energy efficiency, 

electric vehicles, etc. are also broadly described in the following section. Electricity networks 

can also provide some flexibility options via optimal network reconfiguration, smartification of 

the grids, dynamic line rating, wide-area interconnections, meshing, etc. Apart from all these, 

energy systems integration, energy storage systems, effectively designed regulation and energy 

markets can also provide essential flexibility in power systems and enable large-scale 

integration of intermittent resources. Figure 2.1 schematically summarizes the increasing need 

for flexibility options and their main sources. 

2.2 Review of Flexibility Options  

As stated earlier, flexibility can be provided by different components of power systems placed 

at the supply, network and/or demand side. The flexibility options reviewed in this thesis are 

mostly structured into these main pillars. However, the review also encompasses flexibility 

options provided by emerging technologies such as energy storage systems which can be 

optimally placed at either side of power systems. In addition, the main institutional mechanisms 

such as energy systems integration that have proven or foreseen capabilities to enhance power 

system flexibility are broadly reviewed.  

2.2.1 Demand-side Flexibility Options 

In power systems, it is widely known that the demand side has huge potential for flexibility 

provisions. Such flexibility options mostly come as a result of changes in the consumption 

patterns of end-users in response to financial and non-financial incentives and/or dynamic price 

signals. The resulting changes could be permanent (such as energy efficiency) and/or temporary 

(demand response such as shifting energy consumption from peak to off-peak hours).  

 

Figure 2.1 - Flexibility needs in power systems. 
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Demand side flexibility mechanisms are emerging as the most viable and “least cost” means of 

enhancing power system flexibility, and thereby increasing the integration of intermittent 

power sources. Among the most prominent sources of flexibility options reviewed here are 

demand response, energy efficiency and new forms of electricity consumption.  

2.2.1.1 Demand Response 

Demand Response (DR) is one of the flexibility options obtained from the consumers’ side, and 

involves alterations of energy consumption levels and/or patterns of end-users in response to 

dynamically changing prices and incentives (for example, see in Figures 2.2 and 2.3). In other 

words, properly designed DR programs make electricity demand more flexible, responsive and 

adaptable to economic signals [46], [61]. As shown in Figure 2.3, the alterations could be in 

the form of reduction, shift in energy consumptions or both depending on the consumers’ price 

elasticities of electricity demand. Note that an elasticity index quantifies the relative change 

in consumption as a result of marginal changes in an electricity price. When the values of such 

indices are high, more dramatic changes will be observed in consumption patterns. As 

illustrated in Figure 2.3, higher self-elasticity values lead to higher peak shaving and valley 

fillings, and hence, a flatter demand profile along the day.  

Demand response can be either incentive-based or price-based. The former category is 

characterized by changes in the consumers’ electricity consumption in response to non-price 

signals (often, financial or non-financial incentives). Whereas, the second one relies on price 

signals to change consumption patterns. Incentive-based DR include demand side programs such 

as direct load control, curtailable load services, demand bidding or buyback programs and 

emergency DR among others. Price-based DR on the other hand mainly includes time-of-use 

(ToU), critical peak pricing (CPP), peak time rebate (PTR) and real-time pricing (RTP) programs. 

The example shown in Figure 2.3 falls in the second category, RTP program. 

Apart from the flexibility perspective, demand response has wide-range benefits, which can be 

found in the extensive body of literature in this subject area. Even if the benefits of DR are 

widely recognized, its penetration level is not significant in many power systems due to several 

limitations such as lack of appropriate market framework, effective forecasting tools, and 

communication and control strategies. However, the interest in DR has been growing in recent 

years because of many factors such as increasing level of variable power generation which in 

turn builds up the flexibility requirements in such systems, significant advances in IT and 

continuously improving forecasting tools, etc. Generally, there is a strong body of evidence on 

the potential of DR in reducing costs for end-users and improving the integration of variable 

RESs [46], [62]. There is no cloud of doubt that DR will be part of the solution to the endeavors 

in creating a sustainable energy future, and addressing a multitude of global as well as local 

concerns such as climate change and energy security. 
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Figure 2.2  - Real-time electricity prices. 

 

Figure 2.3 - Flexibility via demand response programs – an illustrative example 

 

Demand response is normally achieved by introducing a new competitor in the market, called 

aggregator, to control the operation of contracted services, but also sell flexibility services to 

system operators or directly to an electricity market [57], [61], [62]. DR can be based on a 

direct control and an indirect control mechanism [63]. Under a direct control setup, the 

aggregator has direct communication with individual utilizations and comprehensive 

information on their relations with the neighboring environment [63]. Computationally, this 

may be very exhaustive, but it is characterized by an exact response, with controllable set-

points that can be directed to each individual purpose, this enables demand control at the 

highest possible resolution [63].  
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Under an indirect control scheme, the aggregator has limited information about the actual 

demand. However, it must evaluate the price response of the collected demand, with prices 

being geographically fluctuating depending on the resolution of the information available to 

the aggregator [63]. 

The literature on DR is vast; the current work aims to complement earlier reviews by other 

researchers. Tulabing et al. [51] propose a methodology for DR that aggregates electrical loads, 

electric vehicles (EV) and storage. Del Granado et al. [55] formulate a dynamic optimization 

model for systems composed of a co-generation unit, gas boilers, electric heaters and wind 

turbines with storage units. The main purpose is to analyze storage policy strategies to satisfy 

heat and electricity demand and discover operational mechanisms for a more efficient 

utilization of distributed generations (DGs) under DR programs. Similarly, Agnetis et al. [62] 

use a mixed integer linear programming (MILP) model to optimize the profits of an aggregator 

who manages aggregated consumers, gather flexibility and generate bids for electricity market. 

Alcaraz et al. [64] resort to an analytical approach to illustrate the effects of DR on the 

efficiency of the network’s operation. In their work, dynamic pricing has been used with critical 

peak shaving tariffs and hourly pricing schemes. Haque et al. [65] present an extensive 

discussion on a decentralized method to empower DR for managing congestions in a better 

manner. Despite its wide-range benefits, DR faces many challenges, which needs to be 

overcome. Eid et al. [66] have attempted to identify the main obstacles for DR aggregators in 

Europe and provide a policy review for European market designs to support aggregation 

processes. In relation to this, Zhang et al. [67]  propose a flexible market aggregator, called 

FLECH to promote small scale distributed generation to participate in flexibility services such 

as ancillary services. Heussen et al. [68] also propose a similar FLECH aggregator. More works 

on DR mechanisms can be found in [69]–[155]. 

As mentioned earlier, demand response can in principle provide ancillary services, which are 

largely accepted to be more competitive and economically viable. As such, DR programs 

providing ancillary services are trivial players in the grid. Yet, it is necessary to evaluate the 

economic and regulatory frameworks to achieve the DR’s maximum potential in providing such 

services. In reality, current regulations and rules are hardly adapted to reap the DR’s full 

potential in providing ancillary services [96]. However, there are several studies that 

demonstrate the feasibility of DR as a key source of ancillary services. For example, Ryan [156] 

presents a method to optimally schedule ancillary service provisions by DR accounting for “the 

risk of consumer response fatigue”. Backing with some numerical results, the author concludes 

that residential DR can solely provide between 50% and 75% of the total ancillary services 

needed in the considered system. In [157], authors further highlight the potential of DR in 

ancillary service provision. Their work extensively provides a quantitative analysis of demand 

response resources that can provide auxiliary services. The economic value and the impact of 

these resources on the entire energy system are clearly demonstrated in [157]. 
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Generally, some of the wide-range benefits of DR (also contained in [51], [55], [63]–[155]) are 

summarized as follows: 

• DR can be used to support the integration of RESs, and address the fluctuations of RES 

power outputs by means of load curtailment and shifting; 

• Power consumption can be adjusted instantaneously with DR, permitting a more 

effective ramping rate from the aggregated demand than larger power plants; 

• Cost reduction of the system capacity requirements can be achieved with DR.  

• DR can balance fluctuations of power productions, reducing peak demand with demand 

shifting, resulting in big savings by avoiding or deferring investments in peaking plants 

which are often among the “dirtiest” means of power productions that cause immense 

environmental pollutions. In this way, existing plants can be better utilized, 

maintaining constant power output, and allowing a better management of the 

fluctuations in the generation-demand balances; 

• Markets incorporating DR mechanisms may dramatically reduce the frequency of 

utilizing the most expensive peaking units, effectively lowering the system’s marginal 

costs; 

• Reduction in power generation using fossil fuels significantly abates GHG emissions; 

• Allowing DR to participate in power markets may lead to an overall reduction in supply 

and locational market power because DR responds to time varying prices, limiting 

producers to manipulate wholesale price of electricity. This consequently leads to 

reductions of average wholesale price and volatility of peak prices; 

Although demand response is not new, its implementation has been really slow due to a number 

of barriers. Despite the wide-range benefits, DR faces enormous challenges mostly related to 

the control and its optimal usage [63]. Some of the main barriers of DR are summarized as 

follows: 

• Unsuitable market: Most of the current energy markets are designed in a centralized 

manner, and they are not suited for the natural demand diversity and distribution. 

However, emerging technologies such as blockchain technology and distributed market 

designs are expected to unlock the immense potential of DR. 

• Non-transparent regulatory and tariff schemes: In most cases, regulatory and tariff 

structures are not setup to be visible for end-users. Addressing this issue allows 

consumers to respond to price signals. 
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• Inadequate business environment: Nowadays, there is an overwhelming difficulty in 

creating a business case for DR. It is recognized that incorporating demand in electricity 

markets increases social welfare. Welfare is distributed among different corporations, 

and can be difficult to create a business model that gather sufficient social welfare 

with satisfactory certainty to make the business feasible and justify investments in 

infrastructures.  

• Potential conflicts of interest: A higher penetration level of DR can lead to potential 

conflicts of interest. For example, some power plants that participate in reserve 

capacity markets may be against the implementation of DR because of possible losses 

in their incomes. If the capacity value and the availability in times of the need for DR 

is very significant, DR will take over the responsibility for regulation and ramping, 

decreasing income for peaking power plants. 

• Complex end-users’ behavior: DR heavily involves customers’ behavior, which is often 

difficult to predict. End-users can have different priorities. For example, some 

consumers may not give priority to reducing their electricity bills at all; others may be 

interested to participate in DR programs but concerned on privacy issues. The demand 

curve is affected by different and time varying external factors, like weather or any 

other factor. Because of all this, demand behavior may not be suitable for conventional 

economical models. 

• Forecasting, communication, control and modeling limitations: In order to optimally 

reap the benefits of DR and maintain healthy operations of systems, reasonably 

accurate forecasting tools, appropriate communication and control infrastructures 

need to be put in place. In addition, the nature of DR necessitates accurate modeling 

of consumers’ energy consumption behavior, which is often a challenging task. In many 

power systems, all these issues have been partly limiting the penetration levels of DR 

programs. However, over the past few years, there have been significant advances in 

forecasting capabilities and information and communication technologies (ICTs) as well 

as continuous improvements in the modeling strand, which can be rolled out to support 

the full integration of DR programs.       

• Massive investment needs: Most power systems are not suitable for the DR programs to 

seamlessly flourish. Hence, effective integration of DR programs in power systems 

requires at least partly automating existing infrastructures, which means hefty 

investment needs. This is considered to be one of the biggest hurdles to the demand 

response penetration. 
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• Inadequate incentives: The savings consumers get from participating in DR programs 

may be oftentimes small, which may not be attractive enough not only for new 

consumers to join in but also existing ones to continue in such programs.  

• Privacy and data security issues: The key factor to DR’s success is ICT. But problems 

arise regarding privacy and security of users’ data as well as the entire automated 

system. This is becoming one of the key challenges for the growth of DR amid increased 

cyberattacks in recent years.  

• Energy security: One of the major obstacles to the wide implementation of these 

resources in the network comes from the fact of schemes that can be applied 

transversally, in different jurisdictions. As such, one way to assess the influence of 

these technologies on the level of security of supply is through the use of metrics [158]. 

For example, one of the metrics that can be used is the ratio between flexible demand 

and total demand, among others. The use of such metrics will level the use of different 

technologies which in parallel have the potential to accelerate the integration of these 

technologies, allowing the transition from the conventional network to an intelligent 

one. 

2.2.1.2 Energy Efficiency 

Demand Side Management (DSM) is the ability to influence the use of electricity by end-users 

or alter the pattern and magnitude of demand [159]–[161]. Some strategies of DSM are peak 

clipping, load shifting, valley filling, strategic conservation and even strategic load growth 

[159]. Load shifting requires intermediate storage, and involves a mechanism for rescheduling 

energy demand. Some examples of load shifting are heat and cold storages. Normally, DSM 

strategies are employed by utilities when they predict unusual demand patterns [159]. Some of 

these DSM facets are illustrated in Figure 2.3 and are largely discussed in the previous section 

under the auspices of demand response. The review in this section is devoted to energy 

efficiency (also known as energy conservation), which is one of the demand side management 

programs that are largely anticipated to partly provide some solutions to the energy crisis that 

may unfold over the coming decades. As graphically illustrated in Figure 2.4, energy efficiency 

involves voluntary reductions of consumers’ energy usage by investing in energy efficient 

technologies or responding to incentives designed to entice consumers to participate in energy 

conservation initiatives. Such initiatives heavily depend on the goodwill of end-users. 

Therefore, one of the key aspects to the successes of such initiatives is empowering consumers 

so that they voluntarily participate in energy efficiency programs (or, DSM programs in general). 

The most effective strategies are via appropriately designed incentive mechanisms, which could 

be financial or non-financial types. For example, consumers can be enticed by offering them 

contracts with low rates of electricity or giving them certain credits on the maximum demand 

charge.  
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Figure 2.4 - Flexibility via energy efficiency measures – An illustrative example. 

 

Energy efficiency schemes also share some of the advantages of demand response programs 

discussed earlier. Some of the benefits of such schemes are as follows [54], [160]: 

• Balancing energy and capacity; 

• Response in various time scales; 

• Reducing price spikes and average spot price volatilities; 

• Balanced market power i.e. roles shared between generators and consumers; 

• Reduced investments in infrastructure expansion; 

• Reduced system-wide costs as a result of reduced usage of peaking power plants; 

• Reduced transmission and distribution losses; 

Some of the barriers for energy efficiency measures are [54]: 

• Lack of information and communications technology (ICT); 

• Inadequate technology financing; 

• Inadequate incentive mechanisms (often small savings for participating in energy 

efficiency programs); 

• Lack of key stakeholders’ strong involvements; 

• Lack of adequate structural and market designs; 

• Lack of appropriate regulatory and policies to promote energy efficiency programs. 
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2.2.1.3 Unconventional Energy Consumption Forms   

Currently, the energy consumption throughout the world heavily depends on fossil fuels. Fossil 

fuels are largely used among others in transportation, industry, commercial and residential 

sectors and even to generate electricity. In fact, on a global scale, nearly 80% of the energy 

consumption by mankind comes from burning these non-renewable fuels. This is however 

gradually changing amid growing concerns in several intertwined issues such as climate change 

and energy security. As a result, over the past years, a lot of countries have been gearing up 

efforts to decarbonize their energy industries by embarking on ambitious targets to increase 

the penetration levels of renewables. Apart from the conventional forms of final electricity 

consumption, new ones are taking shape across various energy intensive sectors. Among these 

“unconventional” energy consumptions is electric mobility (also known as e-mobility). Across 

this line, the numbers of electric vehicles (EVs) are growing rapidly in many countries. EVs can 

be considered as mobile energy storage devices, with relatively regular charging and 

discharging cycles. They are connected at the distribution level of power systems. Such vehicles 

can be plugged in to the grids during night at places where the end-users reside, and/or daytime 

close by commercial places. This makes EVs such good candidates for providing the much-

needed flexibility in electricity grids. Generally, it can be said that EVs have relatively good 

availability, predictability and easy controllability [162]. This means they can offer a broad 

flexibility bundle including services like energy scheduling, reserve capacity, regulation, 

emergency load curtailment, energy balancing, power quality enhancement and supporting RES 

integration and utilization [54], [163]. However, all this requires the provision of appropriate 

technologies such as smart counters, telemetry and two-way communications. It is worth 

mentioning here that DR mechanisms could be employed here to aggregate EVs to accomplish 

the required scale of flexibility. In this respect, Knezović et al. [162] deduce that the technical 

requirements and the organizational framework of the flexibility that EVs can provide to DSOs, 

with market design recommendations.  

2.2.2 Supply-side Flexibility Options 

There are a number of flexibility options that can be delivered by the supply side. The most 

important ones come from conventional power sources in the form of flexible generation and 

enhanced ramping capability, from diversified and complementary energy resources, strategic 

curtailment of RES power, as well as from wide-area variable power generation planning. These 

are discussed in the following subsections. 
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2.2.2.1 Conventional Power Plants 

For a proper operation of power systems, demand and supply should be instantaneously 

balanced in every split second. In other words, flexibility is required to manage the unavoidable 

variations in demand, generation or both due to unforeseen operational situations. Such a 

balancing service (or flexibility) is traditionally provided by conventional power plants. The 

flexibilities given by such power plants are measures that can modify the output of power 

supply to achieve balance in the grid. Depending on their levels of flexibility, power plants are 

classified into baseload, peaking and load following regimes [54].  

Baseload power plants such as coal and nuclear run at constant power outputs, and they hardly 

have ramping or shut-down mechanisms put in place due to technical and economic reasons. In 

other words, their power production regimes are often inflexible; hence, they are often 

intended to run as a baseload. However, this is expected to change in the future. Due to the 

increasing flexibility needs in power systems, such power plants will be required to put in place 

mechanisms that increase their ramping capabilities and provide considerable flexibility in 

power productions. Peaking power plants enter into action in high demand situations; so, they 

have very irregular utilization.  

The third category, i.e. load following power plants, includes gas and hydropower plants. These 

power plants traditionally serve as instant balancing units mainly due to their fast responses, 

start-up and ramping capabilities. For example, combined-cycle gas turbines (CCGTs) are 

characterized by high ramping rates (often in the order of 10 MW per minute) and reasonably 

higher efficiencies (often above 60%); hence, they are often attractive options to increase 

flexibility in power systems [54]. The fuel costs of CCGTS can however be prohibitively high. 

And, this may hamper their wide usage as flexibility mechanisms i.e. their use in balancing 

markets may be limited due to economic reasons [54], [163].  

Another example under this category is a combined heat and power (CHP) plant. CHPs are 

becoming as suitable technologies to enhance the flexibility of power systems, and increase 

RES integrations. The main flexibility of CHPs is underpinned in the emerging and existing 

technologies such as heat pumps, thermal storage, electric boilers, etc. They produce heat and 

power simultaneously with a conversion efficiency of more than 80% [54]. One of the main 

advantages of coordinating CHPs with RES integrations is the increased rate of load shifting due 

to thermal storage—an important source of flexibility, leading to a more efficient RES utilization 

[54].  
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2.2.2.2 Strategic RES Power Curtailment 

The power outputs from variable energy sources such as wind and solar are subject to high level 

uncertainty as these sources heavily depend on weather conditions which are partially 

unpredictable. Sometimes, the actual power potential could be substantially lower than the 

forecasted value. Other times, the actual power productions by RESs could largely exceed 

predictions or even the actual demand. Either case leads to large unforeseen demand-supply 

unbalances in the system. Under such situations, the balancing process may be very expensive 

and/or technically impossible. One may argue here that situations with low RES power 

productions could be relatively easier to manage than those with excess RES power, especially 

in the absence of any energy storage medium. In the latter case, regulating RES power injection 

in to power systems could be economically feasible [54]. In other words, a strategic curtailment 

of RES power could be justified under the following situations: over-generations, oversupply of 

RES power outputs, congestions and widespread use of inflexible baseload generators. Strategic 

curtailment can also be done to dampen quick changes in power productions or in the provision 

of reserve power capacity by a ramp-up margin [54]. All this could increase flexibility in power 

systems. 

