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Resumo Alargado 

 

A sociedade atual é profundamente afetada por diversas doenças, sendo o cancro uma das mais 

devastadoras. Apesar de toda a investigação desenvolvida em torno do cancro, as taxas de 

incidência e de mortalidade associadas a esta doença continuam muito elevadas. Esta realidade 

está em parte relacionada com as limitações dos tratamentos disponíveis para o cancro, que 

incluem cirurgia, quimioterapia e radioterapia. Estas terapias são caracterizadas por 

apresentarem uma baixa eficácia terapêutica e por causarem efeitos secundários nos pacientes. 

Para além disto, a eficácia destes tratamentos é ainda diminuída por mecanismos de resistência 

a fármacos/radiação desenvolvidos pelas células cancerígenas. Por outro lado, as novas terapias 

que estão a ser testadas em meio clínico (ex.: imunoterapia e quimioterapia direcionada) 

também são afetadas por mecanismos de resistência e acarretam custos superiores para o 

Serviço Nacional de Saúde. Desta forma, existe uma necessidade premente de desenvolver e 

implementar tratamentos inovadores para o cancro, que apresentem maior eficácia sem, no 

entanto, induzirem efeitos secundários significativos. 

De entre as numerosas abordagens terapêuticas em investigação, a terapia fototérmica (PTT) 

mediada por nanomateriais tem demonstrado resultados promissores nos ensaios pré-clínicos. 

Esta abordagem explora a utilização de nanomateriais, que devido às suas propriedades  

físico-químicas, conseguem acumular-se preferencialmente no local do tumor. Posteriormente, 

a zona do tumor é irradiada com um feixe de luz, e os nanomateriais acumulados nesta zona 

absorvem-na e convertem-na em calor, induzindo assim danos nas células cancerígenas.  

Na PTT mediada por nanomateriais é fundamental usar uma radiação com um comprimento de 

onda na região do infravermelho próximo (NIR; 750-1000 nm) uma vez que os principais 

componentes biológicos (ex.: água, hemoglobina, proteínas, melanina) têm uma absorção 

mínima ou insignificante nesta gama de comprimentos de onda. Devido a este facto, as 

nanoestruturas projetadas para utilização na PTT devem ter uma elevada absorção no NIR de 

modo a conseguirem produzir um efeito fototérmico, que induza citotoxicidade para as células 

cancerígenas. Assim, comparativamente com as terapias convencionais, a PTT mediada por 

nanomateriais pode induzir um efeito espácio-temporal controlado, permitindo-lhe atingir uma 

maior seletividade para a zona do tumor. 

De entre os diferentes nanomateriais responsivos à luz, o óxido de grafeno (GO) tem revelado 

propriedades promissoras para aplicação na PTT do cancro. O GO é um nanomaterial composto 

por uma matriz de grafite, que contém diversos tipos de grupos funcionais (carboxílico, 

hidroxilo e epóxi). Este nanomaterial absorve na região do NIR, apresentando uma capacidade 

fototérmica eficiente. Para além disto, os seus grupos aromáticos permitem o encapsulamento 

de diversas moléculas na sua estrutura através de interações não covalentes (interações 



 xx 

hidrofóbicas e empilhamento π-π). Assim, o GO tem um elevado potencial para aplicações 

fototérmicas e de entrega de fármacos. 

Porém, a aplicação direta do GO na terapia do cancro é severamente limitada pela sua baixa 

estabilidade coloidal, o que faz com que este nanomaterial precipite em soluções salinas e em 

fluídos biológicos. Este fator limita assim a sua administração intravenosa. Para além disto, a 

matriz aromática do GO pode adsorver moléculas do sistema complemento e este nanomaterial 

pode ser reconhecido por macrófagos. Estes eventos induzem a rápida eliminação do GO, 

diminuindo a probabilidade deste se acumular na zona do tumor. Finalmente, o GO não é 

seletivamente internalizado pelas células cancerígenas e, portanto, pode afetar as células 

saudáveis que se encontram no microambiente tumoral. As estratégias que permitam 

ultrapassar estas limitações irão certamente contribuir para incrementar a aplicabilidade e a 

capacidade terapêutica dos materiais à base de GO. 

Tendo em consideração as limitações do GO, o principal objetivo do plano de trabalhos 

desenvolvido nesta tese foi implementar novas estratégias para melhorar a PTT mediada por 

nanomateriais à base de GO. Para tal, procurou-se i) implementar revestimentos com 

capacidade de melhorar a performance biológica do GO, ii) explorar métodos de preparação 

capazes de aumentar a capacidade fototérmica do GO, e iii) encapsular combinações de 

fármacos com atividade anticancerígena sinérgica na matriz do GO. 

No primeiro estudo apresentado nesta tese, foi avaliada a capacidade terapêutica de materiais 

à base de GO funcionalizados com succinato de D-α-tocoferil polietilenoglicol 1000 (TPGS). 

Inicialmente, o óxido de grafite foi sintetizado usando uma versão modificada do método de 

Hummer’s melhorado. Seguidamente, este material sofreu um tratamento alcalino, com o 

intuito de remover os detritos da oxidação (o que pode melhorar a sua capacidade para adsorver 

moléculas), e foi posteriormente exfoliado de forma a obter o GO com dimensões nanométricas 

(bwGO). De seguida, foram exploradas duas abordagens diferentes para funcionalizar o bwGO 

com TPGS: um processo de sonicação simples (obtendo-se TPGS/bwGO) e um tratamento 

hidrotérmico (obtendo-se TPGS/htGO). Os resultados obtidos demonstraram que os 

nanomateriais revestidos com TPGS apresentam uma maior estabilidade coloidal. Em 

particular, o TPGS/htGO demonstrou possuir uma estabilidade coloidal superior e cerca de 1,9 

vezes maior absorção no NIR (a 808 nm), quando comparado com o TPGS/bwGO. Após a sua 

irradiação com luz NIR, o TPGS/htGO induziu uma variação de temperatura 1,4 a 1,6 vezes 

superior àquela que é induzida pelo TPGS/bwGO. Nos estudos in vitro, os nanomateriais 

funcionalizados com TPGS reduziram a viabilidade das células do cancro da mama, e não 

tiveram um efeito citotóxico considerável nas células saudáveis. Para além disto, a combinação 

da luz NIR com os derivados de GO funcionalizados com TPGS promoveu um efeito terapêutico 

ainda mais acentuado. Neste ensaio, o TPGS/htGO mediou uma fototerapia ligeiramente mais 

eficaz devido às suas propriedades óticas melhoradas.  
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No segundo estudo apresentado nesta tese, foi avaliado o potencial quimio-fototerapêutico do 

bwGO funcionalizado na sua superfície com um polímero anfifílico baseado em  

poli(2-etil-2-oxazolina) (bwGO POxilado) e que tinha incorporado na sua matriz a combinação 

de fármacos Doxorrubicina (DOX) e Succinato de D-α-tocoferol (TOS). Os resultados obtidos 

demonstraram que o bwGO POxilado apresenta propriedades físico-químicas, coloidais, óticas 

e biológicas adequadas para a sua aplicação na terapia do cancro. Para além disto, a análise da 

eficácia de diferentes combinações molares de DOX:TOS, de 5:1 a 1:5, revelou que o rácio 

molar 1:3 de DOX:TOS produz um efeito terapêutico sinérgico ótimo nas células do cancro da 

mama. Este rácio de fármacos demonstrou ainda um efeito cerca de 2 vezes inferior nas células 

saudáveis. Com base nestes resultados, a combinação molar 1:3 DOX:TOS foi selecionada para 

encapsulação no bwGO POxilado, com o objetivo de avaliar o potencial quimio-fototerapêutico 

deste. Nos estudos in vitro, a entrega de DOX:TOS pelo bwGO POxilado às células cancerígenas 

induziu um efeito terapêutico superior àquele que é obtido com a combinação dos fármacos na 

sua forma livre. Para além disto, a exposição do bwGO POxilado carregado com a combinação 

DOX:TOS à luz NIR induziu um maior efeito citotóxico nas células cancerígenas. 

Em suma, os resultados obtidos nestes estudos demonstraram que a aplicabilidade dos materiais 

à base de GO na terapia do cancro pode ser melhorada através da funcionalização deste com 

polímeros anfifílicos. Para além disto, o potencial terapêutico dos derivados de GO pode ser 

melhorado através do uso de revestimentos com atividade anticancerígena intrínseca, ou 

através da co-encapsulação de fármacos com um efeito citotóxico maior para as células 

cancerígenas. Estudos pré-clínicos mais aprofundados destes nanomateriais poderão conduzir à 

sua avaliação em ensaios clínicos. 
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Abstract 

 

Regardless of the advancements in medicine, there are diseases that have a tremendous impact 

on today’s society. In this context, cancer is probably the most devastating one. Despite all the 

intensive research on cancer, its incidence and mortality rates are still high. In fact, the 

classical cancer treatments (surgery, chemotherapy and radiotherapy) have a low therapeutic 

efficacy and induce side effects in patients that can pose a threat to their life. Furthermore, 

the low therapeutic index of the available treatments is further impaired by resistance 

mechanisms developed by cancer cells to drugs/radiation. On the other hand, the novel 

therapies that are under clinical investigation (e.g. targeted chemotherapy and 

immunotherapy) are also affected by resistance mechanisms and have an even higher cost to 

the health service providers. In this way, there is an urgent need to discover and implement 

innovative cancer treatments that possess a higher therapeutic efficacy and display fewer  

side-effects. 

Among the different therapeutic approaches under investigation, photothermal therapy (PTT) 

mediated by nanomaterials has been showing promising results both in in vitro and in vivo 

assays. This therapy employs nanomaterials that, due to their physicochemical properties, can 

accumulate preferentially in the tumor site. Afterwards, an external light is used to irradiate 

the tumor zone, and the nanostructures accumulated at the tumor site absorb the radiation 

energy and convert it into heat, inducing damage to the cells. In nanomaterials’ mediated PTT, 

it is crucial to use near infrared radiation (NIR; 750-1000 nm) since most of the biological 

components (e.g. water, hemoglobin, proteins, melanin) have a minimal or an insignificant 

absorption within this wavelength range. Consequently, nanostructures should have a high NIR 

absorption in order to produce an efficient photothermal effect, when they are exposed to NIR 

light. In this way, compared to conventional therapies, cancer PTT mediated by nanomaterials 

can induce a spatial-temporal controlled effect with a higher selectivity towards the tumor 

zone. 

Among the different light-responsive nanomaterials, graphene oxide (GO) reveals promising 

properties to be applied in cancer PTT. GO is a 2D nanomaterial composed by a graphitic lattice 

that contains several types of oxygen-functional groups (carboxyl, hydroxyl and epoxy). This 

nanomaterial absorbs in the NIR region, displaying an efficient photothermal capacity. 

Furthermore, the aromatic lattice of this nanomaterial allows the loading of different types of 

molecules through non-covalent interactions (hydrophobic-hydrophobic interactions and π-π 

stacking). In this way, GO has a tremendous potential for photothermal and drug delivery 

applications.  
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However, the direct use of GO in cancer therapy is severely limited by different factors. Firstly, 

GO has a weak colloidal stability – it precipitates in saline solutions and in biological fluids. This 

factor limits its intravenous administration. Furthermore, the aromatic lattice of GO can adsorb 

complement proteins, leading to its recognition by macrophages, and subsequent clearance 

from blood circulation. This removal avoids nanomaterials’ accumulation in the tumor zone. 

Additionally, GO is not selectively internalized by cancer cells, and thus can mediate a 

therapeutic effect that also affects the healthy cells found within the tumor microenvironment.  

The main objective of this thesis’ work plan was to address the limitations associated to  

GO-based materials and implement novel strategies to improve the PTT mediated by these 

materials. Such was pursued by i) employing coatings that can improve the biological 

performance of GO-based materials, ii) exploring preparation methods that can enhance GO 

photothermal capacity, and iii) encapsulating drug combinations with optimal synergistic 

anticancer activity on GO. 

In the first study, the anticancer capacity of D-α-tocopheryl polyethylene glycol 1000 succinate 

(TPGS) functionalized GO-based materials was evaluated. Initially, graphite oxide was 

synthesized through a modified version of the improved Hummer’s method. This material was 

then base-washed to remove the oxidation debris from its structure, which can improve its 

ability to adsorb molecules. Then, the material was exfoliated, yielding nanosized  

base-washed GO (bwGO). Afterwards, TPGS was explored for the functionalization of bwGO 

through two different approaches: a simple sonication method (yielding TPGS/bwGO) and a 

one-pot hydrothermal treatment (yielding TPGS/htGO). The results revelated that the TPGS 

coating successfully improved the stability of the GO derivatives. In particular, the TPGS/htGO 

displayed a greater colloidal stability and a 1.9-times higher NIR absorption (at 808 nm) in 

comparison to TPGS/bwGO. In in vitro studies, the TPGS/GO derivatives reduced the viability 

of breast cancer cells and had an insignificant effect on healthy cells. Furthermore, the 

combined application of TPGS/GO derivatives and NIR light induced an improved therapeutic 

effect. Particularly, the enhanced optical properties of TPGS/htGO enabled it to mediate a 

slightly more efficient phototherapy. 

In the second part of this thesis, the chemo-phototherapeutic potential of bwGO functionalized 

with an amphiphilic polymer based on poly(2-ethyl-2-oxazoline) (POxylated bwGO) and loaded 

with Doxorubicin (DOX) and D-α-Tocopherol succinate (TOS) was assessed. The results revealed 

that the POxylated bwGO presents suitable physicochemical, colloidal, optical and biological 

properties for application in cancer therapy. In addition, the screening of different DOX:TOS 

molar combination ratios, ranging from 5:1 to 1:5, disclosed that the 1:3 DOX:TOS molar ratio 

produces an optimal synergistic therapeutic effect towards breast cancer cells (combination 

index of about 0.56). Furthermore, this drug ratio had a 2-times weaker effect on normal cells. 

POxylated bwGO was then loaded with the 1:3 DOX:TOS combination in order to evaluate its 

chemo-phototherapeutic potential. In in vitro studies, the delivery of DOX:TOS by POxylated 
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bwGO to cancer cells induced a stronger therapeutic effect than that attained with the free 

drug combination. Furthermore, an even greater cytotoxicity towards cancer cells was achieved 

by exposing DOX:TOS loaded POxylated bwGO to NIR radiation. 

Overall, the obtained results demonstrate that the applicability of GO-based materials in 

cancer therapy can be improved by performing their functionalization with amphiphilic 

polymers. Furthermore, the therapeutic potential of GO derivatives can be enhanced by using 

coatings with intrinsic anticancer activity or by encapsulating drugs that display a higher effect 

on cancer cells. These novel strategies will further contribute for the translation of GO-based 

materials from the bench to the bedside.  
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Thesis Overview 

  

This Doctoral thesis is organized in 6 chapters. 

The first chapter comprises the general and specific aims established for the work plan of this 

PhD thesis. 

The second and third chapters enclose the introductory section. Chapter 2 gives an overview 

on the cancer PTT mediated by nanomaterials, reviewing the different strategies applied so far 

to improve its therapeutic outcome. Chapter 3 analyses the state-of-the-art of the 

functionalizations used in the design of GO-based materials aimed for application in cancer 

therapy, disclosing their role on surpassing the critical issues related to this nanomaterial. 

The fourth and fifth chapters present the results of the research works developed during this 

PhD thesis: 

 -Research Work 1: D-α-Tocopheryl polyethylene glycol 1000 succinate functionalized 

nanographene oxide for cancer therapy (Chapter 4)  

 -Research Work 2: POxylated Graphene Oxide Nanomaterials for Combination  

Chemo-Phototherapy of Breast Cancer Cells (Chapter 5) 

Finally, the sixth chapter contains the concluding remarks, discussing the results obtained 

during this PhD thesis in the light of the state-of-the-art, and provides future directions 

regarding this research topic. 
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Global Aims 

 

GO-based materials encompass an extraordinary potential for cancer therapy due to their 

excellent photothermal and drug delivery capabilities. However, the intrinsic limitations of GO 

derivatives hinder their direct use in cancer therapy. Taking this into account, the main 

objective of this PhD thesis was to implement novel strategies to improve cancer PTT mediated 

by GO-based materials, while simultaneously addressing the core problems associated with 

these nanomaterials. In this way, the specific aims of this thesis were: 

- Assess the suitability of the novel coatings in the improvement of the biological performance 

of GO-based materials; 

- Evaluate formulation methods that yield GO-based materials with an improved photothermal 

capacity; 

- Screen drug combinations with optimal synergistic anticancer activity for encapsulation in 

GO-based materials. 
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Chapter 2    

 
 
 
 
 
 
 
 

Introduction (part. A) 
 

Strategies to Improve Cancer Photothermal 

Therapy Mediated by Nanomaterials 

 

 

 

 

 

 

 

This chapter is based on the publication entitled: Strategies to Improve Cancer Photothermal 
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2.1. Abstract  

The deployment of hyperthermia-based treatments for cancer therapy has captured the 

attention of different researchers worldwide. In particular, the application of light-responsive 

nanomaterials to mediate hyperthermia has revealed promising results in several pre-clinical 

assays. Unlike conventional therapies, these nanostructures can display a preferential tumor 

accumulation and thus mediate, upon irradiation with near-infrared light, a selective 

hyperthermic effect with temporal resolution. Different types of nanomaterials such as those 

based on gold, carbon, copper, molybdenum, tungsten, iron, palladium and conjugated 

polymers have been used for this photothermal modality. This chapter summarizes the different 

strategies that have been applied so far for increasing the efficacy of the photothermal 

therapeutic effect mediated by nanomaterials, namely those that improve the accumulation of 

nanomaterials in tumors (e.g. by changing the corona composition or through the 

functionalization with targeting ligands), increase nanomaterials’ intrinsic capacity to generate 

photoinduced heat (e.g. by synthesizing new nanomaterials or assembling nanostructures) or 

by optimizing the parameters related to the laser light used in the irradiation process (e.g. by 

modulating the radiation wavelength). Overall, the development of new strategies or the 

optimization and combination of the existing ones will surely give a major contribution for the 

application of nanomaterials in cancer PTT. 

 

Keywords: cancer treatment; hyperthermia; inorganic nanostructures; light‐responsive 

nanomaterials; photothermal therapy. 
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2.2. Introduction 

Cancer is a highly complex disease and it is responsible for an overwhelming number of deaths 

worldwide [1]. In the clinic, the mainstream therapeutic options for this disease include surgical 

resection of the tumor, radiotherapy, chemotherapy, or their combined application. However, 

in many cases, these treatment regimens are not effective and have associated notorious side 

effects.  

Nowadays, different therapeutic modalities are under clinical evaluation to further improve 

the effectiveness of cancer treatment. In particular, hyperthermia-based treatments that 

involve a localized or an unrestricted increase of body temperature have captured the attention 

of clinicians [2]. However, depending on the area under treatment, the maximum temperature 

and the duration used vary [3]. Hyperthermia at mid-temperatures (41.8-45 °C) is capable of 

exerting a therapeutic effect on malignant cells in hypoxic environments, while eliciting a 

minimum damage on the surrounding healthy tissues (reviewed in detail in [3]). Additionally, it 

can also be used to improve the therapeutic outcome of radio- and chemotherapy [3]. On the 

other hand, hyperthermia at high-temperatures (45-90 °C) can affect both cancer and normal 

cells, inducing cellular changes (e.g. enzymatic and mitochondrial dysfunctions) and ultimately 

necrosis (reviewed in detail in [3, 4]). However, the equipment and techniques currently 

available to perform such types of hyperthermia-based treatments present some limitations 

and need further improvements for attaining a higher selectivity, tissue penetration, and 

effectiveness [5]. To accomplish that, researchers are currently developing new responsive 

nanomaterials that due to their small size (usually < 200 nm), can accumulate preferably in 

tumor and induce on-demand hyperthermia, after being subjected to an external stimulus  

(e.g. magnetic field or light), with a high efficacy and safety [6, 7-10]. Among the different 

nanomaterials explored, until now, to induce hyperthermia, some can mediate this effect by 

absorbing light, generated by a laser, and releasing its energy as heat (nanomaterials’ mediated 

photothermal therapy (PTT)). This feature has been displayed by several types of 

nanostructures produced with gold, carbon, copper, molybdenum, tungsten, iron, palladium or 

conjugated polymers [7, 11-18]. Moreover, different strategies are currently being explored to 

further enhance the photothermal potential of these nanostructures. Compared to  

laser-induced interstitial thermotherapy (a therapeutic modality that only employs laser light 

to thermally ablate tumors), nanomaterials’ mediated PTT is less invasive, demands radiation 

with a lower intensity and its therapeutic outcome is less dependent on the characteristics of 

the irradiated tissue (e.g. water or hemoglobin content) [19]. In addition, PTT mediated by 

nanomaterials can potentially achieve a higher selectivity towards cancer cells through the use 

of precisely engineered nanostructures that are specifically internalized by diseased cells [20-

22]. Still, it should be noted that the clinical translation of these photothermal agents is 

challenging since only recently the clinical safety profile of AuroLase® therapy (PTT using 

AuroShell® - poly(ethylene glycol) (PEG) functionalized gold nanoshells), whose initial  
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pre-clinical studies started in the 1990’s, was published and the clinical efficacy of this therapy 

is yet to be disclosed (ClinicalTrials.gov Identifier: NCT02680535, NCT00848042, NCT01679470) 

[23]. 

In the following sub-sections, the different strategies described in the literature to improve 

nanomaterials’ mediated cancer PTT are highlighted. In section 2.3, an overview of the key 

parameters that dictate the success of PTT is given. In section 2.4, the approaches used to 

enhance nanomaterials tumor accumulation are described. The improvement of nanomaterials’ 

intrinsic capacity to generate photoinduced heat and the optimization of the parameters 

related to the laser light are other types of procedures assessed in sections 2.5 and 2.6, 

respectively. Finally, an outlook about the state of the art of nanomaterials’ mediated PTT will 

be presented (section 2.7). For the sake of simplicity, this chapter will not cover improvements 

based on the inclusion of other therapeutics in the nanomaterials (e.g. chemotherapeutic 

drugs), nor on the utilization of hybrid nanostructures to externally promote tumor 

accumulation (e.g. by applying magnetic fields). 

 

2.3. Cancer photothermal therapy mediated by 

nanomaterials 

Cancer PTT mediated by nanomaterials involves the application of nano-sized structures and 

laser light to irradiate the tumor zone (or metastatic sites) for inducing hyperthermia. 

Generally, this therapeutic approach starts with the intravenous administration of the 

nanomaterials, which can become accumulated within the tumor through the enhanced 

permeability and retention (EPR) effect, by taking advantage of the 3D architecture of blood 

vessels that supply the tumor, which are characterized by having fenestrae of variable sizes 

(ranging from 200 to 1200 nm; Figure 2.1) [24]. Moreover, the impaired lymphatic drainage 

prevents nanomaterials removal, leading to their retention within the tumor microenvironment 

[25]. Simultaneously, the accumulation of nanomaterials in off-target organs or their rapid 

elimination from the body (e.g. by renal filtration or through the reticuloendothelial system 

(RES)) must be avoided.  

Once inside the tumor tissue, nanomaterials must be capable of migrating and also be 

homogeneously internalized by cancer cells [26]. However, such internalization may be 

hampered by tumor’s high interstitial fluid pressure that results from a defective lymphatic 

drainage [27]. 

After nanomaterials successful accumulation within tumor tissue, the PTT is performed by 

irradiating the tumor zone with a laser light (Figure 2.1). The effectiveness of this therapeutic 
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modality is dependent on the capacity of nanomaterials to absorb radiation emitted by the 

laser. A significant or negligible interaction may occur between radiation and biological 

components like proteins, melanin, hemoglobin, collagen and water [28]. All these biological 

components have a low or residual absorption within the 750-1000 nm wavelength range (near 

infrared (NIR)) [28]. Therefore, the use of NIR light in cancer PTT is crucial since this radiation 

displays low off-target interactions and high penetration depth (up to 1-2 cm, that is dependent 

on the type of tissue under irradiation, the wavelength and the power density of the laser light 

used) [29]. The knowledge of the laser light properties is fundamental to maximize  

light-nanomaterials interactions in order to guarantee a selective and effective hyperthermia, 

that produces irreversible damages on cancer cells leading to their death by necrosis (such 

effect is usually attained for temperatures above 50 °C) [4]. Moreover, the laser beam is 

directed to the tumor zone, thus preventing any side effects resulting from nanomaterials that 

were accumulated in off-target organs [8, 30]. Exceptionally, nanomaterials accumulated in 

skin can cause off-target hyperthermia and, consequently, origin an undesired outcome since 

this organ is inevitably irradiated during the PTT [12].  

 

 

Figure 2.1. Representation of the several events that occur during the PTT mediated by nanomaterials. 

First nanomaterials are administered and can accumulate in the tumor through the so-called EPR effect. 

Afterward, the tumor zone is irradiated and nanomaterials induce hyperthermia with high  

spatial-temporal resolution. Finally, the therapeutic effect is monitored and may have as outcome mice’s 

survival due to tumor elimination. 
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To date, different types of nanomaterials (both organic and inorganic) have been studied for 

cancer PTT. Among the inorganic nanomaterials, gold-based nanostructures like gold 

nanocages, nanohexapods, nanorods (GNR), nanoshells and nanostars have been deeply 

investigated for this biomedical application [31, 32, 33, 34]. More recently, researchers also 

began investigating the applicability of gold nanobipyramids for cancer PTT [35]. Furthermore, 

carbon-based nanostructures such as carbon nanotubes (CNT) and nanographene oxide (nGO) 

have also been explored as PTT agents [12, 13]. Currently, other inorganic nanostructures based 

on copper (Cu), molybdenum (Mo), tungsten (W), iron (Fe) and palladium (Pd) are being studied 

for tumor photoablation [7, 14-17]. The Cu-based nanostructures include copper sulfides  

(e.g. Cu2-xS nanodots, Cu7.2S4 nanocrystals or CuS nanoparticles), selenides (e.g. Cu2-xSe 

nanocrystals) and bismuth sulfides (e.g. Cu3BiS3 hollow nanospheres) [10, 36-39]. Regarding Mo 

and W-based nanomaterials, their oxides (e.g. MoO3-x hollow nanospheres, WO3 nanoparticles) 

and disulfides (MoS2 and WS2 nanosheets) have been the most selected for this particular 

biomedical application [9, 15, 26, 40]. Fe-based nanomaterials such iron oxides (e.g. Fe3O4 

nanoparticles), sulfides (FeS nanoplates), diselenides (FeSe2 nanoparticles) and prussian blue 

nanostructures (Fe4[Fe(CN)6]3; PB) have also revealed suitable properties to act as PTT agents 

[17, 41-43]. Regarding Pd-based nanomaterials, researchers have been mainly focused on the 

applicability of Pd nanosheets for PTT [7, 44]. On the other hand, the application of organic 

nanomaterials for cancer PTT is not so developed as for inorganic materials. In literature, 

polyaniline (PANI), polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT) and other 

polymeric materials have been used for cancer PTT [8, 18, 45-47]. 

Overall, several approaches have been followed to further improve the PTT capacity of these 

nanostructures (both organic and inorganic). Researchers used different strategies to  

(i) improve nanomaterials accumulation in tumor, (ii) augment nanomaterials’ intrinsic capacity 

to produce photoinduced heat or (iii) optimize the parameters related to the laser light. A 

detailed description of the in vivo therapeutic outcome attained so far by adopting such 

strategies is summarized in Table S.2.1 (supplementary information). 

 

2.4. Approaches used to improve nanomaterials 

accumulation in tumors 

In order to mediate an effective and selective hyperthermia upon laser irradiation, 

nanomaterials must be accumulated in the tumor tissue and also be internalized by cancer 

cells. The fulfillment of these milestones is affected by nanomaterials’ size, shape, surface 

charge, and corona composition, as well as by the presence of targeting ligands on their surface 

(Figure 2.2). Therefore, the modulation of these features is currently being explored to improve 

nanomaterials’ mediated PTT (summarized in Table 2.1; presented after the conclusion 

section). 
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Figure 2.2. Schematic illustration of the parameters of the nanomaterials that influence their blood 

circulation, accumulation and penetration in the tumor, and internalization by cancer cells. The key 

mediators of each process are indicated below the respective panels through the use of round-shaped 

icons. 

 

2.4.1. Size 

The blood clearance or off-target accumulation in RES organs (liver and spleen) of 

nanomaterials are size dependent. In literature, it is described that nanostructures with a size 

bellow 3-5 nm tend to be rapidly cleared through renal filtration, which constitutes a drawback 

for their accumulation in the tumor tissue [48]. Moreover, nanostructures with a diameter lower 

than 50 nm tend to be off-target accumulated in the liver, whereas those larger than 200 nm 
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are more likely to become accumulated in spleen and in liver [25, 27, 49]. By taking such 

restrictions into account, nanomaterials aimed to be accumulated within the tumor through 

the EPR effect must have an appropriate size in the range between 100 and 200 nm [25]. Still, 

these are general considerations and the optimization of nanomaterials’ size must be 

performed for each type of photothermal agent in order to attain a proper distribution in the 

body and therapeutic performance. In this context, Tang and co-workers observed that by 

reducing the Pd-poly(vinylpyrrolidone) (PVP) nanosheets’ size from 41 to 4.4 nm, their liver 

uptake decreases from ≈ 45 to ≈ 35 % of the total injected dose per gram of tissue (ID g-1) [7]. 

In another study, Akhavan and Ghaderi demonstrated that PEGylated graphene oxide (GO) 

derivatives with a size of ≈ 61 nm were more effective in cancer PTT than their ≈ 2 µm sized 

equivalents, since the smaller nanomaterials have a higher tumor-homing capacity (≈ 8.9 vs.  

≈ 7.3 % ID g-1) and their uptake by liver (≈ 17 vs. ≈ 26 % ID g-1) and spleen (≈ 12 vs.  

≈ 22 % ID g-1) is lower [50]. 

In addition to the influence of nanomaterials’ size in tumor accumulation, this parameter also 

has a direct impact on nanomaterials tumor penetration and cellular internalization [51]. Once 

again, the optimization of the size is decisive for improving nanomaterials therapeutic efficacy. 

In this context, Wang and co-workers substantiated that PEGylated gold-based capsules with a 

size of 207 x 105 nm can penetrate and achieve a wide distribution within the tumor mass, 

while those with a size of 125 x 95 nm are mainly accumulated in the tumor periphery [52]. 

Due to this fact, the 207 x 105 nm sized nanocapsules were able to mediate a stronger 

photothermal effect in vivo. In another work, Wang and co-workers observed that 80 and  

100 nm sized PEGylated MoS2 nanosheets are better internalized by cancer cells than those with 

300 nm, rendering them as the most suitable for being applied in cancer PTT [15]. In a recent 

study, Zhang et al. adjusted the size of GO to improve its uptake by cancer cells and their 

results revealed that the smallest nanosheets (< 50 nm) achieve an higher internalization [53]. 

 

2.4.2. Shape 

The nanomaterial’s shape is another feature that has a huge impact on its blood circulation 

time, tumor uptake, and cellular internalization [54]. Although the shape contribution on these 

bioprocesses tends to be different for each type of nanostructure, the modulation of this 

property can be explored for improving nanomaterials’ mediated PTT. Tang and co-workers 

verified that by coating Pd-PVP nanosheets with silica (transition from a 2D material to a 

nanosphere), their uptake by cancer cells is increased by ≈ 4.7-fold, leading to an enhanced 

photothermal effect [55]. Moreover, Wang et al. reported that PEGylated gold nanohexapods 

display a 1.2- and 3.2-fold higher internalization by cancer cells than PEGylated gold nanocages 

and PEGylated GNR, respectively [31]. In contrast, under in vivo conditions, PEGylated gold 

nanocages displayed a low blood circulation time and a high liver uptake (≈ 62 % ID g-1), which 
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resulted in a low tumor accumulation (≈ 2.6 % ID g-1). On the other hand, PEGylated GNR and 

gold nanohexapods had superior blood circulation times, that led to a greater tumor 

accumulation (GNR: ≈ 8.4 % ID g-1; nanohexapods: ≈ 7.2 % ID g-1). Based on these remarks, the 

application of PEGylated gold nanohexapods in cancer PTT seems to be a promising strategy 

due to their improved tumor accumulation and cellular uptake. 

 

2.4.3. Surface charge 

The surface charge exhibited by nanomaterials is another parameter that has to be taken into 

account when an augmented cellular internalization is aimed. In general, positively charged 

nanostructures tend to be better internalized by normal and cancer cells since these materials 

are able to interact with the negatively charged components of cells’ membrane [56]. In 

particular, cancer cells have on their plasma membrane a higher number of negatively charged 

components (e.g. phosphatidylserine or sialic acid), which further promote the uptake of 

positively charged nanomaterials [57]. In this context, Tang and co-workers functionalized  

Pd-PVP nanosheets with poly(ethyleneimine) (PEI; polycation) and confirmed that this 

modification increases their cellular internalization by ≈ 1.9-fold [55]. Moreover, the 

functionalization of silica coated Pd-PVP nanosheets with amine groups also revealed an 

improved uptake (2.75-fold increase), which is crucial for attaining a heightened photothermal 

effect [55].  

Nevertheless, the surface charge of nanomaterials must be properly tuned since it also 

mediates nanodevices interaction with RES, blood components and elements of the 

extracellular matrix of the tumor. Nanomaterials with a highly charged surface (positively or 

negatively) have a greater uptake by RES cells and liver, which has a direct impact on their 

capacity to reach the tumor tissue [58]. Furthermore, serum proteins can also be adsorbed on 

nanomaterials’ charged surface, which may lead to the opsonization and clearance of these 

materials [59]. Moreover, nanomaterials’ surface charge can impair their tumor penetration 

capacity by favoring interactions with the components of the extracellular matrix of the tumor, 

such as hyaluronic acid (HA; for positively charged nanomaterials) or collagen (for negatively 

charged nanomaterials) [27]. Owing to these facts, the so-called neutral nanomaterials, which 

have a zeta potential (ζ) between -10 and +10 mV, are considered the most appealing for 

cancer-related applications [27].  

