
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 26, No. 6, November–December 2003

Equilibria of Multibody Chain in Orbit Plane

Anna D. Guerman¤

University of Beira Interior, 6201-001 CovilhQa, Portugal

We study equilibria of a multibody system in the orbit plane within the framework of a model of n + 1 material
points connected by n light rods into an n-link chain. The junctions are spherical hinges. The center of mass of the
system moves along a circular orbit. The equilibrium equations are reduced to a fairly simple form that enables
their analysis. We � nd all the equilibria of an n-link chain in the orbit plane and prove that each rod can occupy
one of the following three positions: it can be directed along the tangent to the orbit of the center of mass of the
chain; it can be a member of a group of adjacent vertical rods, being the center of mass of this group situated on
the tangent to the orbit; and, � nally, an oblique orientation is possible if the rod joins either two vertical groups of
rods or the end of a vertical group with the tangent to the orbit. It is shown that the number of equilibria does not
exceed 22n. We include the analysis of two examples (three- and four-link chains) and represent the schemes of all
the realizable equilibria in these cases.

I. Introduction

O RBITAL dynamicsof a system of connectedbodies is of great
interest due to its numerous possible applications, including

orbital stations,robots, tetheredsystemswith multiplepayloads,and
formation � ying. The � rst studies on the subject were published in
the early 1960s and were followed by much scienti� c research and
many engineering projects. A large part of this work is dedicated
to the behavior of two tethered bodies. However, there exists sig-
ni� cant interest for multibody systems, inspired by various space
programs under development. The study of multibody systems is
mainly focusedon numerical analysis(see, for instance,Refs. 1–4).
Analyticalresearchis mostly restrictedeither to systemswith a small
number of connected bodies (see Refs. 5–9 for chains with two or
three bodies) or to systems with speci� c additionalconditions(such
as the orbiting ring studied in Refs. 10 and 11).

In this paper, we suggest an analytical study of a system that
includes an arbitrary number of satellites joined into an open chain
by light rigid rods. We impose no restrictions on the masses of
satellites or the lengths of the links. We model the satellites by
material points and suppose that the mass of the links is negligible
compared with the masses of the satellites. (This approach is used
in most analytical studies of tethered systems, such as Refs. 6–9
and 11.) We study equilibrium con� gurations of this system in the
orbital reference frame.

Some particularcases of this problemwere examinedpreviously.
The two-member chain (double pendulum) is a particular case of
two connected bodies whose in-plane equilibria were studied in
Ref. 5. The model we consider was used7¡9 to study equilibria of
three linked material points. It was shown that there exist only three
kinds of in-plane con� gurations: both rods directed along the local
vertical; both rods aligned with the tangent to the orbit of the center
of masses; and one rod verticalwhile the other is in an obliqueposi-
tion. The in-plane equilibria of a two-link chain were studied,7 and
the principal frequencies of small-amplitude motions about these
equilibria were determined. All the spatial equilibria of a double
pendulum were found in Ref. 8. A study of equilibria of a double
pendulum in the plane of a circular orbit was performed in Ref. 9,
and stability of all the in-plane con� gurations was analyzed.
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II. Posing the Problem
Let us considera systemof n C 1 material points, A0, A1 , : : : , An ,

with respectivemasses m0 , m1 , : : : , mn . These points are connected
byn light rigidrods (ak D Ak ¡ 1 Ak ; k D 1; : : : ; n) intoanopenchain.
The junctions are spherical hinges. The gravitational � eld of the
Earth is supposed to be central Newtonian. The center of mass of
the system O moves along a circular orbit with angular velocity !.