2.2.3 Network-side Flexibility Options 

Transmission and distribution networks are the backbones of power systems. These power 

system components can also provide important flexibility options by means of network 

reconfiguration (switching), smartification (both at transmission and distribution levels), 

dynamic line ratings, wide-area interconnections, meshed operations, etc. The following 

subsections present discussions of some of these flexibility mechanisms.  

2.2.3.1 Smart-Grids 

Although the term smart grid is widely used in the literature, there is generally no agreed 

definition of this term. There is however a general consensus on its concept and technologies 

adopted for its adoption [164], [165]. For example, according to the Strategic Deployment 

Document for Europe's Electricity Networks of the Future, a smart grid is defined as “an 

electricity network that can intelligently integrate the actions of all users connected to it”, 

generators, consumers and prosumers, “in order to efficiently deliver sustainable, economic 

and secure electricity supplies”. The Korean Smart Grid Roadmap 2030 states that, a smart grid 

refers to a next-generation network that integrates information technology into the existing 

power grid to optimize energy efficiency through a two-way exchange of electricity information 

between suppliers and consumers in a real time. 
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 It is important to note that the term “smart” refers to the integration of a set of technologies 

and software in the electrical networks, allowing such networks to function autonomously (or 

at least partly). This leads to a more optimal network operation in the short and long term time 

horizons. Smart grids are generally characterized by some sort of intelligence. And, such 

intelligence can come from different sources, such as through the automation accompanied by 

supervisory control and data acquisition (SCADA), state-of-the-art energy management systems 

(EMS), and demand management systems (DMS) among others. An example of this is demand-

side intelligence, which, with the integration of smart meters and advanced metering 

infrastructure, enables sharing information not only with an aggregator but also with a network 

operator, so that the entire grid can be operated more efficiently. 

The focus on electric networks in terms of flexibility provision has been dramatically increasing 

over the last decade or so. In particular, the issue of network smartification has been gaining 

more attention in the last few years. As mentioned earlier, the smartification process involves 

gradual transformation of existing passive electric networks into smarter grids which are 

equipped with state-of-the-art information and communication technologies (ICTs). This makes 

control, protection and energy management relatively easier [65], [166].  

In terms of flexibility, smart grids for example make it possible to know end-users’ demand 

patterns in real-time thanks to a well-developed two-way information communication, smart 

metering facilities and immense automation [54], [55]. The communication among energy 

producers, end-users and network operators is made easier in a smart-grids arena, leading to 

more efficient operations of power systems [54]. In addition, due to the communication and 

metering technologies, the use of RESs to balance grid services can be achieved. In particular, 

smart grids have been touted as one of the key ways for abating the negative effects of the 

increasing penetration level of variable RESs in power systems. For example, in smart grids, 

any shortfall in electricity supply can be easily counter-balanced by optimally changing demand 

in the form of an active demand response [55]. Smart-grids can be equipped with advanced 

technologies such as soft open points (SOPs), power electronic devices, replacing open points 

in active distribution systems, providing active and reactive power flow control and voltage 

regulation under normal operations, and fast fault isolation and restoration under abnormal 

situations [167]. González and Myrzik  [168] estimate the degree of flexibility of an active 

distribution network which has RESs interfaced via full-power converters. Their results show 

the capability of the active distribution networks in providing ancillary services for a short 

period of time considering the availability and uncertainty of RESs.    
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In general, smart-grids are largely expected to play a key role in creating a sustainable, 

affordable and reliable energy future.  In other words, smart grids will help to resolve a 

multitude of concerns related to energy supply worldwide; particularly, in increasing the 

reliability of power supply while reducing GHG emissions and other ecological impacts as well 

as savings in operation and investment costs. Smart grids are also expected to create a level 

playing field for all types of producers and consumers which is very crucial for having  more 

optimal and efficient energy systems [54]. 

However, the gradual transformation of passive networks into smart grids comes with a number 

of challenges [169]. One of these challenges is security of supply. In the network transition 

process, a significant set of technologies will have to be integrated. In addition, conventional 

power generation regimes will be changed in order for power systems to become increasingly 

renewable. Consequently, the integration of large quantities of vRESs considerably reduces the 

amount of energy generated by conventional power plants. All this, along with the 

decommissioning of older thermal and nuclear power plants [158], [170], may have strong 

influence on the security of power supply. This remains to be one of the key concerns in many 

jurisdictions. However, such concerns may be alleviated by deploying a set of smart grid 

enabling technologies such as ESSs and demand response.  

2.2.3.2 Dynamic Network Reconfiguration  

It is known that electrical power systems have several interacting components such as 

renewable and conventional power generators, energy storage media, large and small 

consumers, different network components, etc. Of a paramount importance in the day to day 

operation of such systems is keeping the interaction among these components at a standard 

level. In fact, the target of such interactions should be to create more reliable and efficient 

systems that can cope with any operational event that may unfold over time. Lack of proper 

coordination in such interactions may result in large-scale interruptions of supply, and even a 

complete collapse of the overall system. To ensure an optimal operation of such systems, it is 

very important to build mechanisms that take their dynamic nature into special account [171]. 

For example, the increasing penetration of renewables in distribution systems may complicate 

the control and energy management in these systems, especially considering the static and 

passive nature of electrical distribution networks. Basically, distribution systems may be built 

as meshed networks but they are normally operated in a radial manner, which is often kept 

static regardless of the operational situation in the system [171]. Such a network setup does 

not provide enough flexibility to the continuously changing and unpredictable conditions that 

may happen in current and future power systems. However, a dynamically changing network 

system can partly cope with this dynamism. An optimal configuration of the system can be 

achieved by maneuvering closed or opened branches [171], [172]. The aim of a dynamic 

reconfiguration is therefore to automatically adapt the network to varying operational 

situations, which may be caused by variable RES integration or any unforeseen system condition 

[166], [173]. 
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Generally, network reconfiguration can be classified in two categories: static and dynamic. In 

a static reconfiguration, a single configuration is determined at a specific time, and considered 

to be optimal regardless of the changing operational conditions; hence, this topology is kept 

the same over an extended period of time [172]. On the other hand, a dynamic reconfiguration 

method considers different time intervals, and hence, new configurations are obtained that are 

fit enough to cope with different types of operational situations [172]. In fact, the optimal time 

intervals to perform dynamic network reconfigurations are subject to further studies [172]. But 

the major difference between static and dynamic reconfigurations is that, unlike the static 

one, dynamic reconfiguration considers varying operational situations [174]. In real systems, 

dynamic reconfiguration can be considered as a viable flexibility option that can provide a safe 

and more efficient power system operation because of the consideration of continuously 

changing operational conditions along a specified period of time. Apart from the flexibility 

provision, dynamic reconfiguration can play an important role in power losses minimization in 

smart systems [175]. Furthermore, it is important for restoration of supply after faulty events 

and to perform maintenance operations in power plants [176]. 

In the literature, Alcaraz et al. [56] propose a two-phase approach for a short-term operational 

scheduling of RESs in distribution systems. The first phase determines the power purchased 

from an electricity market and a number of DGs integrated in the system, while the second 

phase is a real-time scheduling coordination with an hourly reconfiguration. Novoselnik and 

Baotic [171] present a mixed integer second order program (MISOP) predictive control strategy 

for a dynamic reconfiguration of distribution system with DGs and ESSs. Milani and Haghifam 

[172] propose a genetic algorithm (GA) approach which aims to determine optimal time 

intervals for carrying out reconfigurations. Similarly, Huang et al. [173] present an optimal 

reconfiguration model based on dynamic tariffs for congestion management and losses 

reduction considering EVs. Li et al. [174] develop a multi agent system to perform dynamic 

reconfigurations of distribution systems by dividing each day into several time intervals 

managed by the agent. Ameli et al. [177] use ant colony optimization (ACO) algorithm to 

dynamically schedule feeder reconfiguration and capacitor banks along with DGs, dividing the 

planning period into several intervals to determine the optimal topology of the network which 

matches different operational situations. Tu and Guo [178] present a conceptual model of 

median current moment for dynamic reconfigurations. Yang et al. [179] employ a gradual 

approach that deals with dynamic reconfigurations of distribution networks. Canzhi et al. [180] 

present a new method of dynamic reconfiguration that is based on credibility theory, and 

considers day-ahead prediction of PV generation and forecast uncertainty. Meng et al. [181] 

consider large scale integrations of DGs with scheduling of active power outputs and dynamic 

reconfigurations.  
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2.2.3.3 Meshed Operation of Distribution Networks   

Electrical distribution networks are experiencing new challenges amid the growing changes in 

power generation from centralized to distributed paradigms. The level of DG integration in such 

systems is unprecedented. But such networks are not especially designed to support power 

generation sources. Their sole purpose so far has in fact been to direct power flows from 

upstream grid (transmission where the centralized generators are connected) to the end-users. 

This is however slowly changing with the advent of several enabling technologies. A lot of policy 

makers in the world seem to favor distributed power generation, to the dismal of conventionally 

centralized power generators. In order this to happen, distribution grids need to undergo a 

huge transformation process including dramatic changes in the operational scheme. One 

example from the operational perspective is the topologies of such grids, which are radial in 

nature. In order to support DG integrations (variable RESs in particular), new operational 

strategies should be put in place, which enhance the flexibility of the system as a whole, paving 

the way to more RES integrations. One of these strategies is meshed operation. This goes against 

the normal operation strategy in conventional distribution grids (i.e. radial) [171] but it can be 

an important source of flexibility in future electric power systems. Technology-wise, this is 

already feasible. It has in fact been shown in recent studies [166], [182] that adopting meshed 

configurations of distribution networks increases DG integration and fulfils reliability 

requirements. Other previous works in this subject area include that of Ivic et al. [182] which  

present detailed comparisons of optimal power flow outcomes of radial and meshed distribution 

networks with DGs and compensating devices. Chalapathi et al. [183] perform studies on the 

allocations of DGs in weakly meshed distribution networks and evaluate the contributions of 

DGs in the meshed network. Yang et al. [184] model a method to approximate a large meshed 

structure of distribution networks to a simple load model consisting of two RLC elements. Yu 

et al. [185] have developed a time sequence load-flow method for steady-state analysis in a 

heavy meshed distribution system with DG integrations. Generally, previous studies show that 

a well-adapted distribution network (meshed one, in particular) is expected to play an essential 

role in future power systems, particularly, in terms of flexibility provisions. 

2.2.3.4 Micro-Grid and Islanding Control 

Micro-grids can be described as local grids that supply energy to local consumers. Micro-grids 

are slated as one of the flexible systems that are expected to be part of the solution to integrate 

more RESs in power systems by properly balancing demand and supply [54], [186]. A micro-grid 

can include small RESs, CHPs, ESSs, controllable loads and connection to a main grid [54], [186]. 

Therefore, a micro-grid can be a component of a large distribution network system that can be 

islanded with a proper islanding control mechanism.  
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In the event of unavoidable disturbances, micro-grids can be isolated from distribution systems, 

and continue to operate in an island mode supplying energy locally.  However, challenges exist 

during the transition to the island mode. For example, power balance issues while islanding can 

lead to frequency instability, and such instability can cause a blackout in the islanded system 

because of lack of adequate reserve capacity from the main grid [187]. However, if we are 

talking about an island system that has installed DGs, they are used to re-stablish power balance 

and prevent blackouts in the islanded zone. In this manner, islanding operation and micro-grids 

can enhance reliability of the system [186]. Another possible problem that immediately arises 

is the coordination of feeder protection schemes when changing the topology of the grid. This 

must be well coordinated to avoid incorrect operation of protection devices.  

Cheng [186] highlights the principles of a seamless grid islanding. Results show that DGs can be 

applied for grid control purposes. Chen et al. [187] have developed an Islanding Control 

Architecture based on the Islanding Security Region. With their method, system operators could 

effectively know in advance if an island operation a system would be successful given its current 

operating state. Majzoobi and Khodaei [188] have analyzed the application of micro-grids in 

effectively capturing load variability in distribution systems. In their work, an optimal 

scheduling of a micro-grid is proposed and coordinated in order to meet the micro-grid’s net 

load with the aggregated net load consumed in the distribution system, focusing on ramping 

issues.  

2.2.3.5 Network Interconnections 

It is widely recognized that interconnections of different electric network systems through 

enhanced transmission networks facilitate cross-border power flows, and hence access to 

neighboring energy markets. It is important to note that cross-border flows enable geographical 

smoothing both at the demand and generation levels, which is very important for scaling up 

RES integrations. For example, aggregated RES power outputs change softer and slower. And, 

this decreases flexibility requirements such as balancing services. In addition, interconnections 

create large balancing areas and a much improved energy management in the resulting systems. 

It is also worth mentioning that larger balancing areas provide greater access to varieties of 

load and power generation regimes as well as a larger pool of reserves. All these result in huge 

flexibility and operational efficiency in the interconnected systems. Despite all these benefits, 

in most cases, investments in cross-border electricity networks are overlooked due to various 

reasons such as geopolitical, technical and economic issues. As a result, bottlenecks are created 

at border areas among different countries. Realizing the wide-range benefits of strengthening 

cross-border interconnections, many countries are now forging forward towards enhancing and 

interconnecting their electricity grids. And, this will undoubtedly be an important source of 

flexibility in creating a sustainable energy future. 
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2.2.3.6 Network Expansion Planning 

Network expansion planning, which is often overlooked, is a very important means to improve 

power system flexibility. Such an expansion planning process includes reinforcement of existing 

transmission and distribution corridors, building alternative paths and installing power flow 

controllers, reactive power sources such as smart-inverters and other advanced technologies. 

All this helps to meet multiple objectives such as enhancing market efficiency, motivating new 

market players, proper and optimal management of congestions, and supporting more RES 

integrations among others.  

2.2.4 Other Sources of Flexibility 

This section is devoted to other sources of flexibility that mainly fall into the three pillars 

already mentioned earlier. For example, the flexibility provided by energy storage systems, 

properly designed market and regulatory aspects are reviewed in this section. 

2.2.4.1 Energy Storage Systems 

Energy storage is a mechanism that enables one to store energy produced at some time (usually 

when the demand is low or when there is over-supply) and use it later (often when the demand 

is high). The use of energy storage systems (ESSs) for enhancing the flexibility of power systems 

is nowadays at the forefront of many policy makers and planners. Until recently, storing 

electrical energy in bulk quantities has not been feasible because of economic and/or 

technological reasons. However, significant advances in storage technologies and their 

continuously falling capital costs are proving the viability of ESSs in providing flexibility at this 

important period of time, in which more integration of variable RESs is highly needed to address 

a multitude of global as well as local concerns. ESSs have multitudes of technical and economic 

benefits, and can be integrated at the supply, demand and/or network side. In addition, they 

can be incorporated into wholesale electricity markets and provide support in terms of ancillary 

services. During periods of low electricity demand, excess energy produced by such sources can 

be stored and utilized during periods of high electricity demand, reducing or even avoiding the 

utilizations of peaking power plants which are often expensive and among the “dirtiest” means 

of power generation [189]. In addition, ESSs can provide grid support. They have fast response, 

making them suitable to be part of ancillary services, providing frequency and voltage control 

services [190]. When ESSs are not providing (discharging) power to the grid, they can be utilized 

as capacity reserves with literally low costs, and are well-suited to restart system operation 

after black-outs [190]. Figure 2.5 schematically illustrates the benefits and operational 

schemes of ESSs. 
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Figure 2.5 - Illustration of the possible roles of energy storage systems. 

 

Generally, ESS technologies can be divided into five groups: 1) physical storages – e.g. 

compressed air and pumped hydro; 2) electro-mechanical storages – e.g. flywheels; 3) 

electrochemical storages – e.g. fuel cells and batteries; 4) electrostatic storages– e.g. 

capacitors and supercapacitors; and 5) electromagnetic storages – e.g. superconducting 

magnets [191], [192]. Each technology has its own advantages and disadvantages, making them 

suitable for different applications. Table 1 summarizes the pros and cons of different ESS 

technologies [191]–[197].  

Table 2.1 - Advantages and disadvantages of each ESS technology. 

 

TECHNOLOGY 
 

TYPE ADVANTAGES DISADVANTAGES 
 

Lead-Acid 
 

Electrochemical -Easy installation; 

-Low self-discharge 

-Short lifetime; 

-Maintenance costs; 

-Low power; 

-Partial discharging; 

-Premature failure; 

-Needs temperature management; 
 

Lithium-Ion 
 

Electrochemical -Efficiency (almost 

100%);  

-Improved lifecycle; 

-Improved energy 

efficiency; 

-Inflammable; 

-Fragile; 

-Lifetime dependent on 

temperature; 

-Charge/discharge current 

limitations 
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Table 2.1 - Advantages and disadvantages of each ESS technology (continuation). 

 

TECHNOLOGY TYPE ADVANTAGES DISADVANTAGES 
 

Nickel-

Cadmium 

Electrochemical -Lifecycle; 

-Low maintenance 

requirements; 

-Wide range of 

sizes; 

-Economic in cost 

per cycle; 

-Long term storage 

capacity; 

-Low temperature 

performance; 

-Toxicity of cadmium; 

-Costs ten times higher than 

Lead--Acid storage technologies; 

-Low efficiency; 

-High self-discharge rate; 

-Suffer from memory effect; 

-Continuous maintenance due to 

high self-discharge; 

 

Sodium-

Sulphur 

Electrochemical -Energy Efficiency;  

-Not dependent on 

ambient tempera-

ture;  

-Lifecycle;  

-Energy capacity;  

-Power density 

-Safety conditions for thermal 

management, seal and freeze-

thaw durability. 

 

Flow Battery  Electrochemical -High power; 

-Longer duration of 

operation; 

-Scalable; 

-Safe to replace 

electrolytes; 

-Decoupling 

between power 

rating and energy 

rating; 

-Fast response; 

-No self-discharge. 

-Low efficiency; 

-High operation costs; 

-Low energy density; 

-Thermal management; 

-Contamination can occur from 

mixing used and fresh electrolytes 

Fuel Cells Electrochemical 

-Continuous 

operation; no need 

for recharging the 

cells 

-Very expensive 
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Table 2.1 - Advantages and disadvantages of each ESS technology (continuation). 

 

TECHNOLOGY 
 

TYPE ADVANTAGES DISADVANTAGES 
 

Supercondu-

cting Magnetic 

Energy Storage 

(SMES) 

 

Electrical 

 

-Capable of very 

quick discharge 

making it suitable 

for short term 

applications; 

-Easy to increase 

energy storage 

capacity by 

increasing the 

current flowing 

through the coil. 

-Very expensive; 

-Dependent on the temperature of 

the coil. 

 

Supercapacitor

s/ Capacitors 

 

Electrical -Fast response 

operations; 

-High energy 

density; 

-Long term storage; 

-Low losses 

Very expensive 

 

Flywheel 
 

Mechanical -High efficiency; 

-Durability; 

-Low maintenance; 

-Minimal 

environmental 

impacts; 

-High capacity. 

Very expensive 

 

Compressed Air 
 

Mechanical Long term energy 

storage. 

Toxicity 

 

Pumped-Hydro 
 

Mechanical Efficiency about 

70%; 

Reserve capacity 

provision;  

-Frequency control,  

-Load balancing and 

energy 

management. 