As discussed above, positively charged nanomaterials may display a higher internalization by 

cancer cells but an excessive surface charge can also impair nanomaterials accumulation in 

tumors. To circumvent this pitfall, Wang et al. prepared PEGylated gold nanostars whose charge 

changes according to the pH of the extracellular environment [34]. Such feature was achieved 

by controlling the content of amine and carboxyl groups on the surface of the nanostars. In 
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their study, the nanostars with a ratio of four amines to one carboxyl group showed a high 

differential uptake by cancer cells, i.e., these presented a low internalization at pH 7.4 and an 

enhanced internalization at pH 6.4. These results may be explained by the surface charge of 

the nanostars since these are slightly negative at physiological pH (ζ ≈ -14 mV) and become 

neutral (ζ ≈ - 6 mV) at the pH characteristic of the tumor microenvironment. In vivo, these 

carboxyl/amine functionalized nanostars demonstrated a high tumor uptake (≈ 10 % ID g-1), 

which was sufficient to allow tumors elimination under NIR laser irradiation. In stark contrast, 

nanostars functionalized only with carboxyl (ζ ≈ - 27 mV) or amine (ζ ≈ + 13 mV) groups 

presented a tumor accumulation of ≈ 4 and ≈ 2 % ID g-1, respectively. Therefore, the PTT 

mediated by these nanomaterials only caused a reduction of the tumor growth. In particular, 

the majority of the amine functionalized nanostars became accumulated in  

liver (> 120 % ID g-1), thus leading to a lower tumor uptake. 

 

2.4.4. Corona composition 

Nanomaterials’ corona composition is another important factor that influences their biological 

fate. The functionalization of nanomaterials’ surface with PEG is known for improving 

nanodevices hydrophilicity and biocompatibility, features that are fundamental for their 

successful biological application [60]. Moreover, PEG functionalization can increase 

nanomaterials’ blood circulation time and also reduces their opsonization and recognition by 

the RES, thus leading to their improved accumulation in the tumors [12, 44, 61]. Therefore, the 

appropriate PEGylation of the different types of nanomaterials has been pursued in order to 

improve their potential for cancer PTT. Zhou et al. verified that PEGylated CuS nanoparticles 

have a higher blood residence than citrate coated CuS nanoparticles and almost 3-fold higher 

tumor accumulation (7.6 % ID g-1) [37]. Compared to the PEGylated nanoparticles, the citrate 

coated nanomaterials displayed a higher uptake by the liver (≈ 44 vs. ≈ 23 % ID g-1) and spleen 

(≈ 34 vs. ≈ 9 % ID g-1), resulting in a lower tumor uptake (2.6 % ID g-1). Choi et al. encapsulated 

GNR in photocrosslinked chitosan-Pluronic® F-68 conjugates and verified that this modification 

increases nanomaterials tumor accumulation from ≈ 12 to ≈ 117 % ID g-1 [11]. Due to their 

superior tumor-homing capacity, the PTT mediated by these nanodevices resulted in tumor 

eradication while when non-coated GNR were used only a slight decrease in the rate of tumor 

growth was noticed.  

On the other hand, CNT coated with PEGylated poly(maleic anhydride-alt-1-octadecene)  

(C18-PMH-mPEG) showed a blood circulation half-life (t1/2) of ≈ 30.8 h and a tumor accumulation 

of ≈ 30 % ID g-1 [62]. In contrast, the CNT coated with 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-(methoxy PEG) (DSPE-mPEG) had a lower tumor accumulation  

(4 % ID g-1), resulting from their lower blood circulation time (t1/2 ≈ 3.5 h) and higher liver 

uptake (≈ 69 vs. ≈ 28 % ID g-1) [62]. In other studies, C18-PMH-mPEG was also successfully used 
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to coat reduced nGO and Mo oxide nanosheets, conferring these nanomaterials a tumor-homing 

capacity that granted tumors eradication upon laser irradiation [63, 64]. PEGylation of W, Fe, 

Pd and conjugated polymer-based nanostructures also allowed the production of materials with 

a high tumor-homing capacity and that were efficiently applied for cancer PTT [8, 17, 26, 44, 

65].  

However, the PEGylation of nanomaterials to enhance their biologic properties is not always a 

straightforward process since the molecular weight and the density of the PEG immobilized on 

the surface of the nanostructures can affect their biodistribution [12, 66]. In this regard, Liu et 

al. thoroughly investigated the coating of CNT with C18-PMH-mPEG with different PEG lengths 

(2 and 5 kDa) and densities (5 to 100 %) [12]. The results revealed that by increasing the PEG 

length and density, the CNT blood circulation time is extended, which in turn boosts their 

accumulation in the tumor and skin (CNT accumulation in the skin can induce an off-target 

heating and simultaneously decrease the amount of radiation that reaches the tumor during 

PTT). Furthermore, an opposite trend was noticed for CNT accumulation in RES organs. 

Therefore, the CNT coated with C18-PMH-mPEG with a PEG density of 10 % and a molecular 

weight of 5 kDa were considered the most appealing for cancer PTT, since these displayed a 

suitable blood circulation time (t1/2 = 12.8 h), high tumor accumulation (≈ 15 % ID g-1) and scarce 

uptake by skin (≈ 3 % ID g-1). Shi and co-workers noticed that PEGylated Pd nanosheets prepared 

using a thiolated mPEG to Pd-PVP nanosheet mass ratio of 1 to 1 are optimal since the 

incorporation of a higher PEG mass did not significantly improve the blood circulation time of 

the nanosheets (t1/2 ≈ 30 h) [44]. However, the tumor accumulation of these nanosheets was 

further increased from ≈ 8 to ≈ 12 % ID g-1 by increasing the PEG molecular weight from 5 to  

10 kDa, thus allowing tumor eradication upon NIR laser irradiation using a low power density. 

To further improve nanomaterials accumulation in tumors, other coatings are currently being 

investigated. A variety of hydrophilic polymers such as poly(carboxybetaine), poly(glycerol), 

poly(2-ethyl-2-oxazoline), PVP and poly(N-(2-hydroxypropyl) methacrylamide) have been used 

for such purpose [67]. Zhou et al., observed that PVP coated CuS nanodots display a higher 

resistance to protein adsorption than those prepared with mPEG, which is fundamental for their 

efficient tumor accumulation (≈ 3.6 % ID g-1) and low uptake by RES organs (≈ 4.3 % ID g-1 of 

liver; ≈ 1 % ID g-1 of spleen) [14].  

Moreover, coatings produced with red blood cells’ (RBC) and macrophages’ membranes have 

been added to nanomaterials’ surface as an alternative to polymeric-based coatings since these 

coatings exhibit long-blood circulation times [33, 68, 69]. Piao and co-workers reported that 

the incorporation of PVP coated gold nanocages within vesicles derived from RBC ghosts 

amplifies their t1/2 from 1 to 9.5 h [68]. Accordingly, the RBC coating was also responsible for 

enhancing the tumor accumulation of the nanocages from 4.37 to 8.34 % ID g-1 and subsequently, 

an improved PTT was attained. Recently, Xu et al. demonstrated that by coating gold nanoshells 

with macrophages’ membranes, their blood circulation time is extended and tumor 
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accumulation is amended from ≈ 1.6 to ≈ 7.5 % ID g-1 [33]. Additionally, the modification of the 

nanoshells’ surface also reduced their accumulation in liver and spleen, from about 27 and 14 

to 14 and 9 % ID g-1, respectively. In vivo, the PTT mediated by non-coated gold nanoshells only 

produced a reduction of the tumor growth, while when macrophage-based coated 

nanomaterials were used a potent tumor regression was obtained. 

 

2.4.5. Targeting ligands 

Nanomaterials’ surface can be further tailored with targeting moieties in order to raise their 

specificity towards cancer cells. As previously substantiated for CNT, nGO, gold, Cu, W, Fe and 

PANI-based nanomaterials, the outcome of the PTT mediated by these nanostructures can be 

improved by targeting receptors overexpressed on the surface of cancer cells [9, 30, 70-74]. 

Liang et al. verified that by grafting anti-CD44 antibodies on PEGylated gold nanostars, their 

accumulation in tumor is enhanced by more than 2-fold and, simultaneously, their uptake by 

RES organs is reduced [72]. Due to these features, the CD44 targeted nanostars produced a 

greater therapeutic effect upon laser irradiation than their non-targeted equivalents [72]. 

Nanomaterials surface can also be simultaneously functionalized with more than one targeting 

ligand to further increase the therapeutic outcome achieved with the PTT [75, 76]. Jang et al. 

demonstrated that the dual functionalization of nGO with Pluronic® F-127-Folic acid (FA) and  

Pluronic® F-127-(arginine-glycine-aspartic acid) (RGD) conjugates (25 % density for each ligand) 

heightens the tumor accumulation of this nanomaterial, leading to tumor eradication upon NIR 

laser irradiation [76]. In contrast, nGO functionalized only with RGD (density of 25 %) or  

FA (density of 25%)-based conjugates promoted a similar reduction of the tumor growth, 

however this effect was smaller than that reached by the dual-functionalized nGO.  

The targeting of the endothelial cells present in tumor vasculature has also been explored for 

ameliorating the accumulation of nanomaterials in the tumor zone [77]. Neves et al. 

functionalized CNT with DSPE-PEG-Annexin V to target the phosphatidylserine residues 

available on the membranes of tumor cells and endothelial cells found in the tumor vasculature 

[70]. Such approach allowed CNT to be almost 7-times more accumulated in tumor  

(≈ 5 % ID g-1) [70]. Additionally, the targeting of angiogenic biomarkers present on tumor 

vasculature has also been exploited to grant nanomaterials accumulation in metastases. To 

accomplish that, Yang and co-workers functionalized PEGylated nGO with an anti-follicle 

stimulating hormone receptor (FSHR) antibody and noticed that this functionalization is able to 

rise the accumulation of nanomaterials in breast cancer lung metastasis from about 5 to  

19.7 % ID g-1 [78]. 

Yet, the functionalization of nanomaterials is still regarded as a complex and a delicate process. 

In some cases, the complete functionalization of nanomaterials’ surface does not guarantees 
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an improvement of nanomaterials accumulation in tumors [71, 79]. In fact, targeted 

nanomaterials demand an appropriate ligand density for accomplishing such purpose.  

Lee et al. verified that nGO coated with Pluronic® F-127-FA conjugates with FA densities of 50 

and 100 % display a similar tumor-homing capacity [71]. In contrast, nanomaterials 

functionalized with lower FA densities (10 and 25 %) exhibited a tumor accumulation 

comparable to that of non-FA functionalized nGO, and, therefore, mediated a weaker 

photothermal effect. Furthermore, the selectivity of targeted nanostructures can also be 

hampered by the formation of a protein corona on their surface [80]. To circumvent this 

possibility some nanomaterials are engineered to only expose their targeting moieties upon 

reaching the tumor microenvironment [81]. Alternatively, the immobilization of targeting 

ligands in PEG segments with higher lengths while leaving shorter PEG segments  

non-functionalized can attenuate the loss of selectivity mediated by the adsorption of serum 

proteins on the surface of nanomaterials [82]. In addition, the length of the spacer-arm to 

which the targeting ligand binds is also a decisive parameter for governing the biodistribution 

of these nanomaterials. To address this issue, Liu and co-workers coated CNT with  

DSPE-PEG-RGD conjugates containing different PEG lengths (2000 or 5400 Da). Their results 

revealed that CNT coated with DSPE-PEG5400-RGD show a superior tumor accumulation  

(≈ 13 % ID g-1) and lower uptake by liver (≈ 20 % ID g-1) than the DSPE-PEG2000-RGD coated CNT 

(≈ 5 % ID g-1 of tumor; ≈ 30 % ID g-1 of liver) [83]. Interestingly, CNT coated with  

DSPE-PEG2000-RGD had only a slightly higher tumor accumulation than those coated with  

DSPE-PEG5400 (≈ 4 % ID g-1). Such may be attributed to the higher resistance to protein adsorption 

displayed by the CNT coated with DSPE-PEG5400. This fact may also be the reason for the higher 

blood circulation time (t1/2 ≈ 2 h) and lower liver accumulation displayed by CNT functionalized 

with DSPE-PEG5400 derivatives, thus emphasizing the importance of the PEG length on the 

biodistribution of targeted nanomaterials. 

 

2.5. Strategies used to augment nanomaterials’ 

capacity to produce photoinduced heat 

The application of nanomaterials with a high NIR absorption and good photothermal conversion 

efficiency for cancer PTT is highly desirable since these can produce a larger temperature 

variation upon NIR irradiation (Figure 2.3). Therefore, researchers are currently using a variety 

of strategies to obtain nanomaterials with these desired properties (see Table 2.2 for further 

details; presented after the conclusion section). 
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Figure 2.3. Schematic representation of the key parameters that influence nanomaterials’ capacity to 

generate heat upon interaction with NIR light. 

 

2.5.1. Production of new nanomaterials 

Nanomaterials’ capacity to produce heat under NIR laser irradiation has been enhanced through 

the synthesis of new materials with a higher photothermal conversion efficiency and NIR 

absorption [9, 40, 43, 84]. Copper sulfide nanostructures have been produced with different Cu 

to S stoichiometric ratios in order to obtain more efficient photothermal agents. In recent 

studies, nanocrystals based on Cu9S5 showed a photothermal conversion efficiency of ≈ 26 %, 

while those composed of Cu7.2S4 had a photothermal conversion efficiency ≈ 57 % (at 980 nm) 

[10, 85].  

Regarding Pd and gold-based nanostructures, their photothermal capacity is influenced by their 

shape and this parameter has been optimized during nanostructures synthesis to obtain agents 

with an improved PTT capacity [31, 86]. Xiao et al. prepared porous Pd nanoparticles that have 

a higher NIR absorption than that displayed by Pd nanocubes, non-porous Pd nanoparticles, and 

Pd polyhedrons [86]. Such feature makes their application in cancer PTT more advantageous 

[86]. In addition, the photothermal conversion efficiency of gold nanomatryoshkas, nanocages, 

bellflowers, nanobipyramids and nanorods can be superior to 60 %, which makes them one of 

the most promising gold-based photothermal agents (Table 2.2) [87-91]. 
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Moreover, nanomaterials based on Mo, W, Fe, and conjugated polymers with an upgraded 

photothermal capacity have also been produced for application in cancer PTT [42, 92-95]. Yang 

et al. prepared PEGylated FeS nanoplates with a ≈ 17 times higher NIR absorption than that 

displayed by Fe3O4 nanoparticles [42]. Consequently, the FeS nanoplates were able to mediate 

the production of a photoinduced heat to about 70 °C while, in the same conditions, the Fe3O4 

nanoparticles only increased the temperature to ≈ 45 °C. In another work, Kim and co-workers 

synthesized poly(3,4-propylenedioxyselenophene) (PProDOS) nanoparticles that had a slightly 

superior NIR absorption than PEDOT nanoparticles and, consequently, produced a higher 

photoinduced heat (ΔT ≈ 10 °C vs. ΔT = 6 °C) [95]. 

Another strategy used to improve nanomaterials’ mediated PTT comprises the synthesis of 

materials that are responsive to the pH or oxygen gradient of the tumor microenvironment. 

PANI-based nanoparticles in acidic media (≈ pH 3), in contact with hydroxyl radicals or in the 

presence of bio-dopants, change from the emeraldine base (EB) to the emeraldine salt (ES) 

form, that displays an augmented NIR absorption [18, 96]. Recently, Ju and co-workers 

polymerized a PANI shell at the surface of gold nanoparticles, enabling a heightened NIR 

absorption at the range of pH values found in tumor microenvironment [97]. In particular,  

PANI-based nanoparticles with a 16 nm gold core displayed the lowest NIR absorption at pH 7.4 

while at pH 6.5 these had a high absorption. This difference led to a temperature increase 

under NIR laser irradiation to ≈ 40 °C and ≈ 53 °C, at pH 7.4 and 6.5, respectively. A similar 

responsiveness to the tumor microenvironment was also demonstrated for Mo oxide nanosheets 

and WO3-x nanodots [64, 98]. 

The production of hybrid nanostructures composed by different types of photothermal agents 

has also been pursued to obtain materials with an improved photothermal capacity. These 

structures are usually obtained by combining photothermal agents with gold, PPy or 

polydopamine due to the ability of the latter be grown or polymerized on the surface of 

nanomaterials [99-104]. In this regard, Li et al. verified that by coating PEI-gold nanostars with 

polydopamine, their photothermal conversion efficiency is improved from 36.1 to 49.9 % (at 

808 nm) [104]. In other works, PEGylated gold-silver star- and urchin-shaped hybrid 

nanostructures demonstrated a photothermal conversion efficiency of 79.01 and 80.4 %  

(at 808 nm), respectively, which are one of the highest efficiencies reported so far (see Table 

2.2 for further details) [99, 100]. 

 

2.5.2. Optimization of nanomaterials’ size 

Upon irradiation, nanomaterials can scatter and absorb light, being this latter phenomenon 

responsible for the heat generation [105]. Smaller nanomaterials scatter less light and can 

display a faster heat transfer to the surrounding environment due to their large surface 
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area/volume ratio [106, 107]. In this way, nanomaterials with an improved photothermal 

capacity can be obtained by selecting nanostructures based on their size [7, 15, 107, 108]. 

Wang et al. verified that despite 100 nm sized MoS2 nanosheets exhibiting a higher NIR 

absorption than their 80 nm equivalents, the latter are capable of producing a greater 

temperature variation under laser irradiation due to their improved photothermal efficiency 

(ΔT ≈ 4.5 °C vs. ΔT ≈ 6 °C) [15]. Tang et al. prepared 41 and 4.4 nm sized Pd-PVP nanosheets 

and verified that the smallest nanomaterials show the highest photothermal conversion 

efficiency (52 vs. 27.6 % at 808 nm) [7]. Accordingly, the 4.4 nm nanosheets were able to raise 

the temperature to ≈ 50 °C under NIR laser irradiation, while the 41 nm nanomaterials only 

elevated it to ≈ 37.5 °C. 

On the other hand, the absorption spectrum of some nanomaterials can be fine-tuned towards 

the NIR region by increasing nanomaterials’ size. Peng et al. observed that by augmenting the 

size of citrate and PEG functionalized Fe3O4 nanoparticles from 120 to 380 nm, a red-shift in 

their absorption spectrum is attained [109]. Due to this phenomenon, the 380 nm sized Fe3O4 

nanoparticles exhibited an improved NIR absorption and mediated the highest temperature 

increase under NIR laser irradiation when compared to their equivalents with smaller 

dimensions (120, 240 and 300 nm). Ye et al. verified that by increasing the length of gold 

nanotubes from 300 to 530 nm, a shift in their absorption towards the NIR region is also observed 

[110]. In this case, the gold nanotubes with a length of approximately 370 nm were considered 

optimal systems since these showed the highest absorption at 800 nm. 

 

2.5.3. Chemical treatment of nanomaterials 

The reduction of nGO is the most employed strategy to enhance its NIR absorption by restoring 

the aromatic lattice of this nanomaterial [50, 63]. Yang et al. demonstrated that the reduction 

of GO derivatives with hydrazine hydrate produces reduced GO (rGO)-based nanomaterials that 

have a 3-4 times higher NIR absorption than nGO, leading to the production of a higher 

photoinduced heat (≈ 58 °C vs. ≈ 44 °C) [63]. Akhavan and Ghaderi reported that the 

photodegradation and subsequent reduction of nGO yields reduced graphene oxide nanomesh 

(rGONM) with a NIR absorption ≈ 4.2 times higher than that of reduced nGO [50]. In this way, 

the rGONM induced, under NIR laser irradiation, an increase in temperature up to ≈ 57 °C, while 

in the same conditions the reduced nGO only elevated the temperature to ≈ 42 °C.  

The photothermal capacity of PB nanostructures has been improved by doping these materials 

with Mn2+and Gd3+ [111, 112]. PEGylated PB nanocubes doped with 15% Mn2+ displayed an almost 

2-fold increased NIR absorption that lead to an improved temperature variation (ΔT ≈ 10 °C), 

upon material irradiation [111].  
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2.5.4. Assembling of nanostructures 

In some cases, the assembly of nanostructures into clusters or vesicles can be used to provoke 

a red-shift in their absorption profile towards the NIR region and, consequently, enhance their 

photothermal capacity [41, 113, 114]. Shen et al. prepared clusters of Fe3O4 nanoparticles that 

display a ≈ 3.6-fold higher NIR absorption than the individual Fe3O4 nanoparticles [41]. The 

clustered Fe3O4 nanoparticles elicited the highest hyperthermia (≈ 56 °C vs. ≈ 50 °C) and the 

most potent antitumoral effect upon NIR laser irradiation due to their superior NIR absorption. 

In another work, Huang et al. synthesized PEG-poly(caprolactone) functionalized gold 

nanoparticles, which did not display any NIR absorption, and assembled them into gold-based 

nanovesicles [113]. The assembled nanovesicles presented a high NIR absorption and a 

photothermal conversion efficiency of 37 %, which was higher than that of GNR (22 % at  

808 nm). Owing to their superior photothermal efficiency, the assembled nanovesicles 

increased the temperature of the tumors by ≈ 18 °C and mediated their eradication under NIR 

laser irradiation. In the same conditions, the GNR were only able to induce a hyperthermia of  

≈ 10 °C and a reduction of the tumor growth, thus revealing the advantage of the assembly of 

nanovesicles for the desired biomedical application. 

 

2.5.5. Sorting of nanomaterials 

The commonly available methods to produce CNT (e.g. high-pressure carbon monoxide 

conversion) yield a mixture of nanostructures with different chiralities, some of which have a 

low NIR absorption. For this reason, sorting CNT with defined chirality is a successful strategy 

for improving the photothermal performance of these materials [115, 116]. Antaris and  

co-workers demonstrated that PEGylated chirality sorted (6,5) CNT have a higher NIR absorption 

than non-sorted CNT [116]. Consequently, the sorted CNT were able to mediate under NIR laser 

irradiation a hyperthermia to ≈ 51 °C and tumor eradication for 3 in 4 mice. For mice treated 

with non-sorted CNT, tumor growth inhibition was not observed since these nanomaterials only 

induced a hyperthermia to ≈ 44 °C due to their inferior optical properties.  

 

2.6. Optimization of the parameters related to the 

laser light for improving the PTT mediated by 

nanomaterials 

The wavelength, power density and onset of the irradiation are important players in 

nanomaterials’ mediated PTT since their correct modulation is crucial for avoiding off-target 

heating of healthy tissues and also to ensure that an appropriate hyperthermia is achieved 
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during the therapeutic procedure [93, 117]. Therefore, various strategies have been applied to 

improve the outcome of this therapeutic modality by performing the adjustment of these laser 

light related parameters (Figure 2.4). The exposition of multiple sites to NIR light and 

application of multiple irradiation sessions are other strategies that have been explored to 

improve nanomaterials’ mediated PTT (summarized in Table 2.3; presented after the 

conclusion section). 

 

Figure 2.4. Schematic representation of the parameters related to the laser light that influence the PTT 

mediated by nanomaterials. In the wavelength panel, the bars represent the absorption of different  

bio-components and the color intensity is proportional to their absorption at that specific wavelength. 

The data from the wavelength panel were extrapolated from Vogel et al.[28]. 

 

2.6.1. Wavelength 

As discussed in section 2.3, the application of NIR light is crucial in cancer PTT. However, the 

absorption displayed by water at wavelengths above 900 nm demands additional precautions 

when tissues are exposed to radiation with a wavelength superior to 900 nm in order to avoid 

off-target heating [28, 118, 119]. 
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In this way, the selection of the appropriate wavelength of the NIR radiation can be pursued to 

improve nanomaterials’ mediated PTT. Xu et al. verified that despite PEGylated CsxWO3 

nanorods having a higher absorbance at 980 nm than at 915 nm, nanostructures irradiation at 

915 nm is advantageous over their irradiation at a higher wavelength, since a higher penetration 

and lower off-target heating are reached [119]. Tian and co-workers observed that although 

PVP coated Rb0.27WO3 nanorods display a higher absorption at 980 nm than at 808 nm, the 

irradiation of the nanorods with the lower wavelength light can produce a higher temperature 

variation, since the 980 nm light has a lower depth penetration [120].  

 

2.6.2. Power density 

The power density (total energy per second delivered into a specific area) of the NIR irradiation 

can be adjusted to improve the outcome of the PTT. Yang et al. assessed in vivo the PTT 

capacity of poly(vinyl alcohol) (PVA) coated PPy nanoparticles using different power densities 

[117]. When nanoparticles were irradiated at a power density of 0.1 W cm-2, these mediated a 

hyperthermia to ≈ 42 °C that led to tumor growth reduction. In contrast, when a power density 

of 0.25 and 0.5 W cm-2 was used, a hyperthermia to about 55 and 60 °C was attained, leading 

to the elimination of mice’s tumors. Guo et al. verified that (NH4)xWO3 nanocubes mediate an 

increment of ≈ 45 °C in tumor’s temperature when these are irradiated at a power density of 

1 W cm-2 [93]. This hyperthermic effect was responsible for a reduction in the volume of the 

tumors and also for the inhibition of lung metastases. On the other hand, when PTT was 

performed at a power density of 0.5 W cm-2, a weaker therapeutic effect was obtained, which 

is consistent with the lower hyperthermia attained (ΔT ≈ 33 °C). 

 

2.6.3. Irradiation onset 

The therapeutic effect achieved through nanomaterials’ mediated PTT depends on the ON/OFF 

cycles of the radiation [9, 10]. Thereby, the hyperthermia and the therapeutic outcome can be 

maximized by synchronizing the onset of the laser irradiation with the maximum accumulation 

of the nanomaterials within the tumor. This strategy was explored by Sharker et al., which 

verified that WO3 nanoparticles functionalized with HA display a high tumor accumulation at  

8 h post-injection (p.i.) [9]. Accordingly, these researchers noticed that the highest 

hyperthermia (50 °C) is obtained when the onset of the NIR laser irradiation starts on this time 

point (at 8 h p.i.). In another work, Zhou et al. verified that PVP coated CuS nanodots hit their 

maximum tumor accumulation (≈ 3.6 % ID g-1) at 2 h p.i. and PTT performed at this time point 

leads to tumor eradication by using only two minutes of NIR laser irradiation [14]. 
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2.6.4. Irradiated site 

The therapeutic effect mediated by nanomaterials can also be improved by exposing 

simultaneously the tumor zone and metastatic sites to NIR light. This strategy was explored by 

Liang et al., who verified that intratumorally injected PEGylated CNT remain in the tumor 

tissue and also become accumulated in the tumor-adjacent lymph node [121]. These zones 

were then exposed to NIR light and nanomaterials increased the temperature of the tumor and 

the lymph node to about 55 and 47 °C, respectively. Such effect was responsible for tumor 

eradication in 6 out of 7 mice [121]. In stark contrast, mice irradiated only in the tumor had a 

poor survival rate, since multiple metastases were observed in the lungs. Furthermore, it should 

also be highlighted that to compensate for the lower accumulation of the CNT in the lymph 

node (and also due to its deeper localization), this site was irradiated at a higher power density 

(0.8 W cm-2 for lymph node vs. 0.5 W cm-2 for tumor). Thus, the optimization of the irradiation 

site and the power density are fundamental to achieve an appropriate hyperthermia at the 

target sites in order for an improved photothermal effect be attained.  

 

2.6.5. Number of irradiation sessions 

The application of multiple irradiation sessions is another approach that has been used for 

achieving better photothermal effects. Choi and co-workers observed that chitosan-Pluronic®  

F-68 conjugates encapsulating GNR are able to mediate tumor eradication with two laser 

irradiation sessions (at 24 and 48 h p.i.) while the application of one irradiation session  

(at 24 h p.i.) only resulted in a reduction of the tumor growth [11]. In another work, Zhou and 

co-workers noticed that PEGylated WO2.9 nanorods could mediate the elimination of mice’s 

tumors by using a low power density (0.35 W cm-2) through the application of multiple 

irradiation sessions (every two days during 14 days) [16]. Recently, Zhang et al. performed 

multiple irradiation sessions after administration of DSPE-PEG coated CNT (at 10 min and on 

day 3, 6 and 9 p.i.), and they verified that the application of NIR radiation at 10 min p.i. 

improves nanomaterials’ tumor accumulation by about 2.6-fold, presumably due to an 

enhanced tumor vasculature perfusion and permeability that is promoted by the hyperthermia 

attained (hyperthermia enhanced EPR effect) [122]. In the same study, authors also explored 

DSPE-PEG-(Cys-Arg-Glu-Lys-Ala) (CREKA) functionalized CNT, which bind to fibrin, and they 

perceived that after administration of the targeted CNT and application of the first irradiation 

session (at 10 min p.i.), the hyperthermia produced greatly increases the amount of fibrin 

deposited in the tumor zone and such is responsible for a ≈ 3.8-fold increase in the tumor 

accumulation of the functionalized CNT. 
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2.7. Conclusion and outlook 

In this chapter, the recent strategies, reported in the literature, used for improving the 

therapeutic outcome of the PTT mediated by gold, carbon, copper, molybdenum, tungsten, 

iron, palladium and conjugated polymers based nanomaterials were covered. 

The application of PEG-based coatings and the inclusion of targeting ligands on nanomaterials’ 

surface improved their tumor-homing capacity and hence their PTT capacity. Such data 

emphasizes the importance of pursuing the appropriate surface composition for each type of 

photothermal agent through the optimization of the PEG corona composition, targeting ligand 

density and spacer-arm length, or through the application of alternative coatings, such as those 

based on PVP or RCB/macrophages’ membranes. Moreover, reports describing the application 

of targeted Mo, Pd, PPy and PEDOT based nanomaterials in cancer PTT were not found, which 

should motivate the development of functionalization strategies for these types of 

nanostructures. Nanomaterials’ size, shape, and charge were not systematically optimized for 

each type of photothermal agent. In the particular case of the size and shape, such could be 

attributed to the fact that variations in these characteristics have a direct impact on 

nanomaterials’ photothermal efficiency. Regarding nanomaterials’ charge, the utilization of 

zwitterionic-based approaches should be further explored since it holds a great potential for 

improving the biodistribution of the nanostructures.  

So far, several strategies have also been applied to augment the capacity of nanomaterials to 

generate heat under NIR laser irradiation and thus enhance their PTT potential. To accomplish 

that, new nanomaterials have been produced, being this the most straightforward strategy. 

Other approaches are currently under investigation, comprising the optimization of 

nanostructures’ size, chemical treatment, sorting and assembling of nanostructures. However, 

in some of the reports describing these strategies, the photothermal efficacy of the 

nanostructures was only assessed in vitro or in vivo after intratumoral injection, which should 

motivate researchers to evaluate nanomaterials’ photoablation capacity after systemic 

administration (e.g. intravenous administration) in future works. Moreover, some of these 

nanomaterials were not engineered to present colloidal stability, tumor-homing capacity or 

resistance to protein adsorption and thus, the improvement of these attributes will surely 

augment their PTT potential. 

The optimization of the parameters related to the laser light can also improve the outcome of 

nanomaterials’ mediated PTT. The strategies applied, until now, have been focused on the 

adjustment of the wavelength, power density, irradiated sites, number of irradiation sessions 

and on the optimization of the irradiation onset. However, these strategies were not frequently 

explored in the literature and were mostly applied for W-based nanostructures and to a lesser 

extent to others such as CNT or gold-based nanomaterials. Moreover, this type of laser-sided 
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optimizations does not imply modifications in the attributes of the nanomaterials and, for this 

reason, its implementation should be simple and further explored in cancer PTT. 

Finally, excluding the influence of the differences between the tumor models (e.g. type and 

size of tumor) of the reports herein analyzed (Table S.2.1), it seems that for the bulk part of 

the cases and independently of the type of strategy applied to improve the PTT mediated by 

nanomaterials, achieving a hyperthermia to 57 °C ensures the photoablation of the tumors. 

Hence, the development of new strategies that endow nanomaterials with this capability or the 

optimization and combination of the existing ones will surely give a major contribution for their 

application in cancer PTT. 
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Table 2.1. Strategies used to improve nanomaterials’ accumulation in the tumor. 

Nanomaterial Optimization Result Ref. 

PEGylated rod-like gold nanoshell 

capsules 

Size PEGylated gold-based capsules with a size of 385 x 155 nm become less accumulated in the tumor zone when 

compared to their 125 x 95 nm and 207 x 105 nm sized equivalents; 

PEGylated gold-based capsules with a size of 207 x 105 nm can penetrate and achieve a wide distribution in 

the tumor mass, while those with a size of 125 x 95 nm become accumulated mostly in tumor periphery. 

[52] 

GO Size Small GO sheets (< 50 nm) achieve the highest internalization by cancer cells. [53] 

PEGylated MoS2 nanosheets Size PEGylated MoS2 nanosheets with a size of 80 and 100 nm are better internalized by cancer cells than those 

with 300 nm. 

[15] 

Pd-PVP nanosheets Size Pd-PVP nanosheets with a size of 4.4 nm have a lower uptake by the liver (≈ 35 % ID g-1) than their 41 nm 

sized equivalents (≈ 45 % ID g-1). 

[7] 

PEGylated GO Size PEGylated GO derivatives with a size of 27 nm have a lower uptake by the liver (≈ 11 % ID g-1) and spleen  

(≈ 7 % ID g-1) than their 65 nm sized equivalents (≈ 25 % ID g-1 of liver; ≈ 25 % ID g-1 of spleen). 

[63] 

PEGylated GO Size PEGylated GO derivatives with a size of ≈ 61 nm have a higher tumor-homing capacity (≈ 8.9 % ID g-1) and 

lower uptake by the liver (≈ 17 % ID g-1) and spleen (≈ 12 % ID g-1) than ≈ 2 µm sized PEGylated nanomaterials 

(≈ 7.3 % ID g-1 of tumor; ≈ 26 % ID g-1 of liver; ≈ 22 % ID g-1 of spleen). 

[50] 

PEGylated gold nanocages, 

nanohexapods and nanorods 

Shape PEGylated gold nanohexapods display 1.2- and 3.2-fold higher internalization by cancer cells than PEGylated 

gold nanocages and nanorods, respectively; 

PEGylated GNR (≈ 8.4 % ID g-1) and nanohexapods (≈ 7.2 % ID g-1) have a higher tumor-homing capacity than 

nanocages (≈ 2.6 % ID g-1). 

