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Resumo 

 

Nos últimos anos, o DNA plasmídico tem sido usado como um vetor em terapia génica e em 

vacinas de DNA, e por essa razão, a capacidade de produzir grandes quantidades de plasmídeo 

é importante no que diz respeito ao processo de produção de vacinas de DNA, em larga escala. 

Assim, o objetivo deste trabalho foi o estudo metabólico e proteómico da Escherichia coli 

(estirpe VH35) durante a síntese de pcDNA-FLAG-p53, usando como meio de fermentação 

compostos alternativos provenientes da indústria agro–alimentar, como o soro de queijo, o 

“corn steep licor” e o extrato de levedura. 

Combinando estes compostos alternativos como meio de crescimento, e usando a estirpe VH35 

como hospedeiro, procedeu-se então à otimização da produção de DNA plasmídeo, em termos 

de rendimento e qualidade. Após essa otimização, analisou-se o consumo de açúcares no meio 

de fermentação ao longo do tempo, e as alterações proteómicas que ocorrem devido a 

adaptações metabólicas. 

O trabalho desencolvido sugere que a estirpe VH35 utiliza meios agro-alimentares como fonte 

de energia, consumindo assim a lactose presente no meio, uma vez que estes meios não 

possuem açúcares PTS (fosfoenolpiruvato). Devido ao facto desta alteração poder levar a 

modificações no proteoma da célula, foi feita uma análise proteómica por eletroforese 

bidimensional, que revelou variações no proteoma da célula  quando comparado com diferentes 

meios de crescimento. Por fim, essas variações proteómicas foram analisadas por MALDI-

TOF/TOF, e foi possível identificar proteínas diferencialmente expressas, como por exemplo a 

proteína MreB, a desoxirribose fosfato – aldolase, chaperonina ClpB,as quais se encontram 

principalmente relacionadas com o metabolismo e a síntese de nucleótidos. 
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Proteómica, Eletroforese Bidimensional, DNA plasmídico, Soro de Queijo, “Corn steep licor”, 

Escherichia coli VH35.  
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Resumo Alargado 

 

Nos últimos anos, tem-se verificado um aumento das aplicações terapêuticas do DNA plasmídico 

(pDNA) no tratamento de inúmeras doenças como o cancro, infeções virais, hepatite, doenças 

cardiovasculares, entre outras. Devido à sua crescente ocorrência e complexidade, o cancro 

tornou-se o maior alvo da terapia génica e das vacinas de DNA, tendo surgido, nos últimos anos, 

novas abordagens de resposta terapêutica. Muitas destas novas metedologias baseiam-se na 

proteína p53, devido ao seu papel regulador em inúmeros processos celulares, como por 

exemplo a apoptose das células, diferenciação celular e mecanismos de reparação.  

Deste modo, tornou-se extremamente relevante a obtenção de elevadas quantidades de DNA 

plasmídico, na sua forma superenrolada e com elevado grau de pureza, para que possa ser 

usado terapeuticamente segundo as normas da Food and Drug Administration (FDA). Assim, o 

objetivo deste trabalho centra-se na análise das várias etapas de produção de pDNA. A 

otimização deste processo engloba várias etapas, incluindo a construção do vetor, escolha do 

hospedeiro e das condições de crescimento, sendo necessária a seleção da composição ideal do 

meio de crescimento.  

O meio de crescimento possui um enorme impacto na produção de alto rendimento de pDNA, e 

por essa razão, deve haver um compromisso entre o custo e a eficácia do processo. Deste modo, 

os meios agro–alimentares surgem como alternativa às fontes de crescimento comuns, 

constituindo na sua maioria subprodutos da indústria alimentar como é o caso do soro de queijo 

e do “corn steep licor”. Estes já foram descritos como meio de crescimento na produção de 

inúmeras substâncias como é o caso da produção de etanol.  

Assim, o trabalho nesta dissertação visa utilizar estes dois substratos na formulação do meio de 

crescimento para a produção de pDNA, usando como hospedeiro Escherichia coli VH35. Esta 

estirpe encontra-se descrita na literatura como sendo de baixa produção e acumulação de 

acetato, permitindo assim um aumento do tempo de crescimento e uma diminuição dos danos 

na estrutura e função celular. Após uma primeira etapa de otimização de produção, foi utilizado 

o HPLC (cromatografia liquida de alta eficiência) para a análise dos açúcares e monitorização 

do seu consumo ao longo do tempo, bem como da produção de acetato. Seguidamente, 

realizou-se um estudo proteómico através da eletroforese bidimensional, seguida de 

identificação de proteínas diferencialmente expressas por MALDI-TOF/TOF.  

Nos últimos anos, inúmeros estudos relativos ao proteoma da E.coli têm demonstrado possíveis 

interações que ocorrem entre as alterações ao nível do seu proteoma e as modificações 

metabólicas causadas pela adaptação ao meio. Assim, utilizando a eletroforese bidimensional, 

foi possível o estudo proteómico de células de E.coli VH35 produzidas em diferentes meios de 
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crescimento com composições distintas A estratégia  teve como intuito a análise das alterações 

ocorridas devido à utilização de substratos agro–alimentares, em vez de substratos comerciais, 

e ainda a análise de possíveis alterações nos meios não convencionais que possam ocorrer pela 

adição do extrato de levedura ou de aminoácidos aromáticos. 

Depois da otimização das condições de eletroforese bidimensional para o estudo do proteoma 

da E.coli VH35, foi possível proceder-se à análise proteómica dos extratos produzidos nos 

diferentes meios de crescimento. Esta análise foi fundamental para a identificação das 

proteínas envolvidas quer no metabolismo quer na síntese de pDNA.  

Assim, o objetivo inicial do trabalho centralizou-se na obtenção de elevadas quantidades de 

pDNA usando como meio de crescimento subprodutos agro-alimentares, sendo possível concluir 

que a adição suplementar de 5g/L de extrato de levedura ao meio de crescimento, foi benéfica 

na produção de pDNA. Deste modo, de forma a aumentar a sua produção, optou-se por adicionar 

aminoácidos aromáticos ao meio. Esta abordagem permitiu aumentar a produtividade de pDNA, 

assim como a pureza deste, atingindo-se uma produção superior a 40 mg/L de pDNA.   

Foi também monitorizado o consumo de açúcares e a produção de acetato ao longo do tempo 

de fermentação, verificando-se que esta estirpe, na presença de substratos não convencionais 

onde a quantidade de glucose é mínima, tem a habilidade de se adaptar ao meio de cultura. 

Esta adaptação consiste na capacidade de metabolizar açúcares não PTS (fosfoenolpiruvato), 

como é o caso da lactose. Verificou-se também que a produção de acetato é residual, não 

atingindo assim valores considerados tóxicos para a célula.  

Por fim, observou-se que as alterações na composição do meio levam a variações quer a nível 

do número de proteínas quer na quantidade destas, e após análise por IMAGEMASTER 2D 7.0 

software foi possível verificar a presença de proteínas diferencialmente expressas nos meios. 

Assim sendo, e após análise dos spots que contêm estas proteínas, por MALDI-TOF/TOF, foi 

possível identificar proteínas diferencialmente expressas como por exemplo a proteína MreB, a 

desoxirribose fosfato – aldolase, chaperonina ClpB e constatou-se que estas estão 

principalmente envolvidas em processos metabólicos, possuem atividade catalítica, e regulam 

as principais vias de síntese de nucleótidos. 
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Abstract 

 

In the last years, plasmid DNA has been used as a vector for gene therapy and DNA vaccines, 

and for this reason, the ability to produce large quantities of plasmid DNA is important 

concerning the DNA vaccines production process, on an industrial scale. Thus, the objective of 

this research was to study the metabolism and proteome of Escherichia coli (strain VH35) during 

the pcDNA- FLAG-p53 biosynthesis using as alternative media agro–food industry compounds, as 

cheese whey, corn steep liquor and yeast extract. 

 

Combining these alternative compounds as a growth medium, and using strain VH35 as a host, 

the optimization of plasmid DNA production was performed in terms of yield and quality. After 

this optimization, it was analyzed the consumption of sugars in the fermentation medium 

overtime, and the proteome changes that occur due to metabolic adaptations. 

 

The developed work suggests that strain VH35 uses agro-food media as an energy source, thus 

consuming the lactose present in the agro-food medium, since it does not contain PTS–sugars. 

Due to the fact that this alteration can lead to proteome modifications in the cell, proteomic 

analysis was performed using two-dimensional electrophoresis, which showed that the protein 

composition of strain VH35 was different among the compared growth mediums. Lastly, these 

proteome changes were analyzed by MALDI-TOF/TOF, and it was possible to identify 

differentially expressed proteins, such as anthranilate synthase component 1, chaperone 

protein ClpB, deoxyribose-phosphate aldolase, that are related principally to metabolic 

pathways and nucleotides synthesis. 

 

 

Keywords 

 

Proteomics, Two-dimensional electrophoresis, Plasmid DNA, Corn steep licor, Cheese whey, 

Escherichia coli VH35,  
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Chapter 1 - Introduction   

 

1.1. Gene therapy and DNA vaccination 

During the last decades, plasmid DNA (pDNA) has gained considerable importance as therapeutic 

agent in gene therapy and DNA vaccination, and it is considerate a new generation of 

biotechnological products [1,2]. The interest in therapeutic applications has been 

demonstrated by the progressive increase of patents, as can be seen in Figure 1, and clinical 

trials [1–3]. Indeed, treatments based on pDNA vaccines have been developed for several 

diseases including cancer (breast, liver, kidney, skin, prostate cancer and lymphoma),  hepatitis 

B and C, malaria, influenza, fir control of dengue, ebola and human immunodeficiency viruses 

[2].  

 

Figure 1- Number of patents in the field of DNA Vaccines  (adapted from [2]). 

The pDNA molecule consists of two ends of DNA strands covalently linked and highly negatively 

charged, capable of autonomous replication independently of chromosomal DNA [2, 5]. The 

pDNA is capable of replicating autonomously with a suitable host and, because it is part of the 

mobilome (mobile genetic material in a genome), it is often associated with the conjugation 

mechanism. This mechanism consist in transfer of genetic material between bacterial cells by 

direct cell-to-cell contact [2].  

The helix axis of pDNA can be coiled in space to form a highly ordered structure named 

supercoiled (sc) pDNA. This structure has been deemed desirable for clinical applications since 

its conformation presents least risk of recombination and integration into genomic DNA [2,4].  

As seen in figure 2, pDNA molecules can exist with varying levels of another two topological 

conformations: circular (oc) and linear form, however these forms are more subject to rapid 

intracellular degradation by endonucleases [2,4]. The major advantage of the pDNA molecules 

is the possibility of using them as cloning vectors into which foreign DNA can be inserted and 

replicated [5]. 
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Figure 2 - Schematic representation of DNA structure. Linear, open circular and supercoiled topologies 
(adapted from [2]) . 

Gene therapy involves the introduction of genetic material into the cells or tissues to repair, 

resulting in effects at the genetic level that may provide novel cellular functions or regulate 

them [2,6,7]. Also, in vaccination based on gene therapy, the treatment consists in the 

injection of pDNA containing selected genes encoding antigens to be express transiently in 

transfected cells, providing a protective immune response against pathogens stronger than 

conventional vaccines [2,3,6,7].  

However, for a successful gene therapy, it is required to design an efficient and safe delivery 

system capable of transferring the therapeutic gene and of maintaining its stability and 

functionality. As referred above, pDNA is susceptible to degradation by endonucleases and, 

thus, it must be ensured that sufficient quantities of pDNA are present to induce the desired 

immune response [4,7]. 

Nowadays, gene delivery system can be divided into viral and non-viral vectors [7]. Viral vectors 

(for example retroviruses, adenoviruses) have higher gene delivery and expression efficiencies, 

but they present a much worse safety profile: high immunogenicity, cytotoxicity and potential 

for insertional mutagenesis [1,3,4]. Non-viral vectors already allowed the delivery of several 

genes encoding molecules such as adhesion molecules, replication inhibitors, tumour 

suppressor, antigens, and cytokines. These systems are considered to be very safe but less 

efficient than viral systems, comprising physical and chemical systems, including cationic 

liposomes, polymers, gene gum, among others  [3,8,9]. Therefore, it is possible an effective 

application of pDNA in cancer treatment, as for example in the recovery of p53 protein function 

[10,11].  

1.1.1. The tumor suppressor p53 

The p53 protein is a key tumor suppressor, and its functional inactivation has been associated 

to many tumor types. Mutations in p53 gene were found in 30 - 50 % of lung, esophageal, 
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colorectal, head and neck, and ovarian cancers and it was estimate that around 80 % of human 

tumors have a dysfunctional p53 [12]. 

The P53 is an unique transcription factor and is considered to be the “guardian of the genome” 

due to its capability to induce a wide range of biochemical events including apoptosis, cell 

cycle arrest (G1 and G2 phases), senescence and enhanced DNA repair and modulating 

metabolic processes [12,13]. So, gene repressor mediated by p53 protein contribute to tumor 

suppressive activity. Nevertheless, recent studies show that mutant p53 proteins, besides of 

losing its functions, gain new oncogenic functions that are independent of wild-type p53, 

including promoting tumor cell proliferation anti–apoptosis, angiogenesis, metastasis and 

metabolic changes  [12,14], as can be seen in figure 3.   

 

 
 

Figure 3- Dominant- negative effect of mutant p53 on wild-type p53. Pro-apoptotic function of p53 is 
significantly inhibited by certain p53 mutants which induce malignant transformation (adapted from 
[15]). 

Actually, several strategies targeting the reactivation of p53 have been developed, including 

gene therapy to restore p53 function, inhibition of p53–Mdm2 interaction, reactivation of 

mutant p53 to wild-type p53, eliminating mutant p53 and p53- based vaccines, as seen in Figure 

4  [9,10,12].  Mdm2 is a potent inhibitor of p53 since it binds the transcriptional activation 

domain to p53, controlled the antitumor activity but in many tumors Mdm2 is overexpressed 

binds to p53 and inhibits the p53 function [9,16]. 

Therefore, gene therapy is used to restore p53 functions and it consists in the integration of 

therapeutic gene product into the human genome and in the delivery of wild–type p53, which 

triggers a dramatic apoptosis and induces a senescent phenotype [17].  
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Figure 4- Strategies for targeting restoration of p53 function: (1), delivery of p53, p63 and p73 by gene-
therapy; (2), inhibition of p53 and MDM2 interaction; (3), restoration of mutant p53 to wild-type p53; 
(4), disruption of mutant p53 and p73 (p63) interaction; (5), eliminating mutant p53; (6), Elevating 
p63/p73 level; and (7), immunotherapy of p53.( adapted from [9]).  

 

1.2. Plasmid DNA Production  

To achieve an efficient and economic production of DNA vaccines, it is essential to obtain high 

yields of functional pDNA using a suitable expression system. The production of DNA vaccines 

comprises three steps: plasmid design and selection of the host strain, production of the pDNA 

(upstream process) and recovery and purification of pDNA  (downstream process) [4,18,19]. The 

diagram represented in figure 5 outlines the steps involved in the development and production 

of DNA vaccines.  
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Figure 5- Process steps for the development of plasmid DNA vaccines (adapted from[3]). 

1.2.1. Plasmid Design  

DNA vaccines and genetic therapy are based on bacterial plasmid that have been engineered 

to contain a specific gene which express the disease related antigens. Bacterial plasmids used 

in DNA vaccination have several common features: promoter elements that are active in 

mammalian cells (gene of interest and polyadenylation (poly A) sequence), transcriptional 

terminator to terminate transcription and select marker to facilitate production (for example 

antibiotics such as kanamycin), as it can be seen in figure 6 [4]. 
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Figure 6  - A schematic structural overview of plasmid DNA (Adapted from [20]) 

 
Bacterial replication is defined by the origin of replication (ORI), a specific sequence of vector 

from which pDNA replication is initiated. The type of the origin of replication determines the 

copy number of plasmid per cell and influences the pDNA production  [18,21].  Currently, the 

copy-number of pUC ori ColE1-derived is widely applied to reliably obtain a higher copy number 

of plasmids. The introduction of random or defined mutations into the pUC ori can further 

increase the plasmid yield. The most commonly used Ori are ColE1 and pUC origin, which  

induces high plasmid copy number at 37-42 ºC, not at 30-32 ºC, and presents a high-yield pDNA 

production  [22,23]. 

The most used selection markers are often based on antibiotics such as ampicillin, kanamycin, 

and tetracycline. However, Food and Drug Administration (FDA) does not recommend the use 

of ampicillin and other β-lactam antibiotics due to potential hypersensitivity reactions in 

patients.  

The plasmid construction is difficult due to several factors that need to be taken into account, 

such as assurance of its structural, segregational and isoform stability. It is also required that 

the product is homogeneous regarding to its structural form and DNA sequence [19,24,25]. 

Table 1 summarizes the different factors affecting plasmid stability, once its instability usually 

induces a decrease in pDNA productivity. It has been demonstrated that the plasmid instability 

is determined by many factors, which are associated to plasmid copy number, genetic fidelity 

and segregational stability of plasmid [7] . 
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Table 1 - Factors affecting plasmid stability (according to [7]). 

Type of plasmid instability 

Structural Segregational Isoform 

Plasmid size 

PolyA sequence 

Direct, Invert repeats 

Culture conditions 

Increased expression of 

transposons 

Host strain metabolic burden 

Plasmid multimers 

Lack of selective pressure 

Dissolved oxygen concentration 

Low pH 

Culture medium composition 

Fermentation strategy 

Culture composition 

Culture medium 

Host strain growth phase 

 

1.2.2.  Host selection 

Another step involved in pDNA production is the host selection. The principal criteria for a 

suitable selection of the host strain is to maximize specific and volumetric production, the cell 

density and the number of copies in order to reduce the production time and the endotoxins 

levels [26]. It is very important that the host strain is capable of maintaining genetic stability 

and is amenable to the downstream  process [27].  

Several alternative host cells have been proposed for pDNA production such as Saccharomyces 

cerevisiae, Pichia pastoris, Hanesula polymorfa [28]. However, Escherichia coli (E.coli) remains 

the most used for pDNA production. It is preferable due to its relative simplicity, inexpensive 

and fast high density cultivation. It is the most studied organism, capable of fast growth using 

minimal nutrition [29]. The optimal conditions for pDNA production in E. coli will be discussed 

below. Common problems in pDNA production are plasmid instability, acetate accumulation, 

substrate inhibition and endotoxin production, which remains associated with the correct 

folding and lack of post-translational modification [18,28]. 

1.2.3. Production phase 

The production phase consists in two revelant stages: the medium selection and fermentation 

process development [3,18,30], which are phases that have a significant effect in downstream 

process [2].  

The cultivation medium formulation can dramatically influence the performance of microbial 

process. Medium composition is involved on the physiology of the host by influencing their 

intricate regulatory systems and, thereby, the plasmid copy number [21,31]. There are 

factors to be taken into account in the development of a medium formulation such as the effect 
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of components on plasmid yield and quality on the further downstream process and in the host 

metabolism and regulation [21,31].  

The culture media can be divided into three types: a minimal media composed only by salts, 

carbon (C) and nitrogen (N) source and trace elements; a complex media containing in addition 

to salts and carbon source, one or several complex extracts [32]; and a semi-defined media 

which is a defined media containing one or more complex extracts [21]. Defined media usually 

require more components and are more difficult to prepare than complex media [6]. 

1.2.4. Downstream processing 

Downstream processing consists in lysis, isolation and purifications steps, since cellular debris 

along with all impurities, such as salts, endotoxins and plasmid isoforms must be removed  from 

the final formulations of sc pDNA [2,4].  

Generic flow-chart  for downstream processing of plasmid DNA consists in cell lysis (alkaline, 

thermal, mechanical), followed by clarification (filtration, centrifugation), contaminant 

precipitation (precipitation by chaotropic salts, detergents), plasmid precipitation 

(precipitation by alcohols, detergents) and finally chromatographic purification (hydrophobic 

interaction, ionic, affinity chromatography), followed by concentration and final filtration 

queir[4,33–35]. 

 

1.3. Plasmid DNA production in Escherichia coli 

Escherichia coli, a gram-negative bacterium, is the most used for pDNA production on the 

industrial scale, because is a simplest and robust expression system, capable of fast growth 

with minimal nutritional requirements. During fermentation, the percentage of sc pDNA isoform 

is constant and can lead to high pDNA yields. This organism can be easily manipulated, still it 

has some disadvantages: problems associated with the correct plasmid folding, endotoxin 

production and genetic instability [7,28,36].    

The E.coli strains that have been widely used for pDNA production includes strains as K-12, 

DH5, DH5α, DH10β, JM108, JM101, and BL21 [31]. In the last years, several strategies have been 

developed to enhance pDNA production: optimization of the gene and of the expression 

plasmid, modification and improvement of host strain and optimization of the fermentation 

media conditions [28,31]. 

Emerging strains such as VH33 and VH35, with genetic changes in glucose transport system 

(PTS), are characterized by producing low amounts of acetate, maintaining pDNA supercoiling 

with high plasmid copy numbers and high plasmid retention levels (segregational stability) 

[1,37].   
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1.3.1.  Medium Composition 

Tipically, E. coli grows in both rich complex organic media and salt-based chemically defined 

media as long as carbon source is present [6], but have reporter the complex media with a 

elevate loss of sc isoform and low specific pDNA yields. However, E.coli growth in defined media 

has low yield rates and low reproducibility due to prolonged fermentation times [27,33,38]. 

The association of medium composition with specific conditions contributes for the  controlof  

plasmid copy number stability and the amount of produced biomass [39]. Elements such as 

hydrogen, carbon, nitrogen, oxygen, sodium, magnesium, phosphorus, potassium and calcium 

must be included in the formulation of the medium used for the cultivation of E.coli because 

they have crucial functions for cell growth and plasmid production [6]. When formulating a 

culture media, there are components that should be taken into account including the carbon 

source (glucose or glycerol are the most used), the nitrogen source, salts, minerals and trace 

metals [40,41].  

The proportion of carbon source influenced the growth of biomass and plays a key role in the 

cell yield and in the related acetate production. Besides the two carbon sources normally used 

for pDNA production, glucose and glycerol, there has been some research regarding alternative 

carbon sources such as maltose, mannitol, lactose and sucrose. However, both cell mass and 

plasmid productivity are reduced when these alternative carbon sources are used [42,43]. 

Some studies have shown that, when glycerol is the preferable carbon source, its metabolism 

is slower than glucose in order to reduce the maximum specific growth rate during batch 

fermentation and the acetate production during batch fermentation [44]. Although glucose is 

the most common carbon source and is essential for the synthesis of nucleotides, this sugar 

generates more acetate and produces highest volumetric yield [6,42]. 

Alternativly, nitrogen source is required for biosynthesis of nitrogenous compounds such as 

amino acids, purines and pyrimidines. Bacterial requirements for nitrogen can be satisfied by 

several inorganic or organic sources [5] as described in Table 2.  

Table 2 - Nitrogen source in minimal, defined and complex media. 

 
Nitrogen source 

Minimal Media Semi-defined media or complex media 

Inorganic ammonia and ammonium salts 

such as ammonium chloride or sulphate [42]  

yeast extract, peptone, tryptone and/or 

casamino acids [24,27,35] 
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In order to choose an appropriate complex nitrogen source, the amino acid content should be 

taken into account. For pDNA production in E.coli, media formulation is composed by high 

amounts of  yeast extract (YE) [32], a substrate that also contains carbohydrates which is a 

limiting factor for the carbon consumption rate. Tryptone is not commonly used as nitrogen 

source in culture media for pDNA production but, as it is deficient in carbohydrates, this 

substrate may be very useful to establish the consumption rate of the previously selected 

carbon source [7]. 

In the culture medium formulation, the C/N ratio must be taken into account, because it has a 

major impact on plasmid specific yield. Specifically, a C/N ratio of 2.78:1 was considered as 

optimal for pDNA production [3].  

1.3.2.  Low–cost fermentative media for plasmid DNA production  

The medium growth formulation can dramatically influence the overall cost of the pDNA 

production process, representing almost 30% of the cost of the fermentation process [45]. So, 

it is important to reduce the cost of growth medium on both laboratorial and industrial scales. 

In the last years, many low-cost such as molasses, corn step licor (CSL), cheese whey (CW) and 

olive mill wastewater have been used in the production of bioethanol, hydrogen and production 

of rhamnolipids, production of cellulose and production of β-Galactosidase [46–50].  

The cheese whey is the most common by-product of dairy industry and results in the coagulation 

of milk. This product retains about 55 % of milk nutrients and represents an important 

environmental problem for dairy industry because of the high volumes and high organic matter 

content produced [46]. CW contains approximately 55 g/L lactose which is a sugar that can be 

used in fermentation process as carbon source, and due to whey proteins, it also has a good 

applicability in the medium showing high nutritional and functional values [48,51,52]. The CW 

can be used as an alternative carbon source, replacing more common substrates as glucose and 

glycerol, in cultivation media for E.coli with the aim of reducing production costs [53]. 