-Costly;  

-Requires building a hydroelectric 

dam. 
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Details of each of these ESS technologies and their applications can be found in the literature 

[189], [191]–[193], [196], [197]. Among the much-anticipated contributions of ESSs is the 

reduction in the effects of fluctuations caused by RESs. In the absence of appropriate 

management mechanisms such as ESSs, these fluctuations can cause several problems in terms 

of power system stability, security and quality of power delivered to consumers.  Moreover, 

power outages may be common phenomena [193], [196]. However, ESSs can help to prevent 

outages and enhance the overall stability of power systems. In addition, ESSs have the necessary 

flexibility capabilities to contain the intermittency of RESs and support an increasing 

penetration of these technologies in power systems. As mentioned earlier, ESSs store excess 

energy generated during off-peak periods that can be injected back to the grid whenever it is 

needed. This makes ESSs one of the most cost effective ways to alleviate the problems that 

may arise as a result of variability and uncertainty in system conditions. As shown in Figure 2.5, 

ESSs also counter the possible fluctuations in voltage and frequency especially in systems where 

there is high penetration of intermittent energy sources.  

ESS technologies with high lifetime cycles and shorter response times are especially suitable 

for regulating voltage and frequency [189], [192], [193], [196]. Likewise, ESSs are able to add 

reserve capacity to power systems [189], [191], and can further provide wide-range ancillary 

services [189], [191], [196]. Another interesting feature of ESSs is time and spatial shifting of 

energy consumptions and generations. Energy stored from a remote power generation source 

is shifted in time and geographical location [189], [191], [192], [196]. Time and spatial shifting 

operations are related to load shifting, time of use and variable energy generation shift [189], 

[191], [192], [196]. Load shifting allows the delivery of renewable energy from off-peak times 

to peak times, increasing the value of RESs [189], [191], [192], [196]. A shift in variable energy 

generation reduces peak reverse power flows through power system components, respecting 

operational limits [189], [191], [192], [196]. The process of suppling and discharging is related 

to time of use. If ESSs charge and discharge in specific time periods, such an operation can be 

defined when time-of-use tariffs for charging are economic while tariffs for discharging are 

more expensive [189], [191], [192], [196]. Finally, ESSs can avoid, postpone or reschedule 

investments in transmission and distribution systems. Installing permanent or temporary ESSs 

in overloaded nodes can avoid or reduce congestion and hence investments to relieve such 

congestion, eventually saving funds for critical areas and reducing cost to the end-users. 

Further literature on ESSs include the work by Farrokhifar [58] which investigates the positive 

impacts of adding ESSs to distribution grids. Vandoorn et al. [60] presents a voltage-based droop 

control for controlling loads, DG units and storage equipment in islanded distribution network 

systems. Skarvelis-kazaos et al. [198] have proposed an agent-based model to control multiple 

energy carrier systems. Khasawneh and Illindala [199] consider a micro-grid consisting of fuel 

cell batteries to supply crusher-conveyor load when power from the main grid is not available.  
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Moreno et al. [200] have developed a MILP model to schedule the optimal operation of ESSs by 

coordinating the delivery of various system services which are rewarded at different market 

prices. Mousavizadeh and Haghifam [201] have studied power flow analysis on AC/DC 

distribution networks, including weakly meshed ones, in the presence of DGs and ESSs. 

Palmintier et al. [202] explore design solutions that may never emerge when distributed energy 

resources are treated in a deterministic approach. Riaz et al. [203] present detailed analysis 

concerning the integration of RESs and ESSs in future grid scenarios. Other works in areas of 

ESSs and related subjects are compiled in [204]–[278].  

The integration of smart grid enabling technologies such as ESSs raises a number of concerns, 

mainly in the security of electricity supply, beginning with the fact that the established security 

requirements in different jurisdictions are defined almost exclusively for conventional assets, 

this is also one reason integration of ESSs is being delayed. In this perspective, and to speed up 

the integration of ESSs in the different networks, different jurisdictions, one of the main points 

that has to be made is leveling the field of action of this and all the others smart grids enabling 

technologies [158]. Regarding the ESSs, this technology has the ability to cope with the supply 

variation and uncertainty (mostly from RESs). However, the effect that comes from the 

integration of this technology has to be quantified. A good practice is the use of metrics, for 

example, see in [158]. These metrics could be regarded differently in different jurisdictions. 

For the ESSs case, one metric that could be used is the ratio between the flexibility of the load 

that can be delivered in an hour and the maximum load that can be suppressed by the ESSs in 

the previous year. This ratio can be adapted to all sources of supply. This would make it possible 

to achieve greater security of supply, eliminating one of the major obstacles to the integration 

of ESSs in the network. In general, the key pros and cons of ESSs can be summarized using the 

following bullet points: 

Pros of ESSs: 

• ESSs facilitate effective utilization of intermittent renewable sources; 

• ESSs can be key components of a smarter and integrated energy system; 

• ESSs can reduce the need for increased peak generation capacity; 

• ESSs can enhance both grid reliability and stability; 

• ESSs have their performance and costs continually improving. 

Cons of ESSs: 

• Energy losses as a result of round trip inefficiencies; 

• Additional cost and complexity; 

• Additional infrastructure and space requirements. 



41 

 

2.2.4.2 Energy Systems Integration 

The integration of multi-sectoral energy systems (for example, power-to-gas initiatives, 

electrification of the transport sector, etc.) is believed to add more dimensions to the flexibility 

needed to pursue a sustainable energy future. The advent of new technologies and emerging 

business models are expected to make such integration possible. The energy required by the 

heating and cooling as well as transport sectors is largely met by conventional energy sources 

(which are often non-sustainable). However, advances in technologies and growing concerns in 

energy security and environmental changes among others are already resulting in a paradigm 

shift in many countries. It is now widely accepted that electrification of such sectors shall be 

one of the solutions for the energy “poverty” and severe effects of global climate change that 

may unfold over the coming decades. Technologies such as internet of things (IOTs) are 

expected to facilitate further integration of the energy systems. IOT technologies “consist of 

the internet, global network based on communication protocols and things, which are the 

physical or virtual objects, devices, information and used interfaces” [279]. The performance 

of energy systems can be substantially improved via automated responses of IOT controlled 

systems of various sectors [279].  

In many countries, the transport sector is responsible for a significant portion of emissions. This 

is because of the heavy dependence of the sector on fossil fuels for mobility. Hence, this sector 

is identified as the main target for partly achieving the massive decarbonization process needed 

worldwide to address global climate change and mitigate its ensuing consequences. The 

flexibility potential that this sector possesses is immense, and this is vital to increase the level 

of RES integration in power systems. 

Another promising initiative closely related to energy systems integration is the power-to-X 

program, which involves converting electrical to any other form of energy. Power-to-gas (P2G) 

is one example that is widely accepted nowadays in many countries. P2G transforms power to 

hydrogen by means of electrolysis or to methane by a process called methanation [54], [280]. 

Hydrogen or methane can be stored in nominated pipe storage or in an underground reservoir. 

The conversion process to hydrogen can have an efficiency of about 75-80%; whereas, the 

conversion to methane is reported to have an efficiency of about 60-65% [280]. However, the 

reverse process (i.e. P2G-to-power) leads to a round-trip efficiency of about 36%, which can be 

the main source of controversy of such initiatives [280]. Hydrogen production from RESs can be 

understood as one type of ESS because this gas can be converted back to electricity using fuel 

cells or combustion power plants [54]. Methane could be absorbed by the gas distribution 

systems that have a large storage facility [54], [281]. Hydrogen requires large storage 

capacities, making investment costs very high and possibly reducing revenues from such an 

option [280]. On the contrary, methane requires a lower amount of storage (4-5 times less than 

hydrogen), making it economically attractive [280].  
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It has been reported that P2G provides an important flexibility mechanism, and deals well with 

the variability of RESs with the seasonal demand of gas, storing the gas in special facilities to 

stream it with no interruption in winter seasons [280]. This way, the energy produced from RESs 

can be better utilized, avoiding or minimizing curtailments. In addition, P2G can be used for 

ancillary services accessible by TSOs and can be integrated in spot markets for temporal 

arbitrage [280].  

In the future, P2G is largely expected to become one of the most competitive long term storage 

options, which at this moment is dominated by pumped hydro [281]. One advantage of P2G 

over a pumped hydro storage is that P2G can have dramatically larger energy storage potential 

[281]. The financial risk of P2G systems is the price risks originating from the gas sales [280]. 

However, suitable storage choices will help to alleviate price risks, and can enable P2G 

applications in the coming years [280]. Voluntarily or imposed by regulation, improvements in 

transparency and quality of accessible information on electricity prices and time series have 

been effectuated by many organizations [282]. The price uncertainty has appeared in most 

recent studies in the literature, for example in [283], where the operation and planning of 

systems with multiple assets are evaluated in terms of flexibility which incorporated in the 

steps of operation and investment, subject to long term uncertainties. However, majority of 

the models do not consider realistic time series of prices, turning into imprecise predictions of 

hourly electricity prices [282]. 

In general, energy systems integration has enormous potential in terms of flexibility. In other 

words, multi-energy systems can optimize different energy vectors such as gas, electricity and 

heat simultaneously, proving to be important sources of flexibility (for example, see [283]–

[285]). In particular, the study in [286] discusses in detail the flexibility potential and economic 

aspects of energy systems integration for renewable-rich systems. In addition, the effectiveness 

and viability of energy systems integration in terms of ancillary services provision has been 

demonstrated in the same study, i.e. [286]. 

However, it should be noted that the integration of multiple energy systems brings more 

flexibility to power systems if holistically optimized using holistic approaches that deal with 

different system trajectories. This is because of the fact that holistic approaches help to better 

quantify the strategic value of such an integration, as reported in [283], [287]–[291]. In [287], 

a stochastic decision support model is proposed for scheduling flexibility services in the next 

day, in which flexible consumers are exposed to dynamic prices in the retail electricity market. 

The problem has been modeled using a stochastic programming approach where uncertain 

parameters are represented through a scenario tree resulting in significant savings in terms of 

cost. In [288], Good and Mancarella present a multi-energy communities approach incorporating 

electrical and thermal storages. The approach covers all relevant energy vectors, allowing a 

more   comprehensive   modeling   of   the   different flexibility options. 
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In [283], a multi-energy system with different vectors is modeled, namely, electricity and heat 

simultaneously optimized, proving to be a valuable source of flexibility on the demand side. 

Planning these resources is done in the presence of price uncertainty of the energy vectors in 

the long term. However, the planning process of integrated energy systems is extremely 

challenging, particularly in the presence of long-term price uncertainty in the underlying energy 

vectors. The implementation of advanced tools to access the risk in the planning stages are 

encouraged to reach the potential of multi-energy systems, reducing risks from unfavorable 

realizations of uncertain parameters and capitalizing on the benefits of favorable realizations 

[283].   

2.2.4.3 Energy Markets 

Physical or technological means are not the only ones that can provide flexibility. For example, 

properly designed energy markets can also increase the flexibility of systems [54], [163]. 

Electricity markets are normally designed to  meet the following purposes among others [292], 

[293]: 

• Balance demand and supply in real-times;  

• Optimally use RES power outputs when congestion or any unforeseen condition occurs; 

• Effectively manage transmission and distribution constraints, congestions and 

bottlenecks; 

• Optimize sets for market agents taking into consideration grid requirements at specific 

times and locations; 

• Reduce grid investments especially if flexibility is used effectively incorporated in the 

TSO’s and DSO’s planning processes. 

A number of researchers have reported assessments in relation to the impacts of having flexible 

markets on various metrics. Eid et al. [163] provide a review of existing distributed energy 

sources acting as flexibility providers and trading platforms for distributed energy sources 

flexibility in electricity markets.  In [294], authors have analyzed three projects in the 

Netherlands and Germany to understand if organizational models for flexibility management 

guarantee retail competition and feasibility of upscaling in Europe. Saá et al. [166] propose 

congestion management mechanisms in smart-grids which rely on the wholesale electricity 

market. Ramos et al. [292] have proposed a market design that enable access to flexibility 

contracts to solve network problems and balance the grid at a specific location. The designed 

market is dimensioned in time, space, contractual and price-clearing perspectives. Torbaghan 

et al. [293] propose a framework of two mechanisms.  
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The first one is related to a pre planning process via markets and real-time dispatching, which 

includes day-ahead and intra-day mechanisms. This framework is operated by a local flexibility 

market operator. The second one is related to establishing a strategy for DSOs to seek the 

flexibility they need from the day-ahead and intra-day markets, as well as from the real-time 

dispatching at the lowest possible cost. Kornrumpf et al. [286] have modelled a framework for 

a local flexibility market based on Optimal Power Flow (OPF) calculations.  

Generally, earlier works by researchers have clearly demonstrated that properly designed 

electricity markets can substantially enhance the flexibility of power systems, and create 

conducive environment for flexibility market players to provide services that ultimately lead 

to more efficient systems. In particular, integrated energy markets facilitate access to 

neighboring markets. In recent years, such an integration process has been touted as the main 

mechanism for addressing the long-standing energy problems. For example, market integration 

can substantially minimize the frequency and the amount of curtailments of intermittent power 

sources, increasing their values. The flexibility requirements of larger and integrated power 

systems are in fact lower than that of local grids, mainly due to the geographical smoothing 

effects. Moreover, designing and implementing faster electricity markets (i.e. with markets 

shorter temporal resolutions) help to follow actual system conditions, avoiding unrealistically 

high pricing of forecasted system conditions. Instead, faster markets result in better pricing of 

real-time operational situations. Such markets also create an institutional flexibility mechanism 

that can support large-scale integration and utilization of variable energy sources. 

2.2.4.4 Regulatory Policies 

To abate global warming and meet climate change goals, a dramatically high reduction of GHG 

emissions is required worldwide. These targets are strongly dependent on renewable energy 

technologies [209],[294]. And, this requires appropriate regulatory policy interventions to be 

put in place on a state-wide and global scale, which speeds up the integration of such “clean” 

energy technologies and ensures their efficient utilization. For example, it has been some years 

since the European Union embraced ambitious targets for sustainable energy developments. By 

2050, all electricity consumption in the EU is expected to come from renewables [209]. EU 

countries have already drafted a number of regulatory policies designed to support these 

developments. Yet, there remain a lot of regulatory gaps in many countries (including the EU) 

that need to be addressed. For instance, investments in distribution networks are not being 

effectively stimulated by the present regulatory frameworks in many countries [209]. In 

particular, distribution systems can be at greater risks of outages, network congestions, 

inadequate RES integration and quality deterioration of energy delivered to end-users. Properly 

designed incentives for investments in distribution networks can scale up the integration of 

vRESs as well as their efficient utilization [209].  
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Regulatory revision of the financing model administered to DSOs by national energy regulators 

is essential for encouraging technological changes [209]. Regulators have leading 

responsibilities to encourage DSOs to invest and develop distribution grids in the best way 

possible. Nevertheless, the problem is that many regulators do not consider innovation in their 

regulatory frameworks, resulting in negligence to spend capital in innovative solutions and do 

not make the cost benefit analysis on their reports [209].  

There are some exceptions, but most regulators seem to only seek for short-term optimization 

while largely overlooking long-term requirements. For example, current regulatory frameworks 

in many countries hardly provide conducive environments for emerging market players such as 

flexibility service providers and multi-energy carriers to flourish and become competitive [295].  

Generally, new regulatory policies are highly needed to shape the long-term evolution of energy 

systems. Such policies play a critical role in creating flexible systems that are capable of 

efficiently handling all sorts of dynamics in the systems. It is important to note that effective 

regulatory frameworks clearly reflects market players’ roles and responsibilities for managing 

flexibility options provided by different resources in the future energy market. 

2.3 Chapter Conclusions 

This chapter has presented an extensive review of various flexibility options, rigorously 

discussing the prospects, challenges, advantages and disadvantages of each flexibility option. 

The flexibility options reviewed in this chapter are structured into different categories that are 

not only easy to follow and understand but also sensible enough from structural and technical 

standpoints. The work in this chapter complements existing review works by other researchers 

in related subjects, highlighting the importance of flexibility mechanisms in power systems that 

are experiencing unprecedented transformations from the supply side to the end-users. In 

addition, we provide insights into the challenges and opportunities associated with various 

flexibility options provided by different technologies. The growing need to integrate more 

“carbon-free” energy resources dramatically increases the flexibility requirements. Traditional 

flexibility mechanisms are not simply sufficient to meet the flexibility gaps created as a result 

of increasing variable renewables. Fortunately, there are a number of emerging and promising 

technologies that can be deployed at the supply-, network- and/or demand-sides and fill in 

these gaps in close coordination with existing flexibility mechanisms. These flexibility 

mechanisms are extensively discussed in this thesis.  
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Chapter 3 

Multi Flexibility Options Integration to Cope with 
Large-Scale Integration of Renewables 

This chapter focuses on the operation of an electrical distribution system with large-scale 

integration of solar and wind power. In order to cope with the intermittency inherent to such 

power sources, it is necessary to introduce more flexibility into the system. In this context, 

Demand Response, Energy Storage Systems and Dynamic Reconfiguration of the system are 

introduced, and the operational performance of the resulting system is thoroughly analyzed. 

To perform this analysis, two standard IEEE test systems are used: the IEEE 41-bus test system 

and the IEEE 119-bus in order to validate its scalability. 

3.1 Introduction 

The decarbonization of our electrical system brings new challenges for the electrical network. 

From the European perspective, for example, in a short period of time, European countries are 

facing the closure of significant parts of their generation mix in response to the Large 

Combustion Plant directive [296]. This can reduce the margins of capacity of generation to 

unsafe levels. In addition, the issues surrounding climate change have exacerbated the problem 

of fossil fuel shortages [297],[298]. 

Similarly, given the fact that electrical networks are old infrastructures, conventional 

management methods of such networks are becoming obsolete [299]. The growth of demand, 

concerns with CO2 emissions and varied consumption profiles raise new reasons for investigating 

new solutions.  

In the topic of Smart Grids, several solutions have been studied to operate electrical networks 

more efficiently, more environmentally friendly and with better reliability indices. A recent 

phenomenon is that the share of distributed Renewable Energy Sources (RESs) in the overall 

power production mix has been increasing in many countries.  

One of the benefits of such integration is to reduce network losses because generation is placed 

closer to demand. However, its inherent intermittence and lack of competitive storage 

mechanism are currently raising one of the greatest issues on the continued development of 

these clean energy technologies.  
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When a large number of these energy sources are integrated into network systems, several 

problems may arise. One of the problems has to do with the rapid changes in the solar and wind 

power generation during the operation time. And, this is due to the variability and uncertainty 

such power sources. Other problems that come with the integration of renewables are of a 

technical nature such as the adjustment of network security and protection, quality of service, 

and bi-directional power flows among others. 

Despite several benefits, it is sometimes argued that an upgraded dispatch of these 

technologies may increase energy costs and reduce the overall efficiency of the system [300]. 

For example, in the countries of northern Europe, where there is already a lot of renewable 

power generation, there often appears a problem of excess electricity production. Although 

excess energy production can be exported to other countries, interconnection capability may 

not be sufficient. When renewable power production is high, excess production may force the 

system operator to dispatch down wind turbines until demand and supply are balanced.  

As conventional methods have been limited to being based on the use of High Cost/Low 

Efficiency peaking plants or curtailment of renewable power generation, the system operator 

needs to have more flexibility options that are economical and rapidly acting resources [54].  

In relation to all this, the focus so far has mainly been on Demand Response (DR), Dynamic 

System Reconfiguration (DSR) and deployment of Energy Storage Systems (ESSs). A system 

reconfiguration aims to obtain the power network topology that best suits conditions in the 

system at a particular moment (which can be on an hourly, daily or seasonal basis). DR and ESSs 

can achieve the same goals, not needing a market structure during emergency situations. The 

objectives of these two technologies can be load shifting, peak clipping, valley filling, strategic 

conservation and flexible load shaping [301].  

In the medium term, large-scale integration of RESs brings new challenges that evoke wider 

system flexibility needs. And, in the long term, the electrification of heating and transportation 

can put more pressure on system integration. So, the flexibility on the demand side can partly 

fill in the needs described above. If well incentivized, demand can be more responsive to system 

requirements. It can also cope with the stochastic behavior of RESs in the absence of proper 

energy storage media.  