To describe the behavior of this system we use the orbital refer-
ence frame Oxyz. Its z axis follows the local vertical, the x axis
is tangent to the orbit and points in the direction of the velocity of
point O , and so the y axis is normal to the plane of the orbit. The
orientation of the rod ak D Ak ¡ 1 Ak is described by the angle Ák

between the rod ak and the z axis (Fig. 1).
The components of the vector ak D Ak ¡ 1Ak are

akx D »k D ak sin Ák; ak y D ´k D 0

akz D ³k D ak cos Ák (1)

The coordinates of the point Ak (k D 1; : : : ; n) in the orbital frame
are

xk D x0 C
kX

s D 1

»s; yk D 0; zk D z0 C
kX

s D 1

³s (2)

where x0 , y0 , and z0 are the coordinates of the � rst satellite in the
chain A0. We denote by x¤, y¤ , and z¤ the coordinates of the center
of mass O of the structure. For this choice of the reference frame,
x¤ D y¤ D z¤ D 0, and we obtain

nX

k D 0

mk xk D Mx¤ D 0;

nX

k D 0

mk zk D Mz¤ D 0 (3)

Then one can determine the position of the point A0:

x0 D ¡ 1
M

nX

s D 1

Mn
s »s; z0 D ¡ 1

M

nX

s D 1

M n
s ³s (4)

We use the notation

M j
i D

jX

p D i

m p ; Mn
0 D M

(the total mass of the chain). Thus, the system considered has n
degreesof freedom, and Ák (k D 1; : : : ; n) represent the generalized
coordinates.

The kinetic energy T of the system is

T D
1

2

nX

k D 0

mk

©
[ Pxk C !.zk C rO /]2 C .Pzk ¡ !xk /2

ª
(5)
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Fig. 1 Orientation angles.

Its gravitationalpotential energy is

V D ¡!2r 3
O

nX

k D 0

mk

rk
(6)

where rk is the distance between the point Ak and the center of the
Earth,

rk D
p

x2
k C .rO C zk /2 (7)

andrO representsthis distancefor the centerofmass O of the system
(that is, rO is the radius of the orbit). Calculating the function V and
taking into account the terms up to the second order of ak =rO , one
gets

V D ¡!2r 3
O

nX

k D 0

mk

£
x2

k C .rO C zk/
2
¤¡ 1

2

D ¡!2r 2
O

nX

k D 0

mk

³
1 C 2

zk

rO
C

x2
k C z2

k

r 2
O

´¡ 1
2

D ¡!2r 2
O

nX

k D 0

mk

³
1 ¡

zk

rO
¡

x2
k ¡ 2z2

k

r 2
O

´

D ¡M!2r 2
O C !2

2

nX

k D 0

mk

¡
x2

k ¡ 2z2
k

¢
(8)

[We used relation (3) once more.]

III. Equations of Equilibria
Equilibria of the chain correspond to the solutions

Ák D Ák0 D const (9)

of the equations

@.T0 ¡ V /

@Ák
D 0; k D 1; : : : ; n (10)

where T0 represents the part of T independentof the velocities, and
T0 ¡ V is sometimes referred to as the dynamic potential. Simpli-
fying the term T0 using relation (3), one gets

T0 ¡ V D 3!2

2

nX

k D 0

mk z2
k C const (11)

and so the in-plane equilibrium con� gurations of the chain are de-
scribed by the following equations:

nX

k D 0

mk zk
@zk

@Áp
D 0; p D 1; : : : ; n (12)

Substituting Eq. (4) into system (2), we arrive at

zk D
1
M

³ kX

s D 1

M s ¡ 1
0 ³s ¡

nX

s D k C 1

M n
s ³s

´
; 0 · k · n (13)

For the sake of uniformity we assume the convention that

0X

s D 1

M s ¡ 1
0 ³s D 0;

nX

s D n C 1

M n
s ³s D 0

So

@zk

@Áp
D

8
><

>:

1
M

Mn
pap sinÁ p; for k < p; 0 · k; p · n

¡ 1
M

M p ¡ 1
0 ap sin Á p; for k ¸ p (14)

and rather tedious calculations lead to the following:

nX

k D 0

mk zk
@zk

@Á p
D

"
p ¡ 1X

k D 0

1
M 2

mk

Á
kX

s D 1

M s ¡ 1
0 ³s ¡

nX

s D k C 1

Mn
s ³s

!
Mn

p

¡
nX

k D p

1
M2

mk

Á
kX

s D 1

M s ¡ 1
0 ³s ¡

nX

s D k C 1

Mn
s ³s

!
M p ¡ 1

0

#
ap sinÁ p

D
ap sin Á p

M 2

"
M n

p

Á
p ¡ 1X

s D 1

M s ¡ 1
0 M p ¡ 1

s ³s ¡
pX

s D 1

M s ¡ 1
0 M n

s ³s

¡
nX

s D p C 1

M p ¡ 1
0 Mn

s ³s

!
C M p ¡ 1

0

Á
nX

s D p C 1

M s ¡ 1
p Mn

s ³s

¡
pX

s D 1

M s ¡ 1
0 Mn

p³s ¡
nX

s D p C 1

M s ¡ 1
0 M n

s ³s

!#

D ¡
ap sinÁ p

M

Á
M n

p

pX

s D 1

M s ¡ 1
0 ³s C M p ¡ 1

0

nX

s D p C 1

Mn
s ³s

!

(15)

Finally we arrive at the following system:

sin Ák ¢ .bkz/ D 0; k D 1; : : : ; n (16)

Here z D .³1; : : : ; ³n/T ,

b1 D .1=M2/
¡
m0 Mn

1 ; m0 M n
2 ; : : : ; m0.mn ¡ 1 C mn/; m0mn

¢
(17)

bn D .1=M2/
£
m0mn ; .m0 C m1/mn; : : : ; M n ¡ 2

0 mn; M n ¡ 1
0 mn

¤

bk D .1=M2/
£
m0 M n

k ; .m0 C m1/M n
k ; : : : ; Mk ¡ 2

0 Mn
k ; M k ¡ 1

0 Mn
k ;

M k ¡ 1
0 Mn

k C 1; : : : ; M k ¡ 1
0 mn

¤
; 2 · k · n ¡ 1 (18)

Here bk is the rowk of the matrixB.nI m0; : : : ; mn/ with theelement
in row i and column j equal to

bi; j D

8
><

>:

1
M2

M j ¡ 1
0 Mn

i ; for j · i

1
M2

M i ¡ 1
0 Mn

j ; for j < i
(19)

The matrix B will be referred to as the mass matrix.
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IV. Properties of the Mass Matrix
We now describesome importantpropertiesof the matrix B. They

will be our main tool in the analysisof system (16).These properties
permit us to identify some elementary equilibrium con� gurations
and then to describe all possible equilibria using superposition.

In the following analysis, we denote by DJ the matrix obtained
from B by exclusion of rows and columns with numbers in the set
J : D J D .bi; j ji; j =2 J /; dk J stands for the kth column of B without
elements with indices from J : dk J D .b j;k j j =2 J /T and zJ stands for
the column z without these elements: zJ D .³ j j j =2 J /T .

Property 1: The neighboring rows of this matrix satisfy the
relations

.M=m k ¡ 1/.bk ¡ bk ¡ 1/ C .M=mk /.bk ¡ bk C 1/ D ek

k D 2; : : : ; n ¡ 1

.M=m0/b1 C .M=m1/.b1 ¡ b2/ D e1

.M=mn ¡ 1/.bn ¡ bn ¡ 1/ C .M=mn/bn D en (20)

where ek D .±k1; : : : ; ±kn / designates the kth row of the identity
matrix n £ n (±k j is the Kronecker symbol).

Property 2: For J D fk C 1; : : : ; k C rg; k ¸ 1; k C r · n, the
matrix DJ coincides with B for the .n ¡ r/-link chain with
the masses Qm j D m j , j D 1; : : : ; k ¡ 1; Qmk D Mk C r

k , Qm j D m j C r ,
j D k C 1; : : : ; n ¡ r :

D J D B
¡
n ¡ r I m0; : : : ; mk ¡ 1; Mk C r

k ; mk C r C 1; : : : ; mn

¢
(21)

In the particular case J D f1; : : : ; rg, DJ coincides with the mass
matrix B for the .n ¡ r /-link chain with the masses Qm1 D M r

0 ,
Qm j D m j C r , j D 2; : : : ; n ¡ r .