[31] 

Silica coated Pd-PVP nanosheets Shape Coating of Pd-PVP nanosheets with silica results in a ≈ 4.7-fold increase in their uptake by cancer cells. [55] 

Pd-PVP nanosheets immobilized in 

silica nanoparticles 

Shape Electrostatic immobilization of Pd-PVP nanosheets in amine-terminated silica nanoparticles improves their 

cellular uptake by ≈ 11-fold. 

[123] 

PEI coated Pd-PVP nanosheets Charge Modification of Pd-PVP nanosheets with PEI increases their cellular internalization by ≈ 1.9-fold. [55] 
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Amine-terminated silica coated  

Pd-PVP nanosheets 

Charge Functionalization of silica coated Pd-PVP nanosheets with amine groups improves their cellular uptake by 

2.75-fold. 

[55] 

Amine/carboxyl-terminated 

PEGylated gold nanostars 

Charge Amine/carboxyl-terminated nanostars have a low and enhanced internalization by cancer cells at pH 7.4 

and 6.4, respectively; 

Amine/carboxyl-terminated nanostars display a higher tumor accumulation (≈ 10 % ID g-1) than nanostars 

terminated with only carboxyl (≈ 4 % ID g-1) or amine groups (≈ 2 % ID g-1); 

Amine-terminated nanostars have a high liver uptake (> 120 % ID g-1). 

[34] 

Chitosan-Pluronic® F-68 conjugates 

encapsulating GNR 

Corona Chitosan-Pluronic® F-68 conjugates encapsulating GNR have a superior tumor accumulation when compared 

to non-modified GNR (≈ 117 vs. ≈ 12 % ID g-1). 

[11] 

RBC membrane coated PVP-gold 

nanocages  

Corona Incorporation of PVP-gold nanocages within vesicles derived from RBC membranes improves their t1/2 from 

1 to 9.5 h; 

RBC coating also improves the tumor accumulation of nanomaterials from 4.37 to 8.34 % ID g-1. 

[68] 

Macrophage cell membrane coated 

gold nanoshells 

Corona Coating of Au nanoshells with macrophage cell membrane extends their blood circulation time and improves 

their tumor accumulation from ≈ 1.6 to ≈ 7.5 % ID g-1; 

The coating also reduces the liver and spleen accumulations from about 27 and 14 to about 14 and  

9 % ID g-1, respectively. 

[33] 

C18-PMH-mPEG and DSPE-mPEG 

coated CNT 

Corona C18-PMH-mPEG coated CNT have a higher blood circulation time (t1/2 ≈ 30.8 h) and tumor accumulation  

(≈ 30 % ID g-1) than DSPE-mPEG coated CNT (t1/2 ≈ 3.5 h; 4 % ID g-1); 

C18-PMH-mPEG coated CNT have a lower liver uptake than DSPE-mPEG coated CNT (≈ 28 vs. ≈ 69 % ID g-1). 

[62] 

C18-PMH-mPEG coated CNT Corona Increasing the PEG length and density of C18-PMH-mPEG coated CNT enhances their blood circulation time, 

augments tumor and skin accumulations, and reduces uptake by RES organs; 

CNT coated with C18-PMH-mPEG with a PEG density and molecular weight of 10 % and 5 kDa are considered 

optimal due to their good circulation time (t1/2 = 12.8 h), high tumor accumulation (≈ 15 % ID g-1) and low 

uptake by skin (≈ 3 % ID g-1). 

[12] 
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DSPE-PEG coated CNT Corona DSPE-PEG5400 coated CNT have a higher resistance to protein adsorption than those coated with  

DSPE-PEG2000. 

 

[83] 

PEGylated rGO and reduced nGO Corona The blood circulation time of C18-PMH-mPEG coated rGO (t’1/2
a) ≈ 17.5) and C18-PMH-mPEG coated reduced 

nGO (t’1/2 ≈ 16.7 h) is superior to that of PEGylated (6-arm branched) nGO (t’1/2 ≈ 5.8 h); 

The tumor accumulation of C18-PMH-mPEG coated nanomaterials (≈ 5-6 % ID g-1) is 7-8 times higher than that 

of PEGylated nGO. 

[63] 

Double PEGylated reduced nGO Corona Conjugation of amine-terminated C18-PMH-PEG5000 coated reduced nGO with a PEG5000 derivative (double 

PEGylation) improves its blood circulation time from t’1/2 = 18.8 h (t1/2 = 0.19 h) to t’1/2 = 27.7 h  

(t1/2 = 0.35 h); 

The tumor accumulation is also augmented from 8.8 to 15.5 % ID g-1. 

[124] 

Citrate and mPEG coated CuS 

nanoparticles 

Corona mPEG coated CuS nanoparticles have a higher blood residence and almost 3-fold greater tumor accumulation 

(7.6 % ID g-1) than citrate-CuS nanoparticles; 

mPEG coated CuS nanoparticles have a lower uptake by the liver (≈ 23 % ID g-1) and spleen (≈ 9 % ID g-1) than 

citrate coated nanomaterials (≈ 44 % ID g-1 of liver; ≈ 34 % ID g-1 of spleen). 

[37] 

Citrate, mPEG, and PVP coated CuS 

nanodots 

Corona PVP coated CuS nanodots display the highest resistance to protein adsorption, followed by mPEG coated 

nanodots and then by citrate coated nanodots. 

[14] 

PEGylated Cu2-xSe nanoparticles Corona PEGylated Cu2-xSe nanoparticles display a blood circulation time of t’1/2 = 8.14 h (t1/2 = 0.73 h) and a tumor 

accumulation of 4.4 % ID g-1; 

Nanoparticles also have a low uptake by the liver (≈ 9 % ID g-1) and spleen (≈ 8 % ID g-1). 

[84] 

PTMP-PMAAb) coated WO3-x nanodots Corona PTMP-PMAA coated WO3-x nanodots have a tumor accumulation of ≈ 5 % ID g-1 and low uptake by the liver  

(≈ 15 % ID g-1) and spleen (≈ 13 % ID g-1). 

[98] 

PEGylated WS2 nanosheets Corona PEGylated WS2 nanosheets possess a high tumor-homing capacity (13 % ID g-1) that allows tumor eradication 

using irradiation at a relatively low power density. 

[26] 
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C18-PMH-PEG coated WS2 nanoflakes Corona C18-PMH-PEG coated WS2 nanoflakes possess a high tumor-homing capacity (≈ 10 % ID g-1). The liver and 

spleen accumulations are ≈ 34 and ≈ 19 % ID g-1, respectively. 

[125] 

PEGylated PB hollow nanocubes Corona Coating of hollow PB nanocubes with PEG improves their t1/2 from 5.6 to 8.7 h. 

 

[73] 

RBC-derived membrane coated 

Fe3O4 nanoclusters 

Corona RBC coated Fe3O4 nanoclusters have about 2.3-fold lower uptake by macrophages than their non-coated 

equivalents; 

RBC coated Fe3O4 nanoclusters have a higher blood retention than their non-coated equivalents and achieve 

a superior tumor accumulation (≈ 4.9 vs. ≈ 1.3 % ID g-1) and lower uptake by the liver (≈ 18 vs.  

≈ 32 % ID g-1). 

[69] 

GSHc) modified Pd-PVP nanosheets Corona Functionalization of Pd-PVP nanosheets with GSH increases their blood circulation (t1/2 = 1.25 h) and tumor 

accumulation to ≈ 4.5 % ID g-1; 

GSH functionalization reduces the uptake of the nanosheets by the liver (from ≈ 35 to ≈ 8 % ID g-1) and spleen 

(from ≈ 12 to ≈ 2 % ID g-1). 

[7] 

PEGylated Pd-PVP nanosheets Corona PEGylated Pd-PVP nanosheets have a high blood circulation time (t1/2 ≈ 30 h), good tumor accumulation  

(≈ 8 % ID g-1) and low accumulation in RES organs (≈ 11 % ID g-1 of liver; ≈ 15 % ID g-1 of spleen); 

PEGylation using a mPEG-SH:Pd-PVP mass ratio of 1:1 is optimal for the nanosheets; 

Increasing the PEG molecular weight from 5 to 10 kDa improves the tumor accumulation of the nanosheets 

from ≈ 8 to ≈ 12 % ID g-1. 

[44] 

PVP-PPy based nanoparticles Corona PVP-PPy based nanoparticles have a low blood circulation time (t1/2 ≈ 12 min) and high uptake by the liver 

(≈ 49 % ID g-1) but achieve a tumor accumulation of ≈ 4 % ID g-1. 

[45] 

PEGylated PPy-based nanoparticles Corona Nanoparticles prepared with a Py:Py-COOHd) molar feed ratio of 7:3 are considered as optimal since these 

display a good compromise between NIR absorption and carboxyl groups for PEG conjugation (inclusion of 

Py-COOH decreases NIR absorption); 

PEGylated nanoparticles have a good blood circulation time (t1/2 ≈ 12.5 h), achieve high tumor accumulation 

(≈ 18 % ID g-1) and demonstrate high uptake by the liver (≈ 45 % ID g-1) and spleen (≈ 40 % ID g-1). 

[65] 
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PEGylated PEDOT:PSSe) 

nanoparticles 

Corona PEGylated PEDOT:PSS nanoparticles possess a high tumor-homing capacity (≈ 28 % ID g-1). The liver and 

spleen accumulations are ≈ 32 and ≈ 17 % ID g-1, respectively. 

[8] 

PEGylated gold-Pd nanoplates Corona PEGylated gold-Pd nanoplates display a blood circulation time of t1/2 = 8 h and a tumor accumulation of  

≈ 79 % ID g-1; 

Nanoplates have a low uptake by the liver (≈ 17 % ID g-1) but display a high accumulation in the spleen  

(≈ 33 % ID g-1) and skin (≈ 16 % ID g-1). 

[126] 

A10 and DUP-1 dual-functionalized 

PEGylated gold nanostars 

Targeting Dual aptamer functionalized PEGylated gold nanostars mediate a photothermal effect selective for prostate 

cancer cells. 

[75] 

CD44 targeted PEGylated gold 

nanostars 

Targeting Conjugation of anti-CD44 antibodies to PEGylated gold nanostars increases their tumor accumulation by 

more than 2-fold and reduces their uptake by RES organs. 

[72] 

DSPE-PEG-RGD coated CNT Targeting DSPE-PEG5400-RGD coated CNT have a superior tumor accumulation (≈ 13 % ID g-1) and lower liver uptake  

(≈ 20 % ID g-1) than their equivalents coated with DSPE-PEG2000-RGD (≈ 5 % ID g-1 of tumor; ≈ 30 % ID g-1  

of liver); 

DSPE-PEG2000-RGD and DSPE-PEG5400 coated CNT have similar tumor accumulations (≈ 5 vs. ≈ 4 % ID g-1). 

[83] 

DSPE-PEG-Annexin V coated CNT Targeting Annexin V functionalization improves the tumor accumulation of CNT by almost 7-fold (≈ 5 % ID g-1). [70] 

HA functionalized nGO Targeting HA-nGO mediates a superior PTT when compared to non-functionalized nGO. [127] 

Pluronic® F-127-FA conjugates 

coated nGO 

Targeting nGO functionalized with FA densities of 50 and 100% have a similar tumor accumulation; 

nGO with FA densities of 10 and 25 % have a tumor accumulation similar to that of non-functionalized  

nGO. 

[71] 

Pluronic® F-127-FA and Pluronic®  

F-127-RGD conjugates coated nGO 

Targeting Dual-targeted nGO has a higher tumor-homing capacity than single-ligand functionalized (FA or RGD) nGO. [76] 

DSPE-PEG-RGD coated rGONM and 

rGO 

Targeting rGONM and rGO functionalized with DSPE-PEG-RGD have a better blood circulation profile than their 

equivalents coated with DSPE-PEG; 

[50] 
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RGD functionalization improves the tumor accumulation of PEGylated rGO and rGONM from ≈ 7.3 and ≈ 8.9 

to ≈ 22.7 and ≈ 31 % ID g-1, respectively; 

RGD functionalization also reduces the uptake of these nanomaterials by the liver (values in % ID g-1: ≈ 26 

for rGO-PEG; ≈ 7 for rGO-PEG-RGD; ≈ 17 for rGONM-PEG; ≈ 5 for rGONM-PEG-RGD) and spleen (values in % 

ID g-1: ≈ 22 for rGO-PEG; ≈ 6 for rGO-PEG-RGD; ≈ 12 for rGONM-PEG; ≈ 3 for rGONM-PEG-RGD). 

Anti-FSHR antibody functionalized 

PEGylated nGO 

Targeting Functionalization of PEGylated nGO with anti-FSHR antibody improves the accumulation of these 

nanomaterials in breast cancer lung metastasis from about 5 to 19.7 % ID g-1. 

[78] 

FA and PEG coated CuS 

nanoparticles 

Targeting FA coated CuS nanoparticles are rapidly cleared from circulation and have high liver uptake  

(≈ 35 % ID g-1); 

FA coated CuS nanoparticles have a higher tumor-homing capacity than PEGylated CuS nanoparticles  

(≈ 9.7 vs. ≈ 6.4 % ID g-1). 

[30] 

Anti-HER-2 antibody functionalized 

poly(acrylic acid)-W18O49 

nanoparticles 

Targeting HER-2 targeted W18O49 nanoparticles accumulate in HER-2 positive lymphatic metastases and mediate their 

elimination under NIR laser irradiation. 

[20] 

HA functionalized WO3 

nanoparticles 

Targeting HA functionalization improves the tumor accumulation of the WO3 nanoparticles from ≈ 5 % to 34 % ID. [9] 

HER-2 affinity protein 

functionalized DSPE-PEG Fe5C2 

nanoparticles 

Targeting HER-2 targeting functionalization improves the tumor accumulation of Fe5C2 nanoparticles, which then 

mediate the elimination of mice’s tumors with only 3 minutes of laser irradiation. 

[128] 

HA-g-PEG coated PB hollow 

nanocubes 

Targeting HA-g-PEG coated PB nanocubes mediate a higher hyperthermia under NIR laser irradiation than PEGylated 

nanocubes (53 °C vs. 43 °C) due to their superior tumor accumulation. 

[73] 

HA-PANI nanoparticles Targeting PTT mediated by the HA-PANI nanoparticles is selective for CD44 overexpressing cells. [21] 
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Cetuximab functionalized 

carboxymethylated PVA-PANI 

nanoparticles 

Targeting Cetuximab conjugation increases the tumor accumulation of PANI-based nanoparticles from ≈ 1.7 to  

≈ 7.1 % ID g-1. 

[74] 

Anti-CD44 antibody functionalized 

PPDSf) nanoparticles 

Targeting PPDS nanoparticles electrostatically complexed with anti-CD44 antibodies mediate a photothermal effect 

selective for cancer cells overexpressing CD44 receptors. 

[22] 

a) second phase blood circulation half-life (t’1/2); b) pentaerythritol tetrakis (3-mercaptopropionate)-terminated poly(methacrylic acid) (PTMP-PMAA); c) reduced glutathione 
(GSH); d) pyrrole:pyrrole-1-propanoic acid (Py:Py-COOH); e) PEDOT:poly(styrenesulfonate) (PEDOT:PSS); f) poly(sodium3-((3-methyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-
3-yl)methoxy)propane-1-sulfonate) (PPDS).  
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Table 2.2. Strategies used to improve nanomaterials’ capacity to produce photoinduced heat. 

Nanomaterial Optimization Result Ref. 

Urchinlike gold nanoparticles New material Photothermal conversion efficiency of 11 % (at 808 nm). [101] 

Gold nanohexapods New material Photothermal conversion efficiency of 29.6 % (at 808 nm). [88] 

Gold/SiO2 nanoshells New material Photothermal transduction efficiency of ≈ 34 % (at 815 nm). [90] 

Gold nanoshells New material Photothermal transduction efficiency of 39 % (at 810 nm). [87] 

Nanoporous gold disks New material Photothermal conversion efficiency of ≈ 56 % (at 700-900 nm). [129] 

Gold nanomatryoshkas New material Photothermal transduction efficiency of 63 % (at 810 nm). [87] 

Gold nanocages New material Photothermal conversion efficiency of 63.6 % (at 808 nm). [88] 

Gold bellflowers New material Photothermal conversion efficiency of 74 % (at 808 nm). [89] 

Gold nanobipyramids New material Photothermal conversion efficiency depends on the radius of the nanostructures  

(51-≈ 90 %, at 809 nm). 

[91] 

GNR New material Photothermal conversion efficiency depends on the aspect ratio of the nanostructures  

(22.1-95 %). 

[88, 90, 

91, 130] 

Gold nanocages, nanohexapods, and 

nanorods 

New material Gold nanocages generate a photoinduced heat similar to that of GNR and nanohexapods, but 

at a ≈ 3-fold lower concentration. 

[31] 

PEGylated Cu nanowires New material Photothermal conversion efficiency of 12.5 % (at 808 nm). [131] 

Cu2-xSe nanocrystals coated with 

hydrolyzed poly(isobutylene-alt-maleic 

anhydride)-oleylamine conjugates 

New material Photothermal transduction efficiency of 22 % (at 800 nm). [38] 

Cu9S5 nanocrystals modified with 

aminocaproic acid 

New material Photothermal conversion efficiency of 25.7 % (at 980 nm). [85] 

PEGylated Cu3BiS3 hollow nanospheres New material Photothermal conversion efficiency of 27.5 % (at 980 nm). [39] 

BSA-Gd:CuS nanoparticles New material Photothermal conversion efficiency of 32.3 % (at 980 nm). [132] 
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Ferritin-CuS New material Photothermal conversion efficiency of ≈ 47 % (at 808 nm). [133] 

Silica coated Cu1.75S nanoparticles New material Photothermal conversion efficiency of 54.13 % (at 808 nm). [134] 

Cu7.2S4 nanocrystals coated with a 

hydrolyzed poly(maleic anhydride)-

oleylamine based amphiphile 

New material Photothermal conversion efficiency of 56.7 % (at 980 nm). [10] 

PEGylated Cu2-xSe nanoparticles New material Photothermal conversion efficiency of 64.8 % (at 808 nm). [84] 

PEGylated Mo oxide nanospheres and 

nanoribbons 

New material Mo oxide nanorods (synthesized in the absence of PEG) have a weak NIR absorption, while 

Mo oxide nanospheres and nanoribbons (synthesized in the presence of PEG) have high NIR 

absorption. 

[135] 

PEGylated MoO3-x hollow nanospheres New material MoO3-x hollow nanospheres prepared in the presence of PEG have an enhanced NIR absorption 

and a photothermal conversion efficiency of 22.64 % (at 808 nm). 

[40] 

Chitosan functionalized MoS2 nanosheets New material Photothermal conversion efficiency of 24.37 % (at 808 nm). [136] 

PEGylated MoS2 nanoflakes New material Photothermal conversion efficiency of 27.6 % (at 808 nm). [92] 

Layered MoS2 hollow spheres New material Layered MoS2 hollow spheres have a higher NIR absorption than MoS2 nanosheets and a 

photothermal conversion efficiency of 34.46 % (at 808 nm). 

[137] 

Pluronic® F-127 coated MoSe2 nanodots New material Photothermal conversion efficiency of 46.5 % (at 785 nm). [138] 

Radar-like MoS2 nanoparticles New material Radar-like MoS2 nanoparticles have a higher photothermal conversion efficiency (53.3 %) than 

MoS2 nanoflowers (18.2 %) and MoS2 microspheres (15.2 %, at 808 nm). 

[139] 

PVP coated MoSe2 nanosheets New material Photothermal conversion efficiency of 57.9 % (at 808 nm). [140] 

PEGylated Mo oxide nanosheets New material Mo oxide nanosheets display a pH dependent NIR absorption that is governed by their 

degradation. In healthy tissues, the nanosheets have a fast degradation rate. In the tumor 

microenvironment (slightly acidic) the nanosheets degrade slowly, thereby retaining their 

NIR absorption. 

[141] 

HA functionalized WO3 nanoparticles New material Photothermal conversion efficiency of 11.78 % (at 808 nm). [9] 
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PVP coated Rb0.27WO3 nanorods New material Photothermal conversion efficiency of 17.8 % (at 808 nm). [120] 

(NH4)xWO3 nanocubes New material Photothermal conversion efficiency of 39.4 % (at 1064 nm). [93] 

WO3 nanoparticles New material Photothermal conversion efficiency of 41.96 % (at 808 nm). [9] 

PTMP-PMAA coated WO3-x nanodots New material WO3-x nanodots NIR absorption is enhanced in acidic and in hypoxic environments. [98] 

Fe3O4 nanoparticles New material Photothermal conversion efficiency of 6.4 % (at 808 nm). [103] 

Fe3O4 nanoparticles New material Fe3O4 nanoparticles functionalized with PEG produce a higher photoinduced heat than Fe3O4 

nanoparticles stabilized with PVP, PVA, polyglutamic acid, xalic acid, citrate, glutamic acid, 

and diethylene glycol. 

[109] 

PEGylated FeS nanoplates New material PEGylated FeS nanoplates have ≈ 17 times higher NIR absorption than Fe3O4 nanoparticles, 

thus producing a superior photoinduced heat (≈ 70 °C vs. ≈ 45 °C). 

[42] 

PEGylated FeSe2 New material PEGylated FeSe2 nanoparticles have ≈ 9 times higher NIR absorption than Fe3O4-based 

nanoparticles, thus generating a superior photoinduced heat (≈ 65 °C vs. ≈ 31 °C). 

[43] 

Denatured BSA coated Mn2+ doped iron 

oxide nanoparticles 

New material Photothermal conversion efficiency of 26.9 % (at 808 nm). [142] 

Fe(III)-gallic acid nanoparticles New material Photothermal conversion efficiency of 66.8 % (at 808 nm). [143] 

Pd nanocubes, nanoparticles, porous 

nanoparticles, and polyhedrons 

New material Porous Pd nanoparticles have a higher NIR absorption than Pd nanocubes, Pd nanoparticles, 

and Pd polyhedrons. 

[86] 

PEG coated gold-PANI nanoparticles New material PANI-based nanoparticles with a 16 nm gold core display the lowest NIR absorption at 

physiological pH (7.4) and high NIR absorption at acidic pH (6.5). Thereby, at pH 7.4 these 

generate a photoinduced heat to ≈ 40 °C while at pH 6.5 the temperature reaches ≈ 53 °C. 

[97] 

PVP coated PPy nanoparticles New material Photothermal conversion efficiency of 44.7 % (at 808 nm). [45] 

Tosylate doped poly(2TMOI-OEGMA)a)-PPy 

nanoparticles 

New material Photothermal transduction efficiency of 46.9 % (at 808 nm). [94] 
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PEDOT nanotubes and PEDOT:PSS 

nanoparticles 

New material PEDOT nanotubes have almost a 2-fold higher NIR absorption than PEDOT:PSS nanoparticles 

and thus generate a superior photoinduced heat (ΔT ≈ 16 °C vs. ΔT ≈ 8 °C). 

[144] 

PProDOS nanoparticles New material PProDOS nanoparticles have a slightly superior NIR absorption than PEDOT nanoparticles, 

thus producing a higher photoinduced heat (ΔT ≈ 10 °C vs. ΔT = 6 °C). 

[95] 

PCPDTBTb) and PCPDTBSec) nanoparticles New material PCPDTBT nanoparticles produce a slightly higher photoinduced heat than PCPDTBSe 

nanoparticles (ΔT ≈ 35 °C vs. ΔT ≈ 30 °C). 

[145] 

Pluronic® F-127 coated PCPDTBSe 

nanoparticles 

New material Pluronic® F-127 coated PCPDTBSe nanoparticles mediate a higher photoinduced heat  

(ΔT = 47 °C) than Pluronic® F-127 coated PCPDTBSe nanofibers (ΔT ≈ 35 °C) and PCPDTBSe 

nanoparticles (ΔT ≈ 35 °C). 

[47] 

PPDS nanoparticles  New material Photothermal conversion efficiency of 31.4 % (at 808 nm). [22] 

Gold nanopopcorn conjugated CNT New material The NIR absorption of the hybrid nanostructures is enhanced by increasing the content of 

gold nanopopcorn immobilized on CNT. 

[146] 

PEG-GO/CuS nanocomposites New material PEG-GO/CuS nanocomposites produce a higher photoinduced heat (ΔT = 24.9 °C) than GO 

(ΔT = 14 °C) due to their superior NIR absorption. 

[147] 

Polydopamine coated Fe3O4 nanoparticles New material Increasing the thickness of the polydopamine shell improves the NIR absorption of the hybrid 

nanostructures. 

Photothermal conversion efficiency of 13.1 % (at 808 nm). 

[103] 

PEGylated Fe-Fe3O4 nanoparticles New material Photothermal conversion efficiency of 20.3 % (at 808 nm). [148] 

PPy coated GNR incorporating Fe3O4 

nanoparticles 

New material Photothermal conversion efficiency of 23.9 % (at 808 nm). [149] 

PPy coated urchinlike gold nanoparticles New material Increasing the thickness of the PPy shell from 3.5 to 15.3 nm improves the photothermal 

conversion efficiency of the hybrid nanostructures from 18.6 to 27.5 % (at 808 nm). 

[101] 

PEGylated gold-Pd nanoplates New material Photothermal conversion efficiency of 28.6 % (at 808 nm). [126] 

Fe3O4 coated PPy nanoparticles New material Photothermal conversion efficiency of 39.15 % (at 808 nm). [150] 
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PPy coated Fe3O4 superstructures New material Increasing the thickness of the PPy shell improves the NIR absorption of the hybrid 

nanostructures; 

Nanostructures with a 16 nm thick PPy shell display the highest photothermal transduction 

efficiency (49 % at 808 nm). 

[102] 

Polydopamine coated PEI-gold nanostars New material Polydopamine coating improves the photothermal conversion efficiency of the PEI-gold 

nanostars from 36.1 to 49.9 % (at 808 nm). 

[104] 

Gold/Au2S nanoshells New material Photothermal transduction efficiency of ≈ 58 % (at 815 nm). [90] 

Gold nanopopcorn-iron oxide cluster 

nanoparticles 

New material Photothermal conversion efficiency of 61 % (at 808 nm). [151] 

PEGylated gold-silver nanostars New material Photothermal conversion efficiency of 79.01 % (at 808 nm). [99] 

PEGylated hollow gold-silver alloy  

urchin-shaped nanostructures 

New material Photothermal conversion efficiency of 80.4 % (at 808 nm). [100] 

PVA coated PPy nanoparticles Size 50 nm PVA coated PPy nanoparticles produce a higher photoinduced heat (ΔT = 29.4 °C) than 

their 75 nm equivalents (ΔT = 26.2 °C). 

[107] 

PEGylated MoS2 nanosheets Size 80 nm MoS2 nanosheets produce a higher photoinduced heat (ΔT ≈ 6 °C) than their 100 nm 

equivalents (ΔT ≈ 4.5 °C). 

[15] 

PEGylated WS2 quantum dots Size Reduction of WS2 particles’ size increases their NIR absorption and thus improves the 

photoinduced heat mediated by these nanostructures; 

WS2 quantum dots (3 nm) have a slightly higher photothermal conversion efficiency  

(44.3 %) than ≈ 28 nm WS2 nanosheets (40.6 %, at 808 nm), and thus generate a superior 

photoinduced heat (ΔT = 20 °C vs. ΔT ≈ 12 °C). 

[108] 

Pd-PVP nanosheets Size 4.4 nm Pd-PVP nanosheets have a higher photothermal conversion efficiency than 41 nm 

nanosheets (52 vs. 27.6 %, at 808 nm), thus producing a superior photoinduced heat  

(≈ 50 °C vs. ≈ 37.5 °C). 

[7] 
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PEGylated hollow gold-silver alloy  

urchin-shaped nanostructures 

Size Reduction of the hybrid structures’ size from 200 to 80 nm shifts their NIR absorption peak 

from 950 to 772 nm, thereby improving the photoinduced heat generated by these structures 

under 808 nm laser radiation. 

[100] 

Citrate and PEGylated Fe3O4 nanoparticles Size Increasing the size of citrate and PEG functionalized Fe3O4 nanoparticles from 120 to 380 nm 

produces a red-shift in their absorption and thus improves the photoinduced heat mediated 

by these materials. 

 

[109] 

Gold nanotubes Size Increasing the length of gold nanotubes from 300 to 530 nm produces a red-shift in their 

absorption; 

Gold nanotubes with a length of ≈ 370 nm display the highest absorption at 800 nm and thus 

were selected for cancer PTT using 800 nm radiation. 

[110] 

PEGylated rGO derivatives Chemical 

treatment 

rGO derivatives have about 3-4 times higher NIR absorption than non-reduced nGO and 

thereby generate a superior photoinduced heat (≈ 58 °C vs. ≈ 44 °C). 

[63] 

PEGylated rGONM Chemical 

treatment 

rGONM has about 4.2 times higher NIR absorption than reduced nGO, thus producing a 

superior photoinduced heat (≈ 57 °C vs. ≈ 42 °C). 

[50] 

Mn2+ doped PEGylated PB nanocubes Chemical 

treatment 

Mn2+ doping increases the NIR absorption of PEGylated PB nanocubes; 

Mn2+ doping of 15 % produces the highest increment in the NIR absorption of the PB nanocubes 

(≈ 2-fold at 808 nm). 

[111] 

Gd3+ containing mesoporous PB 

nanoparticles 

Chemical 

treatment 

Incorporation of Gd3+ in PB nanoparticles produces a red-shift in their absorption towards 

the NIR region. 

[112] 

Clustered Fe3O4 nanoparticles Assembling of 

nanostructures 

Clustered Fe3O4 nanoparticles have ≈ 3.6-fold higher NIR absorption than individual Fe3O4 

nanoparticles, thus producing a superior photoinduced heat (≈ 51 °C vs. ≈ 42 °C). 

[41] 
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Nanovesicles assembled using  

PEG-poly(caprolactone) functionalized 

gold nanoparticles 

Assembling of 

nanostructures 

Self-assembled gold-based nanovesicles have a higher photothermal conversion efficiency 

than GNR (37 % vs. 22 %, at 808 nm), thus producing a superior photoinduced heat  

(ΔT ≈ 41 °C vs. ΔT = 24 °C). 

[113] 

Gold‒attapulgite nanocomposites Assembling of 

nanostructures 

Electrostatic assembly of gold nanospheres on the surface of attapulgite yields a composite 

with a photothermal conversion efficiency of 25.6 % (at 808 nm). 

[114] 

PEGylated chirality sorted (6,5) CNT Sorting of 

nanomaterials 

Chirality sorted (6,5) CNT have an enhanced NIR absorption, thus producing a higher 

photoinduced heat than non-sorted CNT (≈ 53 °C vs. ≈ 44 °C). 

[116] 

a) poly(2-(methacryloyloxy)ethylaminocarboxymethyl)thiophene-stat-oligo(ethylene glycol) methacrylate) (poly(2TMOI-OEGMA)); b) poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-
b;3,4-b’]dithiophene-2,6-diyl-alt-2,1,3-benzothiadiazole-4,7-diyl] (PCPDTBT); c) poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b‘]dithiophene-2,6-diyl-alt-2,1,3-
benzoselenadiazole-4,7-diyl] (PCPDTBSe). 
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Table 2.3. Strategies based on the optimization of the parameters related to the laser light. 

Nanomaterial Optimization Result Ref. 

PEGylated CsxWO3 nanorods Wavelength Even though PEGylated CsxWO3 nanorods have a higher absorbance at 980 nm than at 915 nm,  

the use of 915 nm light is beneficial since the 980 nm radiation has less penetration and induces a higher  

off-target heating. 

[119] 

PVP coated Rb0.27WO3 

nanorods 

 

Wavelength Even though PVP coated Rb0.27WO3 nanorods have a higher absorption at 980 nm than at 808 nm, the application 

of 808 nm light to irradiate the nanorods can produce a higher temperature variation than 980 nm radiation due 

to its higher penetration. 

[120] 

PVA coated PPy nanoparticles Power density Nanomaterials’ mediated PTT at a power density of 0.25 and 0.5 W cm-2 produces a hyperthermia to about 55 

and 60 °C, resulting in the elimination of mice’s tumors; 

PTT at a power density of 0.1 W cm-2 mediates a hyperthermia to ≈ 42 °C, leading to a reduction of the tumor 

growth. 

[117] 

(NH4)xWO3 nanocubes Power density 

 

Irradiation 

sessions 

Nanomaterials’ mediated PTT at a power density of 1 W cm-2 (every three days during 9 days) mediates a higher 

hyperthermia (ΔT ≈ 45 °C) and a better therapeutic outcome than PTT at 0.5 W cm-2 (ΔT ≈ 33 °C). 

[93] 

C18-PMH-mPEG coated CNT Power density 

 

Irradiation sites 

Irradiation of tumor zone and tumor-adjacent lymph node results in an improved therapeutic effect; 

The lymph node was irradiated at a higher power density due to its deeper location and due to CNT lower 

accumulation at this site (lymph node: 0.8 W cm-2; tumor: 0.5 W cm-2). 

[121] 

Chitosan-Pluronic® F-68 

conjugates encapsulating GNR 

Irradiation 

sessions 

Irradiation of the tumor zone at 24 and 48 h p.i. of nanoparticles leads to tumor eradication. [11] 

RBC membrane coated  

PVP-gold nanocages 

Irradiation 

sessions 

Laser irradiation once a day during 19 days elicits a potent therapeutic effect. [68] 
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CD44 targeted PEGylated gold 

nanostars 

Irradiation 

sessions 

Laser irradiation every two days during 14 days elicits a potent therapeutic effect. [72] 

PEGylated WO2.9 nanorods Irradiation 

sessions 

Laser irradiation every two days during 14 days allows the elimination of mice’s tumors at a low power density. [16] 

DSPE-PEG-CREKA 

functionalized CNT 

Irradiation 

sessions 

Irradiation of the tumor zone at 10 min after administration of DSPE-PEG-CREKA coated CNT (fibrin targeted 

CNT) enhances their tumor accumulation by about 3.8-fold; 

Irradiation of the tumor zone at 10 min after administration of DSPE-PEG coated CNT improves their tumor 

accumulation by about 2.6-fold; 

Mice administered with these materials were irradiated multiple times (at 10 min and on day 3, 6 and 9 p.i.) to 

take advantage of these phenomena. 