The economic effects of the introduction of large-scale RESs on energy systems are related to 

the profile, balances and network-related costs that can come as a reduction in revenue for 

the provision of RESs or as additional costs, such as the cost of integration for market-specific 

participants.  
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From the perspective of the overall energy system, the levelized cost of electricity (LCOE) of 

the RES power generation compromises the LCOE of the technology itself and the cost of 

integration. The current magnitude of RES integration costs depends on the flexibility of each 

system, i.e. to what extent demand-side and supply-side can accompany the inherent 

variability of wind and solar systems. It should be noted here that flexibility is the ability to 

balance rapid changes in the renewable production and forecasting errors of the energy system 

or can be described as a general characteristic of the ability of a specific aggregation of 

generators to respond to the variation and uncertainty of the network load [302].  

In general, flexibility in the traditional electrical system has been dominated by conventional 

thermal units. On the other hand, the current electricity system has incorporated a flexible set 

of resources, namely DR, market, ESSs and DSR among others, to help mitigate the impact of 

RESs integration (namely the variability and uncertainty), in addition to the uncertainty 

associated with demand itself. The different types of flexibility sources mentioned, i.e. DR, 

market, ESS and DSR, have been explored by different approaches in the literature and in 

different configurations. From these resources, the first three are the most commonly used in 

the literature; while the last one is rarely exploited as a source of flexibility for the system. 

Among the approaches present in the literature, there is a set of works that explore DR's 

flexibility [288], [303]–[315]. In [315], a description of the flexibility resources by the DR to 

balance the system at the planning level is presented, not considering any other source of 

flexibility other than DR. Another set of approaches (more embracing) is the flexibility that 

comes from the junction of DR and ESSs. Within this set of works, there are different 

configurations in the approaches. A very significant set explores the flexibility of the DR in the 

form of demand side management, for residential heating and also cooling considering thermal 

energy storage systems [303], [305], [313], [314].  

A new active control form of heating/cooling systems in the smart grid context is explored in 

[303], with the aim of promoting the integration of RESs. Mubbashir et al. [305] present a work 

to increase the system's operational flexibility focusing on scaling up the integration of wind 

power generation together with DRs, but in the absence of intelligent network management 

using real-time thermal rating to support hourly wind power production. A similar work is 

presented in [304] whose focus is on mitigating the wind power output fluctuations by means 

of demand response.  

In addition to these approaches, there is still a set of works that use the core of the previous 

approaches, but adding/replacing some aspects or entities in the optimization process, namely, 

electric vehicles, ancillary services, market scheme or dynamic prices [51], [304], [306], [307], 

[309]–[312], [316].  
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Table 3.1 – Literature review from related works. 
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In [316], the potential of flexible demand resources such as heat pumps and thermal storage in 

local industries is studied. The optimization process of this thesis also considers the presence 

of electric vehicles (EVs) and RESs. In [309], some business models in the electrical sector are 

explored to evaluate the flexibility mechanisms over time. The works in [310] and [51] focus 

on the flexibility generated from ancillary services. In [310], a demand side management 

methodology is presented based on the aggregation/ disaggregation of residential thermal 

storage for different time intervals, ensuring the thermal comfort of the individual dwellings. 

In [51], a load aggregation methodology is presented based on the prioritization of loads 

according to their flexibility. Different types of flexible loads are categorized as thermostat-

controlled loads (TCL), non-TCL and battery-based non-TCL and non-urgent loads.  

The works in [306], [312] have taken market in to consideration. In [306], a day-ahead hourly 

pricing (DAHP) mechanism is proposed for distributed DR in uncertain and dynamic 

environments considering electricity price in the retail market, in order to be applied in later 

works with DR, ESSs, and renewable integration. In [312], an Optimal Bidding Strategy for a DR 

aggregator is presented in the Day-Ahead Market in the presence of demand flexibility. Good 

and Mancarella in [288] have presented a multi-energy work in order to ensure that thermal 

comfort cannot be degraded beyond agreed limits in the event of a call. The approach is 

demonstrated through a case study that illustrates how the different flexibility options can be 

used to integrate more electric heat pumps into a capacity constrained smart district that is 

managed as a community energy system, while maximizing its revenues from multiple 

markets/services. There are also approaches that seek only the flexibility on the generation 

side, as is the case of [322], [326]–[328]. These works investigate the flexibility of a system 

featuring RESs and ESSs. In [326], the flexibility resulting from the joint integration of RESs and 

ESSs is investigated. Steffen and Weber in [327] investigate the effect of pumping storage as a 

means of system flexibility to accommodate a higher level of RES in the considered system. In 

[328], a case study of China for RES expansion is presented, analyzing the flexibility constraints 

in the low-carbon policy. 

It should be pointed out that majority of the existing approaches reviewed here focus on the 

planning level [303], [305], [309], [315], [316], [321], [323], [327]–[331] and not in terms of 

system operation. Moreover, Table I provides a summary of existing works that are closely 

related to the present work. From this table, it is possible to verify that there are very few 

works that consider DSR as a flexibility source, and those which consider this resource do not 

approach it from a flexibility analysis perspective, as it is the case in [322] and [323].  

Therefore, despite the existence of several works in the area of power systems flexibility, most 

of the works in the literature focus on the flexibility that can be obtained from the demand 

side, in heating and cooling schemes of residential houses, or in conjugation with EV in the 

presence of RESs.  
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It should be noted that, with the exception of the works that consider EV, the ESSs considered 

throughout the vast majority of the remaining works are of the thermal storage type (by the 

process described above) or combined with industrial thermal storage through aggregation that 

aim supply the residential sector. In the presence of large-scale integration of RESs, this thesis 

differs from the previous ones because it considers the existence of DSR, ESSs (battery-type) 

and DR, analyzing the impacts of such a mix from the flexibility perspective. The current work 

(in this chapter) aims to further assess the level of RES integration in the energy mix with this 

approach.  

In addition to the flexibility analysis perspective, this thesis also presents a new optimization 

model that considers the uncertainty and variability of the renewables, which is one of the 

salient contributions of our work. 

 

3.2 Handling Uncertainty and Variability 

3.2.1 Description 

Uncertainty in this thesis refers to the degree of precision that each parameter is measured. 

As for variability, it is referred to as “the natural variation in time of a specific uncertain 

parameter” [332]. These terminologies are employed and followed in this thesis when referring 

to operational variability and uncertainty. For example, demand can be characterized by its 

hourly variability that has associated some degree of uncertainty, associated to the error that 

can be introduced by predicting the demand.  

In this thesis, scenarios are used for the operation period. A scenario represents a sequence of 

events of an uncertain parameter. For example, the RES power output uncertainty is translated 

by a possible number of story lines. The operation period is the time window where the 

operation variables are being analyzed. In this work, an operation period of 24 hours is defined.  

In the current work, the uncertainty and variability associated to the considered problem are 

taken into account through a stochastic process. For a given stochastic parameter, instead of 

being considered as only a single evolution mode, different possible realizations are considered, 

each with associated probability. 

3.2.2 Uncertainty and Variability Generation 

Variability and uncertainty are non-exclusive characteristics of renewable power generation. 

There are other parameters in the optimization process that are also characterized by these 

variables [333]. In this thesis, three sources of uncertainty and variability are identified, namely 

wind, solar and demand.  
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To account for demand uncertainties, two demand profile scenarios are taken, considering a 

±5% prediction error margin from real-life short-term demand profile (i.e. 24 hours) [334]. This 

then leads to three demand scenarios, which are used in the analysis. Wind speed and solar 

radiation are generated following the methodology in [332]. The average wind speed and solar 

radiation profiles are obtained based on real data. These values are plugged in equations (1) 

and (2) to obtain the respective power outputs. The power outputs cannot be used 

straightforward because they may not directly maintain the proper correlation with the average 

demand profile. Therefore, the power outputs should be readjusted to replicate the time-based 

correlations that happen between demand, solar radiation and wind speed. The correlation 

between wind and solar, wind and demand, and solar and demand are respectively -0.3, 0.28, 

0.5, being obtained from [332].  

After obtaining the correlation matrix, the wind and solar power outputs can be transformed 

into new ones, given the correlation between them. Cholesky factorization is used to adjust 

the data series. The method consists of having a correlation matrix R, uncorrelated data D, so 

that a new data C, whose correlation matrix is R, is generated by multiplying the Cholesky 

decomposition of R by D. The power output profiles are determined by using these readjusted 

values. Note that the following power curve is used in converting the wind speed into power: 

, = 0; 0 ≤ ≤+ 	; 	≤ 	 	≤ 		;																		 	≤ 	 		≤ 	0; ≥  (3.1) 

In equation (3.1), parameters A and B are given by the expressions in [335] and [336]. In the 

same way, the solar power output are determined using the following expression [337]:  

, = ; 0 ≤ ≤	 ; ≤ 	 ≤ 	; ≥  (3.2) 

Uncertainty pertaining to wind and solar power productions is assumed to have ±15% deviation 

from the average power output profiles. This translates approximately to a ±5% forecasting 

error in wind speed or solar radiation. The hourly profiles of wind and solar power outputs are 

constructed based on the considered deviations. This is transformed into three wind and solar 

power outputs profiles (namely, high, low and average). 

The individual scenarios of demand, wind and solar power outputs are combined to form a set 

of 27 scenarios (i.e. 3*3*3). All of these scenarios are expected to be equally probable with  

equal to 1/27. 
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3.3 Model Formulation 

3.3.1 Objective Function 

To carry out the required analysis and account for the variability and uncertainty inherent to 

the problem at hand, a stochastic MILP optimization model is formulated. Model accuracy is 

guaranteed because the subsequent optimization model employs a linearized AC-OPF based 

network model, which has the right balance between accuracy and computational 

requirements.  

The resulting optimization model minimizes the algebraic sum of four relevant cost terms while 

fulfilling a number of technical and economic constraints. These cost terms are related to 

network switching, operation, unserved power and emissions in the system: 

	 = + + +  (3.3) 

The first term in (3.3) is related to the total switching costs that is a result of the distribution 

network reconfiguration (DNR). Note that a switching cost occurs when the status of a given 

feeder changes from open (0) to closed (1) or vice-versa. This gives the absolute difference 

between sequential switching operations in time. The absolute difference in (3.4) is 

represented by a module, and it can be linearly represented by introducing two non-negative 

variables: ,  and , .  is therefore expressed by the following equation: 

= ∗ ∆ℎ ∗ , + ,∈∈  (3.4) 

where: 

, − 	 , = , − , ; , ≥ 0; , ≥ 0 (3.5) 

, = 1;	∀ ∈ Ω 	 	 , = 0;	∀ ∈ Ω  (3.6) 
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The sets Ω  and Ω  refer to the normally closed feeders and tie lines, respectively. The statuses 

of the feeders and tie lines can change during the optimization period i.e. depending on the 

optimal topology obtained following the dynamic network reconfiguration. TEC, the second 

term in (3.3), characterizes the expected production costs of energy by distributed generations, 

ESSs and by importing power from the transmission system: 

= +	 +	  (3.7) 

Each term in (7) can be defined as: 

=	 ∈ ∆ℎ , , , , , ,∈∈  (3.8) 

=	 ∈ ∆ℎ , , , , , ,∈∈  (3.9) 

=	 ∈ ∆ℎ , ç, ,∈∈  (3.10)

 

The expected cost of energy not supplied is formulated in TENSC; that is, the third term in (3). 

The load not supplied can be in the form of active and reactive power. Hence, this is computed 

the following expression: 

	 = 	 ∈ 	 ∆ℎ , , , + , , ,∈∈  (3.11)

Here, ,  and ,  define penalty parameters for active and reactive power that is not supplied. 

These two parameters are each set to a sufficiently high value, which roughly quantifies the 

value of lost load. The fourth and the last term in (3.3), TEmiC, is related to the expected costs 

of emissions in the system. These costs are a result of producing power using local DG resources 

and by importing power from the transmission system: 
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=	 +	  (3.12)

The terms in (3.12) are calculated by the following expressions: 

=	 ∈ ∆ℎ , , ,∈∈∈  (3.13)

=	 ∈ ∆ℎ , ,∈∈∈  (3.14)

3.3.2 Constraints 

The healthy operation of the distribution system is guaranteed by the technical and economic 

constraints that are respected during all operational times. One of the major technical 

constraints is the Kirchhoff’s current law [332], which states that the sum of all flows arriving 

at a bus must be always equal to the sum of all flows leaving that bus at any time.  

Therefore, the active power flows (3.15) and reactive power flows (3.16) should be respected. 

Equation (3.15) includes in the incoming flows the active power produced by distributed 

generators, the power flows associated to the feeder (incoming), the power that is being 

discharged from ESSs and the power that is being imported from the transmission system ( ) 

if the considered bus has a substation. On the other hand, the outgoing flows consider the 

demand, losses and power flows associated to the feeders.  

, , ,ℎ∈ + , , , − , , , + , ,∈ + 	 , , + , ,, ∈ − , , =	, ∈ ,+ 12 , ,, ∈ + 12 , ,, ∈ 	; ∀ ;	∀ ;  
(3.15)

, , ,ℎ∈ + , , , + , , + 	 , , + , ,, ∈ − , , =	, ∈ , + 12 , ,, ∈+ 12 , ,, ∈ 	; ∀ Ω ;	∀ ;  
(3.16)
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The power flow in any feeder must respect the Kirchhoff’s voltage law. This is considered by 

including linearized power flow equations. This linearization follows two assumptions. First, 

the voltage angle difference  is normally very small in distribution networks. In trigonometric 

approximations, this results in sin ≈ 	  and cos ≈ 	1. Second, the bus voltage magnitudes 

are expected to be close to the rated value  in distribution systems. By using these 

simplifying assumptions, the complex nonlinear and nonconvex flow equations can be linearized 

as in [40]: 

, , − ∆ , , − ∆ , , − , , ≤ 1 − ,  (3.17) 

, , − 	 −	 ∆ , , − ∆ , , − 	 , , ≤ 1 − ,  (3.18) 

where ∆ ≤ ∆ , , 	≤ 	∆  and , ,  is defined as  

 , , = , , − , ,  , i and j resemble to the same line k. Note that  ∆ , ,  	corresponds to the 

voltage deviation at node i (from the nominal value) in a given scenario and hour. The transfer 

capacity of each line should respect the maximum power flow limits, given by:	  
, , 	+ 	 , , ≤ ( )  (3.19) 

In addition, active and reactive power losses in each feeder are given by: 

, , = , , + , ,
 (3.20) 

, , = , , + , ,
 

(3.21) 

To model ESSs, the following constraints are added [332]: 

0	 ≤ , , , ≤ , , , , ,,  
(3.22) 
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0	 ≤ , , , ≤ , , , , , (3.23) 

, , , + , , , ≤ 1
(3.24) 

, , , = , , , + , , , − , , , ∆ℎ (3.25) 

, ≤ , , , ≤ ,
(3.26) 

, , , 	 = , ; , , , = . ,
(3.27) 

Equation (3.22) and (3.23) set the limits of power charged and discharged, respectively. In 

(3.24), it is ensured that the operation of charging and discharging of ESSs does not occur at 

the same time. Equation (3.25) denotes the state of charge. Equation (3.26) ensures that the 

storage level is within the permissible range. Eq. (3.27) ensures that the storage level at final 

time period is the same as the initial storage level.  

The active and reactive power limits of power generators are generally enforced by adding the 

following constraints: 

 

, , , ≤ , , , ≤ , , ,  
(3.28) 

, , , ≤ , , , ≤ , , ,  (3.29) 

In the case of wind and solar PV power generators, , , ,  is often set to zero; whereas, 	 , , ,  is 

determined by the strength of primary energy resources (wind speed and solar radiation). 

Hence, it is set to the actual power production, , , , .  
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In the case of variable power generators such as wind and solar PV, the expressions related to 

reactive power production constraints are derived based on the assumption that each of the 

variable power generators are operated at a constant power factor, . In addition, 

conventional wind and solar PV sources do not often have the capability to provide reactive 

power support; hence, they are operated at a constant and lagging or unity power factor. Under 

such an operation, the following constraints should be used: 

, , , = tan cos ( ) ∗ 	 , , ,  (3.30) 

Whereas, for wind and solar PV type DGs with reactive power support capabilities such as doubly 

fed induction generator based wind turbine and voltage source inverter based PV, the following 

constraints are used: 

− 	 , , , 	≤ 	 , , , ≤ 	 , , ,  (3.31) 

The above two inequalities, i.e. (3.31), show that the wind and solar type DGs are capable of 

operating between 	  leading power factor (capacitive) and  lagging power factor 

(reactive). This means such DGs are capable of “producing” and “consuming” reactive power 

depending on the operational situations in the system. Note that the upper and lower bounds 

in (3.31) are determined by assuming a constant power factor operation. But the reactive power 

production or consumption can assume any optimal value between these bounds, depending on 

the operational situation of the system. 

Also, the reactive power at the substation bus should be subject to reactive power limits (again 

under the assumption of constant power factor operation): 

− tan ( ) 	 , , 	≤ 	 , , ≤ tan ( ) 	 , ,  (3.32) 

The reactive power supplied by switchable capacitor banks (SCBs) is limited by inequality 

(3.33): 

0	 ≤ 	Q , , , ≤ x , , 	Q  (3.33) 

where 	Q  is the minimum deployable unit of a capacitor bank. 
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To account for DR, the following equations are introduced. Note that it is accounted for 

responsive active and reactive demand [338]: 

, = 	 ,, 1 + 	α , 		 , −	 	 (3.34) 

, = 	 ,, 1 + 	α , 		 , −	  (3.35) 

	 = 	∑ ,24 	 (3.36) 

, = = ∑ ,8 , ℎ ∈ 1 − 8= ∑ 	 ,10 ,				ℎ ∈ 		 9 − 18= ∑ 	 ,6 , ℎ ∈ 19 − 24
 (3.37) 

The parameters ,,  and ,,  reflect active and reactive power before DR implementation. 

The average electricity price of the day (3.32) is assumed to be the flat price. The Real Time 

Pricing ,  is divided into three categories corresponding to valley, off-peak and peak times 

of demand profile (3.36). Each one is the average of the price in that time.  

Table 3.2 contains the elasticities , , considered in the simulations (used only for the second 

case study). In addition to the above constraints, it must be ensured that the distribution system 

operates radially. For this, the radiality constraints in [339] are included in our model. 

Table 3.2 - Elasticity Matrix 

 Valley Off-Peak Peak 

Valley -0.2 0.008 0.008 

Off-Peak 0.01 -0.2 0.008 

Peak 0.012 0.008 -0.2 
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3.3.3 Methodology 

The present methodology is explained in the flowchart presented in Figure 3.1. This model is 

composed by a multiobjective approach in the perspective of minimizing the total costs 

considering the stochastic nature of RESs (solar and wind) as well as the demand. Therefore, 

the total costs are minimized considering four cost terms: the cost of switching, the cost of 

energy, the cost of energy not supplied, and the cost of emissions. The aim of the optimization 

is to obtain a coordinated model where the benefits of flexibility found through the use of DSR, 

DR ESS modeling along with an AC OPF model are verified, for example, in terms of allowing 

for greater integration of RESs. 

 

Figure 3.1 - Methodology flowchart. 
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3.4 Case Study, Numerical Results and Discussions 

In this chapter, two IEEE test system are used to validate the new proposed methodology. One 

small system the IEEE 41-bus test system, and a large test system, the IEEE 119-bus test system 

in order to validate its scalability. The numerical results and respective discussion for the two 

test systems are presented in the following sections. 

