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Resumo 

 

Além da forma B Watson e Crick do ADN duplex, os G-quadruplexes são estruturas de ADN de 

quatro cadeias, formadas in vivo pela auto-associação de sequências ricas em guaninas. Estas 

podem ser formadas por uma, duas ou quatro cadeias distintas de ADN e apresentar uma 

diversidade de topologias, definidas pela orientação da cadeia, tamanho dos loops e a 

sequência. G-quadruplexes podem ser encontrados nos telómeros, regiões de troca das 

imunoglobulinas e nas regiões dos promotores génicos. A localização biologicamente relevante 

no genoma faz com que estas estruturas altamente ordenadas sejam um alvo atrativo do 

desenho de fármacos e o desenvolvimento de ligandos altamente específicos que ligam e 

estabilizam o G-quadruplex com ação terapêutica. Neste trabalho, descreve-se a biossíntese 

da nova sequência de ADN rica em guaninas e formadora de G-quadruplex 58Sγ3, utilizando 

amplificação por plasmídeo. A recuperação e purificação do oligonucleótido 58Sγ3 é efetuada 

por cromatografia de exclusão molecular. A formação de G-quadruplex é promovida e a sua 

topologia é determinada por dicroísmo circular. A estabilização da estrutura do G-quadruplex 

com ligandos derivados de quinolina e naftaleno é estudada utilizando ensaios de estabilização 

térmica no dicroísmo circular, G4-FID e PCR-stop. Os resultados sugerem que 58Sγ3 adota uma 

estrutura G-quadruplex paralela em tampão 500 mM KCl e que os ligandos de naftaleno ligam 

e estabilizam a estrutura do G-quadruplex. Os ligandos demonstraram também ser específicos 

do G-quadruplex em relação ao ADN duplex além de inibir a Taq ADN polimerase. Este trabalho 

fornece evidência da formação de G-quadruplex nas regiões de troca das imunoglobulinas. Além 

disso, sugere que os derivados de naftaleno atuam como ligandos do G-quadruplex e que podem 

ser potencialmente utilizados para inibir a transcrição de genes em células tumorais. 
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Resumo Alargado 

 

Durante muitos anos, o ADN foi caracterizado como uma “molécula passiva” cujas funções 

seriam unicamente o armazenamento de material genético no núcleo das células. A descoberta 

de Watson e Crick em 1953 abriu novas perspetivas para que fosse descoberto o segredo da vida 

por biólogos e geneticistas. As suas publicações revelaram a estrutura química do ADN como 

uma hélice dupla e explicaram como a informação genética era passada de geração em geração, 

como havia sido postulado um século antes por Mendel. Desde então, diversas estruturas 

alternativas de ADN derivadas do modelo de dupla hélice foram propostas e o seu papel 

biológico tem sido alvo de intensa investigação. 

G-quadruplex é uma estrutura altamente ordenada que resulta da capacidade de sequências 

de ADN ricas em guaninas se organizarem espontaneamente em estruturas tetraméricas de 

quatro cadeias. A estrutura do G-quadruplex é constituída por diversas tétradas de guaninas 

empilhadas verticalmente, denominadas de G-quarteto, o núcleo da formação do G-

quadruplex. Cada G-quarteto é formado pelo arranjo planar de quatro guaninas ligadas por 

pontes de hidrogénio Hoogsteen. A formação de G-quadruplexes é observada em solução em 

condições fisiológicas, sendo a sua formação e estabilização dependente de catiões 

monovalentes, especialmente potássio e sódio, sendo o potássio considerado mais relevante 

biologicamente dada a sua elevada concentração intracelular, quando comparado com os outros 

iões. Os G-quadruplexes podem ser formados por uma (intramolecular), duas ou quatro 

(intermolecular) cadeias distintas de ADN e apresentar diversas topologias, definidas pela 

orientação das cadeias (paralelo ou antiparalelo), tamanho e sequência dos loops. Estudos 

estruturais demonstraram esse mesmo polimorfismo estrutural, dependente das condições 

experimentais, a presença e coexistência de iões metálicos, a concentração do ião e condições 

de aglomerado molecular. Sequências capazes de formar G-quadruplex podem ser encontradas 

nos telómeros, nas regiões de promotores génicos (notavelmente nos oncogenes), nas regiões 

de troca das imunoglobulinas, assim como noutros locais menos comuns. Neste contexto, foi já 

proposto que o G-quadruplex esteja envolvido em diversos processos biológicos importantes 

como a transcrição, tradução, replicação e recombinação de ADN, além da manutenção da 

estabilidade do genoma. Deste modo, o G-quadruplex tem sido extensivamente estudado como 

um potencial alvo terapêutico e o desenvolvimento de pequenas moléculas, altamente 

específicas, que ligam e estabilizam a sua estrutura foi intensificado. 

Diversos ligandos do G-quadruplex foram já desenvolvidos como agentes anticancerígenos, dada 

a sua habilidade para modular a atividade transcricional dos oncogenes e a atividade de enzimas 

relacionadas com o cancro tais como a telomerase. O ligando mais estudado é o TMPyP4, uma 

porfirina catiónica capaz de inibir a atividade da telomerase e a proliferação de diversas células 

tumorais, além de reprimir a transcrição de oncogenes tais como c-myc, c-kit, VEGF e KRAS. 
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Contudo as cargas positivas do TMPyP4 promoveram interações não-especificas como o ADN de 

dupla-cadeia e a inibição da proliferação de células saudáveis foi verificada. Por este motivo, 

o desenvolvimento de novos agentes de estabilização do G-quadruplex é da maior importância. 

Entre estes, ligandos aromáticos acíclicos com largos anéis capazes de emparelhar com as 

tétradas, funcionalizados com braços protonáveis capazes de interagir com as cadeias de ADN. 

Também o desenvolvimento de novas matrizes para o desenho destas moléculas terapêuticas é 

da maior importância, pelo que a identificação e produção de novas sequências do genoma, 

capazes de formar G-quadruplex, deve ser estimulada. 

Neste trabalho, foi realizada a biossíntese de uma nova sequência capaz de formar G-

quadruplex, denominada 58Sγ3. Esta é uma sequência de 58 pares de bases, encontrada num 

fragmento da região de troca Sγ3 de uma imunoglobulina murina, região esta que consiste em 

repetições degeneradas de guaninas, com um tamanho entre 2 e 10 mil bases e é necessária 

para o processo de recombinação dos anticorpos. A sequência 58Sγ3 foi produzida por uma 

estratégia que envolveu a clonagem da sequência no plasmídeo pVAX1-lacZ, a sua amplificação 

por replicação autónoma em Escherichia coli DH5α e consequente recuperação por lise alcalina. 

O isolamento e purificação da 58Sγ3 foram efetuados por digestão enzimática do plasmídeo, 

seguido de separação e purificação do fragmento de restrição por cromatografia de exclusão 

molecular. Esta estratégia provou ser mais rentável quando comparada ao processo caro e 

laborioso de síntese química de ADN, contudo mais morosa e com rendimentos baixos.  

Após a purificação e isolamento da sequência 58Sγ3, a formação de G-quadruplex e a sua 

topologia foram estudados por dicroísmo circular. Esta técnica é utilizada para detetar a 

formação de G-quadruplexes e identificar as topologias paralela e antiparalela adotadas. Os 

resultados do dicroísmo circular sugerem que a sequência 58Sγ3 adota uma conformação 

paralela em solução de 500 mM KCl. Estudos com a porfirina TMPyP4, conhecida por induzir a 

formação de G-quadruplex, indicaram o mesmo resultado. Seguidamente, quatro ligandos 

derivados de naftaleno e quinolina foram testados para o reconhecimento e estabilização da 

estrutura do G-quadruplex. Foram efetuados ensaios de estabilização térmica no dicroísmo 

circular, nos quais se determinaram as temperaturas de fusão do G-quadruplex com e sem 

ligando. Recorrendo ao ensaio de PCR-stop também foi testada a indução e estabilização do G-

quadruplex em sistemas biológicos, além da capacidade dos ligandos de inibir a enzima Taq 

ADN polimerase. O mesmo ensaio foi efetuado com uma sequência mutada por forma a 

descriminar se os ligandos reconheciam efetivamente a estrutura do G-quadruplex, ou se a 

inibição da enzima Taq era devida a interações não específicas. Por último, a afinidade e 

especificidade dos ligandos para o G-quadruplex em relação ao ADN dupla-cadeia foi avaliada 

pelo ensaio G4-FID, que usa um fluoróforo cuja emissão de fluorescência é multiplicada quando 

ligado ao ADN, mas quando desligado por competição com um ligando, perde-a por completo. 

Os três ligandos derivados de naftaleno demonstraram resultados promissores na estabilização 

do G-quadruplex da sequência 58Sγ3, sendo por isso moléculas promissoras para o 

desenvolvimento de agentes terapêuticos. 
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Abstract 

  

In addition to the Watson and Crick B-form duplex DNA, G-quadruplexes are four-stranded DNA 

structures formed in vivo by the self-assembly of guanine-rich sequences. These can be formed 

by one, two or four separate strands of DNA and present a diversity of topologies, defined by 

the strand orientation, loop size and sequence. G-quadruplexes can be found in telomeres, 

immunoglobulin switch regions and gene promoter regions. The biological relevant location on 

the genome makes these high-order structures an attractive target for drug design and the 

development of highly specific ligands that bind and stabilize G-quadruplex with therapeutic 

activity. Herein, the biosynthesis of a novel G-rich quadruplex-forming DNA sequence 58Sγ3 is 

described by plasmid amplification. The recovery and purification of 58Sγ3 oligonucleotide 

using size-exclusion chromatography is presented. The G-quadruplex formation is promoted and 

its topology is determined by circular dichroism. The stabilization of the G-quadruplex structure 

with quinoline and naphthalene-based derivatives is studied using melting analysis, G4-FID and 

PCR-stop assays. The results suggest that 58Sγ3 folds into a parallel-stranded G-quadruplex 

structure in 500 mM KCl buffer and that naphthalene-based ligands bind and stabilize the G-

quadruplex structure. The ligands are also found to be quadruplex-specific over duplex DNA 

and inhibit Taq DNA polymerase. This work provides evidence for G-quadruplex formation 

within the immunoglobulin switch regions. Furthermore, it is suggested that the novel ligands 

here reported act as potent specific G-quadruplex binders and may also potentially be used to 

inhibit genes transcription in tumor cells. 

