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Resumo 

 

Nas últimas décadas, vários estudos evidenciaram uma diminuição da fertilidade masculina. À 

medida que as tecnologias sem fios, Wi-Fi, e o tempo gasto com a sua utilização estão a 

aumentar, a relação entre estes dois fatos tem sido um tema de investigação. 

 Existem vários artigos que demonstram as consequências negativas da radiação 

eletromagnética de dispositivos sem fios na fertilidade masculina, afetando os parâmetros 

espermáticos nomeadamente reduzindo a motilidade e viabilidade, aumentando a 

percentagem de espermatozóides com uma morfologia anormal e diminuindo a concentração 

espermática. Existem inclusivamente estudos que revelam que a radiação eletromagnética 

destes aparelhos potencia o stress oxidativo e aumenta as espécies reativas de oxigénio, 

sendo também capaz de provocar alterações histopatológicas nos órgãos reprodutores 

masculinos e até mesmo alterar a produção de hormonas importantes para a fertilidade 

masculina, como a testosterona. No entanto, todos os estudos mostram falhas na concepção 

de um modelo realista de exposição à radiação e não existem estudos sobre os efeitos da 

radiação eletromagnética no metabolismo testicular.  

Uma função reprodutiva normal é afectada pelo processo de espermatogénese, que por sua 

vez está dependente do metabolismo testicular, mais especificamente das células de Sertoli 

que fornecem suporte nutricional às células germinativas em desenvolvimento. As células de 

Sertoli, localizadas no interior dos túbulos seminíferos, em situações normais, metabolizam a 

maioria da glucose a lactato, sendo o lactato o substrato preferido para as células 

germinativas em desenvolvimento obterem energia. Contudo, alguns estudos já 

demonstraram que em circunstâncias específicas, as células de Sertoli podem usar outros 

substratos em vez da glucose para obter energia. 

Para realizar o estudo, foi construído um set up de exposição constituído por diferentes 

componentes eletrónicos comercialmente disponiveis para expor os túbulos seminíferos em 

cultura, de uma forma realística à radiação eletromagnética. Para a validação do modelo de 

exposição construído, espermatozóides de ratos adultos foram expostos durante 1 hora à 

radiação eletromagnética do set up desenvolvido. Desta experiência os resultados revelaram 

uma diminuição significativa na motilidade dos espermatozóides do grupo exposto em relação 

aos do grupo controlo, validando o modelo. 

Do estudo de metabolismo realizado, expondo túbulos seminíferos de ratos de 20 dias ao 

equipamento construído, os nossos resultados mostraram que a radiação eletromagnética 

diminuiu significativamente o consumo de glucose, no entanto contraditoriamente, a 

produção de lactato aumentou significativamente. A actividade da enzima lactato 
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desidrogenase foi avaliada e embora não significativo, a radiação electromagnética causou 

um aumento da mesma.  Os resultados obtidos contraditórios entre o consumo de glicose e a 

produção de lactato sugerem que, quando expostos a radiação eletromagnética de 

dispositivos Wi-Fi, as células responsáveis pelo metabolismo testicular, nomeadamente as 

células de Sertoli nos túbulos seminiferos, podem usar vias metabólicas alternativas para a 

produção de lactato e consequentemente obter energia. 

Em conclusão, este estudo demonstrou que o modelo de exposição à radiação 

eletromagnética de aparelhos Wi-Fi foi criado e validado com sucesso e que a radiação 

eletromagnética proveniente destes equipamentos, para além de causar alterações negativas 

nos parâmetros espermáticos das células germinativas, promove alterações no metabolismo 

glicolítico normal, sugerindo a utilização de uma via alternativa de obtenção de energia que 

pode ter efeitos na espermatogénese e afectar a fertilidade masculina. 
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Resumo Alargado 

 

Actualmente, a infertilidade, definida pela impossibilidade de alcançar uma gravidez 

desejada após um ano de relações sem o uso de qualquer método contracetivo, é um 

problema de saúde que incide cada vez mais em casais que pretendem ter filhos, sendo 

afectada pelos mais diversos factores. Sendo que cerca de 30% dos casos de infertilidade são 

atribuídos a factores masculinos, é de extrema importância o desenvolvimento de um 

trabalho contíguo entre a investigação e a medicina de maneira a perceber as perspectivas 

clinicas e os tratamentos a adoptar para minimizar o problema da infertilidade masculina. 

Vários factores sendo eles psicológicos, bioquímicos ou ambientais têm vindo a ser apontados 

por terem um papel no aumento do número de casos de infertilidade. De facto, existem 

evidências de que problemas de infertilidade masculina são mais comuns em países 

desenvolvidos, o que nos leva a supor que o estilo de vida nestes países possa contribuir para 

o número crescente de casos de homens inférteis. Sendo os países desenvolvidos também 

caracterizados por um maior avanço tecnológico, é plausível questionar se as novas 

tecnologias podem também ser um factor capaz de influenciar a função reprodutiva 

masculina. De facto, a exposição a radiação eletromagnética tem sido associada a vários 

desfechos adversos à saúde. Alguns desses resultados relatados são tumores cerebrais, 

aumento do risco de cancro de mama, função imunológica alterada, dano de células nervosas, 

doenças cardiovasculares, abortos espontâneos, problemas de sono e até efeitos de curto 

prazo na cognição e no comportamento. Desta maneira e uma vez que a internet e os 

aparelhos wireless que utilizam redes Wi-Fi são cada vez mais um instrumento de lazer e 

trabalho presente no nosso dia-a-dia, têm surgido estudos acerca dos efeitos da radiação 

emitida por este tipo de aparelhos no aparelho reprodutor masculino. Vários estudos 

demostraram que a radiação eletromagnética proveniente de equipamentos wireless têm 

efeitos negativos na fertilidade masculina, sendo capaz de afectar os parâmetros 

espermáticos reduzindo a motilidade e viabilidade, aumentando a percentagem de 

espermatozóides com uma morfologia anormal e diminuindo a concentração espermática. 

Existem outros estudos que revelam que este tipo de radiação é também capaz de provocar 

alterações histopatológicas nos órgãos reprodutores masculinos e alterar a produção de 

hormonas importantes como a testosterona, essencial para uma função reprodutiva normal. 

No entanto, os estudos acerca deste tema apresentam falhas na concepção de um modelo 

realista de exposição à radiação e os efeitos desta radiação no metabolismo testicular ainda 

não foram objecto de estudo. Assim, para colmatar a principal falha encontrada foi criado um 

set up de exposição à radiação eleromagnética de 1.4GHz, passível de ser utilizado noutras 

experiências onde se pretenda fazer uma exposição à radiação electromagnética mimetizando 

uma situação real de utilização de internet através da transmissão de pacotes de informação. 

Para a validação do set up construído, espermatozóides de ratos adultos foram expostos 
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durante 1 hora à radiação eletromagnética do aparelho. Desta experiência os resultados 

revelaram uma diminuição significativa na motilidade dos espermatozóides do grupo exposto 

em relação aos do grupo controlo. 

Tendo em conta que neste trabalho utilizámos cultura de túbulos seminíferos, verificou-se 

através de análise histológica se o tempo de 72h em cultura não provocava alterações 

histológicas nos túbulos, concluindo-se que não houveram alterações. Além disso, uma vez 

que também era pretendido criar um novo modelo para o estudo do metabolismo em ratos, 

de acordo com os dados encontrados na literatura, procurou-se determinar a melhor idade 

para estudar o metabolismo, sendo analisadas secções histológicas de ratos de 19, 20, 21 e 22 

dias de maneira a confirmar qual a idade em que o epitélio dos túbulos seminíferos tinha uma 

população de células de Sertoli bem estabelecida, de extrema importância sendo estas as 

responsáveis pelo metabolismo testicular, e células germinativas apenas numa fase inicial da 

espermatogénese. Concluiu-se que ratos com 20 dias possuem um epitélio dos túbulos 

seminíferos que reúne as condições pré-determinadas, constituindo a idade ideal para estudar 

o metabolismo testicular em ratos. 

O metabolismo testicular, onde as células de Sertoli têm um papel fundamental, é de 

extrema importância para a espermatogénese, processo fisiológico no qual se produzem 

os espermatozóides a partir de células germinativas. Estas células, localizadas no interior dos 

túbulos seminíferos, em situações normais, metabolizam a maioria da glucose a lactato, 

sendo o lactato o substrato preferido para as células germinativas em desenvolvimento 

obterem energia. Sendo através do metabolismo glicolítico testicular que as células 

germinativas obtêm suporte nutricional, um metabolismo testicular alterado tem 

consequências no processo de espermatogénese e consequentemente na função reprodutiva 

do homem. Não obstante, alguns estudos já demonstraram sob circunstâncias específicas, as 

células de Sertoli podem usar outros substratos em vez da glicose para obter energia. 

Efectivamente, existem estudos que sugerem que que alguns mecanismos metabólicos como o 

efeito de Warburg podem ocorrer não só em situações de cancro como também nas células de 

Sertoli. O ciclo de Krebs e a glutaminólise podem ser uma alternativa sendo a glutamina, a 

leucina e a alanina apontadas como possíveis substratos para obtenção de energia 

Para o estudo do metabolismo testicular, túbulos seminíferos de ratos de 20 dias em cultura 

foram expostos ao equipamento construído. Os nossos resultados revelaram uma diminuição 

significativa da concentração de glucose extracelular, no entanto contraditoriamente existiu 

um aumento significativamente da produção de lactato. A actividade da enzima lactato 

desidrogenase, responsável pela conversão de piruvato em lactato, foi avaliada e embora não 

significativo, a radiação electromagnética causou um aumento da mesma.  Tendo em conta 

que em situações normais a glucose é transformada em piruvato e posteriormente em lactato 

pela enzima lactato desidrogenase, seria de esperar que o aumento de lactato fosse 

acompanhado por um aumento do consumo de glucose, o que não se verificou. Os resultados 
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obtidos contraditórios entre o consumo de glucose e a produção de lactato sugerem que, 

quando expostas a radiação eletromagnética proveniente de dispositivos Wi-Fi, as células 

responsáveis pelo metabolismo testicular, nomeadamente as células de Sertoli nos túbulos 

seminíferos podem adoptar outra via metabólica para obtenção de energia como as 

mencionadas anteriormente. 

Em conclusão, o nosso estudo clarificou que as radiações eletromagnéticas provenientes de 

equipamentos Wi-Fi têm efectivamente efeitos negativos nos parâmetros espermáticos, como 

a diminuição da motilidade e são efetivamente capazes de promover alterações no 

metabolismo glicolítico normal, que pode ter efeitos na espermatogénese e afectar a 

fertilidade masculina. 
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Abstract 

 

In recent decades, several studies have shown a decline in male fertility. As wireless 

technologies, which use Wi-Fi, and the time spent with them are increasing, the relationship 

between these two facts has been a subject of investigation. There are several articles that 

demonstrate the negative consequences of electromagnetic radiation of wireless devices on 

male fertility, affecting sperm parameters: reducing motility and viability, increasing the 

percentage of spermatozoa with an abnormal morphology and decreasing sperm 

concentration. There are also studies that show that the electromagnetic radiation of these 

devices enhances oxidative stress and increases reactive oxygen species, and is also capable 

of causing histopathological changes in the male reproductive organs and even alter the 

production of hormones important for male fertility, such as testosterone. However, all 

studies show flaws in the design of a realistic model of radiation exposure and there are no 

studies concerning the effects of electromagnetic radiation on testicular metabolism. 