3.4.1 Case Study 1 (IEEE 41-bus test system) 

3.4.1.1 - Input Data and Assumptions 

A standard IEEE 41-bus test system, whose single-line diagram is shown in Figure 3.2, is 

employed here to perform the required technical and economic analysis. The total active and 

reactive power demand of this system are 4.635 MW and 3.25 MVAr, respectively. The nominal 

voltage of the system is 12.66 kV.  Further details and information of this test system can be 

found in [340], [341].  

The optimal locations and sizes of various distributed energy resources such as wind and solar 

type DGs, ESSs and SCBs in [341] are considered in this work. The only exception is at bus 14, 

where, instead of the optimal DG size (3 MW) reported in [341], a 2 MW DG is considered 

throughout this analysis. To make this chapter self-contained, the input data with regards to 

reactive power sources, DGs and ESSs are presented in Tables 3.3, 3.4 and 3.5 [341]. Figure 3.2 

also clearly shows the locations of the considered DGs and ESSs. In addition, the following 

considerations are made when carrying out the simulations:  

• The operational analysis spans over a 24-hour period, with the possibility of hourly 

network reconfiguration.  

• The maximum allowable deviation of the nodal voltage at each node is set to ±5% of 

the nominal value (12.66 kV).  

• For all simulations, the substation serves as the reference node, whose voltage 

magnitude and angle are set equal to the nominal value and 0, respectively. 

• The power factor at the substation is set equal to 0.8, and this is held constant 

throughout the analysis. The power factor of all DG types is considered to be 0.95.  

• The emission rate at the substation is arbitrarily set to 0.4 tCO e/MWh while those of 

solar and wind type DGs are assumed to be 0.0584 and 0.0276 tCO e/MWh, respectively.  

• The price of emissions is considered to be 7 €/tCO e.  
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• The tariffs of solar and wind power generation are set equal to 40 and 20 €/MWh, 

respectively.  

• Both charging and discharging efficiency of ESSs is 90%.  

• The variable cost of operating ESSs is considered as 5 €/MWh.  

• The cost of load shedding is 3000 €/MW, and any unserved reactive power is also 

penalized by the same amount. 

• All feeders (including tie-lines) have a maximum transfer capacity of 6.986 MVA, which 

needs to be respected. 

• All big-M parameters are set equal to 20, which is sufficiently large for the considered 

system. 

• The number of partitions considered for linearizing quadratic terms in (3.17)—(3.19) is 

5, which is set according to the findings in [342]. 

• The switching cost parameter is set to 10 €/switching. 

• All self-elasticity parameters are set equal to -0.2 while the effect of cross-elasticities 

is not accounted for in this work. This means that cross-elasticity parameters are all 

considered to be zero. 

 

 

Figure 3.2 - IEEE 41-bus distribution system with new tie-lines (square and circle dots 
represent the locations of ESSs and DGs, respectively). 
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Table 3.3 - Placement and Size of Capacitor Banks 

Location (Bus) Size [MVAr] 

7 0.9 

14 1.3 

24 0.1 

25 0.3 

29 0.3 

30 1 

31 0.2 

32 0.5 

37 0.1 

38 2 

39 0.1 

40 0.6 

 

Table 3.4 - Location and Size of DGs 

vRES Type Location (Bus) Size [MW] 

PV 32 1 

PV 38 1 

Wind 7 1 

Wind 14 2 

Wind 29 1 

Wind 32 1 

Wind 38 1 

Wind 39 1 

 

Table 3.5 - Location and Size of ESSs 

Location (Bus) Size [MW] 

14 2 

30 1 

32 1 

40 1 
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In addition, for the sake of brevity, the energy intensities of solar and wind power sources is 

considered to be uniform throughout the system nodes. This means that the power generation 

profiles of solar and wind type DGs are the same in all the nodes where these resources are 

connected to. Moreover, it is assumed that the energy consumption patterns at all load nodes 

follow the same trend.  

In order to account for the uncertainty pertaining to demand, wind and solar power outputs, 

six different scenarios are considered for each uncertain parameter, as shown in Figures 3.3 

through 3.5. As can be seen in these figures, each scenario represents possible hourly 

realizations of the uncertain parameter over the 24-hour period. The individual scenarios are 

obtained by clustering a larger number of scenarios (30 in this case). These scenarios are then 

combined to form a new set of 216 (63) scenarios that are considered in the analysis. 

 

Figure 3.3 - Considered demand scenarios. 

  

Figure 3.4 - Considered solar PV power output scenarios. 
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Figure 3.5 - Considered wind power output scenarios. 

 

Electricity prices are assumed to follow a similar trend as demand, varying between  

107 €/MWh during peak and 30	€/MWh during shallow hours. This is depicted in Figure 3.6. 

The potential of DR in the provision of flexibility for integrating vRESs is assessed by considering 

different self-elasticity values. Figure 3.7 demonstrates the impact of DR in the hourly 

consumption profile. In the results section, we shall present analysis results for a self-elasticity 

of -0.2. 

 

 

Figure 3.6 - Dynamic electricity price. 
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Figure 3.7 - Flexibility via demand response. 

3.4.1.2 - Numerical Results and Discussions 

To ease the aforementioned analysis work, a total of six cases are considered here. Table 3.6 

summarizes the distinctive features of each case. As can be observed in this table, all cases 

except the first case have two things in common – dynamic network reconfiguration (DNR) and 

DG integration but differ in other aspects as clearly shown in Table 3.6.  

The first case is related to the “do-nothing” scenario, where no distributed energy resource is 

connected and the entire load is met by importing power via the substation at bus 1. And, this 

is referred to as the “Base case”. The second one considers DG integration with dynamic 

network reconfiguration, and is hereinafter referred to as “Only DNR”. Note that DNR deals 

with the possibility of optimally changing the statuses of feeders (on an hourly basis) depending 

on the operational situation in the system. This case helps to understand the possible 

contribution of DNR in terms of enhancing system flexibility, and thereby increasing vRES 

utilization level. In addition to DNR, the third case considers switchable capacitor banks as a 

means of flexibility option. From now onwards, we shall refer this as the “Plus SCBs” case. The 

fourth and the fifth cases are similar in that both consider the flexibility options provided by 

DNR, SCBs and ESSs. The only difference between these two cases is that the former does not 

have DR integrated as an additional flexibility mechanism. These cases are denoted as “Plus 

SCBs & ESSs” and “Full flex”, respectively. The last case only considers the flexibility options: 

DNR, SCBs and DR, and we shall denote this by “Plus SCBs & DR”. Note that lower bound of 

nodal voltage is relaxed in the base case to avoid infeasibility. This is due to the fact that the 

original system is poorly compensated. And, under this circumstance, it is not technically 

possible to meet the high reactive power requirement in this system while simultaneously 

imposing the voltage limits.  
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For comparison purposes, the average voltage deviation at each bus is presented in Figure 3.8. 

This also displays the minimum and maximum average values corresponding to different 

operational situations. We can observe that most of the voltages fall outside the permissible 

range, particularly at the nodes located far away from the substation. The lowest voltage 

deviation occurs at bus 41, which can reach 18% in some operational situations. 

 

Table 3.6 - Details of the cases considered in the analysis  

Cases 
Features 

DNR DGs SCBs ESSs DR Voltage limits 

Base case No No No No No Not imposed 

Only DNR Yes Yes No No No Imposed 

Plus SCBs Yes Yes Yes No No Imposed 

Plus SCBs & ESSs Yes Yes Yes Yes No Imposed 

Full flex Yes Yes Yes Yes Yes Imposed 

Plus SCBs & DR Yes Yes Yes No Yes Imposed 

 

 

 

Figure 3.8 - Average voltage deviation profiles with no flexibility options (base case). 

 



68 

 

Table 3.7 compares the objective function values and average losses corresponding to the 

different cases considered in the analysis. Compared to the base case, we can see that there 

are substantial improvements in the values of the designated function and variables. In the 

“Only DNR” case, for example, the total cost is reduced by about 9% and average losses by 24%. 

However, the vRES penetration level in this particular case (which stands at 12.2%) is not 

significant; solar PV and wind type DG utilization levels are only 0.4% and 11.8%, respectively.  

The wind and solar PV power sources are not being utilized because of technical constraints 

mainly related to the voltage limits. Since the system is not well-compensated, more power 

needs to be imported to support the high reactive power requirement in the system. Injecting 

more active power from the DGs, without proper compensation, would otherwise lead to 

voltage hikes which is not acceptable.  

Figure 3.9 shows the energy mix in the “Only DNR” case. Based on these results, it seems DNR 

alone may not contribute enough to enhance vRES penetration level in distribution systems. 

However, this may be case-dependent. Moreover, some of the assumptions made in this work 

may not reflect the real potential of DNR as a key flexibility option. For example, the 

assumptions on the uniform patterns of electricity consumptions and vRES power outputs may 

not encourage more frequent reconfigurations of the network so as to adapt to varying 

operational situations. 

 

Table 3.7 - Total expected costs and average losses for the considered cases 

Cases Total cost (€) 
Average losses  

Voltage limits 

Active (MW) Reactive (MVAr) 

Base case 6036.281 0.275 0.201 Not imposed 

Only DNR 5512.385 0.208 0.158 Imposed

Plus SCBs 2677.782 0.073 0.058 Imposed

Plus SCBs & ESSs 2229.248 0.096 0.075 Imposed

Full flex 2151.926 0.093 0.073 Imposed

Plus SCBs & DR 2522.484 0.072 0.057 Imposed
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Figure 3.9 - Aggregate energy mix in the system in the “Only DNR” case. 

 

In the case of “Plus SCBs”, the results in Table 3.7 show that the reduction in total cost and 

losses is simply dramatic, and so is the level of vRES penetration. Compared to the base case, 

costs are slashed by about 56% while the reduction of losses amounts to more than 73%. In this 

case, solar PV and wind cover about 12.6% and 66.8% of the aggregate demand in the system 

over the whole day. The energy-mix corresponding to this case is depicted in Figure 3.10. As 

we can see, there are hours where the system operates in island mode (see the first four hours). 

This mean the demand in these hours is fully met by locally produced renewable power. 

Generally, the results here reveal the substantial benefits of SCBs in enabling a large-scale 

penetration of variable energy resources. In other words, a properly compensated distribution 

system can manage the technical risk posed by the intermittent nature of such resources. 

As can be observed in Table 3.7, the overall cost is further reduced in the “Plus SCBs & ESSs” 

case by 63% in comparison to that of the base case. However, losses are slightly higher in this 

case than in the “Plus SCBs” one. This is mainly because of the fact that some feeders carry 

more power to charge/discharge the ESSs as opposed to the “Plus SCBs” case. It should be 

noted that the losses are yet substantially lower than that of the base case by 65%. The presence 

of ESSs in the “Plus SCBs & ESSs” case further increases the flexibility of the system, and allows 

a more efficient utilization of the “cleaner” DG power. This is can be seen in Figure 3.11. One 

interesting observation in this figure is that the system operates autonomously during peak 

hours by releasing the cheaper energy stored in the ESSs during valley and off-peak hours. Here, 

solar and wind power contribute 14.3% and 72.2% to the total energy consumption during the 

whole period. This means the total penetration level of vRESs reaches 86.5%, which is very high 

by any standard. 
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Figure 3.10 - Aggregate energy mix in the system corresponding to the “Plus SCBs” case. 

 

 

Figure 3.11 - Aggregate energy mix corresponding to the “Plus SCBs & ESSs” case. 

 

The results in Table 3.7 also demonstrate that the introduction of DR, as in the “SCBs & DR” 

case, improves the flexibility of the system, and leads to the lowest losses (with an 

approximately 74% reduction in comparison to the base case). This is because of the relatively 

reduced amount of flows in the feeders especially during peak hours. Likewise, the total cost 

here is reduced by about 58%. This is higher by 2% than that of the “Plus SCBs” case. The 

aggregate energy mix corresponding to the “SCBs & DR” case is shown in Figure 3.12. The shares 

of wind and solar PV power production over the whole period are 12.4% and 67.9%, respectively, 

which brings the total vRES penetration level to 80.3%. Because of the absence of a storage 

medium, this value is lower than the 86.5% share in the “Plus SCBs & ESSs” case. 
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Figure 3.12 - Aggregate energy mix corresponding to the “SCBs & DR” case. 

 

As mentioned earlier, the “Full flex” case jointly deploys all four technologies that are capable 

of providing flexibility to the system: DNR, SCBs, ESSs and DR. As expected, this case leads to 

the lowest overall cost in the system (i.e. about 64% lower than that of the base case). As can 

be seen in Table 3.7, the benefit in terms of losses reduction is also evident even though this 

is slightly higher than that of the “Plus SCBs & DR” due to the same reasons as before. Because 

of the increased system flexibility in the “Full flex” case, the amount of imported energy is 

significantly lower than that of any other case. The total share of vRES power production 

reaches 86.6% (see Figure 3.13). Wind and solar PV type DGs each contribute 14.4 and 72.2%, 

respectively.  

So far, the analysis has been in terms of cost, energy mix and losses. Obviously, these are all 

relevant factors. However, it is also important to analyze the performance of the system from 

the technical point of view. To this end, the voltage profile is a good indicator. Ideally, voltage 

deviations in all nodes are desired to be close to the nominal value. But the nodal voltages 

often vary within certain permissible range (which in our case is 1 ± 5% of the nominal voltage).  

Figure 3.14 shows average deviations of voltages at every node in the system for all the cases 

considered in this work. This figure clearly shows that the introduction of flexibility mechanisms 

dramatically improve the voltage profile within the system. This is very critical to maintain the 

healthy operation of such a system. The “Only DNR” case alone keeps the voltages within the 

allowable range. For the remaining cases, the average voltage deviations for most of the nodes 

are practically insignificant, averaging at about 1%. 
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Figure 3.13 - Aggregate energy mix corresponding to the “Full flex” case. 

 

 

Figure 3.14 - Comparison of average voltage profiles for the different cases. 

 

The benefits of all flexibility options considered in this work are evident with significant impact 

in achieving minimization of total costs of operation in the distribution system. Analysis of 

jointly or separated operation of ESSs, capacitor banks, vRES and switching substantially 

improved voltage profiles. Operation of distribution system with DR show the capability that 

this technology can have in the utilization of ESSs, making it a more valuable solution during 

operation, with less impact on total costs, increasing its utilization.   
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3.4.2 Case Study 2 (IEEE 119-bus test system) 

3.4.2.1 - Input Data and Assumptions 

In this thesis, the 119-bus test system (whose schematic diagram is shown in Figure 3.15) is 

used to perform the numerical analysis.  

 

 

Figure 3.15 - A schematic diagram of the 119-bus test system. 
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The system has a nominal voltage of 11 kV and demand of 22709.72 kW and 17041.068 kVAr. 

More information about this test system can be found in [343]. Also, according to [343], active 

power losses of the system are 1298.09 kW, and the minimum voltage in the system is 0.8783 

p.u., occurring at bus 116.  

The size and location of RESs and ESSs, and also the power factor of RESs and assumed variable 

costs of ESSs, are all taken from [343]. The following further assumptions are made in the 

simulations. The analysis is made for a 24-hour period. The voltage deviation at any node is 

constrained to fall within ±5% of the nominal value (including boundaries). The reference node 

is the only substation, whose voltage magnitude and its angle are set to 1 p.u. and 0, 

respectively. The power factor at the substation is considered to be 0.8, adapted from [339]; 

the power factor of RESs is 0.95. Both values are held constant for all simulations.  

The emission rate at the substation is set to 0.4 tCO e/MWh, and that of solar and wind power 

generation technologies are set to 0.0584 tCO e/MWh and 0.0276	tCO e/MWh, respectively. The 

emissions price is set to 6 €/tCO e. These data are in accordance with [344]. The variable 

operation and maintenance costs for generating power from wind and solar technologies are 

set to 20 €/MWh and 40 €/MWh, respectively, according to [344]. 

The charging and discharging efficiencies of ESSs are considered the same and have a value of 

90%, adapted from [345], [346]. Discharging power from ESSs have a unit price of 5	€/MWh, 

which represents the variable operation and maintenance cost of the storage system.  

Unserved active and reactive power was adapted from [339] and have a fixed penalty of 

3000	€/MWh. Feeders have a maximum capacity of 400A, except the feeders {(1, 2); (2, 4); 

(1,66); (66,67)} whose respective maximum capacity is set to 1200A and feeders {(4, 5); (5, 6); 

(6, 7); (4,29); (29,30); (30,31); (67,68); (67,81); (81,82); (1,105); (105,106); (106,107)} each 

having a maximum capacity of 800A.  

The percentage of demand that can be responsive (α) was set to 20%. The losses linearization 

process consider 5 partitions, which is in line with the findings in [342]. 

3.4.2.2 - Numerical Results and Discussions 

The analysis in this thesis considers four case studies whose results are discussed and analyzed. 

Case one refers to the Base Case where no RESs and flexibility options are considered. In this 

case, the lower voltage bound is removed to avoid an unacceptably huge amount of unserved 

power because of the lack of adequate reactive power compensation mechanism in the original 

system. 
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The second case jointly integrates DNR with large scale integration of RESs (and, this is 

designated as “Without ESSs”). The third case considers ESS deployments in addition to the 

conditions in the second case (This is hereinafter referred to as the “Plus ESSs” case). The last 

case is similar to the third case but including DR. Since this case considers all available 

flexibility options with RESs, it is hereinafter referred to as “Full Flex” case. Table 3.8 

summarizes the distinctive features of each case. 

The relevant costs of the objective function of each case are presented in Table 3.9. Analyzing 

the results, the Base Case has the highest expected total costs compared to the other cases 

due to only importing energy from upstream. Also, because DGs and ESSs are not considered, 

it has the highest emission costs.  

 

Table 3.8 - Distinguishing the Cases Considered in the Analysis 

 DSR DGs ESSs DR Voltage Limits 

Base Case No No No No Not imposed 

Without ESSs Yes Yes No No Imposed 

Plus ESSs Yes Yes Yes No Imposed 

Full Flex Yes Yes Yes Yes Imposed 

 

Table 3.9 - Terms of objective function and power losses. 

 Base Case Without ESSs Plus ESSs Full Flex 

Total Cost (€) 33408.66 19151.81 15657.50 15257.59 

TSC (€) 0.00 1050.00 1020.00 1010.00

TEC (€) 31355.50 17442.59 14281.01 13901.64

TEmiC (€) 1255.31 516.20 356.50 345.96

TENSC (€) 797.85 143.02 0.00 0.00

Active Power Losses 

(MW) 
20.25 7.45 6.35 6.29 

Reactive Power 

Losses (MVAr) 
14.11 4.95 4.19 4.13 
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In Case 2, where DNR and DGs are considered, the expected total costs are reduced by 42.7% 

since there is a reduction in terms of purchased energy from the upstream grid, which is more 

expensive than the one locally produced by the DGs, allowing the costs to drop. Moreover, since 

wind and PV power sources have lower emission rates, the expected cost related to emissions 

is also lower than that of the Base Case. Similarly, active power losses are reduced by 63% and 

reactive power losses by 65%. As expected, the deployment of DGs in the system lowers power 

losses because part of the overall energy consumed is met by the locally placed DGs. The 

expected cost related to the power not supplied also sees a reduction of 82%. In Figure 3.16, 

the energy mix for this case is depicted, where DGs are added to the system and represent a 

large part of the energy mix. In this case, the utilization of wind is about 57% and that of PV is 

about 4%, which brings the total demand covered by RES-based DGs to 61% of the total energy 

produced. 