[122] 

HA functionalized WO3 

nanoparticles 

Irradiation 

onset 

Irradiation of the tumor zone at 8 h p.i. of HA-WO3 nanoparticles produces the highest hyperthermia (50 °C). [9] 

PVP coated CuS nanodots Irradiation 

onset 

PVP coated CuS nanodots achieve their maximum tumor accumulation (≈ 3.6 % ID g-1) at 2 h p.i. and PTT at this 

time point leads to tumor eradication with only 2 minutes of NIR laser irradiation. 

[14] 

HA-g-PEG coated PB hollow 

nanocubes 

Irradiation 

onset 

HA-g-PEG coated PB hollow nanocubes achieve their maximum tumor accumulation at 24 h p.i. and PTT at this 

time point leads to a hyperthermia to 53 °C. 

[73] 

PEGylated Cu2-xSe 

nanoparticles 

Irradiation 

onset 

PEGylated Cu2-xSe nanoparticles achieve their maximum tumor accumulation (4.4 % ID g-1) at 12 h p.i. and PTT 

at this time point leads to tumor eradication. 

[84] 

GSH functionalized MoS2 

nanodots 

Irradiation 

onset 

GSH functionalized MoS2 nanodots achieve their maximum tumor accumulation (≈ 5 % ID g-1) at 4 h p.i. and PTT 

at this time point leads to tumor eradication. 

[152] 
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2.9. Supplementary Information 

Table S.2.1. In vivo assays data of some nanomaterials used in cancer PTT. 

Type of nanomaterial Tumor model Administration 

route 

Dose Laser settings Tumor 

temperature 

Therapeutic 

effect 

Ref. 

PEGylated GNR MDA-MB-435 

tumor-bearing 

mice 

i.v. 20 mg kg-1 810 nm, 2 W cm-2,  

5 min 

≈ 70 °C Tumor 

eradication 

[1] 

PEGylated rod-like gold nanoshell 

capsules 

B16F10 

tumor-bearing 

mice 

i.v. 10 mg kg-1 800 nm, 0.4 W cm-2,  

3 min 

N.A. Tumor growth 

reduced 

[2] 

PEGylated gold nanohexapods MDA-MB-435 

tumor-bearing 

mice 

i.v. 800 µg 808 nm, 1.2 W cm-2,  

10 min 

≈ 56 °C Tumor 

eradication 

[3] 

PEGylated gold nanomatryoshkas MDA-MB-231-

LM2 

tumor-bearing 

mice 

i.v. 300 µg 808 nm, 2 W cm-2,  

5 min 

ΔT ≈ 34 °C Tumor 

eradication 

(for 5 in 6 mice) 

[4] 

PEGylated gold bellflowers 4T1 

tumor-bearing 

mice 

i.t. 20 µg 808 nm, 0.5 W cm-2,  

5 min 

≈ 52 °C Tumor 

eradication 

[5] 

Folic acid functionalized PEGylated gold 

nanobipyramids 

MCF-7 

tumor-bearing 

mice 

i.v. 75 µg 808 nm, 1.6 W cm-2,  

5 min 

≈ 70 °C Tumor 

eradication 

[6] 
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Chitosan-Pluronic® F-68 conjugates 

loaded with GNR 

SCC7 

tumor-bearing 

mice 

i.v. 100 µg 808 nm, 4 W cm-2,  

4 min, at 24 and 48 h  

p.i. 

N.A. Tumor 

eradication 

[7] 

RBC-derived membrane coated PVP-gold 

nanocages 

4T1 

tumor-bearing 

mice 

i.v. 250 µg 850 nm, 1 W cm-2,  

10 min, once a day 

during 19 days 

≈ 47 °C Tumor 

regression 

[8] 

Macrophage cell membrane coated gold 

nanoshells 

4T1 

tumor-bearing 

mice 

i.v. 450 µg 808 nm, 1 W cm-2,  

5 min 

N.A. Tumor 

regression 

[9] 

Nanovesicles assembled using PEG-PCL 

functionalized gold nanoparticles 

MDA-MB-435 

tumor-bearing 

mice 

i.t. 20 µg 808 nm, 0.5 W cm-2,  

5 min 

ΔT ≈ 18 °C Tumor 

eradication 

[10] 

Au‒attapulgite nanocomposites A549 

tumor-bearing 

mice 

i.t. 100 µg 808 nm, 0.5 W cm-2,  

15 min 

≈ 48 °C Tumor 

regression 

[11] 

PEGylated gold nanostars functionalized 

with anti-CD44v6 antibody 

 

MKN-45 

tumor- bearing 

mice 

i.v. 130 µg 790 nm, 0.8 W cm-2,  

5 min, every two days 

during 14 days 

≈ 61 °Ca) Tumor 

regression 

[12] 

Amine/carboxyl-terminated PEGylated 

gold nanostars 

4T1 

tumor-bearing 

mice 

i.v. ≈ 2×10–7 M 

(100 µL) 

808 nm, 1 W cm-2,  

5 min 

≈ 56 °C Tumor 

eradication 

[13] 

C18-PMH-mPEG coated CNT 4T1 

tumor-bearing 

mice 

 

i.v. 100 µg 808 nm, 1 W cm-2,  

5 min 

≈ 50 °C Tumor 

regression 

[14] 
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DSPE-PEG-Annexin V functionalized CNT 4T1 

tumor-bearing 

mice 

i.v. ≈ 16.35 µg 

0.8 mg kg-1 

980 nm, 1 W cm-2,  

175 sec 

N.A. Tumor 

eradication 

(for 4 in 6 mice) 

[15] 

DSPE-PEG-CREKA functionalized CNT A549 

tumor-bearing 

mice 

 

i.v. 4 mg kg-1 808 nm, 3.5 W cm-2,  

90 sec, on day 0, 3, 6 

and 9 

 

≈ 55 °C Tumor 

regression 

[16] 

C18-PMH-mPEG coated CNT 4T1 

tumor-bearing 

mice 

i.t. 4.25 µg 

0.2 mg kg-1 

Tumor: 

808 nm, 0.5 W cm-2,  

10 min 

Lymph node: 

808 nm, 0.8 W cm-2,  

10 min 

Tumor: 

≈ 55 °C 

Lymph node: 

≈ 47 °C 

Tumor 

eradication 

(for 6 in 7 mice) 

[17] 

C18-PMH-mPEG coated (6,5) CNT 4T1 

tumor-bearing 

mice 

i.v. ≈ 4 µg 

0.254 mg kg-1 

980 nm, 0.6 W cm-2,  

5 min 

≈ 51 °C Tumor 

eradication 

(for 3 in 4 mice) 

[18] 

PEGylated nGO 4T1 

tumor-bearing 

mice 

i.v. 400 µg 

20 mg kg-1 

808 nm, 2 W cm-2,  

5 min 

≈ 50 °C Tumor 

eradication 

[19] 

C18-PMH-mPEG coated reduced nGO 4T1 

tumor-bearing 

mice 

i.v. 400 µg 

20 mg kg-1 

808 nm, 0.15 W cm-2,  

5 min 

≈ 48 °C Tumor 

eradication 

[20] 

HA conjugated nGO B16F1 

tumor-bearing 

mice 

topical 100 µg 808 nm, 2 W cm-2,  

10 min 

N.A. Tumor 

eradication 

[21] 
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Pluronic® F-127-FA coated nGO KB 

tumor-bearing 

mice 

i.v. 10 mg kg-1 808 nm, 2 W cm-2,  

10 min 

≈ 60 °C Tumor 

eradication 

(for 2 in 3 mice) 

[22] 

Pluronic® F-127-FA and Pluronic®  

F-127-RGD coated nGO 

KB 

tumor-bearing 

mice 

i.v. 7.5 mg kg-1 808 nm, 2 W cm-2,  

10 min 

≈ 57 °C Tumor 

eradication 

[23] 

DSPE-PEG-RGD functionalized rGONM U87MG 

tumor-bearing 

mice 

 

i.v. 2 µg 808 nm, 0.1 W cm-2,  

7 min 

N.A. Tumor 

eradication 

[24] 

DSPE-PEG coated Cu2-xS nanodots HeLa 

tumor-bearing 

mice 

i.v. ≈ 200 µg 

10 mg kg-1 

980 nm, 1.41 W cm-2,  

5 min 

≈ 69 °C Tumor 

eradication 

[25] 

Silica coated Cu1.75S 4T1 

tumor-bearing 

mice 

i.t. 1.1 mg 808 nm, 1 W cm-2,  

10 min 

≈ 57 °C Tumor 

eradication 

[26] 

Hydrolyzed poly(isobutylene-alt-maleic 

anhydride)-oleylamine coated Cu7.2S4 

nanocrystals 

K7M2 

tumor-bearing 

mice 

i.t. 40 ppm 

(100 µL) 

980 nm, 0.72 W cm-2,  

7 min 

≈ 46 °C N.A. [27] 

PVP coated CuS nanodots 4T1 

tumor-bearing 

mice 

i.v. 100 µg 

4 mg kg-1 

808 nm, 2 W cm-2,  

2 min 

≈ 46 °C Tumor 

eradication 

[28] 

FA coated CuS nanoaparticles KB 

tumor-bearing 

mice 

i.v. 40 µg 808 nm, 1.5 W cm-2,  

2 min 

≈ 57 °C N.A. [29] 
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Ferritin-CuS nanocages U87MG 

tumor-bearing 

mice 

i.v. N.A. 808 nm, 0.8 W cm-2,  

5 min 

≈ 65 °C Tumor 

eradication 

[30] 

PEGylated Cu nanowires CT26 

tumor-bearing 

mice 

i.t. 125 – 150 µg 808 nm, 1.5 W cm-2,  

6 min 

≈ 56 °C Tumor growth 

reduced 

[31] 

PEGylated Cu2-xSe nanoparticles 4T1 

tumor-bearing 

mice 

i.v. 100 µg 808 nm, 1.5 W cm-2,  

6 min 

≈ 58 °C Tumor 

eradication 

[32] 

BSA-Gd:CuS nanoparticles SK-OV-3 

tumor-bearing 

mice 

 

i.v. 10 mg kg-1 980 nm, 0.8 W cm-2,  

5 min 

≈ 51 °C Tumor 

eradication 

[33] 

PEGylated MoS2 nanosheets 4T1 

tumor-bearing 

mice 

i.v. 200 µg 808 nm, 1 W cm-2,  

5 min 

N.A. Tumor growth 

inhibition 

[34] 

PEGylated MoO3-x hollow nanospheres PANC-1 

tumor-bearing 

mice 

i.v. 10 mg kg-1 808 nm, 1 W cm-2,  

10 min 

≈ 48 °C Tumor 

regression 

[35] 

Chitosan coated MoS2 nanosheets PANC-1 

tumor-bearing 

mice 

 

 

i.t. 2 mg kg-1 808 nm, 0.9 W cm-2,  

7 min 

≈ 50 °C Tumor growth 

reduced 

[36] 
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C18-PMH-mPEG coated Mo oxide 

nanosheets 

4T1 

tumor-bearing 

mice 

i.t. 

i.v. 

i.t.: 

1.25 mg kg-1 

 

i.v.: 

20 mg kg-1 

808 nm, 0.7 W cm-2,  

10 min 

≈ 55 °C 

(i.v.) 

Tumor 

eradication 

[37] 

Layered MoS2 hollow spheres VX2 

tumor-bearing 

rabbit 

intra-arterial 

injection 

1 mg kg-1 808 nm, 1 W cm-2,  

3 min 

≈ 55 °C Tumor 

eradication 

[38] 

Radar-like MoS2 nanoparticles 4T1 

tumor-bearing 

mice 

i.t. 100 ppm 

(100 µL) 

808 nm, 0.5 W cm-2,  

10 min 

N.A. Tumor growth 

reduced 

[39] 

GSH functionalized MoS2 nanodots 4T1 

tumor-bearing 

mice 

i.v. ≈ 100 µg 808 nm, 1 W cm-2,  

5 min 

≈ 52 °C Tumor 

eradication 

[40] 

(NH4)xWO3 nanocubes 4T1 

tumor-bearing 

mice 

i.t. ≈ 500 µg 

5 mg kg-1 

1064 nm, 1 W cm-2,  

2 min, every three days 

during 9 days 

ΔT ≈ 45 °C Tumor 

regression 

[41] 

PEGylated WO2.9 nanorods HeLa 

tumor-bearing 

mice 

i.t. 20 mg kg-1 980 nm, 0.35 W cm-2,  

5 min, every two days 

during 14 days 

ΔT = 20 °C Tumor 

eradication 

[42] 

PEGylated CsxWO3 nanorods MAD-MB-231 

tumor-bearing 

mice 

 

i.t. 25 µg 915 nm, 0.72 W cm-2,  

10 min 

≈ 48 °C N.A. [43] 
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Anti-HER-2 antibody functionalized  

PAA-W18O49 nanoparticles 

MM435 

metastasis-

bearing mice 

subcutaneous 

injection 

15 mg 1064 nm, 0.75 W cm-2,  

10 min 

≈ 54 °C 

(lymph node) 

Metastasis 

elimination 

[44] 

HA coated WO3 nanoparticles MAD-MB-231 

tumor-bearing 

mice 

 

i.v. ≈ 750 µg 

30 mg kg-1 

808 nm, 2 W cm-2,  

5 min 

50 °C Tumor 

regression 

[45] 

PEGylated WS2 nanosheets 4T1 

tumor-bearing 

mice 

i.t. 

i.v. 

i.t.:  

40 µg, 

2 mg kg-1 

i.v.:  

400 µg, 

20 mg kg-1 

808 nm, 0.8 W cm-2,  

5 min 

≈ 65 °C 

(i.t. and i.v.) 

Tumor 

eradication 

[46] 

C18-PMH-PEG coated WS2 nanoflakes 4T1 

tumor-bearing 

mice 

i.v. 20 mg kg-1 808 nm, ≈ 0.3 W cm-2,  

20 min 

≈ 45 °C Tumor growth 

reduced 

[47] 

PVP-coated Rb0.27WO3 nanorods PANC-1 

tumor-bearing 

mice 

i.t. N.A. 808 nm, 1 W cm-2,  

10 min 

≈ 50 °C Tumor growth 

reduced 

[48] 

PTMP-PMAA coated WO3-x nanodots 4T1 

tumor-bearing 

mice 

i.v. 400 µg 808 nm, 0.75 W cm-2,  

10 min 

ΔT = 25 °C Tumor growth 

reduced 

[49] 

PEGylated WS2 quantum dots BEL-7402 

tumor-bearing 

mice 

i.t. 40 µg 808 nm, 1 W cm-2,  

10 min 

≈ 45 °C Tumor growth 

reduced 

[50] 
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Mn2+ doped PEGylated PB nanocubes 4T1 

tumor-bearing 

mice 

i.v. 20 mg kg-1 808 nm, 0.8 W cm-2,  

5 min 

≈ 55 °C Tumor 

eradication 

[51] 

Gd3+ containing hollow mesoporous PB 

nanoparticles 

4T1 

tumor-bearing 

mice 

i.t. 50 ppm 

(30 µL) 

808 nm, 0.58 W cm-2,  

10 min 

ΔT ≈ 16 °C Tumor 

eradication 

[52] 

PEGylated PB nanocubes 4T1 

tumor-bearing 

mice 

i.v. 200 µg 

10 mg kg-1 

808 nm, 0.8 W cm-2,  

5 min 

≈ 62 °C Tumor 

eradication 

[53] 

HA-grafted-PEG coated hollow PB 

nanocubes 

HeLa 

tumor-bearing 

mice 

i.v. 10 mg kg-1 808 nm, 1 W cm-2,  

10 min 

≈ 53 °Cb) Tumor growth 

inhibition 

[54] 

Clustered Fe3O4 nanoparticles A549 

tumor-bearing 

mice 

i.t. 50 µg 808 nm, 5 W cm-2,  

3 min 

≈ 56 °C Tumor growth 

reduced 

[55] 

RBC-derived membrane coated Fe3O4 

nanoclusters 

MCF-7 

tumor-bearing 

mice 

i.v. 2.5 mg kg-1 808 nm, 5 W cm-2,  

5 min 

≈ 53 °C Tumor 

regression 

[56] 

PEGylated Fe-Fe3O4 nanoparticles HeLa 

tumor-bearing 

mice 

i.v. 1.46 g kg-1 808 nm, 0.31 W cm-2,  

10 min, once a day 

during 14 days 

ΔT ≈ 7 °C Tumor growth 

reduced 

[57] 

Denatured BSA coated Mn2+ doped iron 

oxide nanoparticles 

4T1 

tumor-bearing 

mice 

i.t. 40 mg kg-1 808 nm, 1.5 W cm-2,  

5 min 

≈ 70 °C Tumor 

eradication 

[58] 
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Fe(III)-gallic acid nanoparticles 4T1 

tumor-bearing 

mice 

i.v. 4 x 10-3 M 

(200 µL) 

808 nm, 1 W cm-2,  

10 min 

ΔT ≈ 20 °C Tumor 

eradication 

[59] 

PEGylated FeS nanoplates 4T1 

tumor-bearing 

mice 

i.v. 20 mg kg-1 808 nm, 1 W cm-2,  

5 min 

≈ 60 °C Tumor 

eradication 

[60] 

PEGylated FeSe2 nanoparticles 4T1 

tumor-bearing 

mice 

i.t. 80 µg 

4 mg kg-1 

808 nm, 0.8 W cm-2,  

5 min 

≈ 63 °C Tumor 

eradication 

[61] 

DSPE-PEG-ZHER2:342 coated Fe5C2 

nanoparticles 

SK-OV-3 

tumor-bearing 

mice 

i.v. 18 mg kg-1 808 nm, 2 W cm-2,  

3 min 

≈ 47 °C Tumor 

eradication 

[62] 

GSH functionalized Pd nanosheets 4T1 

tumor-bearing 

mice 

i.v. 400 µg 808 nm, 1 W cm-2,  

5 min 

≈ 56 °C Tumor 

eradication 

[63] 

PEG-SH functionalized Pd nanosheets S180 

tumor-bearing 

mice 

i.v. 300 µg 808 nm, 0.4 W cm-2,  

5 min 

≈ 52 °C Tumor 

eradication 

[64] 

PEG coated gold-PANI nanoparticles H22 

tumor-bearing 

mice 

i.t. 100 μg mL-1 808 nm, 2 W cm-2,  

5 min 

≈ 50 °C Tumor 

eradication 

[65] 

Cetuximab functionalized 

carboxymethylated  

PVA-PANI nanoparticles 

A-431 

tumor-bearing 

mice 

i.v. 300 μg 808 nm, 1.5 W cm-2,  

10 min 

N.A. Tumor 

eradication 

[66] 



 

65 

HA-PANI nanoparticles HeLa 

tumor-bearing 

mice 

i.t. 200 μg 808 nm, 0.64 W cm-2,  

5 min 

N.A. Tumor 

eradication 

[67] 

PVP-PPy nanoparticles 4T1 

tumor-bearing 

mice 

 

i.v. 200 µg 

10 mg kg-1 

808 nm, 1 W cm-2,  

5 min 

≈ 65 °C Tumor 

eradication 

[68] 

PVA-PPy nanoparticles 4T1 

tumor-bearing 

mice 

i.t. 40 µg 

2 mg kg-1 

808 nm, 0.25 W cm-2,  

5 min 

≈ 55 °C Tumor 

eradication 

[69] 

PEGylated PPy nanoparticles U87MG 

tumor-bearing 

mice 

i.t. 

i.v. 

i.t.:  

200 µg 

i.v.:  

500 µg 

808 nm, 1.5 W cm-2,  

10 min 

i.t.: ≈ 55 °C 

i.v.: ≈ 53 °C 

Tumor growth 

reduced 

[70] 

PEGylated PEDOT:PSS nanoparticles 4T1 

tumor-bearing 

mice 

i.v. 200 μg 

10 mg kg-1 

808 nm, 0.5 W cm-2,  

5 min 

≈ 51 °C Tumor 

eradication 

[71] 

DSPE-mPEG coated PFTTQ nanoparticles HeLa 

tumor-bearing 

mice 

i.t. 40 μg 808 nm, 0.75 W cm-2,  

10 min 

≈ 45 °C Tumor 

eradication 

[72] 

PEGylated gold-Pd nanoplates 4T1 

tumor-bearing 

mice 

 

i.v. 15 mg kg-1 808 nm, 0.5 W cm-2,  

4 min 

≈ 60 °C Tumor 

eradication 

[73] 
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a) laser parameters were different for this assay (790 nm, 1.5 W cm-2, 3 min). b) laser parameters were different for this assay (808 nm, 0.8 W cm-2, 10 min). 
Intratumoral injection (i.t.); intravenous injection (i.v.); not available (N.A.). 
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy PEG) (DSPE-mPEG); PEGylated poly(maleic anhydride-alt-1-octadecene) (C18-PMH-mPEG); pentaerythritol 
tetrakis (3-mercaptopropionate)-terminated poly(methacrylic acid) (PTMP-PMAA); poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS); poly(9,9-bis(4-(2-
ethylhexyl)phenyl)fluorene-alt-co-6,7-bis(4-(hexyloxy)phenyl)-4,9-di(thiophen-2-yl)-thiadiazoloquinoxaline) (PFTTQ); poly(acrylic acid) (PAA); polyaniline (PANI); 
poly(caprolactone) (PCL); poly(ethyleneimine) (PEI); poly(ethylene glycol) (PEG); polypyrrole (PPy); poly(vinyl alcohol) (PVA); poly(vinylpyrrolidone) (PVP); red blood cell 
(RBC); reduced glutathione (GSH).  

PEG-GO/CuS nanocomposites HeLa 

tumor-bearing 

mice 

i.t. 50 μg 980 nm, 1 W cm-2,  

10 min 

N.A. Tumor growth 

reduced 

[74] 

Polydopamine coated Fe3O4 nanoparticles A549 

tumor-bearing 

mice 

i.t. 50 μg 808 nm, 6.6 W cm-2,  

3 min 

≈ 60 °C Tumor 

regression 

[75] 

Fe3O4 coated PPy nanoparticles SW-1990 

tumor-bearing 

mice 

i.t. 25 μg 808 nm, 0.25 W cm-2,  

5 min 

≈ 49 °C N.A. [76] 

PEGylated hollow gold-silver alloy  

urchin-shaped nanostructures 

4T1 

tumor-bearing 

mice 

i.t. 3 μg 808 nm, 1 W cm-2,  

5 min 

≈ 70 °C Tumor 

eradication 

[77] 

Polydopamine coated PEI-gold nanostars HeLa 

tumor-bearing 

mice 

i.t. 5.6 mM 

(100 μL) 

808 nm, 1.3 W cm-2,  

10 min 

≈ 59 °C Tumor 

eradication 

[78] 

PEGylated gold-silver nanostars MCF-7 

tumor-bearing 

mice 

i.t. 4 μg 808 nm, 2 W cm-2,  

5 min 

N.A. Tumor 

regression 

[79] 
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of Graphene Family Nanomaterials for Application in Cancer Therapy.   
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3.1. Abstract  

Graphene family nanomaterials’ (GFN) ability to interact with near-infrared light has propelled 

their application in cancer PTT. Furthermore, the graphitic lattice of GFN can adsorb different 

types of molecules, which has motivated their use in cancer drug delivery. However, the direct 

application of GFN in cancer therapy is severely hindered by their poor colloidal stability,  

sub-optimal safety, inefficient tumor uptake and non-selectivity towards cancer cells. To 

overcome these limitations, GFN have been functionalized with different types of materials. 

This chapter is focused on the different functionalizations used in the design of GFN aimed for 

cancer therapy, disclosing their role on surpassing the critical issues related to GFN-based 

therapies. 

 

Keywords: cancer therapy; graphene oxide; nanostructures; photothermal therapy; tumors  
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3.2. Introduction 

GFN have been receiving a growing attention in various fields, including cancer therapy [1-6]. 

In this context, GFN have been mostly explored as photothermal agents due to their NIR 

absorption and as delivery vehicles due to their ability to adsorb drugs (and other molecules) 

on their surface [7, 8]. 

Despite the enormous potential of GFN, the poor water solubility and weak stability of these 

materials limit their use in cancer therapy [9, 10]. Moreover, as-synthesized GFN are not suited 

to become passively accumulated in the tumor site nor tailored to be selectively internalized 

by cancer cells [11-14]. Furthermore, depending on the surface chemistry, size or impurities 

content, some GFN have shown to be cytotoxic [15-18]. To overcome these limitations, 

researchers have been modifying the surface of GFN with a variety of materials. 

In the following sub-sections, the different functionalizations performed to allow an efficient 

application of GFN in cancer therapy and enhance their therapeutic performance and safety 

are discussed. Firstly, the physicochemical properties of GFN as well as the most convenient 

routes for functionalizing these materials are analyzed (section 3.3). Afterward, the 

functionalization of GFN for application in cancer therapy and its implications are discussed 

(section 3.4). The functionalizations performed to improve GFN hydrophilicity and colloidal 

stability are discussed in section 3.4.1., and those that aim to improve their biocompatibility 

and hemocompatibility are analyzed in section 3.4.2. The approaches employed to enhance the 

blood circulation time and tumor uptake of GFN are reviewed in section 3.4.3. The 

functionalizations that improve GFN cellular uptake and selectivity towards cancer cells are 

discussed in section 3.4.4. Finally, an overview about the future directions are presented in 

section 3.5. For the sake of brevity, this chapter does not cover modifications that aim to 

improve GFN tumor accumulation by means of external forces (e.g. by using magnetic fields), 

nor those that enhance GFN therapeutic performance through the incorporation of other 

nanostructures (e.g. gold nanostructures).  

 

3.3. GFN: physicochemical properties and 

functionalization routes  

GO is probably the most applied GFN for cancer therapy and it is also used as the precursor for 

the synthesis of other graphene-based nanomaterials. GO is composed by a monolayer of 

graphite containing several types of oxygen functional groups such as carboxyl, hydroxyl or 

epoxy groups (Figure 3.1). This material is generally produced through the chemical oxidation 

of graphite and exfoliation of the resulting material (graphite oxide), into a single layer 
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material (GO). Over the years, several methods have been developed to synthesize GO, being 

the Hummer’s and the improved Hummer’s (also known as Tour method) methods the most 

commonly employed [19, 20]. 

 

  

Figure 3.1. Schematic representation of the synthesis of GO and rGO. The reduction of GO provokes 

alterations on physicochemical properties of the materials, which impact on their application in cancer 

therapy. The most commonly used routes for functionalizing GO and rGO are also represented.  

N-Hydroxysuccinimide (NHS). 

 

GO aromatic lattice can adsorb several types of molecules through hydrophobic interactions or 

π-π stacking. A variety of cancer-relevant molecules such as chemotherapeutic drugs or 

proteins can be loaded on GO by exploring these non-covalent interactions [7]. Although 

therapeutic agents may also be conjugated to the carboxyl-groups of GO, such approach is not 

usually pursued since these groups may be required for the functionalization of GO. 

Furthermore, the NIR absorption of GO also allows its application as a photothermal agent or 

as a light-responsive delivery vehicle in cancer therapy [21, 22]. 
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However, the direct applicability of GO in cancer therapy is limited by its poor colloidal stability 

since it promptly precipitates in biological fluids [9]. Moreover, GO has a sub-optimal 

biocompatibility and hemocompatibility, as well as inefficient tumor uptake and non-selectivity 

towards cancer cells (discussed in detail in section 3.4). These limitations can be surpassed by 

functionalizing GO with different types of materials (discussed in section 3.4). Based on its 

structure, GO is generally functionalized through the formation of amide bonds established 

between the carboxyl groups of GO and primary amines of other materials using  

1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide (EDC; a water soluble carbodiimide 

crosslinker) chemistry [23]. These oxygen functional groups may also be conjugated with 

polymerization initiators, allowing the direct growth of polymers on GO surface [24, 25]. 

Alternatively, the aromatic lattice of GO allows its functionalization with amphiphilic materials 

by exploring hydrophobic interactions or π-π stacking [26].  

GO derivatives such as base treated GO and carboxylated GO (GO-COOH) have also been 

explored in cancer therapy due to their improved properties [27-29]. Base treated GO is 

obtained by washing GO with sodium hydroxide, a process that removes the oxidation debris 

from GO lattice, improving its loading capacity [30, 31]. GO-COOH is produced by reacting GO 

with chloroacetic acid or sodium chloroacetate [32-34]. This modification introduces additional 

carboxyl groups for chemical conjugation and improves GO NIR absorption [32-34]. However, 

these GO derivatives suffer from the same stability, biocompatibility, tumor uptake and 

selectivity problems that affect GO, which impose their functionalization. 

rGO is another GFN applied in cancer therapy. rGO is generally obtained by treating GO with 

reducing agents such as hydrazine hydrate (for the sake of clarity, rGO will refer to rGO attained 

using hydrazine hydrate) [10, 35]. Other reducing agents such as ascorbic acid or dopamine 

have also been successfully applied in the reduction of GO [12, 36-38]. The reduction of GO 

aims to restore its graphitic lattice by removing the oxygen functional groups, and such 

procedure drastically changes the properties of the materials (Figure 3.1). In fact, when 

compared to GO and its derivatives, rGO displays a higher NIR absorption and loading capacity, 

conferring an improved photothermal and drug delivery potential to this material [10, 39]. 

However, rGO has a weak water solubility (and stability) and its application in cancer therapy 

is also hindered by the same factors that affect GO, thus demanding its functionalization 

(discussed in detail in section 3.4). As rGO has limited (or close to none) oxygen functional 

groups available for conjugation, this material is generally functionalized with amphiphilic 

polymers through non-covalent interactions (hydrophobic interactions or π-π stacking) [23, 40-

42]. Exceptionally, GO reduced by dopamine can be covalently functionalized with materials 

containing amine or thiol groups through catechol chemistry (reaction of the oxidized catechol 

groups with amine/thiol groups through Michael addition or Schiff base reactions) [37, 43]. 

Graphene oxide nanoribbons (GONR) and reduced graphene oxide nanoribbons (rGONR) are 

other GFN explored in cancer therapy. GONR are obtained by unzipping multiwall carbon 
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nanotubes (MWCNT) through means of oxidation and can be functionalized by the same 

procedures described for GO [44]. GONR can also be reduced to rGONR, a modification that 

also improves their NIR absorption and photothermal capacity but reduces their solubility [45]. 

Similar to rGO, rGONR are also usually functionalized with amphiphilic materials [45]. 

Overall, these functionalization routes are widely applied when preparing GFN aimed for cancer 

therapy due to their simplicity, ability to be performed in aqueous solutions and compatibility 

with the compounds to be bonded to GFN. Other functionalization approaches that are not 

within the scope of this chapter are thoroughly described elsewhere [46-48]. 

 

3.4. Functionalization of GFN for application in 

cancer therapy 

The functionalization of GFN enables a safer administration of these nanomaterials and ensures 

that these are able to overcome the different biological barriers required for an efficient and 

selective accumulation in the tumor cells (Figure 3.2). The different functionalizations 

performed to improve GFN properties and their implications are reviewed in the next  

sub-sections.  

 

3.4.1. Functionalizations used to improve the hydrophilicity and 

colloidal stability of GFN 

GFN should be soluble in aqueous solutions and must remain stable (i.e. preserve their 

physicochemical properties) in the medium used for their administration (usually phosphate 

buffered saline (PBS) or NaCl solutions) and in biological fluids (usually simulated using fetal 

bovine serum (FBS) supplemented cell culture medium) - Figure 3.2. Although GO has adequate 

solubility in water (due to its oxygen-functional groups), it precipitates in saline solutions and 

in physiological media [9]. To overcome this limitation, GO is usually covalently functionalized 

with hydrophilic polymers containing amine groups through the formation of amide bonds. In 

this regard, branched amine terminated PEG or amine terminated Dextran have been widely 

explored by researchers since these polymers are capable of entailing onto GO materials a 

lasting stability across several fluids [9, 10, 23]. Alternatively, amphiphilic PEGylated polymers 

such as Pluronic® F-127, Poloxamer 188 (Pluronic® F-68) or D-α-Tocopheryl polyethylene glycol 

1000 succinate (TPGS) can also be used for improving the colloidal stability of GO derivatives 

[26, 28, 49]. Other materials capable of improving the stability of GO-based nanomaterials are 

described in Table 3.1 (presented after the conclusion section). 
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Figure 3.2. Schematic representation of the different barriers that functionalized GFN must overcome in 

order to become accumulated in the tumor and internalized by cancer cells. 

 

The reduced forms of GO-based materials have a poor solubility in aqueous solutions [10]. 

Similar to GO, rGO derivatives also precipitate in saline and physiological media [10]. To address 

these limitations, rGO has been non-covalently functionalized with PEG-based amphiphilic 

polymers such as C18-PMH-PEG and with amphiphilic polymers based on Dextran and HA [23, 40-

42]. rGO coated with bovine serum albumin (BSA) also displays an improved solubility and 

colloidal stability [23, 50]. Alternatively, some synthetic routes allow the simultaneous 

reduction and functionalization of GO derivatives with hydrophilic polymers, which is a 

convenient approach to produce functionalized rGO-based materials with aqueous solubility 

and improved colloidal stability [28, 51-53]. Other types of coatings used for improving the 

solubility and colloidal stability of rGO-based nanostructures are also described in Table 3.1.  
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3.4.2. Functionalizations used to improve the biocompatibility 

and hemocompatibility of GFN 

The biocompatibility of GFN is a topic under intense investigation, since it is affected by the 

intrinsic properties of the materials (e.g. surface chemistry, size, stability, purity/impurities) 

and by factors related to the assays conditions (e.g. culture conditions/presence of serum, cell 

line, type of assay used to evaluate the cytotoxicity) - extensively reviewed elsewhere [15-18, 

54]. In general, GO-based nanomaterials tend to display a better cytocompatibility than their 

reduced equivalents [37, 52]. Part of the cytotoxicity induced by rGO derivatives can be 

explained by the poor solubility of rGO and by the high toxicity of hydrazine hydrate, which is 

used in the majority of the reduction processes [37, 52]. For instance, GO reduced by hydrazine 

hydrate and GO reduced by hydrothermal treatment with glucose have very distinct effects on 

cells, being the latter less cytotoxic [52]. 