A normal reproductive function is affected by the process of spermatogenesis, which in turn is 

dependent on the testicular metabolism, more specifically the Sertoli cells that provide 

nutritional support. These cells, located within the seminiferous tubules, in normal situations, 

metabolize the majority of glucose into lactate, with lactate being the preferred substrate 

for developing germ cells to obtain energy. However, some studies have already 

demonstrated in specific circumstances, Sertoli cells may use other substrates instead of 

glucose to obtain energy. 

To carry out the study, an exposure set up was developed with different electronic 

components commercially available to expose the seminiferous tubules in culture, in a 

realistic way to the electromagnetic radiation. For the validation of the developed set up, 

spermatozoa of adult mice were exposed for 1 hour to the electromagnetic radiation of the 

apparatus. From this experiment the results showed a significant decrease in sperm motility 

of the exposed group comparing to the control group, validating the model. 

From the metabolism study performed, exposing seminiferous tubules from 20-day-old rats to 

the built equipment, our results showed that electromagnetic radiation significantly 

decreased glucose consumption, however, contradictly lactate production increased 

significantly. The lactate dehydrogenase activity was evaluated and although not significant, 

the electromagnetic radiation caused an increase. Contradictory results between glucose 

consumption and lactate production suggest that, when exposed to electromagnetic radiation 

from Wi-Fi devices, cells responsible for testicular metabolism, namely Sertoli cells in the 

seminiferous tubules, may use alternative metabolic pathways to produce lactate and 

consequently obtain energy. 
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In conclusion, this study showed that the exposure model was successfully created and 

validated and that electromagnetic radiations from Wi-Fi equipment, in addition to causing 

negative changes in the sperm parameters of the cells, promote changes in normal glycolytic 

metabolism, suggesting the use of an alternative way of obtaining energy which may have 

effects on spermatogenesis and affect male fertility. 
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1. Introduction 
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1.1 Anatomy and physiology of the male reproductive system  

The male reproductive system is formed by the testis, a system of spermatic channels – vasa 

efferentia, epididymis, vas deferens, ejaculatory duct and part of the male urethra, seminal 

vesicles, bulbourethral glands, prostate gland and penis 1.  The general location of these 

structures is shown in figure 1. 

 

Figure 1: Organization of the male reproductive organs. Sagital section of pelvis showing placement 

of male reproductive organs. Adapted  from 2. 

 

The testis are responsible for the production, nurturing and storage of the male sex cells or 

gametes called spermatozoa, and the production of androgens, the male sexual hormones 3.   

The testicle is a oval shaped organ located outside the body cavity suspended by the body 

wall by a spermatic cord which contains the vas deferens, a testicular nerve and three coiled 

blood vessels- the testicular artery and two testicular veins. Each testicle is covered by the 

tunica vaginalis and below this covering is located the tunica albuginea. The testicle is 

divided into approximately 250 testicular lobules wedge shaped separated by septa of 

connective tissue, each containing one to three seminiferous tubules (SeT; figure 2A), where 

the sperm is produced in a process called spermatogenesis 4.  

 

The SeT have a lumen lined by a dense seminiferous epithelium containing two types of cells, 

Sertoli cells (SC¸figure 2B) and male germ cells and are covered with a collagenous basement 

membrane with contractile myoid cells that promote the movement of mature sperm and 

testicular fluids through the tubules 4. 

 

https://www.google.pt/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi7263J4IfSAhXHrRoKHc-QBtwQjRwIBw&url=https://www.studyblue.com/notes/note/n/male-reproductive-system/deck/5804795&psig=AFQjCNF0fxK4oieGzEo7tH1M-oo4H_gnAQ&ust=1486892537730964
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Figure 2:  Diagram of the testis. A) The diagram shows a partially sagittal section of the testis. B) A 
seminiferous tubule cross section shows spermatogonia (SG) near the periphery, nuclei of 
Sertoli cells (Sc), primary spermatocytes (PS), and late spermatids (LS) near the lumen, 
with intersticial cells (IC) also called Leydig cells in the surrounding connective tissue. The 
seminiferous tubules are covered with a collagenous basement membrane with contractile 
myoid cells (M) X400. H&E. Adapted from 5. 

SCs are pyramid shaped cells with irregular nucleus whose base lines against the basement 

membrane of each SeT and the tip is orientated towards the middle of the tube 6. This cells, 

also called nurse cells have the function of nurturing, supporting the sperm cells during their 

differentiation, secretion of testicular fluid into the tubular cavity, proteins, like androgen 

binding protein and hormones like inhibin and Mullerian-inhibiting substances, production of 

enzymes that convert testosterone (T) to estrogen and 5α-dihydrotestosterone (DHT) and 

phagocyte degenerated sperm cells 7. The adjacent SCs have tight junctions that provide a 

blood-testis barrier (BTB) which controls the chemical composition of testicular fluid in the 

SeT and protects the spermatocytes from an attack from the immune system as these are 

haploid cells and the immune system would recognize them as foreign 8 9. The number of SCs 

is determined at puberty (except in some cases discussed later) and the number of sperm 

production is related with the number of SCs 10.  

The interstitial space in the testicle contains small arteries capillaries and veins and in this 

space is where products like oxygen and glucose diffuse to the SeT from the blood 11. This is 

the only way for the sperm cells to get glucose and oxygen because there are no blood vessels 

inside the SeT 12. Hormones also pass from the interstitial space to the SeT through the 

basement membrane and waste products produced in the SeT move from the SeT to the 

interstitial space and leave this space by small veins 13. Also in the interstitial space are 

Leydig cells (LC; Figure 2B). These cells are round and polygonal and have vesicular round 

nucleus with prominent nuclear membranes and one or two nucleolus. Their function is to 

synthesize and secrete androgenic steroid hormones 12  
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1.2 Spermatogenesis 

Normal male fertility is based on a normal spermatogenesis and this process represented in 

figure 3, has an extremely importance to men’s fertility 13. Spermatogenesis is a process 

regulated by the hypothalamic-pituitary-gonadal axis (HPG-axis) that happens in the SeT and 

is highly dependent on SCs, by which a diploid spermatogonium transforms into four haploid 

spermatids and is characterized by continuous cellular differentiations 14. Immature germ 

cells, called spermatogonial stem cells, lay on the basement membrane where they replicate 

mitotically to guarantee the germ cell line. In this process, two diploid daughter cells are 

derived from a diploid parent cell, so each spermatogonium has 46 chromosomes. While the 

spermatogonial cells continue to proliferate, some of them begin another cell division 

process, meiosis, and become primary spermatocytes.  Subsequently, these cells undergo the 

first division of meiosis and form the haploid secondary spermatocytes with 23 chromosomes. 

The secondary spermatocytes then undergo a second meiotic division which differentiates one 

secondary spermatocyte into four haploid equalized round spermatids 15.  

 

 

 

Figure 3:  Diagram of spermatogenesis. The initial cells in this pathway are called spermatogonia, 
which yield primary spermatocytes by mitosis. The primary spermatocyte divides 
meiotically (Meiosis I) into two secondary spermatocytes and each secondary 
spermatocyte divides into two spermatids by Meiosis II. These develop into mature 
spermatozoa, also known as sperm cells. Adapted from 16 
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Thereafter, spermiogenesis starts to transform these round spermatids into elongated 

spermatids, which through a process called spermiation are released into the lumen of the 

tubule as immature spermatozoa. In this way, in the SeT, the initial stages of 

spermatogenesis are present in the basal side of the tubule and mature spermatids are 

nearest to the lumen of the SeT 17.  

1.3 Hormonal control of testicular function 

The hormonal control of testicular function, represented in figure 4, is in charge of the 

hypothalamus, which produces pulses of gonadotropin-releasing hormone (GnRH) that leads to 

the secretion of the gonadotropins from the anterior pituitary gland: the follicle-stimulating 

hormone (FSH) and the luteinizing hormone (LH).  LH stimulates LC to secrete T which 

diffuses into the SeT and enters the SCs which convert it to DHT 12.  Then, T and DHT leave 

the SCs and enter the testicular fluid to be in contact with the germ cells and contribute to 

spermatogenesis 18. FSH acts on SCs, stimulating the synthesis of 17-β-estradiol (E2) from T in 

the testis. Then, FSH along with T stimulate spermatogenesis 20. 

 

Figure 4: Diagram of the hypothalamic–pituitary–gonadal axis (HPG axis) which includes the 
hypothalamus, pituitary gland, and gonadal glands. The hypothalamus releases the 
gonatrophin releasing hormone (GnRH) (1) Which stimulates the anterior pituitary to 
release luteinizing hormone (LH) and follicle stimulating hormone (FSH) (2). FSH acts on 
Sertoli cells (SCs) stimulating the synthesis of estrogen from testosterone (T) and 
spermatogenesis (3) and LH stimulates Leydig cells to produce T (4). T is essential for 
spermatogenesis (5) and it also has somatic and psychological effects at other body sites 
(6). A negative feedback mechanism is induced when testosterone reaches high 
concentrations in the blood, reducing or inhibiting the release of GnRH by the 
hypothalamus (7), which in turn will decrease LH and FSH production in the pituitary. 
Inhibin is secreted by SCs and also exhibits a negative feedback effect (inhibitory 
response) on the production of FSH by the pituitary (8). Adapted from 19 
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Estradiol also has stimulating effects on spermatogenesis and it is discussed that the male 

germ cells are specially stimulated by estradiol and not testosterone as there are not 

androgen receptors in the germ cells. A negative feedback mechanism is induced when T 

reaches high concentrations in the blood, reducing or inhibiting the release of GnRH by the 

hypothalamus, which in turn will decrease LH and FSH production in the pituitary. Inhibin is 

secreted by SCs and also exhibits a negative feedback effect (inhibitory response) on the 

production of FSH by the pituitary 21. 