 

Keywords 

 

G-quadruplex; plasmid DNA; biosynthesis; size-exclusion chromatography; quadruplex-ligands; 

circular dichroism; PCR-stop assay; G4-FID assay.  
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Chapter 1 

 

Introduction 

DNA is the primary genetic material of all cellular organisms and DNA viruses. Its sequence 

carries all the genetic information needed to build and maintain an organism. In April 1953, 

James Watson and Francis Crick published the world-renowned Nature paper proposing a 

structure model for the right-handed double helix DNA [1]. Watson and Crick suggested that 

DNA had two helical chains coiled around the same axis running through the complementary 

base pairs between each chain – adenine (A) with thymine (T) and guanine (G) with cytosine 

(C) using two or three hydrogen bonds, respectively [1,2]. This structure we know as B-form of 

DNA is the basic dominant form of DNA in vivo. However, DNA molecule is highly polymorphic 

and can adopt many forms depending on its sequence and environmental conditions [3]. The 

three major double helical forms are A-, B- and Z-DNA, all made of antiparallel strands (Figure 

1).  

 

Figure 1 - Molecular modelling representations of the three major nucleic acid duplex conformations. 
Below: the orthogonal representations. Adapted from [4]. 

Other non-helical secondary structures exist such as triplexes, bent DNA, cruciforms, nodule 

DNA, slipped structures (hairpin), sticky DNA and G-quadruplexes (also referred to as 

tetraplexes, G4 DNA or simply quadruplexes) (Figure 2) [5]. While cruciform and triplex DNA 

retain the AT and GC Watson-Crick base pairing, G-quadruplex DNA does not involve any GC 
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base pairs and requires the complementary DNA strands to unwind in order to allow the G-rich 

strands to fold into four-stranded structures [3]. The formation of this non-canonical DNA 

structures depends on sequence, topology (supercoiling), binding of proteins, DNA 

modifications, temperature, dehydration and ionic strength [5]. Evidence points to the 

important biological roles and implications of such diverse and dynamic structures [5]. 

1.1 G-quadruplex 

The guanine quadruplex structure is the most studied non-canonical DNA conformation since 

the earliest physical studies of nucleic acids dated from the 1960’s [5]. The first observation of 

the self-assembly of guanylic acid, also known as guanosine monophosphate (GMP), was made 

in the twentieth century by Ivar Bang (1910). Bang observed the formation of a clear gel at high 

GMP concentrations (25 mg/mL) and pH 5 [6]. Later on in 1962, Gellert, Lipsett and Davies 

proposed the core of the guanine quadruplex (Figure 3).  

 

Figure 2 - Non-duplex DNA structures formed by repeating sequences. Adapted from [5]. 
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Through X-ray diffraction studies of fibers formed from 3’- and 5’-GMP gels, they found that 

tetrameric guanine residues arranged in vertically stacked hydrogen-bonded guanine tetrads 

(later termed as G-quartet or G-tetrad) [7]. Gellert et al. also reported the high stability of the 

structural arrangement provided by the hydrogen-bonding of the four guanine bases, with two 

hydrogen bonds between each pair involving the N1, N7, O6 and N2 atoms [8]. In 1978, Miles 

and Frazier showed that guanine tetrads stability depended on a central positive ion that 

interacts with the oxygen atoms of the guanines [9]. A decade later, new findings pointed to 

the formation of these four-stranded structures in guanine-rich sequences of immunoglobulin 

switch regions and in telomeric regions at the end of eukaryotic chromosomes [10,11]. These 

sequences present discrete runs of guanine tracts (G-tracts), which form compact structural 

arrangements, termed G-quadruplexes, instead of the continuous helices proposed years before 

by Watson and Crick [8]. Sen and Gilbert also postulated that the four-stranded structures 

formed in the immunoglobulin switch regions may have a role in meiosis [11]. In 2001, 

Schaffitzel et al. found strong evidence for the existence of quadruplex structures in vivo by 

staining the ciliate Stylonychia lemnae macronuclei with high affinity quadruplex-specific 

antibodies Sty49 [12]. More recently, G-quadruplexes were found in the mammalian cell nuclei 

by visualization using immunofluorescent antibodies evidencing its existence in vivo [13]. 

Guanine-rich sequences were also identified in oncogene promoter regions [14–16]. The 

technological advance in terms of nucleotide sequencing and conclusion of the human genome 

mapping in 2001 and the use of bioinformatics approaches led to the identification of new 

sequences with putative quadruplex formation in the DNA and even at RNA level (over 300,000 

potential quadruplex-forming sequences) [8,17]. These guanine-rich sequences seem to be 

implicated in the function and regulation of cellular pathways at the transcriptional and 

translational levels, which generated much interest and investigation [2]. To date, several 

studies have been conducted to explore the native state of the quadruplex structures under 

physiological conditions. 

Figure 3 - The structure of the G-quartet, showing the hydrogen bonding arrangement between the four 

coplanar guanine bases. Taken from [8]. 
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1.1.1 G-quadruplex sequence 

The availability of the complete human genome, as well as several other organisms genomes, 

provided the needed data in which the existence and identity of guanine-rich sequences could 

be systematically searched [8,18]. Potential quadruplex-forming sequences can be described 

by the following sequence motif: 

Gm Xn Gm Xo Gm Xp Gm, 

where m is the number of guanine residues in each G-tract, usually directly involved in G-tetrad 

formation [19]. Xn, Xo and Xp can be any combination of residues, including guanines, and are 

responsible for the loops formation. The G-tracts form the core of the quadruplex, while the 

loops, positioned on the exterior, help to maintain the overall structure intact. This sequence 

motif does not assume that all G-tracts are of equal length, and if one of the short G-tracts is 

longer than the others, the adjacent guanines will be located in the loops [19]. Both G-tracts 

and loops are usually limited to 3 ≤ m ≤ 5 and 1 ≤ X ≤ 7, respectively, but deviations to the rule 

are arguable [8,20]. Using this motif as a quadruplex probe, two distinct research groups 

conducted bioinformatics analysis using the ENSEMBL genome browser and both found 

approximatively 375,000 potential quadruplex sequences in the human genome, despite of the 

statistical and analytical approaches used being different [20,21]. These results indicate that 

such sequences are highly significant and non-random. Of these ≈375,000 potential quadruplex 

sequences, ≈223,000 are found in intergenic regions, ≈151,000 within genes and just ≈14,000 

within exons [8]. However, the question if these sequences are capable of forming quadruplexes 

cannot be answered since the experimental data available on structure and stability is 

insufficient. The search of sequence similarities and distribution of those sequences by clusters 

with similar tertiary folds is one way to address this problem [21]. 

A number of informatics resources available online to search databases of quadruplex motifs 

and to find quadruplex-forming regions within a determined DNA sequence were developed 

over the years. Generally these search programs use the motif described above as a quadruplex 

probe with the same limits described. Of the several tools developed, only a few are still 

available and online. One of those programs is QGRS Mapper, developed by Paramjeet Bagga 

and his collaborators in 2006 [18]. The main goal of QGRS Mapper is to identify the presence of 

putative quadruplex forming G-rich sequences (QGRS) in any NCBI nucleotide sequence 

identified or user-provided sequence [18]. Using a scoring method called G-score, the program 

then returns the likelihood of the evaluated sequence to form a stable G-quadruplex. Higher 

scores denote better candidates for quadruplex-formation. The maximum possible G-score, 

using the default highest QGRS length of 30, is 105 [18]. The scoring method uses three 

principles based on previous studies: i) shorter loops are more common than longer ones; ii) G-

quadruplex loops tend to be approximately equal in size; iii) sequences with greater number of 

G-quartets form more stable quadruplexes [18]. 
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1.1.2 G-quadruplex structure 

As mentioned before, Gellert, Lipsett and Davies introduced the core motif of all G-quadruplex 

structures, the G-quartet. Each quartet is composed of four guanines, arranged in a rotationally 

symmetric manner, connected by Hoogsteen hydrogen-bonds in which each guanine base forms 

two hydrogen bonds with its neighbors, from N1-O6 and N2-N7 (Figure 4) [2,8].  

 

Figure 4 – Schematic representation of the G-quartet and the G-quadruplex structure. Left: hydrogen bond 
pattern in a G-quartet. A monovalent cation occupies the central position. Right: Schematic diagram of 
the vertically stacked G-quartets in the G-quadruplex structure. Taken from [20]. 

The fact that the G-quartets have two hydrogen bonds per base, contrarily to 1 or 1.5 bonds 

per base in duplex DNA Watson-Crick base pairing (A-T and G-C, respectively), suggests that 

the G-quadruplex structure is more stable form and presents higher melting temperatures than 

duplex DNA [22]. The association of guanines N7 atom in the assembly of G-quartets protects 

them from dimethyl sulfate (DMS) methylation. This unique feature is used to chemically 

discriminate G-quadruplex formation from other DNA structures (DMS methylation protection 

assay) [23]. These square planar structures are stabilized by monovalent cations such as 

potassium (K+) and sodium (Na+) and to a lesser extent ammonium (NH4
+), which interact with 

the central electronegative carbonyl O6 atoms of the G-quartet core [2]. The most stable G-

quadruplex structure is formed by the intercalation of K+ between two adjacent G-quartets 

[24]. In fact, the G-quadruplex structure formed in the presence of K+ is considered to be 

biologically more relevant due its higher intracellular concentration (≈140 mM)  [25]. X-ray 

crystallography and nuclear magnetic resonance (NMR) studies of short oligonucleotide 

quadruplex structures provided a reliable set of hydrogen bond distances and angles. The 

hydrogen-bonds distance between nitrogen-oxygen in G-quartets ranges from 2.7-3.0 Å [8]. 