The corn step licor is a major by-product of corn starch processing and is considered a low-cost 

nitrogen source, acting as a replacer for YE and peptone. CSL also is a low-cost source of amino 

acids, minerals, vitamins and trace elements, and its supernatant composition was determined 

as: 65% water, 6.1% ashes, 3.4% free reducing sugars, 2.2% total kjeldahl nitrogen, 2.6% fat, 

density 1.14 and pH 4 [8,46,54]. Over the last few years, CSL have been combined with YE on 

the production of ethanol, improving its production [46,52,55]. 

1.3.3.  Culture conditions  

The pDNA yield has been influenced by several factors such as changes in growth conditions 

including temperature, nutrient concentration, oxygenation, induction strategies and growth 

phase [5]. 



11 

 

1.3.4. Temperature and pH control  

Temperature and pH are external factors that must be controlled during the production process 

because of their importance for E.coli growth rate and cell density. The optimal pH for E.coli 

growth is 5,5 to 8,5 and the temperature is about 370 C [23,32]. The growth of E.coli cells is 

inhibited at extreme pHs and, so, at these ranges the cell growth rate will significantly decrease 

and cause cell death. 

1.3.5. Oxygen demand  

The dissolved oxygen concentration (DOC) is a major factor and can be used to control and 

optimize pDNA production. Depending on the desired products, aerobic or anaerobic conditions 

can be used. The aerobic culture favors faster growth but anaerobic conditions are needed for 

the formation of certain products including ethanol or lactic acid [56,57]. 

The DOC attenuates E. coli metabolic burden in the aerobic state. The tricarboxylic acid (TCA) 

cycle operates to oxidize pyruvate with the reductants formed coupling with the electron 

transport chain in order to generate the proton gradient, which is used for adenosine 

triphosphate (ATP) production [57]. 

It was demonstrated that by decreasing the growth rate with limited DOC, the number of 

plasmid copies per cell and the plasmid specific yield was increased as well as the purity of cell 

lysates. However, in the presence of a higher DOC, the cell growth and fermentation time 

decreases, whereas the by-products and mostly acetate increases, leading to cell death [57,58]. 

1.3.6. Effect of Acetate production  

Acetate is predominantly formed in E.coli under aerobic conditions, causing several 

physiological effects and inhibiting cell growth and pDNA production [18,59]. This is 

demonstrated because the protonated form of acetate is able to cross the cell membrane and 

act as an uncouple of the proton motive force  [60]. 

Escherichia coli uses the acetate production pathway to produce ATP under anaerobic and even 

aerobic conditions [61]. The acetate accumulation under aerobic conditions appears to be a 

result from an imbalance between glycolysis and tricarboxylic acids cycle [18]. The cells 

produce excess of acetyl-CoA which is converted into acetyl phosphate, an intermediate of 

acetate pathway, resulting in the posterior production, excretion of acetate and its 

accumulation in the extracellular environment [61].  

1.3.7. Fermentation techniques 

Two types of fermentation modes are used to produce pDNA: batch and fed-batch [27]. In the 

batch process, all the nutrients required for the fermentation process are initially 
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decontaminated and added into the bioreactor, and the material is only removed at the end of 

process. The batch fermentation is a simpler process but, when compared to a fed-batch 

strategy, it is inefficient in terms of plasmid yield and in the conversion of raw materials to 

product [62]. 

Fed-batch process starts as batch cultivation, i.e., in a first phase the cells grow until nutrient 

exhaustion, typically the carbon source. After this nutrient exhaustion, the fed-batch phase 

begins with the controlled addition of a limiting nutrient, allowing a greater control of culture 

growth rates [63,64]. This process also provides higher biomass yields and, concurrently higher 

product yields than in batch cultures. As the substrate is supplied at a controlled rate, its 

consumption is alomost complete and, so, it never reaches inhibitory concentrations [21,27,65]. 

This prevents the metabolic overflow resultant from the excess of substrate, reducing the 

formation of inhibitory concentrations of acetate [66]. 

1.3.8.  Central Carbon Metabolism in Escherichia coli 

Central carbon metabolism in E.coli is constituted by glycolysis, gluconeogenesis, pentose 

phosphate pathway, and tricarboxylic acid cycle (TCA pathway), and is responsible for 

transforming carbon into energy, in the form of ATP and into redox cofactors (NADH e NADPH) 

which are essential for the physiology of E.coli [37,67]. These pathways are responsible for 

biomass and plasmid DNA production and they are intrinsically correlated in the pentose 

phosphate pathway (PP pathway), composed by the oxidative and the non-oxidative phases 

[35].  

Escherichia coli, as the host organism, has the capability to use a wide range of sugars and 

sugar alcohols as a carbon source. However, the preferred carbon source is glucose wich lead 

to a fast growth rate [67–69]. In E.coli, the phosphotransferase system (PTS system), which is 

the main glucose transport system, is responsible for the entrance of carbohydrates and for 

catalyzing the reaction responsible for glucose phosphorylation. The glucose phosphorylation is 

coupled to its translocation across the cytoplasmic membrane, mediated by the ratio of 

pyruvate to phosphoenolpyruvate (PEP). In addition to glucose transport, PTS also regulates 

sugar uptake in E. coli [67,70,71]. 

The PTS system consists of three distinct soluble proteins that participate in phosphoryl system:  

pyruvate dehydrogenase (E1), acetyltransferase (E2) and dihydrolipoamide deydrogenase (E3) 

[67].  

Under aerobic conditions, pyruvate enters in the TCA cycle and is oxidized into carbon dioxide 

(CO2), where oxygen is a final electron acceptor. This releases large amounts of energy in the 

form of ATP (adenosine triphosphate), NADH (nicotinamide adenine dinucleotide) and FADH2 

(flavin adenine dinucleotide). Fermentation is a process in which cells release energy in the 

absence of any terminal electron acceptor. This involves the utilization of carbon and the 
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resulting energy is conserved, at the substrate level, by phosphorylation and by formation of 

the overflow metabolites (acetate, ethanol, succinate), which are secreted from the cell in 

order to maintain the redox balance [72]. 

For example, E.coli strains lacking PTS are also capable of transporting glucose across the cell 

membrane using non-PTS transporters for glucose, such as galactose transporters GalP 

(galactose permease) and MglBAC (galactose ABC transporter) [72].  

In the case of the strain used in this study, strain VH35 (PTS-pykF), the PTS inactivation had a 

strong effect on the flux distribution and, so, the metabolic flux is directed to biomass 

formation. As the strain VH35 also lacks the pyruvate kinase isozyme pykF (pyruvate kinase I), 

the reduction phosphoenolpyruvate (PEP) to pyruvate only depends on pyKA(pyruvate kinase II) 

activity, which decreases the acetate accumulation during the fermentation process and 

increases the availability of phosphoenolpyruvate, as it can be seen in figure 7 [37,59].  

 

Figure 7 - Central carbon metabolism pathways. The Embden-Meyerhof-Parnas (EMP), pentose phosphate 
pathway (PPP) and tricarboxylic acid cycle (TCA) in E. coli during its growth in a glucose rich medium. In 
the figure, PTS (in blue), the non-PTS glucose uptake system (in purple), PEP node (green) and AAA 
(yellow) enzymes are depicted. The allosteric effects that PEP has in EMP and acetate biosynthesis are 
represented by an orange line for inhibition and by a blue arrow for activation (adapted from [37] 
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1.4.  OMICS approaches for the study of biological systems  

Omics approaches represent a unique opportunity for the quantification and characterization 

of biomolecules pools, which are present in a specific organism, tissue or fluid. They also have 

the ability to improve the overall understanding of the functioning of biological systems [73,74]. 

As a result of technical and methodological improvements, omics areas have emerged to 

understand and characterize the changes that occur in biological systems, including cell 

cultures, under certain conditions [73]. Omics include genomics, transcriptomics, proteomics 

and metabolomics that allow the study of the structure, function and interaction of genes, 

messenger RNA, metabolites and proteins in an organism [73,75].  

1.4.1.  Metabolomics 

Metabolomics can be defined as a comprehensive and quantitative analysis of metabolites 

(intermediates or products produced by cellular process) with a view to understand 

metabolism. Metabolism is constituted by a set of chemical reactions and transformations, and 

it comprises two parts: the catabolism which is the breakdown of molecules to obtain energy, 

and the anabolism which is the synthesis of all compounds needed by the cells [76,77]. 

Under an environmental perturbation, cells are subjected to several physiological stresses and 

they must recognize the changes and adjust the metabolism systematically [78,79]. 

Metabolomics studies have been used in order to access information about these responses to 

environmental stress, by comparing mutants, drug discovery, toxicology and nutrition. This is 

focused on metabolite target analysis and metabolite profiling of endogenous and exogenous 

small molecules metabolites (<1500 Da), including peptides, amino acids, nucleic acids, 

carbohydrates, organic acids, vitamins, polyphenols, alkaloids and inorganic species [76,77]. 

The greatest advantage of the metabolomics studies is the biological proximity to the system 

phenotype and hence the rapid observation of its perturbations regarding the metabolome. In 

recent years, innovational techniques were used in metabolomics studies, including separation, 

combination and detection techniques. Gas chromatography, capillary electrophoresis, high 

performance liquid chromatography (HPLC), ultra-performance liquid chromatography and 

nuclear magnetic resonance spectroscopy are examples of some techniques used in 

metabolomics studies [76,77].  

 

1.4.2.  Proteomics 

The term proteomics refers to the study of proteome, which consists in the entire set of 

proteins expressed by a genome, cell or tissue [74,80–82]. Proteome is extremely dynamic and 

complex, and its study is gaining interest because it has been proved that the gene expression 
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has no direct relation to protein expression [74,83,84]. Proteomics also allows the detection of 

subtle changes that can occur in a studied proteome. This is due to the fact that different 

conditions can directly affect both the protein expression and DNA synthesis [80,82]. Thus, flux 

modeling and the determination of the proteome may allow the investigation and interpretation 

of significant adaptations that occur in metabolic systems at distinct states [82]. 

In recent years, the study of proteome has made a great deal of progress. The proteomics 

workflow consists in various stages: acquisition and treatment of material, specific protein 

profile analysis, and bioinformatics analysis of the obtained data [74,83]. The proteome of 

several organisms has been studied combining a vast number of methods including two–

dimensional polyacrylamide gel electrophoresis (2DE), high performance liquid chromatography 

(HPLC), mass spectrometry (MS), X-ray crystallography and protein microarrays, as seen in 

figure 8 [74,85]. These combined methodologies generate raw data that are crossed with 

databases information using specific algorithms, that are consequently translated into protein 

information [83]. Table 3 shows some of the techniques which are currently used in proteomics, 

as well as their advantages and disadvantages. Despite the available techniques, the 

combination of 2DE and MS has been the preferential workflow for separation and identification 

of proteins in many biological fields [86]. 

 

Figure 8- An overview of the available proteomic strategies  ( adapted from [85]). 
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Table 3- Overview of the currently applied proteomic technologies and its advantages and disadvantages, 
(adapted from [87]).  

 
 ADVANTAGES DISADVANTAGES 

PROTEOME PROFILE – 2D-

ELECTROPHORESIS 

Good resolutions of proteins 

High sensitivity 

Detection of postranslational 

modifications and isoforms 

Low-cost technique 

Poor proteins solubility 

Limited dynamic range of  

detection 

Analysis and quantification 

are difficult 

Reproducibility 

Number of replicates 

PROTEIN IDENTIFICATION 

– MASS SPECTROMETRY 

Determination of molecular 

weight and amino acids sequence 

information 

Detection of postranslational 

modifications 

High throughout capability 

False positives and 

negatives 

Secondary assays needed 

for confirming interactions 

IMMUNOAFFINITY Identifications of protein complex 

Functional assignment to proteins 

withouth a priori knowledge of 

function 

High affinity needed 

between all proteins in the 

complex 

Protein loss during 

purification 

HOMOLOGY Detailed information on specifity 

and function 

Homologous protein 

structures needed 

NONHOMOLOGY Interation with unknown proteins 

functional assignment to unknown 

proteins 

Complete genome 

sequences required limited 

coverage of genome. 

Inaccuracy of predictions 
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1.4.2.1. Sample preparation 

 

In proteomics analysis a suitable sample preparation is crucial since the results of the 

experiment largely depend on the condition of the starting material. Sample preparation must 

be laborious and meticulous since the approaches used in proteomic analysis, although have 

high resolution and high-throughput, are sensible to interferents [85,88]. Samples preparation 

in proteomics analysis are performed combining several techniques, summarized in table 4, 

allowing the extraction, solubilization and enrichment of the target proteins, and removal of 

interfering substances [88,89] .  

Table 4 - Methods for samples preparation in proteomic research (adapted from [88,89]). 

 
Samples preparation 

 

Methods of cell 

disruption: 

 

Methods for 

removal of 

contaminants: 

Components 

applied in protein 

solubiliation: 

 

Protein enrichment 

methods:  

 

 Mechanical 

homogenization 

 Ultrasonic 

homogenization 

 Pressure 

homogenization 

 Freeze–thaw 

homogenization 

 Osmotic and 

detergent lysis 

 Ammonium 

sulphate 

precipitation 

 Acetone 

precipitation 

 TCA acetone 

precipitation 

 Ethanol acetone 

precipitation 

 Isoelectric 

precipitation 

 Chloroform 

methanol 

precipitation 

 Chaotropes (e.g. 

urea, thiourea) 

 Detergents 

(CHAPS …) 

 Reductants (e.g. 

DTT, DTE …) 

 Protection from 

proteolysis 

 Precipitation 

 Centrifugation 

 Membrane 

proteins 

enrichment 

 Prefractionation 

 Chromatographic 

techniques 

 Solid-phase 
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1.4.2.2. Two-dimensional electrophoresis (2DE)  

 

Two-dimensional electrophoresis is a widely used method for the analysis of complex protein 

mixtures. It was introduced by O’Farrell in 1975 and consists of two steps of protein separation, 

a first dimension according to isoelectric point (pI) and a second dimension according to their 

molecular weight. As referred previously in table 3,  2DE is a relatively low-cost technique and 

presents high resolution and applicability [90,91]. In a 2DE gel, each spot corresponds to a 

single protein specie, and information such as pI, molecular weight, and the relative amount 

of each protein can be obtained. This technique can be applied to analyze the whole proteome, 

post- and co-translational modifications, which cannot be predicted from the genomic 

sequence. 2DE is commonly used for detection and identification of potential disease 

biomarkers but also can be used for bacterial identification, purity check, microscale protein 

purification and product characterization [90,92]. Despite of its versatility, 2DE technique main 

disadvantage is the poor performance in the analysis of membrane proteins, a largest category 

of proteins that remains under-identified  [93,94]. 

As it can be seen in figure 9, the analysis by 2DE is composed by distinct steps, including sample 

preparation, first dimensional separation by isoelectric focusing (IEF), second dimensional 

separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (second 

dimension) and detection of the protein spots by staining. 

 

Figure 9 -Typical two-dimensional electrophoresis (2DE) workflow for generating protein maps. 2DE 
workflow includes (A) sample preparation, (B) isoelectric focusing (1st dimension), (C) SDS-PAGE (2nd 
dimension) and (D) protein spots staining (adapted from [95]).  

In 2DE technique, sample preparation is absolutely essential.Ideally, all proteins must be 

denatured, disaggregated and solubilized before the separation. Also, potential interfering 

substances must be removed before analysis since 2DE is highly sensible to the presence of 

interferents. For example, salt concentrations higher than 40–50 mM may interfere with the 

efficacy of bidimensional separation [96].  In the last years, developments in sample 

preparation helped to achieve reproducible results. These technical developments include 

improved extraction buffers and protein precipitation methods and kits for cleaning the 

interfering substances and for concentrating samples [97–99].  
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In the second dimension, SDS-PAGE, proteins are separated according to their molecular 

weight. This technique is based on the traditional process, in which the proteins, negatively 

charged due the presence of SDS, migrate through the acrylamide gel when a current is applied 

[98,100]. Second dimension is performed under reducing conditions, so, the complete 

denaturation and dissociation of proteins is achieved by incubation with dithiothreitol (DTT), 

resulting on the disruption of its three-dimensional structure by reducing disulfide bonds, 

unfolding and subsequent complexation with SDS. Iodoacetamide (IAA) alkylates disulfides 

bonds, converting cysteine residues so that they cannot recombine to form disulfides [100].   

For protein visualization, there is a variety of available staining methods including general 

methods such as Coomassie brilliant blue, silver nitrate and fluorescent stains or specific 

methods as immunodetection and glycoprotein detection [97,98,101]. The requirements of an 

ideal detection method include high sensitivity and reproducibility, wide linear dynamic range, 

low toxicity and should be fully compatible with the posterior MS-based proteomic analysis. 

Coomassie staining is a simple and low-cost method, suitable for quantitative analysis and is 

compatible with downstream characterization methods (for example MALDI-TOF/TOF) [102]. 

Silver staining techniques are a non-radioactive methods based upon saturating gels with silver 

ions, washing the less tightly bound metal ions out of the gel matrix and reducing the protein-

bound silver ions to form metallic silver. Silver ions bind to the amino acid side chains, primarily 

to the sulfhydryl and carboxyl groups of proteins [102,103]. Fluorescent detection have a higher 

sensitivity, is a simple and robust staining protocol, and is characterized by its quantitative 

reproducibility [102,104]. 

A 2-D image analysis provides statistic evaluation of the protein spots. High quality and 

reproducible 2-D gels are required to examine patterns and spot intensities to access the 

difference of the protein expression between samples. The ImageMaster software is the most 

common in the 2-DE gels analysis, and is designed for automated data processing, however is 

necessary a correction by user [105,106]. 

1.4.2.3. Matrix- assisted laser desorption ionization time-of-flight (MALDI-
TOF) 

 

For the identification of proteins of interest, spots are extracted from 2DE gels and analyzed 

by MS. MS has been gaining interest in proteomics field as an analytical technique used for 

protein identification in unknown samples, but it can also be used for the quantification of 

several compounds as neuropeptides, antibiotics or various metabolites [107,108]. MS has 

become the preferred technique for the characterization of the full proteome and for the study 

of differentially expressed proteins and of post-translational modifications within an organism. 
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In MS, the analyzed sample is firstly ionized by ionization source and, then, separated in a gas 

phase through the application of an electric and magnetic fields. The ions are separated 

according to their mass-to-charge (m/z) ratio in a mass analyzer and the number of ions at each 

m/z value is recorded by the detector. The vacuum system avoids the collision between the 

ions and air particles, enabling a free path for the ions from the ion source to the detector 

[109]. MS analysis are displayed as a mass spectra, where each peak represents the relative 

abundance of a detected ion as a function of the m/z ratio [109].  

The most common ionization method in proteomic studies is the matrix-assisted laser 

desorption ionization (MALDI) that was introduced by Karas and Tanaka in 1987. Proteins or 

peptides are mixed with an organic matrix, deposited into a MALDI plate (metal plate) and 

dried before analysis. Then, the peptide or protein sample co-crystallizes with the matrix, and 

it is ionized with a laser pulses, under vacuum conditions. The matrix absorbs the most of the 

energy, protonating the sample and converting it into positively charged ions (+1 charge). Under 

an electrical field, the formed ions are accelerated into the analyzer and separated according 

to their m/z ratio. The soft ionization method, MALDI, is commonly combined with the time-

of-flight (TOF) analyzer [110,111]. 

The matrix consists of an organic solid or liquid species and its adequate choice is crucial for 

the good performance of the technique. [112]. Ideally, the matrix should absorb strongly the 

laser wavelength, form micro-crystals with the analyte and have a low sublimation 

temperature, which facilitates the formation of an instantaneous high-pressure plume of 

matrix-analyte material during the laser pulse duration. The most common acid matrix applied 

in proteomics approaches are α-Cyano-4-hydroxycinnamic acid (CHCA), sinapic acid (SA) and 

2,5-Dihydroxybenzoic acid (DHB) [111–113]. 
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Table 5 - The most common matrix used for the sample preparation for MALDI-TOF/TOF (according to 
[113]). 

 
Matrix Analyte Characteristics 

CHCA 
Low mass proteins and 

peptides 

Forms small homogeneous crystals 

High internal energy in the analyte 

High resolution for low mass proteins 

Solubility: Organic solvents 

SA 

High mass proteins 

 

 

 

Forms small homogeneous crystals 

Low internal energy in the analyte 

High resolution for high mass proteins 

Solubility: Organic solvents 

DHB 
Peptides, glycoproteins and 

glucans 

Forms big crystal needles 

Lower resolution 

Solubility: Organic solvents, water 

 

1.4.2.4. The MALDI Time-of-Flight Time-of-Flight Mass Spectrometer 
(MALDI-TOF/TOF) 

 

Some MALDI-TOF instruments, due to its configuration, allow tandem MS (MS/MS) analysis, 

which enables the analysis of the peptide fragments within a selected m/z ratio. These 

instruments contain a timed ion selector, which is a double-sided deflection gate, that allows  

only the peptides within a selected m/z pass into the collision cell and can be fragmented 

through collision induced dissociation (CID). During CID, the peptide is exposed to a chemically 

inert gas, which separates the peptide into two fragments, where one is ionized and the other 

becomes uncharged. The gate-selected ions are decelerated by retarding lens prior to their 

entry into the collision cell. Fragmented ions are reaccelerated and separated by their m/z in 

the second TOF analyzer [110,111,114]. A schematic view of MALDI ion source connected to 

TOF/TOF analyzers is shown in the figure 10. 
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Figure 10 – Schematic view of a MALDI-TOF/TOF mass spectrometer. (Adapted from 
http://www3.appliedbiosystems.com/cms/groups/psm_marketing/documents/generaldocuments/cms_
040103.pdf). 

 

1.4.2.5. Protein Identification 

 

Several different strategies are currently used to identify proteins, based on the comparison of 

MS or MS/MS spectra with theoretical data that can be carried out through a database 

dependent or independent searching. Peptide mass fingerprinting (PMF) is the most used 

strategy to identify proteins separated by 2DE, in-gel digested and analyzed by MALDI-TOF mass 

spectrometry [115]. This strategy involves searching the experimental peaks list, provided by 

MS spectra, in a theoretical mass list constructed using a protein sequence database that 

includes the select protein candidates [116]. Protein database is generated by performing a 

theoretical digest on protein sequences using specific criteria that closely resembles the 

experimental conditions [117]. Then, using the proper algorithm, peptides with the highest 

matching score are selected and identified according to the match protein sequence. However, 

this strategy only works properly with isolated proteins and, so, requires the previous protein 

separation. In mixtures exceeding 2 or 3 proteins, a MS/MS based protein identification is 

required.   

The strategies used to identify proteins include the application of the ProteinPilot software, a 

revolutionary protein database search tool which combines Paragon™ and Mascot™ databases, 

independently from each other. 

Mascot software implements a probability-based scoring algorithm, where a peaks list 

containing peptide masses is submitted to a database searching to potentially identify proteins 

from a pool of protein candidates, depending on the obtained score. This is a widely-used 

database search engine in which the identity score depends on the number and quality of 

fragment ion assignments [118].  

https://en.wikipedia.org/wiki/MS/MS
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Paragon software allows simultaneous searching of a large number of biological and other 

modifications, genetic variants and unexpected cleavages.Also performs a statistical analysis 

regarding the ProtScores from each protein and the total score is based on the sum of all 

peptides that are related to a certain protein [119]-  

1.4.2.6. Proteome of Escherichia coli  

 
The organisms respond and adapt them to certain environmental conditions by changing their 

DNA synthesis, protein expression and, thus, their metabolism. For example, E.coli grows in 

several subtracts and it has the ability to adapt to each medium through changes in mRNA levels 

and, consequently, by inducing substantial modifications in protein expression and in metabolic 

pathways. So, as E. coli is widely used for the production of pDNA, it is important to understand 

the host metabolic pathways and the interactions established between the interconnected 

components. The unbalances between host metabolism and recombinant biosynthesis may 

hamper the biotechnological bioprocesses efficiency [79,120]. This host is suited for proteome 

analysis because its complete genome sequence is known, which may facilitate the 

identification of proteins expressed at a given time in a specifc environment [121,122]. 