Properties 1 and 2 can be proved by direct substitution.
Property 3: The matrix B does not degenerate:

det B D .m0m1; : : : ; mn/
¯

Mn C 1 6D 0 (22)

We prove this equality by induction.
For n D 1, one gets B D m0m1=M 2, and the statement is true.
Now we suppose that Eq. (22) is valid for n D k ¡ 1 and prove it

for n D k. For the latter case we apply Eq. (20) to the last row of B
and get

detB D
mk ¡ 1mk

M .mk ¡ 1 C m k/
detD J (23)

where J D fng. In accordancewith Eq. (21),DJ D B.k ¡ 1I m0; : : : ;
mk ¡ 2; mk ¡ 1 C m k/, and we can use Eq. (22):

det DJ D [m0m1; : : : ; mk ¡ 2.mk ¡ 1 C m k/]
¯

Mk (24)

Finally,

detB D
mk ¡ 1mk

M.m k ¡ 1 C mk /

m0m1; : : : ; mk ¡ 2.mk ¡ 1 C mk /

Mk

D

Qk
j D 0

m j

Mk C 1
(25)

which proves equality (22) for an n-link chain.
Property 4: For an arbitrary set J , the matrix DJ does not degen-

erate either:

detD J 6D 0 (26)

Suppose that J D
S

s
Js , where Js D fks C 1; : : : ; ks C rsg. Ap-

plying Property 2 s times, one concludes that DJ coincideswith the
matrix B for a p-link chain (p D n ¡

P
s
rs) with masses Qm j D m j ,

j =2 J1 D J
S

.
S

s
ks /, Qm ks D Mks C rs

ks
. Thus,

det DJ D
Q

Qm j

M p C 1
6D 0 (27)

V. Equilibrium Con� gurations
In this section, we describe all of the possible solutions of sys-

tem (16) and the corresponding con� gurations of a chain with an
arbitrary number of satellites. These general results will later be
illustrated in Sec. VI by two particular cases: equilibria of a three-
link chain with differentmasses of satellites and lengths of the links
(Fig. 2) and equilibria of a four-link chain with equal masses of
points and lengths of rods (Figs. 3–6).

In Eqs. (16), both factors can vanish independently.Thus, to de-
scribe all the equilibria we have to study all these possibilities.

a)

b)

c)

d)

e)

f)

Fig. 2 Study of a three-link chain: a–d) existing equilibrium con� gu-
rations and e and f) equilibria cannot be realized.

a)

b)

Fig. 3 Equilibria of a four-link chain: a) horizontal and b) vertical
con� gurations.
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Fig. 4 Equilibria of a four-link chain (one vertical rod).

a)

b)

Fig. 5 Equilibria of a four-link chain: a) one group of two adjacent
rods and b) two separate vertical rods.

a)

b)

Fig. 6 Equilibria of a four-link chain: a) one group of three vertical
rods and b) two groups of vertical rods.

Equality sin Ák D 0 means that the kth rod is vertical, and so we
will study equilibrium con� gurations depending on the number of
vertical rods and their positions in the chain.

A. Horizontal Con� gurations
We start the analysis considering the case when

nY

k D 1

sin Ák 6D 0 (28)

The equilibriumcon� gurationscorrespondto the solutionsof linear
system

Bz D 0 (29)

with nonzero determinant (22). So the unique solution of
Eqs. (16) is

z D 0 (30)

which means, in terms of angles Ák , that

cosÁk D 0; k D 1; : : : ; n (31)

The orientationof the kth member correspondsto Ák D §¼=2. Thus,
in this case there are 2n equilibria that exist for any lengths of the
rods and masses of the satellites. All of them correspond to posi-
tions of the chain with all links pointed along the tangent to the
orbit. Examples of such con� gurations are provided in Figs. 2a
and 3a.