These G-quartets have large π-surfaces, hence they tend to stack on each other by π-π stacking 

(2-4 G-quartets) and enable cations to intercalate between them [2,26]. The stacked G-

quartets overlap at a distance of 3.3 Å and are joined together by the sugar-phosphate 

backbone [27]. The bases that do not participate in the assembly of the G-quartets form loops 

with different lengths and sequence so that a variety of topologies can be formed (Figure 5).  
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Figure 5 - Schematic illustration of the four major groups of loops. (a) Edge-wise, (b) diagonal, (c) double-
chain reversal or propeller and (d) V-shaped loops. The loops connect individual strands bridging two G-
tetrad planes. Color coding for illustration is as follows: anti guanines in blue and syn guanines in magenta. 
G-rich strands in black and connecting loops in red. Taken from [28]. 

The loop base composition and length determines the structural conformation and stability 

[28]. Depending on the size and sequence, the loops can be classified into four major groups: 

i) Edge-wise or lateral loops which connect two adjacent anti-parallel strands, generally 

composed of two or more residues (Figure 5a); ii) Diagonal loops which connect two opposing 

anti-parallel strands, generally composed of three or more residues (Figure 5b); iii) Double-

chain reversal or propeller loops which connect adjacent parallel strands, and can be as small 

as one and as large as six or more residues (Figure 5c); iv) V-shaped loops which connect two 

corners of a G-quartet with a missing support column (Figure 5d) [28].  

1.1.3 G-quadruplex structural polymorphism 

G-quadruplexes display a wide variety of topologies, owing to the strand stoichiometry, polarity 

and orientation (parallel or antiparallel), additionally to the loop size and sequence as stated 

above [19]. The identity of the cation also contributes to the structural polymorphism of G-

quadruplex structures. Regarding the strand stoichiometry, G-quadruplexes may be 

unimolecular, bimolecular and tetramolecular, whether it’s formed by one, two or four 

separate strands of DNA or RNA, respectively. In principle, three strand arrangements are 

possible but have yet to be validated. Both the bimolecular and tetramolecular structures are 

intermolecular quadruplexes while the unimolecular form is a intramolecular quadruplex [19]. 

Guanine-rich sequences with potential to fold into intramolecular quadruplexes are comprised 

of four consecutive runs of guanines, separated by three loop regions of different lengths and 

sequences, while bimolecular quadruplexes are formed by sequences with two G-tracts [19]. 

On its turn, tetramolecular quadruplexes form from single-repeat G-tracts containing 

sequences [29]. Since there is directionality in the strands, generally described from 5’ end to 

3’ end, the different strands that constitute the quadruplex may have different polarities. The 

adjacent strands can be parallel or antiparallel depending on the conformation of the guanine 

glycosidic torsion angles (Figure 6).  
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Figure 6 - Guanines in anti and syn glycosidic conformations. Taken from [26]. 

Parallel G-quadruplexes have all the guanines in anti conformations, being all the strands 

parallel to each other (Figure 7a); antiparallel G-quadruplexes have both syn and anti guanines, 

being at least one of the strands antiparallel to the others (Figure 7b-d) [26]. There are four 

types of G-quartet core configuration: i) All the strands in the same direction with all the 

guanines in anti or syn conformation (parallel G-quartet core, Figure 7a); ii) Three strands in 

one direction and the fourth in the opposite direction, where the stacked G-quartets adopt 

anti-anti-anti-syn and syn-syn-syn-anti alignments ((3+1) G-quartet core, also called 

hybrid/mixed core, Figure 7b); iii) Two adjacent strands in the same direction and the two 

other in opposite direction, where the stacked G-quartets adopt a syn-syn-anti-anti alignment 

(type 1 antiparallel G-quartet core, Figure 7c); iv) Alternating antiparallel strands with the 

diagonally opposite legs in the same direction, where the stacked G-quartets adopt an anti-

syn-anti-syn alignment (type 2 antiparallel G-quartet core, Figure 7d) [26,30].  

 

Figure 7 - Four types of G-quartet cores. (a) Parallel G-quartet core, (b) (3+1) G-quartet core, (c) 
antiparallel G-quartet core (up–up–down–down) and (d) antiparallel G-quartet core (up–down–up–down). 
Taken from [30]. 

One feature that arises from the guanine glycosidic torsion angles and differs significantly from 

duplex DNA is the number of grooves [16,26]. While duplex B-DNA has one minor and one major 

groove, in G-quartets there are four grooves with three different dimensions: wide, medium 

and narrow (Figure 8). A medium groove is formed by two adjacent guanines in an anti or a syn 

configuration; a narrow groove is formed by an anti and a syn guanine if the syn guanine is 

perpendicular to the anti guanine; finally, a wide groove is formed if the anti guanine is 
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perpendicular to the syn guanine [16,26]. Some restrictions apply to adjacent guanines involved 

in the same G-quartet. If they are on parallel strands, they must have the same glycosidic 

torsion angles, and contrariwise if they are on antiparallel strands they must have opposite 

glycosidic torsion angles [16]. 

 

Figure 8 - Schematic representation of a G-quartet core grooves. Three types of grooves can be found: 
narrow, medium and wide. Taken from [26]. 

Putting together all the possible variations mentioned above along with the loop types, several 

different topologies were already determined and described in the literature.  

A. Unimolecular G-quadruplex 

G-quadruplexes formed by one strand display a variety of structures, as it can adopt three types 

of loops, namely the diagonal loop, the lateral loop, and the external loop [26]. Among them, 

the chair-type, with a folding pattern of antiparallel-stranded quadruplex and three lateral 

loop types (Figure 9a). The second model structure is the basket-type, which is also an 

antiparallel-stranded quadruplex and has one central diagonal loop and two edgewise loops 

(Figure 9b). Another model is the propeller-type, which is a parallel-stranded quadruplex with 

three double-chain reversal loops (Figure 9c). Furthermore, there’s hybrid-types 1 and 2, a 

mixture of antiparallel/parallel-stranded structures formed by two lateral loops and one 

propeller loop with different arrangements (Figure 9d-e) [30]. The structural polymorphism was 

demonstrated by Webba da Silva who predicts that, with different loop length and sequence, 

unimolecular quadruplexes could give rise to 26 different topologies [31]. Recently, a NMR study 

was able to determine a new folding of the sequence d[G3ATG3ACACAG4ACG3] into a 

intramolecular antiparallel (3+1) G-quadruplex exhibiting three stacked G-quartets connected 

with the three types of loops possible: propeller, diagonal and edgewise loops of different 

lengths [32]. 
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Figure 9 - Schematic structure of unimolecular G-quadruplexes. (a) Chair-type form G-quadruplex formed 
by variant human telomeric sequence d[A(GGGCTA)3GGG] in K+ solution; (b) Basket-type form observed 
for d[A(GGGTTA)3GGG] in Na+ solution; (c) Propeller-type form observed for d[A(GGGTTA)3GGG] in a K+-
containing crystal; (d) (3 + 1) Form 1 observed for d[TA(GGGTTA)3GGG] in K+ solution; (e) (3 + 1) Form 2 
observed for d[TA(GGGTTA)3GGGTT] in K+ solution. Adapted from [30]. 

B. Bimolecular G-quadruplex 

The association of two G-rich DNA strands can also display a variety of topologies. The 

association leads to the formation of lateral-looped (Figure 10a-b), diagonal-looped (10c) and 

external-looped G-quadruplexes (Figure 10d), whether these contain two lateral (in one or 

opposite directions), two diagonal or two double-chain reversal loops, respectively [30]. The 

first three structures are antiparallel-stranded while the latter is parallel-stranded. There is 

also an unusual (3+1) mixed type bimolecular quadruplex observed for the three-repeat human 

telomeric sequence d[G3(T2AG3)2T] and the single-repeat human telomeric sequence 

d[TAGGGT] in Na+ solution [26,30]. 

 

Figure 10 - Schematic structure of bimolecular G-quadruplexes. Taken from [33]. 
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C. Trimolecular G-quadruplex 

Despite being rare, in 2012 the Mergny group demonstrated the formation of an unprecedented 

trimolecular G-quadruplex structure [29]. Although it was a guided assembly of the G-

quadruplex, this work proves the putative formation of three stranded quadruplexes under 

some special conditions. The structure contained some distinctive features as the fact that it 

had two duplex tails established in the upper and lower ends of the structure (Figure 11). Three 

single T1, T2 and T3 strands were used as guide strands to position the G-rich tracts in Li+ 

solution, and then the structure formation was induced by adding Na+ [29]. 

 

Figure 11 - Schematic structure of a trimolecular G-quadruplex. Two duplex tails are established at the 
upper and lower ends of the structure. T1: d[TGAGATGTACTATGAGGGGGTGTCATGGTAGAAGT]; T2: 
d[GGGGGTCATAGTACATCTCA]; T3: d[ACTTCTACCATGACAGGGGGTTTGGGGG]. Taken from [26]. 

D. Tetramolecular G-quadruplex 

On its turn, the formation of tetramolecular quadruplexes seems much easier (Figure 12a). The 

crystal structure of hexanucleotide d[TG4T] in Na+ solution exhibit all four strands in a parallel-

stranded structure, with all guanines in anti configuration, medium-size grooves and inexistent 

loops [26]. However, due to the glycosidic torsion angles of the guanines involved in the G-

quartets formation and the different orientations of each independent strand, more complex 

and unusual structures are possible. For example, the tetranucleotide d[GGGT] was shown to 

adopt an interlocked dimeric G-quadruplex structure containing two parallel tetramolecular 

quadruplexes connected by an extra G-quartet (Figure 12b) [26]. 

 

Figure 12 - Schematic structure of tetramolecular G-quadruplexes. (a) Tetrameric parallel-stranded G-
quadruplex observed for the single-repeat human telomeric sequences d[TTAGGG] and d[TTAGGGT] in K+ 
solution. (b) Interlocked dimeric G-quadruplex of d[GGGT] in K+ solution. Adapted from [26]. 



 

 11 

The overall structures, their sequences and Protein Data Bank (PDB) accession numbers of 

crystallography and NMR determined structures are listed in Figure 13. 

 

Figure 13 – Structural polymorphism of G-quadruplex DNA. Taken from [34]. 