The proteomic analysis became an important tool in order to determine changes in the overall 

cellular metabolic pathways. The advantage of analyzing these changes using proteomics 

approaches is the possibility to elucidate global regulatory systems by discovering which 

proteins are expressed in response to a variety of stress conditions, and getting information 

related to post-translational modifications and interactions between macromolecules 

[78,120,123]. Once the proteins of interest are identified, a more precise description of the 

specific metabolic pathways and mechanisms is trigged in response to changes in the cellular 

environment. Though 2DE is the most used, a variety of techniques have been used for the 

study of the proteome and metabolism of E.coli strains, as described in table 6. This technique 

allows the study of changes in a proteome because of its ability to resolve complex protein 

mixtures into individual polypeptide [79,120,124].  
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Table 6 - Proteomics studies regarding the analysis of Escherichia coli cultures. 

Organism Objective Methodology Observations Reference 

E. coli K12 

BW25113 

Study of the response 

to chlortetracycline 

Liquid 

chromatography 

Matrix assisted 

laser desorption 

ionization 

Mass 

spectrometry 

723 proteins were identified 

(184 downregulated and 147 

upregulated), from which 

51.3% were involved in 

metabolic pathways such as 

pyruvate metabolism, 

pyrimidine metabolism, the 

TCA cycle and butanoate 

metabolism- 

[120] 

 

 

E. coli VL8 Identification of 

sinigrin-induced 

bacterial proteins 

potentially involved 

in the metabolism of 

glucosinolate 

2DE 

LC–MS/MS 

16 proteins are involved in 

carbohydrate metabolism, 

oxidoreduction system and 

sugar transport. 

[125] 

E. coli K-

12 strains 

Identification 

phosphate limitation 

2DE and MALDI 

TOF/TOF 

Proteome analysis confirms 

that phosphate limitation 

occurs. 

[121] 

 

E.coli Identification of 

proteins induced by 

acid or base, during 

long-term aerobic or 

anaerobic growth 

conditions in 

complex medium 

2DE and MALDI 

TOF /TOF 

Identification of complex 

relationships between pH 

and oxygen and a novel 

permeant acid-inducible 

gene, YfiD. 

 

[126] 

 

E. coli K12 Regulation of the 

main metabolic 

pathways of cells 

grown aerobically in 

different carbon 

sources (glucose, 

acetate, gluconate 

or glycerol). 

2DE and MALDI 

TOF /TOF 

 

Acetate was used as a carbon 

source:  pfkA, pykF, ppc and 

zwf were downregulated, 

while fbp, pckA, ppsA and 

mez were significantly up-

regulated. 

Glycerol as a carbon source, 

fbp and TCA cycle enzymes 

were up-regulated, while 

ackA was significantly 

downregulated. 

[78] 
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Chapter 2 - Objectives 

 

Gene therapy and DNA vaccination has become a promising alternative for treating many serious 

diseases, such as cancer, neurodegenerative diseases and genetic disorders. In the last years, 

several vectors have been developed and gene therapy clinical trials have been completed or 

are ongoing. In particular, a system based on the gene encoding a p53 protein, a tumour 

suppressor, has been improved for cancer treatment. 

The main goal of this work is to study the metabolism and proteome of E.coli (strain VH35) 

during the pcDNA-FLAG-p53 biosynthesis using agro–food industry compounds as an alternative 

media. This work involves metabolic analysis of growth media and proteomic analysis of E.coli 

lysates in order to understand how specific molecules, such as sugars, amino acids, and 

nucleosides metabolically can interact in order to improve pDNA production. In particular, the 

study of the proteome of E.coli lysates aims to understand the adaptations of E.coli metabolism 

to several growth media. 

For this purpose, the production of therapeutic pDNA was optimized, in terms of yield and 

quality of pDNA, using E.coli VH35 as a host and combining CW and CSL in the growth medium, 

as sources of carbon and nitrogen, respectively. It was also important to explore the capacity 

of E.coli VH35 to produce pDNA from alternative carbon sources and to verify the variation in 

consumption of sugars that occurs throughout the fermentation process. 

Proteomics analysis was also performed in order to provide a comprehensive description of 

proteome changes of E.coli VH35 that may occur in their metabolic adaptation to different 

conventional and non-conventional growth media.   
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Chapter 3 - Materials and Methods 

3.1. Materials 

Acrylamide 4K-solution 40% was obtained from PanReac AppliChem (Darmstadt, Germany). 

Coomassie brilliant blue G-250 was obtained from Fluka Chemika (Buchs, Switzerland). CHAPS 

was obtained from Amresco (Ohio, USA). Sodium phosphate, sodium chloride and glycine were 

obtained from Fisher Scientific (Loughborough, UK). Dithiothreitol (DTT) was obtained from 

HiMedia (Mumbai, India). Methanol (HPLC-grade) was acquired from VWR Internacional 

(Carnaxide, Portugal). The ethylenediaminetetraacetic acid (EDTA), glucose, sulfuric acid, 

acetic acid (HPLC grade), L-tyrosine, L-phenylalanine and L-tryptophan (≥99 % purity) were 

acquired from Sigma-Aldrich (Sintra, Portugal). Sodium sulfite was acquired to José M. Vaz 

Pereira, S.A. (Sintra, Portugal). Tris (hydroxymethyl) aminomethane (Tris), Ammonium 

bicarbonate, trypsin from porcine pancreas Trifluoroacetic acid (TFA) and iodoacetamide (IAA) 

were obtained from Sigma-Aldrich (Missouri, USA). Ultrapure reagent-grade water used for 

preparing solutions was obtained from the Mili-Q system (Milipore/Waters). 

3.2. Plasmid and strain 

The 6.7 Kbp pcDNA3-FLAg-p53 plasmid was purchased from Addgene (Cambridge, MA, USA). 

The vector pcDNA3-FLAG-p53 encodes for the human p53 protein conjugated with a FLAG tag, 

and contains the ampicillin resistance gene and SV40 virus mammalian expression promoter. 

 

 

Figure 11- Plasmid pcDNA3-FLAG-p53 backbone (adapted from https://www.addgene.org/10838/). 

The strain  used was E. coli VH35, which was gently provided by Professor Guillermo Gosset 

from the Instituto de Biotecnología from Universidad Nacional Autónoma de México. Strain 

VH35 derivate from E. coli W3110 was modified for L-phenylalanine production, as consequence 

https://www.addgene.org/10838/
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of PTS and PykF inactivation. The E. coli VH35 was transformed with pcDNA3-FLAg-p53 plasmid 

according to the protocol previously described [59]. 

3.3. Bacterial growth conditions   

E. coli VH35 strain containing the pcDNA3-FLAg-p53 plasmid, was first cultivated in a Luria-

Bertani (LB) agar plate, supplemented with 100 µg/ml of ampicillin. To define the optimal 

conditions for pDNA synthesis, several media composed by CW and CSL were tested for the 

fermentation of E.coli VH35. The tested growth media consisted in the following conditions: 1 

and 2 % (w/v) of CW, 2 % (v/v) of CSL combined with 0, 2.5, 5, 7.5 and 10 g/L YE. 

 For media preparation, CW power and YE were diluted with sterile water and autoclaved, 

followed by the removal of the precipitate by centrifugation (1 hour at 3900 g). CSL was diluted 

to 50% with sterile water, pH was adjusted to 7 and the CSL solution was autoclaved and 

centrifuged at 3900 g during 40 min to remove the insoluble material.  

In order to improve pDNA synthesis through the control of the aromatic amino acids pathway,  

from the previously optimized media, were supplemented with 50 µg/l tyrosine, 78.5 µg/ml 

phenylalanine and 100 µg/ml tryptophan, according to the previously described [59]. The 

aromatic amino acids used in experiments were dissolved in Mili-Q water at a final 

concentration of 10 mg/mL, sterilized using a 0.22 μm syringe filter and stored at 4ºC in absence 

of light.  

Specific  fermentation assays were carried out at 37 0C and 250 rpm, in 500 mL Erlenmeyer 

containing 125 ml of complex medium, supplemented with 100 µg/ml ampicillin and salts (90 

mM KH2PO4, 40 mM (NH4)2SO4, 20 mM NaCl, 1.6 mM MgSO4∙2H2O, 0.05 mM  CaCl2, 0.072 mM 

FeSO4∙7H2O). Cell growth was evaluated by measuring the optical density of the culture 

medium at wavelength of 600 nm (OD600). All cultures started with an OD600 of approximately 

0.2 by inoculation from the pre–culture medium. The cells were grown in 500 mL shake flasks 

containing 125 mL of medium (equal to fermentation medium), at 250 rpm at 37oC. Grown cells 

were suspended at late log phase and the cells were recovered by centrifugation at 3800 g for 

45 min at 40oC (Beckman coulter Allegra X22 centrifuge). Lastly, the bacterial pellets were 

stored at -20 ºC. 
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3.4. Quantitative and qualitative analysis of the pDNA 

3.4.1. Alkaline Cell Lysis   

 

The bacterial pellets were thawed and dissolved vigorously in 8 mL of resuspension buffer 

containing 50 mM glucose, 25 mM Tris- HCl and 20 mM EDTA, pH 8. Alkaline lysis was performed 

by adding 8 mL of a 200 nM NaOH, 1% (w/V) sodium dodecylsulfate (SDS) solution and, after 5 

min of incubation at room temperature, cellular debris, gDNA and proteins were precipitated 

by adding and mixing 7 mL of a pre-chilled solution of 3M potassium acetate, pH 5.0. After a 

20 min incubation in ice, the precipitate was removed by centrifugation at 20 000 g, during 30 

min at 4 0C, using Beckman Coulter Allegra 25R centrifuge. A second centrifugation step was 

carried out, under the same conditions, in order to separate the remaining suspended material. 

For the following analysis, the extracts resulted from the second centrifugation were used 

without further purification steps. 

3.4.2. Plasmid DNA Quantification  

All experiments were performed using on ÄKTA Pure System (GE Healthcare Biosciences, 

Uppsala, Sweden) with the Unicorn control System Version 6.3, equipped with 20 μL sample 

loop. The HPLC method based on hydrophobic interaction chromatography [34], was performed 

in order to measure the concentration and purity of synthetized pDNA using a 4.6/100 mm HIC 

Source 15 PHE PE column (Amersham Biosciences). Briefly the system was prepared with 1.5M 

(NH4)2SO4 in 10 mM Tris-HCl buffer pH 8.0 in pump B and 10 mM Tris-HCl buffer pH 8 in pump 

A. The hydrophobic column was equilibrated with 100 % of buffer B at a flow rate of 1 mL/min. 

After injecting the lysis extract, the non-retained species were removed from the column for 

0.8 min by maintaining the initial conditions. The concentration of ammonium sulphate was 

then instantaneously decreased to zero in order to elute bound species [34]. The absorbance 

at 260 nm and the conductivity were monitored during the assay.  

The standards used for calibration curve were prepared with sc pDNA obtained from E.coli 

fermentation extracts purified with a Quiagen Commercial Kit (Hilden, Germany). Standards 

were obtained by diluting the sc plasmid solution with the mobile phase to concentrations 

ranging between 1 and 100 µg/mL. The calibration curve obtained from the correlation between 

the peak area and the concentration sc pDNA is depicted in appendix I. The purity degree was 

defined as the percentage of pDNA peak area related with the total area (area of all peaks on 

the chromatogram). 
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3.4.3. Plasmid DNA quality analysis   

For pDNA quality analysis, the isoforms proportion was assessed by agarose gel electrophoresis, 

a technique that applies an electric field to an agarose gel matrix to separate a mix of DNA 

molecules. The samples were analysed by horizontal electrophoresis using a 1% agarose gel and 

0.5 µg/mL green safe. Electrophoresis was carried out at 110 volts, during 30 min, using tris-

acetate-EDTA (TAE) as running buffer. The agarose gels were visualized under a UV light in a 

Viber Lourmat System (ILC LDA Lisbon, Portugal). 

3.5. Determination of sugars and acetate by High Performance 

Liquid Chromatography  

All experiments were performed using a HPLC from Agilent (Waldbronn, Germany) with a 

refractive index detection (RID – Agilent 1260 Infinity). Sugars and acetate were simultaneously 

analysed onto an analytical column HI-PLEX H (7.7 × 300 mm and 8 µm of pore size). The mobile 

phase consisted of Mili-Q Water with 5 mM H2SO4. The compounds were eluted under the 

following conditions: flow rate at 0.6 mL/min in an isocratic mode, temperature of 50 0C and 

pressure of 50 mmHg [59]. 

Samples consisted on collecting 1000 µL of cell culture broth, and were centrifuged at 10000 

rpm for 7 min. The supernatant was filtered (0. 22 µm) and previously degasified. A calibration 

curve was determined for glucose, galactose, lactose and acetate by diluting mother solution 

at a concentration ranging from 1- 100 g/L and 1-40 g/L for galactose.  
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3.6. Two Dimensional Gel Electrophoresis  

3.6.1.   Sample preparation  

 

After the optimization process, the fermentation conditions, shown below in table 7, which 

demonstrated increased production of pDNA, were selected for further analysis of the proteome 

E. coli by 2DE.  

Table 7- Medium Composition 

MEDIUM COMPOSITION  

CSL 2% (v/v)+ 1.2% CH (w/v) 

CSL 2% (v/v)+ 1.2% CH (w/v)+ + 78.5 (µg/ ml) phenylalanine + 10 (µg/ ml) tyrosine +100(µg/ 

ml)tryptophan 

CSL 2% (v/v)+ 1.2% CH (w/v)+5 (g/l)  ye 

CSL 2% (v/v)+ 1.2% CH (w/v)+5 (g/l)  YE+ 78.5 (µg/ ml) phenylalanine + 10 (µg/ ml) tyrosine 

+100(µg/ ml)tryptophan 

20  g/l YE,  20  g/l glucose, 24  g/l triptone and  78.5 (µg/ ml) phenylalanine + 10 (µg/ ml) 

tyrosine +100(µg/ ml)tryptophan 

 

Upon completion of the fermentation process, 125 mL of cell broth was harvested by 

centrifugation at 3800 g, 4 0C for 40 min, and washed three times with PBS Buffer 1X for 20 

min, at same conditions. Cells were suspended in lysis buffer (7 M Urea, 2 M thiourea, 4% (w/v) 

CHAPS, 40 mM DTT, 10 mM TRIS- HCL) and lysed by mechanical glass bead disruption (seven 

cycles of vortexing during 1 min, followed by 1 min of incubation on ice). The mass of glass 

beads and the volume of lysis buffer were added to the mass of cell pellet in a proportion of 

2:2:1. To the resultant lysates was added 25 µg/ml of the DNAse, followed by incubation on ice 

for two min.   

The proteins from lysates were extracted using chloroform/methanol precipitation, in which 

methanol, chloroform and Mili-Q water were added to 200 µl of sample, in a volume proportion 

of 4:1:3:1. Then, the mixture was vortexed and centrifuged at 15 000 g, 4 0C for 10 min. The 

aqueous layer above the proteins precipitate, formed between the hydrophilic and hydrophobic 

phases, was removed and more 4 volumes (800 µl) of methanol were added. The protein pellet 

was obtained after a centrifugation at 10 000g for 5 min. The supernatant was removed, and 

the pellet was solubilized in the 2DE sample buffer (7 M Urea, 2 M thiourea, 4% (w/v) CHAPS, 

40 mM DTT, 2 % (w/v) IPG buffer 3-10, 0.002 % bromophenol blue solution).  
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3.6.2. Protein quantification  

The 2D Quant Kit (GE Healthcare, UK) was used to determine the accurate quantity of protein 

in the samples previously prepared, based on manufacturer’s instructions. Bovine serum 

albumin (BSA, 2 mg/mL) was used as standard for the construction of calibration curve to 

determine the protein mass, in an range from 2.5 to 5 µg. Briefly, 125 µL of precipitant reagent 

was added to each sample/standard and, after 3 min incubation at room temperature, 125 µL 

of co-precipitant reagent was added. Protein sample was centrifuged at 10000 rpm for 10 min, 

4 0C and the supernatant was removed. Pellets were solubilized with 100 µL of a copper solution 

(25% cooper solution and 75 % Mili-Q water), 200 µL of working color reagent was added to each 

tube and the solution was transferred to a 96-wells plate. After a 20 min incubation at room 

temperature, the plate absorbance was read at 490 nm. 

3.6.3. Two-Dimensional gel electrophoresis  

For the first dimension, immobiline DryStrips pH 4-7, 18 cm (GE Healthcare Life Sciences, 

Sweden)  were rehydrated on an immobiline Drystrip dehydratation tray (GE Healthcare Life 

Sciences), for 12 h at room temperature, with 500 µL of rehydratation solution (7M Urea, 2 M 

thiourea, 4% (w/v) CHAPS, 40 mM DTT, 0,5 % (w/v) IPG buffer, 0.002 % bromophenol blue 

solution), as previously performed [92].  

A total of 400 µg of protein sample was applied onto each strip using a cup loader. The 

rehydrated strips were then subjected to isoelectric focusing in Ettan IPGphor III (GE Healthcare 

Life Sciences) using the following conditions: 500 V for 1 hour, an increasing voltage gradient 

until 1000 V for 1 hour, a gradient from 1000 to 10000 V for 4 hours and, finally, the voltage 

was set to 10 000 V for 2h30. Biological and technical duplicates were performed for all 2DE 

experiments.  

After isoelectric point, IPG strips were incubated with reducing equilibration buffer (6 M urea, 

29.3% (v/v) glycerol, 2% (w/v) SDS, 0.02% (w/v) bromophenol blue, 75 mM Tris-HCl buffer, 1 % 

(w/v) Dithiothreitol (DTT)) for 15 min, followed by a 15 min incubation with alkylation 

equilibration buffer (6 M urea, 29.3% (v/v) glycerol, 2% (w/v) SDS, 0.02% (w/v) bromophenol 

blue, 75 mM Tris-HCl buffer, 2.5 % (w/v) iodoacetamide). 

The second dimension was performed on 12.5% acrylamide gels, using Ettan DALTSIX Large 

Vertical System (GE Healthcare Life Sciences, Sweden). The 12.5% acrylamide gels were casted 

into 1 mm Ettan DALT gels casting cassettes. Strips were positioned on the top of acrylamide 

gels and sealed with agarose solution (0.5% (w/v) agarose, 0.002% (w/v) bromophenol blue, 25 

mM Tris, 125 mM glycine, 1% (w/v) SDS). The second-dimensional gel electrophoresis was 

carried out using a 1x electrophoresis buffer into the under chamber and 2x buffer into the 

upper chamber. The electrophoresis running buffer was prepared by diluting the stock 10x 
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composed by 250 mM Tris, 1.92 M glycine and, 1% (w/v) SDS, pH 8.3. Gels were initially run at 

2 mA/gel for 45 min to allow the proteins entrance in the gel and, then the amperage was 

increased to 17 mA/gel in order to allow the proteins separation into the resolving gel.  

After electrophoresis, gels were fixed (40% ethanol, 10% acetic acid) during a day, stained with 

colloidal coomassie brilliant blue solution during 5 days, and distained (1% acetic acid, 20% 

ethanol) overnight, according to the previously described procedure [101].  

3.6.4. Image acquisition and analysis  

The gels were also subjected to a densitometry scan on ImageScanner III (GE Healthcare Life 

Sciences, Sweden). The images were analyzed using the ImageMaster 2D Platinum v7.0 (GE 

Healthcare) software. The protein spots were automatically detected in the 2DE gels (smooth 

2, minimum area 40.0 and saliency 1) and minimal manual correction was performed to remove 

artifacts and edges of the images. Manually assigned vectors (landscapes) were implemented 

on gel images to correct technical variances. T-test (ANOVA), with p-values ≤ 0.05, to identify 

the proteins with significant expression differences, namely differentially expressed proteins. 

3.6.5. Mass Spectrometry  

3.6.5.1. Trypsin digestion   

For identifying the differentially expressed proteins, protein spots were excised from 2DE gels, 

and were digested with trypsin. Gels spots were destained with 50 % acetonitrile (ACN) and 25 

mM ammonium bicarbonate (AB) at 37ºC, overnight. After removing the wash solution, pure 

ACN was added to rehydrate the gels and proteins were reduced with 10 mM DTT, at 56º C for 

an hour, and alkylated with 55 mM IAA, at room temperature for 30 min. Then, gel spots were 

rehydrated using 30 μL of 10 ng/μL trypsin solution prepared in digestion solution (25 mM AB 

and 9% ACN) and incubated in ice for one hour. After the absorption of trypsin solution, gel 

spots were covered with digestion solution and proteins were digested overnight at 37ºC. Lastly, 

the tryptic peptides were firstly extracted, using 0.1% TFA in water (at 37ºC for 15 min) and, 

then, with 0.1% TFA in 50% ACN at the same conditions. The extracted tryptic peptides were 

polled in the same tube and dried by vaccum centrifugation at room temperature. 

3.6.5.2. MALDI-TOF/TOF analysis 

For clean-up peptides, dried samples were acidified with 1% TFA to obtain a pH lower than 3. 

Zip-tip pipette tips C18 0.1-10 μL pipette tips (Millipore®, Molsheim, France) were activated 5 

times using pure ACN and equilibrated 10 times with 0.1% TFA in LC-MS grade water. The tryptic 

peptides were loaded on the column and afterwards bound peptides were eluted with 5 μL of 

80% ACN with 0.1% TFA solution. Thus, with tryptic peptides desalted and concentrated, it was 

possible to perform MALDI TOF/TOF analysis.  
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The MS and MS/MS spectra were acquired on 4800 plus MALDI-TOF/TOF analyzer (Applied 

Biosystems), equipped with a 355 nm laser. Initially, CHCA matrix was prepared by adding 60 

μL of 0.1% TFA in 50% ACN in order to obtain a matrix solution with 5 mg/mL concentration. 

The standards used for the equipment calibration were a mixture of CALMix 1 and CALMix 2, 

obtained from AB SCIEX Peptide Mass Standard Kit (Massachusetts, USA), according to the 

manufacter’s instrcutions. MALDI-TOF/TOF was initially calibrated, using components from the 

calibration mixture such as des-arg-bradykinin (904.4681m/z), angiotensin I (1296.6853m/z), 

glu-fibrinopeptide B (1570.6774m/z) and ACTH (2093.0867m/z).  

Samples were prepared by combining 5 μL of clean-up peptide samples with 5 μL of CHCA matrix 

solution. All spots were acquired in a positive MS reflector mode in the range 800 to 4000 m/z 

by averaging 1500 laser spots. The eight more intense MS ions per spot that satisfied the 

precursor criteria (200 ppm fraction-to-fraction precursor exclusion, S/N ratio >25) were 

selected for subsequent MS/MS analysis. MS/MS analysis was performed using 1 keV collision 

energy of 1 kV with a total of 1500 laser shots per spectrum. Peak lists were export to an MGF 

file using the function Peaks to Mascot 4000 Series Explorer™ Software (Applied Biosystems). 

3.6.5.3. Protein Identification 

 

Protein identification was performed using Paragon algorithm from ProteinPilot™ Software 4.5, 

from AB SCIEX (Massachusetts, USA), under a 95% confidence, where each peak list was searched 

against the Escherichia coli database (1,447,752 entries) downloaded from Swiss-Prot 

Escherichia coli in FASTA format, at 15 September 2016. The “unused” and “total protein” 

scores are ProteinPilot specific terms that stands for peptides specific for protein identification 

and all peptides measured for protein identification, respectively. In this study an unused/total 

protein score of 1.3/1.3 was used as a cutoff for protein identification. The search parameters 

took into consideration cysteine modification by methyl-methanethiosulfonate, digestion of 

peptides with trypsin and default biological modification settings [105]. 

After protein identification, STRING10 was used to share protein-protein associations. To get a 

more profound knowledge about biological process, cellular compartment and molecular 

function of each identified protein, STRAP software was used. STRAP (Software Tool for Rapid 

Annotation of Proteins) is a program that automatically annotates a protein list with 

information which helps in the meaningful interpretation of data from mass spectrometry and 

other techniques. 
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Chapter 4 - Results and Discussion 

 

4.1. Optimization of media based on agro-industrial by-

products on the production of plasmid DNA by E. coli VH35 

 
In the last years, the demand for obtaining high yields of pure and effective pDNA has been 

increased. Several procedures for pDNA production and purification have been proposed, 

although much effort has been direct towards to downstream process. However, there is still 

much room for improvement at the upstream level, namely on the production phase [19,35].  

The production phase consist of two important components: the medium selection and 

fermentation process [3,30,59,127] . The cultivation medium can represent almost 30% of the 

total cost for a pDNA production and, then, complex medium are not economically attractive 

because requires more expensive components [6,45]. So, this study attempted to find 

economical and profitable alternatives for the preparation of complex culture media, by the 

application of agro-industrial by-products.  