B. One Vertical Rod
Consider now the case when there is only one number k for

which sin Ák D 0. The correspondingrod is parallel to the local ver-
tical Oz. Then Ák D 0 or Ák D ¼ , cos Ák D §1; and ³k D ³

.0/

k D §ak .
The equations that describe the equilibrium con� gurations of the
chain are

b1;1³1 C ¢ ¢ ¢ C b1;k ¡ 1³k ¡ 1 C b1;k ³
.0/

k

C b1;k C 1³k C 1 C ¢ ¢ ¢ C b1;n³n D 0

b2;1³1 C ¢ ¢ ¢ C b2;k ¡ 1³k ¡ 1 C b2;k ³
.0/

k

C b2;k C 1³k C 1 C ¢ ¢ ¢ C b2;n³n D 0

:::

bk ¡ 1;1³1 C ¢ ¢ ¢ C bk ¡ 1;k ¡ 1³k ¡ 1 C bk ¡ 1;k³
.0/

k

C bk ¡ 1;k C 1³k C 1 C ¢ ¢ ¢ C bk ¡ 1;n³n D 0

³k D ³
.0/

k

bk C 1;1³1 C ¢ ¢ ¢ C bk C 1;k ¡ 1³k ¡ 1 C bk C 1;k³
.0/

k

C bk C 1;k C 1³k C 1 C ¢ ¢ ¢ C bk C 1;n³n D 0

:::

bn;1³1 C ¢ ¢ ¢ C bn;k ¡ 1³k ¡ 1 C bn;k ³
.0/

k

C bn;k C 1³k C 1 C ¢ ¢ ¢ C bn;n³n D 0 (32)

This system can be represented as

DJ zJ D ¡dk J ³
.0/

k ; J D fkg (33)

(Here the kth row is omitted.)
Suppose � rst that k D 2; : : : ; n ¡ 1. One can notice that it is pos-

sible to apply transformation (20) to all the lines of Eq. (32) except
the (k ¡ 1/th and (k C 1)th ones, and so this system is equivalent to

³1 D 0; : : : ; ³k ¡ 2 D 0; ³k D ³
.0/

k ; ³k C 2 D 0; : : : ; ³n D 0

bk ¡ 1;k ¡ 1³k ¡ 1 C bk ¡ 1;k ³
.0/

k C bk ¡ 1;k C 1³k C 1 D 0

bk C 1;k ¡ 1³k ¡ 1 C bk C 1;k ³
.0/

k C bk C 1;k C 1³k C 1 D 0 (34)
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Now we use the expressionsfor bi; j to determine ³k ¡ 1 , ³k C 1 and the
respective angles of orientation of the rods:

³k ¡ 1 D ¡³
.0/

k [mk =.mk ¡ 1 C mk /]

cos Ák ¡ 1 D ¡.ak=ak ¡ 1/[mk=.mk ¡ 1 C mk/] cos Ák

³k C 1 D ¡³
.0/

k [mk ¡ 1=.m k ¡ 1 C mk /]

cosÁk C 1 D ¡.ak =ak C 1/[mk ¡ 1=.mk ¡ 1 C mk /] cos Ák (35)

The condition of existence of this equilibrium is

.ak=ak ¡ 1/[mk =.mk ¡ 1 C mk /] < 1

.ak=ak C 1/[mk ¡ 1=.mk ¡ 1 C mk /] < 1 (36)

[If .ak =ak ¡ 1/[m k=.mk ¡ 1 C m k/] D 1 or .ak =ak C 1/[mk ¡ 1=
.mk ¡ 1 C mk /] D 1; the rod ak ¡ 1 or ak ¡ 1 is also aligned with the
local vertical; we do not consider this case here.]

For k D 1 the solution is given by the formulas

³2 D ¡³
.0/

1 [m0=.m0 C m1/]

cos Á2 D ¡.a1=a2/[m0=.m0 C m1/] cos Á1

if .a1=a2/[m0=.m0 C m1/] < 1 (37)

and for k D n one gets

³n ¡ 1 D ¡³ .0/
n [mn=.mn ¡ 1 C mn/]

cos Án ¡ 1 D ¡.an=an ¡ 1/[mn=.mn ¡ 1 C mn/] cos Án

if .an=an ¡ 1/[mn=.mn ¡ 1 C mn/] < 1 (38)

Thus, the equilibrium con� gurations in this case are as follows:
The rod ak is aligned with the local vertical. The center of mass
of the system of two points Ak ¡ 1 and Ak connected by the rod ak

belongs to the x axis. All other rods of the chain except the direct
neighbors of ak are also situated on the x axis. (Examples are given
by Figs. 2b, 2e, and 4.) Such equilibria exist if the lengths of the
rods ak ¡ 1 and ak C 1 (or of one of these rods if k D 1 or n) suf� ce to
allow this con� guration:

ak ¡ 1 > ak [mk =.mk ¡ 1 C mk /]

ak C 1 > ak [mk ¡ 1=.mk ¡ 1 C mk /] (39)

Because one can indicate two values of Ák with the same cosine, the
number of equilibria of this type does not exceed n ¢ 2n .