1.4 Testicular metabolism  

A normal spermatogenesis and fertility capacity of sperm depends on a correct testicular 

glucose metabolism. The process by which glucose is transformed into energy is called 

glycolysis, represented in figure 5. The first step of glycolysis is irreversible and consists of 

phosphorylation of glucose into glucose-6-phosphate, in the presence of adenosine 

triphosphate (ATP) and the enzyme hexokinase acting with Mg2+ ion as cofactor. Then glucose-

6-phosphate is isomerized into fructose-6-phosphate, assisted by the enzyme glucose-

phosphate isomerase. In the third step of the glycolysis, a second phosphorylation reaction is 

observed in which the fructose-6-phosphate is transformed into fructose-1,6-bisphosphate 

with the intervention of the phosphofructokinase enzyme, which has, as cofactor, the Mg2+ 

ion. Then, due to the action of an aldolase, fructose-1,6-diphosphate is cleaved into two 

isomeric trioses: phosphoglyceraldehyde and phosphodihydroxyacetone. Next, the only 

oxidation occurs during the glycolysis process by converting 3-phosphoglyceraldehyde to 1,3-

diphosphoglyceric acid. This oxidation takes place in the presence of inorganic phosphate and 

is catalyzed by a dehydrogenase which has the nicotinamide adenine dinucleotide (NAD+) as 

cofactor. During the step, the energy released by the oxidation is transferred to the 

formation of a new phosphate bond. As the phosphoglyceraldehyde is oxidized, the 

phosphodihydroxyacetone will become phosphoglyceraldehyde and oxidized in turn. For each 

of the glucose molecules that "enters" the glycolysis process, oxidation of two 

phosphoglyceraldehyde molecules to diphosphoglyceride acid will occur. In the next step 

hydrolysis of the diphosphoglyceride occurs and the energy released by the hydrolysis is 

transferred to the synthesis of ATP from adenosine diphosphate (ADP) and inorganic 

phosphate. Finally, 3-phosphoglyceric acid is the subject of several reactions and is 

transformed into pyruvic acid with the phosphorylation of one more ADP in ATP 22. Thus, in 

the course of glycolysis, for each glucose molecule, two molecules of pyruvic acid are 

produced. At the beginning of the process, energy was invested (2 ATP were consumed). At 

the end of the process energy was recovered in the form of 4 ATP. The balance is therefore 

2ATP per glucose molecule 22. Pyruvate can then follow three pathways: be converted to 

alanine by the action of alanine aminotransferase, enter the tricarboxylic acid cycle or, 

especially under low-oxygen conditions, be converted to lactic acid by lactate dehydrogenase 

(LDH) action 23. 
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In the testis, glucose metabolism is carried out by SCs once they support spermatogenesis not 

only spatially and energetically, but is also required for hyperactivated motility of fully 

developed germ cells (figure 6) 24 25. Although SCs have the ability to metabolize various 

substrates, they preferentially use glucose 26  23. 

 

Figure 5:  Schematic representation of glycolisys. Adapted from 27. 
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Lactate is one of the most important products secreted by SCs for maintenance of 

germinative cells during spermatogenesis because it’s their preferred subtract to obtain 

energy, so SCs convert the most part of glucose into lactate 28. The control on the production 

rate of lactate is on charge of specific glucose transporters (GLUTs) that control the 

membrane passage of glucose from the extracellular space to SCs 29. So far, there have been 

identified four GLUTs- GLUT1, GLUT2, GLUT3 and GLUT8 in SCs. GLUT1, GLUT2 and GLUT3 

have been identified in the plasmatic membrane of SCs but not GLUT8, so GLUT1, GLUT2 and 

GLUT3 are assumed to be the primary responsible for import glucose into SCs 31 32 33 34 35. After 

being transported to the intracellular compartment of the cell, glucose suffers glycolysis 35. 

Since LDH is responsible for the conversion of pyruvate into lactate it has an enhanced 

importance once lactate is the preferred subtract of germ cells to produce ATP. After 

produced, lactate is exported from SCs through the active membrane monocarboxylate 

transporter isoform 4 (MCT4) 23. Alanine can also be a substrate, because it can be converted 

to pyruvate and then used by SCs 36.  

 

 
 
Figure 6:  Schematic illustration of the glucose metabolism of Sertoli cells (SCs). In SCs, glucose from 

interstitial space enters through high-affinity glucose transporters (GLUTs), present in the 
plasmatic membrane: GLUT1, GLUT2 and GLUT3. Glucose is converted to pyruvate which 
can follow three distinct paths. It can be converted to alanine by the action of alanine 
aminotransferase (represented as ALT); it can be converted into acetyl-CoA by the action 
of pyruvate dehydrogenase; or it can be converted to lactate by the action of lactate 
dehydrogenase (LDH). Acetyl-CoA enters the mitochondria to be used in the tricarboxylic 
acid (TCA) cycle, and/or can be converted into acetate. Acetate and lactate are exported 
to the interstitial space by monocarboxylate transporter isoform 4 (MCT4).  
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It has been shown that SC glucose metabolism is predominantly regulated by the endocrine 

system especially by sex steroid hormones, follicle-stimulating hormone and insulin 23 38 39. 

Moreover, glucose may itself regulate its own metabolism and transport. Some studies with 

cultured mammalian cells showed increased rates of glucose uptake in response to glucose 

deprivation, suggesting glucose can regulate its metabolism 39.  

Since glucose metabolism has such an important role in spermatogenesis, dysfunctions in SC 

glucose metabolism and transport may lead to male subfertility or infertility. 

1.5 Insights on wireless technologies 

Wireless devices like mobile phones and computers are increasingly present in our lives and 

progressively wireless networking (Wi-Fi) interfaces are being incorporated in household 

devices like audio equipment, bathroom scales, games, running shoes and are present in 

devices that we use in our daily life like computers or advanced mobile phones 40. Wi-Fi 

communication is based on pulse radiofrequency (RF) signals with no signal between the 

bursts 41. The first version of communication standards was IEEE (Institute of Electrical and 

Electronics Engineers) 802.11 family and appeared in 1997. Since then, many other versions of 

IEEE have emerged such as IEEE 802.11a, b, g and n 40. Wi-Fi may have different frequency 

ranges and modulations. The 2.400-2.4835GHz range which belongs to the industrial-

scientific-medical (ISC) band (2.4-2.5GHz) is where most of the Wi-Fi devices operate (IEEE 

802.11, b, g and n). This band is used for digital communication devices such as cordless 

phones, wireless interfaces as ZigBee or Bluetooth and for medical purposes. Other Wi-Fi 

devices operate near 5GHZ, using IEEE 802.11 a or n. The physiological difference of these 

frequencies is the penetration depth in the body as the higher the frequency, the shorter the 

penetration 42. The bandwidth of the channel is 20MHz for all IEEE 802.11 version except IEEE 

802.11n which has two 20MHz channels, allowing a higher rate of data transmission. 

According to the version of IEEE 802.11 that is used, there are different modulations 

techniques for the pulse such as Direct Sequence Spread Spectrum (DSSS), Frequency Hopping 

Spread Spectrum (FHSS) and Orthogonal Frequency Division Multiplexing (OFDM). Other 

parameter that varies according the IEEE 802.11 version is the data rate per stream ranging 

from 1-2 Mbits-1 to 600 Mbit-1 for the original and 808.11 n versions respectively. The data 

rate influences the RF energy necessary, the higher the data rate, the more energy it requires 

and consequently more pulses 43.  

1.6 Physiological effects of EMR from wireless devices on male 

reproductive system 

Electromagnetic radiation (EMR) has been prove to have various physiological effects on male 

reproductive system (see table 1), and having negative consequences on male fertility. 
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Several studies have found an association between EMR and oxidative stress showing that Wi-

Fi radiation can decrease significantly the activity of reactive oxygen species (ROS) 

scavenging enzymes: superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase 

(GPx) 44 45. There are also evidences that EMR from Wi-Fi devices contribute to 

deoxyribonucleic acid (DNA) damage 46 47 48. EMR can also alter the production of hormones 

crucial for the proper functioning of the male reproductive system like T 45 49 50. Radiation 

from wireless devices may even be harmful to male fertility by causing histopathological and 

ultrastructural changes in the testes such as increase in membrana propria thickness and 

collagen fibers as well as an irregular basal membrane, irregularities in SCs more specifically 

a nucleus with irregular contour, high number of immature cells in the lumen, tubules with 

reduced spermatogenic cell lines and also tubules without lumen 51 52. Dasdag and his 

colleagues found observable differences in the tubules diameter and tunica albuginea 

thickness after long term exposure to 2.4GHz radiation (Figure 7) 53.  

 

Figure 7: Testes section of a rat after exposure to 2.4 GHz electromagnetic radiation. A and C are 
from control and B and D are from exposed group. Seminiferous tubules diameter (S) and 
tunica albugínea thickness (arrows) decreased in exposed group. Also a tubule with 
disorganized view due to loss of germinal epithelium (b) is seen in the figure (arrowhead). 
H&E (a, b), Masson Trichrome (c, d). 53 

 

It has also been reported degenerative changes in spermatogenic cells, sharp edge craters, 

shrinkage on the surface of degenerating cells in seminiferous epithelium, visible debris of 

degenerating cells and residual cytoplasm and ruptured sperm head and distorted tail 54. In 

Shokri et al., 55 study where they exposed rats to 2.45GHz Wi-Fi radiation the 7-hour exposure 
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group but not the 1-hour group showed a significant decrease in the number of germ cell 

layers. The exposure for 1 and 7 hours also caused a decline in seminal vesicles weight. As in 

Shokri et al., 55 other studies also found not only a significant decrease in seminal vesicles 

weight but also in epididymis. The EMR from wireless devices has been shown to have a 

negative effect in sperm parameters such as decrease in viability, sperm count and motility 

45. Yan et al., 56 exposed rats to 1.9GHz EMR in a cycle of 3 hours of exposure followed by a 

30 minute period without expose and again 3 more hours of exposing for 18 weeks and the 

results revealed a majority of sperm cells without motion, dead or with straight rigid tails in 

the exposed rats.  

There are also evidences of negative effects of prenatal exposure to EMR radiation on the 

sperm quality of the descendants. Odaci et al., 57 exposed pregnant rats to 900MHz EMR for 

1h/day during days 13-21 of pregnancy and analyzed the epididymis of the rats with 60 days 

who were born from those exposed female rats. They found a lower sperm motility and 

viability and also histopathological changes in the epididymis and alterations on 

spermatogenesis.  

However there are also studies that found no effects of EMR on the male reproductive system. 

Dasdag and his colleagues who exposed rats to long term 2.4GHz EMR found no significant 

differences in sperm concentration, sperm motility and total morphological defects 53. 

Besides, in other studies, Dasdag observed no differences of short (20min/day for 1 month) 

and long (2h/7days for 10 months) periods of EMR radiation on the apoptotic cell number in 

the testes 59 60. Also Saygin et al. 59 did not observe any significant effect of Wi-Fi (2.45GHz) 

on the diameter of seminiferous tubules. 

Although there are many studies about the effects of Wi-Fi radiation on several parameters 

related to male fertility, there are no studies regarding the effects of EMR from wireless 

devices on testicular metabolism. 

Table 1:  Recent studies of the negative effects of EMR radiation from wireless devices. Supportive. 

 

Study/Year n/specie Exposure Effects 

Fejes et al., 
200560 

37/human 
males 

4 groups: Cell phone users for 
less than 15 min/day or over 60 
min/day; kept their cell phone 
within a distance of 50cm for 
less than 1h/day or for more 

than 20h/day. 
 