4.1.1. Effect of the supplementation of media based on agro-industrial with 

yeast extract on the production of pcDNA3-FLAg-p53 plasmid 

CSL and CW are considered agro-industrial wastes/by-products [55]. CW contains high levels of 

lactose, which can be used as a carbon source in the complex medium for the production of 

compounds by fermentation. However, CW must be supplemented with other extracts, such as 

CSL and YE, to meet the metabolic needs of the cells during fermentation process [8,51]. CSL 

is an alternative nitrogen source and its combination with YE may increasing cells growth and 

expression [8]. Previous results from our research group show that CSL and CW as alternative 

substrates in culture media for production of pDNA in E.coli VH35, a combination of 1.2% CW 

and 2% CSL demonstrate to be a optimal medium for pDNA biosynthesis.     

Thus, in a first approach, the effect of the supplementation of medium based on by-products 

with YE for the production of pDNA was studied.  So, for improve the production of pDNA, 2% 

(v/v) CSL and 1.2% (w/v) was combined with several YE concentrations, as shown in the table 

8.  
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Table 8- Composition of the different fermentation media tested in this study with 1.2 % (w/v) CH and 
2% (v/v) CSL  

Medium YE (w/v) 

A 0.0 

B 2.5 

C 5.0 

D 7.5 

E 10.0 

 

Regarding the pDNA production yields, from the five analyzed media, the medium C showed 

the higher production of pDNA, unlike the medium, A which presents low levels of production 

of pDNA. The results for the pDNA volumetric and specific yield revealed that the introduction 

of YE in medium leads to an increase in final pDNA specific yield (Table 9).  

According the table 9, pDNA specific yield increase from 1,048± 0,022 µg pDNA per cell dry 

mass (CDM) in medium A to 4.983 ±0.37 µg pDNA per CDM in the medium B and C for 10.234 ± 

0.656 µg pDNA per CDM in medium C. The composition C presented the most significant increase 

in the volumetric and specific yield but led to a decreasing growth rate of E. coli cells 

(2.972±0.193 g/L of CDM). Indeed, by comparing the CDM obtained with media A and B, it is 

apparent that the increase of YE levels did not result in a significance increase CDM value, as 

can be seen by CDM values presented in table 9 (4.18± 0.047 for medium A and 5.29± 0.129 for 

medium B). This indicates that the presence of YE in fermentation medium, at moderate 

concentrations, may allow the increase of E. coli metabolic flux towards the pDNA production, 

rather than for cell growth [59]. 

Table 9 - Effect of the supplementation of the media with yeast extract on bacterial growth, plasmid 
DNA volumetric, specific yields, and purity. 

Medium OD600 nm Cell dry mass 

(CDM)  

(g/L) 

pDNA 

volumetric 

yield  

(µg/mL) 

pDNA 

specific  

yield 

 (µg pDNA 

/mg CDM) 

Purity 

 (%) 

A 9.825 ± 0.643 4.18± 0,047 4.379±0.096 1.048± 0.022 0.192± 0.037 

B 11.073±0,843 4.983 ±0.379  8.654±0.348 4.983 ±0.379 0.616 ±0.037 

C 6.613±0.430 2.972±0.193 35.126±1.067 11.803±0.700 2.902±0.043 

D 9.267 ±0.379 4.170 ±0.171 21.798 ±2.242 5.228 ±0.766 2.079 ±0.159 

E 11.7750.286 5.299 ±0.129 10.262 ±0.814 5.299 ±0.129 0.894 ±0.095 

 
However, for higher concentrations of YE, above 7.5 and 10 g/L, the strong impact of YE on the 

production and consequent plasmid yield is softened. Despite of showing higher production than 
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the obtained with medium A, it was possible to obtain volumetric yields of 21.798 ± 2.242 and 

10.262 ± 0.814 with media D and E, respectively, lower values taking into account the results 

for medium C.  

The provided results shows that the presence of moderate concentration of YE in the medium 

had a strong impact on pDNA production, maybe due to the disturbance of carbon/nitrogen 

ratio in the medium [40,55]. Finally the medium C appears to be a promising alternative for 

the production of the pDNA using CSL and CW as a components of the growth medium, showing 

volumetric and specific yield of 35.126±1.067 and 11.803±0.700, respectively. So, the medium 

C was selected for a further optimization of pDNA production. 

It was achived 35.126±1.067 µg pDNA/ mg cell dry mass and also was confirmed that the use of 

agro –food nutritive extracts is viable for pcDNA3–FLAG–p53 biosynthesis. In fact the results are 

similar to those obtained with commercial semi-defined medium with glucose and aromatic 

amino acids supplementation [59]. 

The quality of the obtained plasmid is an important factor to be considered and it was evaluated 

using gel electrophoresis. The analysis by gel electrophoresis demonstrate that the tested agro–

food medium could produce high degree of sc pDNA and the presence of the other isoforms can 

also be observed (Figure 12).  

 

Figure 12 - Agarose gel electrophoresis of target plasmid DNA during fermentation. Lane A, B, C,D,E are  
fermentations of indicated in table 4. 
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By the analysis of agarose gels in the figure 12, the plasmid produced at the medium C was 

predominantly in the sc form, in contrast the medium A and the medium B showed a low yield 

of sc pDNA. The presence of other pDNA topologies occur as a result of degradation, during the 

process, caused by intrinsic and extrinsic factors, per example, the presence of nucleases or 

the unsuitability of fermentation process [128,129].  

4.1.2.  Effect of the supplementation of media based on agro-industrial by-

products with aromatic amino acids on the production of plasmid DNA 

In the next phase, different approaches based on the addition of aromatic amino acids to growth 

medium were applied to optimize the biosynthesis of pDNA.  The manipulation of the initial 

concentration of aromatic aminoacids can increase the pDNA production. The  previous proposal 

model demonstrate that the influence of aromatic amino acids on their pathway provides 

necessary precursors for the nucleotides network [59].  

Similarly, it was intended to increase production of pDNA by chemical manipulation of the 

metabolic pathways of E. coli VH35. To achieve this, the previously optimized media, based on 

agro-industrial by-products, were supplemented with aromatic amino acids such as tyrosine 

(tyr), phenylalanine (phe) and tryptophan (tryp).  Tyr, phe and tryp were applied at 

concentrations of 10 µg/mL, 78.5 µg/mL and 100 µg/mL, respectively, according to previous 

results from our research group [59].   

Two of the previously optimized media conditions were tested: the medium A and C. Aromatic 

amino acids were added to medium A in order to increase the pDNA production and avoid the 

addition of yeast extract in the medium, in order to lower the cost of the process [46]. 

Subsquently, the aromatic amino acids was added to medium C in order to improve the pDNA 

yield and purity. The results obtained for the pDNA volumetric and specific area and purity are 

depicted in the table 10.  

Table 10- Effect of the supplementation of the media with aromatic amino acids on bacterial growth, 
plasmid DNA volumetric, specific yields, and purity. 

Medium OD600 nm Cell dry mass 

(CDM)  

(g/L) 

pDNA 

volumetric 

yield   

(µg/mL) 

pDNA specific  

yield  

(µg pDNA /mg 

CDM) 

Purity  

(%) 

A + aromatic 

amino acids 

4.955±0.075 2.230±0.143 6.019±0.227 2.699±0.143 0.337±0.023 

C + aromatic 

amino acids 

6.00±0.616 2.00±0.616 42.061±1.012 15.578±1.597 3.373±0.043 
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The maximum pDNA yield was obtaining with the medium C supplemented with aromatic amino 

acids, with values of pDNA volumetric and specific yield of 42.061±1,012 µg/mL and 15.578 

±1.597µg/CDM, respectively. Comparing to the previous results, the supplementation with 

aromatic amino acid led to an increased in both pDNA volumetric and specific yield, from 

35,126±1,067 µg/mL and 11.803±0.700 µg/CDM, respectively, to 42.061±1.012 µg/mL and 

15.578 ±1.597 µg/CDM.  

Regarding the medium A supplemented with aromatic amino acids, values of pDNA volumetric 

and specific yield of 6.019±0.227 µg/mL and 2.699±0.143 µg/CDM were obtained. Although the 

addiction of aromatic amino acids to the medium A increased production of pDNA in about 2 

µg/mL, the values of pDNA production yields and purify are still low when compared to the 

other media tested, especially the medium C with aromatic amino acids.  

As referred above, the quality of the obtained plasmid is an important factor to be considered 

in pDNA production. Likewise, as the previous results, plasmid produced at the medium C 

supplemented with amino acid was predominantly in the sc form, but the medium A with amino 

acids produced less sc form. 

 

 
 

Figure 13 - Agarose gel electrophoresis of target plasmid DNA during fermentation with aromatic amino 
acids (aaa). Lane A and C are fermentations of indicated in table 4.  

A + aaa  C+aaa 
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4.2. The influence of different carbon sources in the 

metabolism of E. coli VH35 

 

E.coli is on the well-studied organism and one of the reasons for its choice as host is its 

capability to utilize a wide range of sugars and sugars alcohol as a carbon source [44]. In some 

cases, it seems to be a hierarchical utilization of sugars by E. coli, in which glucose is the most 

preferred carbon source. Only after glucose complete consumption, E.coli utilizes the 

secondary carbon sources. However, other reports indicate that, when cultivated in media with 

several carbon sources, E. coli frequently consumes these subtracts simultaneously [44,130]. 

In the case of VH35 strain, used in this work, hierarchical utilization of sugars may be changed 

due to the genetic mutation of the PTS, responsible for glucose transport across the cell 

membrane, in strain VH35. However, others galactose transporters, galactose permease are 

expressed and transport other sugars across the cell membrane [131,132]. Also, it was reported 

that the strain VH35 generally produces low acetate levels due its lack of PyK A activity, the 

enzyme responsible by the reduction PEP to PYR [37]. So, to fully understand the E. coli VH35 

metabolism, its behavior in the presence of non-conventional media, such as agro-industrial 

extracts, should be evaluated.  

In this work, a study was performed with the purpose of exploring the capacity of E. coli VH35 

for producing pDNA from alternative carbon sources and verify the variation in the consume of 

sugars that occurs throughout the fermentation. For this purpose, the consumption of the sugars 

and the production the acetate throughout the fermentation were monitored by the analysis of 

glucose, lactose, galactose and acetate. For this study, the next medium was included for 

comparison with the media based on agro-food extracts [59].  

The results for conventional fermentation medium are represented in the figure 14, in the 

presence of glucose, the cells experience a period of adjustment (4 hours), followed by an 

exponential growth period, in which glucose concentration decrease over time. As can be seen 

in figure xiii, glucose is a preferred carbon source, whereas the low galactose concentrations 

are maintained over time. Regarding acetate production, HPLC of measurements indicate that 

the strain VH35 produced a maximum of 2 g/L acetate in this assay. 
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Figure 14 - Profile of optical density (600 nm), glucose, galactose consumption and acetate production in 
conventional fermentation medium. 

 
However, the profile of the sugar consumption are quite different when the fermentation is 

performed with agro-industrial extracts, as seen in Figures 15 -21. According to literature, when 

glucose is limited since the beginning, the alternative sugar catabolic operon promoters is 

activated in the present of non – PTS sugars (α-lactose, L-arabinose, D-xilose). Then, the lactose 

become the  preferential sugar consumed by E.coli [43,133].   

The results suggested that E.coli VH 35 choose to consume lactose in the presence of an agro-

food medium, because this medium do not contains PTS – sugars, such as glucose, as seen in 

figures 15-21. Lactose concentration decrease over time and reached the minimum level when 

the optical density stabilizes. This metabolic behavior of E. coli occurs in the media composed 

by agro-industrial extracts analyzed, including media supplemented with amino acids.  

 

Figure 15 - Profile of optical density (600 nm), glucose, lactose, galactose consumption and acetate 
production in fermentation A [2% CSL (v/v) + 1.2 % CW (w/v)]. 
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Figure 16 - Profile of optical density (600 nm), glucose, lactose, galactose consumption and acetate 
production in fermentation A with aromatic amino acids [2% CSL (v/v) + 1.2 % CW (w/v) with aromatic 
amino acids].  

 

 

Figure 17 - Profile of optical density (600 nm), glucose, lactose, galactose consumption and acetate 
production in fermentation B [2% CSL (v/v) + 1.2 % CW (w/v) with 2.5 g/L YE]. 
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Figure 18- Profile of optical density (600 nm), glucose, lactose, galactose consumption and acetate 
production in fermentation C [2% CSL (v/v) + 1.2 % CW (w/v) with 5 g/L YE]. 

 

 

 

Figure 19 - Profile of optical density (600 nm), glucose, lactose, galactose consumption and acetate 
production in fermentation C with aromatic amino acids A [2% CSL (v/v) + 1.2 % CW (w/v) with 2.5 g/L 
YE and aromatic amino acids].  
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Figure 20 - Profile of optical density (600 nm), glucose, lactose, galactose consumption and acetate 
production in fermentation D [2% CSL (v/v) + 1.2 % CW (w/v) with 7.5 g/L YE]. 

 

 

Figure 21 - Profile of optical density (600 nm), glucose, lactose, galactose consumption and acetate 
production in fermentation E [2% CSL (v/v) + 1.2 % CW (w/v) with 10 g/L YE]. 

 
Also, all of lactose molecules should be metabolized to glucose and galactose during 

fermentation by β-galactosidase [134] to enhance its consume by the strain VH35, 

simultaneously with lactose utilization. This occurs because in strain VH35 a higher flux is 

directed from central metabolism to biomass formation [37]. As can see in the figures 15-21 

the lactose concentration decreases over time but the concentration of glucose and galactose 

does not increase as the consumption of lactose.  

Acetate is the by-product most predominantly formed in E.coli under aerobic conditions, 

causing several adverse effects on physiology as inhibition of cell growth and reduction of pDNA 

production [59,127]. HPLC measurements indicate that the strain VH35 produced a maximum 

of 3,8 g/L of acetate in the medium C supplemented with amino acids (CSL 2% ; 1,2% CH ; 5,0 
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(g/L) YE  with aaa).  So, the level the acetate produced in the presence of this specific agro-

food medium is  lower than the acetate concentration 5 g/L, that could lead to a reduced 

growth rate and biomass yields [18].  

As can be seen in figure 17, 18, 20, E.coli OD600, was very high in the fermentation in the 

presence of agro-industrial media (2% CSL and 1.2 % CW) supplemented with addiction of 2.5, 

5.0, 7.5 and 10 g/L YE. However, these measurements may have been affected by the 

formation, over fermentation time, of some precipitates in the medium growth, leading to 

some turbidity.  

Sucintly, this results demonstrated that strain VH35 may be an efficient strain to be used in an 

ecologically and economically sustainable procedure for pDNA production. This work proved 

that strain VH35 uses agro-food media as an energy source, when insufficient glucose levels are 

available.  
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4.3. Proteomic analysis  

In E.coli, protein expression are result of a compromise between metabolic pathways used for 

the expression of pDNA and its growth [123]. The aim of proteomics analysis in this work was 

to provide a comprehensive description of proteome changes of E.coli VH35 that occurs in their 

metabolic adaptation to different conventional and non-conventional growth media. Also a 

systematic study of the effect of agro-food medium on the proteome E. coli were carried out, 

in order to elucidate some effects of this extracts in its metabolic pathway. Proteomic 

approaches combining 2DE and MALDI TOF/TOF were applied to identify proteins overexpressed 

in the proteome of E. coli cells cultivated in distinct culture media.  

In a first approach, 2DE procedure for the analysis of E. coli lysates was optimized in terms of 

sample preparation and electrophoresis conditions to improve the reproducibility of gel –based 

proteomics assays. Firstly, the effect of centrifugation of E. coli lysates were studied in terms 

of protein recovery and the number and volume of spots in 2DE gels. So, centrifuged and non-

centrifuged E. coli lysates were quantified and 250 µg of protein were analyzed by 2DE on a 3-

10 pH range strip. Thereafter, using the optimized conditions for sample preparation, the pH 

ranges 3-10 and 4-7 were tested in order to improve the resolution of gels [78,135]. 

The results demonstrate that the centrifugation of E. coli lysates leads to a decrease in protein 

concentration, from 5.29 ± 0.37 µg/µL in non-centrifuged samples to 0.64 ± 0,063 µg/µL in 

centrifuged lysates. By 2DE gel analysis, 419 spots were detected in the gel of non-centrifuged 

samples, corresponding to a volume of 416.29 cm3, but in -centrifuged samples only 195 spots 

were detected, with a total volume of 166.07 cm3 (figure 22). 

Comparing the 3-10 and 4-7 pH range strips, 195 spots with a total volume of 111.04 cm3 were 

detected in 3-10 pH range and 305 spots with a total volume of 180, 30 cm3 were detected in 

4-7 pH range, as seen in figure 23. 

So, the centrifugation of E. coli lysates leads to significant protein losses and this fact is evident 

when comparing the 2DE gels from non and centrifuged samples. Furthermore, 3-10 pH resulting 

gels had low resolution and lower number of spots when compared to the 4-7 pH range. Thus, 

the further experiments were conducted using non-centrifuged lysates and a pH linear gradient 

of 4–7, providing an improved gel resolution and a higher number of spots. 
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Figure 22- Centrifuged (A) and non-centrifuged (B) samples were analyzed by 2DE using pH 3-10 linear 
IPG strips, 24 cm 

 

Figure 23 -Samples analyzed by 2DE using (A) 3-10 pH range, 24 cm linear IPG strips and (B) 4-7 pH range, 
18 cm linear IPG strips. 

After the optimization of 2DE procedure, E.coli strain VH35 was growth in different growth 

media, whose composition is described in table 11. Medium 1 was include for comparison with 

agro-food media (medium 2; 3; 4; 5). Medium 1 is a result of experimental design optimization 

performed by our research group for the biosynthesis of plasmid DNA by E. coli VH33, where a 

high production of pDNA was obtained [59]. 
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Table 11 - Growth conditions for proteomic analysis (growth time = 15 hours)  

 
MEDIUM MEDIA COMPONENTS 

1 20  g/l YE,  20  g/l glucose, 24  g/l triptone and  78.5 (µg/ ml) phenylalanine + 

10 (µg/ ml) tyrosine +100(µg/ ml)tryptophan 

2 CSL 2% (v/v)+ 1.2% CH (w/v) 

3 CSL 2% (v/v)+ 1.2% CH (w/v)+ + 78.5 (µg/ ml) phenylalanine + 10 (µg/ ml) 

tyrosine +100(µg/ ml)tryptophan 

4 CSL 2% (v/v)+ 1.2% CH (w/v)+5 (g/L)  YE 

5 CSL 2% (v/v)+ 1.2% CH (w/v)+5 (g/l)  YE+ 78.5 (µg/ ml) phenylalanine + 10 (µg/ 

ml) tyrosine +100(µg/ ml)tryptophan 

 

The success of proteomic is largely based on the appropriate preparation of the protein sample 

[136]. Protein precipitation is part of the sample preparation procedure and several techniques 

such as methanol/chloroform, trichloroacetic acid, trichloroacetic acid/acetone, and acetone 

precipitation, have been applied [81,92,137]. This step is important to remove proteases,  

cellular material, genomic DNA and interfering lipids and detergents [137,138].  

In this work, the E. coli lysates were prepared by methanol/chloroform precipitation because 

of its efficiency in recover a variety of proteins, especially membrane proteins, and remove 

both lipophilic and hydrophilic interferents [138]. To evaluate the applicability of 

methanol/chloroform precipitation for E.coli VH35 studies, protein concentration in lysates was 

compared before and after precipitation. Precipitation of protein from the different media with 

methanol/chloroform procedure provided a recovery of 77.426% in medium 1, 87.675% in 

medium 2, 73.563% in medium 3, 71.746% in medium 4 and 89.560 % in medium 5. The applied 

method allows to precipitate the E. coli proteins without significant protein losses, since 

average percentage of recovery is high, 79.994 ± 7.301%.  

Table 12 - Percentage of protein recovery after the precipitation procedure. Values are the mean ± 
standard of four independent experiments.  

Growth 

Medium 

Protein amount before 

precipitation (µg) 

Protein amount after 

precipitation (µg) 

Percentage of 

recovery (%) 

1 2209.72 ± 266.153 1710 .91 ± 65.385 77.426 

2 1148.96 ± 102.576 1007.91 ± 86.486 87.675 

3 1628.75 ± 217.962 1198.16 ± 154.0 73.563 

4 1745.83 ± 145.962 1252.57 ± 23.1618 71.746 

5 1442.50 ± 145.893 1231.91 ± 65.325 89.560 
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This analysis also enables the discovery of the differences in protein concentration of lysates 

between all the growth media. By analysis of table 12, differences in total mass can be observed 

in the medium 1 in comparison with other media (agro- food medium), for example, from 

2209.72±266.153 µg in media 1 to 1148.96±102.576 µg in media 3. 

After 2DE analysis of E.coli precipitates, the total number and volume of spots were compared 

between media using ImageMaster 2D Platinum v7.0, as represented in table 13.  The values in 

the table 13 are representative of the four independent 2DE experiments performed for the 

analysis of proteome of E.coli VH35 cultured in different media (figure 24). Significant 

differences in total volume was found between media 3 with media 1, 2, 4 and 5. Induced in 

medium 3, higher number of protein spots were detected in gels, 780.5 ±37.766, corresponding 

to a total volume of 235.233 ± 73.360 cm3.  

Also, there is a significant difference between the 2DE gels of E. coli cells grown on medium B, 

on the same medium supplemented with aromatic amino acids (medium 3) and on the medium 

5 with amino acids and YE. The number of spots increases from 526.5 ± 37.766 spots in medium 

2 to 780.5± 86.685 spots in medium 3, to 549.5 ± 84.485 in medium 4 and to 642.75 ± 75.965 in 

medium 5.  

Table 13- Number of protein spots and total volume for the various conditions tested. Values are the 
mean ± standard deviation of four independent experiments. 

Growth 

Media 

Number of spots Total volume (cm3) 

1 522.251 ± 66.170 130.073 ± 28.836 

2 526.5 ± 37.766 141.933 ± 32.563 

3 780.5  ±  86.685 235.233 ± 73.360 

4 549.5 ± 84.485 110.973 ± 26.394 

5 642.75 ± 75,965 121.9331 ± 2.625 
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Figure 24 - 2DE analysis of proteins from E.coli VH35 after fermentation with different growth media: 
(A) Medium 1, (B) Medium 2, (C) Medium 3, (D) Medium4 and (E) medium 5 according to table 12. Samples 
were analysed using pH 4-7 linear IPG strips, 18 cm.  

 

4.3.1. Proteomic Profile of E. coli VH35 grown in different culture media 

Under environmental variations such as oxygen limitation, nutrient availability, temperature, 

pH, and other factors, the organism suffered physiological changes which were triggered by 

alterations in gene and protein expression. So, the use of different culture media may cause 

alterations in the central carbon and other metabolic pathways of E. coli [78,120]. 

Protein samples extracted from E.coli strain K12, separated by 2DE, and analyzed by MALDI-

TOF/TOF for protein identification, revealed the versatile and robust metabolism of E. coli, 

capable to adapt to environmental alterations. Indeed, many enzymes were found to be 

regulated by different mechanisms [78]. Also, another study demonstrates that the cells utilize 

alternative carbon and energy sources in response to phosphate limitation  [121].  

In order to investigate metabolic responses under different growth conditions and related 

proteome changes, proteomic profile of the E.coli strain VH35 grown in different media were 

compared. Gels obtained from 2DE were subjected to statistical analysis using the software 

ImageMaster 2D Platinum v7.0, a software which applies t-test (ANOVA), with p-values ≤ 0.05, 

in order to identify the proteins with significant alterations regarding their expression levels. 

Firstly, all images were pooled together according to their classes (culture medium), taking 

always the same image as reference. Afterwards, the spots presented in all 2DE gels were 

manually selected as landmarks in order to properly align the images. Then, in order to find 

proteins with significant expression changes, only spots matching all classes under study were 
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considered, resulting in the following comparative analysis of the 2DE maps: medium 1 - 5, 

medium 3 - 5, medium 2 - 3, medium 2 - 4, and medium 3 - 4. This analysis was performed in 

order to study the effect of using agro-industrial extracts with yeast extract and with aromatic 

amino acids as medium. 

4.3.1.1. Effect of supplementation of agro-industrial extracts with yeast 
extract in E. coli VH35 proteome by 2DE analysis  

 
To increase pDNA production yields, the agro-industrial extracts were supplemented with YE, 

and it was observed that the initial growth medium (medium 2) supplemented with YE, 

increased the production of pDNA from 4.379 ± 0.096 µg/mL to 35.126 ± 1.067 µg/mL. This 

increase is due to alterations in E.coli metabolic pathways, and for this reason, it is important 

to study its proteome under these conditions. So, the medium 4 supplemented with YE, was 

compared to medium 2. By 2DE analysis, a total of 386 spots were identified across the gels 

and, from these 386 proteins, 54 were found differentially expressed. To understand which 

ones may be involved in the E. coli metabolism, the differentially expressed spots were 

identified by MS. In this condition, the majority of differentially expressed proteins were found 

in the basic area, representing high and intermediate molecular weight. 