Concerning the case with ESSs, i.e. Case 3, it is possible to see a further reduction in the total 

expected costs by 53%. In this case, it is also clear that adding different energy sources in the 

mix will have a positive impact in the expected energy costs, since discharging the energy 

stored in the ESSs is cheaper than importing energy from upstream. This is due to the fact that 

the stored energy is mainly sourced from wind and PV generations. Also, ESSs do not have 

emission costs; therefore, the expected costs of emissions are reduced by 30% and 72% 

compared to that of the “Without ESSs” case and “Base Case”, respectively. In the “Plus ESSs” 

case, there are no instances of load shedding; and hence, no associated costs. This is because 

adding ESSs into the system along with joint operation with DGs will use the excessive energy 

produced by DGs to be stored, leading to a better fulfillment of demand in peak hours with 

more valuable and cheaper energy. In this context, ESSs increase the flexibility of the system, 

allowing a more efficient use of power produced by “variable type” DGs.  Comparing with the 

“Without ESSs” case, the power losses are not affected very much; yet, a small reduction is 

achieved between the cases with DGs. 

The last case, “Full Flex”, where all available flexibility options are considered, a 2.6% 

reduction in expected total costs is attained compared with “Plus ESSs”. The aggregated energy 

mix for the case with full flex is shown in Figure 3.17. Compared with the Base Case, the 

expected total costs are reduced by 54%. In addition, the expected energy costs are reduced 

by 56%, expected emissions cost drops by 72%, active power losses are reduced by 69% and 

reactive power losses by 71%. The case with full flexibility has the best outcome in terms of 

expected costs and in terms of power losses among all cases considered. It can be seen that, 

as far as adding more flexibility in the system is concerned, the costs with DNR are being 

reduced from the case “Without ESSs” to the case “Full Flex”. This shows that the system needs 

less dynamic switching between time periods when more flexibility options are considered. The 

dynamic reconfiguration of the system for the "Full Flex" case can be seen in Table 3.10 for the 

24 hours of the operating period. 
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Figure 3.16 - Aggregated energy mix in the “Without ESSs” case. 

 

 

 

Figure 3.17 - Aggregated energy mix in the “Full Flex” case. 
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Table 3.10 - Hourly Reconfiguration Outcome in the “Full Flex” Case 

Hour 
Open Lines 

, = 0 
Hour 

Open Lines 

, = 0 

1 

{23, 26, 34, 61, 82, 90, 95, 117, 

119, 121, 122, 124, 127, 128, 

130} 

13 
{23, 26, 34, 53, 61, 90, 95, 119, 121, 124, 

127, 128-130, 131} 

2 
{23, 26, 34, 42, 61, 76, 82, 85, 

90, 95, 119,  122, 124, 127, 131} 
14 

{23, 34, 61, 74, 82, 85, 118, 119, 121, 

122, 124-126, 131} 

3 
{23, 26, 34, 61, 74, 76, 82, 85, 

90, 95, 119, 121, 122, 124, 131} 
15 

{23, 34, 61, 74, 82, 85, 117-119, 124-126, 

128} 

4 
{23, 26, 34, 53, 61, 74, 76, 82, 

85, 90, 95, 118, 121, 124, 131} 
16 

{23, 34, 39, 53, 61, 85, 118, 119, 121, 

125-129, 131} 

5 
{23, 26, 34, 42, 53, 61, 74, 76, 

82, 90, 95, 118, 124, 130, 131} 
17 

{23, 26, 34, 53, 61, 74, 90, 95, 117, 118, 

121, 124, 128-130} 

6 
{23, 26, 34, 53, 61, 74, 76, 82, 

90, 95, 118, 121, 124, 130, 131} 
18 

{23, 26, 34, 53, 61, 90, 95, 119, 121, 124, 

127-131} 

7 
{23, 26, 34, 42, 61, 74, 76, 90, 

95, 119, 122, 124, 129-131} 
19 

{26, 34, 39, 53, 61, 85, 118, 120, 121, 

125, 126-128, 129, 131} 

8 
{23, 26, 34, 53, 61, 82, 85, 90, 

95, 119, 121, 124, 127, 128, 131} 
20 

{26, 34, 39, 61, 74, 119-122, 125, 126, 

128-130, 131} 

9 

{23, 26, 34, 61, 82, 85, 90, 95, 

119, 121, 122, 124, 126-128, 

131} 

21 
{26, 39, 61, 74, 85, 118, 120-122, 125, 

126, 128, 129, 131, 132} 

10 
{23, 26, 34, 39, 53, 61, 90, 95, 

119, 121, 127-130, 131} 
22 

{23, 34, 39, 53, 61, 76, 82, 85, 118, 119, 

121, 125-127, 131} 

11 
{23, 26, 34, 39, 53, 61, 74, 118, 

121, 125, 128-130, 131} 
23 

{23, 26, 34, 53, 61, 74, 82, 85, 119, 121, 

124-126, 131} 

12 
{23, 26, 34, 39, 61, 85, 90, 119, 

121, 122, 125, 116-129, 131} 
24 

{23, 26, 34, 42, 53, 74, 82, 85, 90, 95, 

117, 119, 123, 124, 128} 
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The aggregated energy mix in the “Full Flex” case (presented in Figure 3.17) shows very 

interesting results. The integration of DGs and ESSs dramatically decreases the usage of energy 

imported from upstream. The percentage of PV and wind usage in the mix is 7% and 65%, 

respectively while ESSs account for 3% of the energy demand. This leads to a total of 76% of 

demand fulfilled by DGs and ESSs. Local demand is largely supplied by these technologies. The 

ESSs are being charged during the day, benefiting from the presence of solar starting at 9h and 

still charging during peak hours, where there is a lot of wind power production. ESSs are 

discharged between the second and the seventh hour during the course of the day because 

there is no energy production from PV, and energy from wind production is at its lowest 

compared to the rest of the time period. In this manner, power import is kept at low level, 

benefiting the system with integration of ESSs by reducing costs. The profile of demand 

scheduled is also presented in Figure 3.17. 

Another important factor to analyze is the average voltage profile in the system. In Figure 3.18, 

the average voltage profile for all considered cases is shown. To be in a healthy operation, the 

voltage magnitude at each bus should be close to the rated (nominal) value. Nevertheless, the 

voltage will vary within a range in the nodes of the system. In Figure 3.18, it is clear that, with 

increasing flexibility options in the system, the voltage deviation will get flatter, improving the 

voltage profile and keeping each node’s voltage close to the nominal value (i.e. with 0% 

deviation). Figure 3.18 clearly shows that the “Full Flex” case has the best voltage profile in 

the resulting system. In the “Full Flex” case, the system has a mean voltage deviation value of 

nearly -0.4%. Obviously, implementing only DNR in the system can also lead to a better average 

voltage profile, as clearly observed in this figure. 

In Figure 3.19, it is possible to observe the ESSs’ charge and discharge at each node for the 

"Full Flex" case as well as the respective contribution of each ESS, which on average has 

increased 2% compared with the "Plus ESSs" case. Demand in peak hours is being reduced and 

is scheduled to valley hours. This leads to lower losses in the system, and an improved voltage 

profile due to lower stresses in the feeder’s power flows. Correspondingly, the usage of DGs 

and ESSs are optimized because there is less demand to be fulfilled in peak hours, leading to a 

less congested network during that period. This is also reflected in the reduction of power 

losses.  
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Figure 3.18 - Average system voltage deviation comparison between the considered cases. 

 

 

 

Figure 3.19 - Percentage of ESSs charge and discharge cycle by node in the “Full Flex Case”. 
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3.5 Chapter Conclusions 

This chapter has presented an extensive analysis in relation to the joint integration of flexibility 

options as a way to cope with the intermittent nature of DG power productions (mainly wind 

and solar PV) and their efficient usage. To perform the analysis, a stochastic MILP optimization 

model has been developed. The resulting model is of an operational nature, and aims to operate 

the distribution systems featuring large scale integration of DGs while fulfilling a number of 

technical and economic constraints. The constrained optimization is based on a linearized AC-

OPF model, and has an objective function encompassing the sum of expected costs related with 

the operation of distribution systems that is minimized subject to a range of operational and 

economic constraints. Two test systems were used in the analysis, the IEEE 41-bus test system 

and the IEEE 119-bus test system. In both test systems, the numerical results show that large 

scale integration of renewable type DGs can be achieved if this is coordinated with optimal 

deployment of ESSs and DR. In particular, a more efficient utilization of wind and solar power 

resources can be achieved as a result of optimally deploying such flexibility options. According 

to the simulation results in the second test system, as high as 76% of the demand can be covered 

by energy coming from wind, PV and ESSs, and most importantly without having dramatic 

impacts on the considered system in terms of its healthy operation. In addition, the expected 

operation costs are considerably reduced in both test systems, while the voltage profile in the 

system is also improved. Generally, as the level of flexibility in the system increases, managing 

the intermittent nature of wind and solar power is made easier. 
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Chapter 4 

Analysis of a Meshed Electrical Distribution System 
to Accommodate Large-Scale Integration of vRES 

Taking the findings in Chapter 3 as references, a new operational strategy is introduced in this 

chapter that is capable of increasing further the flexibility of electrical distribution systems. 

The new flexibility mechanism is the operation of distribution systems in a meshed topology 

with prospects of gradually adopting of such strategy. The analysis made in this chapter 

includes the additional level of flexibility that can be provided by operating distribution grids 

in a meshed manner, and the utilization level of variable renewable power. The operational 

problem is formulated as a mixed integer linear programming in a stochastic framework. 

4.1 Introduction 

4.1.1 Framework  

Distribution power systems are experiencing massive transformations buoyed by the increasing 

need to integrate more variable renewable type distributed generations (DGs). This means 

distribution grids will be equipped with necessary tools to enable bidirectional power flows 

which is contrary to their traditional setup [343], [347]–[352]. Also, such a massive 

transformation needs to be accompanied by new operational schemes. In other words, new 

operational strategies should be crafted and widely used in order to increase flexibility in the 

distribution systems, and hence the penetration of renewables such as solar PV and wind. This 

is due to the fact that the traditionally radial network operation strategy may not be sufficient 

to accommodate the increasing penetration of renewables and their efficient utilization. 

In this context, smart grids are one of the most promising solutions that enable large-scale 

integration of variable renewable energy sources (vRESs) at a distribution level [38], [39], [47], 

[353], [354]. However, the scale of transformation required to “smartify” existing grids means 

the whole process may be costly and most importantly slow. In other words, the smartification 

process will not happen overnight; it will rather involve a series of time-consuming and 

expensive upgrades to existing network infrastructures. Hence, the impact of smart grids would 

only be felt in the long-run when they are fully materialized.  

Most of traditional distribution networks are meshed by design, but they are operated radially 

only due to technical limitations mainly related to system protection. These limitations are 

discussed in [13]. This means some tie-lines (also known as switches) are kept open so that the 

grid topology remains radial. Thus far, the operation and protection of a radial topology has 

been relatively easier [355]–[358].  
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The lines that are normally open in radial network systems are only used in emergency 

situations during situations of fault or power supply failure. The main purpose of this is to 

enhance the reliability of power delivery, i.e. some of the normally open tie-lines are closed 

to re-route power flows so that the amount of load shed is minimized. But the radiality of the 

network system is maintained at all times, regardless of the operational situations that happen 

in the system. The good news is that, in well-planned distribution networks, contingencies or 

emergency situations are rare phenomena.  

As previously mentioned, one strategy worth considering is the operation of distribution 

networks in a meshed topology. This type of topology goes contrary to what is established, that 

is radially operating distribution systems. However, with the technological advances that are 

seen now, and expected to happen in the near future even in a more accelerated manner, it is 

possible to deal with all the inherent limitations of meshed operation of distribution networks. 

Given its multi-faceted benefits, the so-called meshed topology is expected to be a normal 

operation scheme for distribution grids in the future. But this does not mean that a radial 

topology would be completely abolished; there may be cases where this would make more sense 

from an economic and a technical standpoint. 

The advantages related to meshed distribution systems are the reduction of power losses, 

improved voltage profiles, more flexibility and capability to deal with high electricity demand 

growth, enhancement of power quality (PQ) [359]. Furthermore, in meshed distribution systems 

where there are no DGs integrated, the distribution of power flows among parallel paths can 

potentially decrease stress on the entire network system, and possibly defer grid-related 

investments. This can be achieved only by optimizing the loops in tie lines in the distribution 

system. When DGs are appropriately allocated in such systems, they can bring in several 

benefits such as reduction of power losses, better voltage profile and also the investment 

deferral as a result of reduced congestion in the network components (feeders and 

transformers) [359].  

Likewise, a meshed topology can have similar benefits as DGs. The combination of both can 

potentially enhance distribution system reliability and the quality of power delivered to end-

users. The negative aspects associated with DG integration are the possible increase in short 

circuit currents, and hence the need for possible modification of protection devices’ settings 

[359].  

Because of this, international standards determine the immediate disconnection of DGs from 

the distribution system in case of faults so that conventional protection devices can act 

properly. Similarly, a meshed topology also shares this issue. But technological advances make 

it easier to switch from meshed to a radial topology in case of fault or vice versa, allowing to 

reap the benefits of the former. For example, a locally generated renewable power can be 

efficiently utilized under a meshed topology, which would have otherwise been curtailed in the 

traditional network setup.  
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There are a set of technologies that could be used to exploit the meshed network topology and 

minimize the concerns of such a topology. For instance, when a fault occurs in the system, fast 

de-loopers can be deployed to quickly switch from a meshed to a radial topology so that 

conventional protection devices can properly act. Another enabling technology with regards to 

the meshed operation is Fault Current Limits (FCLs) [360]. Generally, the operation of 

distribution networks in a meshed manner can become a norm in the near future.  

4.1.2 Literature Review 

Large-scale integration of vRESs has brought about a set of challenges which requires necessary 

attention and action. The main challenges revolve around protection schemes, voltage 

regulation as a result of fluctuations induced by vRESs, voltage sags and/or rises, and network 

congestion among others [361]. Such issues are exacerbated with increasing integration of vRESs 

in distribution networks because these are designed for unidirectional power flows. However, 

operating distribution grids in a meshed manner can alleviate some of these issues, and bring 

in a number of benefits, for example, in terms accommodating more vRES power, an important 

aspect given the growing global concerns surrounding climate change. However, the prospects 

of a meshed operational scheme have not been adequately explored in the literature.  

A comparative study between a meshed operation and reinforcement of distribution networks 

has been performed in [362]. The study involves the comparison of results from using 

enumeration, constraints and loops analysis methods. Authors in [363] develop a model that 

estimates the maximum penetration of DGs based on a steady state analysis. The approach uses 

some elements of an optimal power flow analysis, bus voltage and current flow limits to 

estimate the maximum allowable DG penetration at each node of the considered system. 

Authors conclude that a meshed topology may be a good alternative to host a large-scale DG 

power. Furthermore, authors in [183] propose a methodology for allocating conventional DGs 

in a distribution system, and evaluate their impacts on the distribution system For the analysis, 

they have considered a meshed operational scheme, and a voltage sensitivity index to quantify 

the operability of the system.  

However, their analysis is based on the integration of conventional sources of energy into 

distribution systems. In [182], authors provide an extensive analysis of optimum power flows 

when operating distribution networks in a radial and a meshed manner. The analysis is carried 

out considering reactive power compensation devices and DGs. In [184], authors develop an 

operational model for analyzing the prospects of a meshed distribution network topology, which 

is based on circuits composed of a resistor, inductor and capacitor (RLC). Reference [185] 

provides a steady state analysis of a meshed distribution system featuring DGs, and is based on 

iterative load-flow calculations.  
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However, the analysis of the existing literature, reviewed here, is based on conventional type 

DGs under a meshed operational scheme. To the best knowledge of the authors, the scope of 

integrating vRESs in tandem with meshed operation of distribution systems has not been 

addressed in the literature. Hence, this is the main focus of the current work. The argument 

provided here is that electrical distribution systems can be operated in a meshed topology 

under normal situations. Also, they can be equipped with advanced and even currently available 

technologies that temporarily enable a smooth automated transition to a radial topology in case 

of contingency, and back to the preferred topology when the fault is cleared. This way, one 

can take full advantage of the meshed operation of the distribution network, which eventually 

leads to reduced losses, improved voltage profiles and a more efficient management of locally 

produced vRES power.  

The meshed operational scheme can also have benefits in terms of network-related 

investments. A more distributed nature of power flows in the meshed topology would mean 

lower stress (congestion) in the whole system, reducing the need for network upgrades. Note 

that existing switches and loops in distribution systems can be effectively used to develop an 

optimal meshed topology. 

However, none of the aforementioned references focus on analyzing distribution systems’ 

meshed grid topology in tandem with integrating variable renewable energy. Taking advantage 

of the new technologies, this work argues that distribution systems can be operated in a meshed 

way in normal system operation and automatically switch to a radial configuration in case of 

failure. Therefore, the benefits of a meshed operational scheme can be reaped in full capacity, 

which includes the reduction of losses, the improvement of the voltage profile and better 

management renewable energy sources in the distribution system. In practice, switching from 

radial to mesh operation does not require a large investment in distribution systems. The 

method makes use of existing switches (loops and tie lines). 

 

4.2 Mathematical Model 

4.2.1 Objective Function 

The main objective is to minimize the total costs of operating the considered distribution 

system. These costs are associated with operating costs in the system, namely the cost of 

energy not supplied, the costs of emissions and the cost of power generation using conventional 

and renewable power sources. 
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= + +  (4.1)

Equation (4.1) minimizes the , which represents the total expected cost in the system. 

The first term in (4.1) represents the expected costs of producing energy using renewable 

technologies (solar and wind in this case), and purchasing energy from the upstream network 

as in (4.2). The two terms in (4.2) are calculated by (4.3) and (4.4), respectively. 

= +  (4.2)

= ∈ , , ,∈∈  (4.3)

= ∈ ç, ,∈∈  (4.4)

Regarding the second term of (4.1),  represents the cost of energy not supplied. This 

term is based on the calculation of active and reactive power that was not supplied and is given 

by equation (4.5). 

	 = 	 ∈ ( , , , + , , , )∈∈  (4.5)

The terms ,  and , are defined as penalty factors. They correspond to penalty terms 

associated with any active and reactive power shed. These must be set to sufficiently high 

values to avoid unnecessary load shedding. Finally, the term  represents the 

expected cost of emissions. These emissions are related to energy production from renewable 

sources as well as conventional ones and that of energy purchased from the upstream network. 

This term is defined by: 

= +  (4.6)

The corresponding terms in (4.6) are expressed by: 

= ∈ , , ,∈∈∈  (4.7)
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= ∈ , ,∈∈∈  (4.8)

4.2.2 Constraints 

Kirchhoff's current law must be enforced for active (4.9) and reactive (4.10) power flows. These 

ensure that the sum of incoming flows must be equal to outgoing ones. These conditions must 

be respected at all times for safe operation of the system. 

, , ,∈ + , , + 	 , , + , ,, ∈ − , , =, ∈ , + 12 , ,, ∈+ 12 , ,, ∈ 	 ; ∀ ;	∀ ; 	 (4.9)

, , ,∈ + , , + 	 , , + , ,, ∈ − , , =, ∈ , + 12 , ,, ∈ 	
+ 12 , ,, ∈ 	 ; ∀ Ω ;	∀ ; 	 (4.10)

In the left-hand side of equation (4.9), we can see the active power flows from the renewable 

power generation as well as the power injected at the substation. On the other side of the 

equation, we have the power flow associated with the demand and the losses (treated here as 

fictitious loads). The same principles apply to the reactive power flow shown in (4.10). 