1.1.4 Metal ion coordination 

The stability and conformation of G-quadruplexes depend on cations. As stated before, the G-

quartets central atoms O6 participate in the coordination of the cations. This feature is itself 

a difference from the duplex DNA, which is stabilized by magnesium (Mg2+) ion while the G-

quartet is not stabilized by such ion. In addition to the stabilization role of the cations, these 

ions help reducing the electronegative charges repulsion of each G-quartet [8,28]. The 

structural features of the G-quartets is optimal for the coordination of metal cations within its 

central cavities. G-quadruplex formation is induced by the presence of K+, Na+ and Rb+ while 

cations such as Li+ and Cs+ have a limited ability to induce the formation. However, G-

quadruplexes prefer K+ over Na+, reflecting the much greater energetic penalty for Na+ 

dehydration [28]. Also, K+ produces more stable quadruplexes than Na+. This fact is due to the 

size of the cation, K+ ion is larger than Na+ and forms a much more compact unit upon stacking 

between two stacked G-quartets [19]. All together, these facts suggest that the formation of 

G-quadruplexes depends on the size and desolvation energy cost of the cation. From studies of 

the ions ability to induce gel formation in guanosine nucleotides it was possible to deduce the 

following order: Sr2+>K+>>Na+>Rb+~Ba2+>NH4
+>Ca2+> Mg2+~Cs+>>Li+ [16,35]. 

One interesting behavior of G-quadruplexes is the topology transition observed under different 

ionic conditions. The same sequence can adopt different G-quadruplex conformations in K+ and 

Na+. For example, based on NMR and crystallographic studies of the human telomeric DNA 

d[AGGG(TTAGGG)3], Na+ seems to favor an antiparallel conformation while K+ induces a parallel 

or hybrid form [36,37]. Interestingly, RNA-quadruplexes formation is generally independent of 

the cation identity and bimolecular quadruplexes are not affected by the nature of the cation 

equally to the unimolecular quadruplexes [38,39]. 
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1.2 Biological relevance of G-quadruplexes 

Guanine-rich sequences with putative G-quadruplex formation are widely dispersed in 

eukaryotic and prokaryotic genomes. A number of critical regions in the eukaryotic genome 

have been reported to adopt G-quadruplex structures. These include promoter regions of 

oncogenes such as c-myc and c-kit, both short micro-satellite and longer mini-satellite repeats, 

ribosomal DNAs, as well as telomeres in eukaryotes and immunoglobulin heavy chain switch 

regions of higher vertebrates [16]. G-rich sequences were also found in the retinoblastoma 

susceptibility gene and upstream of the insulin gene [16]. These guanine-rich sequences have 

the potential to influence the gene metabolism processes, as well as key biological processes 

such as DNA replication and recombination, transcriptional regulation and genome stability 

[26]. The visualization of G-quadruplex structures in vivo was already reported. Besides the 

work with the ciliate Stylonychia lemnae described above, recent work reported by Biffi et al. 

described a monoclonal single chain antibody BG4 with high affinity and specificity for 

intramolecular G-quadruplex structures [13]. This work reported crucial evidence for the 

formation of G-quadruplex DNA within mammalian cells genomes, in a cellular context, the 

cell-cycle dependence of the structures (the occurrence of G-quadruplexes was maxed during 

the S phase) and provided an important basis to help understand the biological roles of G-

quadruplex structures [13]. Additional works using monoclonal antibodies followed, 

strengthening the evidence of the G-quadruplex formation in vivo [40,41]. 

The existence of natural proteins that recognize G-quadruplexes in vivo, provided important 

insights in the location of G-quadruplex structures in the genome and reinforces the biological 

relevance of such sequences [28]. Such proteins bind, promote or disrupt the quadruplex 

formation, and over 30 proteins have been reported so far [2]. For instance, both telomere 

end-binding protein (βTBP) in Oxytricha and repressor activator protein 1 (RAP1) in 

Saccharomyces cerevisiae promote intermolecular G-quadruplex formation [28]. The MutSα 

protein, which is involved in mismatch repair, targets G-quadruplex DNA and promotes synapsis 

of transcriptionally activated immunoglobulin switch regions [28]. In addition, POT1 binding to 

DNA disrupts G-quadruplex formation at the telomeric G-rich overhangs, promoting telomerase 

activity [28]. Furthermore, the Escherichia coli RecQ protein can unwind G-quadruplex DNA and 

is essential for maintaining genomic stability of many organisms, being the RecQ DNA helicase 

family conserved from E. coli to humans [23,28]. Genome integrity is essential in order to 

maintain the normal cellular function, and malfunctioning DNA replication or repair processes 

can lead to genetic instability and disease [13]. In humans, the helicase-homologue protein 

ATRX was shown to bind G-rich sequences in both telomeres and euchromatin. It was proposed 

that such protein was able to modify the epigenetic state of G-quadruplex sites and to resolve 

its structure [13].  
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1.2.1 Telomeres 

The telomere is a specialized nucleoprotein complex (termed shelterin) existent at the ends of 

all eukaryotic chromosomes [8,28]. The human telomere consists of tandem repeats of the 

motif d[TTAGGG] and is associated with a variety of telomeric proteins and other DNA-repair 

and damage response proteins [42]. The telomere function is to stabilize the termini of linear 

eukaryotic chromosomes, forming special T-loop-like structures, and protecting the 

chromosomes from unwanted recombination and degradation, while providing sites for 

recombination events and transcriptional silencing [28,42]. Telomeres are thought to play a 

critical role in cellular aging and cancer. Human telomeric DNA is typically 5-15 kilobases (kb) 

long duplex DNA with a single-stranded 3’ overhang of 150-250 bases at the 3’ extreme end. 

These G-rich single-stranded overhangs are attractive sites for potential G-quadruplex 

formation. The length of the duplex portion of the telomeres decreases progressively after each 

cell division cycle in somatic cells as a consequence of the end-replication effect. On the other 

hand, the single-stranded 3’ overhangs can be elongated by telomerase, an enzyme with 

reverse transcriptase activity, which is expressed in the majority of cancer cells (80-85%) and 

primary tumors, thus maintaining the telomere-length homeostasis [8,28,42]. Telomerase is a 

ribonucleoprotein which contains an RNA template (subunit hTERC) from which its reverse 

transcriptase subunit hTERT copies and adds TTAGGG repeats to the single-stranded 3’ 

overhangs of the telomeres [8,42]. In normal somatic cells, when telomeres reach critical short 

lengths (the Hayflick limit of about 40 cell divisions), cells enter irreversible p53 and Rb-

dependent replicative senescence, and ultimately apoptosis. In cancer cells, where telomerase 

is expressed, it maintains the telomere length acting as a tumor promoter and helping the cells 

bypassing apoptosis and achieving cellular immortality [42]. The 3’ single-stranded overhang is 

protected and maintained by several copies of hPOT1 (protection of telomeres 1), a single-

stranded binding protein which interacts with other proteins of the shelterin complex to 

regulate telomerase-mediated telomere elongation. The shelterin complex proteins include the 

telomere repeat binding factors (TRF1 and TRF2), which are responsible for the T-loop 

formation; the associate-proteins (RAP1, TPP1, and TIN2) on its turn, are responsible for 

mediating the interaction between TRF1 and TRF2, as well as POT1 and TPP1 (Figure 14).  

 

Figure 14 - Schematic view of the shelterin complex and the various associated proteins. Taken from [8]. 
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T-loop formation involves the folding back of the single-stranded overhang and pairing with a 

complementary portion of the telomeric double-stranded region [8]. The disruption of 

telomeric DNA-hPOT1 association leads to quadruplex formation, deprotects telomeres and 

initiates DNA damage-response mediated cell death [28,42]. Thus, the development of small 

molecules that bind and stabilize the single strand G-quadruplex, competing with hPOT1 and 

initiating this response, is a viable and promising anti-cancer therapeutic strategy (Figure 15). 

Also, the formation of a stable G-quadruplex structure inhibits the activity of telomerase [19]. 

Therefore, much effort has been placed in the structural characterization of the telomeric G-

quadruplex topologies in order to find scaffolds for anti-cancer drug development [28].  

 

Figure 15 – Schematic illustration of the telomeric G-quadruplex therapeutic strategy hypothesis. The 
biological roles of telomeric DNA and telomerase are shown; G-quadruplex formation can inhibit 
telomerase activity. Taken from [34]. 

The human telomeric G-quadruplex structure is highly polymorphic and to date several 

structure models were proposed [8]. In 1992, the Patel group proposed a model for the single-

repeat d[TTAGGGT) human telomere sequence which formed a parallel-stranded G-quadruplex 

in K+ solution [43]. The structure was formed by three G-quartets with all guanines in anti 

conformation. Later on, the two-repeat human telomere sequence G-quadruplex model was 

proposed and the crystal structure was identified. The crystallography analysis demonstrated 

that the sequence d[TAGGGTTAGGGT] folds into a bimolecular quadruplex in K+ solution, with 

all the strands in a parallel orientation and connected by propeller-type loops [36]. Following 

NMR studies of the same sequence confirmed the G-quadruplex topology [44]. Other NMR 

studies, involving the three-repeat human telomere sequence 5’-GGGTTAGGGTTAGGGT-3’ 

demonstrated the formation of a peculiar G-quadruplex structure. This structure contained 

three strands in the same direction and one in the opposite direction (3+1 G-quadruplex) [45]. 

Such structure could occur in vivo in the T-loop region where the single-stranded overhang pairs 
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with a complementary portion of the telomeric double-stranded region. Such results supported 

the biological and therapeutic implications of the G-quadruplex formation in the telomeres, 

and the use of small molecules for its stabilization [45]. The cation-dependent structural 

polymorphism was demonstrated by studies performed with the four-repeat human telomere 

sequence d[AG3(T2AG3)3]. In a solution containing Na+, the sequence  folds into a antiparallel 

G-quadruplex structure with a central  diagonal loop and two edgewise loops, as determined 

by NMR [37]. However, in K+ solution, a X-ray crystal structure of the same sequence 

demonstrated the folding of a intramolecular G-quadruplex composed of three G-quartets, with 

all four strands in parallel joined by three propeller-type loops [36]. Because the intracellular 

concentration of K+ (≈140 mM) is higher than that of Na+ (≈10 mM), the propeller-type G-

quadruplex seems to be more physiological relevant. Further studies demonstrated the 

existence of other G-quadruplex conformations in the human telomeres such as hybrid-type 

mixed parallel/anti-parallel  and basket-type quadruplexes [46–48]. 