After MALDI-TOF/TOF analysis results, MS/MS peaks were generated and crossed with UniProt 

Escherichia coli database, through ProteinPilot 4.5 using Paragon™ Algorithm. Using this 

strategy, we were able to identify 6 differentially expressed proteins, under a 95% confidence, 

between the medium 2 and medium 4 which are listed in table 14. In order to obtain more 

information about the sunergy of these proteins with biological processes, it was performed an 

analysis regarding these proteins using STRAP 1.5.5 software (Software Tool for Rapid 

Annotation of Proteins). This program generates several tables and graphs for biological 

process, cellular component and molecular function of the analyzed proteins, as shown below. 

Examining this information, it was possible to conclude that from these 6 proteins, 2 are 

involved in metabolic processes (chaperone protein, galactokinase) and 1 is involved in 

regulation (Rod shape-determining protein), response to stimulus (chaperone protein) and 

cellular processes (aspartate aminotransferase). Regarding to molecular functions, 4 proteins 

(chaperone protein, aspartate aminotransferase, elongation factor G, elongation factor, 

galactokinase) have catalytic activity and 5 proteins have binding activity, as showed in figure 

25.  
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Table 14 - Identified proteins by MALDI-TOF/TOF between the medium 2 and 4.  

Match Normalize 

volume(%) 

Medium 2 

Normalize 

volume(%) 

Medium 4 

Protein 

Description 

Function 

121 0.0923 0.009 Chaperone 

protein 

ClpB 

P63285 

Part of a stress-induced multi-

chaperone system, it is involved in the 

recovery of the cell from heat-

induced damage, in cooperation with 

DnaK, DnaJ and GrpE. Acts before 

DnaK, in the processing of protein 

aggregates. Protein binding 

stimulates the ATPase activity; ATP 

hydrolysis unfolds the denatured 

protein aggregates, which probably 

helps expose new hydrophobic binding 

sites on the surface of ClpB-bound 

aggregates, contributing to the 

solubilization and refolding of 

denatured protein aggregates by DnaK 

(By similarity). 

138 0.465 0.242 Aspartate 

aminotransferase 

P00509 

The enzyme catalyses the reaction: L-

aspartate + 2-oxoglutarate = 

oxaloacetate + L-glutamate 

Aminotransferases share certain 

mechanistic features with other 

pyridoxal-phosphate-dependent 

enzymes, such as the covalent binding 

of the pyridoxal-phosphate group to a 

lysine residue. 

284 0.612 2.152 Elongation factor 

G 

B7UK50 

Catalyzes the GTP-dependent 

ribosomal translocation step during 

translation elongation. During this 

step, the ribosome changes from the 

pre-translocational (PRE) to the post-

translocational (POST) state as the 

newly formed A-site-bound peptidyl-

tRNA and P-site-bound deacylated 

tRNA move to the P and E sites, 

respectively. Catalyzes the 
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coordinated movement of the two 

tRNA molecules, the mRNA and 

conformational changes in the 

ribosome. 

115 0.033 0.0758 Elongation factor 

Tu 1 

A7ZSL4 

This protein promotes the GTP-

dependent binding of aminoacyl-tRNA 

to the A-site of ribosomes during 

protein biosynthesis. 

172 0.992 0.796 Galactokinase 

A7ZJD2 

Catalyzes the transfer of the gamma-

phosphate of ATP to D-galactose to 

form alpha-D-galactose-1-phosphate 

(Gal-1-P). 

107 0.017 0.077 Rod shape-

determining 

protein MreB 

P0A9X5 

Involved in formation of the rod shape 

of the cell. May act as a negative 

regulator of FtsI (By similarity). 

 

To perform a simpler revision of the given information about these 6 proteins, STRAP gives us 

access to pie charts concerning GO terms, as showed in figure 25.  

 

 

Figure 25 - Pie charts generated by STRAP software showing a resume of the predominance of several 
factors in the 6 studied proteins. A- Biological Process and B- Molecular Function according to the number 
of the associated proteins. 
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For a more profound understanding of these differentially expressed proteins, STRING 10 

(Search Tool for the Retrieval of Interacting Genes/Proteins), which is a database of known and 

predicted protein-protein interactions, was used. This software is a tool that allows the 

establishment of interactions between different proteins and leads to the conclusion about the 

function and activity of the analyzed proteins. These proteins were searched through STRING 

10 and the protein-protein associations were predicted using medium confidence.  

Thus, it was possible to conclude that after 15 hours, the Rod shape-determining protein MreB, 

a protein associated with cellular division process, is overexpressed in medium 4. On the other 

hand, the Chaperone protein ClpB, a protein associated to a stress-induced multi-chaperone 

system, is involved in the recovery of the cell from heat-induced damage, in cooperation with 

DnaK, DnaJ and GrpE, and is underexpressed in medium 4. It was also possible to identify two 

proteins (elongation factor G and elongation factor Tu 1) overexpressed in medium 4 comparing 

to medium 2, which are associated with translation and gene expression processes. The protein 

aspartate aminotransferase, that was found overexpressed in medium 2, is associated to 

cellular amino acid metabolic process, so it is possible to conclude that, during that time, the 

occurrence of amino acids synthesis is more significant in medium 2 that in medium 4. However, 

it was verified a decrease in pDNA production in medium 2 opposite to medium 4. 

For further analysis, the possible effect of YE in a more complex growth medium, supplemented 

with addition of amino acids, was studied. To achieve this purpose, the growing medium 3 was 

compared to medium 5, and in this case it was verified an increase in pDNA of 6,019 ± 0,227 

µg/mL for 42,061 ± 1,012 µg/mL, respectively. Results demonstrated that when yeast extract 

was used in the medium containing CW 1,2% (w/v) and CSL 2% (v/v) with aromatic amino acids, 

80 differentially expressed protein spots were identified. Using ProteinPilot 4.5 software, 6 

differentially expressed proteins were identified under a 95% confidence, between the medium 

3 and medium 5, as it can be seen in table 15. These proteins were also analyzed using STRAP 

1.5 software, in order to know in which mechanisms they are involved.  
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Table 15 - Identified proteins by MALDI-TOF/TOF between the medium 3 and 5 

Match Normalize 

volume 

(%) 

Medium 3 

Normalize 

volume 

(%) 

Medium 5 

Protein 

Description 

Function 

490 0.023 0.208 Catalase HPII 

P21179 

Decomposes hydrogen peroxide 

into water and oxygen; serves to 

protect cells from the toxic effects 

of hydrogen peroxide. 

243 0.375 0.194 S-

adenosylmethionine 

synthase 

B7UHY9 

Catalyzes the formation of S-

adenosylmethionine from 

methionine and ATP. The overall 

synthetic reaction is composed of 

two sequential steps, AdoMet 

formation and the subsequent 

tripolyphosphate hydrolysis, which 

occurs prior to release of AdoMet 

from the enzyme. 

264 0.043 0.006 Outer membrane 

protein A 

P0A911 

Required for the action of colicins K 

and L and for the stabilization of 

mating aggregates in conjugation. 

Serves as a receptor for a number 

of T-even like phages. Also acts as 

a porin with low permeability that 

allows slow penetration of small 

solutes (By similarity). 

141 0.009 0.116 Pyruvate 

dehydrogenase E1 

component 

P0AFG9 

Component of the pyruvate 

dehydrogenase (PDH) complex that 

catalyzes the overall conversion of 

pyruvate to acetyl-CoA and CO2. 

328 0.020 0.213 Anthranilate 

synthase 

componente 1 

P00895 

Part of a heterotetrameric complex 

that catalyzes the two-step 

biosynthesis of anthranilate, an 

intermediate in the biosynthesis of 

L-tryptophan. In the first step, the 

glutamine-binding beta subunit 

(TrpG) of anthranilate synthase 

(AS) provides the glutamine 
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amidotransferase activity which 

generates ammonia as a substrate 

that, along with chorismate, is used 

in the second step, catalyzed by the 

large alpha subunit of AS (TrpE) to 

produce anthranilate. In the 

absence of TrpG, TrpE can 

synthesize anthranilate directly 

from chorismate and high 

concentrations of ammonia. 

234 0.007 0.606 Elongation factor 

Tu 1 

A7ZSL4 

This protein promotes the GTP-

dependent binding of aminoacyl-

tRNA to the A-site of ribosomes 

during protein biosynthesis. 

 

 

 

 

Figure 26 - Pie charts generated by STRAP software showing a resume of the predominance of several 
factors in the 6 studied proteins (medium 3 and medium 5). A- Biological Process and B- Molecular 
Function according to the number of the associated proteins. 
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According to these pie charts we can verify that, regarding to biological processes 5 proteins 

are involved in cellular processes (catalase HPII, s-adenosylmethionine synthase, outer 

membrane protein A, pyruvate dehydrogenase E1 component, anthranilate synthase component 

1), 1 is involved in response to stimulus and 1 (outer membrane protein A) is involved in 

localization. 

Regarding to molecular functions 4 proteins have catalytic activity (catalase HPII, s-

adenosylmethionine synthase, outer membrane protein A, pyruvate dehydrogenase E1 

component, anthranilate synthase component 1, elongation factor Tu 1) and 1 protein have 

structural activity (outer membrane protein A), 5 proteins have a binding activity (catalase 

HPII, s-adenosylmethionine synthase, pyruvate dehydrogenase E1 component, anthranilate 

synthase component 1, elongation factor Tu 1). 

Using the software STRING 10, it was possible to conclude that the proteins overexpressed in 

medium 3 are involved in metabolic pathways and in the biosynthesis of secondary metabolism 

(S-adenosylmethionine synthase), and also, outer membrane protein A is involved in transport 

across cell membrane associated to ampF and ompC, and it has activity of purine. The proteins 

catalase HPII, pyruvate dehydrogenase E1 component, anthranilate synthase component 1 and 

elongation factor Tu 1, are overexpressed in the medium 5. Catalase HPII has the function to 

response to oxidative stress, and it participates in tryptophan metabolism. Pyruvate 

dehydrogenase E1 component participates in gluconeogenesis in order to generate glucose. 

Anthranilate synthase component 1 is involved in biosynthesis of amino acids (phenylalanine, 

tryptophan and tyrosine), whereas Elongation factor Tu 1 is associated with gene translation 

and expression processes, thus elucidating the significative differences when it comes to p53 

plasmid production. 

4.3.1.2. Effect of the use of supplementation of agro-industrial extracts 
with aromatic amino acids in E. coli VH35 proteome by 2DE analysis 

 

The supplementation with amino acids, in the literature, is described to enhance the transport 

systems, as well as to increase the growth of cells [59,139]. So, aromatic amino acids were 

added to agro-industrial medium 2 in order to improve pDNA yield and purity. Despite the 

increase in pDNA production was not significant, we compared the proteome of E. coli grown 

in medium 3 (with amino acids) and the medium 2 (without amino acids) in order to identify 

differentially expressed proteins that could be involved in the aromatic amino acids 

metabolism. 

Results demonstrate that a total of 386 spots were identified across gels and from these 

proteins, 23 were found differentially expressed. Identified as differentially expressed proteins 
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are either in area of high and low molecular weight but in basic area, a protein is notable for 

meeting in the low molecular weight and acid area.  

After MALDI-TOF/TOF analysis, we were able to identify 5 differentially expressed proteins, 

under 95% confidence, between the medium 2 and medium 3, as it is showed in table 16. Using 

STRAP 1.5 software it was possible to conclude that regarding to biological processes 1 protein 

is involved in metabolic process (2,3-bisphosphoglycerate-independent phosphoglycerate 

mutase), 1 is involved in localization (trigger factor) and 3 are involved in cellular process 

(trigger factor, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, anthranilate 

synthase component 1). Regarding to their molecular functions, 4 proteins have a catalytic 

activity (trigger factor, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, 

anthranilate synthase component 1) and 3 proteins have a binding activity (elongation factor 

Tu 1, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, anthranilate synthase 

component 1), as it can be seen in figure 27.  

Table 16 - Proteins Identified by MALDI-TOF/TOF between the medium 2 and 3. 

Match Normaliz

e volume 

(%) 

Medium 2 

Normaliz

e volume 

(%) 

Medium 3 

Protein 

Description 

Function 

120 0.005 0.076 Trigger factor 

A1A8A5 

 
 

 

Involved in protein export. Acts as 

a chaperone by maintaining the 

newly synthesized protein in an 

open conformation. Functions as a 

peptidyl-prolyl cis-trans 

isomerase. 

 

140 0.008 0.075 Elongation factor Tu 

1  

A7ZSL4 

This protein promotes the GTP-

dependent binding of aminoacyl-

tRNA to the A-site of ribosomes 

during protein biosynthesis. 

262 0.013 0.235 2,3-

bisphosphoglycerate

-independent 

phosphoglycerate 

mutase  

A7ZTG6 

Catalyzes the interconversion of 

2-phosphoglycerate and 3-

phosphoglycerate. 
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265 0.213 0.048 Anthranilate 

synthase 

component 1  

P00895 

Part of a heterotetrameric 

complex that catalyzes the two-

step biosynthesis of anthranilate, 

an intermediate in the 

biosynthesis of L-tryptophan. In 

the first step, the glutamine-

binding beta subunit (TrpG) of 

anthranilate synthase (AS) 

provides the glutamine 

amidotransferase activity which 

generates ammonia as a substrate 

that, along with chorismate, is 

used in the second step, catalyzed 

by the large alpha subunit of AS 

(TrpE) to produce anthranilate. In 

the absence of TrpG, TrpE can 

synthesize anthranilate directly 

from chorismate and high 

concentrations of ammonia. 

50 0.0823264 0.020314 Rod shape-

determining protein 

MreB  

P0A9X5 

Involved in formation of the rod 

shape of the cell. May act as a 

negative regulator of FtsI (By 

similarity). 
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Figure 27- Pie charts generated by STRAP software showing a resume of the predominance of several 
factors in the 5 studied proteins (medium 2 and medium 3).  A- Biological Process and B-Molecular 
Function according to the number of the associated proteins. 

 

Using the software STRING 10 it was possible to conclude that the proteins overexpressed in 

medium 3 are involved in translation and in organonitrogen compound biosynthetic process 

(Trigger factor). They are also associated with translation and gene expression processes 

(elongation factor Tu 1), and involved in carbohydrate degradation as a cofactor of Mg2+ (2,3-

bisphosphoglycerate-independent phosphoglycerate mutase). The proteins anthranilate 

synthase component 1 and rod shape-determining protein MreB after 15 hours of fermentation 

were found overexpressed in the medium 2, and are related to the biosynthesis of amino acids 

(phenylalanine, tryptophan and tyrosine) and involved in peptidoglycan biosynthesis, 

participating in the cell cycle and division, respectively.   

The effect of the supplementation with amino acids was also verified by the increase of the 

production of pDNA from 35.126 ± 1.067 µg/mL, in the medium 4, to 42.061 ± 1.012µg/mL in 

the medium supplemented with aromatic amino acids (medium 5). So, to identify differentially 

expressed proteins by adding aromatic amino acids to the medium, the E. coli proteome cells 
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grown in medium 4 was compared with medium 5. 2DE analysis demonstrated that the 

supplementation of the growth medium with amino acids, resulted in the identification of 23 

differentially expressed protein spots, from a total of 251 matching protein spots. The 

differentially expressed proteins are either in the area of high and low molecular weight and 

acid and basic area of the gel. Three differentially expressed proteins were found under a 95% 

confidence, between the medium 4 and medium 5, as it can be seen in table 17.  

Table 17 – Proteins identified by MALDI-TOF/TOF between the medium 4 and 5. 

 
Match Normalize 

volume (%) 

Medium 4 

Normaliz

e volume 

(%) 

Medium 5 

Protein 

Description 

Function 

22 0.203 0.070 Deoxyribose-

phosphate 

aldolase 

B7NH49 

Catalyzes a reversible aldol reaction 

between acetaldehyde and D-

glyceraldehyde 3-phosphate to generate 

2-deoxy-D-ribose 5-phosphate. 

82 0.016 0.307 Galactokinase 

A7ZJD2 

Catalyzes the transfer of the gamma-

phosphate of ATP to D-galactose to form 

alpha-D-galactose-1-phosphate (Gal-1-P). 

119 0.062 0.022 2,3-

bisphosphoglycer

ate-independent 

phosphoglycerate 

mutase A7ZTG6 

Catalyzes the interconversion of 2-

phosphoglycerate and 3-

phosphoglycerate. 

 

To perform a simpler revision of the given information about these 3 proteins, STRAP gives us 

access to pie charts concerning GO terms, as showed in figure 28. According to these pie charts 

we can verify that, regarding to biological processes, 2 proteins are involved in cellular 

processes (deoxyribose-phosphate aldolase, 2,3-bisphosphoglycerate-independent 

phosphoglycerate mutase), and 3 is involved in metabolic process (galactokinase, 2,3-

bisphosphoglycerate-independent phosphoglycerate mutase). Regarding to molecular 

functions, 1 protein has catalytic activity (deoxyribose-phosphate aldolase, galactokinase, 2,3-

bisphosphoglycerate-independent phosphoglycerate mutase) and 2 proteins have a binding 

activity(galactokinase, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase).  
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Figure 28 - Pie charts generated by STRAP software showing a resume of the predominance of several 
factors in the 3 studied proteins (medium 4 and medium 5).  A- Biological Process and B-Molecular 
Function according to the number of the associated proteins. 

Using the software STRING 10, it was possible to conclude that the proteins that are 

overexpressed in medium 4 are involved in carbon metabolism namely in carbohydrate 

degradation and amino acid biosynthesis (deoxyribose-phosphate and aldolase2,3-

bisphosphoglycerate-independent phosphoglycerate mutase). In medium 5, the protein 

galactokinase is expressed at 15 hours and participates in carbohydrate process as well as 

indicates the presence of lactose transcription factors. 

 

4.3.1.3. Study of the effect of the use of agro-industrial extracts in E   coli 
VH35 proteome by 2DE analysis 

 

Finally, the effect of the use of agro-industrial extracts as culture media on the E.coli VH35 

proteome was studied. For this purpose, the conventional medium (medium 1), previously 

optimized by our research group, that presents higher pDNA yields, was compared with the 

agro-industrial medium 5, which also has a good performance in pDNA production. The medium 

5 was described before as the medium with the highest production, when using agro-food 

substrates as growing medium, obtaining 42,061 ± 1,012 µg/mL. Results demonstrate that when 
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agro-wastes were used as the sole carbon source, a total of 519 spots were identified across 

gels, and from these, only 52 proteins were differentially expressed. This comparison reveled 

that the differentially expressed proteins are within the low molecular weight of the gel. 

Comparing the mediums 1 and 5, it was not possible to identify differentially expressed proteins 

under a confidence of over 95%. Table 18 resumes the results obtained from 2-DE analysis when 

comparing all cell growth medium. 

Table 18- Comparative analysis of the 2-DE maps isolated from the different grown media, spots 
identified and spots differently expressed. 

 
Cell growth medium 

compared 

Condition tested Spots identified Spots differently 

expressed 

Medium 1 compared to 

medium 5 

Use of agro-

industrial extracts 

as culture media 

215 spots 52 spots 

Medium 3 compared to 

medium 5 

Effect of YE in 

complex growth 

medium with aaa 

519 spots 80 spots 

Medium 2 compared to 

medium 4 

Use of the YE in 

initicial growth 

medium (2) 

386 spots 54 spots 

Medium 2 compared to 

medium 3 

Identify proteins 

involved in 

metabolism of 

amino acids  

314 spots 25 spots 

Medium 4 compared to 

medium 5 

Effect of the 

addiction with aaa 

251 spots 23 spots 

 

Scatter plots and correlations coefficients were calculated in this study, in order to analyze gel 

similarities and experimental variations. Regression analysis yielded a correlation coefficient 

greater than 0.9 in every match made, revealing a strong positive correlation. Therefore, figure 

29 represents scatter plots and correlation indexes from 2DE gels. The correlation indexes seem 

to be closer to 1, which indicates that the match between gels was well performed. 
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Figure 29 - Scatter plots from 2DE gels. Scatter plots of values (%Vol) of matched spots obtained from 
representative 2D maps.  
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Chapter 5 - Conclusions 

 

The present study comprised different specific goals; the optimization of the production of 

pcDNA-FLAG-p53 using E. coli VH35 as host and CW and CSL as sources of carbon and nitrogen, 

the analysis the E.coli VH35 metabolites (sugars and acetate) of growth media by HPLC during 

fermentation time, and study of the proteome of E.coli VH35 using the optimized media. 

Regarding the first goal, the results show that the E.coli VH35 is able to produce pDNA from 

agro-industrial wastes, some of them supplemented with YE and amino acids. The medium 

composed by 2% CSL, 1.2% CW, 5g/L YE and aromatic amino acids presented the best 

performance in the production of pDNA with a volumetric yield of 42.061 ± 1.012 µg/mL. It 

proves that is possible to produce pDNA using E. coli VH35, with good volumetric yields, under 

unusual growth conditions, with lactose as a principal carbon source, CSL and YE as nitrogen 

source and supplemented with aromatic amino acids.  

The results with HPLC demonstrate that strain VH35 may be an efficient strain to be used in an 

economically sustainable procedure for pDNA production. This work proved that strain VH35 

uses agro-food media as an energy source, when insufficient glucose levels are available. E.coli 

VH 35 chooses to consume lactose in the presence of an agro-food medium, due to the lack of 

PTS–sugars in the medium.  

In literature, the methodologies available for the analysis of the E.coli proteome by 2DE are 

quite different.  So, in this work, the initial optimization of the 2DE protocol was performed in 

order to improve the number of visualized spots. The initial optimization conducted using non-

centrifuged lysates and a pH linear gradient of 4–7, provided an improved gel resolution and a 

higher number of spots. After optimization, E. coli proteome was analyzed by 2DE to provide a 

comprehensive view of the proteins that are changed due to growing medium alteration. 

Results showed that the protein composition of E.coli VH35 was different among the various 

analyzed growth medium. When comparing the glucose medium to the agro-food medium, 52 

proteins was found differentially expressed. In addition, when comparing the addition of yeast 

extract in the initial growth medium to the one supplemented with amino acids, a total 110 

proteins spots was found differentially expressed. 

Using the ProteinPilot 4.5 software, it was possible to identify under a 95% confidence some 

proteins in the made comparisons, except between the medium 1 and 5. The proteins 

identification in this comparison was not possible; however, we can conclude that between the 

conventional and unconventional mediums, 53 proteins are differentially expressed indicating 

differences in the cells proteome.The identified proteins were involved in various cellular 

processes such as metabolic, binding and cellular response processes. It was possible to identify 
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proteins which are associated with metabolism and that are related to nucleotides synthesis. 

As it is the case of the rod shape-determining protein MreB (comparison medium 2 with medium 

3), anthranilate synthase component 1 (comparison with medium 3 and 5), chaperone protein 

ClpB (comparison with medium 2 and 4) and deoxyribose-phosphate aldolase (comparison with 

medium 4 and 5). 
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Chapter 6 - Future perspectives 

 
In this study it was demonstrated the potential of alternative carbon and nitrogen sources in 

the therapeutic pDNA biosynthesis. Also, promising grown medium were optimized and selected 

for a large fermentation scale. However, further investigation may be performed for an overall 

understanding of the proteomic activity of the E. coli strain VH35 in the production of 

therapeutic plasmids. So, to improve this research: 

 To understand the effect of different carbon and nitrogen sources, during the 

fermentation period using proteomic methodologies;  

 Promote scale–up to a mini–reactor platform with a suitable model development using 

CSL and CW as nitrogen and carbon sources in a growth medium; 

 Search new strategies for increasing pDNA yield, for example, use IPTG as an inducer 

or use other extracts from agro–food industries in the growth media; 

 Integrate the process described in this work in a sustainable biotechnological 

procedure, focusing in the downstream process, especially in purification step (using a 

monolithic support). 
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Appendices  

Appendix I – Calibration curve obtained from the correlation between the supercoiled pDNA 

peak area and the concentration in the range of 1 - 100 μg/mL (y = [sc pDNA] µg/mL, X= peak 

area mAU* mL) 
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Appendix II - Effect of different nutrients composition on bacterial growth, peak area of the different tests  

 

 Bacterial Growth Peak Area 

Medium OD600 nm Cell dry mass (CDM) (g/L) pDNA gDNA RNA 

CSL 2% (v/v)+ 1.2% CH(w/v) 9.825 ± 0.643 4.18± 0.047 1.214±0.047 147.69±4.028 475.690± 9.285 

CSL 2% (v/v)+ 1.2% CH (w/v)+2.5 (w/v)  YE 11.0733± 0.843 4.983 ±0.379 3.763  ±0.243 114. 273± 0.242 492.823 ± 43.233 

CSL 2% (v/v)+ 1.2% CH (w/v)+5 (w/v)  YE 6.000±0.616 2.700±0.277 18.880 ±0.743 192.849±6.204 461.686±17.475 

CSL 2% (v/v)+ 1.2% CH (w/v)+7.5 (w/v)  YE 9.267  ±0.379 4.170 ±0.171 11.269 ±1.690 94.381 ±28.127 436.292 ±32.174 

CSL 2% (v/v)+ 1.2% CH (w/v)+10 (w/v)  YE 11.775 ±0.286 5.299 ±0.129 4.682 ±0.569 124.889 ±32.188 394.151 ±40.258 

 

Appendix III - - Effect of manipulating the initial concentration of aromatic amino acids on bacterial growth: peak area of the different test  

 Bacterial Growth Peak Area 

Medium OD600 nm Cell dry 

mass (CDM) 

(g/L) 

pDNA gDNA RNA 

CSL 2% (v/v)+ 1.2% CH (w/v)+5 (g/L)  YE+ 78.5 

(µg/ mL) phenylalanine + 10 (µg/ mL) tyrosine 

+100(µg/ mL)tryptophan 

4.955±0.075 2.230 22.435±0.708 161.020±6.641 507.987±58.350 

CSL 2% (v/v)+ 1.2% CH (w/v) + 78.5 (µg/ mL) 

phenylalanine + 10 (µg/ mL) tyrosine +100(µg/ 

mL)tryptophan 

6.613±0.430 2.972±0.193 16.213±0.201 178.784±10.117 452.823±0.287 
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Appendix IV - Result of the best test describe in the literature with greater pDNA concentration.  