C. One Group of Vertical Rods
Suppose that in system (16) sinÁ j D 0 iff j 2 J D fk C 1; : : : ;

k C rg. (This means that some group of r adjacent rods is aligned
with the local vertical.) Then cosÁ j D §1, and ³ j D ³

.0/

j D §a j

for j 2 J . One can use property (20) to show that ³ j D 0 for
j =2 J

S
fk; k C r C 1g. For ³k and ³k C r C 1 one arrives at the fol-

lowing system of equations:

Mk ¡ 1
0 M n

k ³k C M k ¡ 1
0 Mn

k C 1³
.0/

k C 1 C ¢ ¢ ¢ C M k ¡ 1
0 Mn

k C r ³
.0/

k C r

C Mk ¡ 1
0 M n

k C r C 1³k C r C 1 D 0

Mk ¡ 1
0 M n

k C r C 1³k C Mk
0Mn

k C r C 1³
.0/

k C 1 C ¢ ¢ ¢ C Mk C r ¡ 1
0 Mn

k C r C 1³
.0/

k C r

C Mk C r
0 Mn

k C r C 1³k C r C 1 D 0 (40)

Simplifying Eqs. (40), we get

³k C ³
.0/

k C 1 C ¢ ¢ ¢ C ³
.0/

k C r C ³k C r C 1 D 0

Mk C r
k ³k C Mk C r

k C 1 ³
.0/

k C 1 C ¢ ¢ ¢ C mk C r ³
.0/

k C r D 0 (41)

and so

³k D ¡
¡
Mk C r

k C 1 ³
.0/

k C 1 C ¢ ¢ ¢ C mk C r ³
.0/

k C r

¢¯
Mk C r

k

³k C r C 1 D ¡
¡
mk ³

.0/

k C 1 C ¢ ¢ ¢ C M k C r ¡ 1
k ³

.0/

k C r

¢¯
M k C r

k (42)

Equalities (41) show that the center of mass of the group of vertical
rods should lie on the local horizontal. There are no more than 2n

equilibrium con� gurations corresponding to solution (42). One of
them exists if the lengths of the rods allow it:

¡Mk C r
k C 1 ³

.0/

k C 1 C ¢ ¢ ¢ C mk C r ³
.0/

k C r

¢¯
Mk C r

k

< ak

¡mk ³
.0/

k C 1 C ¢ ¢ ¢ C M k C r ¡ 1
k ³

.0/

k C r

¢¯
Mk C r

k

< ak C r C 1 (43)

In case the group of vertical rods is located at one of the ends of
the chainwe get only one equationcorrespondingto the neighboring
rod:

m0 M n
r C 1³

.0/

1 C ¢ ¢ ¢ C M r ¡ 1
0 Mn

r C 1³
.0/
r C Mr

0 M n
r C 1³r C 1 D 0 (44)

so that

³r C 1 D ¡
¡
m0³

.0/

1 C ¢ ¢ ¢ C M r ¡ 1
0 ³ .0/

r

¢¯
Mr

0 (45)

for k D 0, and

Mk ¡ 1
0 Mn

k ³k C Mk ¡ 1
0 M n

k C 1³
.0/

k C 1 C ¢ ¢ ¢ C Mk ¡ 1
0 mn³ .0/

n (46)

and so

³k D ¡
¡
Mn

k C 1³
.0/

k C 1 C ¢ ¢ ¢ C mn³ .0/
n

¢¯
Mn

k (47)

for k C r D n. The respectiveequilibriumcon� gurationspossess the
aforementionedpropertiesdescribedfor thecaseof an internalgroup
of vertical rods (see Figs. 2c, 5a, and 6a).