1.2.2 Gene promoters 

Apart from telomeric sequences, there are other biological relevant G-rich sequences that have 

the ability to form G-quadruplex structures, such as the gene promoter regions. The first 

evidence of the formation of unusual DNA conformations in gene promoters was found by Larsen 

and Weintraub who demonstrated that chicken β-globin promoter adopted high order structures 

in vivo [49]. Since then, the use of bioinformatics approaches led to the discovery of putative 

quadruplex-forming sequences in the regulatory and promoter regions of oncogenes such as c-

myc, c-myb, c-Fos, c-kit, KRAS, vascular endothelial growth factor (VEGF), platelet-derived 

growth factor α polypeptide (PDGF-A), Rb, RET, hypoxia-inducible factor 1α (Hif-1α), B cell 

lymphoma 2 (bcl2), and hTERT [50]. These proto-oncogenes are involved in growth and 

proliferation processes and their proximal promoter regions contain several G and C-rich 

regions. The formation of G-quadruplexes in these regions is believed to modulate the genes 

function and transcriptional activity. Moreover, these genes are important in cell signaling and 

are involved in a variety of cancers [50]. Therefore, the study of such G-quadruplex structures 

and the development of targeted-drugs, capable of interacting with the specific G-quadruplex 

and modulate the transcriptional activity of the associated gene, poses itself as a promising 

therapeutic strategy. This therapeutic approach is presented in Figure 16 in a broad perspective 

and represents the formation of G-quadruplex structures in gene promoters in a process that 

affects the transcriptional activity.  
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Figure 16 - Schematic illustration of the promoter G-quadruplex therapeutic strategy hypothesis. G-
quadruplex forming region in the upstream (promoter) region (in green) of genes (in red). Taken from 
[42]. 

Some important oncogene promoter quadruplexes are described in more detail below. 

A. c-myc 

The proto-oncogene c-myc encodes a multifunctional transcription factor thought to regulate 

10–15% of all cellular genes and is involved in processes such as cell cycle regulation, apoptosis, 

metabolism, cellular differentiation and cell adhesion [23]. The overexpression of c-myc leads 

to cellular proliferation and inhibition of differentiation and is associated with a variety of 

human cancers, such as colon, breast, small-cell lung, osteosarcomas, glioblastomas, and 

myeloid leukemia [51]. The deregulation of the c-myc transcription factor is a consequence of 

gene amplification, translocations, altered ploidy or enhanced transcription owing to upstream 

signaling abnormalities [50]. Because of this, transcriptional modulation of the c-myc oncogene 

has been an attractive target for anti-cancer drug development. The regulation of c-myc 

transcription is complex and involves multiple promoters (P0, P1, P2, and P3) and seven 

nuclease hypersensitive elements (NHEs). The nuclear hypersensitivity element III1 (NHE III1), 

located -142 to -145 base pairs (bp) upstream of the P1 promoter of c-myc, is a G-rich strand 

that controls 80-90% of c-myc transcription and contains a 27 bp sequence (Pu27) with 

propensity to fold into a stable G-quadruplex structure [52]. Pu27 is capable of engaging in a 

slow equilibrium between B-form duplex DNA, single-stranded DNA and G-quadruplex DNA [51]. 

This 27 bp sequence contains six G-tracts with different lengths and can form a variety of 

intramolecular G-quadruplex structures depending on the G-tracts combinations [23]. Is worth 

to notice that for a quadruplex to form, the two complementary sequences must first separate 

to allow the G-rich strand to fold in G-quadruplex [53]. The first observation of a G-quadruplex 

formed by c-myc promoter in K+ solution was made by the Simonsson group [14]. The G-

quadruplex consisted of three G-quartets bound by two lateral loops and a central diagonal 

loop. Since Pu27 forms a dynamic mixture of four G-quadruplex loop isomers, smaller sequences 

derived from Pu27 started being used, in order to determine the physiologically more relevant 

quadruplex within this region [23]. Two different sequences, Myc-2345 and Myc-1245 (numbers 
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correspond to the G-tract position), were analyzed by NMR and found to form intramolecular 

propeller-type G-quadruplexes in K+ solution. The core of the structures was formed by four 

parallel strands, with all guanines in anti conformation and three propeller-type loops [23]. 

Another example is Myc22-G14T/G23T, in which two guanines have been mutated to thymines, 

and forms a parallel-stranded G-quadruplex with propeller-type loops [54]. 

B. c-kit 

The c-kit proto-oncogene encodes a 145-160 kDa membrane bound receptor tyrosine kinase 

that constitutes a cell signaling system and can stimulate cell proliferation, differentiation, 

migration and survival [50]. The overexpression or activating mutations of c-kit may lead to 

aberrant function and oncogenic cellular transformations, being involved in a variety of human 

cancers such as mast cell tumors, germ cell tumors, ovarian carcinomas, malignant melanomas, 

gastrointestinal stromal tumors, small-cell lung cancer, neuroblastoma, and breast carcinoma 

[23]. Upstream of the c-kit transcription initiation site there’s a G-rich strand which is essential 

for the promoter activity. c-kit quadruplexes are therefore attractive targets for anti-cancer 

drug development. Two G-quadruplex structures have been identified in the G-rich promoter 

region of c-kit, c-kit87up and c-kit21. c-kit87up is a 22 nucleotide sequence, located 87 base 

pairs upstream of the transcription initiation site, and was found to form a single G-quadruplex 

structure in K+ [55]. The G-quadruplex structure formed was very peculiar as an isolated guanine 

was involved in the G-quartet core formation and it presented four distinct loops, two 

propeller-type, a single-residue loop and a five-residue loop [55]. This emphasizes the 

importance of the sequence as non-G-tract residues can participate in the G-quadruplex core 

formation. On its turn, c-kit21 was found to adopt a variety of conformations and mutations 

studies need to be employed in order to form a single G-quadruplex [23]. 

C. bcl-2 

The human bcl-2 gene encodes a 25 kDa mitochondrial membrane protein that blocks 

programmed cell death. The overexpression of bcl-2 gene occurs in a variety of human cancers, 

such as B-cell and T-cell lymphomas, breast, cervical, non-small-cell lung, prostate, and 

colorectal cancers, which reduces the rate of cell death and also interferes with the therapeutic 

action by resisting apoptosis induced by chemotherapy [56]. Therefore, bcl-2 gene has been 

considered as an important target for developing anti-cancer compounds. The human bcl-2 

gene is regulated by two promoters P1 and P2. A 39 bp G-rich sequence (bcl-2Pu39) located in 

the bcl-2 P1 promoter plays a significant role in the regulation of bcl-2 transcription [23]. The 

sequence contains six G-tracts (5’-AGGGGCGGGCGCGGGAGGAAGGGGGCGGGAGCGGGGCTG-3’) 

with different sizes and was shown to adopt a mixed parallel/antiparallel G-quadruplex 

intramolecular G-quadruplex conformation [57]. Moreover, the structure contains two edgewise 

loops and one propeller-type loop and the middle four G-tracts are the ones that generate the 

predominant G-quadruplex structure (MidG4), since like c-myc this sequence can adopt multiple 

intramolecular G-quadruplexes (5’G4, MidG4, and 3’G4) [23,57]. 
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1.2.3 Immunoglobulin switch regions 

Other important genomic regions have the ability to form G-quadruplex structures. Of interest 

are the regions encoding immunoglobulin heavy chain switch (S) regions of higher vertebrates. 

These regions are critical for class switch recombination processes of B lymphocytes. B 

lymphocytes, or B cells, are responsible for the production of different isotypes of 

immunoglobulins (antibodies) for diverse pathogens [58]. The process that enables the 

production of immunoglobulins (Ig) to change from one isotype to another, termed class switch 

recombination, is a region-specific recombination process that bring an expressed variable 

(VDJ) region to a new constant (C) region during the differentiation of B lymphocytes to plasma 

cells [11,59]. The isotype switching from IgM to IgG3 and IgA is presented in Figure 17 as an 

example. 

The VDJ regions form a domain that recognize the antigen, while C region determines how the 

antigen is removed from the body [58]. During this recombination process numerous kb of DNA 

between the constant and variable regions are deleted. These processes are essential and if 

impaired, it can result in immunodeficiency [58]. The S regions of 2 to 10 kb in length, lie 

upstream of the constant-region genes and contain repetitions of highly degenerate G-rich 

consensus sequences which are 20-50 bp long [11,58]. Several repetitive motifs occur such as 

GGGGT, GAGCT and the conserved sequence (G)GGGGAGCTGGGG which is found in Sγ1, Sγ2b 

and Sγ3 S regions. Two different studies using the same Ig switch region sequences 

demonstrated the formation of stable G-quadruplex structures, suggesting a role of such 

structures in recombination events [11,15]. More recently, Maizels group reported the 

Figure 17 - Recombination events in class switch recombination. During isotype switching, a portion of the 

DNA is looped out as switch regions recombine. A different constant regions is placed downstream of VDJ 

region. After recombination, the constant region directly downstream of the VDJ region will encode the 

immunoglobulin isotype produced on the surface of the B cell. Taken from [59]. 
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formation of a novel G-quadruplex structure called G-loops by using plasmid vectors containing 

inserts from murine switch regions [60]. For instance, pPH600, a plasmid containing a 604 bp 

fragment of the murine Sγ3 switch region, upon in vitro transcription of the G-rich regions 

formed G-loops observed by transmission electron microscopy (TEM) [60]. However, to my best 

knowledge, no studies regarding the determination of the G-quadruplex structure were 

performed so far.  

1.3 G-quadruplex as a therapeutic target 

Due to the biological relevant location of G-quadruplexes throughout the genome and the 

implication in key processes such as maintenance of chromosomal ends, transcription, 

translation, DNA replication and recombination, G-quadruplex is a promising and viable 

therapeutic target. This therapeutic strategy involves the development of selective drug-like 

small ligands that strongly bind and stabilize the G-quadruplex structures. Over the past years, 

there has been a remarkable effort on developing G-quadruplex ligands, especially to target 

human telomeres and oncogene promoters in order to block the action of telomerase and the 

oncogene transcription, respectively [8,42]. This concept was first validated through the 

demonstration that the compound 2,6-diamidodianthraquinone was capable of inhibiting the 

activity of telomerase by interacting with and stabilizing G-quadruplex structures [28]. G-

quadruplex structure presents a large π-surface due to the guanine tetrads, approximately 

twice as large as that found in duplex DNA. Therefore, the majority of quadruplex-ligands have 

a large aromatic core, with a large π-surface, in order to maximize the π-π interactions [53]. 