↓ Rapid progressive motile 
sperm; 

↑ Slow progressive motile 
sperm. 

(with the duration of 
possession and the minutes 

of daily transmission). 

Koyu et al., 
200550 

30/ Sprague–
Dawley male 

rats 

EMR 900MHz, 2W/kg, 30min/day 
for 5days/week, for 4 weeks. 

↓ Serum TSH and t3-t4 levels. 

Erogul 200661 27/human EMR 900MHz for 5 min. 

↓ Rapid progressive motile 
sperm; 

↑ Slow progressive and 
nonprogressive, non-motile 

sperm. 
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Yan et al., 
200756 

16/Sprague-
Dawley male 

rats 

EMR 1.9Hz, distance of 1 cm for 
6h/day for 18 weeks. 

↓ Sperm motility; 
↑ Sperm cells dead; 

Clumps of sperm cells. 

Wdowiak et al., 
200762 

304/human 
males 

3 groups: No use of mobile 
phones,  sporadic use for the 
period of 1-2 years or regular 

use for more than 2 years. 

↓ Sperm motility and vitality; 
↑ Abnormal morphology of 

sperm cells; 
(with the increase of mobile 

phone use.) 

Agarwal et al., 
200863 

361/human 
males 

4 groups according to daily 
active cell phone use: group B 

<2 h/day, group C 2–4 h/day and 
group D >4 h/day and a group A 

as control. 

↓Sperm count, viability and 
normal morphology (with the 
increase of cell phone use). 

Agarwal et al., 
200964 

32/human 
males 

EMR 850MHz, 1.46W/kg, at a 
distance of 2.5cm for 60 min. 

↓ Sperm motility and 
viability; 

↑ ROS level; 
No significant differences in 

DNA integrity. 

De Iuliis et al., 
200946 

22/human 
males 

EMR 1.8GHz, 0,4W/kg-27.5W/kg 
SAR, incubated for 16h. 

↓ Motility and viability. 

Kesari et al., 
201065 

12/Wistar 
male rats 

EMR 0,9W/kg SAR, 2h/day, for 
35 days. 

↓ Protein kinase C; 
↑ Apoptosis. 

Al-Chalabi & Al-
Wattar 201166 

300/human 
males 

4 groups with different hours of 
active mobile phone use: 

4h/day, 3h/day, 2h/day, no 
active use; 

2 groups according the duration 
of use in years: 1-3 years or 4-6 

years; 
3 groups according the position 

of storage: trouser pocket, waist 
pouch or in the shirt pocket 

 

↓ Sperm count, motility and 
normal morphology with the 

increase of active mobile 
phone use, duration of use in 

years and proximity of 
storage position to the 

testes. 
 

Gutschi et al., 
201167 

2110/human 
males 

2 groups: men that use cell 
phones and men that don’t use 

cell phones. 

↑ % Of abnormal morphology 
and teratozoospermia; 

↓ Proportion of progressive 
motile sperm; 

↑ Testosterone and 
luteinizing hormone levels. 

(in the cell phone users 
group) 

Meo et al., 
201149 

40/male rats 

Mobile phone EMR placed inside 
the cage and a call was given for 
30min/day or 60min/day for 3 

months. 

↑ Proportion of 
hypospermatogenesis and 

maturation arrest; 
↓ Serum testosterone level. 

(in the group exposed to 
60min/da). 

Esmekaya et al.,  
201168 

30/ Wistar 
albino male 

rats 

EMR 900MHz, 1.20W/kg, 
20min/day for 3 weeks. 

Induced oxidative injury in 
testes by ↑ nitric oxide levels 

and ↓ antioxidant defense 
mechanisms. 

Kesari et al.,  
201169 

12/Wistar 
male rats 

EMR 10GHz, 0.014W/kg, power 
density of 0.21mW/cm2, 2 h/day 

for 45 days. 
↑ ROS levels and apoptosis. 

Falzone et al., 
201170 

12/human 
males 

EMR 900-MHz SAR of 2.0 W⁄kg, 1 
h. 

↓ Morphometric parameters, 
such as the analysis of major 

and minor axis, area, 
perimeter and acrosome; 
↓ Sperm binding to the 

hemizona. 

Oni et al., 
201171 

10/human 
males 

Wi-Fi EMR 2.45GHz for 1 hour. 
No effects on sperm 

concentration. 
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Avendaño et al., 
201247 

24/human 
males 

Wi-Fi EMR 2.4GHz for 4 hours. ↓ Sperm progressive motility. 

Lee et al., 
201272 

50/Sprague–
Dawley male 

rats 

EMR simultaneously 848,5MHz 
and 1950MHz, 45 min/day, 5 
days/week with a total of 12 

weeks 

Did not observed adverse 
effects on rat 

spermatogenesis 

Çelik et al., 
201251 

30/Wistar-
Kyoto male 

rats 

2 cell phones, SAR values of 1,58 
for 3 months 

↑ Membrana propria 
thickness and collagen fibers; 

Irregular basal membrane; 
Nucleus with irregular 

contour in Sc. 

Atasoy et al., 
201248 

10/Wistar 
albino rats 

2.437GHz from a Wi-Fi device, 
24h/day for 20 weeks. 

↓ Testicular biopsy score; 
↑ Level of  8-hydroxy-2’-

deoxyguanosine; 
↓ CAT and GPX activity. 

Nisbet el al., 
201273 

33/Wistar 
albino rats 

1800 and 900MHz, 
2h/day/90days 

↑ Plasma testosterone level 
↑ Epididymal sperm motility 

and normal morphology 

Khavanin et al., 
201374 

28/Wistar 
male rats 

3 exposure groups: EMR 915 
MHz,8h/day for 14 and 21 days 

(group 2 and 3 respectively) and 
950MHZ for 8h/day/14days 

(group 4). 

↓ Sperm viability (was more 
notable  in experimental 

group 3) 
↓Sperm motility 

Shahin et al., 
201445 

40/male mice 
EMR 2.45GHz, 0.018W/kg,  
0.029812mW/cm2 power 

density, 2h/day for 30 days. 

↓ Sperm count, sperm 
viability, seminiferous tubule 

diameter and serum 
testosterone level. 

↑ROS production, total 
nitrite and nitrate 

concentration and in mda; 
↓ SOD, CAT and GPX activity. 

 

Karaman et al., 
201452 

21/Wistar 
albino male 

rats 

2 exposure groups: EMR SAR of 
1,52W/Kg, group 1 talk mode for 
8 hours and standby for 8 hours 

for 20 days, group 2 same 
exposure but after those 20 days 
the rats were exposed to stand 

by mode for more 20 days. 

↑ Immature cells in the 
lumen; 

↓ Spermatogenic cell lines; 
Tubules without lumen. 

Kumar & Shukla, 
201454 

24/Swiss male 
rats 

EMR from cell phone during 3h 
followed by 30 minutes of rest, 

followed by another 3h 
exposure/day/5months. 

Degenerative changes in 
spermatogenic cells, sharp 
edge craters, shrinkage on 
the surface of degenerating 

cells in seminiferous 
epithelium, visible debris of 

degenerating cells and 
residual cytoplasm and  

ruptured sperm head and 
distorted tail. 

Dasdag et al., 
201453 

16/Wistar 
albino rats 

2.4 GHz radiation for 
24h/day/12months. 

↑ Percentage of head 
defects; 

↓ Seminal vesicles and 
epididymis weight; 

↓ Seminiferous tubules 
diameter and tunica 
albuginea thickness. 

Gorpinchenko et 
al., 201475 

31/human 
males 

EMR, frequency range of 900-
1800MHz for 5 hours in combined 

standby/talk mode. 

↓Spermatozoa with 
progressive movement. 

Bahaodini et al., 
201576 

14/male rats 
EMR 1 mT,50 Hz low frequency, 

for 85 days 24 h/day. 

↓ Lumen diameter and area 
of the seminiferous tubules; 
↓ Total diameter and cross 

sectional area; 
↑ Number of seminiferous 
tubules per unit area of 

testis 



 15 

Shokri et al., 
201555 

27/Wistar rats 

2 exposure groups: 2.45GHz Wi-
Fi radiation, 1 hour/day/2 
months and another and 
7hours/day/2 months. 

↓ Percentage of motile 
sperm, concentration and 
proportion of normal to 

abnormal sperm; 
↓ Seminal vesicles weight; 
↓ Germ cell layers and 

↑apoptotic cells (only in the 
7h/day group) 

 
EMR- Electromagnetic radiation; SAR- Specific absorvation rate; ROS- Reactive oxygen species ; CAT- 
Catalase; GPX- Glutathione Peroxidase; SOD- Superoxide Dismutase; DNA- Deoxyribonucleic acid. ↑- 
Increased significantly; ↓- Decreased significantly. 
 

the male reproductive organs and even alter the production of important hormones such as T. 

However, the possible effects of Wi-Fi networks on testicular metabolism has never been 

studied which lead us to the development of this project. 
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2. Aims of the project 
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A normal spermatogenesis and fertility capacity of sperm depends on a correct testicular 

metabolism, which in turn depends on the correct functioning of several metabolic pathways. 

The processes involved on testicular metabolism may be affected by several factors such as 

environmental factors, a sedentary lifestyle and even the use of devices with Wi-Fi 

connection. This last factor has been receiving increasing attention from researchers since 

more and more devices using Wi-Fi connections, such as mobile phones and computers, are 

present in our daily life. Thus, we are almost constantly emerged in EMR from Wi-Fi networks. 

Recent advances have highlighted that the exposure to EMR from Wi-Fi networks is an 

important contributor to the decline of male reproductive health. In fact, there are several 

papers that evidence the negative consequences of EMR from wireless devices on male 

fertility affecting the sperm parameters, increasing the oxidative stress and ROS, contributing 

to histopathological chances in the male reproductive organs and even alter the production of 

important hormones such as T. However, the possible effects of Wi-Fi networks on testicular 

metabolism has never been studied which lead us to the development of this project. 

 

The general aim of the research described in this work was to disclose the association 

between EMR from Wi-Fi devices and male infertility, dissecting its possible effects on 

testicular metabolism, particularly glucose metabolism, and the subsequent consequences for 

male reproductive health. It is also intended to develop a new model for the study of the 

effects of EMR on testicular metabolism using 20-day-old rats. 