To diminish the safety issues associated with the use of GFN, these materials have been 

functionalized with different types of hydrophilic and biocompatible materials (please see 

Table 3.2 for further details; presented after the conclusion section). For instance, the coating 

of GO and rGO with BSA or PEG (branched amine terminated PEG for GO; C18-PMH-PEG for rGO) 

greatly improves the cytocompatibility of these materials towards macrophage, fibroblast and 

liver cell lines [23]. In in vivo studies, the administration of GO conjugated with branched amine 

terminated PEG by intravenous (i.v.; 20 mg kg-1) and intraperitoneal (i.p.; 50 mg kg-1) injections 

did not induce toxicity, even after 90 days of p.i. [55, 56]. An excellent in vivo biocompatibility 

was also reported for rGO coated with C18-PMH-PEG [40, 56]. BSA coated rGO and GO conjugated 

with amine modified Dextran did also not elicit any noticeable alterations on mice organs [50, 

57]. 

Despite the excellent in vivo biocompatibility displayed by some functionalized GFN, their  

long-term toxicity is a major concern since these materials are regarded as non-biodegradable. 

Zhuang Liu group unveiled that GO conjugated with PEG-SS-NH2 can suffer  

oxidative-biodegradation catalyzed by peroxidases after the removal of the detachable PEG 

coating under reductive conditions (like those found intracellularly), leading to their fast 

clearance from mice body [23]. In contrast, authors found that GO and rGO functionalized with 

non-detachable PEG- and BSA-based coatings did not suffer oxidative-biodegradation 

presumably due to the inability of the enzymes to reach GFN surface [23].  

On the other hand, in recent studies it was demonstrated that PEGylated GFN can induce 

immunologic reactions [58, 59]. Im et al. reported that rGO coated with a C18-PMH-PEG based 

polymer suffers fast blood clearance at the time of its re-injection [58]. This phenomenon is 

known as accelerated blood clearance, and it has been associated to several PEGylated 

materials [60]. In this case, authors verified that the production of anti-PEG IgM by mice at the 

time of the first injection of the PEG coated rGO mediated the clearance of the materials in 
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the subsequent injections [58]. In another study, GO conjugated with amine terminated 

methoxy-PEG (mPEG) induced cytokine secretion by macrophages despite not being 

internalized by these cells [59]. Recently, it was unveiled that poly(acrylic acid) (PAA) 

functionalized GO displays a superior biocompatibility under in vivo conditions in comparison 

to PEGylated GO, which should motivate the continuous pursuit for the optimal surface coatings 

for GFN [11]. 

Although the hemolytic potential of GFN depends on multiple factors (e.g. materials size, 

oxygen content, surface charge), both GO and rGO based materials can induce the lysis of RBC 

[16]. In this regard, GO is generally a stronger inducer of RBC hemolysis than rGO [61]. For 

instance, a concentration as low as 12.5 µg mL-1 of GO can induce a hemolysis of  12 %, while 

100 µg mL-1 of rGO induces  13 % of hemolysis [61]. On the other hand, rGO may also induce 

blood clumping due to its poor solubility [16]. In this way, the functionalization of GFN surface 

is also crucial to address their blood compatibility problems. In this regard, the modification of 

GO surface with heparin or bovine α-lactalbumin can suppress in vitro the hemolysis of RBC 

(see Table 3.2 for further details) [62, 63]. Regarding rGO based materials, their 

functionalization with PVA, BSA or heparin also reduces the in vitro hemolytic potential of these 

materials [37, 62, 64]. The good in vivo biocompatibility displayed by GFN coated with PAA 

[11], PEG [55, 56], and Dextran [65] based materials further confirms that these materials can 

mitigate the blood compatibility problems associated with GFN, as attested by hematological 

analysis (Table 3.2). 

 

3.4.3. Functionalizations used to improve the blood circulation 

time and tumor accumulation of GFN 

GFN are not suited to overcome the biological barriers required to achieve a suitable tumor 

accumulation. Upon introduction in the blood stream, GFN adsorb proteins (including opsonins) 

[11] and suffer internalization by macrophages [12], leading to their clearance. In this regard, 

the functionalization of GFN with non-fouling and stealth materials such as Dextran [66], PEG 

[11, 59], PVP [12], or PAA [11] can greatly reduce these interactions, and thus may improve 

materials’ blood circulation time.  

During circulation, nanomaterials may extravasate through the 200-1200 nm fenestrae present 

on the tumor vasculature and may become retained at the tumor site due to the ineffective 

lymphatic drainage present on this zone [8, 67, 68]. This process is known as tumor 

accumulation through the EPR effect and it is often regarded as a process that is strongly 

influenced by nanomaterials’ size [8, 68]. Besides the extravasation through the static pores 

present on the tumor vasculature, recently it was unveiled that nanomaterials may reach the 

tumor zone by taking advantage from the dynamic and short-lived bursts (also termed 
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eruptions) that occur in tumor-associated vessels, which drive the blood flow into the tumor 

interstitial space [69] – Figure 3.2. Thus, the functionalization of GFN surface to achieve higher 

blood circulation times can lead to an improved tumor accumulation since it will increase the 

likelihood of the materials to benefit from the EPR effect and from the dynamic vents that may 

occur on tumor vasculature. In this regard, the functionalization of GFN with PEG based coatings 

can greatly improve their blood circulation time and thus their tumor accumulation (Table 3.3; 

presented after the conclusion section). Yang et al. observed that GO covalently functionalized 

with branched amine terminated PEG displays a t1/2 of  1.5 h, being able to achieve a high 

tumor uptake [21]. Due to its good tumor-homing capacity, the PTT mediated by PEGylated GO 

led to the eradication of mice’s tumor (20 mg kg-1, 808 nm, 2 W cm-2, 5 min) [21].  

In a subsequent work, authors investigated the biodistribution in tumor bearing mice of 

PEGylated GO (covalently functionalized with branched amine terminated PEG) and  

C18-PMH-PEG coated rGO [10]. In this case, PEGylated GO demonstrated a second phase blood 

circulation half-life (t’1/2) of about 5.8 h (t1/2  0.29 h), resulting in a tumor accumulation lower 

than 1 % ID g-1 [10]. In contrast, C18-PMH-PEG coated rGO displayed a up to  2.9-fold longer 

blood circulation time (t’1/2  16.7 h; t1/2  0.51 h), leading to a tumor accumulation of  

≈ 6 % ID g-1, a profile that may be attributed to a denser surface functionalization conferred by 

the C18-PMH-PEG coating [10]. Due to its higher tumor accumulation and superior photothermal 

capacity, C18-PMH-PEG coated rGO was able to induce tumor eradication at a power density of 

only 0.15 W cm-2 (808 nm, 5 min, 20 mg kg-1), while PEGylated GO only mediated a slight 

reduction of the tumor growth (808 nm, 0.15 W cm-2, 5 min, 20 mg kg-1) [10]. Later, Xu et al. 

conjugated an additional PEG segment to C18-PMH-PEG coated rGO (double PEGylation), which 

increased the blood circulation time of this nanomaterial from t1/2 = 0.19 h (t’1/2 = 18.8 h) to 

t1/2 = 0.35 h (t’1/2 = 27.7 h) [70]. This improvement on nanomaterials’ blood circulation time 

led to a  1.8-fold increase on their tumor-homing capacity (C18-PMH-PEG coated rGO: 8.8 % ID 

g-1; C18-PMH-PEG-PEG coated rGO: 15.5 % ID g-1) [70]. These results are in line with other 

literature reports that highlight that the optimization of the PEG density and PEG molecular 

weight present on nanomaterials’ surface is crucial to achieve an enhanced tumor accumulation 

[71, 72]. 

The ability of functionalized GFN to become accumulated in the tumor zone can also be 

explored to improve the accumulation of therapeutics (e.g. drugs) in the tumor mass, through 

their loading on the aromatic matrix of GFN or covalent conjugation to the nanomaterials [22, 

27]. For instance, the delivery of a platinum-based drug by branched PEG-Platin-GO conjugates 

results in a  2.4-fold higher platinum tumor uptake than that achieved through the 

administration of cisplatin ( 9.6 vs. 4 µg g-1) [22]. In another work, the accumulation of 

Photochlor® in 4T1 tumors was also enhanced when delivered by linear PEG-GO  

( 1.3 vs. 3.1 % ID g-1) [27]. Furthermore, drug-loaded functionalized GFN can display a lower 
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accumulation in off-target organs (e.g. liver or spleen) than free drugs, and thus reduce drugs’ 

side-effects [22, 27] (Table 3.3). 

 

3.4.4. Functionalizations used to improve the cellular uptake and 

selectivity of GFN 

After reaching the tumor site, GFN must be internalized by cancer cells (Figure 3.2). In this 

regard, the functionalization of GFN can improve their cellular internalization, leading to an 

improved therapeutic effect. For instance, the delivery of therapeutics to cancer cells by PEG 

or Dextran functionalized GFN can be more efficient than that mediated by non-functionalized 

GFN or attained through the diffusion of free drugs (please see Table 3.4 for more details; 

presented after the conclusion section) [22, 27, 41, 73].  

Furthermore, GFN can also be decorated with ligands that are recognized by the overexpressed 

receptors available on cancer cells’ membranes, thus enhancing their tumor uptake and 

selectivity towards cancer cells, while reducing their off-target accumulation. In this regard, 

GFN have been mostly decorated with FA (folate receptor targeted) [13], RGD peptide  

(integrin αvβ3 targeted) [74], transferrin (transferrin receptor targeted) [75] and HA (CD44 

receptor targeted) [29]. For this purpose, targeted GO based materials can be prepared by 

covalent interactions (Table 3.4). Jung et al. covalently functionalized GO-COOH with 

hexamethylenediamine-HA (HMDA-HA; amine terminated HA), and they noticed that the 

photothermal effect mediated by HA-GO leads to the eradication of mice’s melanoma tumors 

due to the ability of these nanostructures to reach the tumor mass upon topical administration 

[29]. The attachment of thiol terminated antibodies to GO covalently functionalized with 

branched amine and maleimide (thiol reactive) terminated PEG can also be explored to prepare 

targeted PEGylated GO materials with a higher tumor-homing capacity than their non-targeted 

equivalents [76, 77]. 

To prepare targeted rGO-based nanostructures, this material is generally functionalized with 

amphiphilic polymers containing the targeting ligands (please note that this approach may also 

be applied to produce targeted GO derivatives) (Table 3.4). In this regard, Akhavan and Ghaderi 

compared the biodistribution of rGO nanomesh coated with 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-PEG (DSPE-PEG) and DSPE-PEG-RGD amphiphilic polymers, verifying 

that the RGD functionalization improved the nanomaterials’ tumor uptake from about 8.9 to  

31 % ID g-1 [74]. The RGD functionalization also reduced the nanomaterials’ liver and spleen 

accumulations from about 17 and 12 to 5 and 3 % ID g-1, respectively [74]. Due to its remarkably 

high tumor uptake, the photothermal effect mediated by DSPE-PEG-RGD coated rGO nanomesh 

induced the eradication of mice’s tumors using a low injected dose and at a very low power 
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density (2 µg, 808 nm, 0.1 W cm-2, 7 min) [74]. Other routes to prepare targeted rGO-based 

materials are summarized in Table 3.4. 

Furthermore, the decoration of GFN with more than one targeting ligand is also a promising 

approach to improve their tumor-homing capacity and therapeutic capacity [78, 79]. Jang and 

co-workers observed that GO dual-functionalized with cyclic RGD (cRGD) and FA (using 

Pluronic® F-127-cRGD and Pluronic® F-127-FA conjugates) has a tumor accumulation superior to 

that of their equivalents only decorated with one targeting ligand (cRGD or FA) [78]. In vivo, 

the photothermal effect mediated by the dual-ligand functionalized GO induced tumor 

eradication, while that mediated by single-ligand functionalized GO only promoted a reduction 

of the tumor growth (7.5 mg kg-1, 808 nm, 2 W cm-2, 10 min) [78].  

Still, the therapeutic capacity of targeted GFN is also influenced by the density of the ligand 

immobilized on the materials’ surface [80]. In this regard, Lee et al. prepared GO coated with 

Pluronic® F-127-FA conjugates with different FA densities [80]. In vitro, authors verified that 

increasing the FA density on GO surface augments the internalization of these materials by 

cancer cells [80]. However, in vivo, GO decorated with FA densities of 0, 10 and 25 % had a 

similar tumor accumulation [80]. In contrast, GO functionalized with FA densities of 50 and  

100 % had a similar performance, displaying the highest tumor uptake [80]. In agreement with 

these findings, the photothermal effect (10 mg kg-1, 808 nm, 2 W cm-2, 10 min) mediated by 

GO with 50 % FA decoration produced a hyperthermia to 60 °C and tumor eradication in 2 mice 

(out of 3) [80]. On the other hand, GO with 0 and 25 % FA densities only caused a reduction of 

the tumors’ growth upon irradiation, since these only produced hyperthermia to 47 and 50 °C, 

respectively [80]. 

 

3.5. Conclusion and outlook 

In this chapter, the different strategies used to functionalize GFN aimed for application in 

cancer therapy have been presented, disclosing their impact on overcoming the limitations 

associated with GFN based therapies. 

GFN are promising materials for application in cancer therapy due to their photothermal and 

drug delivery capabilities. However, the direct application of these materials for cancer 

therapy is severely limited by their poor colloidal stability, sub-optimal safety, inefficient 

tumor uptake and non-selectivity towards cancer cells. These critical limitations have been 

surpassed through the functionalization of GFN with different materials. In particular, GO 

derivatives were mostly functionalized by conjugating them with amine terminated polymers 

while rGO-based materials were largely non-covalently modified with amphiphilic polymers.  
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In general, the passivation of GFN surface with PEG-based materials was the most explored 

approach by researchers. In fact, PEGylated GFN demonstrated an excellent colloidal stability 

and biocompatibility both in vitro and in vivo. PEG coatings also improved the blood circulation 

time of GFN. In some cases, the high tumor uptake of PEGylated GFN enabled the eradication 

of mice’s tumors upon NIR laser irradiation. Moreover, the decoration of GFN with targeting 

ligands could further improve their tumor-homing capacity and selectivity towards cancer cells, 

which permitted the complete photoablation of tumors, using a low injected dose of 

nanostructures and power density, as well as a reduction in the off-target toxicity of the 

delivered drugs. 

The therapeutic potential of passive and active-targeted PEGylated GFN is only challenged by 

the recent reports that disclose the immunogenicity of some PEG-based coatings. Considering 

the vast research on the immunogenicity of PEGylated liposomes, the PEGylated GFN-immune 

system interactions are likely to be influenced by multiple factors and thus further research is 

needed on this topic. Moreover, this phenomenon should motivate researchers to investigate 

alternative coatings that i) have a good safety profile, ii) are able to functionalize both GO and 

rGO derivatives, iii) display long blood circulation times, to promote a higher tumor uptake, 

and iv) offer versatility to be conjugated with targeting ligands, allowing a cancer-cell selective 

therapy. Moreover, coatings that detach from GFN surface in response to  

tumor-microenvironment or intracellular stimuli should be further investigated due to their 

possible impact on the clearance of GFN. 

Overall, the continuous interdisciplinary efforts for developing new routes or materials to 

functionalize GFN will surely have a major impact on their application in cancer therapy. 
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Table 3.1. Different functionalizations used to improve the hydrophilicity and colloidal stability of GFN. 

GFN Material Type of 

functionalization 

Observations Ref. 

GO Branched amine terminated PEG Covalent Stable in water, PBS and 10 % FBS supplemented cell 

culture medium (for at least 7 days) 

[23] 

GO Branched amine terminated PEG Covalent Stable in water, 9 % NaCl and FBS [10] 

GO Amine terminated mPEG with a bio-reducible linkage Covalent Stable in water and PBS [23] 

GO Amine terminated Dextran Covalent Stable in water, PBS and 20 % BSA solution  

(up to 1 month) 

[81] 

GO Amine modified Dextran Covalent Stable in water, 9 % NaCl, serum and cell culture 

medium 

[57] 

GO Chitosan Covalent Stable in water and cell culture medium (for at least  

48 h) 

[82] 

GO HA-ADH Covalent Stable in water, PBS and cell culture medium [83] 

GO Branched PEI Covalent Stable in water and saline solution [84] 

GO Heparin modified with dopamine Covalent Stable in water and PBS (for at least 1 month) [62] 

GO Branched amine terminated PEG, Branched PEI Covalent Stable in water, saline and FBS supplemented cell 

culture medium 

[84] 

GO Branched amine terminated PEG, PAH Covalent Stable in water and 10 % FBS supplemented cell culture 

medium (for at least 12 h) 

[73] 

GO Amine terminated branched PEG, PAH modified with 

Succinic anhydride or 2,3-Dimethylmaleic anhydride 

Covalent Stable in water and 10 % FBS supplemented cell culture 

medium (for at least 12 h) 

[73] 

GO PEGylated alginate with a bio-reducible linkage 

containing amine groups  

Covalent Stable in water and PBS (for at least 48 h) [85] 
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GO Amine terminated PEG (conjugation), 

PMAA (polymerization), Crosslinked with cystamine 

Covalent Stable in water and PBS (for at least 24 h) [86] 

GO Amine terminated PEG (conjugation), or PAA 

(polymerization) or PAM (polymerization) 

Covalent Stable in water, PBS and FBS supplemented cell culture 

medium (for at least 24 h) 

[11] 

GO BSA Non-covalent Stable in water, PBS and 10 % FBS supplemented cell 

culture medium (for at least 7 days) 

[23] 

GO Pluronic® F-127 Non-covalent Stable in water, 75 mM NaCl, PBS, 10 % FBS 

supplemented cell culture medium and FBS  

(for at least 24 h) 

[26] 

GO Poloxamer 188 Non-covalent Stable in water, PBS and cell culture medium [49] 

GO (base treated) Amine terminated mPEG  Covalent Stable in water, PBS, FBS and cell culture medium  

(for at least 24 h) 

[27] 

GO (base treated) Branched amine terminated PEG Covalent Stable in water, PBS, cell culture medium and serum [9] 

GO (base treated) TPGS Non-covalent Stable in NaCl (during 12 h) and water and 10 % FBS 

supplemented cell culture medium (for at least 5 days) 

[28] 

GO-COOH Amine terminated PEG with a bio-reducible linkage Covalent Stable in water, PBS and cell culture medium [87] 

GO-COOH FA-PEG-NH2 Covalent Stable in PBS (for at least 48 h) [88] 

GO-COOH HMDA-HA Covalent Stable in water and 100 mM NaCl [29] 

GO-COOH FA Covalent Stable in water and D-Hanks buffer (for at least 24 h) [34] 

GO-COOH Octaarginine Covalent Stable in water and 10 % FBS supplemented cell culture 

medium (for at least 2 days) 

[89] 

GO-COOH Amine terminated mPEG, amine terminated PEG-FA 

conjugate 

Covalent Stable in cell culture medium [90] 
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GO (modified with 

amines)  

HA Covalent Stable in water and saline [91] 

rGO Glucose Covalent Stable in FBS and 10 % FBS supplemented cell culture 

medium (for at least 1 month) 

[53] 

rGO Heparin modified with dopamine Covalent Stable in water and PBS (for at least 1 month) [62] 

rGO C18-PMH-PEG Non-covalent Stable in water, PBS and 10 % FBS supplemented cell 

culture medium (for at least 7 days) 

[23] 

rGO C18-PMH-PEG Non-covalent Stable in water, 9 % NaCl, PBS, FBS and cell culture 

medium (for at least 1 week) 

[40] 

rGO Pluronic® F-127 Non-covalent Stable in water and cell culture medium [92] 

rGO BSA Non-covalent Stable in water, PBS and 10 % FBS supplemented cell 

culture medium (for at least 7 days) 

[23] 

rGO BSA Non-covalent Stable in water, 9 % NaCl, PBS, 10 % FBS solution and 

cell culture medium (for at least 1 month) 

[50] 

rGO Hematin-terminated Dextran Non-covalent Stable in water, PBS and 10 % FBS supplemented cell 

culture medium 

[41] 

rGO Cholesteryl HA Non-covalent Stable in water, PBS and 10 % FBS supplemented cell 

culture medium (for at least 7 days) 

[42] 

rGO Low molecular weight heparin-taurocholate conjugate Non-covalent Stable in PBS (up to 3 days) and 10, 50 and 90 % FBS 

supplemented cell culture medium (up to 4 h). 

[93] 

rGO Poly(glycerol)-naphthol conjugate Non-covalent Stable in PBS (up to several weeks) [94] 

rGO Dextran, Chitosan; 

FA-NHS 

Non-covalent; 

Covalent 

Stable in water, PBS, FBS and cell culture medium [14] 
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Adipic dihydrazide (ADH), poly(acrylamide) (PAM), poly(acrylic acid) (PAA), poly(allylamine hydrochloride) (PAH), poly(ethyleneimine) (PEI), poly(N-isopropylacrylamide) 

(PNIPAM), poly(methacrylic acid) (PMAA). 

  

rGO Gelatin Non-covalent Stable in water, PBS, FBS and cell culture medium  

(for at least 24 h) 

[95] 

rGO (hydrothermal 

treated) 

TPGS Non-covalent Stable in water, NaCl and 10 % FBS supplemented cell 

culture medium (at least for 5 days) 

[28] 

rGO (hydrothermal 

treated) 

Starch Non-covalent Stable in water (for at least 2 months, 4 ⁰C) [96] 

rGO (reduced by 

dopamine) 

Poly(dopamine), BSA Covalent Stable in water (for at least 2 weeks) and PBS (2 weeks) [37] 

rGO (reduced by 

dopamine) 

Poly(dopamine), Heparin Covalent Stable in water (for at least 1 month) and PBS  

(2 weeks) 

[37] 

rGO (ascorbic acid 

reduced) 

1,2-Dimyristoyl-sn-glycero-3-phospho-(1-rac-glycerol) 

sodium salt 

Non-covalent Stable in water [97] 

rGO (octadeylamine 

modified) 

Lactoferrin Non-covalent Stable in PBS and FBS supplemented cell culture 

medium (for at least 1 month) 

[98] 

rGO-PEI mPEG Covalent Stable in water (for at least 6 h) [39] 

rGO-Alkynyl PNIPAM-N3 Covalent Stable in water and PBS [99] 

rGO nanoplatelets Dextran Non-covalent Stable in water and biological fluids [65] 

Graphene Pluronic® F38, F68, F77, F87, F88, F98, F108, F127, 

L62, L64 P84, P103, P104 or P123 

Non-covalent Pluronic® F68, F77 and F87 are the most effective in the 

production of aqueous graphene suspensions 

[100] 

Graphene Tetronic® 304, 904, 908, 1107 or 1307 Non-covalent Tetronic® 1107 and 1307 are the most effective in the 

production of aqueous graphene suspensions 

[100] 
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Table 3.2. Different functionalizations used to improve the biocompatibility and hemocompatibility of GFN. 

GFN Material Type of 

functionalization 

Observations Ref. 

GO Branched amine terminated PEG Covalent PEG-GO (20 mg kg-1; i.v. injection) did not induce abnormalities on the major 

organs of tumor bearing mice after 40 days p.i.; 

Blood related parameters of healthy mice injected with PEG-GO (20 mg kg-1) 

after 3 months were similar to those of the control. 

[21] 

GO Branched amine terminated PEG Covalent PEG-GO is eliminated from mice body through feces and urine; 

PEG-GO (20 mg kg-1; i.v. injection) did not induce appreciable toxic effects on 

mice after 90 days p.i.; 

PEG-GO did not change mice’s hepatic and kidney functions nor blood 

biochemistry and hematological related parameters. 

[55] 

GO Branched amine terminated PEG Covalent PEG-GO (50 mg kg-1; i.p. injection) did not induce appreciable toxic effects on 

mice after 90 days p.i.; 

PEG-GO did not induce physiologically significant changes on mice’s hepatic and 

kidney functions nor on blood biochemistry and hematological related 

parameters. 

[56] 

GO Branched amine terminated PEG Covalent Coating GO with PEG improves the cytocompatibility of the materials in 7792, 

MRC-5 and U937 cell lines. 

[23] 

GO Amine terminated PEG with a  

bio-reducible linkage 

Covalent PEG-SS-GO has an improved cytocompatibility in U937 cells when compared to 

GO; 

After the detachment of the reducible coating, materials can be oxidized by 

horseradish peroxidase, leading to their degradation. 

[23] 
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GO Amine terminated mPEG Covalent PEG-GO induces cytokine secretion by macrophages despite not being 

internalized. 

 

[59] 

GO Amine modified Dextran Covalent Dextran-GO has a lower effect on the HeLa cells proliferation than GO; 

Dextran-GO (20 mg kg-1; i.v. injection) did not induce abnormalities in mice after 

1 and 7 days p.i. (histological analysis). 

[57] 

GO Amine terminated PEG 

(conjugation), or PAA 

(polymerization) or PAM 

(polymerization) 

Covalent The protein corona formed on the surface of GO-PEG and GO-PAA is lower than 

that present on GO and GO-PAM surfaces; 

GO-PEG and GO-PAA adsorb less IgG than GO and GO-PAM; 

GO-PEG and GO-PAA do not induce meaningful cytotoxicity to J774.A1 cells up 

to 10 µg mL-1 (24 h of incubation) when incubated in serum-free and  

serum-supplemented medium; 

GO-PAA presents the lowest uptake by macrophages; 

The survival rate of mice injected with GO-PEG and GO-PAA (1 mg kg-1;  

i.v. injection) was 100 %; 

Mice injected with GO and GO-PAM (1 mg kg-1) had a survival rate of 80 and  

90 %, respectively; 

GO-PAA has the best in vivo biocompatibility profile since it had the lowest effect 

on mice’s liver and lungs (histological analysis) and all the assessed blood 

biochemistry markers were non-significantly different from those of the control 

(at 1 mg kg-1 for 14 days). 

[11] 

GO Heparin modified with dopamine Covalent At 200 µg mL-1, Heparin-GO induces ≈ 1.2 % of hemolysis while GO induces  

78.5 %; 

Heparin-GO has a better cytocompatible profile in HUVECs than GO (viability of 

≈ 95 vs. ≈ 68 %; at 100 µg mL-1; 24 h of incubation). 

[62] 
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GO PEG Non-covalent PEG-GO reduces the invasion and migration of breast cancer cells (in vitro and 

in vivo); 

PEG-GO can disturb the assembly of cytoskeletal F-actin through the 

downregulation of the expression of energy metabolism-related genes, reduction 

of mitochondrial oxidative phosphorylation, and inhibition of the synthesis of 

ATP.  

[101] 

GO BSA Non-covalent Coating GO with BSA improves the cytocompatibility of the materials in 7792, 

MRC-5 and U937 cell lines. 

[23] 

GO BSA, transferrin, fibrinogen, 

immunoglobulin or FBS proteins 

Non-covalent A549 cells incubated with GO (in FBS free medium) display a viability of about  

55 % (at 200 µg mL-1); 

GO coated with several proteins does not induce considerable cytotoxicity to 

A549 cells (at 200 µg mL-1). 

[102] 

GO PEG, DOC or Pluronic® P123 Non-covalent PEG coated GO has a better cytocompatible profile in L929 cells than DOC coated 

GO and Pluronic® P123 coated GO (48 h incubation period). 

[103] 

GO Bovine α-lactalbumin; 

Glutaraldehyde 

Non-covalent; 

Covalent 

GO induces a hemolysis of about 27 % at the concentration of 30 µg mL-1; 

Bovine α-lactalbumin/GO induces a hemolysis of about 3 % at the concentration 

of 333.33 µg mL-1. 

[63] 

GO (modified with 

amines)  

HA Covalent HA-GO does not induce considerable alterations in HeLa and L929 cells’ viability 

up to 200 µg mL-1 (24 h of incubation; viability > 80 %); 

At 400 µg mL-1, HA-GO induces 0.7 % of hemolysis while GO induces 1.5 %; 

No toxicity at the tested dose of HA-GO (10 mg kg-1; i.v. injection) was found  

in vivo 10 days p.i. (blood biochemistry and histological analysis). 

[91] 

GO-COOH L-Cysteine Covalent GO has a stronger effect on the hatching rate of zebrafish embryos than  

Cysteine-GO; 

[104] 
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Cysteine-GO does not induce considerable tissue abnormalities, malformations 

or death in the embryos at the tested doses (up to 10 µg mL-1). 

rGO Chitosan Covalent Chitosan-rGO does not induce meaningful alterations on CEM cells viability up to 

400 µg mL-1 (5 days of incubation). 

[105] 

rGO C18-PMH-PEG Non-covalent Coating rGO with PEG-based amphiphile improves the cytocompatibility of the 

materials in 7792, MRC-5 and U937 cell lines. 

[23] 

rGO a) C18-PMH-PEG Non-covalent PEG-rGO (50 mg kg-1; i.p. injection) did not induce appreciable toxic effects on 

mice after 90 days p.i.; 

PEG-rGO did not induce physiologically significant changes on mice’s hepatic and 

kidney functions nor on blood biochemistry and hematological related 

parameters. 

[56] 

rGO b) C18-PMH-PEG Non-covalent PEG-rGO (50 mg kg-1; i.p. injection) did not induce appreciable toxic effects on 

mice after 90 days p.i.; 

PEG-rGO did not induce physiologically significant changes on mice’s hepatic and 

kidney functions nor on blood biochemistry and hematological related 

parameters. 

[56] 

rGO C18-PMH-PEG Non-covalent Mice injected with PEG-rGO (10 mg kg-1; i.v. injection) did not display signs of 

toxicity after 50 days p.i. (histological, blood and biochemistry analysis). 

[40] 

rGO DSPE-PEG-NH2 Non-covalent DSPE-PEG-NH2 coated rGO induces cytotoxic effects on glioblastoma cells at 

concentrations above 10 µg mL-1. 

[45] 

rGO BSA Non-covalent Coating rGO with BSA improves the cytocompatibility of the materials in 7792, 

MRC-5 and U937 cell lines. 

[23] 

rGO BSA Non-covalent BSA-rGO (20 mg kg-1) did not induce appreciable alterations on mice’s major 

organs after 30 days p.i.. 

[50] 
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rGO Cholesteryl HA Non-covalent HA-rGO and rGO have a similar cytocompatibility in vitro (24 h of incubation); 

1 day p.i., rGO reduces mice survival rate to 40 % (dose of 20 mg kg-1;  

i.v. injection); 

1 day p.i., HA-rGO treated mice have a 100 % survival rate (40 mg kg-1).  

[42] 

rGO Hematin terminated Dextran Non-covalent Dextran-rGO has a better cytocompatible profile in MCF-7/ADR cells than GO 

(viability of ≈ 85 vs. ≈ 53 %; at 100 µg mL-1; 48 h of incubation). 

[41] 

rGO Poly(glycerol)-naphthol conjugate Non-covalent Poly(glycerol)-rGO does not induce considerable cytotoxicity to MCF-7 cells  

(at 100 µg mL-1; 48 h of incubation)  

[94] 

rGO (reduced by 

dopamine) 

Heparin modified with dopamine Covalent At 200 µg mL-1, Heparin-rGO induces ≈ 0.6 % of hemolysis while GO induces  

78.5 %; 

Heparin-rGO has a better cytocompatible profile in HUVECs than GO (viability of 

≈ 100 vs. ≈ 68 %; at 100 µg mL-1; 24 h of incubation). 

[62] 

rGO (reduced by 

dopamine) 

Poly(dopamine), 

BSA 

Covalent BSA-poly(dopamine)-rGO induces an insignificant hemolysis ( 1.8 %;  

at 200 µg mL-1); 

At 100 µg mL-1, BSA-poly(dopamine)-rGO has a better cytocompatibility than rGO 

( 73 vs.  39 %). 

[37] 

rGO (reduced by 

dopamine) 

Poly(dopamine), 

Heparin 

Covalent Heparin-poly(dopamine)-rGO induces an insignificant hemolysis ( 0.2 %;  

at 200 µg mL-1); 

At 100 µg mL-1, Heparin-poly(dopamine)-rGO has a better cytocompatibility than 

rGO ( 95 vs.  39 %; HUVECs; 24 h of incubation).  

[37] 

rGO (ascorbic acid 

treated) 

PVP Covalent PVP-rGO is less immunogenic than GO (induces less maturation of dendritic cells); 

PVP-rGO only induces IL-6 secretion by dendritic cells while GO induces higher 

IL-6 secretion as well as IL-1β and TNF-α secretions; 

PVP-rGO induces less apoptosis of T lymphocytes than GO; 

[12] 
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a) after PEGylation the size was estimated to be 50 nm; b) after PEGylation the size was estimated to be 27 nm; chondroitin sulfate potassium (CON), D-glucosamine sulfate 

potassium (GLU), hydroxyethyl cellulose (HEC), poly(lactide) (PLA), sodium deoxycholate (DOC).  

PVP-rGO suffered no appreciable phagocytosis by macrophages and enhanced 

their activity (GO was susceptible to phagocytosis).  

rGO (glucose 

reduced) 

PEG, DOC or Pluronic® P123 Non-covalent PEG coated rGO has a better cytocompatible profile in L929 cells than DOC 

coated rGO and Pluronic® P123 coated rGO (48 h incubation period). 

[103] 

rGO (hydrothermal 

treatment) 

Starch Non-covalent Starch-rGO does not induce meaningful alterations on SW-620 cells’ viability up 

to 200 µg mL-1 (viability > 90 %; 48 h of incubation). 

[96] 

rGONR DSPE-PEG-NH2 Non-covalent DSPE-PEG-NH2 coated rGONR induce cytotoxic and genotoxic effects on 

glioblastoma cells at concentrations above 1 µg mL-1. 

[45] 

rGO nanoplatelets Dextran Non-covalent Dextran-rGO nanoplatelets do not adsorb human serum albumin. [66] 

rGO nanoplatelets Dextran Non-covalent The maximum tolerable dose of Dextran-rGO nanoplatelets is between 50 and 

125 mg kg-1 (i.v. injection); 

30 days p.i., Dextran-rGO nanoplatelets demonstrate an excellent 

biocompatibility at injected doses of 50 mg kg-1 and bellow (histology, 

respiratory, cardiovascular and hematological factors analysis);  

Materials are excreted mostly through feces; 

Materials are almost completely eliminated from the body after 24 h p.i. 

[65] 

Graphene 

nanoplatelets 

PVA, HEC, PEG, PVP, CON, GLU or 

HA 

Non-covalent Graphene nanoplatelets coated with PVA or HEC present the lowest hemolytic 

effect (hemolysis ≤ 0.05 % at 500 µg mL-1); 

PVA coated graphene nanoplatelets are cytocompatible towards HFF-1 cells at 

50 (24 h of incubation) or 100 µg mL-1 (48 and 72 h of incubation). 