 

 Bacterial Growth Peak Area PDNA concentration 

 

Medium 

 

OD600 nm 

 

Cell dry mass 

(CDM) (g/L) 

 

pDNA 

 

gDNA 

 

RNA 

pDNA 

volumetric 

yield 

pDNA 

volumetric 

yield 

Purity 

 

24 g/L yeast 

extract. 10 g/L 

glucose. 20 g/L 

triptone +78.5 (µg/ 

mL) phenylalanine + 

10 (µg/ mL) tyrosine 

+100(µg/ 

mL)tryptophan 

8.8±0.123 3.96±0.66 38.048±0.554 260.631±15.758 585.371±14.717 68.690±0.793 17.347±0.053 4.300±0.119 
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Appendix V – Calibration curve obtained from the correlation between the galactose 

peak area and the concentration in the range of 1 – 40 g/L. 

 

Appendix VI – Calibration curve obtained from the correlation between the glucose peak 

area and the concentration in the range of 1 – 100 g/L. 

 

Appendix VII – Calibration curve obtained from the correlation between the lactose peak 

area and the concentration in the range of 1 – 100 g/L. 
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Appendix VIII - 2DE analysis of proteins from E.coli VH35 after various growth conditions. 

Samples were analysed using pH 4-7 linear IPG strips, 18 cm. (second technical duplicate). 

1: 10 g/l yeast extract, glucose, triptone and 78. 5 (µg/ ml) phenylalanine + 10 (µg/ ml) tyrosine 

+100(µg/ ml) tryptophan; 

 

2: CSL 2% (v/v)+ 1,2% CH  (w/v) 
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3: CSL 2% (v/v)+ 1.2% CH  (w/v)+ + 78,5 (µg/ ml) phenylalanine + 10 (µg/ ml) tyrosine +100(µg/ 

ml)tryptophan 

 

 4: CSL 2% (v/v)+ 1.2% CH (w/v)+5 (g/l)  YE 
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 5: CSL 2% (v/v)+ 1.2% CH (w/v)+5 (g/l)  YE + 78.5 (µg/ ml) phenylalanine + 10 (µg/ ml) 

tyrosine +100(µg/ ml)tryptophan. 
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Appendix IX – ANOVA values and spots overexpressed 

 Statistical analysis of the comparison of the growth medium 1 with the growth 

medium 5 

Match 

ID 

Max Match 

Count 

Normalize 

volume (%) 

Medium 1 

Normalize 

volume (%) 

Medium 5 

Anova 

107 0.786039 2 0.033171 0.786039 7.61823e-5 

51 0.191445 2 0.01997 0.191445 1.49451e-4 

14 1.33305 2 1.33305 0.0781738 2.51919e-4 

93 0.203261 2 0.0287876 0.203261 3.0881e-4 

133 0.204443 2 0.204443 0.0456968 3.20723e-4 

9 0.181293 2 0.181293 0.0153873 6.29955e-4 

113 0.227941 2 0.227941 0.0624017 9.18592e-4 

75 2.30079 2 2.30079 0.26495 0.00245093 

163 0.122814 2 0.0245451 0.122814 0.00256563 

130 0.0811792 2 0.0213375 0.0811792 0.00289529 

39 0.155308 2 0.155308 0.0224839 0.00290709 

103 0.105231 2 0.105231 0.0224088 0.00303066 

82 1.22431 2 1.22431 0.270754 0.00407169 

77 0.291873 2 0.291873 0.0904653 0.00415418 

123 0.629077 2 0.267673 0.629077 0.00485063 

61 0.510686 2 0.162288 0.510686 0.00492256 

55 0.227914 2 0.0321712 0.227914 0.00529018 

23 4.85585 2 4.85585 1.1409 0.00587823 

162 0.393045 2 0.139896 0.393045 0.0060058 

85 0.217057 2 0.0956645 0.217057 0.00601855 

156 0.159785 2 0.159785 0.0772616 0.00672034 

205 0.08679 2 0.0030405 0.08679 0.00770979 

74 0.395079 2 0.395079 0.202042 0.0093183 

201 1.53537 2 0.817512 1.53537 0.00990294 

178 1.32061 2 0.510529 1.32061 0.0170923 

95 0.107195 2 0.0137228 0.107195 0.0195535 

134 0.120002 2 0.0537452 0.120002 0.0199351 

159 0.446166 2 0.446166 0.0877714 0.0247657 

157 0.396954 2 0.206276 0.396954 0.0249849 

184 0.0782094 2 0.0782094 0.023207 0.0267221 

176 0.0492081 2 0.0492081 0.0069866 0.0274535 

125 2.48727 2 1.49021 2.48727 0.027456 
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47 0.121234 2 0.0268641 0.121234 0.0291716 

68 0.2959 2 0.0611041 0.2959 0.0306461 

66 1.47941 2 1.47941 0.909383 0.033769 

171 0.311837 2 0.311837 0.0552015 0.0344383 

154 0.105389 2 0.0563084 0.105389 0.035708 

190 0.211965 2 0.0423534 0.211965 0.0363131 

207 0.543395 2 0.0522399 0.543395 0.0383639 

12 0.0612912 2 0.0612912 0.0161276 0.0430382 

161 0.068504 2 0.0352267 0.068504 0.04449 

166 0.164753 2 0.164753 0.0625692 0.0446321 

129 0.0944548 2 0.0944548 0.0745297 0.0450803 

206 0.0299991 2 0.00265067 0.0299991 0.0461748 

170 0.105474 2 0.105474 0.0713926 0.0473861 

181 1.11889 2 1.11889 0.184613 0.0479923 

196 0.0502335 2 0.0502335 0.0130122 0.0486929 

20 0.0565727 2 0.0565727 0.00743748 0.0515931 

116 0.198487 2 0.0671921 0.198487 0.0532117 

167 0.0299429 2 0.0299429 0.0112381 0.0566943 

40 0.226686 2 0.226686 0.0653657 0.0570287 

153 0.0653472 2 0.0188969 0.0653472 0.0577048 

 

Statistical analysis of the comparison of the growth medium 3 with the growth medium 5 

Match 

ID 

Max Match 

Count 

Normalize 

volume (%) 

Medium 3  

Normalize 

volume (%) 

Medium 5 

Anova 

234 0.605993 2 0.00651352 0.605993 6.60404e-7 

277 0.217391 2 0.0394031 0.217391 3.50333e-6 

181 0.170629 2 0.170629 0.037467 2.89663e-5 

348 0.3417 2 0.0522104 0.3417 3.6807e-5 

455 1.53944 2 1.53944 0.0276317 3.82499e-5 

20 0.192082 2 0.192082 0.109888 5.31479e-5 

98 0.0907396 2 0.0907396 0.0525836 2.0239e-4 

191 0.159784 2 0.0203103 0.159784 2.17251e-4 

328 0.212984 2 0.0199272 0.212984 3.50618e-4 

74 0.220081 2 0.220081 0.106846 5.48941e-4 

477 0.208232 2 0.0228207 0.208232 5.68397e-4 

226 0.266482 2 0.0325798 0.266482 9.55866e-4 

189 0.15809 2 0.0764343 0.15809 0.00100054 

261 0.339074 2 0.196578 0.339074 0.00119396 

469 0.184117 2 0.0182405 0.184117 0.00141494 
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262 2.27233 2 2.27233 1.51488 0.00175703 

266 0.333083 2 0.175992 0.333083 0.00331275 

490 0.115791 2 0.00924298 0.115791 0.00332238 

482 0.0334204 2 0.00827762 0.0334204 0.00339005 

463 0.0451712 2 0.0228602 0.0451712 0.00346166 

243 0.374969 2 0.374969 0.194414 0.00364109 

384 0.0118733 2 0.0020718 0.0118733 0.00380246 

210 2.49491 2 2.49491 1.23758 0.00468805 

264 0.0429731 2 0.0429731 0.00631782 0.00594733 

194 0.199046 2 0.199046 0.0554137 0.00657989 

451 0.0131296 2 0.00257603 0.0131296 0.00666551 

478 0.11039 2 0.0394403 0.11039 0.00696658 

72 0.094783 2 0.094783 0.0496935 0.00775502 

395 0.0554008 2 0.0554008 0.0195562 0.00802392 

383 0.0478518 2 0.0478518 0.00600458 0.00826452 

255 1.92292 2 1.92292 0.695886 0.00835198 

26 0.119487 2 0.119487 0.0246231 0.00838771 

31 0.387723 2 0.387723 0.236148 0.0086027 

423 0.132871 2 0.0971284 0.132871 0.00892976 

483 0.0722105 2 0.0276474 0.0722105 0.00995723 

500 0.0257241 2 0.00502703 0.0257241 0.0103641 

322 0.144864 2 0.144864 0.0486741 0.0106441 

436 0.125281 2 0.0602508 0.125281 0.01102 

95 0.0490451 2 0.00848804 0.0490451 0.01215 

67 0.0734305 2 0.0734305 0.044982 0.012163 

176 0.0332553 2 0.0332553 0.0103116 0.012454 

215 0.47338 2 0.47338 0.1282 0.0126319 

256 0.0256273 2 0.00480562 0.0256273 0.0138433 

187 0.0497288 2 0.0109584 0.0497288 0.0147648 

317 0.229374 2 0.105772 0.229374 0.015145 

495 0.0861526 2 0.042925 0.0861526 0.0154315 

19 0.912671 2 0.912671 0.258067 0.0162575 

101 0.142641 2 0.142641 0.0072164 0.016428 

46 0.286998 2 0.119771 0.286998 0.0165048 

462 0.0327791 2 0.0130828 0.0327791 0.0176261 

69 0.202878 2 0.202878 0.100965 0.0178009 

365 0.0708558 2 0.025162 0.0708558 0.0180655 

87 0.265924 2 0.265924 0.0747118 0.018242 

347 0.141713 2 0.0563971 0.141713 0.0189287 

16 0.0775308 2 0.0775308 0.0197867 0.0191563 
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440 0.0421009 2 0.00940232 0.0421009 0.0205384 

270 0.163844 2 0.163844 0.0487552 0.0211116 

369 0.204025 2 0.120526 0.204025 0.0217392 

325 0.0385483 2 0.00926636 0.0385483 0.0219255 

268 0.0887795 2 0.0301552 0.0887795 0.0224735 

385 0.0517073 2 0.0124246 0.0517073 0.0239986 

461 0.0422423 2 0.0101451 0.0422423 0.0248189 

160 0.0561543 2 0.0561543 0.0149077 0.0250985 

151 0.127376 2 0.0269615 0.127376 0.0259363 

184 0.0608178 2 0.0141892 0.0608178 0.0267015 

188 0.0290756 2 0.00730214 0.0290756 0.0272158 

489 0.0250391 2 0.0102658 0.0250391 0.0272835 

219 0.0480558 2 0.0480558 0.0198166 0.0275799 

487 0.0615893 2 0.030096 0.0615893 0.0289327 

57 0.512502 2 0.512502 0.387193 0.0293438 

453 0.0753565 2 0.0462111 0.0753565 0.0298605 

479 0.116767 2 0.0531587 0.116767 0.0303568 

82 0.12716 2 0.12716 0.0889144 0.030864 

130 0.203866 2 0.203866 0.146604 0.031006 

342 0.132117 2 0.132117 0.0389465 0.0311036 

77 0.236382 2 0.236382 0.0341368 0.0311393 

250 0.0388442 2 0.0388442 0.0268369 0.0312445 

302 0.142202 2 0.00912293 0.142202 0.0339038 

491 1.07337 2 0.545031 1.07337 0.0342261 

367 0.0468399 2 0.0468399 0.0266124 0.0342315 

488 0.38749 2 0.166448 0.38749 0.0344051 

345 0.110808 2 0.0687347 0.110808 0.0350213 

241 0.0708874 2 0.0708874 0.0443871 0.0360004 

484 0.110169 2 0.0514428 0.110169 0.0366636 

360 0.0677774 2 0.042237 0.0677774 0.0367968 

85 0.0678236 2 0.0160552 0.0678236 0.0368924 

467 0.0217062 2 0.00513149 0.0217062 0.0370026 

336 0.0514873 2 0.0136345 0.0514873 0.0382059 

68 0.11833 2 0.11833 0.0928719 0.0397443 

314 0.487478 2 0.25537 0.487478 0.0405295 

379 0.0237947 2 0.00282457 0.0237947 0.0406501 

197 0.0652158 2 0.0652158 0.0324604 0.0407972 

349 0.0382803 2 0.0382803 0.0100324 0.0435079 

401 0.100146 2 0.100146 0.0363616 0.044558 

353 0.0861595 2 0.0423416 0.0861595 0.04471 
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36 0.0535728 2 0.0535728 0.00397712 0.0482728 

282 0.0617422 2 0.0617422 0.0391499 0.0498038 

145 0.123675 2 0.123675 0.091134 0.0504033 

326 0.0410751 2 0.0115939 0.0410751 0.0524192 

249 0.0553802 2 0.0156343 0.0553802 0.0527003 

324 0.0923218 2 0.0195415 0.0923218 0.0541958 

512 0.0298894 2 0.00895963 0.0298894 0.054775 

318 0.0734557 2 0.0734557 0.0501949 0.0548741 

138 0.18585 2 0.18585 0.123437 0.054937 

29 0.0901046 2 0.0901046 0.0279205 0.056481 

229 0.176481 2 0.13184 0.176481 0.0577679 

474 0.131862 2 0.0718499 0.131862 0.0590358 

354 0.0879584 2 0.0879584 0.0074302 0.0591756 

494 0.207301 2 0.107032 0.207301 0.059371 

289 0.0248822 2 0.0248822 0.00242228 0.0594585 

 

 Statistical analysis of the comparison of the growth medium 2 with the growth 

medium 4 

Match 

ID 

Max Match 

Count 

Normalize 

volume (%) 

Medium 2 

Normalize 

volume (%) 

Medium 4 

Anova 

258 0.298053 2 0.0156927 0.298053 7.04868e-5 

183 1.19115 2 0.0237016 1.19115 1.56774e-4 

172 0.992304 2 0.992304 0.795808 0.00404983 

203 0.06407 2 0.0107042 0.06407 0.00476951 

260 0.167428 2 0.0208562 0.167428 0.00889004 

142 0.154171 2 0.154171 0.0277145 0.0117455 

284 2.15168 2 0.611858 2.15168 0.0133501 

231 0.151785 2 0.0402347 0.151785 0.0237833 

95 0.142944 2 0.0290899 0.142944 0.0259895 

107 0.0772192 2 0.0171265 0.0772192 0.0267883 

174 0.0810536 2 0.0204249 0.0810536 0.031934 

17 0.138582 2 0.138582 0.0957871 0.0326017 

180 1.04518 2 0.421828 1.04518 0.0330922 

48 0.169954 2 0.169954 0.0308216 0.0335705 

104 0.0801206 2 0.0200594 0.0801206 0.0345308 

8 0.170151 2 0.170151 0.0393 0.0349424 

121 0.0926985 2 0.0926985 0.00910955 0.0437891 

129 0.0776455 2 0.0776455 0.0305075 0.0439794 
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267 0.419438 2 0.206475 0.419438 0.0529516 

190 0.126203 2 0.0198208 0.126203 0.0529605 

158 0.0837688 2 0.0837688 0.0114833 0.057524 

192 0.290136 2 0.101914 0.290136 0.0576431 

138 0.464964 2 0.464964 0.241597 0.0579386 

115 0.0752875 2 0.0325616 0.0752875 0.0587388 

291 0.043684 2 0.00863575 0.043684 0.0599276 

 

 Statistical analysis of the comparison of the growth medium 2 with the growth 

medium 3 

Match 

ID 

Max Match 

Count 

Normalize 

volume (%) 

Medium 2 

Normalize 

volume (%) 

Medium 3 

Anova 

234 0.186692 2 0.0288977 0.186692 1.32451e-5 

262 0.234537 2 0.0134344 0.234537 2.64523e-5 

58 0.220943 2 0.220943 0.0141903 3.3331e-4 

208 2.25961 2 1.51201 2.25961 3.35543e-4 

265 0.212594 2 0.212594 0.0480059 7.27594e-4 

255 0.110583 2 0.110583 0.0297692 8.8835e-4 

176 0.135132 2 0.0143176 0.135132 9.75665e-4 

120 0.075897 2 0.00485438 0.075897 0.0012937 

243 0.0384734 2 0.0384734 0.0055699 0.00153855 

20 0.109682 2 0.109682 0.0248633 0.00185487 

227 0.0403726 2 0.0280018 0.0403726 0.00209911 

140 0.0753026 2 0.00817734 0.0753026 0.00264803 

168 1.82793 2 1.2352 1.82793 0.00275667 

71 0.106658 2 0.106658 0.0237748 0.00383091 

104 0.121845 2 0.00433514 0.121845 0.00406447 

198 6.05878 2 4.13279 6.05878 0.00497127 

165 0.0976603 2 0.00397649 0.0976603 0.00586592 

95 0.245555 2 0.082762 0.245555 0.00623766 

46 0.0940664 2 0.0940664 0.0206671 0.00682547 

319 2.54961 2 1.82058 2.54961 0.00713511 

295 0.0282667 2 0.00544784 0.0282667 0.00744852 

35 0.2357 2 0.2357 0.0707375 0.00786289 

85 0.0971857 2 0.0971857 0.0185856 0.00824219 

352 0.0269661 2 0.0269661 0.00425093 0.0084987 

28 0.0478152 2 0.0478152 0.00797031 0.00877873 

166 0.467075 2 0.467075 0.160986 0.00906907 
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90 0.15677 2 0.0428386 0.15677 0.00997999 

201 0.347678 2 0.19406 0.347678 0.0103362 

94 0.254041 2 0.0602848 0.254041 0.012645 

269 0.0391529 2 0.011076 0.0391529 0.0138637 

277 0.0265589 2 0.0265589 0.00587278 0.0160614 

215 0.0607986 2 0.0607986 0.0133567 0.0167444 

236 0.228922 2 0.228922 0.085345 0.0183156 

329 0.561651 2 0.561651 0.193762 0.0186393 

361 0.0662699 2 0.0662699 0.0301098 0.0212147 

53 0.143969 2 0.143969 0.0385127 0.0217316 

123 0.0676157 2 0.0467111 0.0676157 0.022812 

242 0.0927292 2 0.0927292 0.019685 0.0251941 

7 0.132605 2 0.132605 0.0455898 0.0277979 

190 0.0443076 2 0.0443076 0.00990175 0.0319709 

232 0.486504 2 0.486504 0.284664 0.0347436 

362 0.173708 2 0.173708 0.0120912 0.0373943 

288 2.74793 2 2.08103 2.74793 0.0402503 

16 0.0684282 2 0.00727861 0.0684282 0.0415723 

163 0.238275 2 0.238275 0.0926644 0.0441652 

149 0.171232 2 0.171232 0.0181233 0.0464177 

264 0.102013 2 0.0388944 0.102013 0.0466079 

98 0.14791 2 0.14791 0.0515852 0.0467403 

50 0.0823264 2 0.0823264 0.020314 0.0476656 

37 0.208354 2 0.208354 0.0750793 0.0546644 

110 0.0537272 2 0.0321 0.0537272 0.0571426 

119 0.353605 2 0.0258717 0.353605 0.0581697 

270 0.341056 2 0.341056 0.173472 0.0592357 

144 0.171941 2 0.0418221 0.171941 0.0594058 

 

 Statistical analysis of the comparison of the growth medium 4 with the growth 

medium 5 

Match 

ID 

Max Match 

Count 

Normalize 

volume 

(%) 

Medium 4 

Normalize 

volume 

(%) 

Medium 5 

Anova 

10 0.18206 2 0.18206 0.0329386 8.49051e-4 

206 0.146043 2 0.0971284 0.146043 0.00119079 

94 0.823081 2 0.428144 0.823081 0.0103489 

124 0.23424 2 0.23424 0.0461457 0.0132819 
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90 0.071366 2 0.0156343 0.071366 0.0164741 

40 0.15421 2 0.0224839 0.15421 0.0178341 

192 0.163477 2 0.163477 0.0156503 0.0180614 

96 0.13184 2 0.13184 0.0285365 0.018343 

115 0.163844 2 0.163844 0.0518453 0.0237596 

227 0.18678 2 0.0228207 0.18678 0.0248066 

49 0.123675 2 0.123675 0.0422237 0.025596 

66 0.789098 2 0.789098 0.278919 0.0296244 

178 0.21105 2 0.120526 0.21105 0.032898 

22 0.202878 2 0.202878 0.0704831 0.0334073 

82 0.307232 2 0.015876 0.307232 0.0342255 

18 0.109317 2 0.109317 0.039876 0.0386956 

11 0.196474 2 0.11833 0.196474 0.0392745 

119 0.0617422 2 0.0617422 0.0219323 0.0448808 

143 0.042237 2 0.042237 0.0106241 0.0458064 

9 0.204337 2 0.204337 0.0975244 0.0519112 

121 0.0523609 2 0.0523609 0.0265683 0.0533641 

92 0.0777196 2 0.0398923 0.0777196 0.0596023 
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Appendix X -List of the total found proteins by MALDI-TOF/TOF using ProteinPilot under a 95% 

confidence. Protein scores greater than 56 are significant (p<0.05). 