System (16) also admits the solution

sin Á j D 0; j D 1; : : : ; n (48)

which implies that the whole chain is situated on the local vertical.
All the 2n con� gurations are possible in this case (see Figs. 2d
and 3b).

D. Two or More Groups of Vertical Rods
With no loss of generality, let us consider the case of two groups

of vertical rods.
Suppose that sin Á j D 0 only for j 2 J D J1

S
J2 , J1 D

fk1 C 1; : : : ; k1 C r1g, J2 D fk2 C 1; : : : ; k2 C r2g with k1 C r1 C
1 · k2. Then cos Á j D §1, and ³ j D ³

.0/

j D §a j for j 2 J . Equations
of equilibria are now

D J zJ D ¡
µ X

j 2 J1

d j J ³
.0/

j C
X

j 2 J2

d j J ³
.0/

j

¶
(49)

Along with Eqs. (49), let us study the following two systems:

DJ zJ D ¡
X

j 2 J1

d j J ³
.0/

j (50)

D J1 zJ1 D ¡
X

j 2 J1

d j J1 ³
.0/

j (51)

System (50) was obtained from Eqs. (49) by putting ³
.0/

j D 0
for j 2 J2. In accordance with Eq. (26), systems (49–51)
have unique solutions. Obviously, system (51) is the system
of equilibrium equations for a single group of vertical rods.
It was examined before, and the solution implies ³

.0/

j D 0
for j 2 f1; : : : ; k1 ¡ 1; k1 C r1 C 2; : : : ; kng, including j 2 J2 . It
means that the unique solution of system (50) is ³ j D 0 for
j =2 J

S
fk1; k1 C r1 C 1g and ³k1 , ³k1 C r1 C 1 are given by Eqs. (42)
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[or Eq. (45) if k1 D 0] by putting k ! k1; r ! r1. Studying in the
same way the systems

DJ zJ D ¡
X

j 2 J2

d j J ³
.0/

j (52)

D J2 zJ2 D ¡
X

j 2 J2

d j J2 ³
.0/

j (53)

one arrives at the conclusion that the solution of Eq. (53) is
³ j D 0 for j =2 J2

S
fk2; k2 C r2 C 1g and ³k2 , ³k2 C r2 C 1 are cal-

culated by Eqs. (42) [or Eq. (47) if k2 C r2 D n) with substitu-
tion k ! k2; r ! r2 . So the solution of Eq. (52) is ³ j D 0 for
j =2 J

S
fk2; k2 C r2 C 1g with the same values of ³k2 and ³k2 C r2 C 1.

To get the solutions of the initial system (49), one has to sum the
solutions of Eqs. (50) and (52). Thus the solutions of system (16)
that correspondto two (ormore) groupsof verticalrods can be found
by the superpositionof solutionsobtained for each group of vertical
rods separately.

The respective equilibria con� gurations represent two groups of
vertical rods with their centers of mass situated on the x axis. For
these rows ³ j D ³

.0/

j D §a j for j 2 J . If these groups have no com-
mon neighbor, the orientations of the neighbor rods are described
by Eqs. (42) [or Eqs. (45) and (47) if it is the case]. These rods
connect the vertical groups with the rest of the chain that is oriented
horizontally.

If k1 C r1 C 1 D k2, that is, the vertical groups have a common
neighbor, its orientation is described by the relation

Q³k2 D ³k1 C r1 C 1 C ³k2 (54)

where ³k1 C r1 C 1 is given by Eqs. (42) with the substitution
k ! k1; r ! r1, and³k2 is givenwith the substitutionk ! k2; r ! r2.
The only difference with the preceding case is that the common
neighbor of the vertical groups should be oriented so as to guaran-
tee that their centers of mass still belong to the local horizontal (see
Figs. 2f, 5b, and 6b).

Obviously, the same procedure can be applied to study equilib-
rium con� gurationswith three or more groups of vertical rods. This
type of equilibrium exists if the inclined rods are long enough.