[64] 

Hydroxyl-

functionalized 

graphene 

PLA (polymerization), 

PEG (conjugation) 

Covalent PEG-PLA-graphene has a better cytocompatibility than graphene. [106] 
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Table 3.3. Different functionalizations used to improve the blood circulation time and tumor accumulation of GFN. 

GFN Material Type of 

functionalization 

Observations Ref. 

GO Branched amine terminated PEG Covalent PEG-GO has a t1/2 of about 1.5 h; 

PEG-GO achieves a high tumor uptake in 4T1, KB and U87 tumor bearing mice; 

Photothermal effect mediated by PEG-GO leads to tumor eradication (20 mg kg-1,  

808 nm, 2 W cm-2, 5 min). 

[21] 

GO Branched amine terminated PEG Covalent PEG-GO displays a t1/2 = 0.29 h (t’1/2 = 5.8 h) but achieves a tumor accumulation 

lower than 1 % ID g-1; 

PTT mediated by PEG-GO induces a slight reduction of the tumor growth (20 mg  

kg-1, 808 nm, 0.15 W cm-2, 5 min). 

[10] 

GO Branched amine terminated PEG-

Oxoplatin-COOH conjugate 

Covalent Accumulation of platinum in 4T1 tumors is enhanced when delivered by  

Platin-PEG-GO ( 4 vs. 9.6 µg g-1); 

Platinum tumor uptake of mice treated with Platin-PEG-GO and NIR radiation was  

 13.3 µg g-1, presumably due to hyperthermia enhanced EPR effect; 

The chemo-photothermal effect mediated by Platin-PEG-GO led to tumor 

eradication (twice: 10 mg kg-1, 785 nm, 1.5 W cm-2, 3 min); 

No obvious signs of toxicity were found on the off-target organs of mice treated with 

Platin-PEG-GO + NIR; 

Accumulation of platinum in the liver of mice treated with cisplatin, Platin-PEG-GO 

and Platin-PEG-GO in combination with NIR radiation were  9.0, 7.2 and  

6.6 µg g-1, respectively. 

[22] 

GO Amine modified Dextran Covalent Dextran-GO has t1/2 = 0.19 h (t’1/2 = 1.81 h); [57] 
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a) after PEGylation the size was estimated to be 65 nm; b) after PEGylation the size was estimated to be 27 nm.  

The liver and spleen accumulations reduce from about 16 and 10 % ID g-1 (at 4 h p.i.) 

to lower than 2 % ID g-1 at 7 days p.i.; 

Dextran-GO is mainly excreted in feces. 

GO (base 

treated) 

Amine terminated mPEG  Covalent Accumulation of Photochlor® in 4T1 tumors is enhanced when delivered by PEG-GO 

( 1.3 vs. 3.1 % ID g-1); 

The liver accumulation of Photochlor® is also reduced when delivered by PEG-GO  

( 37 vs. 27 % ID g-1). 

[27] 

rGO C18-PMH-PEG Non-covalent PEG-rGO has a t1/2 = 0.65 h (t’1/2  18 h), achieving a tumor accumulation of  

 4 % ID g-1 (at 48 h p.i.); 

The liver and spleen accumulations are about 15 and 21 % ID g-1, respectively. 

[40] 

rGO a) C18-PMH-PEG Non-covalent C18-PMH-PEG coated rGO displays a t1/2 = 0.22 h (t’1/2 = 17.5 h) and achieves a tumor 

accumulation of ≈ 5 % ID g-1. 

[10] 

rGO b) C18-PMH-PEG Non-covalent C18-PMH-PEG coated rGO displays a t1/2 = 0.51 h (t’1/2 = 16.7 h) and achieves a tumor 

accumulation of ≈ 6 % ID g-1; 

PTT mediated by C18-PMH-PEG coated rGO leads to tumor eradication (20 mg kg-1, 

808 nm, 0.15 W cm-2, 5 min). 

[10] 

rGO C18-PMH-PEG-NH2; Succinimidyl 

carboxyl methyl ester-PEG-Maleimide 

Non-covalent;  

Covalent 

Conjugation of additional PEG to C18-PMH-PEG coated rGO improves materials’ blood 

circulation time from t1/2 = 0.19 h (t’1/2 = 18.8 h) to t1/2 = 0.35 h (t’1/2 = 27.7 h); 

This modification also improves materials’ tumor accumulation from 8.8 to  

15.5 % ID g-1. 

[70] 
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Table 3.4. Different functionalizations used to improve the cellular uptake and selectivity of GFN. 

GFN Material Type of 

functionalization 

Observations Ref. 

GO Branched amine terminated 

PEG, 

PAH modified with 2,3-

Dimethylmaleic anhydride 

Covalent Delivery of DOX to MCF-7/ADR cells by the polymer functionalized GO produces a 

stronger therapeutic effect than that achieved using free DOX; 

The chemo-photothermal effect mediated by the polymer functionalized GO produces 

an even higher reduction on cancer cells’ viability. 

[73] 

GO Branched amine terminated 

PEG-Oxoplatin-COOH 

conjugate 

Covalent Delivery of platinum to 4T1 cancer cells by Platin-PEG-GO can produce a stronger 

therapeutic effect than that achieved using free cisplatin. 

[22] 

GO Branched amine and 

maleimide terminated PEG, 

TRC105-SH 

Covalent TRC105-PEG-GO targets tumor vasculature by binding to CD105; 

TRC105-PEG-GO can achieve a 2.9-fold higher accumulation in the tumor zone than 

PEG-GO (5.8 vs. 2.0 % ID g-1; at 0.5 h p.i.). 

[76] 

GO Branched amine and 

maleimide terminated PEG, 

TRC105-SH 

Covalent TRC105-PEG-GO targets tumor vasculature by binding to CD105; 

TRC105-PEG-GO can achieve a  1.6-fold higher accumulation in the tumor zone than 

PEG-GO (5.8 vs. 3.6 % ID g-1; at 7 h p.i.). 

[77] 

GO FA-PEG-NH2 Covalent Camptothecin loaded FA-PEG-GO produces a slightly higher reduction on HeLa  

cells’ viability than free Camptothecin; 

Drug loaded FA-PEG-GO therapeutic effect appears to be selective for folate receptor 

expressing cell lines; 

The homing capacity of camptothecin loaded FA-PEG-GO to HeLa tumors is superior 

to that of Camptothecin loaded PEG-GO. 

[13] 

GO Anti-MUC1 Antibody, 

PEG 

Covalent Antibody-PEG-GO achieves a higher uptake by MUC1+ cancer cells than PEG-GO; [107] 
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Antibody-PEG-GO internalization by MUC1- cancer cells is inferior to that occurring in 

MUC1+ cells.  

GO HA-ADH Covalent Delivery of Ce6 by HA-GO to HeLa cells is faster than the diffusion of free Ce6; 

HA-GO delivers its payload more effectively to CD44 overexpressing cells. 

[83] 

GO Carboxymethyl chitosan, HA Covalent HA-Carboxymethyl chitosan-GO delivers a higher DOX dose to CD44 overexpressing 

cancer cells (HeLa) than to normal cells (L929). 

[108] 

GO A1 aptamer Covalent A1-GO achieves a higher binding to A549 cells’ membrane than GO; 

Binding of A1-GO seems to be highly selective for A549 cells; 

Decitabine loaded A1-GO produces a stronger therapeutic effect than decitabine 

loaded GO and free decitabine. 

[109] 

GO Amine terminated Dextran, 

AS1411 aptamer 

Covalent Curcumin loaded AS1411-Dextran-GO delivers a higher drug dose to MCF-7 and 4T1 

cells than curcumin loaded Dextran-GO and free curcumin, leading to an improved 

therapeutic effect. 

[81] 

GO Carboxymethyl chitosan, 

Lactobionic acid 

Covalent DOX loaded Lactobionic acid functionalized GO produces a stronger therapeutic effect 

on cancer cells that express asialoglycoprotein receptors. 

[110] 

GO HA-ADH, APMA, RGD Covalent RGD-HA-GO delivers a higher DOX dose to SKOV-3 cancer cells than HA-GO and GO, 

thus producing a superior therapeutic effect; 

Nanomaterials deliver an inferior DOX dose to normal cells. 

[79] 

GO Amine terminated HA; 

Pluronic® F68 

Covalent; 

Non-covalent 

Pluronic® F68/HA-GO mediates the delivery of a higher mitoxantrone dose to MCF-7 

and MCF-7/ADR cells than Pluronic® F68/GO and free mitoxantrone; 

The uptake of mitoxantrone in MCF-7 and MCF-7/ADR tumors is higher in the group 

treated with mitoxantrone loaded Pluronic® F68/HA-GO than in those treated with 

mitoxantrone loaded Pluronic® F68/GO or free mitoxantrone. 

 

[111] 
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GO Bovine α-lactalbumin; 

Glutaraldehyde 

Non-covalent; 

Covalent 

GO induces cytotoxic effects at low concentrations on normal and breast cancer cells; 

Bovine α-lactalbumin/GO induces cytotoxicity to breast cancer cells and it is 

cytocompatible to normal cells. 

[63] 

GO PEI; 

Transferrin 

Non-covalent; 

Covalent 

Platinum loaded Transferrin-PEI functionalized GO can enhance the cytotoxicity of 

platinum towards cancer cells, while maintaining its low cytotoxicity towards normal 

cells. 

[112] 

GO cRGD-chitosan conjugate Non-covalent cRGD-chitosan functionalized GO internalization by αvβ3 overexpressing cells is higher 

than that of chitosan functionalized GO; 

DOX loaded cRGD-chitosan functionalized GO produces a stronger reduction on cancer 

cells’ viability than DOX loaded chitosan/GO and free DOX. 

[113] 

GO Transferrin-PAH conjugate Non-covalent Docetaxel loaded transferrin-PAH coated GO can induce a stronger reduction of  

MCF-7 cells’ viability than Docetaxel loaded PAH coated GO and free Docetaxel.  

[75] 

GO Pluronic® F-127-FA 

conjugate 

Non-covalent Increasing the FA density on GO from 0 to 100 % augments the internalization of these 

materials by KB cells; 

In vivo, GO functionalized with FA densities of 50 and 100 % have a similar and the 

highest tumor-homing capacity; 

GO decorated with 0, 10 and 25 % of FA have a similar tumor accumulation; 

The photothermal effect mediated by GO with 50 % folate decoration led to the 

eradication of tumors in 2 out of 3 mice (10 mg kg-1, 808 nm, 2 W cm-2, 10 min). 

[80] 

GO Pluronic® F-127-FA, 

Pluronic® F-127-cRGD 

Non-covalent GO dual-functionalized with cRGD and FA has a tumor accumulation superior to that 

of their equivalents only functionalized with one ligand (cRGD or FA); 

Photothermal effect mediated by dual-ligand functionalized GO induces tumor 

eradication, while that mediated by single-ligand functionalized GO only promotes a 

reduction of the tumor growth (7.5 mg kg-1, 808 nm, 2 W cm-2, 10 min). 

[78] 
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GO (base treated) Amine terminated mPEG  Covalent Delivery of Photochlor® by PEG-GO to 4T1 cells is more efficient than the diffusion of 

free Photochlor®. 

[27] 

GO (base treated) TPGS Non-covalent TPGS functionalized GO induces a strong reduction on MCF-7 cells’ viability but has a 

very low effect on fibroblasts’ viability. 

[28] 

GO (modified with 

amines)  

HA Covalent HA-GO delivers a high DOX dose to cancer cells overexpressing CD44 receptors and 

has an unappreciable internalization in normal cells (low CD44 expression). 

[91] 

GO-COOH Chlorotoxin Covalent Chlorotoxin-GO delivers a higher DOX dose to C6 glioma cells than GO; 

DOX loaded Chlorotoxin-GO can produce a higher reduction on cancer cells’ viability 

than DOX loaded GO and free DOX. 

[114] 

GO-COOH HMDA-HA Covalent HA-GO achieves a higher uptake in melanoma cells than in fibroblasts, and thus its 

photothermal effect only affects the melanoma cells; 

HA-GO applied on normal skin remains in the top of the skin; 

HA-GO can diffuse through cancerous skin, reaching the tumor mass; 

Photothermal effect mediated by HA-GO leads to tumor eradication. 

[29] 

GO-COOH FA Covalent FA functionalized GO achieves a higher internalization in cancer cells overexpressing 

FA receptors; 

DOX loaded FA functionalized GO and free DOX can produce a similar reduction of 

MCF-7 cells’ viability. 

[34] 

GO-COOH PEI, Anti-integrin αvβ3 

Antibody; 

DOX-(PAH-Cit) conjugate  

Covalent; 

Non-covalent 

Delivery of DOX to U87 MG cancer cells by antibody functionalized GO produces a 

more potent therapeutic effect than that obtained using non-targeted GO and free 

DOX; 

Antibody functionalized GO promotes a DOX tumor accumulation of  3 % ID g-1 while 

free DOX has a tumor uptake of  1.4 % ID g-1. 

[115] 
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GO-COOH PVP; 

FA 

Non-covalent; 

Covalent 

FA functionalized GO achieves a higher internalization in cancer cells overexpressing 

FA receptors; 

Chemo-photothermal therapy mediated by DOX loaded FA functionalized GO leads to 

an improved therapeutic effect. 

[116] 

rGO Hematin terminated Dextran Non-covalent Delivery of DOX by Dextran-rGO to MCF-7/ADR cells is more efficient than the 

diffusion of free DOX, leading to an improved therapeutic effect. 

[41] 

rGO Maleimide terminated  

C18-PMH-PEG; 

TRC105-SH 

Non-covalent; 

Covalent 

TRC105-PEG-rGO can achieve  2.1-fold higher accumulation in the tumor zone than 

PEG-rGO (5.6 vs. 2.7 % ID g-1; at 3 h p.i.). 

[117] 

rGO Cholesteryl HA Non-covalent HA-rGO can deliver a higher DOX dose to CD44 overexpressing cells than rGO. [42] 

rGO Cholesteryl HA, DSPE-PEG Non-covalent Dox loaded PEG-HA-rGO tumor and liver accumulations are superior to that of DOX 

loaded PEG-rGO. 

[42] 

rGO DSPE-PEG-RGD Non-covalent rGO coated with DSPE-PEG-RGD has a higher tumor accumulation than DSPE-PEG 

coated rGO (≈ 22.7 vs. ≈ 7.3 % ID g-1); 

Target functionalization also reduces nanomaterials’ liver and spleen uptakes from 

about 26 and 22 to 7 and 6 % ID g-1, respectively. 

[74] 

rGO DSPE-PEG-RGD, C18-PMH-PEG Non-covalent DSPE-PEG-RGD/C18-PMH-PEG functionalized rGO achieves a higher internalization in 

U87MG cells than its equivalent functionalized with DSPE-PEG-RAD/C18-PMH-PEG. 

[118] 

rGO Low molecular weight 

heparin-taurocholate 

conjugate 

Non-covalent DOX loaded heparin functionalized rGO produces a stronger in vitro and in vivo 

therapeutic effect than free DOX (the heparin conjugate has also anticancer activity). 

[93] 

rGO Dextran, Chitosan; 

FA-NHS 

Non-covalent; 

Covalent 

FA-polymer functionalized rGO achieves a selective and higher internalization in HeLa 

cells than polymer-rGO; 

[14] 
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N-(3-aminopropyl)methacrylamide hydrochloride (APMA), arginine-alanine-aspartate (RAD), chlorin e6 (Ce6), doxorubicin (DOX), PAH functionalized with citraconic anhydride 

(PAH-Cit). 

DOX loaded FA-polymer-rGO produces a stronger reduction on HeLa cells’ viability 

than free DOX. 

rGO (hydrothermal 

treated) 

TPGS Non-covalent TPGS functionalized rGO induces a strong reduction on MCF-7 cells’ viability but has 

a very low effect on fibroblasts’ viability. 

[28] 

rGO (reduced by 

dopamine) 

AAP10 Covalent The photothermal effect mediated by AAP10 functionalized rGO leads to tumor 

eradication, while that mediated by rGO only induces tumor regression (intratumoral 

injection, 808 nm, 1.5 W cm-2, 5 min). 

 

[43] 

rGO (octadeylamine 

modified) 

Lactoferrin Non-covalent Lactoferrin-rGO capsules display a greater internalization in lactoferrin receptor 

overexpressing cells than PVA-rGO capsules; 

Lactoferrin-rGO capsules display an improved tumor accumulation when compared to 

their PVA coated equivalents. 

[98] 

rGO nanomesh DSPE-PEG-RGD Non-covalent rGO nanomesh coated with DSPE-PEG-RGD has a higher tumor accumulation than 

DSPE-PEG coated rGO nanomesh (≈ 31 vs. ≈ 8.9 % ID g-1); 

Target functionalization also reduces nanomaterials’ liver and spleen uptakes from 

about 17 and 12 to 5 and 3 % ID g-1, respectively; 

Photothermal effect mediated by DSPE-PEG-RGD coated rGO nanomesh leads to tumor 

eradication (2 µg, 808 nm, 0.1 W cm-2, 7 min). 

[74] 

rGONR DSPE-PEG-RGD Non-covalent DSPE-PEG-RGD functionalized rGONR achieve a higher internalization in glioblastoma 

cells than their equivalents functionalized with DSPE-PEG-RAD, leading to an 

enhanced photothermal effect. 

[45] 
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4.1. Abstract 

Aim: Evaluate the therapeutic capacity of TPGS functionalized nGO in breast cancer cells. 

Methods: TPGS functionalized nGO-based materials were obtained through two different 

approaches: a simple sonication method and a one-pot hydrothermal treatment. Results: TPGS 

coating successfully improved the stability of the nGO-based materials. The nanomaterials that 

underwent the hydrothermal procedure generated a 1.4 – 1.6 fold higher temperature variation 

under NIR laser irradiation than those prepared only by sonication. In vitro, the TPGS/nGO 

derivatives reduced breast cancer cells’ viability and had an insignificant effect on healthy 

cells. Furthermore, the combined application of TPGS/nGO derivatives and NIR light generated 

an improved therapeutic effect. Conclusion: TPGS/nGO derivatives are promising materials for 

breast cancer phototherapy. 

 

Keywords: breast cancer; nanographene oxide; PEGylated vitamin E; phototherapy; TPGS.  
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4.2. Introduction 

Cancer ablation mediated by nanosized photothermal agents is currently showing promising 

results in in vitro and in vivo assays [1]. This therapeutic approach takes advantage of the 

ability of nanomaterials to accumulate at the tumor site, through passive (using the EPR effect) 

or active (involving the grafting of targeting ligands) transport, and from the capacity of some 

nanostructures to mediate a hyperthermic effect by converting optical energy, like NIR light 

(750-1000 nm), into heat [1]. For therapeutic applications, NIR light is fundamental since it has 

a good tissue penetration and major biological components (e.g. collagen, melanin or water) 

have minimal absorption within this wavelength range [2], thus assuring limited off-target 

interactions with this type of radiation [3, 4]. Therefore, nanomaterials designed to be applied 

in PTT must produce a photothermal effect upon NIR light irradiation. So far, different types 

of nanostructures such as GNR, CNT, tungsten-based nanomaterials, copper sulfide nanocrystals 

or GO have revealed this ability [5-10].  

nGO is a 2D carbon nanomaterial with oxygen functional groups (carboxyl, hydroxyl and epoxy 

groups) that possesses NIR absorption [11, 12]. Due to this fact, nGO has been investigated for 

application in cancer PTT [13, 14]. Moreover, the high versatility of nGO, that is associated 

with its ability to adsorb different molecules through hydrophobic interactions or π-π stacking, 

has instigated its use in other cancer-related applications such as drug or protein delivery [15-

17]. Independently of the type of biomedical application, nGO must be functionalized with 

hydrophilic polymers since it has a low colloidal stability, especially in solutions with a high 

concentration of salts like biological fluids [18]. To overcome such drawback, nGO is often 

functionalized with PEG through covalent bonds, that are established between the amine 

groups of amine-terminated PEG and the carboxyl groups of GO [13, 18]. This type of 

functionalization improves the stability of nGO and is also fundamental to extend the blood 

circulation time of this nanomaterial, which in turn favors its tumor accumulation [18, 19]. 

Alternatively, nGO can also be non-covalently PEGylated using amphiphilic molecules such as 

Pluronic® F-127 [20]. This type of functionalization exploits the hydrophobic interactions that 

are established between the hydrophobic blocks of the amphiphilic molecules and the aromatic 

regions of nGO. In the particular case of reduced nGO (usually obtained by treating GO with 

hydrazine hydrate) and graphene-based materials (e.g. obtained through the oxidation and 

chemical reduction of MWCNT), due to their lack of oxygen functional groups available for 

conjugation, they have been mostly functionalized with amphiphilic molecules such as  

C18-PMH-PEG or DSPE-PEG [18, 21, 22]. Moreover, the PEGylation of these two types of materials 

is also pursued for improving their biocompatibility [22-24]. The application of reduced nGO 

derivatives and graphene-based materials for cancer PTT is appealing since these materials 

have a higher NIR absorption than nGO, and consequently produce a higher hyperthermia and 

an improved therapeutic effect when irradiated with NIR light [18, 22, 24, 25]. 
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From the different and unexplored amphiphilic molecules that can be used to non-covalently 

functionalize nGO and its reduced derivatives, TPGS (PEGylated Vitamin E) appears to be a 

promising candidate for heightening the colloidal stability of these nanomaterials. TPGS is a 

FDA and EMA approved molecule with a broad application in cancer-related topics [26-31]. Due 

to its amphiphilic character, TPGS has been used in the formulation of amphiphilic micelles or 

for coating polymeric and inorganic nanomaterials [32-36]. Moreover, TPGS has intrinsic 

anticancer activity, which renders it with very appealing features for improving the stability of 

nGO derivatives and to endow them with anticancer activity similar to that of a 

chemotherapeutic drug [37, 38].  

In this work, TPGS was employed to functionalize nGO-based materials using two different 

approaches: a simple sonication method and a one-pot hydrothermal treatment. The results 

revealed that the TPGS coating successfully improved the stability of nGO-based materials. 

Moreover, the nGO materials that underwent the hydrothermal procedure demonstrated an 

improved NIR absorption, which in turn enhanced their capacity to generate heat under NIR 

laser irradiation. In vitro, the TPGS/nGO derivatives diminished breast cancer cells’ viability 

and had an insignificant effect on healthy cells. This preferential effect towards breast cancer 

cells can be attributed to TPGS intrinsic anticancer activity. Furthermore, the combined 

application of TPGS/nGO derivatives and NIR light produced an enhanced therapeutic effect, 

thereby confirming the potential of these materials for breast cancer phototherapy. 

 

4.3. Materials and Methods 

 

4.3.1. Materials 

Dulbecco’s Modified Eagle’s Medium F-12 (DMEM-F12), ethylenediaminetetraacetate (EDTA), 

graphite, resazurin, TPGS, and trypsin were acquired from Sigma–Aldrich (Sintra, Portugal). 

Potassium permanganate was obtained from Acros Organics (Geel, Belgium). Sulfuric acid 

(H2SO4, 96 %) was purchased from Panreac (Darmstadt, Germany). Phosphoric acid (H3PO4,  

85 %) was acquired from VWR (Carnaxide, Portugal). Michigan Cancer Foundation-7 (MCF-7) cell 

line was purchased from ATCC (Middlesex, UK). Normal Human Dermal Fibroblasts (NHDF) were 

obtained from PromoCell (Heidelberg, Germany). FBS was obtained from Biochrom AG (Berlin, 

Germany). Cell culture plates and T-flasks were acquired from Thermo Fisher Scientific (Porto, 

Portugal). Water used in all experiments was double deionized (0.22 µm filtered, 18.2 MΩ·cm). 
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4.3.2. Methods 

 

4.3.2.1. Synthesis of bwGO 

Graphite oxide (GrO) was synthesized using a modified version of the improved Hummer’s 

method [39]. In brief, a solution of H2SO4/H3PO4 (9:1 v/v, 67 mL) was slowly added to a mixture 

of KMnO4 (3.10 g) and graphite (0.51 g) in an ice bath. This solution was then left to react for 

4 days at room temperature (RT) under stirring. Afterward, the reaction was poured into 67 mL 

of frozen water followed by the addition of H2O2 until a yellow colored solution was attained. 

The product was purified by performing several centrifugations with HCl (3.7 %) and then with 

water. The gathered material was finally dialyzed against water for 5 days, yielding GrO. 

Afterward, nanosized base-washed graphene oxide (bwGO) was obtained by washing GrO with 

a NaOH solution, following a protocol described by Thomas et al. [40], and by subjecting the 

materials to ultrasonication (Vibra-Cell VC600-2, Sonics & Materials, Newtown, USA). 

 

4.3.2.2. Synthesis of TPGS/bwGO 

bwGO was non-covalently functionalized with TPGS by sonication, according to methodologies 

previously described in the literature [18, 41]. In brief, an aqueous solution of bwGO (0.2 mg 

mL-1; 1 mL) was mixed with TPGS (3 mg) and sonicated for 1 h (Branson 5800, Branson 

Ultrasonics, Danbury, USA). Afterward, the solution was dialyzed using a dialysis membrane  

(14 kDa molecular weight cut-off) against water for 3.5 h to remove non-bound TPGS. The 

solution was then centrifuged and the supernatant was recovered to remove any aggregates, 

yielding TPGS functionalized bwGO (TPGS/bwGO). The concentration of bwGO in TPGS/bwGO 

was determined by using a mass extinction coefficient of 3.01 L g-1 cm-1 at 808 nm. The amount 

of TPGS incorporated in TPGS/bwGO was calculated by analyzing the UV-Vis-NIR absorption 

spectrum of this compound and by using the following equation: 

AbsTPGS/bwGO at 285 nm = AbsbwGO at 285 nm + AbsTPGS at 285 nm 

First, the concentration of bwGO in the TPGS/bwGO solution was determined by performing a 

standard curve of bwGO at 808 nm (please note that TPGS does not absorb at this wavelength). 

Afterwards, the determined concentration of bwGO and the standard curve of bwGO at 285 nm 

were employed to find the absorbance of bwGO at this wavelength. Subsequently, the 

determined absorbance of bwGO was subtracted to that of TPGS/bwGO, yielding the 

absorbance of TPGS (at 285 nm). Finally, the absorbance of TPGS at 285 nm was used to 

determine its concentration using a standard curve of TPGS (at 285 nm). The gathered data 

revealed that 15.8 ± 1.0 µg of TPGS were incorporated per each µg of bwGO. 
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4.3.2.3. Synthesis of TPGS/htGO 

bwGO was also reduced and functionalized with TPGS through a one-pot hydrothermal 

treatment according to a methodology previously described in the literature [42]. In brief, an 

aqueous solution of bwGO (0.2 mg mL-1; 1 mL) was mixed with TPGS (3 mg) and placed in an 

oil-bath at 80 °C, for 24 h. Afterward, the solution was left to cool at RT and then dialyzed and 

centrifuged using the procedure described above for TPGS/bwGO. The supernatant was then 

recovered yielding TPGS functionalized hydrothermal treated GO (TPGS/htGO). The 

concentration of htGO in TPGS/htGO was determined by using a mass extinction coefficient of 

5.64 L g-1 cm-1 at 808 nm. Non-coated htGO was produced using a similar procedure, but without 

adding TPGS. 

The presence of TPGS in the hydrothermal procedure affects the extent of the reduction of 

htGO. Due to that, a standard curve of htGO can not be used for determining the concentration 

of TPGS in TPGS/htGO since the obtained values would be underestimated. To accomplish that, 

solutions of as-prepared TPGS/htGO (i.e., that were not subject to dialysis or centrifugation) 

at different concentrations were used to obtain the standard curve of this material at 285 nm 

(please note that in this case the exact amount of TPGS and htGO are known since the samples 

were not purified). Afterwards, the absorbance of TPGS at 285 nm was subtracted to that of 

as-prepared TPGS/htGO (at 285 nm), yielding the absorbance of htGO. Subsequently, the 

standard curve of htGO (referred from now on as htGO*) at this wavelength was performed. 

The amount of TPGS incorporated in TPGS/htGO was then calculated by analyzing the  

UV-Vis-NIR absorption spectrum of this compound and through the following equation: 

AbsTPGS/htGO at 285 nm = AbshtGO at 285 nm + AbsTPGS at 285 nm 

To do so, the concentration of htGO in the TPGS/htGO solution was determined by using a 

standard curve of as-prepared TPGS/htGO at 808 nm (please note that TPGS does not have 

absorption at this wavelength). The determined concentration of htGO and the standard curve 

of htGO* at 285 nm were employed to find the absorbance of htGO at 285 nm. Subsequently, 

the determined absorbance of htGO at 285 nm was subtracted to that of TPGS/htGO, yielding 

the absorbance of TPGS. Finally, the absorbance of TPGS at 285 nm was used to determine its 

concentration using a standard curve of TPGS. The gathered data revealed that 26.8 ± 0.7 µg 

of TPGS were incorporated per each µg of htGO. 
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4.3.2.4. Characterization of GrO and nGO-based materials 

The interlayer spacing of GrO and graphite was characterized by X-ray Diffraction (XRD) analysis 

in a Rigaku Geigger Flex D-max III/c diffractometer (Rigaku Americas Corporations, Woodlands, 

USA), equipped with a copper tube, over the range of 2θ from 5 to 90 °. The carbon to oxygen 

ratio of GrO, bwGO and htGO was characterized by Energy-dispersive X-ray spectroscopy (EDS) 

using a XFlash Detector 5010 (Bruker, Karlsruhe, Germany). The different chemical bonds 

present in GrO, bwGO and htGO were identified by Fourier transform infrared spectroscopy 

(FTIR) using a Nicolet iS10 spectrometer (Thermo Scientific Inc., Waltham, USA) with a spectral 

width ranging from 4000 to 600 cm−1. FTIR characterization was also employed to confirm the 

TPGS functionalization through the analysis of the chemical bonds present in the spectra of 

TPGS/nGO derivatives. The suitability and efficacy of the TPGS functionalization were also 

confirmed by dynamic light scattering (DLS) using a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, UK) at a scattering angle of 173 °. The nanosized dimensions of TPGS/nGO 

derivatives were assessed by transmission electron microscopy (TEM, HT7700, Hitachi, Japan) 

using an accelerating voltage of 100 kV, after staining the samples with phosphotungstic acid 

(2 %, w/v). To determine the potential of the different nGO-derivatives to be applied in cancer 

PTT, their UV-Vis-NIR absorption spectra were acquired on an Evolution 201 spectrophotometer 

(Thermo Scientific Inc., Waltham, USA) over the wavelength range from 200 to 1000 nm. 

Moreover, the photothermal efficiency of TPGS/bwGO and TPGS/htGO derivatives was 

determined by exposing these nanomaterials to NIR laser irradiation (808 nm, 1.7 W cm-2) over 

5 min and recording the temperature variations using a thermocouple thermometer. 

 

4.3.2.5. Evaluation of the cytotoxic profile of non-functionalized nGO 

derivatives 

The biocompatibility of the non-functionalized nGO derivatives was evaluated by the resazurin 

assay as previously described [43]. To do so, NHDF or MCF-7 cells (1 x 104 cells/well) were 

seeded on 96-well plates and cultured in DMEM-F12 medium supplemented with 10 % of FBS and 

1 % of penicillin/streptomycin in a humidified incubator (37 °C, 5 % CO2) [44]. After 24 h, the 

medium was removed and cells were incubated with medium containing bwGO or htGO at 

different concentrations (1 – 100 µg mL-1 of GO equivalents) for 24 and 48 h. After incubation, 

the medium was replaced with fresh medium containing resazurin (10 % v/v) and then cells 

were incubated for 4 h in the dark (37 °C, 5 % CO2). Cells incubated only with medium (without 

nGO derivatives) and cells treated with ethanol (70 %) were used as negative (K-) and positive 

(K+) controls, respectively. Cells’ viability was determined by analyzing the fluorescence of 

resorufin (λex = 560 nm; λem = 590 nm) in a Spectramax Gemini EM spectrofluorometer (Molecular 

Devices LLC, Sunnyvale, USA).  
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4.3.2.6. Evaluation of the cytotoxic effect of TPGS/nGO derivatives 

The cytotoxic effect of TPGS and TPGS/nGO derivatives to NHDF and MCF-7 cells was evaluated 

using the resazurin assay [44]. In brief, NHDF or MCF-7 cells were seeded in 96-well plates at a 

density of 1 x 104 cells/well. After 24 h, the medium was exchanged and cells were incubated 

with fresh medium containing TPGS, TPGS/bwGO or TPGS/htGO at different concentrations 

(TPGS: 0.1 – 40 µM; TPGS/bwGO and TPGS/htGO: 0.1 – 10 µg mL-1 of GO equivalents) for 24 and 

48 h. Cells’ viability was then determined by the resazurin assay as described above. 

 

4.3.2.7. Evaluation of the phototherapeutic effect mediated by TPGS/nGO 

derivatives 

The phototherapeutic capacity of TPGS/nGO derivatives was determined as previously 

described in the literature [45]. In brief, MCF-7 cells were sub-cultured in 96-well plates at a 

density of 1 x 104 cells/well. After 24 h, the medium was exchanged and cells were incubated 

with fresh medium containing bwGO, htGO, TPGS/bwGO or TPGS/htGO at different 

concentrations (6.25 and 10 µg mL-1 of GO equivalents) for 24 h. Afterward, cells were 

irradiated with NIR light (808 nm, 1.7 W cm-2) during 5 min. Cancer cells’ viability was 

determined by following the resazurin protocol described above.  

 

4.3.2.8. Calcein-AM and trypan blue stainings 

Calcein-AM (labels live cells) staining was performed to confirm the phototherapeutic efficacy 

of TPGS/nGO derivatives. In brief, 3 x 104 MCF-7 cells/well were seeded in µ-slide 8-well 

imaging plates (Ibidi GmbH, Munich, Germany). On the following day, the medium was 

exchanged and cells were incubated with fresh medium containing bwGO, htGO, TPGS/bwGO 

or TPGS/htGO for 24 h. Afterward, cells were irradiated with NIR light (808 nm, 1.7 W cm-2) 

during 5 min. Then, the medium was removed, cells were rinsed with PBS and incubated with 

Calcein-AM (2 µM). Subsequently, cells were rinsed with PBS and fixed in paraformaldehyde  

4 % (15 min, RT). Imaging experiments were performed in a Zeiss Axio Observer Z1 (Carl Zeiss 

AG, Oberkochen, Germany) under a 10x objective using an excitation λ of 470 ± 20 nm and an 

emission λ of 525 ± 25 nm. 