 

UniProt 
ID 

Best 
Protein 
Mass 

Best 
Protein 
Score 

Best Protein Description 

B7NH49 27716 142 Deoxyribose-phosphate aldolase OS=Escherichia coli 
O17:K52:H18 (strain UMN026 / ExPEC) GN=deoC PE=3 SV= 

P39377 41058 93 Isoaspartyl dipeptidase OS=Escherichia coli (strain K12) 
GN=iadA PE=1 SV=1 

A1A8A5 47836 93 Trigger factor OS=Escherichia coli O1:K1 / APEC GN=tig 
PE=3 SV=1 

P21179 84110 92 Catalase HPII OS=Escherichia coli (strain K12) GN=katE 
PE=1 SV=1 

B7UHY9 41925 91 S-adenosylmethionine synthase OS=Escherichia coli 
O127:H6 (strain E2348/69 / EPEC) GN=metK PE=3 SV=1 

P21179 84110 87 Catalase HPII OS=Escherichia coli (strain K12) GN=katE 
PE=1 SV=1 

P0A9X5 36929 86 Rod shape-determining protein MreB OS=Escherichia coli 
O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=mreB 

PE=3 SV=1 
A7ZSL4 43256 85 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
A1A8A5 47836 84 Trigger factor OS=Escherichia coli O1:K1 / APEC GN=tig 

PE=3 SV=1 
P63285 95526 84 Chaperone protein ClpB OS=Escherichia coli O157:H7 

GN=clpB PE=3 SV=1 
A7ZSL4 43256 84 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
P21179 84110 82 Catalase HPII OS=Escherichia coli (strain K12) GN=katE 

PE=1 SV=1 
A7ZJD2 41416 81 Galactokinase OS=Escherichia coli O139:H28 (strain 

E24377A / ETEC) GN=galK PE=3 SV=1 
A7ZSL4 43256 81 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
B7UR09 27730 78 Deoxyribose-phosphate aldolase OS=Escherichia coli 

O127:H6 (strain E2348/69 / EPEC) GN=deoC PE=3 SV=1 
B7UHY9 41925 75 S-adenosylmethionine synthase OS=Escherichia coli 

O127:H6 (strain E2348/69 / EPEC) GN=metK PE=3 SV=1 
P0AFG9 99606 73 Pyruvate dehydrogenase E1 component OS=Escherichia 

coli O157:H7 GN=aceE PE=1 SV=2 
P21179 84110 73 Catalase HPII OS=Escherichia coli (strain K12) GN=katE 

PE=1 SV=1 
B7UHY9 41925 71 S-adenosylmethionine synthase OS=Escherichia coli 

O127:H6 (strain E2348/69 / EPEC) GN=metK PE=3 SV=1 
B7UHY9 41925 70 S-adenosylmethionine synthase OS=Escherichia coli 

O127:H6 (strain E2348/69 / EPEC) GN=metK PE=3 SV=1 
P0A911 37178 70 Outer membrane protein A OS=Escherichia coli O157:H7 

GN=ompA PE=3 SV=1 
P0A9X5 36929 70 Rod shape-determining protein MreB OS=Escherichia coli 

O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=mreB 
PE=3 SV=1 

P00509 43546 68 Aspartate aminotransferase OS=Escherichia coli (strain 
K12) GN=aspC PE=1 SV=1 

A7ZJD2 41416 68 Galactokinase OS=Escherichia coli O139:H28 (strain 
E24377A / ETEC) GN=galK PE=3 SV=1 

B7UK50 77532 67 Elongation factor G OS=Escherichia coli O127:H6 (strain 
E2348/69 / EPEC) GN=fusA PE=3 SV=1 
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A7ZSL4 43256 66 Elongation factor Tu 1 OS=Escherichia coli O139:H28 
(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 

A7ZTG6 56074 65 2,3-bisphosphoglycerate-independent phosphoglycerate 
mutase OS=Escherichia coli O139:H28 (strain E24377A / 

ETEC) GN=gpmI PE=3 SV=1 
P0AFG9 99606 64 Pyruvate dehydrogenase E1 component OS=Escherichia 

coli O157:H7 GN=aceE PE=1 SV=2 
P0ABZ8 47254 63 Chaperone SurA OS=Escherichia coli O157:H7 GN=surA 

PE=1 SV=1 
P0A6F2 41405 63 Carbamoyl-phosphate synthase small chain 

OS=Escherichia coli O157:H7 GN=carA PE=3 SV=1 
B7UHY9 41925 63 S-adenosylmethionine synthase OS=Escherichia coli 

O127:H6 (strain E2348/69 / EPEC) GN=metK PE=3 SV=1 
P39377 41058 62 Isoaspartyl dipeptidase OS=Escherichia coli (strain K12) 

GN=iadA PE=1 SV=1 
P00895 57458 62 Anthranilate synthase component 1 OS=Escherichia coli 

(strain K12) GN=trpE PE=1 SV=2 
A7ZTG6 56074 61 2,3-bisphosphoglycerate-independent phosphoglycerate 

mutase OS=Escherichia coli O139:H28 (strain E24377A / 
ETEC) GN=gpmI PE=3 SV=1 

B7UK50 77532 59 Elongation factor G OS=Escherichia coli O127:H6 (strain 
E2348/69 / EPEC) GN=fusA PE=3 SV=1 

A7ZSL4 43256 57 Elongation factor Tu 1 OS=Escherichia coli O139:H28 
(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 

A7ZSL4 43256 56 Elongation factor Tu 1 OS=Escherichia coli O139:H28 
(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 

A7ZQ54 21727 55 Protein GrpE OS=Escherichia coli O139:H28 (strain 
E24377A / ETEC) GN=grpE PE=3 SV=1 

A7ZSL4 43256 55 Elongation factor Tu 1 OS=Escherichia coli O139:H28 
(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 

A7ZTG6 56074 54 2,3-bisphosphoglycerate-independent phosphoglycerate 
mutase OS=Escherichia coli O139:H28 (strain E24377A / 

ETEC) GN=gpmI PE=3 SV=1 
P63285 95526 54 Chaperone protein ClpB OS=Escherichia coli O157:H7 

GN=clpB PE=3 SV=1 
P14175 44135 53 Glycine betaine/proline betaine transport system ATP-

binding protein ProV OS=Escherichia coli (strain K12) 
GN=proV PE=1 SV=1 

P0A6A5 43263 52 Acetate kinase OS=Escherichia coli O157:H7 GN=ackA 
PE=3 SV=1 

A7ZQ54 21727 52 Protein GrpE OS=Escherichia coli O139:H28 (strain 
E24377A / ETEC) GN=grpE PE=3 SV=1 

P14175 44135 50 Glycine betaine/proline betaine transport system ATP-
binding protein ProV OS=Escherichia coli (strain K12) 

GN=proV PE=1 SV=1 
A7ZJD2 41416 49 Galactokinase OS=Escherichia coli O139:H28 (strain 

E24377A / ETEC) GN=galK PE=3 SV=1 
P39377 41058 49 Isoaspartyl dipeptidase OS=Escherichia coli (strain K12) 

GN=iadA PE=1 SV=1 
A7ZSL4 43256 49 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
B7UK50 77532 49 Elongation factor G OS=Escherichia coli O127:H6 (strain 

E2348/69 / EPEC) GN=fusA PE=3 SV=1 
B7UHJ6 60338 48 CTP synthase OS=Escherichia coli O127:H6 (strain 

E2348/69 / EPEC) GN=pyrG PE=3 SV=1 
P14175 44135 47 Glycine betaine/proline betaine transport system ATP-

binding protein ProV OS=Escherichia coli (strain K12) 
GN=proV PE=1 SV=1 
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P0A9X5 36929 47 Rod shape-determining protein MreB OS=Escherichia coli 
O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=mreB 

PE=3 SV=1 
P09169 35540 46 Protease 7 OS=Escherichia coli (strain K12) GN=ompT 

PE=1 SV=1 
B7UJQ9 48163 46 Trigger factor OS=Escherichia coli O127:H6 (strain 

E2348/69 / EPEC) GN=tig PE=3 SV=1 
P0A911 37178 46 Outer membrane protein A OS=Escherichia coli O157:H7 

GN=ompA PE=3 SV=1 
A7ZSL4 43256 46 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
P0AFN1 8758 45 Phage shock protein B OS=Escherichia coli O157:H7 

GN=pspB PE=3 SV=1 
B7UMJ7 50294 45 ATP synthase subunit beta OS=Escherichia coli O127:H6 

(strain E2348/69 / EPEC) GN=atpD PE=3 SV=1 
B7UR09 27730 45 Deoxyribose-phosphate aldolase OS=Escherichia coli 

O127:H6 (strain E2348/69 / EPEC) GN=deoC PE=3 SV=1 
P21179 84110 45 Catalase HPII OS=Escherichia coli (strain K12) GN=katE 

PE=1 SV=1 
A7ZHA4 69072 45 Chaperone protein DnaK OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=dnaK PE=3 SV=1 
B7UJ66 49853 44 Argininosuccinate synthase OS=Escherichia coli O127:H6 

(strain E2348/69 / EPEC) GN=argG PE=3 SV=1 
P63285 95526 44 Chaperone protein ClpB OS=Escherichia coli O157:H7 

GN=clpB PE=3 SV=1 
A7ZSL4 43256 44 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
A7ZQ54 21727 43 Protein GrpE OS=Escherichia coli O139:H28 (strain 

E24377A / ETEC) GN=grpE PE=3 SV=1 
A7ZSL4 43256 43 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
P00509 43546 42 Aspartate aminotransferase OS=Escherichia coli (strain 

K12) GN=aspC PE=1 SV=1 
A7ZHA4 69072 42 Chaperone protein DnaK OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=dnaK PE=3 SV=1 
P69911 52634 42 Glutamate decarboxylase beta OS=Escherichia coli 

O157:H7 GN=gadB PE=3 SV=1 
A7ZSL4 43256 42 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
A1A8A5 47836 42 Trigger factor OS=Escherichia coli O1:K1 / APEC GN=tig 

PE=3 SV=1 
A7ZSL4 43256 42 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
A7ZSL4 43256 41 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
A7ZSL4 43256 40 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
P58228 52665 40 Glutamate decarboxylase alpha OS=Escherichia coli 

O157:H7 GN=gadA PE=3 SV=1 
A7ZTG6 56074 40 2,3-bisphosphoglycerate-independent phosphoglycerate 

mutase OS=Escherichia coli O139:H28 (strain E24377A / 
ETEC) GN=gpmI PE=3 SV=1 

B7UHV3 40123 40 Aminomethyltransferase OS=Escherichia coli O127:H6 
(strain E2348/69 / EPEC) GN=gcvT PE=3 SV=1 

A7ZSL4 43256 39 Elongation factor Tu 1 OS=Escherichia coli O139:H28 
(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 

B7UJ66 49853 38 Argininosuccinate synthase OS=Escherichia coli O127:H6 
(strain E2348/69 / EPEC) GN=argG PE=3 SV=1 

P63285 95526 38 Chaperone protein ClpB OS=Escherichia coli O157:H7 
GN=clpB PE=3 SV=1 
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P0AAI7 43019 38 3-oxoacyl-[acyl-carrier-protein] synthase 2 
OS=Escherichia coli O157:H7 GN=fabF PE=3 SV=2 

A1A8A5 47836 38 Trigger factor OS=Escherichia coli O1:K1 / APEC GN=tig 
PE=3 SV=1 

A7ZTU8 17253 36 ATP synthase subunit b OS=Escherichia coli O139:H28 
(strain E24377A / ETEC) GN=atpF PE=3 SV=1 

A7ZR34 41093 36 Phosphoglycerate kinase OS=Escherichia coli O139:H28 
(strain E24377A / ETEC) GN=pgk PE=3 SV=1 

P08200 45727 36 Isocitrate dehydrogenase [NADP] OS=Escherichia coli 
(strain K12) GN=icd PE=1 SV=1 

P08200 45727 35 Isocitrate dehydrogenase [NADP] OS=Escherichia coli 
(strain K12) GN=icd PE=1 SV=1 

B7UHJ6 60338 35 CTP synthase OS=Escherichia coli O127:H6 (strain 
E2348/69 / EPEC) GN=pyrG PE=3 SV=1 

B7NK50 52857 34 NAD/NADP-dependent betaine aldehyde dehydrogenase 
OS=Escherichia coli O7:K1 (strain IAI39 / ExPEC) GN=betB 

PE=3 SV=1 
A7ZTU8 17253 34 ATP synthase subunit b OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=atpF PE=3 SV=1 
A7ZSL4 43256 34 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
P08200 45727 34 Isocitrate dehydrogenase [NADP] OS=Escherichia coli 

(strain K12) GN=icd PE=1 SV=1 
B7UJ66 49853 34 Argininosuccinate synthase OS=Escherichia coli O127:H6 

(strain E2348/69 / EPEC) GN=argG PE=3 SV=1 
P37759 40533 34 dTDP-glucose 4,6-dehydratase 1 OS=Escherichia coli 

(strain K12) GN=rfbB PE=3 SV=2 
B7UIV5 23325 33 3,4-dihydroxy-2-butanone 4-phosphate synthase 

OS=Escherichia coli O127:H6 (strain E2348/69 / EPEC) 
GN=ribB PE=3 SV=1 

B7UFF9 31547 33 Cytidine deaminase OS=Escherichia coli O127:H6 (strain 
E2348/69 / EPEC) GN=cdd PE=3 SV=1 

P77288 19839 32 Uncharacterized fimbrial-like protein YfcV 
OS=Escherichia coli (strain K12) GN=yfcV PE=2 SV=1 

A7ZQ54 21727 32 Protein GrpE OS=Escherichia coli O139:H28 (strain 
E24377A / ETEC) GN=grpE PE=3 SV=1 

B7UHJ6 60338 32 CTP synthase OS=Escherichia coli O127:H6 (strain 
E2348/69 / EPEC) GN=pyrG PE=3 SV=1 

P0AFM5 11679 32 Phosphate starvation-inducible protein PsiF 
OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 

/ UPEC) GN=psiF PE=3 SV=1 
P77288 19839 32 Uncharacterized fimbrial-like protein YfcV 

OS=Escherichia coli (strain K12) GN=yfcV PE=2 SV=1 
P0A9B4 35510 32 Glyceraldehyde-3-phosphate dehydrogenase A 

OS=Escherichia coli O157:H7 GN=gapA PE=3 SV=2 
B7UHV3 40123 32 Aminomethyltransferase OS=Escherichia coli O127:H6 

(strain E2348/69 / EPEC) GN=gcvT PE=3 SV=1 
P39361 29249 31 Putative sgc region transcriptional regulator 

OS=Escherichia coli (strain K12) GN=sgcR PE=3 SV=1 
B7UR09 27730 30 Deoxyribose-phosphate aldolase OS=Escherichia coli 

O127:H6 (strain E2348/69 / EPEC) GN=deoC PE=3 SV=1 
P62584 8761 30 P fimbrial regulatory protein KS71A OS=Escherichia coli 

GN=KS71A PE=1 SV=1 
P00350 51449 30 6-phosphogluconate dehydrogenase, decarboxylating 

OS=Escherichia coli (strain K12) GN=gnd PE=1 SV=2 
B7UHV3 40123 30 Aminomethyltransferase OS=Escherichia coli O127:H6 

(strain E2348/69 / EPEC) GN=gcvT PE=3 SV=1 
Q5JBK6 9381 29 UPF0401 protein YubL OS=Escherichia coli GN=yubL PE=3 

SV=2 



102 

 

P0AC71 12870 29 Glutaredoxin-4 OS=Escherichia coli O157:H7 GN=grxD 
PE=3 SV=1 

P41039 9750 29 Uncharacterized protein YbiI OS=Escherichia coli (strain 
K12) GN=ybiI PE=1 SV=1 

A7ZSL4 43256 29 Elongation factor Tu 1 OS=Escherichia coli O139:H28 
(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 

B7UIV5 23325 29 3,4-dihydroxy-2-butanone 4-phosphate synthase 
OS=Escherichia coli O127:H6 (strain E2348/69 / EPEC) 

GN=ribB PE=3 SV=1 
P76180 16308 29 Inner membrane protein YdgK OS=Escherichia coli (strain 

K12) GN=ydgK PE=1 SV=2 
P58228 52665 29 Glutamate decarboxylase alpha OS=Escherichia coli 

O157:H7 GN=gadA PE=3 SV=1 
A1A8A5 47836 29 Trigger factor OS=Escherichia coli O1:K1 / APEC GN=tig 

PE=3 SV=1 
B7UR09 27730 28 Deoxyribose-phosphate aldolase OS=Escherichia coli 

O127:H6 (strain E2348/69 / EPEC) GN=deoC PE=3 SV=1 
Q5JBK6 9381 28 UPF0401 protein YubL OS=Escherichia coli GN=yubL PE=3 

SV=2 
B7UFL0 17687 28 Cytochrome c-type biogenesis protein CcmE 

OS=Escherichia coli O127:H6 (strain E2348/69 / EPEC) 
GN=ccmE PE=3 SV=1 

B7UFF9 31547 28 Cytidine deaminase OS=Escherichia coli O127:H6 (strain 
E2348/69 / EPEC) GN=cdd PE=3 SV=1 

P08200 45727 28 Isocitrate dehydrogenase [NADP] OS=Escherichia coli 
(strain K12) GN=icd PE=1 SV=1 

P21361 5999 28 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P08200 45727 28 Isocitrate dehydrogenase [NADP] OS=Escherichia coli 
(strain K12) GN=icd PE=1 SV=1 

B7NW39 36110 28 tRNA-modifying protein YgfZ OS=Escherichia coli O7:K1 
(strain IAI39 / ExPEC) GN=ygfZ PE=3 SV=1 

Q8FF44 65552 27 Chaperone protein HscA OS=Escherichia coli O6:H1 
(strain CFT073 / ATCC 700928 / UPEC) GN=hscA PE=3 

SV=2 
Q8FIM4 26202 27 NAD-dependent protein deacylase OS=Escherichia coli 

O6:H1 (strain CFT073 / ATCC 700928 / UPEC) GN=cobB 
PE=3 SV=2 

P09147 37242 27 UDP-glucose 4-epimerase OS=Escherichia coli (strain K12) 
GN=galE PE=1 SV=1 

B7UIV5 23325 27 3,4-dihydroxy-2-butanone 4-phosphate synthase 
OS=Escherichia coli O127:H6 (strain E2348/69 / EPEC) 

GN=ribB PE=3 SV=1 
P16528 29720 27 Acetate operon repressor OS=Escherichia coli (strain 

K12) GN=iclR PE=1 SV=1 
P21361 5999 27 Uncharacterized protein YciG OS=Escherichia coli (strain 

K12) GN=yciG PE=3 SV=1 
P09126 27780 26 Uroporphyrinogen-III synthase OS=Escherichia coli (strain 

K12) GN=hemD PE=3 SV=1 
P0A6A5 43263 26 Acetate kinase OS=Escherichia coli O157:H7 GN=ackA 

PE=3 SV=1 
A7ZSL4 43256 26 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
B7UIV5 23325 26 3,4-dihydroxy-2-butanone 4-phosphate synthase 

OS=Escherichia coli O127:H6 (strain E2348/69 / EPEC) 
GN=ribB PE=3 SV=1 

A7ZR34 41093 26 Phosphoglycerate kinase OS=Escherichia coli O139:H28 
(strain E24377A / ETEC) GN=pgk PE=3 SV=1 

B7UJQ9 48163 26 Trigger factor OS=Escherichia coli O127:H6 (strain 
E2348/69 / EPEC) GN=tig PE=3 SV=1 
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P08200 45727 26 Isocitrate dehydrogenase [NADP] OS=Escherichia coli 
(strain K12) GN=icd PE=1 SV=1 

P21361 5999 26 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P58228 52665 26 Glutamate decarboxylase alpha OS=Escherichia coli 
O157:H7 GN=gadA PE=3 SV=1 

A7ZP09 10687 26 50S ribosomal protein L25 OS=Escherichia coli O139:H28 
(strain E24377A / ETEC) GN=rplY PE=3 SV=1 

B7UPW3 57293 26 60 kDa chaperonin OS=Escherichia coli O127:H6 (strain 
E2348/69 / EPEC) GN=groL PE=3 SV=1 

A7ZTG6 56074 26 2,3-bisphosphoglycerate-independent phosphoglycerate 
mutase OS=Escherichia coli O139:H28 (strain E24377A / 

ETEC) GN=gpmI PE=3 SV=1 
P77288 19839 25 Uncharacterized fimbrial-like protein YfcV 

OS=Escherichia coli (strain K12) GN=yfcV PE=2 SV=1 
B1J0W4 21801 25 HTH-type transcriptional regulator BetI OS=Escherichia 

coli (strain ATCC 8739 / DSM 1576 / Crooks) GN=betI 
PE=3 SV=1 

B1J0W4 21801 25 HTH-type transcriptional regulator BetI OS=Escherichia 
coli (strain ATCC 8739 / DSM 1576 / Crooks) GN=betI 

PE=3 SV=1 
Q5JBK6 9381 25 UPF0401 protein YubL OS=Escherichia coli GN=yubL PE=3 

SV=2 
P30852 40929 25 Protein smf OS=Escherichia coli (strain K12) GN=smf PE=3 

SV=1 
A7ZSL4 43256 25 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
A7ZSL4 43256 25 Elongation factor Tu 1 OS=Escherichia coli O139:H28 

(strain E24377A / ETEC) GN=tuf1 PE=3 SV=1 
B7UPW3 57293 25 60 kDa chaperonin OS=Escherichia coli O127:H6 (strain 

E2348/69 / EPEC) GN=groL PE=3 SV=1 
P0A9T7 13163 25 Uncharacterized HTH-type transcriptional regulator YbaQ 

OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 
/ UPEC) GN=ybaQ PE=3 SV=1 

P69911 52634 25 Glutamate decarboxylase beta OS=Escherichia coli 
O157:H7 GN=gadB PE=3 SV=1 

Q8FG00 12015 25 UPF0339 protein YegP OS=Escherichia coli O6:H1 (strain 
CFT073 / ATCC 700928 / UPEC) GN=yegP PE=3 SV=2 

P75860 18500 24 Uncharacterized fimbrial-like protein YcbV 
OS=Escherichia coli (strain K12) GN=ycbV PE=2 SV=2 

P0AGB8 21682 24 ECF RNA polymerase sigma-E factor OS=Escherichia coli 
O157:H7 GN=rpoE PE=3 SV=1 

P76160 12083 24 Uncharacterized protein YdfR OS=Escherichia coli (strain 
K12) GN=ydfR PE=4 SV=1 

A1A8A5 47836 24 Trigger factor OS=Escherichia coli O1:K1 / APEC GN=tig 
PE=3 SV=1 

P21361 5999 24 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P0AFG9 99606 24 Pyruvate dehydrogenase E1 component OS=Escherichia 
coli O157:H7 GN=aceE PE=1 SV=2 

P08200 45727 24 Isocitrate dehydrogenase [NADP] OS=Escherichia coli 
(strain K12) GN=icd PE=1 SV=1 

A1A8A5 47836 24 Trigger factor OS=Escherichia coli O1:K1 / APEC GN=tig 
PE=3 SV=1 

B7UHV1 104227 24 Glycine dehydrogenase (decarboxylating) OS=Escherichia 
coli O127:H6 (strain E2348/69 / EPEC) GN=gcvP PE=3 

SV=1 
P41072 9121 24 Protein TrbG OS=Escherichia coli (strain K12) GN=trbG 

PE=4 SV=1 
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A7ZQ54 21727 23 Protein GrpE OS=Escherichia coli O139:H28 (strain 
E24377A / ETEC) GN=grpE PE=3 SV=1 

P0A6F2 41405 23 Carbamoyl-phosphate synthase small chain 
OS=Escherichia coli O157:H7 GN=carA PE=3 SV=1 

Q1R1U5 9322 23 UPF0401 protein YubL OS=Escherichia coli (strain UTI89 / 
UPEC) GN=yubL PE=3 SV=1 

Q1R1U5 9322 23 UPF0401 protein YubL OS=Escherichia coli (strain UTI89 / 
UPEC) GN=yubL PE=3 SV=1 

P09147 37242 23 UDP-glucose 4-epimerase OS=Escherichia coli (strain K12) 
GN=galE PE=1 SV=1 

P07021 17234 23 Putative lipoprotein YfiB OS=Escherichia coli (strain K12) 
GN=yfiB PE=3 SV=2 

P76001 13405 23 Uncharacterized protein YcgJ OS=Escherichia coli (strain 
K12) GN=ycgJ PE=3 SV=1 

P09883 61550 23 Colicin-E9 OS=Escherichia coli GN=col PE=1 SV=4 

A7ZMI2 36809 23 Phenylalanine--tRNA ligase alpha subunit OS=Escherichia 
coli O139:H28 (strain E24377A / ETEC) GN=pheS PE=3 

SV=1 
Q8FJ70 10251 22 Acylphosphatase OS=Escherichia coli O6:H1 (strain 

CFT073 / ATCC 700928 / UPEC) GN=yccX PE=3 SV=2 
Q59408 17914 22 Dihydrofolate reductase type A13 OS=Escherichia coli 

GN=dfrA13 PE=3 SV=1 
Q5JBK6 9381 22 UPF0401 protein YubL OS=Escherichia coli GN=yubL PE=3 

SV=2 
Q1R1U5 9322 22 UPF0401 protein YubL OS=Escherichia coli (strain UTI89 / 

UPEC) GN=yubL PE=3 SV=1 
Q59408 17914 22 Dihydrofolate reductase type A13 OS=Escherichia coli 

GN=dfrA13 PE=3 SV=1 
P0ACW9 5789 22 Uncharacterized protein YdfA OS=Escherichia coli 

O157:H7 GN=ydfA PE=4 SV=1 
P16528 29720 22 Acetate operon repressor OS=Escherichia coli (strain 

K12) GN=iclR PE=1 SV=1 
P23839 33154 22 UPF0701 protein YicC OS=Escherichia coli (strain K12) 

GN=yicC PE=1 SV=2 
P0A9D3 22854 22 Glutathione S-transferase GstA OS=Escherichia coli 

O157:H7 GN=gstA PE=3 SV=1 
P77288 19839 22 Uncharacterized fimbrial-like protein YfcV 

OS=Escherichia coli (strain K12) GN=yfcV PE=2 SV=1 
P03845 4859 22 Putative uncharacterized protein 1 OS=Escherichia coli 

PE=4 SV=1 
B7UPW3 57293 22 60 kDa chaperonin OS=Escherichia coli O127:H6 (strain 

E2348/69 / EPEC) GN=groL PE=3 SV=1 
P03853 9208 22 Uncharacterized 9.2 kDa protein OS=Escherichia coli 