Compounds containing polyaromatic heterocyclic ring systems, such as anthraquinones, 

acridines, naphthalenes, perylenes and porphyrins, capable of π-stacking interactions, are good 

candidates [28]. Another feature of these ligands, relates to the fact that G-quadruplexes, like 

all nucleic acids, have a high negative charge due to the backbone negative phosphate groups. 

Hence, cationic ligands will generally bind more strongly to the G-quadruplex structure [53]. 

On the other hand, the inclusion of sidechain specific functional groups, such as protonable 

side arms, once they participate in the recognition of G-quadruplex via actions in the grooves 

and enhance the interactions with the structure [53,61]. One important issue in the 

development of such small ligands, is their specificity for G-quadruplex over duplex DNA. This 

is a major problem since G-quadruplexes are far outnumbered by the duplex DNA in the cells 

[2]. The compounds synthesized must promote cell death in cancer cells, while ensuring that 

the toxicity to normal healthy cells is low.  

Until now, some compounds with experimental evidence for G-quadruplex binding and 

therapeutic activity have been developed such as BRACO19 [62], telomestatin [63], and TMPyP4 

[64] (Figure 18).  
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Figure 18 – Structures of the compounds TMPyP4, telomestatin and BRACO-19. Taken from [2]. 

BRACO19 is a 3,6,9-tri-substituted acridine that appears to directly target the telomeres and 

displayed the capacity to inhibit the catalytic function of telomerase in human cancer cells and 

destabilize the telomere complex [65]. BRACO19 induced tumor regression within 7-10 days of 

the initiation of treatment of prostate cancer cells. Its major limitations are lack of membrane 

permeability and small therapeutic window [65]. Telomestatin, a natural occurring macrocycle 

isolated from Streptomyces anulatus, is the tightest known G-quadruplex binder and 

telomerase inhibitor [65]. Telomestatin interacts preferentially with intramolecular G-

quadruplex structures and has a 70-fold selectivity over duplex DNA. Telomestatin displayed 

promising anticancer activity in human cancer cells, within 3–5 weeks at the minimal effective 

concentration inhibited telomerase activity, reduced telomere length and caused apoptotic cell 

death in multiple myeloma cell lines [65]. TMPyP4, is a cationic porphyrin designed with 

attractive properties such as a fused planar ring system, positive charge and appropriate size 

to stack with the G-tetrads [65]. It has shown to inhibit human telomerase in HeLa cell extracts 

and to downregulate c-myc. However, TMPyP4 has only limited selectivity for G-quadruplex 

over duplex DNA [65]. Naphthalene-based ligands were also reported as having the necessary 

features to bind planar substrates such as nucleotides, mainly through stacking interactions  

[66]. Potent G-quadruplex binders containing naphthalene rings were reported by Neidle et al., 

which were found to promote a dose dependent cell arrest of mutated c-kit cell lines [8,67]. 

However, some non-specific interactions were reported as well [67]. Despite the number of 

compounds already designed and synthesized, only one reached phase II clinical trials 

(Quarfloxin/CX-3543; (ClinicalTrials.gov identifier: NCT00780663), probably due to the 

specificity and selectivity requirements [68]. Quarfloxin is a fluoroquinolone which targets 

majorly c-myc promoter and ribosomal quadruplexes, with high specificity and selectivity, and 

demonstrated potent and tumor-selective activity in vitro and in vivo [65]. G-quadruplex 

sequences on its own can act as therapeutic agents as shown by Paula Bates group, who 

developed the G-quadruplex aptamer AS1411 which targets nucleolin, an overexpressed protein 
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in cancer cells, and that shown good results in the treatment of renal cell carcinoma and 

myeloid leukemia [69]. Moreover, AS1411 has already reached phase II clinical trials 

(ClinicalTrials.gov identifier: NCT00740441) and seems a promising anticancer strategy [70]. 

AS1411 is a 26 nucleotide aptamer formed from the sequence d[(GGT)4TG(TGG)4] which folds 

into a bimolecular G-quadruplex [53]. The aptamer is nuclease resistant, similarly to unfolded 

sequences, and is active against a variety of cancer cell lines, whilst showing low toxicity 

against normal healthy cells [53]. 

The potential advantages and challenges of targeting gene promoter and telomeric G-

quadruplexes/telomerase compared to proteins were summarized by Balasubramanian et al. 

and are presented below [50]: 

A. Gene promoter G-quadruplex targets 

Advantages 

 Can target genes regardless of the druggability of the gene product; 

 Lower likelihood of point mutations and resistance; 

 Fewer copies of target, hence low concentration of inhibitor needed; this contrasts 

with the larger numbers (that is higher concentrations) of an overexpressing oncogenic 

protein or enzyme; 

 Potential of unique sequence and three-dimensional structure for a given G-quadruplex 

— drug selectivity may be achievable by design; 

 A number of relevant oncogenes and kinases are established as clinically validated 

targets in cancer: for example, c-kit and BRAF; 

 Downregulation of expression of a target oncogene may be more important for tumor 

progression in a particular tumor type than telomerase (for example, BRAF in some 

melanomas), therefore, oncogene expression may be a more critical target for selective 

cell killing; 

 High-throughput functional assays are available for many oncogenes and kinase targets, 

and are readily applicable to screening effects of promoter G-quadruplex targeting. 

Challenges 

 High affinity and selectivity needed, yet even the potency of state-of-the-art G-

quadruplex ligands is considerably lower than that of typical enzyme inhibitors (often 

in the nanomolar range); 

 Folding and structure can alter following ligand binding; 

 As yet restricted diversity in available small-molecule inhibitors; 

 Three-dimensional structures of very few promoter G-quadruplexes have been 

determined to date. 
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B. Telomeric G-quadruplex/telomerase targeting 

Advantages 

 Telomerase is expressed in most human cancers and not in normal somatic cells, so 

there is a possibility of broad clinical activity and limited cytotoxicity. 

Challenges 

 Telomerase is not yet a clinically validated target; 

 High-throughput assays for telomerase inhibition by small molecules are not readily 

available and are under-developed; 

 Telomere attrition resulting from telomerase inhibition is a slow process; 

 Stem cells and germ cells express telomerase. 

 
C. Protein targets 

Advantages 

 Straightforward if target has a well-defined active site; 

 Large specialized compound libraries are available (for example, for kinases); 

 Structural data are available on many existing targets. 

Challenges 

 Challenging if it involves protein–protein recognition; 

 Active site changes following ligand binding; 

 Undruggable if target is unstable or unfolded. 

 

1.4 Methods for studying G-quadruplex structure and ligand-

binding 

1.4.1 Methods for G-quadruplex structure determination 

The determination of high resolution models of G-quadruplex structures has relied on 

crystallographic and NMR spectroscopic methods. X-ray crystallography was the first technique 

used for a complete structure determination [2]. Using such technique for G-quadruplexes, the 

fundamental requirements apply: growing a crystal (ordering the material into 3D 

arrangements), collecting the scattered radiation and finally determining the phase angles for 

the amplitudes measured [53]. However the process is challenging and relatively slow. 

However, once crystals are obtained, detailed information about the structures can be acquired 

and to date over 50 crystal structures with good resolutions (below 1 Å in some cases) are 

available in the PDB server [2]. One disadvantage of this technique is that it can only determine 
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the structure in solid state, which may be different from that adopted in solution. This is of 

the utmost importance, as the G-quadruplex structures are highly polymorphic and it can only 

describe the structure more easily crystallized [2]. In the case of NMR, new methodologies are 

in constant development to enable the accurate model determination and to unmistakably 

determine the variety of topologies possible for G-rich sequences. Nowadays, researchers can 

quickly and inexpensively synthesize isotope labelled G-quadruplex-forming oligonucleotides 

(with 15N, 13C and 31P), that once folded can be used to determine the four guanine bases 

associated in each G-quartet formation [53]. Using this information, along with the glycosidic 

torsion angles determined, it is easy to link the phosphodiester backbone chains together and 

determine the G-quadruplex overall structure [53]. This technique requires much less sample 

preparation than crystallography, however it requires very pure and high-concentration samples 

(sometimes in the millimolar range) [2]. The simplest 1H NMR spectrum in 90% H2O/D2O can 

provide valuable information, since there are relatively few protons in nucleic acids and the 

guanine NH1 imino protons have a characteristic chemical shift when hydrogen bonded [2]. In 

general, imino proton chemical shifts >12.5 ppm are indicative of Watson–Crick base pairs 

(NH···H hydrogen bonds). Imino proton chemical shifts in the range of 10.5–12 ppm are 

indicative of guanine NH···O hydrogen bonds that appear in Hoogsteen alignments of the G-

quartets [23]. More detailed information is provided by heteronuclear correlations, which allow 

complete assignment of the structure. Using NMR techniques is possible to study dynamics and 

kinetics, and therefore reveal the structures polymorphism. Some 30 G-quadruplex structures 

from NMR studies are currently in the PDB server [2]. 

Circular dichroism (CD) spectroscopy has also been extensively used to detect and identify G-

quadruplex structures, most notably to distinguish parallel from antiparallel structures [2,71]. 