To achieve this, we first aimed to perform histological analysis to observe the cell populations 

present in SeT at 19, 20, 21 and 22 days in order to understand what is the most appropriate 

age for the development of the new model. Secondly we intended to perform an histological 

analysis to SeT after 72 hours in culture medium to assess if there were any observable 

histological changes in the tissue after the time of incubation. Then, we wanted to built an 

Wi-Fi exposure set up, to expose our SeT cultures to EMR on a realistic way. As there are 

studies showing that EMR has effects on sperm parameters, we decided to confirm these 

results by exposing sperm cells from an adult rat to EMR from our Wi-Fi network and assess 

their mobility, viability and morphology after exposure, validating our set up. Lastly, to 

disclose the effects of Wi-Fi on testicular metabolism, the metabolite production of lactate 

and glucose consumption were measured as well as LDH activity. 
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3. Materials and methods
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3.1 Chemicals 

Dulbecco’s Modified Eagle Medium Ham’s Nutrient Mixture F12 (DMEM:F12), Bradford reagent, 

3-Isobutyl-1-methylxanthine and phenylmethanesulfonyl fluoride were obtained from Sigma-

aldrich (St.  Louis,  USA); gentamicin was obtained from Alfagene (Carcavelos, Portugal); 

Protease Inhibitor Cocktail 5 MammCell/Tissue was obtained from PVL (Famões, Portugal); 

Hematoxilin and aqueous eosin 1% were obtained from Leica Microsystems (Wetzlar, 

Germany); inclusion agent for histology Histosec was obtained from Merk (Darmstadt, 

Germany). 

3.2 Instruments 

The system used to create an internet network was constituted by three components: The 

WiFly module, the mbed and the internet router. 

 The wifly module, represented on figure 8, is a standalone device that enables wireless 

access to a local area network (LAN). It is certified to operate on 2.4GHz IEEE802.11b/g 

networks and it has a flash memory of 8Mbit and a random access memory (RAM) of 128KB. It 

also has a slave interface universal asynchronous receiver/transmitter (UART) which is a 

computer hardware device for asynchronous serial communication in which the data format 

and transmission speeds are configurable and the electric signaling levels and methods (such 

as differential signaling, etc.) are handled by a driver circuit external to the UART, and a 

serial peripheral interface (SPI) which is a synchronous serial communication interface 

specification used for short distance communication, primarily in embedded systems. The 

module has internally implemented the transmission control protocol/internet protocol 

(TCP/IP) stack that is the suite of communications protocols used to connect hosts on the 

Internet. Once properly set up, the radio trough the wire antenna automatically establishes a 

connection to the Wi-Fi network. The firmware allows establishing a communication channel 

between the radio channel and the UART. There were used two wifly modules, one had the 

function of sending data packets and the other had the function of receiving the data 

packets. Every time this communication was made the information (data packets) had to 

always first pass through the internet router. The wifly module also has three light-emitting 

diodes (LED’s) a green one, a red one and a yellow one, each one providing information about 

the status: If the red LED is blinking rapidly it indicates that the module is not connected to 

the wireless network. Contrarywise, if the LED is off, the module is connected to the wireless 

network; If the yellow LED is blinking, each blink means it is either sending or receiving data; 

if the green LED is on and solid, it indicates the module is connected over TCP, if it is blinking 

rapidly, it means that no IP address is assigned, if it is blinking slowly, it means that the IP 

address is assigned but still not conected to TCP. The minimum operating temperature is -

40°C and the maximum operating temperature is 85°C. The humidity range operating values 

are bellow 90% 77. 

http://www.sigmaaldrich.com/catalog/product/sigma/p7626


 24 

 

 

 

A 

B 

C 

D 

 

 

Figure 8:  The wifly module. It is a standalone device that enables wireless access to LAN (local area 
network). The module is constitued by a flash memory, a RAM (Random Access Memory), an 
interface UART (Universal Asynchronous Receiver/Transmitter), a hardware device for 
asynchronous serial communication in which the data format and transmission speeds are 
configurable and the electric signaling levels and methods are handled by an external driver 
circuit; a SPI (Serial Peripheral Interface), a synchronous serial communication interface 
specification used for short distance communication; a TCP/IP (Transmission Control 
Protocol/Internet Protocol) stack, a suite of communications protocols used to connect 
hosts on the Internet and a wire antenna (A) that establishes a connection to the Wi-Fi 
network. The module also has three LED’s that provide information about the status of the 
module. If the green LED (B) is on and solid, the module is connected over TCP, if it is 
blinking rapidly, no IP address is assigned, if it is blinking slowly, the IP address is correctly 
assigned; if the red LED (C) is blinking rapidly, the module is not connected to the wireless 
network, if it is off, the module is correctly connected; If the yellow LED (D) is blinking, it is 
either sending or receiving data. Adapted from77 

 

Mbed, (represented in figure 9, panel A) is a platform and operating system for internet-

connected devices based on 32-bit RAM Cortex-M microcontrollers. Such devices are also 

known as Internet of Things devices. The application for the mbed platform was developed 

using the mbed online integrated development environment (IDE), which is an online code 

editor and compiler in which the code was written and compiled within a web browser, and 

compiled on the cloud using the ARMCC C/C++ compiler. It was used the mbed Microcontroller 

Board- mbed NXP LPC1768- a demo-board based on an NXP microcontroller, which has an ARM 

Cortex M3 core, running at 96 MHz, with 512 KB flash, 64 KB RAM. It is packaged as a small 

dual in-line package (DIP) form-factor which is an electronic component package with a 

rectangular housing and two parallel rows of electrical connecting pins for prototyping with 

through-hole printed circuit boards (PCBs), stripboard and breadboard, and includes a built-in 

universal serial bus (USB) flash programmer. There is also a USB port through which it supplies 

power to the system and a reboot bottom to restart running the program. There were used 2 

mbed boards, each one connected to a wifly module. The Wifly terminals are identified in 

figure 9, panel B and the RN-XV-171 was connected to the mbed according to the figure. The 

minimum operating temperature is -65°C and the maximum operating temperature is 150°C. 

The humidity range operating values are not specified 78. 
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Figure 9:  mbed board and its connection to wifly terminals.  A) mbed board. The mbed board is a 
demo-board based on an NXP microcontroller, which has an ARM Cortex M3 core, RAM, a 
small DIP (dual in-line package) form-factor which is an electronic component package with 
a rectangular housing and two parallel rows of electrical connecting pins for prototyping 
with through-hole PCBs (printed circuit boards), a stripboard and breadboard, and a built-in 
USB (Universal Serial Bus) flash programmer. It has also a USB port (a) through which it 
supplies power to the system a reboot bottom to restart running the program (b). B) The 
mbed and Wifly terminals are represented in the figure, through this scheme it is possible to 
understand how to connect the wifly module to the mbed board. Adapted from78 

 

The internet router used was TP-LINK model number TL-WR740N, represented in figure 10, a 

150MBps wireless router with 9V power and a frequency band of 2.4 GHz. The minimum 

operating temperature is 0°C and the maximum operating temperature is 40°C. The humidity 

range operating is 10 to 90% of humidity 79. 

 

b 

a 

 
Figure 10:  The internet router TP-LINK model number TL-WR740. A 150MBps wireless router with 9V 

power and a frequency band of 2.4 GHz. a- Wi-Fi horn used to transmit and receive 
signals; b- Wi-Fi hardware. Adapted from 79 
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3.3 Animals 

One wistar  male  rat  (Rattus  norvegicus) 19-day old, 21-day old, 22-day-old and 3-months 

old as well as twenty-five  wistar  male  rats  (Rattus  norvegicus)  20-days old, were  

obtained and  housed  at  CICS-UBI  animal  facilities  under  a  12-hour  light/dark  cycle,  

with  food  and water  available  ad  libitum.  Animals  were  handled  in  compliance  with  

the  guidelines established by the “Guide for the Care and Use of Laboratory Animals” 

published by the U.S. National  Institutes  of  Health  (NIH  Publication  No.  85‐23,  revised  

1996)  and  the  European Union  rules  for  the  care  and  handling  of  laboratory  animals  

(Directive 2010/63/EU). In accordance with the Portuguese law (Ordinance no. 1005/92 of 23 

October), the research team requested a permission to perform this animal experimentation 

study to the Portuguese “Direção Geral de Veterinária” (Portuguese Veterinarian and Food 

Department). All rats were euthanized  with CO2. 

3.4 Development of a new model to study the effects of Wi-Fi 
on seminiferous tubules metabolism ex vivo 

3.4.1 Determining the ideal age for the development of the model  

There are studies that indicate that mitotic division of SCs ceases after the 15 day of post-

natal development in rats, preceding the formation of the hematopoietic barrier created by 

the inter-sertoli tight junctions between days 16 and 19 80. Another study indicates that the 

mitotic division of the SCs ceases at 18 days 81. In view of the number of published studies on 

the metabolism of SCs 82 83, a model using a rat with an epithelium of seminiferous tubules 

containing a well established SC population and germ cells exclusively in the early stages of 

spermatogenesis would constitute an excellent model for the study of metabolism in rats. In 

order to assess the best age to implement this model, histological sections from SeT from 19 

days-old, 20 days-old, 21 days-old and 22 days-old rats were analysed to assess which type of 

cells were present and to observe the SCs population. 

 

3.4.2 Assessing the possible effects of 72h in culture medium  

As the possible effects of the culture medium in SeT with rats at this age have never been 

assessed, histological analysis was performed comparing t=0 and t=72 of SeT of a 22-day-old 

rat in culture medium. 

3.4.3 Validating the model 

Several articles show that radiation from Wi-Fi devices has effects on sperm 60. In this way, to 

validate the set up and built Wi-Fi network, spermatozoa from six 3 months-old adult rat 

were extracted, placed at a Petri dish and exposed 1 hour to the Wi-Fi network in the 

incubator at 33ºC as represented in figure 11. The sperm parameters were analyzed and 

compared to the control, constituted by spermatozoa extracted and place at a petri dish in 
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the incubator for 1 hour at 33ºC but not exposed to the Wi-Fi network. For each rat, one 

epididymis was used for exposure and the other one as control. 
 

 

A 

B 

C 

D 

 
 
Figure 11:  Disposition of the petri dish containg sperm cells for the exposure to the Wi-Fi network. A- 

Wifly; B- mbed; C- Wi-Fi router; D- The petri dishes are placed between the receptor and 
sender. 

 

3.5 Effects of Wi-Fi on rat testicular metabolism ex vivo 

Twenty-four 20-day-old rats were used to study the effects of Wi-Fi on testicular metabolism. 

The SeT were extracted and cultured, the exposed group (12 rats) received the EMR from the 

created Wi-Fi network during 72h. The 72 hours were chosen as the exposure time once daily 

most people are exposed to EMR from Wi-Fi networks 24 hours a day, day after day. Thus, the 

choice of this exposure time is intended to be as close as possible to the actual situation. The 

control group (12 rats) was not exposed to the Wi-Fi network.  

Every 12 hours it was verified the correct functioning of the system by accessing the network 

created through the router IP and checking if there was a correct transfer of data packets 

which indicated that there was continuous communication. Also visually it was possible to 

check the correct functioning of the system by observing on the mbed a constantly lit green 

LED which indicates that the mbed has connected correctly to the router and an yellow LED 

flashing rapidly, indicating that the mbed boards are receiving and sending data packets.  