Trypan blue (labels dead cells) staining was also performed to assess the phototherapeutic 

capacity of TPGS/nGO derivatives. Briefly, after the laser irradiation step, cells were rinsed 

with PBS and then incubated with trypan blue (0.2 % (w/v)). Afterward, cells were rinsed, fixed 

and images were collected in an Olympus CX41 inverted optical microscope equipped with an 

Olympus SP-500 UZ digital camera. 
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4.3.2.9. Statistical analysis 

One-way analysis of variance (ANOVA) with the Student-Newman-Keuls test was used for 

multiple groups comparison. A p value lower than 0.05 (p < 0.05) was considered statistically 

significant. GraphPad Prism v6.0 (Trial version, GraphPad Software, San Diego, USA) was used 

for data analysis. 

 

4.4. Results and discussion 

 

4.4.1. Preparation and characterization of GrO 

The successful synthesis of GrO was confirmed by XRD, FTIR, UV-Vis and EDS  

analysis (Figure 4.1).  

 

 

Figure 4.1. Characterization of GrO. XRD (A) and FTIR (B) spectra of GrO and graphite.  

UV-Vis-NIR absorption spectrum of GrO (C). 
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XRD spectrum of graphite (GrO precursor) showed its characteristic peak at 2Θ = 26.5 ° (Figure 

4.1A). After the chemical oxidation, a product with a diffraction peak of 2Θ = 9.55 ° was 

obtained (Figure 4.1A). This result demonstrates the introduction of oxygen groups in graphite 

since the interlayer space increased to approx. 9.3 Å. As importantly, the absence of graphite 

diffraction peaks in GrO spectrum indicates that the final product does not have un-oxidized 

graphite. FTIR analysis demonstrated that GrO has different types of oxygen functional groups 

(hydroxyl, carboxyl and epoxy), further corroborating the successful oxidation of graphite 

(Figure 4.1B). EDS analysis of GrO revealed that this material has a carbon:oxygen (C:O) ratio 

of 61:39. Finally, the characteristic absorbance peak of GrO was also present in the absorption 

spectrum of GrO (λmax= 229 nm) (Figure 4.1C). These results are in agreement with literature 

reports and together these confirm the successful synthesis of GrO [39]. 

 

4.4.2. Preparation and characterization of TPGS/nGO derivatives 

Subsequently, GrO was base-washed in order to remove the oxidation debris since it can 

improve the adsorption of molecules, like TPGS, on the surface of GO [40, 46, 47]. Then, the 

obtained material was subjected to ultrasonication, yielding nanosized bwGO.  

Two different approaches were used to produce bwGO derivatives functionalized with TPGS 

(Figure 4.2A). In the first approach, bwGO was functionalized with TPGS using a simple 

sonication method (TPGS/bwGO) (Figure 4.2A). The binding of TPGS to bwGO was confirmed 

through FTIR analysis. Prior to functionalization, the bwGO FTIR spectrum shows various peaks 

at ≈ 3270 cm-1 (O-H stretch), 1730 cm-1 (C=O stretch), and 1041 cm-1 (C-O stretch) that belong 

to the different oxygen functional groups present on this material (see Figure 4.2B for further 

details). In turn, the FTIR spectrum of TPGS/bwGO displayed peaks with an increased intensity 

at 2884 cm-1 (C-H stretch), 1737 cm-1 (C=O stretch) and 1105 cm-1 (C-O stretch) (Figure 4.2B). 

Such peaks can be attributed to the chemical bonds present in TPGS (Figure 4.3A) and also 

confirm that bwGO was functionalized with TPGS.  
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Figure 4.2. Preparation and characterization of TPGS/nGO derivatives. Schematic illustration of the 

method used for preparing TPGS/bwGO and TPGS/htGO (A). FTIR spectra of bwGO and TPGS/bwGO (B). 

DLS size distribution of bwGO, TPGS/bwGO, and TPGS/bwGO in saline solution (NaCl 0.9 %) (C). FTIR 

spectra of htGO and TPGS/htGO (D). DLS size distribution of htGO, TPGS/htGO, and TPGS/htGO in saline 

solution (NaCl 0.9 %) (E).  
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Figure 4.3. TPGS characterization. FTIR spectra of TPGS (A). Peaks observed at 2884, 1737 and  

1105 cm-1 are attributed to C-H, C=O and C-O stretches, respectively. Absorption spectra of TPGS (B). An 

absorption peak at 260 – 300 nm is observed (inset). 

 

DLS results indicate that the TPGS functionalization did not affect the size of the nanostructures 

since bwGO and TPGS/bwGO reveal a similar size distribution (Figure 4.2C). To further assess 

the suitability of the TPGS coating, DLS analysis of bwGO and TPGS/bwGO in NaCl 0.9 % (that 

was used as a model saline solution) was also performed. As expected, bwGO promptly 

precipitated in NaCl 0.9 % (Figure 4.4), which is in agreement with the poor colloidal stability 

of nGO derivatives in saline solutions [18].  

 

Figure 4.4. Macroscopic images of bwGO, htGO, TPGS/bwGO, and TPGS/htGO in water, NaCl 0.9 % and 

serum supplemented medium (DMEM-F12 supplemented with FBS (10 %, (v/v)) taken over the course of  

5 days (end-point of the study). bwGO and htGO promptly precipitated in NaCl 0.9 %. TPGS/bwGO 

precipitated in NaCl 0.9 % after an incubation period of 12 h. 
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In contrast, TPGS/bwGO demonstrated a similar size distribution, without any signs of 

aggregation, when immersed in NaCl 0.9 % or in water (Figures 4.2C and 4.4). TPGS/bwGO 

remained stable in NaCl 0.9 % during 12 h and maintained its stability in water and in serum 

supplemented medium up to 5 days (Figure 4.4). Such findings also attest the successful 

functionalization of bwGO with TPGS and ensure the applicability of TPGS/bwGO in subsequent 

experiments. TEM characterization was then performed to confirm the lateral dimensions of 

TPGS/bwGO since DLS analysis cannot be used to estimate with confidence the precise 

dimensions of non-spherical materials. The results revealed that TPGS/bwGO has an average 

lateral size of 53 nm, which is crucial for its application in cancer-related  

topics (Figure 4.5A-5B). Moreover, bwGO and TPGS/bwGO displayed a zeta potential of  

-56.2 ± 1.1 and -22.5 ± 1.1 mV, respectively. The zeta potential value obtained for TPGS/bwGO 

is in agreement with those previously published in the literature for TPGS-based nanomedicines 

[32, 48].  

 

 

Figure 4.5. Size distribution of TPGS/nGO derivatives. TEM images of TPGS/bwGO (A) and  

TPGS/htGO (C). Prior to the analysis samples were stained with phosphotungstic acid  

(2 %, w/v). More than 500 nanostructures were measured for each sample in TEM images. Lateral size 

distribution of TPGS/bwGO (B) and TPGS/htGO (D).  
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Finally, the 260 – 300 nm peak observed in the UV-Vis-NIR spectrum of TPGS/bwGO also supports 

the presence of TPGS in this material (Figures 4.6A and 4.3B). Moreover, the UV-Vis-NIR 

absorption spectra of TPGS/bwGO and bwGO were similar for higher wavelengths (Figure 4.6A), 

indicating that bwGO functionalization with TPGS did not affect its NIR absorption, which is 

crucial for its application in cancer PTT. 

To improve the NIR absorption of bwGO, this nanomaterial was reduced by a hydrothermal 

treatment (24 h at 80 °C), yielding hydrothermal treated GO (htGO). The hydrothermal 

treatment produced a prominent decrease in the intensity of the oxygen functional groups of 

htGO when compared to bwGO (Figure 4.2D) and also increased the zeta potential of the 

nanosheets to -44.7 ± 2.1 mV. The EDS analysis revealed that bwGO and htGO have a carbon to 

oxygen ratio of 65:35 and 68:32, respectively. Together these results confirm the reductive 

capacity of the hydrothermal treatment. Moreover, htGO displayed a higher UV-Vis-NIR 

absorption than bwGO (on average a 2.4-fold higher absorption at 808 nm), thus confirming the 

suitability of this method to improve the NIR absorption of bwGO (Figures 4.6A), as previously 

described by Chen and co-workers [42]. 

Furthermore, the hydrothermal treatment was also applied to reduce bwGO and non-covalently 

functionalize it with TPGS (TPGS/htGO) by a one-pot approach (Figure 4.2A). Similar to 

TPGS/bwGO, the FTIR (Figures 4.2D and 4.3A), DLS (Figure 4.2E), and UV-Vis-NIR (Figures 4.6A 

and 4.3B) analysis of TPGS/htGO also confirmed the suitability and the efficacy of the TPGS 

functionalization. Interestingly, TPGS/htGO maintained its stability in water, NaCl 0.9 % and 

serum supplemented medium during 5 days, which may be correlated with the higher capacity 

of htGO to adsorb TPGS (Figure 4.4). Moreover, the TEM characterization revealed that 

TPGS/htGO has an average lateral size of 74 nm, rendering it suitable to be applied in cancer 

therapy (Figure 4.5C-5D). The zeta potential of TPGS/htGO (-23.0 ± 2.7 mV) was also similar to 

that of TPGS/bwGO. However, the NIR absorption displayed by TPGS/htGO was lower than that 

of htGO, which implies that the inclusion of TPGS in the hydrothermal treatment affects the 

reduction process of bwGO (Figure 4.6A). Nevertheless, TPGS/htGO demonstrated on average 

a 1.9-fold higher absorption at 808 nm than TPGS/bwGO (Figure 4.6B). Since a  

808 nm laser light will be employed in photothermal studies to irradiate the TPGS/nGO 

derivatives, TPGS/htGO may produce an enhanced temperature variation under NIR irradiation 

and consequently an improved therapeutic outcome due to its higher NIR absorption.  
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Figure 4.6. Photothermal capacity of TPGS/nGO derivatives. UV-Vis-NIR absorption spectra of bwGO, 

htGO, TPGS/bwGO, and TPGS/htGO at a concentration of 10 µg mL-1 (of GO equivalents) (A). Absorbance 

of TPGS/htGO at 808 nm normalized to that of TPGS/bwGO at the same wavelength (data represent mean 

± SD, n = 4) (B). Temperature variation curves of TPGS/bwGO solutions at different concentrations  

(of bwGO) during 5 min of NIR irradiation (808 nm, 1.7 W cm-2) (n = 1) (C). Temperature variation curves 

of TPGS/htGO solutions at different concentrations (of htGO) during 5 min of NIR irradiation (808 nm,  

1.7 W cm-2) (n = 1) (D). 

 

4.4.3. Evaluation of the photothermal capacity of TPGS/nGO 

derivatives 

After confirming the NIR absorption of TPGS/bwGO and TPGS/htGO, the photothermal ability 

of these materials was investigated by recording the temperature changes upon NIR laser 

irradiation. Both TPGS/nGO derivatives produced a dose-dependent temperature variation 

under NIR laser irradiation (Figures 4.6C-6D). At the highest concentration tested (75 µg mL-1 

of GO equivalents) and after 5 min of laser irradiation, TPGS/bwGO and TPGS/htGO produced 

a temperature variation of about 18 and 27 °C, respectively (Figures 4.6C-6D). Such 

temperature increase can lead to cancer cells death through diverse mechanisms including 

dysfunction of mitochondrial and enzymatic functions, protein denaturation and disruption of 
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cells’ membrane [49]. In turn, at the lowest concentration (6.25 µg mL-1 of GO equivalents) the 

photoinduced heat produced by both TPGS/nGO derivatives (ΔT ≈ 4 – 6 °C) can still damage 

cancer cells by compromising DNA repair mechanisms, altering cellular metabolism and 

increasing the sensitivity of cancer cells to anticancer agents (Figures 4.6C-6D) [49]. In these 

experiments, water was used as the control and it demonstrated a negligible response to NIR 

light during the irradiation period (Figures 4.6C-6D). Such findings attest the photothermal 

potential of the TPGS/nGO derivatives. 

In general, TPGS/htGO generated a photoinduced heat 1.4 – 1.6 times higher than TPGS/bwGO 

(Figure 4.7). The enhanced photothermal conversion of TPGS/htGO is correlated with its higher 

NIR absorption and proves the utility of the hydrothermal treatment to improve the PTT 

capacity of nGO derivatives.  

 

 
Figure 4.7. Temperature variation induced by different concentrations of TPGS/bwGO and TPGS/htGO, 

after 5 min of laser irradiation (808 nm, 1.7 W cm-2).  

 

Even though the applied hydrothermal treatment is not as effective as hydrazine hydrate-based 

treatments for obtaining nGO derivatives with an improved photothermal capacity, this method 

is a greener route since it does not employ hazardous and highly toxic chemicals [18]. Moreover, 

reductions based on hydrazine hydrate generally do not support one-pot approaches. As a 

consequence, first the nGO derivatives must be reduced and purified, followed by 

functionalization and new purification steps [18]. These facts emphasize the simplicity and 

convenience of the one-pot hydrothermal functionalization and reduction herein applied. 
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4.4.4. Evaluation of nGO derivatives’ biocompatibility  

Before assessing the biological performance of TPGS/nGO derivatives, the biocompatibility of 

the non-coated materials was evaluated by using NHDF and MCF-7 cells as healthy and breast 

cancer models, respectively. The results revealed that NHDF treated with bwGO and htGO up 

to 100 µg mL-1 display a viability superior to 92 % (Figures 4.8A-8B), which suggests the excellent 

biocompatibility of these materials within the tested concentration range (1 – 100 µg mL-1) in 

healthy cells.  

 

 

Figure 4.8. Evaluation of the biocompatible profile of bwGO (A) and htGO (B) at different concentrations 

and incubation periods in NHDF. The biocompatibility of bwGO (C) and htGO (D) in MCF-7 cells was also 

determined in the same experimental conditions. Data represent mean ± SD, n = 5. K- and K+ represent 

the negative and positive controls, respectively. 

 

A dose-dependent variation in the viability of MCF-7 cells was noticed (Figures 4.8C-8D). 

Nevertheless, MCF-7 cells incubated with both materials up to 100 µg mL-1 demonstrated a 

viability above 78 %, which also indicates that these nanomaterials are biocompatible within 

the tested dose (Figures 4.8C-8D). Moreover, both materials did not induce modifications on 
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cells’ morphology during the tested periods, thereby corroborating the cell viability results 

(Figure 4.9).  

 

 

Figure 4.9. Optical microscopic images of NHDF and MCF-7 cells after different incubation periods (24 

and 48 h) with bwGO and htGO (100 µg mL-1). Non-treated cells were denoted as the control. 

 

The potential biocompatibility or toxicity of GO-based materials depends strongly on the lateral 

dimensions, chemical composition and surface chemistry of the nanosheets [50-52]. Akhavan 

and co-workers demonstrated that ultra-small rGO-based materials (average lateral dimension 

of 11 nm) prepared using hydrazine hydrate induce a higher toxicity to human mesenchymal 

stem cells (hMSCs) than their equivalents with bigger dimensions [52]. In a different work, 

Zhang and co-workers verified that small sized GO (average lateral size of 34 nm and 147 nm), 

which has a similar size to that of bwGO and htGO, induces few alterations to human cervical 

cancer cells (HeLa) when compared to 206 nm sized GO [53]. Chang et al. demonstrated the 

biocompatible profile of GO with different lateral sizes in non-small cell lung cancer cells (A549) 

up to 100 µg mL-1 [54]. Recently, Pattammattel et al. reported that human embryonic kidney 

cells (HEK 293T) incubated with 75 and 100 µg mL-1 of bwGO for 24 h, display a viability of 

about 90 and 68 %, respectively, which is also in line with our results considering that the 

biocompatibility of GO-based materials depends on multiple factors [50, 55]. The slightly lower 

biocompatibility determined for htGO (in MCF-7 cells) is also in agreement with the results 
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available in literature since rGO-based materials (particularly those prepared using hydrazine 

hydrate) may display a weaker biocompatible profile [51, 56, 57].  

 

4.4.5. Evaluation of TPGS/nGO derivatives’ anticancer activity 

After confirming the biocompatibility of the non-coated materials, the possible anticancer 

potential of the TPGS/nGO derivatives mediated by TPGS activity was also evaluated in NHDF 

and MCF-7 cells. As can be observed in Figures 4.10A-10B and 4.11, TPGS/bwGO and 

TPGS/htGO, at the tested concentrations (0.1 – 10 µg mL-1 of GO equivalents), did not induce 

any significant alterations in NHDF cellular viability and morphology after an incubation period 

of 24 or 48 h (viability > 88 %). 

 

 

Figure 4.10. Evaluation of the cytotoxic profile of TPGS/bwGO (A) and TPGS/htGO (B) at different 

concentrations and incubation periods in NHDF. The cytotoxicity of TPGS/bwGO (C) and TPGS/htGO (D) 

in MCF-7 cells was also determined in the same experimental conditions. Data represent mean ± SD,  

n = 5. K- and K+ represent the negative and positive controls, respectively. 

  



 

135 

Interestingly, a reduction in MCF-7 cells’ viability and modifications on cells’ morphology were 

noticed for low concentrations of the produced materials (Figures 4.10C-10D and 4.11). After 

an incubation period of 24 h, TPGS/nGO derivatives induced cytotoxic effects for 

concentrations above 7.5 µg mL-1 (of GO equivalents). Moreover, after an incubation of  

48 h these materials produced meaningful alterations in MCF-7 cells’ viability for concentrations 

above 6.25 µg mL-1 (of GO equivalents) (Figures 4.10C-10D). In fact, after this period, 

TPGS/bwGO and TPGS/htGO at the concentration of 7.5 µg mL-1 (of GO equivalents) were able 

to reduce MCF-7 cells’ viability up to 34 and 32 %, respectively.  

 

 

Figure 4.11. Optical microscopic images of NHDF and MCF-7 cells after different incubation periods (24 

and 48 h) with TPGS/bwGO and TPGS/htGO (6.25 and 10 µg mL-1 of GO equivalents). Non-treated cells 

were denoted as control. 

 

The differential effect of TPGS/nGO derivatives in NHDF and MCF-7 cells can be explained by 

the distinct sensitivity displayed by these cells to TPGS (Figure 4.12). In fact, TPGS produced a 

dose-dependent cytotoxic effect on MCF-7 cells, while NHDF incubated with this compound only 

display a decrease in their viability for higher concentrations and for long incubation periods 

(Figure 4.12). These results are in agreement with the findings previously reported by 

Neophytou et al., which investigated the molecular mechanism of action of TPGS in different 

cell lines and also verified that breast cancer cells are sensitive to TPGS while healthy cells are 



 136 

resistant to its effect [38]. In particular, authors verified that TPGS exerts its anticancer activity 

through inhibition of Protein Kinase B (PKB or Akt) phosphorylation [38]. In MCF-7 cells, this 

inhibition produces a decrease in the levels of BcL-2 and Survivin (which are overexpressed), 

leading to cell cycle arrest and caspase-dependent and -independent cell death [38]. In normal 

cells, authors verified that TPGS does not induce a cytotoxic effect since the targeted/affected 

signaling-cascade is not upregulated [38]. Due to these properties, TPGS was also combined 

with other materials and pro-drugs in order to explore and enhance its anticancer activity [58-

61]. Therefore, the TPGS functionalization improves the stability of TPGS/bwGO and 

TPGS/htGO, and also endows these materials with a therapeutic effect preferential for breast 

cancer cells. 

 

 

Figure 4.12. Evaluation of the cytotoxic profile of TPGS at different concentrations (0.1 – 40 µM) and 

incubation periods (24 and 48 h) in NHDF (A) and MCF-7 (B) cells. Data represent mean ± SD, n = 5. K- and 

K+ represent the negative and positive controls, respectively. 

 

4.4.6. Evaluation of the phototherapeutic effect mediated by 

TPGS/nGO derivatives 

After confirming the preferential therapeutic effect of TPGS/nGO derivatives in MCF-7 cells, 

the capacity of these materials to mediate an enhanced cytotoxic effect by combining their 

anticancer activity with photothermal capability was also evaluated. For this purpose, MCF-7 

cells were incubated with TPGS/nGO derivatives for 24 h followed by their irradiation with NIR 

light (Figure 4.13A).  

The combined application of TPGS/nGO derivatives and NIR light during 5 min produced a 

prominent reduction in MCF-7 cells viability (Figure 4.13B), which was superior to that mediated 
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by non-irradiated nanomaterials in the same experimental conditions (Figures 4.10C-10D). For 

instance, TPGS/bwGO, at the concentration of 6.25 µg mL-1 (of GO equivalents) and with an 

incubation time of 24 h, did not affect MCF-7 cells while its irradiation with NIR light decreased 

cells viability to about 35 % (Figures 4.10C and 4.13B). In equivalent experimental conditions 

(same concentration and incubation period), TPGS/htGO reduced slightly the viability of cancer 

cells (to approximately 91 %) and its combined application with NIR irradiation produced a 

decrease in cells viability to about 31 % (Figures 4.10D and 4.13B). The slightly better 

therapeutic effect mediated by TPGS/htGO under NIR laser irradiation may be a consequence 

of its improved photothermal capacity (Figure 4.6D) and slightly better anticancer activity 

(Figure 4.10D). Moreover, the sole application of the NIR light and its combination with  

non-coated materials (bwGO and htGO) did not induce any toxicity towards cancer cells (Figure 

4.13B). These results imply that the temperature variation produced by TPGS/nGO derivatives 

under NIR laser irradiation sensitizes cancer cells to TPGS action, resulting in a synergistic 

therapeutic effect (Figure 4.13B).  

 

 

Figure 4.13. In vitro phototherapy using TPGS/nGO derivatives. Schematic representation of the 

phototherapy (A). Therapeutic effect mediated by bwGO, htGO, TPGS/bwGO and TPGS/htGO under NIR 

irradiation (808 nm, 1.7 W cm-2, 5 min) towards MCF-7 cells (B). NIR represents cells solely irradiated with 

NIR light. K- and K+ represent the negative and positive controls, respectively. Data represent mean ± SD, 

n = 5, n.s. = non significant, ∗p < 0.05. 

 

Trypan blue (stains cells that have a compromised membrane with blue color) and Calcein-AM 

(non-fluorescent dye that is converted to a fluorescent molecule by live cells) stainings were 

also used to provide a visual confirmation of TPGS/nGO derivatives phototherapeutic efficacy 

(Figure 4.14).  
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Figure 4.14. Trypan blue and Calcein-AM staining of MCF-7 cells after cells being incubated with different 

concentrations of nGO and TPGS/nGO derivatives (6.25 and 10 µg mL-1 of GO equivalents) during 24 h 

without (- NIR) or with (+ NIR) laser irradiation (808 nm, 1.7 W cm-2, 5 min). Cells not treated with 

nanomaterials were used as controls. 

 
Consistent with the previous findings, the sole application of non-functionalized nGO 

derivatives (bwGO and htGO) or their combination with NIR light did not affect MCF-7 cells 
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integrity (Figure 4.14). As expected, similar results were obtained for cells treated with 

TPGS/bwGO or TPGS/htGO at the concentration of 6.25 µg mL-1 (of GO equivalents) (Figure 

4.14). However, the same materials in conjugation with NIR light produced a strong therapeutic 

effect since, after the treatment and staining protocol (comprises staining, fixing and washing 

steps), no intact cells remained in the well, thereby confirming that under these conditions 

MCF-7 cells are severely affected (Figure 4.14). TPGS/nGO derivatives at the concentration of 

10 µg mL-1 (of GO equivalents) or in combination with NIR light produced a similar result, which 

is also in agreement with the previous results (Figure 4.10, 4.13 and 4.14). 

So far, nGO derivatives have been: (i) functionalized with hydrophilic polymers to improve their 

stability and biocompatibility, (ii) reduced to enhance their photothermal capacity and  

(iii) decorated with targeting ligands to improve their selectivity. By combining these 

approaches, some materials were able to photoablate cancer cells/tumors, by using low 

concentrations and/or power density [18, 22, 24, 25]. In this work, TPGS/bwGO and TPGS/htGO 

preferentially diminished breast cancer cells’ viability, displaying an insignificant effect on 

normal cells, an effect that can be attributed to TPGS intrinsic anticancer activity. This type 

of selectivity mediated by TPGS molecular action is advantageous since it may not be hindered 

by the formation of a protein corona on nanomaterials’ surface as it has been reported for 

targeted nanomaterials [62]. Moreover, TPGS/nGO derivatives under NIR laser irradiation 

produced a synergistic therapeutic effect whose efficacy is comparable and, in some cases, 

superior to previously described materials by mediating cancer cells destruction at a relatively 

low concentration and power density [21, 22, 25, 42, 57, 63-69] (Table S.4.1 – supplementary 

information). Overall, the TPGS/bwGO and TPGS/htGO are promising agents for breast cancer 

phototherapy.  

 

4.5. Conclusion 

In the present study, TPGS/bwGO and TPGS/htGO nanomaterials were prepared through a 

simple sonication method and a one-pot hydrothermal treatment, respectively. The application 

of TPGS to coat nGO derivatives is herein reported for the first time and the results revealed 

that it was able to improve the stability of these nanomaterials. TPGS/htGO possessed about 

1.9-fold higher NIR absorption than TPGS/bwGO, thus producing a 1.4 – 1.6 times superior 

temperature variation under NIR laser irradiation. In vitro, TPGS/bwGO and TPGS/htGO 

diminished breast cancer cells’ viability and had an insignificant effect on healthy cells. This 

preferential effect towards breast cancer cells can be attributed to TPGS intrinsic anticancer 

activity. Moreover, at low doses, both TPGS/nGO derivatives mediated under NIR laser 

irradiation an improved cytotoxic effect towards cancer cells, and it was found that TPGS/htGO 

produced a slightly better therapeutic outcome. Overall, the results reveal that TPGS/bwGO 

and TPGS/htGO are promising agents for breast cancer therapy.   
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4.7. Supplementary Information 

Table S.4.1. In vitro performance of some nGO-based materials applied in cancer phototherapy. 

Material 
Concentration 

(µg mL-1) 

Power 

density  

(W cm-2) 

Irradiation 

time 

(min) 

Cell 

type 

Cancer 

cells’ 

viability 

reduced 

to ≤ 10 %? 

Ref. 

Polyglicerol-reduced 

nGO loaded with 

Curcumin 

30a,b) 1 2 MCF-7 No [1] 

PEGylated and HA 

functionalized rGO 

loaded with IR825 

1000 2 5 MDA-MB-

231 and 

A549 

No [2] 

Poloxamer 188-GO 

loaded with DOXc) and 

Irinotecan 

1a) 3 5 SSC-7, 

MCF-7 and 

MDA-MB-

231 

No [3] 

DSPE-PEG-RGD 

functionalized 

reduced nGO 

~ 6.6 15.3 8 U87MG Yes [4] 

DSPE-PEG-RGD 

functionalized rGO 

nanoribbons 

1 – 100 7.5 8 U87MG Yes [5] 

ZnFe2O4–rGO hybrid 

nanostructures 

10 7.5 4-12 LNCaP Yes [6] 

Glucose rGO 

(prepared in the 

presence of Fe 

catalyst) 

10-1000 7.5 0.5-12 LNCaP Yes [7] 

PVP-graphene 5-10 2 5 U251 Yes [8] 

FA-PVP-nGO loaded 

with DOX 

20a) 2 5 HeLa Yes [9] 

PEGylated nGO loaded 

with DOX 

30a) 2 3 EMT6 Yes [10] 

Cetuximab conjugated 

PEGylated nGO loaded 

with Epirubicin 

5-25a) 2 2 U87 Yes [11] 

PEGylated reduced 

nGO 

6 0.6 5 A549 Yes [12] 

TPGS/nGO derivatives 10 1.7 5 MCF-7 Yes This 

work 

a) Drug concentration; b) value in µM; c) Doxorubicin.  
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5.1. Abstract 

PEGylated GO nanomaterials have been showing promising results in cancer therapy, due to 

their drug loading and photothermal capacities. However, the recent reports regarding the 

immunogenicity of PEG based coatings highlight the importance of investigating alternative 

materials to functionalize GO. Herein, GO derivatives were functionalized for the first time 

with an amphiphilic polymer based on poly(2-ethyl-2-oxazoline) and were co-loaded with 

doxorubicin (DOX) and D-α-Tocopherol succinate (TOS) to be applied in chemo-phototherapy of 

breast cancer cells. The results revealed that POxylated GO displays the required properties 

for application in cancer therapy. Moreover, the screening of different DOX:TOS combination 

ratios showed that the 1:3 DOX:TOS molar ratio produces an optimal synergistic therapeutic 

effect towards breast cancer cells. Furthermore, this drug ratio had a lower impact on normal 

cells. POxylated GO was then loaded with this drug combination in order to assess its  

chemo-phototherapeutic potential. The delivery of DOX:TOS by POxylated GO to cancer cells 

induced a stronger therapeutic effect than that attained with the free drug combination. 

Furthermore, an even greater cytotoxicity towards cancer cells was achieved by exposing 

DOX:TOS loaded POxylated GO to NIR radiation. Overall, POxylated GO is a promising drug 

delivery and phototherapeutic agent. 

 

Keywords: cancer treatment; co-delivery; graphene oxide; photothermal therapy; POxylation. 
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5.2. Introduction 

Combination chemotherapy is commonly applied to treat several types of cancers, including 

breast cancer. In this therapeutic approach, drug combinations (e.g. DOX + cyclophosphamide) 

are used to tackle cancer cells through different pathways, aiming to achieve additive or 

synergistic therapeutic effects, being the latter the most advantageous [1, 2]. However, the 

administration of multiple chemotherapeutics is challenging since an escalation of drugs’  

side-effects may occur [3, 4]. Furthermore, the distinct biodistribution and clearance profiles 

of the drugs may hamper the uptake of precise drug:drug combination ratios by cancer cells [5, 

6].  

To surpass these limitations, drug combinations can be loaded in nano-sized materials, allowing 

a ratiometric drug delivery to cancer cells [6]. In addition, the encapsulation of drugs in 

nanocarriers also improves their solubility and protects them from degradation or rapid 

clearance [7]. Among the different types of nanomaterials that have been explored for  

co-encapsulating drugs, nGO is a promising material since it has an excellent loading capacity 

and has the ability to encapsulate a wide variety of compounds through hydrophobic 

interactions and/or π-π stacking [8-10]. Moreover, the NIR absorption of GO based materials 

enables their application in cancer photothermal therapy [11, 12]. In this therapeutic approach, 

GO absorbs NIR radiation and converts it into heat, thus inducing cancer cells death and/or 

sensitization to the action of chemotherapeutics [13]. 

Despite the potential of GO based nanomaterials for use in combination chemo-photothermal 

therapy, these materials precipitate rapidly when in contact with biological fluids [14]. To 

overcome this limitation, GO is generally functionalized with PEG derivatives through covalent 

linkages or non-covalent interactions [11, 14]. The PEGylation of GO can also improve its blood 

circulation time, favoring its accumulation on the tumor zone [11, 14]. However, recently it 

was unveiled that PEGylated GO derivatives suffer from the accelerated blood clearance 

phenomenon [15], which may limit the repeated administration of these nanomaterials for 

cancer-related applications and highlights the importance of investigating PEG alternatives to 

functionalize GO. 

In this work, GO derivatives were functionalized for the first time with an amphiphilic polymer 

based on poly(2-ethyl-2-oxazoline) (PEtOx) and were explored for combination  

chemo-phototherapy of breast cancer cells. PEtOx was selected due to its hydrophilic character 

and possible application as a PEG alternative [16-18]. PEtOx was grafted onto  

poly(maleic anhydride-alt-1-octadecene) (PMAO) since the hydrophobic blocks of the latter can 

efficiently adsorb to GO surface [14]. Furthermore, the DOX and TOS drug combination was 

selected to be loaded into GO since it was recently used with success in the treatment of gastric 

cancer cells [19]. Our results revealed that POxylated GO displays suitable physicochemical, 

colloidal, optical and biological properties for cancer therapy. Additionally, the screening of 
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different DOX:TOS combination ratios revealed that the 1:3 DOX:TOS molar ratio has an 

improved therapeutic potential since it has an optimal synergistic cytotoxic effect (low 

combination index across multiple fractions affected) towards breast cancer cells, while on 

normal cells it has a weaker effect. Therefore, POxylated GO was efficiently loaded with this 

drug combination in order to investigate its chemo-phototherapeutic performance. The delivery 

of DOX:TOS by POxylated GO to cancer cells produced a stronger therapeutic effect than that 

attained using the free drug combination. Furthermore, DOX:TOS loaded POxylated GO under 

NIR laser irradiation produced an even greater cytotoxicity towards cancer cells, thus 

confirming the therapeutic capacity of the ratiometric drug delivery and phototherapy 

mediated by POxylated GO. 

 

5.3. Materials and Methods 

 

5.3.1. Materials 

DMEM-F-12, EDTA, PMAO (30000-50000 Da), resazurin, TOS and trypsin were purchased from 

Sigma–Aldrich (Sintra, Portugal). DOX was acquired from Carbosynth (Berkshire, UK). PEtOx 

(5000 Da) was obtained from Polysciences (Bergstrasse, Germany). MCF-7 cell line was acquired 

from ATCC (Middlesex, UK). NHDF were purchased from PromoCell (Heidelberg, Germany). FBS 

was obtained from Biochrom AG (Berlin, Germany). Cell culture plates and T-flasks were 

obtained from Thermo Fisher Scientific (Porto, Portugal). Water used in all assays was double 

deionized (0.22 μm filtered, 18.2 MΩ cm). 

 

5.3.2. Methods 

 

5.3.2.1. Synthesis of POx-g-PMAO 

POx-g-PMAO was prepared according to a method previously described in the literature with 

slight modifications [20]. Briefly, PMAO (105 mg), PEtOx (510 mg) and a catalytic amount of 

concentrated H2SO4 (i.e., several drops) were refluxed in chloroform at 70 °C for 12 h. 