This is possible since the different conformations of DNA, B-form and G-quadruplex have CD 

characteristic spectra. Although CD results cannot be used to unambiguously determine the G-

quadruplex structural type, they can typically limit the number of possibilities and represents 

one of simplest ways to predict the G-quadruplex topology [71]. Also, CD is a very powerful 

method for examining the cation dependence of quadruplex structure formation. The basis of 

CD spectroscopy are the use of circularly polarized light, which is emitted through a solution 

and interacts with the chiral species present. The chiral species will interact asymmetrically 

with the enantiomeric forms of light, i.e. the molecule absorbs the two components of light to 

a different extent, and the deviation of the direction and magnitude of the light is recorded  

[2]. Of this interaction results a measure of ellipticity (θ) in degrees, which is the difference of 

absorption between the two components of light, and the CD spectrum is obtained when the 

dichroism is measured as a function of wavelength in the UV range. The topology of a G-

quadruplex structure (parallel, antiparallel or mixed) can be roughly assigned from the position 

and magnitude of the CD bands. In general, a maximum positive band in CD at ≈265-270 nm and 

a minimum negative band at ≈240 nm is indicative of a parallel-stranded G-quadruplex, whilst 

a maximum positive band at ≈290 and a minimum negative band at ≈265 nm describes an 
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antiparallel-stranded G-quadruplex [23,72,73]. On its turn, duplex and single-stranded DNA 

characteristic bands are variable, depending on their sequence, but usually positive bands in 

at ≈275 and 220 nm, and a minimum band at ≈245 nm is indicative of duplex DNA. Topological 

arrangements of mixed parallel/antiparallel G-quadruplexes can also be detected, but cannot 

be guaranteed. 

1.4.2 Methods for studying G-quadruplex—interactions 

As discussed above, G-quadruplex structure has a very peculiar geometry, hence the small 

ligands can recognize and bind the structure through various binding modes (Figure 19), as 

determined by computational and chemical-biological approaches [23,26].  

 

Figure 19 – Schematic representation of three G-quartet—ligand binding modes. Ligand–G4 complex with 
a) external stacking mode on the surface of the terminal quartet, b) intercalating mode between the 
stacks of G-tetrads, and c) groove binding mode. Taken from [23]. 

Three binding modes were already described for a variety of ligands: external stacking, 

intercalating and groove binding, whether the ligands interact through the terminal G-quartets, 

the middle G-quartets or the grooves/loops/backbones, respectively [23]. Ligands with large 

aromatic rings tend to interact with G-quadruplex structures mainly through π-stacking on the 

terminal G-quartets and less by intercalating between them [26]. This is due to the fact that 

the G-quadruplex is an extremely stable and rigid structure, but also because the structure 

distortion comprises a great energy cost [23]. Therefore, stacking in the outer G-quartets seems 

to be more energetically favorable and probable mode of binding. Ligands containing amino 

groups and (or) protonable side arms can interact trough the grooves, loops and the negatively 

charged phosphate backbone by electrostatic interactions or hydrogen bonds [26]. This 

remarkably improves the ligands water solubility. Also, long positively charged side arms can 

help small ligands to intercalate between the G-quartets and further stabilize the structure 

[26]. To gain a better insight of this G-quadruplex—ligand interactions, several techniques are 

routinely employed. Notably, spectroscopic methods, calorimetric techniques, melting 

experiments and biochemical assays. Some of these methods are described below and are also 

employed to study ligand binding to duplex DNA. 
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A. UV/Visible spectroscopy 

A simple method for the identification of quadruplex-interacting ligands involves the use of 

UV/Vis spectroscopy [74]. It is based on the significant bathochromic shift and hypochromic 

effect on the bound chromophore Soret band (in the blue region of the visible spectrum), 

produced by the G-quadruplex, i.e. the peak shifts to longer wavelength and its absorbance 

decreases [23]. The hypochromic effect is thought to arise from the interaction between the 

electronic states of the chromophore and the DNA bases [23]. It has been postulated that the 

magnitude of the shifting can be related to the strength of interaction between the ligand and 

the G-quadruplex [75]. In addition to the qualitative information, by performing a titration of 

the DNA with the ligand, one can obtain quantitative information such as stoichiometries of 

binding constants [75]. For example, this method has been employed to study the interaction 

between methylene blue and c-myc quadruplexes [76]. This method is also commonly employed 

to study the stability of G-quadruplex structures by performing a UV-monitored melting 

experiment. In such experiment, melting temperature (Tm) and thermodynamic parameters can 

be determined from the change in the absorbance at 295 nm as a function of temperature [75]. 

Then, comparing the melting temperature values in the absence and presence of a ligand, it’s 

possible to assess the interaction between the ligand and the G-quadruplex, as well as the 

stabilization (Tm increases) or destabilization (Tm decreases) of the structure.  However, this 

method is slow and it is not straightforward to adequately deal with the complexities of 

multiple binding sites [8]. 

B. Circular dichroism (CD) 

In addition the use of CD spectroscopy to distinguish between parallel and antiparallel folded 

quadruplexes, it is also used to characterize the complexes of G-quadruplex structures with 

ligands. Just like UV/Vis, CD spectroscopy has become an essential technique to study G-

quadruplex—ligand interactions. In general, the quadruplex-ligands are nonchiral molecules and 

therefore are CD-inactive. Upon binding to quadruplexes, nonchiral molecules may give 

characteristic CD signals in the wavelength region corresponding to the absorbance of the 

ligand, due to induced CD (ICD) resulting from its bound state [23]. An ICD signal represents 

direct evidence of the interaction of the ligand with the G-quadruplex structure [23,71]. 

Intercalating compounds usually produce negative ICD signals or very small positive signals. 

Groove binding is generally indicated by the presence of a large positive induced CD signal upon 

titration of the compound into DNA [75]. It is also possible to monitor ligand-induced structural 

modifications by following the magnitude and position of the characteristic CD bands. In 

addition, CD can be used to monitor thermal unfolding of G-quadruplex structures and its 

stabilization by ligands (CD melting). This is usually performed by plotting the measured 

ellipticity at a specific wavelength, generally corresponding to the maximum of a positive band 

(around 260 nm for parallel structures or 290 nm for antiparallel structures), versus 

temperature [75]. Due to the low signal-to-noise ratio, CD is frequently limited to providing 

qualitative data although it can be used to determine equilibrium data. 
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C. Molecular fluorescence 

Besides UV/Vis and CD spectroscopy, molecular fluorescence is one of the most commonly used 

techniques to study the interaction between ligands and G-quadruplex structures. Molecular 

fluorescence has the advantages of high sensitivity, selectivity and large linear concentration 

range [75]. Since the G-quadruplex ligands are usually compounds containing aromatic 

functional groups, these emit intense fluorescence due to the low-energy π->π* transition levels 

[75]. A popular molecular fluorescence technique to study ligand-G-quadruplex interactions is 

fluorescence resonance energy transfer (FRET) spectroscopy [77]. In this technique, the DNA 

sequence under study is labeled at the 5’ and 3’ ends with a donor and an acceptor fluorophore. 

Usually the donor used is 6-carboxyfluorescein (FAM) and the acceptor 6-

carboxytetramethylrhodamine (TAMRA), respectively [75,77]. Upon excitation of the donor 

fluorophore, it transfers its energy to the acceptor, whereby the efficiency of energy transfer 

(E) depends on their distance and relative orientations. If the DNA structure suffers a 

modification (for example, unfolding), and consequently the distance between the two labeled 

sites changes, a measurable change in the efficiency of the energy transfer is observed [75]. 

Hence, FRET is used to determine the G-quadruplex Tm due to large differences between the 

fluorescence properties of folded and unfolded forms, being the ligand-induced shift in Tm a 

measure of the relative strength of interaction [75]. More recently in 2006, another assay was 

developed that allows the evaluation of the affinity and selectivity of ligands for G-quadruplex 

over duplex DNA [78]. G-quadruplex fluorescent intercalator displacement (G4-FID) is based on 

the competitive displacement of Thiazole Orange (TO) from quadruplex or duplex DNA when a 

ligand binds to the DNA (Figure 20). Since TO is non-fluorescent when free in solution but 

strongly fluorescent when bound to DNA, one can monitor the decrease of fluorescence induced 

by the ligand binding [79,80]. Some improvements to the protocol included the development if 

a high-throughput screening version of G4-FID, performed in 96-well microplates using a wide-

spread equipment such as qPCR to perform the measurements. G4-FID is fast and easy 

isothermal assay, it doesn’t requires modified oligonucleotides, and is able to analyze putative 

ligands that do not display fluorescence [80]. 

 

Figure 20 – Schematic representation of the G4-FID basis. G-quadruplex or duplex DNA is labelled by 
Thiazole Orange (TO); the fluorescence probe is then displaced by a small quadruplex-ligand. Adapted 
from [80]. 
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D. Calorimetric techniques 

Calorimetric techniques such as differential scanning calorimetry (DSC) and isothermal titration 

calorimetry (ITC) are used to determine reliable quantitative information on the 

thermodynamics of quadruplex-ligand interactions [23]. These methods require substantially 

more material, when compared to the spectroscopic methods, and may not be suitable for 

determining large binding constants [23]. ITC allows the monitoring of many bimolecular 

interactions without labelling the oligonucleotides. After performing a ligand titration and 

recording the heat response, one can plot a binding isotherm which is used to directly 

determine thermodynamic parameters such as binding enthalpy (∆H°), the equilibrium binding 

constant (KB), and binding stoichiometry (n) for an equilibrium binding system. From the 

equation ∆G = -RT ln K = ∆H – T∆S, it is possible to calculate Gibbs free energy change (∆G°) 

and entropy change (∆S°) [23]. On its turn, DSC allows the continuous measurement of the 

apparent specific heat of a system as a function of temperature. DCS is a convenient and 

powerful manner of determining thermodynamic parameters such as calorimetric transition 

enthalpy (∆H) and transition temperatures, Tm [23]. 

E. Nuclear Magnetic Resonance (NMR) 

NMR experiments are also employed to study the interaction between ligands and G-

quadruplexes, in particular, saturation transfer difference (STD) spectroscopy [81,82]. The 

technique is based on the principle that if a ligand shows two different signals because of a 

slow exchange between the bound state and the free state, a transfer of saturation is possible 

between both states [82]. When the DNA becomes saturated, ligands that are in exchange 

between a bound and the free state become saturated when bound to the DNA. By exchange, 

that saturation is further carried into solution where it is detected. By subtraction of this 

spectrum from a spectrum without DNA irradiation an NMR spectrum is obtained in which the 

resonance signals of the bound ligands can be assigned. Resonance signals from non-binders do 

not show up in the difference spectrum. The technique allows the user to obtain the ligand 

epitope maps, the parts of the ligand that bind to the G-quadruplex [82,83]. The ligand is 

normally used in an approximately 100-fold molar excess over the DNA [82].  