Kirchhoff's voltage law must also be considered. This restriction governs the power flow in the 

feeders, which are represented by linearized power flow equations considering two practical 

assumptions. The first one states that the voltage magnitude are essentially close to the 

nominal value . The second one is related to the difference of voltage angles . For 

security systems, this difference has to be as small as possible, which leads to a trigonometric 

approximation sin ≈ 	  and cos ≈ 	1. Considering these two simplifying assumptions, the 

active and reactive AC power flow equations can be linearized, and represented as in:  

, , − ∆ , , − ∆ , , − , , ≤ 1 − ,  (4.11)

, , − −	 ∆ , , − ∆ , , − , , ≤ (1 − , ) (4.12)

where                    (4.13)
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∆ ≤ ∆ , , ≤ ∆  

In relation to the power flows in each branch, these cannot exceed the maximum transfer 

capacity: 

, , + , , ≤ , ( )  (4.14)

The active and reactive power losses in each branch are algebraically represented by: 

, , = , , + , , /  (4.15)

, , = , , + , , /  (4.16)

Note that equations (14) - (16) are easily linearized using a piecewise linearization approach, 

which is common in the literature. Further explanation about the piecewise linearization can 

be found in Appendix B. 

The active and reactive power limits of conventional as well as vRESs are also considered as 

constraints. Such constraints related to vRESs are given by (4.17) and (4.18): 

, , , , ≤ , , , ≤ , , , ,  (4.17)

− , , , ≤ , , , ≤ , , ,  (4.18)

where  is the power factor of generator g. 

The reactive power injected or withdrawn at a substation (4.19) in the system is subject to 

minimum and maximum level as in (4.18). This is motivated by security concerns. 

− tan ( ) , , ≤ , , ≤ tan ( ) , ,  (4.19)

Note that the voltage angle difference , ,  is defined as , , = , , − , , . In this case,  and 

 belong to the same branch . 
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4.3 Results 

4.3.1 Data and Assumptions 

In this work, we use a standard 119-bus distribution system to perform the required analysis. 

The schematic diagram of this system is shown in Figure 1. The main data of the considered 

system are summarized in Table 4.1. Further information about the test system and data can 

be found in [343]. The size and location of vRESs are adapted from [343], as can be seen in 

Table 2. More data-related assumptions made in this analysis are presented in Tables 4.3, 4.4 

and 4.5. Further assumptions are summarized as follows: 

• The operational analysis is based on a 24-hour period, subdivided on an hourly basis.  

• Maximum voltage deviation at each bus is set to ±5% of the nominal value (which in this 

case is 11 kV).  

• In all simulations, the substation is treated as the reference node, in which both the 

voltage deviation and the angle are set to zero.  

• The number of partitions considered for linearizing quadratic terms is 5, which is in line 

with the findings in [342]. 

 

Table 4.1 - General system data. 

Parameter Description Parameter Setting 

Nominal voltage 11 kV 

Active power demand 22709.720 kW 

Reactive power demand 17041.068 kVAr 

Base case system losses 1298.090 kW 

Minimum voltage of the base case system 

(which occurs at bus 116) 
0.8783 p.u. 
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Figure 4.1 - A schematic diagram of the 119-bus test system. 

Our work involves power productions using variable renewable sources such as wind and solar. 

The power outputs from these resources are subject to high level uncertainty and variability. 

Demand is also variable (say throughout the course of the day), even if it can be fairly predicted 

more accurately than a variable renewable power output. The stochastic nature in our work 

arises as a result of these issues. Therefore, we have handled such stochastic parameters via a 

stochastic programming framework: accounting for the most plausible states of these 

parameters at a given future time each associated with a probability. Over the considered 

operational period (which in our case is 24 hours long), such states collectively form storylines 

(or scenarios) which are jointly considered in the optimization process.  

In other words, the stochastic nature of RES power outputs and demand are accounted for by 

considering adequate number of scenarios for each. Therefore, the power production profiles 

of wind and solar PV type DGs, as well as the demand profile, are assumed to be uniform 

throughout the system. The uncertainty associated with solar and wind power generations are 

taken into account by considering three different scenarios for each uncertain parameter. 

Demand uncertainty is also taken into account by considering six different scenarios each for 

residential and industrial type consumers. It should be noted that each scenario represents an 

hourly profile. The combination of these individual scenarios (which in this case is 81) results 

in the creation of the final set of scenarios used in our studies. 
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Table 4.2 - Size and location of wind and solar PV type distributed generations 

 

Bus Wind [MW] 
 

PV [MW] 

14 1 0 

21 1 0 

24 1 0 

25 0 1 

29 0 1 

32 1 0 

33 1 0 

35 0 1 

37 1 0 

38 1 0 

42 1 0 

43 0 1 

44 1 1 

52 1 1 

53 1 0 

56 1 0 

61 1 0 

69 1 0 

73 1 1 

74 1 0 

77 1 1 

79 0 1 

82 1 0 

83 1 0 

84 0 1 

85 1 0 

89 1 0 

96 1 0 

100 1 1 

101 0 1 

106 0 1 

108 1 0 

112 1 1 

114 1 1 

116 1 1 

117 0 1 

119 0 1 

121 1 0 
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Table 4.3 - Further data-related assumptions 

Parameter Setting 

 0.8 

 0.95 

 0.4 tCO e/MWh 

 15 €/tCO e 
, , ,  3000 €/MW,   

3000 €/MVAr 

,  20 

 

 

Table 4.4 - Cost of electricity generation from renewable sources and emission rates. 

 Variable cost  

[€/MWh] 

Emission rates of DGs 

[tCO e/MWh] 

Solar 40 0.0584 

Wind 20 0.0276 

 

 

Table 4.5 - Maximum transfer capacity in feeders. 

Feeders Maximum transfer capacity [A] 

{(1, 2); (2, 4); (1,66); (66,67)} 1200 

{(4, 5); (5, 6); (6, 7); (4,29); (29,30); (30,31); (67,68); 

(67,81); (81,82); (1,105); (105,106); (106,107)} 
800 

Remaining feeders 400 
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4.3.2. Numerical Results 

As stated above, the analysis is carried out to study the operational flexibility that can be 

provided by operating vRES rich distribution grids in a meshed manner. In addition, the analysis 

includes the impact of such a scheme on the use and integration of vRESs.  

A total of six case studies are considered, designated as Case A to F. Case A is the Base Case 

which does neither consider network reconfiguration nor a meshed operation. In Case B, 

network reconfiguration is allowed but always maintaining a radial topology. Cases C to F all 

consider a meshed operational scheme, but with different levels meshing from 30% in Case C, 

60% in case D, 80% in Case E and 100% in Case F. The network configurations for the last four 

cases are presented in Figure 4.2. Note that meshing the distribution network makes use of 

existing tie lines. For cases B to F, the upper and lower voltage boundaries have been enforced. 

Table 6 shows the total expected cost, along with a breakdown of this cost and the total 

expected power losses in the system.4.6 shows the total expected cost, along with a breakdown 

of this cost and the total expected power losses in the system. 

Among the considered cases, the total costs that has the highest value is the Base Case, as 

expected. This is because all energy required in the system is imported through the substation. 

The energy mix associated with the Base Case can be seen in Figure 4.3 (a). Apart from the 

costs, power losses in the system are also the highest among those computed in the remaining 

cases. 

Table 4.6 - Total expected costs of objective function and power losses 

 Case A Case B Case C Case D Case E Case F 

Total Cost [€] 32217,38 27215,55 24634,12 18458,99 16937,63 15664,99 

Energy Cost [€] 30349,82 26629,07 24103,04 17979,25 16501,48 15265,23 

Emission Cost 

[€] 

1219,56 557,47 513,63 472,96 436,15 399,76 

PNS Cost [€] 647,99 29,01 17,45 6,78 0,00 0,00 

Power Loss 

[MW] 20,25 9,39 8,01 7,21 6,47 5,73 

Power Loss 

[MVar] 
14,11 6,13 4,67 3,97 3,24 2,49 



94 

 

 

(a) (b) 

(c) (d) 

Figure 4.2 - A schematic diagram of the meshed systems associated with Case C to F. (a) 30% 

meshed network topology for Case C; (b) 60% meshed network topology for Case D; (c) 80% 

meshed network topology for Case E; and (d) 100% meshed network topology for case F. 
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In Case B, the expected energy costs are reduced by 12%, expected emissions costs by 54% and 

expected PNS costs by 96%. This overall translates into a reduction of 16% in expected total 

cost in the system. The decreases registered in the expected energy and emission costs are 

mainly due to the locally produced vRES power that is cheaper and “cleaner”. The active and 

reactive power losses in the system are reduced on average by 54% and 70%, respectively. This 

is as a result of the combined effect of the DG integration and optimal network reconfiguration. 

Most of the demand is met by locally generated power, which does not require heavy utilizations 

of existing feeders, and hence resulting in reduced losses. It is widely proven that an optimal 

reconfiguration also reduces losses in the system. Figure 4.3 (b) shows the energy mix related 

to Case B. In this figure, it can be seen that this case has 60,4% of the demand met by vRES 

power (of which 6,6% comes from solar PV and 53,9% from wind type DGs). 

Cases C through F are the ones that represent a system operated in a meshed network topology, 

but with increasing levels of “meshedness”.  In Case C, a 24% more reduction in the expected 

total cost is observed, as a result of reductions in the individual cost terms: energy, emission 

and PNS costs, in comparison with that of the Base Case. Active and reactive power losses also 

see reductions on average by 60% and 77%, respectively. With the increase in the “meshedness” 

level of the network, the reductions get more pronounced. In Case C, the percentage of demand 

covered by vRES power is 69,7% (of which 7,3% comes from solar PV and 62,4% from wind). In 

comparison to the radial topology in the Base Case, even the less meshed topology sees further 

improvement in the utilization level of vRES power production. Further observation is the fact 

that even a weakly meshed distribution network (with a 30% connectedness index) shows an 

improvement of 9,3% in terms of vRES power generation compared to that of an optimally 

reconfigured radial topology. 

          (a)           (b) 

Figure 4.3 - Energy mixes in the (a) Base Case; (b) Case B. 
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In Cases D and E, where the “meshedness” levels are respectively 60% and 80%, one can observe 

43% and 47% overall cost reductions, respectively. In comparison to that of the base case, these 

can be regarded as significant improvements, and these generally show the favorable impact 

of a meshed system operation. In Case E, the PNS costs are reduced by 100%. This can be 

explained by the fact that meshing the grid routes vRES power to where it is consumed. This 

would otherwise be shed in the radial (or weakly meshed) topology. As a result, the share of 

renewables in the total consumption in the above two cases (i.e. Cases D and E) amount to 

73,6% and 75,1%, respectively. 

The last case—Case F—(where all branches are connected, creating a completely meshed 

network) yields the best operational results among the considered cases. Compared to the Base 

Case, a 51% reduction in overall cost can be seen. In terms of individual cost terms, the 

reductions are 50% in expected energy costs, 67% in emission costs, and a 100% in expected PNS 

costs. System-wide average losses are slashed down by 72% (active) and 88% (reactive). 

Regarding the energy mix, the fully meshed network, i.e. Case F, has a total of 75,8% of the 

total energy demand met by vRES energy (out of which 10,7% come from solar PV and 65,1% 

from wind type DGs). From Case A to Case F, one can easily notice the reductions in terms of 

energy imported from upstream (see in Table 4.6). In Case F, the entire system operates in 

near island mode (see hours 4 and 5 in which only 3% of demand in these hours is covered by 

importing power from the upstream). Also, numerical results highlight that a fully meshed 

topology increases the utilization level of vRESs power generation by 15,4% compared to that 

of an optimally reconfigured radial topology. This translates into an about 42% decrease in the 

overall system cost, 44% and 99% reductions in terms of expected energy and emission costs, 

respectively, as compared to that of a reconfigured radial topology, which is significant. The 

share of renewable power in the final energy consumption is as high as 75,8% in the case which 

incorporates a strongly meshed network, which is again noteworthy. 

Figure 4.4 (a), (b), (c) and (d) show the energy mixes corresponding to the meshed cases, from 

low to a more complex meshed topology, respectively. The results in these figures reveal 

interesting variations in the utilization levels of vRES power productions during the 24-hour 

period. It is also possible to see a decrease in the energy purchased from the upstream network 

( ç, , ) throughout the various case studies. 

With regard to energy losses, the average profile of active power losses during the considered 

24-hour period of each case is shown in Figure 4.5. The results are in accordance with Table 

4.6, dropping from Case B to Case F, as already mentioned before. In cases C to F, losses 

decrease within an interval since in addition to the DGs being near the loads, there are also 

now in some sections of the network smaller paths to be “traveled”, resulting in a losses 

decrease. 
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         (a)            (b) 

         (c)             (d) 

Figure 4.4 - (a) Case C energy mix (30% meshed network); (b) Case D energy mix (60% meshed 

network); (c) Case E energy mix (80% meshed network); (d) Case F energy mix (100% meshed 

network). 

Figure 4.6 shows the average voltage profile corresponding to each case. The voltage deviation 

profile in Case A is the only one in which the deviations in some nodes surpasses the lower 

bound. The remaining cases where DGs are already integrated, all voltage deviations are 

significantly improved, and largely remain within the permissible range. In Case B as well as in 

the cases which involve network meshing (i.e. Cases C through F), voltage deviations do not 

show significant differences. In the figure, detailed voltage deviations for the nodes from 41 to 

53 can be seen in the section which is zoomed out. In this particular section, we can see minor 

improvements in the voltage deviation especially from Cases C through F. Generally, the case 

that has the most meshed network (i.e. Case F) has the best voltage deviation portfolio among 

other cases. 
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Figure 4.5 - Power losses in the network associated with each case. 

 

Figure 4.6 - Average voltage deviation to all cases. 

Total solar and wind power productions by node are shown in Figure 4.7 (a) and (b), 

respectively. In these figures, it is possible to observe the increased vRES power generation as 

one moves from Case B to Case F at each node. The results from these figures along with those 

in Figure 4.2, we can see the complementarity of meshed operation and renewable integration, 

in which a higher network meshing leads to a higher network flexibility and hence a more 

increase in renewable integration. Largely, the results obtained in the case studies, but 

especially in Case F, point out the immense contributions of the meshed operational scheme in 

terms of increasing system flexibility and efficient utilization of vRESs in the system. 
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(a) (b) 

Figure 4.7 - Solar PV (a) and wind (b) power outputs by node. 

4.5 Chapter Conclusions 

The work in this chapter has explored the prospects of operating distribution network systems 

in a meshed topology, as opposed to the conventionally (radial) operation. Furthermore, the 

contributions of meshed network topology in terms of enhancing system flexibility and its 

potential in increasing the integration and efficient utilization of vRES power generation were 

presented. To accomplish this, a stochastic MILP optimization model has been developed with 

a reasonably larger scale distribution network as a test system. Numerical results from the 

cases considered show that adopting a meshed network topology as a mainstream operational 

strategy for distribution systems has considerable benefits. For the fully meshed topology case, 

the increase in the utilization level of vRES power amounts to 15,4% compared to that of an 

optimally reconfigured radial topology. The share of renewable power in the final energy 

consumption is as high as 75,8% in the case which incorporates a strongly meshed network, 

which is again noteworthy.  

The results generally reveal the multi-faceted contributions and viability of a meshed 

operational strategy. It has been verified that this strategy adds valuable flexibility to 

distribution systems that are rich in vRES-based distribution generations. Such an added system 

flexibility is an important asset to have for ensuring a more efficient utilization of variable 

renewable power generation in the system.   
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Chapter 5 

Conclusions, Directions for Future Work and 
Contributions  

In this chapter, the main conclusions of the thesis are highlighted on the basis of answering 

the research questions that constituted the main motivation of this research. The limitations 

of the work in this thesis, and some directions of future work are also discussed. Finally, the 

contributions of this work are highlighted by presenting the set of publications in journals, 

book chapters and conference proceedings of high standard (IEEE), leading to this thesis work. 

5.1 Main Conclusions 

The main conclusions drawn from the thesis work, pertaining to the research questions 

presented in Section 1.4, are summarized as follows. For the sake of clarity, the research 

questions are reproduced here. 

• What are the main existing and emerging flexibility options that can be deployed 

in power systems to support the integration of “carbon-free” and variable power 

production technologies? What are the main challenges and opportunities 

associated with various flexibility options provided by different technologies? 

As a result of the increased awareness of the dangers posed by global climate changes 

(mainly caused by growing global energy consumption needs), the quest for clean and 

sustainable energy future is becoming of paramount importance. This can be largely 

realized via a large-scale integration of variable RESs such as wind and solar, which 

have relatively low carbon footprints. In many power systems, the level of integration 

of such resources is dramatically increasing. However, their intermittent nature poses 

significant challenges in the predominantly conventional power systems that currently 

exist. Among others, frequency and voltage regulation issues can, for example, arise 

because of improperly balanced and largely uncoordinated RES supply and demand. 

Generally, the higher the integration level of intermittent power sources is, the higher 

the flexibility needs are in the system under consideration. Flexibility, in a power 

systems context, refers to the ability of such a system to effectively cope with 

unforeseen changes in operational situations, which are mainly induced by the inherent 

uncertainty and variability arising from the supply side, demand side or any other 

external factors.  
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In the absence of appropriate flexibility mechanisms, it is increasingly difficult to 

manage the real-time imbalances between generation and demand in distribution 

systems with large quantiles of vRESs as a result of their natural variations. The growing 

need to integrate more “carbon-free” energy resources dramatically increases the 

flexibility requirements. Traditional flexibility mechanisms are not simply sufficient to 

meet the flexibility gaps created as a result of increasing variable renewables. 

Fortunately, there are a number of emerging and promising technologies that can be 

deployed at the supply-, network- and/or demand-sides and fill in these gaps in close 

coordination with existing flexibility mechanisms.  

Therefore, in Chapter 2, a critical review of the main existing and emerging flexibility 

options that can be deployed in power systems to support the integration of “carbon-

free” and variable power production technologies has been presented. The main 

flexibility mechanisms can be divided in three major categories, demand-side flexibility 

options, supply-side flexibility options and other sources of flexibility. The main 

mechanisms within the demand-side flexibility options are the demand response, 

energy efficiency and unconventional energy consumption forms. Within the supply-

side flexibility options mechanisms there is a vast set of tools, namely, conventional 

power plants, strategic RES power curtailment, smart-grids, dynamic network 

reconfiguration, meshed operation of distribution networks, micro-grid and islanding 

control, network interconnections. The other sources of flexibility mechanisms are the 

energy storage systems, energy systems integration, energy markets, and regulatory 

policies. The wide-range benefits of emerging flexibility options are widely recognized. 

Their future prospects seem promising. However, there are certain barriers that may 

hinder their developments in the short to medium terms. The most relevant ones that 

require attention are:    

1. Lack of suitable market: Most of the current energy markets are not designed to 

take into consideration new market players such as flexibility operators, requiring 

significant changes or even overhauls in order such players to succeed. 

2. Lack of transparent regulatory and tariff schemes: For most flexibility 

mechanisms to flourish and work efficiently, the transparency of regulatory and 

tariff structures is mandatory. 

3. Inadequate business environment: A conducive business environment is necessary 

not only for investments in emerging flexibility options to materialize, but also to 

ensure that existing flexibility mechanisms work efficiently. This seems to be one 

of the biggest barriers in the developments of various flexibility options, which 

needs to be addressed.  



102 

 

4. Potential conflicts of interest: The integration of emerging flexibility mechanisms 

(e.g. energy storage systems) may decrease incomes for established flexibility 

providers (e.g. peaking power plants). This may lead to potential conflicts of 

interest. New mechanisms for resolving such issues should be put in place. 

5. Huge investment needs: In order to reap the benefits of most of the flexibility 

options, hefty investments in automating existing infrastructures may be required. 

This may also hinder the development of some flexibility mechanisms. 

6. Inadequate incentives: The savings for consumers from participating in DR 

programs may be sometimes small, which may not be attractive enough not only 

for new consumers to join in, but also existing to continue in such programs.  

7. Privacy and data security issues: The key factor to DR’s success is ICT. But 

problems arise regarding privacy and security of users’ data as well as the entire 

automated system. This is becoming one of the key challenges for the growth of 

DR amid increased cyberattacks in recent years.  