Afterward, the solvent was removed through rotary-evaporation (Rotavap® R-215, Büchi, 

Switzerland). The obtained material was then dialyzed (14 kDa molecular-weight cutoff 

membrane) against water for 3 days and freeze-dried (ScanVac CoolSafe, LaboGene ApS, 

Denmark), yielding POx-g-PMAO. 
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5.3.2.2. Functionalization of GO derivatives 

bwGO was produced as described in a previous publication of our group [21]. bwGO was then 

functionalized with POx-g-PMAO using a simple sonication method [21]. In brief, a mixture of 

bwGO (200 µg mL-1; 1 mL) and POx-g-PMAO (500 µg) was sonicated for 60 min (Branson 5800, 

Branson Ultrasonics, CT, USA). Afterward, the solution was centrifuged (to remove any possible 

aggregates) and the supernatant was recovered, yielding POx-g-PMAO functionalized bwGO 

(POx-GO).  

The absorption spectrum of POx-GO was used to determine the content of POx-g-PMAO 

incorporated on this nanomaterial, using the following equation: 

AbsPOx-GO at 206 nm = AbsbwGO at 206 nm + AbsPOx-g-PMAO at 206 nm 

To accomplish that, the absorption spectrum of POx-GO in water:methanol (1:1 (v/v)) was 

initially acquired. Afterward, the concentration of bwGO in the POx-GO solution was 

determined using a standard curve of bwGO at 808 nm (POx-g-PMAO does not display any 

absorbance at 808 nm in the concentration range used herein). Subsequently, AbsbwGO at 206 nm 

(determined using a standard curve) was subtracted to the AbsPOx-GO at 206 nm, rendering the 

AbsPOx-g-PMAO at 206 nm. Finally, the concentration of POx-g-PMAO was determined using the  

AbsPOx-g-PMAO at 206 nm and a standard curve of POx-g-PMAO (at 206 nm). All the standard curves 

were prepared with the analytes dissolved in water:methanol (1:1 (v/v)). 

 

5.3.2.3. Physicochemical characterization of POx-GO derivatives 

The successful functionalization of bwGO with POx-g-PMAO was confirmed through FTIR using 

a Nicolet iS10 spectrometer (Thermo Scientific Inc., MA, USA) with a spectral width ranging 

from 4000 to 600 cm-1. POx-GO size distribution and colloidal stability were confirmed by DLS 

using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK) at a scattering angle of 

173°. UV-Vis absorption spectroscopy (Evolution 201 spectrophotometer, Thermo Scientific 

Inc.) was employed to confirm the NIR absorption of POx-GO. The photothermal capacity of 

POx-GO was confirmed by monitoring the temperature variations, using a thermocouple 

thermometer, upon irradiation of the nanostructures with NIR laser light over a period of 5 min 

(808 nm, 1.7 W cm-2).  
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5.3.2.4. Evaluation of POx-GO cytocompatibility  

The cytocompatibility of POx-GO to MCF-7 cells and NHDF was characterized using the resazurin 

method, as previously described by our group [22]. All cell lines were cultured in Dulbecco’s 

Modified Eagle’s Medium-F12 supplemented with 10 % (v/v) of FBS and 1 % (v/v) of 

penicillin/streptomycin in a humidified incubator (37 °C, 5 % CO2). For the assay, MCF-7 cells 

and NHDF were seeded at a density of 1 x 104 cells/well in 96-well plates. After 24 h, the 

medium was removed, and cells were incubated with culture medium containing different doses 

of POx-GO (1 – 100 µg mL-1 of bwGO equivalents) for 24 or 48 h. Then, cells were incubated 

with culture medium containing resazurin (10 % (v/v)) in the dark for 4 h (37 °C, 5 % CO2). Cells’ 

viability was then determined by analyzing the fluorescence of resorufin (λex = 560 nm;  

λem = 590 nm) in a Spectramax Gemini EM spectrofluorometer (Molecular Devices LLC, CA, USA). 

Negative (K-) and positive (K+) controls correspond to cells incubated solely with culture 

medium (without nanomaterials) and to cells treated with ethanol (70 % (v/v)), respectively. 

 

5.3.2.5. Screening of DOX:TOS combinations 

The concentration of DOX, TOS and DOX:TOS combinations (at different molar ratios ranging 

from 5:1 to 1:5) required to inhibit MCF-7 cells’ viability by 20, 50 and 80 % (IC20, IC50 and IC80) 

were determined through the resazurin assay, as described above. In brief, MCF-7 cells were 

seeded at a density of 1 x 104 cells/well in 96-well plates. After 24 h, the medium was removed, 

and cells were incubated with culture medium containing different drug doses for 24 h. Then, 

cells were incubated with resazurin (10 % (v/v)) for 4 h in the dark (37 °C, 5 % CO2) and their 

viability was determined as described in section 5.3.2.4. Subsequently, drugs’ dose-response 

curves were traced to determine their IC20, IC50 and IC80 (OriginPro, trial version, OriginLab 

Corporation, MA, USA). Finally, the Chou-Talalay method was employed to disclose the 

Combination Index (CI) of the different DOX:TOS combination ratios at inhibition levels of  

20 (Fraction affected (Fa)=0.2), 50 (Fa=0.5) and 80 % (Fa=0.8) [23]. CI < 1 was considered to be 

a synergistic effect whereas CI > 1 was considered to be an antagonistic effect. 

 

5.3.2.6. Preparation of DOX:TOS loaded POx-GO 

DOX and TOS loaded POx-GO was prepared by using a simple sonication method. In brief, a 

solution containing bwGO and POx-g-PMAO was sonicated as described in section 5.3.2.2. Then, 

this solution was mixed with 20 µL of the dual drug combination mixture (DOX:TOS at 1:3 molar 

ratio in methanol), followed by sonication for 30 min. Subsequently, the solution was dialyzed 

(1000 Da molecular-weight cutoff membrane) against water for 90 min to remove non-loaded 

drugs and the methanol. Finally, the solution was centrifuged (to remove any possible 
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aggregates) and the supernatant was recovered, yielding DOX and TOS loaded POx-GO  

(DT loaded POx-GO).  

The UV-Vis-NIR absorption spectrum of DT loaded POx-GO was used to determine the content 

of DOX and TOS on this nanomaterial, using the following equations: 

AbsDT loaded POx-GO at 498 nm = AbsbwGO at 498 nm + AbsDOX at 498 nm 

AbsDT loaded POx-GO at 284 nm = AbsbwGO at 284 nm + AbsDOX at 284 nm+ AbsTOS at 284 nm 

(please note that POx-g-PMAO does not display any absorbance at the above wavelengths in 

the concentration range used herein) 

First, the absorption spectrum of DT loaded POx-GO in water:methanol (1:1 (v/v)) was 

acquired. Afterward, the concentration of bwGO in the DT loaded POx-GO solution was 

determined using a standard curve of bwGO at 808 nm (DOX and TOS do not display any 

absorbance at 808 nm in the concentration range used herein). Subsequently, AbsbwGO at 498 nm 

(determined using a standard curve) was subtracted to the AbsDT loaded POx-GO at 498 nm, rendering 

the AbsDOX at 498 nm (TOS does not display any absorbance at 498 nm in the concentration range 

used herein). The concentration of DOX was then determined using the AbsDOX at 498 nm and a 

standard curve of DOX (at 498 nm).  

Then, AbsbwGO at 284 nm and AbsDOX at 284 nm (determined using standard curves) were subtracted to 

the AbsDT loaded POx-GO at 284 nm, rendering the AbsTOS at 284 nm. The concentration of TOS was then 

determined using the AbsTOS at 284 nm and a standard curve of TOS (at 284 nm). All the standard 

curves were prepared with the analytes dissolved in water:methanol (1:1 (v/v)). 

 

5.3.2.7. Evaluation of DOX and TOS loaded POx-GO combination  

chemo-phototherapeutic effect  

The combination chemo-phototherapeutic effect mediated by DT loaded POx-GO was 

determined as we previously described [21]. For such, MCF-7 cells were seeded in 96  

well-plates as described above. After 24 h, cells were incubated with DT loaded POx-GO (20.5 

µM of 1:3 DOX:TOS combination; 34.7 µg mL-1 of bwGO equivalents) or POx-GO (34.7 µg mL-1 of 

bwGO equivalents). After 4 h of incubation, cells were irradiated with NIR light (808 nm,  

1.7 W cm-2) during 5 min. Upon 24 h of incubation, cells were incubated with resazurin  

(10 % (v/v)) for 4 h in the dark (37 °C, 5 % CO2) and their viability was determined as described 

in section 5.3.2.4.   
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5.3.2.8. Statistical analysis 

ANOVA with the Student-Newman-Keuls test was applied for the comparison of multiple groups. 

A value of p lower than 0.05 (p < 0.05) was considered statistically significant. Data analysis 

was performed in GraphPad Prism v6.0 (Trial version, GraphPad Software, CA, USA). 

 

5.4. Results and Discussion 

 

5.4.1. Preparation and characterization of POx-GO 

GrO was produced according to a previous publication of our group using a modified version of 

the improved Hummer’s method [21]. Afterwards, this material was treated with sodium 

hydroxide and sonicated, yielding bwGO, whose characterization is reported elsewhere [21]. 

To prepare PEtOx-functionalized bwGO, we first conjugated bwGO with amine-terminated 

PEtOx using the EDC chemistry (data not shown). However, this material displayed an unsuitable 

colloidal stability since it promptly precipitated in saline solutions (data not shown). 

Considering that this type of functionalization relies on the carboxyl groups of bwGO that are 

available for conjugation, we hypothesized that the weak colloidal stability could be related 

with a scarce amount of PEtOx covalently bonded to bwGO.  

In this way, we prepared a PEtOx-based amphiphilic polymer by grafting PEtOx into PMAO  

(POx-g-PMAO) by adapting a protocol described elsewhere [20]. In this case, the amount of 

PEtOx in the functionalized bwGO may be increased since the multiple PEtOx chains in  

POx-g-PMAO are used to functionalize bwGO through hydrophobic-hydrophobic interactions 

established between the nanomaterial and the hydrophobic regions of the amphiphilic polymer. 

The successful synthesis of POx-g-PMAO was confirmed by FTIR (Figure 5.1). In the FTIR 

spectrum of POx-g-PMAO, several peaks at 2853 cm-1 (C-H stretch) and 1779 cm-1 (C=O stretch 

from anhydrides) can be observed, which are also present in PMAO spectrum. Furthermore, the 

absence of the peak at 1856 cm-1 (C=O stretch from anhydrides) and the weak intensity of the 

one at 1779 cm-1 (C=O stretch from anhydrides) in POx-g-PMAO spectrum also corroborate the 

opening of the maleic anhydride ring and suggest the grafting of PEtOx into PMAO. Additionally, 

the peaks at 2976 cm-1 (C-H stretch), 1733 cm-1 (C=O stretch from carbonyls) and 1632 cm-1 

(C=O stretch from amides) present in PEtOx spectrum are also present in POx-g-PMAO spectrum, 

which further corroborates the synthesis of the amphiphilic polymer.  
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Figure 5.1. FTIR spectra of POx-g-PMAO, PEtOx and PMAO. 

 

POx-g-PMAO was then employed to functionalized bwGO using a simple sonication method (for 

the sake of simplicity, POx-g-PMAO functionalized bwGO will be termed as POx-GO from here 

on) – Figure 5.2A [21]. The presence of POx-g-PMAO in POx-GO was confirmed by FTIR analysis 

(Figure 5.2B), which displays several peaks belonging to the amphiphilic polymer. POx-GO 

incorporated 1.76 ± 0.02 µg of POx-g-PMAO per µg of bwGO, which is fundamental to attain 

materials with improved colloidal stability. Furthermore, the DLS results confirmed that  

POx-GO maintained its size distribution upon incubation with PBS solution (Figure 5.2C). In fact, 

POx-GO remained stable as a colloid in saline solutions (Figure 5.2C), while bwGO precipitates 

in this type of solutions as we previously reported [21]. In this way, the functionalization of 

bwGO with POx-g-PMAO can address a major limitation of this GO derivative, thus ensuring its 

applicability in cancer therapy. 
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Figure 5.2. Preparation and characterization of POx-GO. Schematic illustration of the POx-GO preparation 

method (A). FTIR characterization of POx-GO (B). DLS size distribution of POx-GO and POx-GO in PBS (C). 

Macroscopic images of POx-GO in water, PBS and serum supplemented medium (DMEM-F12 supplemented 

with FBS (10 % (v/v)) (C inset). Temperature variation curves of POx-GO at different concentrations  

(of bwGO) during a 5 min NIR laser irradiation period (808 nm, 1.7 W cm-2) (D). 

 

Subsequently, we analyzed the UV-Vis-NIR absorption of POx-GO, which revealed that this 

nanomaterial possesses NIR absorption (Figure 5.3). The NIR absorption of POx-GO indicates 

that this material may be applied as a NIR-responsive photothermal agent. To confirm this 

hypothesis, the photothermal capacity of POx-GO was evaluated by exposing the nanomaterials 

to 808 nm laser radiation and recording the temperature variations attained (Figure 5.2D). After 

5 min of NIR laser irradiation, POx-GO produced, at the highest concentration tested  

(75 µg mL-1 of bwGO equivalents), a temperature increase of ≈ 24 °C, which is sufficiently high 

to induce the death of cancer cells [13]. In turn, at the lower concentrations, a temperature 

variation of 13-17 °C was achieved upon irradiation of POx-GO (Figure 5.2D). Such raise in the 

temperature may still induce damage to cancer cells and/or sensitize them to the action of 

chemotherapeutic drugs (chemosensitization) [13]. As importantly, water irradiated with NIR 

light (control) only suffered a temperature variation of ≈ 2 °C (Figure 5.2D). These results 
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confirm that POx-GO can be employed in phototherapy applications since it elicits minimal  

off-target heating. When compared to a previous report, the photoinduced heat produced by  

POx-GO is superior to that of bwGO functionalized with PEGylated vitamin E [21], which can 

indicate that the surface coating conferred by POx-g-PMAO may be better for photothermal 

applications.  

 

 

Figure 5.3. UV-Vis-NIR absorption spectrum of POx-GO. 

 

Finally, the cytocompatibility of POx-GO towards MCF-7 cells (breast cancer cell model) and 

NHDF (normal cell model) was determined (Figure 5.4). At the highest concentration of  

POx-GO tested (100 µg mL-1 of bwGO equivalents), the functionalized materials did not affect 

meaningfully the viability of both cell lines (cellular viability > 88 %), which is fundamental for 

their use in biomedical applications (Figure 5.4). This data is in line with the good 

cytocompatibility reported for PEtOx-based nanomedicines [18, 24-26]. In fact, POx-GO 

revealed a similar cytocompatible profile to that of GO covalently conjugated with  

amine-terminated PEtOx reported by Wang et al. [26]. Moreover, when compared to PEGylated 

GO, POx-GO displayed an improved cytocompatibility towards MCF-7 cells, which is also a good 

indication of the safety profile of this nanomaterial [27].  

Taken together, these results confirmed that POx-GO presents suitable physicochemical, 

colloidal, optical and biological properties to be explored as a nanoplatform for the delivery of 

the DOX-TOS combination to cancer cells and to be applied in photothermal therapy. 
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Figure 5.4. Evaluation of the cytocompatibility of POx-GO at different concentrations (of bwGO) and 

incubation times (24 and 48 h) towards MCF-7 cells (A) and NHDF (B). Data represent mean ± SD (n = 5). 

 

5.4.2. Combinatorial drug screening  

The administration of drug combination with synergistic activity to cancer cells can produce 

improved therapeutic outcomes. However, different drug:drug ratios may have distinct types 

of combinatorial effects depending on the Fa that is analyzed. Therefore, prior to the 

encapsulation of the DOX-TOS combination in POx-GO, we first determined the DOX:TOS molar 

ratio that presents optimal synergy across several Fa (Figure 5.5A). For this purpose, MCF-7 

cells were incubated with DOX:TOS at different molar ratios (ranging from 5:1 to 1:5) and their 

IC20, IC50 and IC80 were determined (Figure 5.5B and 5.6). Then, the CI at each Fa was calculated 

(Figure 5.5C).  

In general, with the exception of the 1:2 DOX:TOS ratio (at Fa=0.2), all the tested combinations 

synergistically reduced MCF-7 cells’ viability (Figure 5.5C). The DOX:TOS synergism is likely 

correlated to the fact that TOS, besides having the capacity to inhibit the proliferation and 

induce the apoptosis of MCF-7 cells [28], it can also increase the DOX influx and suppress its 

efflux from cancer cells [19], leading to an enhanced therapeutic effect. 

Although the DOX:TOS ratios containing a higher DOX dose (5:1, 4:1, 3:1, 2:1) displayed a 

greater synergism (lower CI value) at Fa of 0.2 and 0.5 (i.e., at inhibition levels of 20 and  

50 %, respectively), those did not present the lowest CI value (i.e., the highest synergism) at 

Fa=0.8 (at a inhibition level of 80 %). In this way, these drug ratios are not the most suited for 

breast cancer therapy since their synergy is weaker at higher inhibition levels. On the other 

hand, the 1:3 DOX:TOS ratio presented a CI  0.56 at all the Fa tested, and had a very low CI 

at Fa=0.8 (Figure 5.5C), thus displaying an optimal synergy. Furthermore, the use of DOX:TOS 

combinations with a greater content of TOS is appealing since this drug has a low effect on the 

viability of healthy cells [28, 29]. Therefore, the cytotoxicity of the 1:3 DOX:TOS combination 
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towards NHDF was also determined (Figure 5.5D). The IC20, IC50 and IC80 of the 1:3 DOX:TOS 

combination towards NHDF were 39, 80 and 163 µM, respectively. Comparing the effect of this 

drug combination on NHDF and on MCF-7 cells, the 1:3 DOX:TOS combination displayed a  

2 times weaker effect towards NHDF (Figure 5.5D). 

 

 

Figure 5.5. In vitro screening of the therapeutic potential of the DOX:TOS combinations. Schematic 

illustration of the parameters used to disclose the optimal DOX:TOS combination for MCF-7 cells  

treatment (A). IC20, IC50 and IC80 of the different DOX:TOS combinations in MCF-7 cells (B). CI of the 

different DOX:TOS combinations at Fa=0.2, 0.5 and 0.8 in MCF-7 cells (C). Cell viability curves of MCF-7 

cells and NHDF incubated with the 1:3 DOX:TOS combination (D). The points represent the mean of the 

experimental data (n = 5). The lines represent the determined dose-response curves. 

 

Additionally, the therapeutic potential of the 1:3 DOX:TOS combination is also attested by the 

fact that this drug cocktail has a similar or greater synergy (CI  0.56) than other DOX-based 

drug combinations reported in the literature to treat MCF-7 cells (DOX:Resveratrol CI = 0.691 

[30], DOX:Dihydroartemisinin CI = 0.50 [31], DOX:Fulvestrant CI = 0.71 [32], DOX:Tamoxifen  
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CI = 1.60 [32], DOX:4-Hydroxytamoxifen CI = 1.01 [32]). Therefore, the 1:3 DOX:TOS ratio was 

selected to be encapsulated in the POx-GO due to its optimal synergy in MCF-7 cells and weaker 

effect towards NHDF. 

 

 

Figure 5.6. Cell viability curves of MCF-7 cells treated with different concentrations of DOX, TOS and 

DOX:TOS combinations (at different molar ratios). The points represent the mean of the experimental 

data (n = 5). The lines represent the determined dose-response curves. 

 

5.4.3. Phototherapeutic capacity of DOX and TOS loaded POx-GO 

The selected DOX:TOS combination ratio was encapsulated in POx-GO (termed DT loaded  

POx-GO from here on) through a simple sonication method since both drugs can be adsorbed on 
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GO based materials’ surface through non-covalent interactions (Figure 5.7A). DT loaded  

POx-GO encapsulated 0.070 ± 0.012 µg of DOX per µg of bwGO and 0.205 ± 0.030 µg of TOS per 

µg of bwGO (n = 3). Besides showing a high loading capacity (a total of 0.275 ± 0.042 µg of drug 

per µg of bwGO), DT loaded POx-GO was able to encapsulate the DOX:TOS combination at the 

desired molar ratio, which is crucial for attaining an optimal synergistic effect. Furthermore, 

DT loaded POx-GO reveled a size distribution similar to that of POx-GO (Figure 5.7B), indicating 

that the loading of the drug combination is not detrimental to the nanomaterials’ size. The 

zeta potential of DT loaded POx-GO (-34.2 ± 0.6 mV) and POx-GO (-37.2 ± 2.5 mV) were also 

similar, which also corroborates that the loading of the DOX:TOS combination occurs onto the 

aromatic matrix of POx-GO.  

 

 

Figure 5.7. Preparation and characterization of DT loaded POx-GO. Schematic illustration of the 

phototherapy (A). DLS size distribution of POx-GO and DT loaded POx-GO (B). Macroscopic images of DT 

loaded POx-GO in water, PBS and serum supplemented medium (DMEM-F12 supplemented with FBS (10 % 

(v/v)) (B inset). Evaluation of the therapeutic capacity of POx-GO and DT loaded POx-GO without and 

with NIR irradiation (+ NIR; 808 nm, 1.7 W cm-2, 5 min) towards MCF-7 cells (C). K- and NIR represent the 

negative control and cells solely treated with NIR light, respectively. Data represent mean ± SD (n = 5), 

*p < 0.0001, n.s. = non-significant. 
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Having confirmed the ability of POx-GO to load the DOX:TOS combination at its optimal molar 

ratio, then the efficacy of this formulation in decreasing MCF-7 cells’ viability was assessed 

(Figure 5.7A). To clearly perceive the therapeutic potential of the DT loaded POx-GO, this 

nanomaterial was administered to cancer cells at a concentration that contains only half of the 

IC50 dose of the 1:3 DOX:TOS combination (20.5 µM) (Figure 5.7C). The results showed that the 

delivery of the DOX:TOS through POx-GO is efficient since cancer cells’ viability was reduced 

to about 61 % (Figure 5.7C). In fact, drug loaded nanomaterials do not always outperform in 

vitro the therapeutic effect mediated by free drugs [33-35]. For instance, the delivery of 

Camptothecin+Methotrexate and DOX+Irinotecan combinations by GO based nanostructures to 

cancer cells did not result in a more effective therapy in comparison to the free drug 

combinations [33, 35]. Such may be related to the fact that, in in vitro assays, free drugs are 

not strongly impaired by clearance mechanisms or may present faster diffusion to the cells’ 

cytoplasm. In this way, the improved therapeutic effect mediated by DT loaded POx-GO attests 

the drug delivery efficacy of this nanoformulation. 

Furthermore, the combined application of DT loaded POx-GO and NIR radiation resulted in an 

even greater therapeutic effect, since it was able to further reduce MCF-7 cells’ viability to  

 39 % (Figure 5.7C). As importantly, the sole application of NIR light did not induce a decrease 

on cancer cells’ viability, which is in agreement with the low interaction of 808 nm radiation 

with biological components [13]. Moreover, POx-GO irradiated with NIR light did not induce 

cancer cells’ death (Figure 5.7C). In this way, the enhanced chemo-phototherapeutic effect 

mediated by DT loaded POx-GO is likely to result from a chemosensitization effect induced by 

a local temperature increase produced by the nanomaterials under irradiation.  

In the literature it is reported that Folate receptor targeted rGO loaded with Docetaxel and 

Irinotecan can produce a similar phototherapeutic effect towards MCF-7 cells, to that induced 

by DT loaded POx-GO, but requires a higher drug dose (50 vs. 20.5 µM) and a higher power 

density (3 vs. 1.7 W cm-2) [36]. In another work, the exposure of PEGylated GO loaded with 

DOX+Irinotecan to NIR light (3 W cm-2, 5 min) improved  1.13-times its therapeutic effect 

towards MCF-7 cells [35]. Herein, the NIR irradiation (1.7 W cm-2, 5 min) of DT loaded POx-GO 

enhanced its therapeutic capacity by  1.56-fold. In this way, DT loaded POx-GO are promising 

materials for breast cancer therapy. 

 

5.5. Conclusion 

In the present study, the suitability of PEtOx based amphiphilic coatings to functionalize GO 

derivatives and the DOX:TOS combination ratio with optimal anticancer activity were 

investigated for the first time. POx-GO revealed suitable physicochemical, colloidal, optical 

and biological properties for application in cancer therapy. Furthermore, the 1:3 DOX:TOS 
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combination presented an optimal synergy for MCF-7 cells, and thus was efficiently loaded in 

POx-GO. The in vitro data revealed that the delivery of DOX:TOS by POx-GO to cancer cells 

produced a stronger therapeutic effect than that attained using the free drug combination. 

Furthermore, DT loaded POx-GO produced, under NIR laser irradiation, an even greater 

cytotoxicity towards cancer cells. Overall, POx-GO is a promising drug delivery and 

phototherapeutic agent. This study also paves the way for investigating PEtOx-based coatings 

in the functionalization of GO derivatives aimed for anti-cancer or other biomedical 

applications.  
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Concluding Remarks and Future Trends 

 

Nowadays, cancer continues to have a tremendous impact on the society. Despite all the 

efforts, cancer mortality rates remain very high. In fact, according to the World Health 

Organization, approximately 1 in 6 deaths are caused by cancer. The heterogenicity of this 

disease together with the core problems of the classic treatments (chemotherapy and 

radiotherapy) contribute for this scenario. The problems of the conventional therapies comprise 

a low therapeutic efficacy, that is further decreased by resistance mechanisms, and off-target 

toxicity, that can pose a threat to patients’ life. Even though during the last decade new types 

of therapies have reached the clinic (targeted chemotherapy and immunotherapy), these are 

also overwhelmed by resistance mechanisms, and a have a remarkable higher cost to the health 

service providers.  

To overcome these problems, PTT mediated by nanomaterials is currently under investigation. 

In particular, those based on GO have a tremendous potential for improving cancer treatment. 

In fact, the pre-clinical investigation performed so far highlights the excellent photothermal 

and drug delivery capacities of this nanomaterial. However, the direct use of GO in  

cancer-related applications is severely hindered by its weak colloidal stability, low tumor 

uptake and non-selectivity towards cancer cells.  

The present research work aimed to address these problems and to implement novel strategies 

to improve cancer PTT mediated by GO-based materials. Such was pursued by i) employing 

coatings that can improve the biological performance of GO-based materials, ii) exploring 

preparation methods that can enhance GO photothermal capacity, and iii) encapsulating drug 

combinations with optimal synergistic anticancer activity on GO. 

In the first experimental work presented here, GO derivatives were functionalized for the first 

time with TPGS, an FDA- and EMA-approved amphiphilic polymer. The TPGS functionalization 

successfully improved the colloidal stability of the GO-based nanomaterials. Particularly, the 

materials functionalized through the hydrothermal treatment revealed an enhanced stability 

and photothermal capacity. As importantly, the TPGS/GO derivatives retained the intrinsic 

anticancer activity of TPGS. Thus, in the in vitro studies, these nanodevices were able to induce 

cytotoxicity to breast cancer cells and minimal effects to healthy cells. Furthermore, the 

irradiation of TPGS/GO derivatives with NIR light induced an even greater reduction on the 

viability of breast cancer cells, thereby confirming their phototherapeutic potential. 

The classic approach used in the literature to develop nanoformulations with a preferential 

effect towards cancer cells is the functionalization of nanomedicines’ surface with targeting 

ligands [1]. Although some authors have applied this approach with success, the design of 
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targeting ligand-functionalized nanomaterials is challenging since i) the protein corona formed 

on nanomaterials’ surface can cover the ligand, rendering an ineffective targeting, and  

ii) requires a fine-tuning of the ligand-density, which is problematic due to the disparities in 

nanomaterials’ uptake found both in in vitro and in vivo assays [2, 3]. Furthermore, targeted 

nanomaterials have been showing disappointing results on clinical trials (e.g. BIND 

Therapeutics, Inc. Bind-014 – PSMA-targeted Nanoparticles loaded with Docetaxel) [4]. Due to 

these facts, nanostructures without surface passivation (e.g. DaunoXome® - Liposome loaded 

with Daunorubicin) or with PEG-passivation (e.g. DOXIL® – PEGylated Liposome loaded with DOX) 

are those that are still in use in the clinic [5]. In this way, achieving a preferential effect on 

cancer cells by coating GO derivatives with TPGS is promising since this type of selectivity is 

mediated by the TPGS molecular action (inhibition of Akt phosphorylation, leading to a 

decrease in the levels of BcL-2 and Survivin, which are overexpressed on breast cancer cells), 

and thus it is not likely to be affected by the problems described for targeting  

ligand-functionalized nanostructures. 

In the second experimental study, GO-based materials aimed for cancer-therapy were 

functionalized for the first time with a POx-based amphiphilic polymer. The POxylated GO 

derivatives demonstrated suitable physicochemical, colloidal, optical and biological properties 

for application in cancer therapy. Parallelly, the therapeutic potential of the DOX:TOS 

combination was screened, demonstrating that the 1:3 DOX:TOS molar ratio produces an 

optimal synergistic therapeutic effect towards breast cancer cells (combination index of about 

0.56 at different inhibition levels) and that it has a 2-times weaker effect on normal cells. 

POxylated GO derivatives were then loaded with the 1:3 DOX:TOS combination in order to 

evaluate its chemo-phototherapeutic potential. The in vitro studies revealed that the delivery 

of DOX:TOS by POxylated GO-based materials to cancer cells induced a stronger therapeutic 

effect than that attained with the free drug combination. Furthermore, an even greater 

cytotoxic effect towards cancer cells was achieved by exposing DOX:TOS loaded POxylated GO 

derivatives to NIR radiation, confirming the chemo-phototherapeutic potential of this 

nanoformulation. 

During the course of this PhD thesis, it was revealed by Kataoka’s research group that 

nanomaterials can accumulate in the tumor by extravasating through the dynamic vents that 

occur spontaneously in the tumor vasculature (also termed as eruptions) [6]. This finding 

completely shifts the paradigm by putting a high emphasis on enhancing the nanomaterials’ 

blood circulation in order to improve their tumor uptake (prior to this study, the modulation of 

nanomaterials’ size was excessively pursued with the intent of enhancing the tumor-homing 

capacity) [6]. Furthermore, the first case on the accelerated blood clearance of PEGylated  

GO-based materials was also reported [7]. In this regard, Cai’s research group found that 

PEGylated GO derivatives can experience a rapid blood clearance mediated by anti-PEG 

antibodies, which will ultimately compromise their ability to reach the tumor [7]. Based on this 
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body of information, the POxylation of GO gives a major contribution to the pursuit of  

PEG-alternatives for coating GO-based nanomaterials. Furthermore, the discovery of the 

optimal DOX:TOS combination ratios for breast cancer treatment was also an important 

breakthrough. Besides having a greater synergism than other DOX-based combinatorial 

therapies reported in the literature, the selected DOX:TOS combination demonstrated a lower 

effect on healthy cells. In this way, the POxylation of GO derivatives and their ratiometric 

loading with the optimal DOX:TOS combination is an appealing strategy to produce 

nanoformulations that may achieve a high blood circulation time (and tumor uptake) and may 

induce a substantially higher therapeutic effect on the cancer cells. 

Overall, the results obtained demonstrate that the applicability of GO-based materials in 

cancer therapy can be augmented by functionalizing them with amphiphilic polymers. 

Furthermore, the PTT potential of GO derivatives can be further enhanced by using coatings 

with intrinsic anticancer activity or by co-encapsulating drugs that display a higher effect on 

cancer cells. These novel strategies will further contribute for the translation of GO-based 

materials from the bench to the bedside. 

In the future, three major topics should be investigated in order to further accelerate the 

translation of GO-based phototherapies: 

 

1. In vivo validation of POx-based and zwitterionic-based amphiphilic coatings 

In a near future, the validation of the in vivo biodistribution and biocompatibility of the 

POxylated GO materials will be crucial to fully disclose the potential of this coating as a  

PEG-alternative. Moreover, synthesizing a PEtOx-TOS conjugate (an analog of TPGS but with 

PEtOx instead of PEG as the hydrophilic segment) and exploring it in the functionalization of 

GO derivatives is also an appealing approach since such material may retain the long blood 

circulation properties of PEtOx and the intrinsic anticancer activity of Vitamin E derivatives. 

Furthermore, zwitterionic-based amphiphilic polymers also hold a great potential for improving 

the blood circulation time of GO-based materials, and hence their tumor accumulation. In this 

way, validating such materials in in vitro and in vivo assays can be of great interest. 

 

2. Acceleration of GO biodegradation  

The long-term body accumulation of inorganic nanomaterials constitutes a barrier for their 

clinical translation. In this regard, the body-clearance of functionalized GO can be accelerated 

by using detachable coatings (the detachment of the coating allows the degradation of GO 

through oxidative-biodegradation). This research topic is still poorly investigated, and the 

applicability of such phenomenon to rGO-based materials was not yet unveiled. In this way, the 
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evaluation of the in vivo behavior of GO/rGO functionalized with amphiphilic materials that 

are detached from nanomaterials’ surface in response to tumor microenvironment (e.g. acidic 

pH or enzymatic degradation by MMP-2) or intracellular (e.g. reductive conditions) stimuli 

should be pursued.  

 

3. Environmentally-friendly reduction of GO 

As demonstrated herein, the hydrothermal-treatment improved the NIR absorption of GO (mass 

extinction coefficient = 5.64 L g-1 cm-1, at 808 nm) and yield nanomaterials with good 

cytocompatibility. Nevertheless, rGO attained using hydrazine hydrate still has a higher NIR 

absorption (mass extinction coefficient = 24.6 L g-1 cm-1, at 808 nm) than htGO. However, the 

latter is highly cytotoxic to cells, which is in part related to the toxicity of the hydrazine 

hydrate. Thus, evaluating the applicability of natural compounds in the reduction of GO is an 

area of great interest. In this regard, ongoing investigation has shown that Vitamin C can be 

used for the reduction of GO, yielding rGO with a high NIR absorption (mass extinction 

coefficient = 12.67 L g-1 cm-1, at 808 nm), acceptable cytocompatibility and appropriate 

physicochemical properties for cancer-related applications. Further optimizations in the 

Vitamin C-mediated reduction protocols will surely enhance the PTT capacity of GO-based 

materials. 
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