PE=4 SV=1 
P63884 45606 21 N-acetylmuramoyl-L-alanine amidase AmiC 

OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 
/ UPEC) GN=amiC PE=3 SV=1 

B7UR09 27730 21 Deoxyribose-phosphate aldolase OS=Escherichia coli 
O127:H6 (strain E2348/69 / EPEC) GN=deoC PE=3 SV=1 

B7UKF4 23527 21 Adenylate kinase OS=Escherichia coli O127:H6 (strain 
E2348/69 / EPEC) GN=adk PE=3 SV=1 

P09147 37242 21 UDP-glucose 4-epimerase OS=Escherichia coli (strain K12) 
GN=galE PE=1 SV=1 

Q8XEC3 18779 21 Chorismate pyruvate-lyase OS=Escherichia coli O157:H7 
GN=ubiC PE=3 SV=2 

B7UIV5 23325 21 3,4-dihydroxy-2-butanone 4-phosphate synthase 
OS=Escherichia coli O127:H6 (strain E2348/69 / EPEC) 

GN=ribB PE=3 SV=1 
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Q0TFJ0 22379 21 Lipopolysaccharide core heptose(II)-phosphate 
phosphatase OS=Escherichia coli O6:K15:H31 (strain 536 

/ UPEC) GN=ais PE=3 SV=1 
P77288 19839 21 Uncharacterized fimbrial-like protein YfcV 

OS=Escherichia coli (strain K12) GN=yfcV PE=2 SV=1 
P0ACW9 5789 21 Uncharacterized protein YdfA OS=Escherichia coli 

O157:H7 GN=ydfA PE=4 SV=1 
P0AC14 30596 21 Dihydropteroate synthase OS=Escherichia coli O6:H1 

(strain CFT073 / ATCC 700928 / UPEC) GN=folP PE=3 
SV=1 

A7ZR34 41093 21 Phosphoglycerate kinase OS=Escherichia coli O139:H28 
(strain E24377A / ETEC) GN=pgk PE=3 SV=1 

P0A9G7 47492 21 Isocitrate lyase OS=Escherichia coli O6:H1 (strain CFT073 
/ ATCC 700928 / UPEC) GN=aceA PE=3 SV=1 

P08200 45727 21 Isocitrate dehydrogenase [NADP] OS=Escherichia coli 
(strain K12) GN=icd PE=1 SV=1 

P08200 45727 21 Isocitrate dehydrogenase [NADP] OS=Escherichia coli 
(strain K12) GN=icd PE=1 SV=1 

P64601 19659 21 Uncharacterized protein YhbT OS=Escherichia coli 
O157:H7 GN=yhbT PE=4 SV=1 

Q8XDZ4 18159 21 Periplasmic chaperone Spy OS=Escherichia coli O157:H7 
GN=spy PE=1 SV=1 

P08200 45727 21 Isocitrate dehydrogenase [NADP] OS=Escherichia coli 
(strain K12) GN=icd PE=1 SV=1 

P77288 19839 21 Uncharacterized fimbrial-like protein YfcV 
OS=Escherichia coli (strain K12) GN=yfcV PE=2 SV=1 

P0AD57 35195 21 Octaprenyl-diphosphate synthase OS=Escherichia coli 
(strain K12) GN=ispB PE=1 SV=1 

P03853 9208 21 Uncharacterized 9.2 kDa protein OS=Escherichia coli 
PE=4 SV=1 

P41072 9121 21 Protein TrbG OS=Escherichia coli (strain K12) GN=trbG 
PE=4 SV=1 

P63884 45606 20 N-acetylmuramoyl-L-alanine amidase AmiC 
OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 

/ UPEC) GN=amiC PE=3 SV=1 
P62573 17244 20 Homoprotocatechuate degradative operon repressor 

OS=Escherichia coli GN=hpcR PE=3 SV=1 
Q8FL67 53267 20 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2,6-

diaminopimelate ligase OS=Escherichia coli O6:H1 (strain 
CFT073 / ATCC 700928 / UPEC) GN=murE PE=3 SV=3 

P76001 13405 20 Uncharacterized protein YcgJ OS=Escherichia coli (strain 
K12) GN=ycgJ PE=3 SV=1 

Q5JBK6 9381 20 UPF0401 protein YubL OS=Escherichia coli GN=yubL PE=3 
SV=2 

P0ACG4 5498 20 Protein HokC OS=Escherichia coli (strain K12) GN=hokC 
PE=1 SV=1 

Q1R1U5 9322 20 UPF0401 protein YubL OS=Escherichia coli (strain UTI89 / 
UPEC) GN=yubL PE=3 SV=1 

B7UJ78 9119 20 50S ribosomal protein L27 OS=Escherichia coli O127:H6 
(strain E2348/69 / EPEC) GN=rpmA PE=3 SV=1 

Q52772 11305 20 Protein KleF OS=Escherichia coli GN=kleF PE=4 SV=1 

Q2EES1 4112 20 Uncharacterized protein YniD OS=Escherichia coli (strain 
K12) GN=yniD PE=1 SV=2 

B7UGZ1 45288 20 Serine hydroxymethyltransferase OS=Escherichia coli 
O127:H6 (strain E2348/69 / EPEC) GN=glyA PE=3 SV=1 

P19778 11139 20 Insertion element IS2 uncharacterized 11.1 kDa protein 
OS=Escherichia coli PE=4 SV=1 

P75970 9281 20 Excisionase-like protein from lambdoid prophage 14 
OS=Escherichia coli (strain K12) GN=xisE PE=4 SV=1 
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A7ZI30 5463 20 50S ribosomal protein L36 2 OS=Escherichia coli 
O139:H28 (strain E24377A / ETEC) GN=rpmJ2 PE=3 SV=1 

P67664 34494 20 HTH-type transcriptional activator AaeR OS=Escherichia 
coli O157:H7 GN=aaeR PE=3 SV=1 

P08400 49598 20 Phosphate regulon sensor protein PhoR OS=Escherichia 
coli (strain K12) GN=phoR PE=1 SV=1 

P0A7B0 19691 20 Inorganic pyrophosphatase OS=Escherichia coli O157:H7 
GN=ppa PE=3 SV=2 

P42615 14163 20 Modulator protein MzrA OS=Escherichia coli (strain K12) 
GN=mzrA PE=1 SV=1 

Q8L0V4 79207 20 Chondroitin synthase OS=Escherichia coli GN=kfoC PE=1 
SV=1 

P17776 1541 20 Putative PyrE leader peptide OS=Escherichia coli 
GN=pyrL PE=5 SV=1 

P03845 4859 20 Putative uncharacterized protein 1 OS=Escherichia coli 
PE=4 SV=1 

P52604 42669 20 Protein KlcB OS=Escherichia coli GN=klcB PE=4 SV=2 

B7M9H2 24883 19 Iron-sulfur cluster repair protein YtfE OS=Escherichia coli 
O8 (strain IAI1) GN=ytfE PE=3 SV=1 

P19767 9918 19 Insertion element IS1 7 protein InsA OS=Escherichia coli 
(strain K12) GN=insA7 PE=3 SV=1 

P10739 3801 19 23S rRNA methylase leader peptide OS=Escherichia coli 
GN=ermC PE=4 SV=1 

Q9JMR5 19497 19 Uncharacterized protein YubH OS=Escherichia coli (strain 
K12) GN=yubH PE=3 SV=2 

B1ITA4 36201 19 tRNA-modifying protein YgfZ OS=Escherichia coli (strain 
ATCC 8739 / DSM 1576 / Crooks) GN=ygfZ PE=3 SV=1 

P76001 13405 19 Uncharacterized protein YcgJ OS=Escherichia coli (strain 
K12) GN=ycgJ PE=3 SV=1 

Q8L0V4 79207 19 Chondroitin synthase OS=Escherichia coli GN=kfoC PE=1 
SV=1 

Q8XA44 18723 19 tRNA-specific adenosine deaminase OS=Escherichia coli 
O157:H7 GN=tadA PE=3 SV=2 

P0A436 10188 19 Galactitol-specific phosphotransferase enzyme IIB 
component OS=Escherichia coli O157:H7 GN=gatB PE=3 

SV=1 
P0ACG7 5733 19 Protein HokD OS=Escherichia coli O157:H7 GN=hokD PE=3 

SV=1 
B7UIX3 8495 19 30S ribosomal protein S21 OS=Escherichia coli O127:H6 

(strain E2348/69 / EPEC) GN=rpsU PE=3 SV=1 
B7UIX3 8495 19 30S ribosomal protein S21 OS=Escherichia coli O127:H6 

(strain E2348/69 / EPEC) GN=rpsU PE=3 SV=1 
B7UK35 9698 19 30S ribosomal protein S17 OS=Escherichia coli O127:H6 

(strain E2348/69 / EPEC) GN=rpsQ PE=3 SV=1 
Q9JMT7 16130 19 Uncharacterized protein YuaC OS=Escherichia coli (strain 

K12) GN=yuaC PE=4 SV=1 
Q9JMT7 16130 19 Uncharacterized protein YuaC OS=Escherichia coli (strain 

K12) GN=yuaC PE=4 SV=1 
P42615 14163 19 Modulator protein MzrA OS=Escherichia coli (strain K12) 

GN=mzrA PE=1 SV=1 
P75692 8885 19 Uncharacterized protein YahM OS=Escherichia coli (strain 

K12) GN=yahM PE=4 SV=2 
P75692 8885 19 Uncharacterized protein YahM OS=Escherichia coli (strain 

K12) GN=yahM PE=4 SV=2 
P0A845 7020 19 Probable Sec-independent protein translocase protein 

TatE OS=Escherichia coli O157:H7 GN=tatE PE=3 SV=1 
P13478 9600 19 Colicin-E8 immunity protein in ColE6 OS=Escherichia coli 

GN=imm PE=3 SV=1 
P15043 68320 19 ATP-dependent DNA helicase RecQ OS=Escherichia coli 

(strain K12) GN=recQ PE=1 SV=5 
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P0A845 7020 19 Probable Sec-independent protein translocase protein 
TatE OS=Escherichia coli O157:H7 GN=tatE PE=3 SV=1 

Q00192 82145 19 Protein TraI OS=Escherichia coli GN=traI PE=4 SV=1 

A7ZTG6 56074 19 2,3-bisphosphoglycerate-independent phosphoglycerate 
mutase OS=Escherichia coli O139:H28 (strain E24377A / 

ETEC) GN=gpmI PE=3 SV=1 
P0ACW6 8873 19 Uncharacterized protein YdcH OS=Escherichia coli (strain 

K12) GN=ydcH PE=4 SV=2 
C1P614 4788 18 Uncharacterized protein YqfG OS=Escherichia coli (strain 

K12) GN=yqfG PE=1 SV=1 
P0AAM9 8802 18 Hydrogenase-2 operon protein HybG OS=Escherichia coli 

O157:H7 GN=hybG PE=3 SV=1 
P76001 13405 18 Uncharacterized protein YcgJ OS=Escherichia coli (strain 

K12) GN=ycgJ PE=3 SV=1 
P08407 18557 18 Fimbrial protein PapE OS=Escherichia coli GN=papE PE=1 

SV=1 
P08407 18557 18 Fimbrial protein PapE OS=Escherichia coli GN=papE PE=1 

SV=1 
P0AE10 20748 18 Alkyl hydroperoxide reductase subunit C OS=Escherichia 

coli O157:H7 GN=ahpC PE=3 SV=2 
P0ADX0 7594 18 Uncharacterized protein YheV OS=Escherichia coli 

O157:H7 GN=yheV PE=4 SV=1 
P56614 5880 18 Uncharacterized protein YmdF OS=Escherichia coli 

(strain K12) GN=ymdF PE=3 SV=1 
P09551 27974 18 Lysine/arginine/ornithine-binding periplasmic protein 

OS=Escherichia coli (strain K12) GN=argT PE=1 SV=3 
B7UIX3 8495 18 30S ribosomal protein S21 OS=Escherichia coli O127:H6 

(strain E2348/69 / EPEC) GN=rpsU PE=3 SV=1 
B7UIX3 8495 18 30S ribosomal protein S21 OS=Escherichia coli O127:H6 

(strain E2348/69 / EPEC) GN=rpsU PE=3 SV=1 
P18353 12579 18 Protein TrbJ OS=Escherichia coli (strain K12) GN=trbJ 

PE=4 SV=3 
Q2EES1 4112 18 Uncharacterized protein YniD OS=Escherichia coli (strain 

K12) GN=yniD PE=1 SV=2 
P76001 13405 18 Uncharacterized protein YcgJ OS=Escherichia coli (strain 

K12) GN=ycgJ PE=3 SV=1 
Q52772 11305 18 Protein KleF OS=Escherichia coli GN=kleF PE=4 SV=1 

P16528 29720 18 Acetate operon repressor OS=Escherichia coli (strain 
K12) GN=iclR PE=1 SV=1 

P0AFW3 6503 18 Ribosome modulation factor OS=Escherichia coli O157:H7 
GN=rmf PE=3 SV=1 

P0ADX0 7594 18 Uncharacterized protein YheV OS=Escherichia coli 
O157:H7 GN=yheV PE=4 SV=1 

Q2EES1 4112 18 Uncharacterized protein YniD OS=Escherichia coli (strain 
K12) GN=yniD PE=1 SV=2 

Q5JBK6 9381 18 UPF0401 protein YubL OS=Escherichia coli GN=yubL PE=3 
SV=2 

B7UPW3 57293 18 60 kDa chaperonin OS=Escherichia coli O127:H6 (strain 
E2348/69 / EPEC) GN=groL PE=3 SV=1 

P0AAQ8 13309 18 Uncharacterized protein YbaA OS=Escherichia coli 
O157:H7 GN=ybaA PE=4 SV=1 

P75692 8885 18 Uncharacterized protein YahM OS=Escherichia coli (strain 
K12) GN=yahM PE=4 SV=2 

P77288 19839 18 Uncharacterized fimbrial-like protein YfcV 
OS=Escherichia coli (strain K12) GN=yfcV PE=2 SV=1 

O82900 21713 18 Uncharacterized protein YubH OS=Escherichia coli 
O157:H7 GN=yubH PE=4 SV=2 

P0AEL5 8366 18 Ferrous iron transport protein A OS=Escherichia coli 
O157:H7 GN=feoA PE=3 SV=1 
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Q9S4X2 25430 18 Putative methylase YubD OS=Escherichia coli (strain K12) 
GN=yubD PE=3 SV=1 

P17776 1541 18 Putative PyrE leader peptide OS=Escherichia coli 
GN=pyrL PE=5 SV=1 

P41072 9121 18 Protein TrbG OS=Escherichia coli (strain K12) GN=trbG 
PE=4 SV=1 

P0AB63 9380 18 Protein YciN OS=Escherichia coli O157:H7 GN=yciN PE=4 
SV=1 

P68207 8320 17 UPF0337 protein YjbJ OS=Escherichia coli O157:H7 
GN=yjbJ PE=3 SV=1 

P0AE65 8939 17 Cation transport regulator ChaB OS=Escherichia coli 
O157:H7 GN=chaB PE=4 SV=1 

A7ZQ54 21727 17 Protein GrpE OS=Escherichia coli O139:H28 (strain 
E24377A / ETEC) GN=grpE PE=3 SV=1 

A7ZVT5 12347 17 Trp operon repressor OS=Escherichia coli O139:H28 
(strain E24377A / ETEC) GN=trpR PE=3 SV=1 

B1IS55 17053 17 UPF0442 protein YjjB OS=Escherichia coli (strain ATCC 
8739 / DSM 1576 / Crooks) GN=yjjB PE=3 SV=1 

P69793 12739 17 N,N'-diacetylchitobiose-specific phosphotransferase 
enzyme IIA component OS=Escherichia coli O157:H7 

GN=chbA PE=3 SV=1 
P56614 5880 17 Uncharacterized protein YmdF OS=Escherichia coli 

(strain K12) GN=ymdF PE=3 SV=1 
P10739 3801 17 23S rRNA methylase leader peptide OS=Escherichia coli 

GN=ermC PE=4 SV=1 
P10739 3801 17 23S rRNA methylase leader peptide OS=Escherichia coli 

GN=ermC PE=4 SV=1 
P58217 9194 17 DinI-like protein Z2083/ECs2153 OS=Escherichia coli 

O157:H7 GN=Z2083 PE=4 SV=1 
P0AC14 30596 17 Dihydropteroate synthase OS=Escherichia coli O6:H1 

(strain CFT073 / ATCC 700928 / UPEC) GN=folP PE=3 
SV=1 

P05834 6009 17 Bacteriocin microcin B17 OS=Escherichia coli GN=mcbA 
PE=1 SV=1 

P76001 13405 17 Uncharacterized protein YcgJ OS=Escherichia coli (strain 
K12) GN=ycgJ PE=3 SV=1 

B7UIX3 8495 17 30S ribosomal protein S21 OS=Escherichia coli O127:H6 
(strain E2348/69 / EPEC) GN=rpsU PE=3 SV=1 

P0ABY0 17210 17 Flagellar protein FliL OS=Escherichia coli O157:H7 
GN=fliL PE=3 SV=1 

Q8X616 25035 17 Uncharacterized ferredoxin-like protein YdhX 
OS=Escherichia coli O157:H7 GN=ydhX PE=3 SV=3 

P28697 21211 16 Putative uncharacterized protein HtgA OS=Escherichia 
coli (strain K12) GN=htgA PE=5 SV=2 

Q5JBK6 9381 16 UPF0401 protein YubL OS=Escherichia coli GN=yubL PE=3 
SV=2 

P21361 5999 16 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P18353 12579 16 Protein TrbJ OS=Escherichia coli (strain K12) GN=trbJ 
PE=4 SV=3 

P05835 8537 16 Relaxosome protein TraY OS=Escherichia coli GN=traY 
PE=3 SV=1 

P05835 8537 16 Relaxosome protein TraY OS=Escherichia coli GN=traY 
PE=3 SV=1 

P75992 10338 16 Probable two-component-system connector protein 
YmgA OS=Escherichia coli (strain K12) GN=ymgA PE=2 

SV=1 
P17776 1541 16 Putative PyrE leader peptide OS=Escherichia coli 

GN=pyrL PE=5 SV=1 
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P21361 5999 16 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

Q5JBK6 9381 16 UPF0401 protein YubL OS=Escherichia coli GN=yubL PE=3 
SV=2 

B7UFF9 31547 16 Cytidine deaminase OS=Escherichia coli O127:H6 (strain 
E2348/69 / EPEC) GN=cdd PE=3 SV=1 

P0AFR5 23197 16 Uncharacterized protein YciO OS=Escherichia coli O6:H1 
(strain CFT073 / ATCC 700928 / UPEC) GN=yciO PE=3 

SV=1 
Q9JMR5 19497 16 Uncharacterized protein YubH OS=Escherichia coli (strain 

K12) GN=yubH PE=3 SV=2 
P05834 6009 16 Bacteriocin microcin B17 OS=Escherichia coli GN=mcbA 

PE=1 SV=1 
P07024 60786 16 Protein UshA OS=Escherichia coli (strain K12) GN=ushA 

PE=1 SV=2 
P77288 19839 16 Uncharacterized fimbrial-like protein YfcV 

OS=Escherichia coli (strain K12) GN=yfcV PE=2 SV=1 
P77288 19839 16 Uncharacterized fimbrial-like protein YfcV 

OS=Escherichia coli (strain K12) GN=yfcV PE=2 SV=1 
P77288 19839 16 Uncharacterized fimbrial-like protein YfcV 

OS=Escherichia coli (strain K12) GN=yfcV PE=2 SV=1 
P0A9T7 13163 16 Uncharacterized HTH-type transcriptional regulator YbaQ 

OS=Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 
/ UPEC) GN=ybaQ PE=3 SV=1 

Q5JBK6 9381 15 UPF0401 protein YubL OS=Escherichia coli GN=yubL PE=3 
SV=2 

P64576 10938 15 Uncharacterized protein YghW OS=Escherichia coli 
O157:H7 GN=yghW PE=4 SV=1 

P0ACW6 8873 15 Uncharacterized protein YdcH OS=Escherichia coli (strain 
K12) GN=ydcH PE=4 SV=2 

Q9JMR5 19497 15 Uncharacterized protein YubH OS=Escherichia coli (strain 
K12) GN=yubH PE=3 SV=2 

P64477 7262 15 Uncharacterized protein YdiH OS=Escherichia coli 
O157:H7 GN=ydiH PE=4 SV=2 

P05835 8537 15 Relaxosome protein TraY OS=Escherichia coli GN=traY 
PE=3 SV=1 

P05835 8537 15 Relaxosome protein TraY OS=Escherichia coli GN=traY 
PE=3 SV=1 

A7ZHZ2 39464 15 DNA polymerase IV OS=Escherichia coli O139:H28 (strain 
E24377A / ETEC) GN=dinB PE=3 SV=1 

P21361 5999 15 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P21361 5999 15 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P75679 15240 15 Transposase InsN for insertion sequence element IS911A 
OS=Escherichia coli (strain K12) GN=insN1 PE=3 SV=1 

P75679 15240 15 Transposase InsN for insertion sequence element IS911A 
OS=Escherichia coli (strain K12) GN=insN1 PE=3 SV=1 

P17776 1541 15 Putative PyrE leader peptide OS=Escherichia coli 
GN=pyrL PE=5 SV=1 

P21361 5999 15 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P21361 5999 15 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P10739 3801 14 23S rRNA methylase leader peptide OS=Escherichia coli 
GN=ermC PE=4 SV=1 

P62584 8761 14 P fimbrial regulatory protein KS71A OS=Escherichia coli 
GN=KS71A PE=1 SV=1 

P45848 71244 14 Uncharacterized protein YciQ OS=Escherichia coli (strain 
K12) GN=yciQ PE=4 SV=2 
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B7ULB9 76765 14 Glycine--tRNA ligase beta subunit OS=Escherichia coli 
O127:H6 (strain E2348/69 / EPEC) GN=glyS PE=3 SV=1 

P0ABY0 17210 14 Flagellar protein FliL OS=Escherichia coli O157:H7 
GN=fliL PE=3 SV=1 

P17776 1541 14 Putative PyrE leader peptide OS=Escherichia coli 
GN=pyrL PE=5 SV=1 

P21361 5999 14 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P17776 1541 14 Putative PyrE leader peptide OS=Escherichia coli 
GN=pyrL PE=5 SV=1 

P04743 8849 14 Major pilus subunit operon regulatory protein 
OS=Escherichia coli GN=papI PE=4 SV=1 

P21361 5999 14 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P21361 5999 14 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P62671 6104 14 Stable plasmid inheritance protein OS=Escherichia coli 
O157:H7 GN=flmA PE=3 SV=1 

P62671 6104 14 Stable plasmid inheritance protein OS=Escherichia coli 
O157:H7 GN=flmA PE=3 SV=1 

P17776 1541 13 Putative PyrE leader peptide OS=Escherichia coli 
GN=pyrL PE=5 SV=1 

P21361 5999 13 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

A1AAH4 7098 13 Uncharacterized protein YciY OS=Escherichia coli O1:K1 
/ APEC GN=yciY PE=3 SV=2 

P21361 5999 13 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P21361 5999 12 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P75961 28846 12 Inner membrane protein YcfZ OS=Escherichia coli (strain 
K12) GN=ycfZ PE=1 SV=1 

Q5JBK6 9381 12 UPF0401 protein YubL OS=Escherichia coli GN=yubL PE=3 
SV=2 

P21361 5999 12 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P21361 5999 12 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P21361 5999 12 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P21361 5999 11 Uncharacterized protein YciG OS=Escherichia coli (strain 
K12) GN=yciG PE=3 SV=1 

P0ABY0 17210 11 Flagellar protein FliL OS=Escherichia coli O157:H7 
GN=fliL PE=3 SV=1 

Q8L0V4 79207 11 Chondroitin synthase OS=Escherichia coli GN=kfoC PE=1 
SV=1 

B7M9D0 58278 8 Glutamate--cysteine ligase OS=Escherichia coli O8 (strain 
IAI1) GN=gshA PE=3 SV=1 

B7M9D0 58278 7 Glutamate--cysteine ligase OS=Escherichia coli O8 (strain 
IAI1) GN=gshA PE=3 SV=1 
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Appendix XI – Poster presented at XI Annual CICS-UBI symposium ( 30 June and 1 July, Covilhã, 

Portugal) 
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Appendix XII - Participation in the contest “ Cultiva o teu Futuro – Inovação no Setor de Leite 

e Laticinios” sponsored by “ Confederação dos Agriculturos de Portugal”, 12 October, Lisbon, 

Portugal.  

 

 

 