A new data packet was transferred every 0.5 seconds. The set up is represented in figure 12. 
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Figure 12:  Set up disposition. A- Wifly; B- mbed; C- Wi-Fi router; D- The culture plates are placed 
between the receptor and sender. At each time 8 plates were expose. 

 

3.6 Ex vivo culture of immature rat SeT 

Testicles  from twenty-four 20-day-old rats and one 22 day-old rat were removed, trimmed 

free of fat, washed in cold phosphate-buffered saline (PBS) and placed in Dulbecco's modified 

Eagle's medium/Ham's F12 culture  medium  (Sigma‐Aldrich,  St.  Louis,  USA)  supplemented  

with  20  mg/L  gentamicin sulfate,  0.1  mM  3‐isobutyl‐1‐methylxanthine,  and  1  μg/L  of  

bovine  serum  albumin  (BSA)  10% at 33°C. Tunica albuginea was cut and peeled back to 

expose tubules. As the immature SeT are very tangled, it is difficult to pick individual 

fragments, thus, the SeT from one testicle was reparted to the 12 wells of a culture plate 

(Nunclon  D  12  well  multidishes;  Nunc,  Roskilde, Denmark), each well containing 5 ml of 

pre‐warmed culture medium. In this way, 48 plates were used, each one corresponding to a 

testicle. 

3.7 Histological analysis 

Testicles from 19 day-old, 20 day-old and 21 day-old animals were extracted and the entire 

testicles were included side to side in paraffin in order to obtain sections with many cross 

sections of the SeT which alow us to observe the SeT epithelium. The paraffin sections (5 µm) 

of SeT were deparaffinized in xylene for 10 minutes and rehydrated in graded alcohols (1 

minute in ethanol 100%, 1 minute in ethanol 70% and 1 minute in running water). Then the 

paraffin sections were stained and differentiated first 7 minutes in hematoxylin, then 1 

second in hydrochloric ethanol (differentiator), 4 minutes in running water, 1 minute in eosin 

1% and 10 seconds in running water. Subsequently the sections were dehydrated 50 second in 

ethanol 95%, 1 minute and 30 seconds in ethanol 100% and 2 minutes in ethanol 100%. For the 
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clarification, the sections were put 2 minutes in xylene. For the assembly, two drops of 

assembly medium were placed in the section and the lamella was placed on the section 

exerting some pressure. After dry, the sections were observed on the microscope (primo star, 

Zeiss, 1000x magnification). 

3.8 Sperm extraction  

Each epididymis was extracted, trimmed free of fat and the cauda was placed on a petri dish 

with 3 ml of filtered PBS heated at 37°C. With a sterilized scissor the epididymal cauda was 

minced in order to release the spermatozoa and the solution was homogenized with a Pasteur 

pipette. 

3.9 Evaluation of sperm parameters 

3.9.1 Motility 

Sperm motility was analysed by placing 100 µl of the previous spermatozoa suspension of the 

petri dish on a 37ºC pre-warmed microscope slide and covered with a cover slip. 10 fields of 

the microscope were observed with the diaphragm as closed as possible, always in the center 

of the microscope slide using na optical microscope (primo star, Zeiss, 1000x magnification) 

and the motility was classified by assigning a percentage of motility values in intervals of 10%. 

3.9.2 Viability 

Using the one step eosin/nigrosin stainig technique sperm viability was assessed. 5 µl of the 

previous spermatozoa suspension and 10 µl of nigrosin/eosin solution (0,6% eosin; 5% nigrosin; 

3% sodium citrate and pH was adjusted to 7 with 1M NaH2PO4) were placed on a 37ºC pre-

warmed the microscope slide and mixed. A smear was made and the microscope slide was 

observed on a optical microscope. The head of non-viable sperm cells turn pink as they 

absorb eosin due to the increased membrane permeability caused by the lost of integrity of 

the cell membrane while the heads of viable sperm cells remains white. 100 sperm cells were 

analysed in random fields accordingly to the schematic figure 13, to avoid count the same 

field more than once, under a microscope (Primo Star, Zeiss, 1000x magnification). 

 

 

 

Figure 13:  Schematic representation of the orientation of the fields used for the viability analysis in 
order to prevent the same field from being analyzed more than once. 
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3.9.3 Morphology  

5 µl of the previous spermatozoa suspension and 10 µl of PBS were placed at a microcope 

slide, a smear was done and the slides were allowed to air dry 37ºC. After dry, the KwikTM-Diff 

stain kit (Thermo ScientificTM) was used to evaluate morphology. First, the slides were 

immersed for 1 minute in a fixative solution (metanol), secondly, the slides were immersed 

for 2 minutes on eosin, which is an anionic dye that consequently stains positively charged 

proteins with red and lastly, the cover slides were immersed for 2 minutes in methylene blue 

which is an caionic dye that consequently stains negatively charged molecules with blue 84. 

After, the slides were rapidly dipped in water, air dried and observed in the microscope. The 

sperm cells were classified into four categories: normal, head defect, neck/midpiece defect 

and tail defect. When a sperm cell showed more than one defect, the sperm cell was 

classified according to the considered most severe defect that was present, being the severity 

order the following: head, neck/midpiece, tail (from more severe to less severe). 100 sperm 

cells were analysed in random fields under a microscope (Primo Star, Zeiss, 1000x 

magnification). 

 

3.10 Total protein extraction 

SeT were collected from the wells to falcons and centrifuged at 500G for 5 minutes at 4ºC. 

Each sample was weighted. Total  protein  was  isolated  from  rat  SeT  of  all  experimental  

groups  using radioimmunoprecipitation  assay  buffer  (RIPA)  (150nM NaCl, 1% Nonidet, 5% 

Na-deoxycholate, 1%  SDS,  10%  Tris-Base,  1mM  EDTA)  supplemented  with  protease  

inhibitors  cocktail  and  10%  phenylmethylsulfonyl  fluoride  per  mg  of  tissue and 

homogenized mechanically with a plastic tool for the effect. The samples were allowed to 

stand on ice 1 hour and occasionally mixed. Then, samples were centrifuged at 14,000 rpm 

for 20 minutes at 4ºC,  and  supernatant  containing  total  proteins  was  recovered  to  fresh  

tubes.  Total  protein concentration in  extracts was determined through the Bradford method  

(Bradford 1976)  with Sigma-Aldrich protein assay dye reagent.  BSA was used to construct a 

standard curve. 

3.11 Quantification of glucose and lactate 

The concentration of glucose and lactate in the culture medium of rat SeT was determined by 

means  of  spectrophotometric  analysis  using  commercial  kits  (Thermo Fisher Scientific, 

EUA). Using a 96 well plate, in each well corresponding to samples was placed 1µl of sample 

medium and 100µl of working reagent, in a well corresponding to standard was placed 1µl of 

standard provided for the kit and 100µl of working reagent, and in a well corresponding to 

blank were placed 100µl of working reagent. Each well was made in triplicate. For glucose 

and lactate kit, incubation time was respectively 5 minutes and 10 minutes at 37ºC. After 

incubation the plates were read at 590nm. The glucose consumption and lactate production 

were calculated.  
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3.12 LDH catalytic concentration 

The LDH activity was determined by commercial kit (Spinreact, Spain) based on the fact that 

LDH catalyzes the reduction of pyruvate by NADH, being the rate of decrease of the NADH 

concentration determined by means of spectrophotometric analysis proportional to the 

catalytic concentration of LDH in the sample tested. Using a 96 well plate, in each well 

corresponding to samples was placed 1µl of sample protein extracted and 150µl of working 

reagent. After incubation at 37º during 1 minute, the absorbance at 340nm was measured 

every minute for 3 minutes and the mean absorbance difference per minute was calculated 

(ΔA/min). 

3.13 Statistical analysis 

Statistical analysis was performed using GraphPad Prism 6 (GraphPad Prism version 6.00 for 

Windows, GraphPad Software, California USA). The  statistical  significance  of  differences  

between  experimental  groups  was  assessed  by  the Student’s  t  test.  Significant  

differences  were considered when p < 0.05. All experimental data are shown as mean ± SEM.
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4. Results 
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4.1 Development of a new model to study the effects of Wi-Fi 
on seminiferous tubules metabolism ex vivo 

4.1.1 20 day-old is the ideal age for the development of the model  

In order to determinate the ideal age for the development of the model histological sections 

of SeT from 19 day-old, 20 day-old, 21 day-old and 22 day-old were stained with hematoxylin 

and eosin and observed through the microscope. The age at which the cell population was as 

intended was 20 days of age (Figure 14, panel B). At this age, spermatogonia and SCs form a 

double-layered rosette with an outer row constituted by spermatogonial cells and an inter 

row of SCs. In addition to the population of SCs being well established, at this age there were 

only germ cells in the early stages of spermatogenesis, in leptotene/zygotene and pachytene 

stages which are the early stages of prophase 1 of meiosis. At the 19 days of age (figure 14, 

panel A) there its observable the presence of pré-leptotene spermatocytes and the Sertoli 

cells and spermatogonia cells are desorganized. Both ages of 21 and 22 days have already 

spermatocytes at more developed stages of spermatogenesis. The classification made was 

based on figure 15, representing the different stages of human germ cell development 

including the different stages of meiosis.  
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Figure 14:  Histological sections from rat seminiferous tubules stained with hematoxylin and eosin. A) 
Histological section from SeT from a 19 day-old rat¸ B) Histological section from SeT from 
a 20 day-old rat; C) Histological section from SeT from a 21 day-old rat; D) Histological 
section from SeT from a 22 day-old rat. 100X. pL- pré-leptotene spermatocyte; MC- 
myoide cell; Sp- Spermatogonia; SC- Sertoli Cell; leptotene/zygotene spermatocyte; P- 
pachytene spermatocyte; M-meiotic division. 
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Figure 15:  Nuclear morphology of the major cell types found within the human seminiferous 

epithelium, showing the progress of spermatogenesis. Ad- A dark spermatogonia; Ap- A 
pale spermatogonia, B: type B spermatogonia, Pl: preleptotene spermatocyte, L-Z: 
leptotene to zygotene spermatocyte; PS- pachytene spermatocyte; M- meiotic division; 
rST- round spermatid; elST- elongating spermatid; eST- elongated spermatid. Adapted 
from 85 

 

 

4.1.2 72 hours in culture medium have no effects on seminiferous tubules 

To assess if the 72 hours in the culture medium had negative effects medium in the SeT, SeT 

from a 22 day-old rat were cultured and histological sections were cut after 0, 48 and 72 

hours in culture medium and stained with hematoxylin and eosin. As seen in the figure 16, 

there are no observable differences between t=0h, t=48h and t=72h in culture medium so it is 

safe to say that the culture medium has no observable effects on the SeT cultured, in this 

way, any effects that may be present are a consequence of the stimulus. 
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Figure 16:  Histological sections from 22 day-old rat seminiferous tubules stained with hematoxylin 
and eosin. A) Histological section from SeT from a 22 day-old rat¸ after 0 hours in culture 
medium B) After 48 hours in culture medium; C) After 72 hours in culture medium. 