E. Number of Equilibria
The total number of equilibria in the plane of the orbit does not

exceed product of the number of possible choices of vertically ori-
ented rods and the numberof respectivecon� gurationsof the chain:

N · 2n ¢ 2n D 22n (55)

The exact number of equilibriacan be determinedby taking into ac-
count the lengthsof the linksand the massesof the points A0; : : :,An .

VI. Examples
We consider two examples to illustrate the general results ob-

tained in Sec. V. The � rst is a three-link chain with different mem-
bers; the second one is a four-link chain with equal masses of the
satellites and lengths of the connecting rods. Equilibria of these
structuresare schematically representedby Figs. 2–6. Even in these
cases of relatively few links, we have too many con� gurations to
depict themall, and so we indicate the type of symmetry thatpermits
one to obtain the remaining equilibria.

A. Three-Link Chain
Figure 2 illustrates the results of analysis of equilibrium con� g-

urations for a three-link chain that consists of four material points
A, B , C , and D: The masses of the points are respectivelym A D m,
m B D 2m , mC D 4m, and m D D 8m. The connecting rods have the
lengths lAB D l, lBC D 2l, and lC D D 4l. Figure 2a shows four of
the existing 23 D 8 horizontal con� gurations; the other four are
symmetric with respect to the z axis. Figure 2b represents two es-
sentially different con� gurations with one vertical rod; the other
six equilibria are obtained by re� ections with respect to x and/or z

axes. For this chain, there are no equilibria where either BC or C D
is the only vertical rod; the reason is illustrated in Fig. 2e. In this
con� guration, zB D 2lBC =3 D 4l=3, but point A should lie on the x
axis. This is possible only if lAB > 4l=3, which is not the case. All
essentially different existing equilibria with a group of two vertical
rods are shown in Fig. 2c. (The remaining nine con� gurations are
obtained by symmetries with respect to x and/or z axis.) For this
chain, there are no equilibria with two groups of vertical rods. As
shown in Fig. 2e, the existence of such equilibria would imply that
lBC > zC ¡ zB D 2lC D=3 ¡ lAB =3 D 7l=3. In Fig. 2d, one can see four
existing vertical con� gurations; the other four are symmetric with
respect to the x axis. In this case there exist 36 equilibrium con� g-
urations of the chain. [The upper bound of Eq. (55) is 26 D 64.]

B. Four-Link Chain
Now let us consider equilibria of a four-link chain in the plane of

a circular orbit. To simplify the calculationswe choose a system of
� ve material points A, B , C , D, and E of equal masses. The lengths
of the links are also equal. Figures 3–6 represent schematically � ve
groupsof possibleequilibria.Figure 3 shows all essentiallydifferent
equilibria,where the rods are either all horizontal or all vertical; the
others are symmetric with respect to z or x axis correspondingly.
Figures 4–6 show schemes of existing equilibria where orientations
of rods may differ; the rest of them are symmetric with respect to
x and/or z axis. The total number of equilibrium con� gurations is
N D 192. The difference between the estimate (55) and the actual
quantity 28 ¡ 192 D 64 originates in the speci� c dimensions of the
chain.For example, a uniquegroupof two vertical rods alignedwith
the same direction proves impossible, because the rod adjacent to
this group would have to be vertical as well. Consequently,we deal
with the case of three adjacent vertical rods (two of them pointing
in the same direction, and the third in the opposite one), which are
represented in Fig. 6.

VII. Conclusions
We study equilibria of a multibody connected system within the

framework of the model of an n-link chain. All possible con� gura-
tions in the plane of a circular orbit are described. It is shown that
each rod of the chain can occupy one of the following positions:

1) It can be directedalong the local horizontal Ox (tangent to the
orbit).

2) It can be a member of a group of k consequent vertical rods
and is the center of mass of this group situated on the axis Ox .

3) An oblique orientation is possible if the rod joins either two
vertical groups of rods or the end of a vertical group with the
axis Ox .

Eachof these con� gurationsexistswhen the lengthsof theoblique
rods (if there are any) allow it. The total number of equilibria does
not exceed 22n .

For the particular case of a two-member link the results obtained
coincide with those of Refs. 5–9.
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