• From the existing and emerging flexibility options that can facilitate the 

integration of large-scale vRESs in next-gen distribution systems, what are the 

best combinations of flexibility options that maximize the utilization level of vRES 

power? 

Future distribution grids should be prepared to handle the ongoing transformation 

process of power generation from the traditionally centralized to a more distributed 

and small power productions. Nonetheless, conventional distribution systems are not 

designed to manage this, and as a result, regulators often impose a maximum 

penetration  limit  which  does  not  help  further  development  of  distributed vRESs.  

However, distribution network systems are slowly evolving to smart grids, which are 

adequately equipped with the necessary tools and mechanisms to accommodate large-

scale vRESs while minimizing their side-effects. To this end, in Chapter 3 and Chapter 

4, different flexibility options have been explored and discussed in detail from the 

context of supporting the much-needed integration and efficient utilization of large-

scale vRESs in future distribution systems. The assessment also includes managing the 

negative impacts of vRESs, induced by their high variability and uncertainty, by means 

of various flexibility options.  

Due the complexity of the issue, this one has been analyzed according to several 

aspects, giving rise to the following sub-questions. 
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o From a quantitative and qualitative standpoint, what are the impacts of 

deploying flexibility mechanisms such as Demand Response, Energy Storage 

Systems and Dynamic Reconfiguration on the overall operational performance 

of the system? 

Conventional electrical networks are slowly changing. A strong sense of policy urge 

as well as commitments have recently been surfacing in many countries to integrate 

more environmentally friendly energy sources into electrical systems. In particular, 

stern efforts have been made to integrate more and more solar and wind energy 

sources.  

One of the major setbacks of such resources arises as a result of their intermittent 

nature, creating several problems in the electrical systems from a technical, 

market, operation and planning perspectives. In order to cope with the 

intermittency inherent to such power sources, it is necessary to introduce more 

flexibility into the system.  

In this context, Demand Response, Energy Storage Systems and Dynamic 

Reconfiguration of the system are introduced and the operational performance of 

the resulting system is thoroughly analyzed.  

Accordingly, in Chapter 3, various flexibility options such as demand response, 

switchable reactive power sources and energy storage systems have been explored 

to ensure effective utilization of large quantities of wind and solar power.  

To support this analysis, a stochastic MILP operational model was proposed in this 

chapter. The stochastic model has been formulated based on a linearized AC 

network model, which captures the physical characteristics of the system in a 

reasonably accurate manner. Based on the numerical studies, the following 

conclusions can be drawn: 

1. Jointly integration of DR along with ESSs and DSR into the electrical system to 

cope with efficient utilization of RES energy production; 

2. Quantitative and qualitative analysis, discussions and comparison of results 

that are obtained for various case studies related to the level of flexibility 

options as a way of dealing with intermittency and variability of RESs. The 

results show that large scale integration of DGs can be achieved by way of using 

ESSs and DR. A more efficient utilization of wind and solar can be achieved as 

a result;  
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3. According to the simulation results, as high as 76% of the demand can be easily 

covered by energy coming from wind, PV and ESSs, and most importantly 

without having dramatic impacts on the considered system in terms of its 

healthy operation. In addition, the expected operation costs are considerably 

reduced, while voltage profile in the system is also improved; 

4. Generally, as the level of flexibility in the system increases, managing the 

intermittent nature of wind and solar power is made easier. 

o What is the level of flexibility that a dynamically changing network can 

provide and what is its impact on vRES utilization level? 

DSOs are facing increasingly many challenges, mainly as a result of the growing 

integration of DERs such as solar PV and wind power. Amid the global climate 

change and other energy-related concerns, the transformation process of EDSs will 

most likely go ahead by modernizing distribution grids so that more DERs can be 

accommodated. Therefore, new operational strategies that aim to increase the 

flexibility of EDSs must be thought and developed.  

This action is indispensable so that EDSs can seamlessly accommodate large 

amounts of intermittent renewable power. To this end, one plausible strategy that 

is worth considering was a new operational strategy to operate the distribution 

systems in a meshed topology with a gradually adopting of this strategy. The new 

operational strategy is intended to provide additional level of flexibility, which 

works by operating distribution grids in a meshed manner, and the impact of doing 

this on the utilization level of variable renewable power is analyzed. Therefore, in 

Chapter 4, a new stochastic MILP optimization model has been developed with a 

reasonably large scale distribution network as a test system. A linearized AC power 

flow is used, and the operational problem is formulated as a least-cost 

optimization while satisfying a number of technical, economic and environmental 

constraints. The results have showed that: 

1. Adopting a meshed network topology as a mainstream operation strategy for 

distribution systems has considerable benefits. 

2. Generally, a more meshed network leads to better utilization of locally 

produced vRES power, and hence a higher share of renewable power. In fact, 

even a weakly meshed distribution network (with a 30% connectedness index) 

shows an improvement of 9,3% in terms of vRESs power generation compared 

to that of an optimally reconfigured radial topology.  
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3. A fully meshed topology increases utilization of vRESs power generation by 

15,4% compared to that of a reconfigured radial topology. This translates into 

an about 42% decrease in the overall system cost, 44% and 99% reductions in 

terms of expected energy and emission costs, respectively, as compared to that 

of a reconfigured radial topology, which is significant. The share of renewable 

power in the final energy consumption is as high as 75,8% in the case which 

incorporates a strongly meshed network, which is again noteworthy. 

4. Most importantly, all these improvements come without creating any 

undesirable effect on the operation of the considered distribution system. 

Instead, the average voltage profile is further enhanced, and average power 

losses are significantly lowered.  

5. The results generally reveal the multi-faceted contributions and viability of a 

meshed operation strategy. It has been verified that this strategy adds valuable 

flexibility to the system, ensuring a more efficient utilization of variable 

renewable power generation in the system. 

5.2 Directions for Future Works 

The following points may be further studied in order to broaden the understanding of the topics 

covered in this thesis: 

• Perform a comparison between price-based and incentive-based demand response 

programs can be incorporated in the model further analysis; 

• An analysis of long-term operation can be made in order to understand how to adapt 

the different flexibility options in different seasons and to perceive which ones could 

do better; 

• The meshed operation can be studied in terms of protection schemes. The set up and 

placement of protection devices should be in line with the meshed topology and 

operation strategy; 

• Investigate the possibility of near island operation of meshed distribution network 

systems under high penetration of renewable energy sources. 
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Appendix A 
 

Piecewise Linearization 

As mentioned earlier, the quadratic terms in (4.14) through (4.16) are linearized via a piecewise 

linearization method [342]. For the sake of brevity, here, we only show the piecewise 

representation of P , ,  and Q , , . Others follow the same procedure and similar sets of 

constraints. 

The quadratic expressions of active and reactive power flows can be easily linearized using 

piecewise linearization, considering a sufficiently large number of linear segments, L .There 

are a number of ways of linearizing such functions such as incremental, multiple choice, convex 

combination and other approaches in the literature. Here, the first approach (which is based 

on first-order approximation of the nonlinear curve) is used because of its relatively simple 

formulation. To this end, two non-negative auxiliary variables are introduced for each of the 

flows P  and Q  such that P = P − P  and Q = Q − Q  

Note that these auxiliary variables (i.e.,	P , P , Q , Q ) represent the positive and negative 

flows of P  and Q , respectively. This helps one to consider only the positive quadrant of the 

nonlinear curve, resulting in a significant reduction in the mathematical complexity, and by 

implication the computational burden. In this case, the associated linear constraints are: 

 

, , ≈ , , , ,  (B.1) 

  
  
  

, , ≈ , , , ,  (B.2) 

  
  
  

, , + , , = , , , ,  (B.3) 

  
  
  , , + , , = , , , , (B.4) 
  
  

were , , , ≤ /  and , , , ≤ / . 



110 

 

Appendix B 

 

The derivations related to the losses equations in (3.17), (3.18), (4.11) and (4.12) are provided 

here. Squaring both sides of the flow equations in in (3.17), (3.18), (4.11) and (4.12) and 

dividing each by V , we get: 

  

( ) ≈ ∆ − ∆ − 2 ∗ ∗ ∆ − ∆ + ( )  (B.1) 

  

( ) ≈ ∆ − ∆ + 2 ∗ ∗ ∆ − ∆ + ( )  (B.2) 

  

Since the variables θ ,	∆V  and ∆V  are very small, the second order terms (i.e. products of these 

variables) are close to zero. Hence, the first and the second terms in (B.1) and (B.2) can be 

neglected, leading to the following expressions, respectively. 

  

( ) ≈ ( )  (B.3) 

  

( ) ≈ ( )  (D.4)

  

Multiplying both sides of (B.3) and (B.4) by r  and summing gives: 

  

+ ≈ ( ) + ( )  (B.5)
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After rearranging Eq. (B.5), we get: 

  

( + )/ ≈ ( ) ( ) +  (B.6)

  

One can easily verify that r ( ) + g = 1, reducing Eq. (B.5) to: 

  

( + )/ ≈ ( )  (B.7) 

 

Recall that the right hand side of (B.7) corresponds to the active power losses expression, which 

proves the derivation. The flow-based reactive power losses are derived in a similar way. 

Multiplying both sides of (B.3) and (B.4) by x  instead of r , adding both and rearranging the 

resulting equation leads to: 

  

( + )/ ≈ − − + ( ) /(− )  (B.8)

  

Note that, in Eq. (B.8), x −b + (g ) /(−b ) = 1. Hence, the equation reduces to:  

  

( + )/ ≈ −  (B.9)

  

Notice that the right hand side of Eq. (B.8) is equal to the reactive losses expression in (3.21) 

and (4.16). 
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Appendix C 

 

Test Systems 

 

IEEE 119 BUS DISTRIBUTION SYSTEM  

Line 
Index 

From Bus 
Index 

To 
Bus 
Index 

Line 
Resistance  
R [Ω] 

Line 
Reactance 
X [Ω] 

From bus Load 
Active Power  
P [kW] 

From bus Load 
Active Power  
Q [kvar] 

1 1 2 0.036 0.01296 0 0 
2 2 3 0.033 0.01188 133.84 101.14 
3 2 4 0.045 0.0162 1 11.292 
4 4 5 0.015 0.054 34.315 21.845 
5 5 6 0.015 0.054 73.016 63.602 
6 6 7 0.015 0.0125 144.2 68.604 
7 7 8 0.018 0.014 104.47 61.725 
8 8 9 0.021 0.063 28.547 11.503 
9 2 10 0.166 0.01344 87.56 51.073 
10 10 11 0.112 0.0789 198.2 106.77 
11 11 12 0.187 0.313 146.8 75.995 
12 12 13 0.142 0.1512 26.04 18.687 
13 13 14 0.18 0.118 52.1 23.22 
14 14 15 0.15 0.045 141.9 117.5 
15 15 16 0.16 0.18 21.87 28.79 
16 16 17 0.157 0.171 33.37 26.45 
17 11 18 0.218 0.285 32.43 25.23 
18 18 19 0.118 0.185 20.234 11.906 
19 19 20 0.16 0.196 156.94 78.523 
20 20 21 0.12 0.189 546.29 351.4 
21 21 22 0.12 0.0789 93.167 54.594 
22 22 23 1.41 0.723 85.18 39.65 
23 23 24 0.293 0.1348 168.1 95.178 
24 24 25 0.133 0.104 125.11 150.22 
25 25 26 0.178 0.134 16.03 24.62 
26 26 27 0.178 0.134 26.03 24.62 
27 4 28 0.015 0.0296 594.56 522.62 
28 28 29 0.012 0.0276 120.62 59.117 
29 29 30 0.12 0.2766 102.38 99.554 
30 30 31 0.21 0.243 513.4 318.5 
31 31 32 0.12 0.054 475.25 456.14 
32 32 33 0.178 0.234 151.43 136.79 
33 33 34 0.178 0.234 205.38 83.302 
34 34 35 0.154 0.162 131.6 93.082 
35 30 36 0.187 0.261 448.4 369.79 
36 36 37 0.133 0.099 440.52 321.64 
37 29 38 0.33 0.194 112.54 55.134 
38 38 39 0.31 0.194 53.963 38.998 
39 39 40 0.13 0.194 26.04 18.687 
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(Continuation of the previous table) 

Line 
Index 

From Bus 
Index 

To 
Bus 
Index 

Line 
Resistance  
R [Ω] 

Line 
Reactance 
X [Ω] 

From bus Load 
Active Power  
P [kW] 

From bus Load 
Active Power  
Q [kvar] 

40 40 41 0.28 0.15 393.05 342.6 
41 41 42 1.18 0.85 326.74 278.56 
42 42 43 0.42 0.2436 536.26 240.24 
43 43 44 0.27 0.0972 76.247 66.562 
44 44 45 0.339 0.1221 53.52 39.76 
45 45 46 0.27 0.1779 40.328 31.964 
46 35 47 0.21 0.1383 39.653 20.758 
47 47 48 0.12 0.0789 66.195 42.361 
48 48 49 0.15 0.0987 73.904 51.653 
49 49 50 0.15 0.0987 114.77 57.965 
50 50 51 0.24 0.1581 918.37 1205.1 
51 51 52 0.12 0.0789 210.3 146.66 
52 52 53 0.405 0.1458 66.68 56.608 
53 53 54 0.405 0.1458 42.207 40.184 
54 29 55 0.391 0.141 433.74 283.41 
55 55 56 0.406 0.1461 62.1 26.86 
56 56 57 0.406 0.1461 92.46 88.38 
57 57 58 0.706 0.5461 85.188 55.436 
58 58 59 0.338 0.1218 345.3 332.4 
59 59 60 0.338 0.1218 22.5 16.83 
60 60 61 0.207 0.0747 467.5 395.14 
61 61 62 0.247 0.8922 95.86 90.758 
62 1 63 0.028 0.0418 62.92 47.7 
63 63 64 0.117 0.2016 478.8 463.74 
64 64 65 0.255 0.0918 120.94 52.006 
65 65 66 0.21 0.0759 139.11 100.34 
66 66 67 0.383 0.138 391.78 193.5 
67 67 68 0.504 0.3303 27.741 26.713 
68 68 69 0.406 0.1461 52.814 25.257 
69 69 70 0.962 0.761 66.89 38.713 
70 70 71 0.165 0.06 467.5 395.14 
71 71 72 0.303 0.1092 594.85 239.74 
72 72 73 0.303 0.1092 132.5 84.363 
73 73 74 0.206 0.144 52.699 22.482 
74 74 75 0.233 0.084 869.79 614.775 
75 75 76 0.591 0.1773 31.349 29.817 
76 76 77 0.126 0.0453 192.39 122.43 
77 64 78 0.559 0.3687 65.75 45.37 
78 78 79 0.186 0.1227 238.15 223.22 
79 79 80 0.186 0.1227 294.55 162.47 
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(Continuation of the previous table) 

Line 
Index 

From Bus 
Index 

To 
Bus 
Index 

Line 
Resistance  
R [Ω] 

Line 
Reactance 
X [Ω] 

From bus Load 
Active Power  
P [kW] 

From bus Load 
Active Power  
Q [kvar] 

80 80 81 0.26 0.139 485.57 437.92 
81 81 82 0.154 0.148 243.53 183.03 
82 82 83 0.23 0.128 243.53 183.03 
83 83 84 0.252 0.106 134.25 119.29 
84 84 85 0.18 0.148 22.71 27.96 
85 79 86 0.16 0.182 49.513 26.515 
86 86 87 0.2 0.23 383.78 257.16 
87 87 88 0.16 0.393 49.64 20.6 
88 65 89 0.669 0.2412 22.473 11.806 
89 89 90 0.266 0.1227 62.93 42.96 
90 90 91 0.266 0.1227 30.67 34.93 
91 91 92 0.266 0.1227 62.53 66.79 
92 92 93 0.226 0.1227 114.57 81.748 
93 93 94 0.233 0.115 81.292 66.526 
94 94 95 0.496 0.138 31.733 15.96 
95 91 96 0.196 0.18 33.32 60.48 
96 96 97 0.196 0.18 531.28 224.85 
97 97 98 0.1866 0.122 507.03 367.42 
98 98 99 0.0746 0.318 26.39 11.7 
99 1 100 0.0625 0.0265 96.793 83.647 
100 100 101 0.1501 0.234 100.66 47.572 
101 101 102 0.1347 0.0888 456.48 350.3 
102 102 103 0.2307 0.1203 522.56 449.29 
103 103 104 0.447 0.1608 408.43 168.46 
104 104 105 0.1632 0.0588 141.48 134.25 
105 105 106 0.33 0.099 104.43 66.024 
106 106 107 0.156 0.0561 96.793 83.647 
107 107 108 0.3819 0.1374 493.92 419.34 
108 108 109 0.1626 0.0585 225.38 135.88 
109 109 110 0.3819 0.1374 509.21 387.21 
110 110 111 0.2445 0.0879 188.5 173.46 
111 109 112 0.2088 0.0753 918.03 898.55 
112 112 113 0.2301 0.0828 305.08 215.37 
113 100 114 0.6102 0.2196 54.38 40.97 
114 114 115 0.1866 0.127 211.14 192.9 
115 115 116 0.3732 0.246 67.009 53.336 
116 116 117 0.405 0.367 162.07 90.321 
117 117 118 0.489 0.438 48.785 29.156 
  118  33.9 18.98 
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IEEE 41 BUS DISTRIBUTION SYSTEM  

Line 
Index 

To Bus 
Index 

From 
Bus 
Index 

Line 
Resistance  
R [Ω] 

Line 
Reactance 
X [Ω] 

From bus Load 
Active Power  
P [kW] 

From bus Load 
Active Power  
Q [kvar] 

1 1 2 0.0992 0.0470 100 60 
2 2 3 0.4930 0.2511 90 40 
3 3 4 0.3660 0.1864 120 80 
4 4 5 0.3811 1.1941 60 30 
5 5 6 0.8190 0.7070 60 20 
6 6 7 0.1872 0.6188 200 100 
7 7 8 0.7114 0.2351 200 100 
8 8 9 1.0300 0.7400 60 20 
9 9 10 1.0440 0.7400 60 20 
10 10 11 0.1966 0.0650 45 30 
11 11 12 0.3744 0.1238 60 35 
12 12 13 1.4680 1.1550 60 35 
13 13 14 0.5416 0.7129 120 80 
14 14 15 0.5910 0.5260 60 10 
15 15 16 0.7463 0.5450 60 20 
16 16 17 1.2890 1.7210 60 20 
17 17 18 0.7320 0.5470 90 40 
18 2 19 0.1640 0.1565 90 40 
19 19 20 1.5042 1.3554 90 40 
20 20 21 0.4095 0.4784 90 40 
21 21 22 0.7089 0.9373 90 40 
22 3 23 0.4512 0.3083 90 50 
23 23 24 0.8980 0.7091 420 200 
24 24 25 0.8960 0.7011 420 200 
25 6 26 0.2030 0.1034 60 25 
26 26 27 0.2842 0.1447 60 25 
27 27 28 1.0590 0.9337 60 20 
28 28 29 0.8042 0.7006 120 70 
29 29 30 0.5075 0.2585 200 600 
30 30 31 0.9744 0.9630 150 70 
31 31 32 0.3105 0.3619 210 100 
32 32 33 0.3410 0.5302 60 40 
33 10 34 0.2030 0.1034 60 25 
34 34 35 0.2842 0.1447 60 25 
35 35 36 1.0590 0.9337 60 20 
36 36 37 0.8042 0.7006 120 70 
37 37 38 0.5075 0.2585 200 600 
38 38 39 0.9744 0.9630 150 70 
39 39 40 0.3105 0.3619 210 100 
40 40 41 0.3410 0.5302 60 40 
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