 

4.1.3 Validating the model 

Spermatozoa were divided into two major groups, 0 hours group (parameters analysed right 

after being extracted from the epididymis), and 1 hour group (spermatozoa who were 1 hour 

outside the epididymis). For each group were two subgroups, control group, constituted by 

spermatozoa who were not exposed to EMR, and exposed group, constituted by spermatozoa 

who were exposed to EMR for 0 hours or 1hour acording to the group they belong. In this way, 

exposed group from 0 hour group despite being called “exposed” was not exposed to EMR. For 

the 1 hour group, exposed group was exposed in the incubator with the set up, receiving the 

EMR for 1 hour, whereas control was placed in another incubator for 1 hour, without the set 

up.  
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In what concerns the motility (figure 17, panel A), there were no significative differences for 

the 0h group comparing the two groups, control (80,82 ± 1,787, N=6, p-value=0,1555) and 

exposed (84,17 ± 1,249, N=6). However, for the 1 hour group, there was a significant 

decrease of 26% in sperm mobility for the group exposed for 1 hour to EMR (41,17 ± 7,812, 

N=6, p-value= 0,0145) comparing to the control, non-exposed group (14,67 ± 4,417, N=6), 

(with a diference between means of -26,50 ± 8,974).  

 

Regarding the sperm viability, (figure 17, panel B), there were no significative differences for 

0 hour group comparing the two groups, control (13,33 ± 0,9189 N=6, p-value=0,7402) and 

exposed (13,67 ± 0,3333, N=6), neither for 1 hour group comparing the two groups, control 

(13,50 ± 0,8062, N=6, p-value=0,6867) and exposed (13,00 ± 0,8944, N=6). The percentage of 

viable sperm in all the groups was very low, approximately 13,37%. Some random fields 

observed in microscope during viability analysis are represented in figure 18. 

 

 

Figure 17:  Effect of  EMR exposure on epididymmal spermatozoa viability. A) The figure shows the 
percentage of motil spermatozoa, comparing both groups, control and exposed, from 0 
hours and 1 hour group. There were no significative diferences between the 0 hour group, 
however there was a significative decrease in the 1 hour group comparing the control and 
exposed groups. B) The figure shows the percentage of viable spermatozoa, comparing 
both groups, control and exposed. There were no significative diferences between any of 
the groups. Results are expressed as mean ± standard error of the mean (SEM) (n = 6 for 
each condition). Significant results (p-value < 0.05) relative to control are indicated as (*). 

 

 

 

Figure 18:  Random fields observed in viability analysis. A) A viable sperm cell and a non-viable sperm 

cell; B) A few viable and lots of no-viable sperm cells. (Stained with eosin/nigrosin). 100X 
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For the percentage of normal epididymal spermatozoa (figure 20, panel A), there were no 

significative differences for 0 hour group comparing the two groups, control (94,50 ± 1,335, 

N=6, p-value=0,6993) and exposed (95,17 ± 1,014 N=6), neither for 1 hour group comparing 

the two groups, control (93,67 ± 1,054, N=6, p-value= 0,1526) and exposed (86,50 ± 4,507, 

N=6). For the percentage of epididymal spermatozoa with head deffects (figure 20, panel B) 

for 0 hour group there were no significative differences comparing the two groups, control 

(1,167 ± 0,4773, N=6, p-value= 0,4054) and exposed (1,833 ± 0,6009, N=6). However, 

exposure for 1 hour to 2.4 GHz EMR caused a significant increase, by 1%, comparing the 

exposed group (1,167 ± 0,3073, N=6, p-value= 0,0234) to control (2,833 ± 0,5426 N=6), (with a 

difference between means of 1,667 ± 0,6236).  

For the percentage of epididymal spermatozoa with neck/midpiece defects (figure 20, panel 

C), there were no significative differences for 0 hour group comparing the two groups, control 

(2,333 ± 0,6146, N=6, p-value=0,8713) and exposed (2,167 ± 0,7923, N=6), neither for 1 hour 

of exposure comparing the two groups, control (2,000 ± 0,5774, N=6, p-value= 0,2487) and 

exposed (3,000 ± 0,5774, N=6). For the percentage of epididymal spermatozoa with tail 

defects (figure 20, panel D), there were no significative differences for 0 hour group 

comparing the two groups, control (2,000 ± 0,8563, N=6, p-value=0,5995) and exposed (1,500 

± 0,3416, N=6), neither for 1 hour group comparing the two groups, control (2,500 ± 0,8466, 

N=6, p-value= 0,2456) and exposed (1,333 ± 0,4216, N=6). Some of the defects found in the 

exposed group 1 hour to the EMR are represented in figure 19. 

 
 

Figure 19: Sperm cells found during sperm morfology analysis from the group exposed 1 hour to EMR. 
A) Normal sperm cell; B) Head defect; C) Neck/midpiece defect; D) Tail defect. 40X 
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Figure 20:  Effect of 1hour EMR exposure on epididymal spermatozoa. A) The figure shows the 

percentage of normal epididymal spermatozoa, comparing both groups, control and 
exposed, from 0 hours and 1 hour group. There were no significative diferences between 
any of the groups. B) The figure shows the percentage of epididymal spermatozoa with 
head defects, comparing both groups, control and exposed. There was a significative 
increase on the percentage of epididymal spermatozoa with head defects between control 
and exposed on the 1 hour group. C) The figure shows the percentage of epididymal 
spermatozoa with neck/midpiece defects, comparing both groups, control and exposed, 
for 0 hours and 1 hour group. There were no significative diferences between any of the 
groups. D) The figure shows the percentage of epididymal spermatozoa with tail defects, 
comparing both groups, control and exposed, for 0 hours and 1 hour group. There were no 
significative diferences between any of the groups. Results are expressed as mean ± 
standard error of the mean (SEM) (n = 6 for each condition). Significant results (p-value < 
0.05) relative to control are indicated as (*). 

 

 

4.2 EMR from Wi-Fi altered SeT glycolytic metabolism 

 

4.2.1 EMR from Wi-Fi device inhibited glucose consumption 

Since glucose is the most important fuel of the cells responsible for testicular metabolism, in 

order to evaluate whether exposure during 72h to EMR of 2.4GHz corresponding to the EMR 

emmited from Wi-Fi devices alters testicular glycolytic metabolism, metabolic alterations in 

glucose consumption and lactate production were evaluated. Our results evidenced that the 

extracellular glucose consumption (figure 21) was significantly decreased on exposed group 

(2,242 ± 0,4855, N=6, p-value=0,0029) comparing to the control group (0,01042 ± 0,5173, 

N=6), (with a difference between means of -2,231 ± 0,7095). 
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Figure 21:  Wi-Fi effects on glucose consumption. 72 hour exposure to 2.4GHz EMR significantly 
decreased glucose consumption in rat immature SeT. Results are expressed as mean ± 
standard error of the mean (SEM) (n = 6 for each condition). Significant results (p-value < 
0.05) relative to control are indicated as (*). 

 

 
 

4.2.2 EMR from Wi-Fi device increases lactate production 

Lactate is one of the most important products secreted by SCs for maintenance of 

germinative cells during spermatogenesis because it’s their preferred subtract o obtain 

energy. In this way, lactate concentration was calculated. The results from the quantification 

of extracellular lactate concentration (Figure 22) showed that exposure for 72h to 2.4GHz 

EMR radiation significantly increased lactate production on the exposed group (2,902 ± 

0,3875, N=6, p-value= 0,0022) comparing to the control group (1,616 ± 0,08674, N=6), (with a 

difference between means of 1,286 ± 0,3971). 
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Figure 22:  Wi-Fi effects on lactate production. 72 hour exposure to 2.4GHz EMR significantly 

increased lactate production in rat immature SeT. Results are expressed as mean ± 
standard error of the mean (SEM) (n = 6 for each condition). Significant results (p-value < 
0.05) relative to control are indicated as (*). 

 

 
 

4.2.3 EMR from Wi-Fi device increases LDH activity 

Since the production of lactate was increased in the exposed group, it was decided to study 

the LDH activity, the enzyme responsible for reversively converting pyruvate to lactate. The 

results evidenced an increase in LDH activity (figure 23) in the exposed group (39,30 ± 3,379, 
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N=6), comparing to control group (27,99 ± 5,511, N=6), although this increase was not 

significantive (p-value=0,1109). 
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Figure 23:  Wi-Fi effects on LDH activity. 72 hour exposure to 2.4GHz EMR caused na increase in LDH 

activity in immature rat SeT, nevertheless this increase was not significative. Results are 
expressed as mean ± standard error of the mean (SEM) (n = 6 for each condition). 
Significant results (p-value < 0.05) relative to control are indicated as (*). 
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5. Discussion 
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Wireless devices using W-Fi interfaces are increasingly present in our lives and are an 

essential part of our daily activities. This type of apparatus uses electromagnetic radiation for 

the transmission of signals, which in turn has been proved to have various physiological 

effects in particular on male reproductive system, having negative consequences on male 

fertility. Several studies have shown that EMR from Wi-Fi devices contributes to DNA damage 

46 47 48, causes histopathological and ultrastructural changes in the testes and on SC 51 52, alters 

the production of hormones crucial for the proper functioning of the male reproductive 

system like T 45 49 50, causes degenerative changes in spermatogenic cells 54 and on its 

number55 and has a negative effect on sperm parameters45 56. However, there is a lack of 

studies regarding the effects of the EMR from these devices on testicular metabolism. 

Since processes involved on testicular metabolism may be affected by several factors such as 

environmental factors and even a sedentary lifestyle, it is plausible to hypothesize that EMR 

may have effects on testicular metabolism. Since the EMR studies found did not use realistic 

models of radiation exposure, once some of them only placed sperm under a laptop 

computer, or placed animals in small cages inducing them stress 47, it was necessary to built a 

realistic and reproducible model of EMR exposure.  

A closed Wi-Fi network was created inside the incubator, being constituted by the wifly 

module, the router and the mbed. The Wifly module was chosen because it is certified to 

operate on 2.4GHz networks, the same frequency used in our common internet networks. Also 

the easier verification of signal transmission and its correct operation was taken in account, 

once it has three LED’s (green, red and yellow) each one providing information about the 

wifly status as previously described. Mbed was selected to be part of the network 

construction once it is easy to programme through an online platform using a relatively simple 

compliler, the ARMCC C/C++ and because of the presence of a USB port through which it 

supplies power to the system which was ideal for our situation, since we wanted to place the 

system inside the incubator and pass the cables through a small hole to be able to connect all 

devices to a power plug on the outside. The capability of easily connect the wifly module to 

the mbed, following a schematic already provided, was also a plus point of using these two 

components. The internet router used was a simple, commercial router that satisfied the 

needs of the network we wanted to build.  

The EMR from wireless devices has been shown to have a negative effect in sperm parameters 

such as decrease in viability, sperm count and motility 45 56, in this way, to validate the 

exposure set up sperm cells from adult rats were exposed during one hour to the network 

built. The short time expose (one hour) is justified by the fact that a longer ex vivo exposure 

could compromise sperm quality and influence the results. The results showed that EMR 

caused a significant decrease in motility in the exposed compared to control. Also the number 

of sperm with head deffects was significantly increased in the exposed group. However, all 

the other sperm parameters did not suffer significative alterations inclusively viability. The 
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fact that it is an ex vivo study may justify the differences between control and exposed 

groups not being significant in the other parameters, as in in vivo studies EMR caused 

significant effects on sperm parameters. For exemple Yan et al., 56 exposed rats to 1.9GHz 

EMR in a cycle of 3 hours of exposure followed by a 30 minute period without exposure and 

again 3 more hours of exposure for 18 weeks and the results revealed a majority of sperm 

cells without motion, dead or with straight rigid tails in the exposed rats. However, Dasdag 

and his colleagues who also used an in vivo model, found no significant differences neither 

with long or short term exposure in sperm concentration, sperm motility, total morphological 

defects and apoptotic cell number in the testes 53 59 60.  

Since the ultimate goal was to study the effects of EMR on testicular metabolism, it was 

considered pertinent to determine the best age to study testicular metabolism using rat SeT. 

In view of the number of published studies on the metabolism of SCs 82 83, we hypothesized 

that a model using a mouse with an epithelium of seminiferous tubules containing a well 

established SC population alongside with germ cells in the early stages of spermatogenesis 

exclusively, would constitute an excellent model for the study of metabolism in rats. There 

are studies revealing that mitotic division of SCs ceases after the 15 day of post-natal 

development in rats, preceding the formation of the hematopoietic barrier created by tight 

junctions formed by SCs between days 16 and 19 80. Another study indicates that the mitotic 

division of the SCs ceases at 18 days 81.  

Although there are studies that show that post-mitotic terminally differentiated SCs from 

adult animals could, under certain conditions re-enter the cell division cycle,  

as it happens in horses that presented a greater number of SC during the breeding season, in 

knock-out mice with DBKO or P27KO removed, in circumstances of testicular transplantation 

or hypophysectomy, among other situations, since the rats used for this work do not fall into 

any of the cases above described, and since adult SC numbers are generally stable, we 

assumed that the population of SC in these case would stay stable 10.  

According to previous studies that showed the ages in which there was a well-established SC 

population and germ cells only in the initial stages of spermatogenesis, we decided to confirm 

the data present in the literature and perform an histological analysis of SeT from rats aged 

19 to 22 days. The ideal age with the ambitioned characteristics was shown to be 20 days of 

age, since in addition to the population of SCs being well established, there were only germ 

cells in the early stages of spermatogenesis once the germ cells that were in the most 

developed state were leptotene/zygotene/pachytene spermatocytes. In the histological 

section of the SeT of the 19-day-old rat it was still possible to observe a certain 

disorganization of the cells that was no longer observable in the 20-day rat SeT since a higher 

level of organization was present. In the 21-day-old rat SeT it was observed na augmented 

number of germ cells at a more advanced stage, which was not intended since we wanted the 

study to focus on the contribution of SCs and not germ cells. In the 22-day-old rat SeT an 
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even higher number of germ cells in an advanced stage of spermatogenesis were observable. 

The results were consistent with histological images of rat SeT of the same age present in the 

literature, as espected 86. 

We also intended to discard the hypothesis that the time in culture medium could influence 

the results found. For this purpose, SeT from a 22-day-old rat were placed for 72 h in culture 

medium without receiving any EMR and a histological analysis was performed at t=0h, t=48h 

and t=72h given that, if changes were observed in the SeT, the results found later could be a 

consequence of these histopathological changes and not due to EMR exposure. There were no 

observable differences between SeT for  t=0h, t=48h and t=72 in culture medium so it is safe 

to say that the culture medium has no effects on the SeT cultured, in this way, the effects 

found are a consequence of the stimulus. 

In the testicles, glucose metabolism is carried out by SCs once they support spermatogenesis 

not only spatially but also energetically 24 25, however SeT and not SC cultures were used in 

this study. The choice of SeT culture instead of SC culture is justified by several studies that 

show that this model is more suitable to mimic the testicular cellular environment ex vivo 87 

88.  

Although SCs have the ability to metabolize various substrates, they preferentially use glucose 

26 23. In this way it was pertinent to study the possible effects of EMR on glucose 

concentration. Also lactate which is one of the most important products secreted by SCs for 

maintenance of germ cells during spermatogenesis because it is their preferred subtract o 

obtain energy is an object of study with interest 28. To provide germ cells their favorite 

substract, SCs convert the most part of glucose into lactate so it was expected that if the 

glucose concentration decreased, the lactate concentration would increase, however the 

results evidenced that the extracellular glucose concentration was significantly decreased on 

exposed group but contradictorily lactate production increased. Since LDH is responsible for 

the reversible conversion of pyruvate into lactate it has an enhanced importance to further 

disclose the increase in lactate production, thus, the LDH activity was assessed. The results 

from LDH kit revealed that a 72hour exposure to EMR caused an increase in LDH activity and 

although the increase was not significant, it is in accordance with the increase in lactate 

production in the exposed group once if LDH is more active, it is expected that lactate 

production will be higher since there is more conversion of pyruvate to lactate. These 

contradictory results between glucose consumption and lactate production suggest that when 

exposed to EMR from Wi-Fi devices the cells responsible for testicular metabolism, namely 

SCs in the SeT, may use alternative metabolic pathways for the production of lactate and 

consequently obtain energy. Some studies have already demonstrated that SCs can use other 

substrates rather than glucose to obtain energy. Indeed, some studies propose some 

metabolic mechanisms to occur both in cancer and SCs, such as the Warburg effect. 
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Figure 24:  Metabolic pathways in testicular metabolism proposed under Wi-Fi EMR radiation. Usually, 
Sc metabolize glucose into pyruvate throught the enzyme phosphofructokinase (PFK) (A). 
Then, pyruvate is converted into lactate by lactate dehydrogenase (LDH) and exported 
through specific monocarboxylate transportes (MCTs). Since under certain conditions SCs 
can use alternative fuels to obtain energy, it is proposed that under Wi-Fi EMR radiation 
may use alternative pathways. Glutamine may have an importante role, entering through 
alanine–serine–cysteine transporter (ASCT) and being converted to glutamate by 
glutaminase (GLS) (B). Glutaminolysis derivated α-ketoglutarate is a Krebs-cycle 
intermediate that in last instance may turn into pyruvate and through LDH be converted in 
lactate and exported through MCT. Also leucine and valine can do the same path (D). 
Several amino acids may also replenish Krebs cycle at oxaloacetate and fumarate (E). Also 
alanine may be converted to pyruvate by alanine aminotransferase (ALT) and through LDH 
be converted in lactate and exported through MCT (C). 

 

 In normal conditions glucose is metabolized into pyruvate through several reactions which is 

then converted to lactate, but under specific circumstances, Krebs cycle and glutaminolysis 

may be an alternative 89. Glutamine, which is known to be involved in anabolic pathways, has 

been identified as a substrate capable of providing the energy required for testicular 

metabolism once it can be degraded in the Krebs cycle and in order to produce ATP. 

Furthermore, Grootegoed et al 35 have shown that the single oxidation of glutamine and 

leucine can yield much of the required energy by SCs 90. Glutamine oxidation leads to its 

conversion to glutamate and then to a-ketoglutarate, which is followed by oxidation of a-

ketoglutarate via the citric acid cycle and provide intermediates for fatty acids and amino 

acids synthesis 35. Glutamine also decreases the incorporation of alanine into proteins, which 

in turn may be beneficial since alanine can be converted to pyruvate by ALT and subsequently 

used by SC as a substrate to produce lactate through the action of LDH 36. Besides glutamine 

and alanine, leucine and valine can also alter the normal metabolic course in SC since they 
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decrease the oxidation of glutamine 36. In fact, Kaiser et al., showed that SC can adapt its 

energy metabolism to the oxidative substrates available to fulfill their role in spermatogenic 

energetic supply.  

Once the culture medium used had glutamine, the Wi-Fi radiation may have induced SC 

present in SeT of the immature rats to use glutamine instead of glucose as the substrate, 

leading to the use of this alternative metabolic pathway. These alternative pathways are 

represented in figure 24. 

The control on the production rate of lactate is on charge of GLUTs - GLUT1, GLUT2 and 

GLUT3, that control the membrane passage of glucose from the extracellular space to SCs, 

and after produced, lactate is exported from SCs trough the active membrane 

monocarboxylate transporter isoform 4 (MCT4) 29 23. In this way, the study of the expression 

of these transporters may give more answers about the effect of the EMR from Wi-Fi devices 

in testicular metabolism. The study of ALT and LDH expression may also be usefull to 

understand which substract is leading to lactate production. 
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6. Conclusions 
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In recent years, concern over the possible effects of Wi-Fi equipments on fertility has been 

increasing as they are increasingly being used around the world.  

The uneasiness, about the effects of EMR on male fertility has been reflected in several 

published studies, however the way radiation exposure was conducted and whether the 

effects are actually representative of reality remains a topic of debate.  

A good reproductive capacity depends on the correct process of spermatogenesis which in 

turn is affected by testicular metabolism that occurs in the seminiferous tubules by SC.  

In this way, and since this subject has never been studied, the effect of the EMR emitted by 

Wi-Fi devices in testicular metabolism deserves particular attention. Since SCs are located 

within the SeTs and the fact that the SeT epithelium from a 20-day-old rat consists 

predominantly of SC and germ cells at an early stage of the spermatogenesis, the use of SeT 

cultures of 20-day-old rats consists of a reliable model for the study of the effects of EMR on 

testicular metabolism. 

Through the work developed, it was possible to built a set up of exposure to EMR emitted by 

Wi-Fi devices, mimicking a situation of internet use through the transfer of data packets that 

made it feasible to study the real effects of EMR on metabolism using the new model 

described above. The study conducted to validate the set up showed that EMR does indeed 

have effects on sperm parameters, specifically in the motility in which the exposed group had 

a significant decrease in the percentage of motile sperm compared to control. 

Through this project, it was possible to conclude that Wi-Fi devices affect testicular 

metabolism since EMR decreased significantly extracellular glucose concentration, however 

increased lactate production and LDH activity. The results found are the first evidence that 

the EMR of Wi-Fi devices has effects on the testicular metabolism, altering its normal glycolic 

pathway. 

Althouth some alternative pathways have been suggested in the discussion of this 

dissertation, further studies will be necessary to understand in depth these mechanisms and 

to determine the actual pathway that is being used. 

The study of the effects of EMR and Wi-Fi devices is gaining more and more interest from the 

scientific community since in recent years evidence of its negative effects on male fertility 

has arisen trough several published papers.   

This topic will certainly continue to be a research topic and this dissertation intends to be a 

starting point for the study of this subject, which can provide useful answers to the problem 

of male infertility. 
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