F. Biochemical methods 

Two methods with a polymerase chain reaction (PCR) step are frequently used to determine 

interaction between ligands and G-quadruplex structures. The first method is the telomeric 

repeat amplification protocol (TRAP) assay [8]. In this assay, the enzymatic activity of 

telomerase is measured by measuring the amount of TTAGGG repeats present, which is directly 

proportional. In the PCR step, two primers are used: the first one acts as a substrate for the 

addition of the TTAGGG repeats by telomerase in the presence of the quadruplex-ligand; the 

second primer is used as a reverse primer for PCR amplification. Then, the PCR products are 

resolved in a polyacrylamide gel electrophoresis and the data is used to construct a dose-

response curve from which the ligand concentration required for 50% telomerase inhibition 

(IC50) can be determined [8]. This assay, however, is prone to problems such as artifacts of 
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amplification and unreliability of the PCR step, since the ligands can interfere in the second 

PCR step. Several variants of the TRAP assay are available commercially, for example, the 

TRAPEZE™ kit (www.millipore.com). Another method with a PCR step is the PCR stop assay 

(Figure 21) [84]. In this case, the quadruplex-forming sequence is annealed with the primer and 

incubated with the ligands being tested. Finally, primer extension is initiated by the addition 

of Taq DNA polymerase and incubation in a thermocycler with appropriate cycling conditions. 

The PCR products are submitted to gel electrophoresis analysis and the non-detection or 

decrease of concentration of PCR products confirms the interaction between the ligand and the 

DNA, as well as its relative strength [75]. There are two variations of the assay: on employs the 

use of 32P-labelled DNA templates and a short complementary primer, where products can be 

discriminated between full-length or with major arrest sites; the other employs a non-labelled 

template DNA and a partially complementary primer, whereas products are full double-

stranded DNA evaluated by gel electrophoresis and staining [23]. 

 

Figure 21 - Schematic representation of the PCR-stop assay. The induction and stabilization of G-
quadruplex by a quadruplex-ligand inhibits Taq DNA polymerase and consequently primer extension. 

1.5 Plasmid technology 

Plasmids are circular, double-stranded DNA molecules that are independent from a cell 

chromosomal DNA and occur naturally in bacteria, yeast, and some higher eukaryotic cells [85]. 

Plasmid size ranges from few thousand base pairs to more than 100 kb, allowing the vectors to 

carry large DNA inserts. Plasmid DNA has been widely studied throughout the years for its use 

as a successful cloning tool due to the high replication rate, producing large numbers of copies 

of the desired DNA sequence [85]. The first constructed recombinant plasmid was reported by 

Stanley Cohen and his coworkers in 1973, making use of restriction enzymes, which are able to 

recognize and cut specific DNA sequences, and DNA ligase in order to re-attach such DNA 

sequences [86]. Generally, plasmids contain three functional regions: i) an origin of replication; 

ii) a drug-resistance gene for selection of transformed cells, and iii) a region where DNA can be 

inserted without interfering with plasmid replication or expression of the drug-resistance gene, 

the polylinker [85]. The plasmids most used in recombinant DNA technology are generally 

replicated in Escherichia coli (E.coli) hosts. E. coli has been extensively used as the cellular 
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host for plasmid DNA amplification due to its easy transformation and fermentation, low 

nutritional requirements and rapid growth rate [87]. Therefore, this DNA amplification strategy 

has the advantage of being a relatively low cost process when compared to chemical synthesis, 

which is a still expensive, limited and labor intensive process.  

The use of constructed plasmids harboring G-rich sequences was already described in the 

literature [60,65,88,89]. Maizels group, upon G-rich plasmid transcription, reported the 

formation of characteristic G-loop structures, containing G-quadruplex DNA on the single-

stranded regions of the G-rich (non-template) strand, and a stable RNA/DNA hybrid on the 

template strand [60]. Afterward, using electron microscopic imaging it was shown that some 

proteins targeted and bound specific structures within these G-loops [90]. All together these 

experiments provide evidence for the formation of G-quadruplex structures in vivo. 

Plasmid DNA is often used for the amplification of a specific DNA fragment [88]. For the 

recovery of the DNA fragments from the plasmid backbone, the use of restriction enzymes and 

a suitable size-based purification method is required. The purification techniques commonly 

employed can be roughly grouped in two categories: i) chromatographic methods and ii) using 

agarose or polyacrylamide gel electrophoresis. Gel electrophoresis although commonly used, 

gives poor yields and the oligonucleotides are often contaminated with soluble agarose or 

acrylamide which requires further time-consuming purification methods [91]. In the case of 

chromatography, four modes were already employed and described to the purification of 

restriction fragments: ion-exchange, hydrophobic, reversed-phase and size-exclusion 

chromatography (SEC) [92,93]. Although generally offering lower resolution than the other 

chromatographic techniques, SEC offers other advantages: easy instrumentation, isocratic 

elution, great freedom of buffer choice and elution in strict order of size [94]. SEC is based on 

the principle that analytes of different sizes will elute through a porous stationary phase at 

different rates, being that larger DNA molecules elute first while smaller DNA molecules elute 

last [92]. Small molecules can penetrate each of the stationary phase pores while the larger 

molecules are excluded and limited to the interparticle volume. Diverse chromatographic 

porous media are available for SEC, such as silica and agarose-based media [92]. Separations 

carried in SEC do not depend entirely on the size of the analyte but also on its shape. DNA 

molecules with sizes ranging from 20 to 1000 bp behave mainly like negatively-charged rods 

with limited flexibility, as proteins in contrast, act more like globular molecules [95]. In an 

ideal SEC process the solute should not interact with the stationary-size, therefore the use of 

a buffer with appropriate ionic strength (often using NaCl) is advisable [94]. 

In this work, plasmid technology was used for the biosynthesis of the novel G-rich quadruplex-

forming DNA sequence 58Sγ3. A method for the purification of 58Sγ3 oligonucleotide was also 

developed, using size-exclusion chromatography with an agarose-based matrix. Finally, the 

study of the interaction between four novel ligands and the 58Sγ3 G-quadruplex structure, as 

well as its stabilization, was performed using circular dichroism, PCR-stop and G4-FID assays.  
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Chapter 2 

 

Aims of Work 

The general scientific objectives of the present work are to contribute to the discovery and 

development of new G-quadruplex scaffolds for anti-cancer drug development and the study of 

novel compounds that stabilize G-quadruplex, with possible antitumor activity. The main 

objectives are the biosynthesis of a new G-quadruplex—forming DNA sequence and study of its 

interaction and stabilization by novel naphthalene and quinoline-based ligands.  

For this purpose, the present dissertation is divided in three interrelated tasks: 

1. Construction of a plasmid vector harboring the G-quadruplex sequence, in order to 

amplify the DNA using the replication machinery of a prokaryotic bacterial host. 

2. Enzymatic digestion of the constructed plasmid and purification of the G-quadruplex—

forming sequence by Size-exclusion Chromatography. 

3. Biophysical and biochemical studies, namely Circular Dichroism, PCR-stop and G4-FID 

assays, of the interaction between the novel quadruplex-ligands and the G-quadruplex 

structure, to determine the ligands binding and stabilization of the structure. 

 

The following scheme shows a graphical abstract of the overall experimental procedures used 

in this dissertation. 

 

  



 

 32 

 



 

 33 

Chapter 3 

 

Materials and Methods 

3.1 Materials 

All the buffers and solutions were prepared with ultra-pure grade double distilled water purified 

with a Milli-Q system from Millipore (Billerica, MA, USA). The GreenSafe Premium, NZYMaxiprep 

and NZYMiniprep kits, restriction enzymes Speedy BamHI and Speedy PstI, dNTP and NZYDNA 

Ladder VI were purchased from NZYTech (Lisbon, Portugal). The 6.05-kbp plasmid pVAX1-lacZ 

was obtained from Invitrogen (Carlsband, CA, USA). Agarose was obtained from Hoefer (San 

Francisco, CA, USA). HyperLadder I was bought from Bioline (London, UK). The oligonucleotide 

sequences were obtained with HPLC purification from Stab Vida Inc. (Lisbon, Portugal). 

GeneJET™ gel extraction kit and DreamTaq DNA polymerase were obtained from Thermo Fisher 

Scientific (Waltham, MA, USA). T4 DNA Ligase was purchased from Promega (Madison, WI, USA). 

TMPyP4 was obtained from Tokyo Chemical Industry (Tokyo, Japan). Compounds L1, L2, L3 and 

L4 were synthesized by João Ferreira under the supervision of Carla Cruz. 

3.2 Methods 

3.2.1 Molecular cloning 

3.2.1.1 Preparation of competent E. coli DH5α cells 

A single colony of Escherichia coli (E. coli) DH5α was used to inoculate 50 mL of LB media (25 

g/L, 10 g/L tryptone, 10 g/L yeast extract and 5 g/L NaCl) and incubated overnight at 37 °C 

and 250 rpm in a shake flask. The next day, 2 mL of the overnight culture was inoculated into 

250 mL of LB media and incubated at 37 °C and 250 rpm until the optical density (OD) at 600 

nm reached 0.3. The culture was transferred to sterile 50 mL polypropylene tubes and placed 

in ice for 5-10 minutes. Cells were then harvested by centrifugation at 5000 g for 10 minutes 

at 4 °C and re-suspended in 12.5 mL ice-cold MgCl2 100 mM solution. Cells were re-harvested 

at 4000 g for 10 minutes at 4 °C and the bacterial pellet was re-suspended in 2.5 mL ice-cold 

CaCl2 100 mM solution with further addition of 22.5 mL of the same solution and placed on ice 

for half an hour. Afterwards, cells were harvested by centrifugation again at 4000 g for 10 

minutes at 4 °C and the pellet was re-suspended in 1 mL ice-cold CaCl2 85 mM solution with 

15% glycerol. The competent cells were stored in cryogenic tubes at -80 °C until used. 

3.2.1.2 pVAX1-lacZ production in E. coli DH5α 

E. coli DH5α cell banks harboring plasmid vector pVAX1-lacZ were used to inoculate 50 mL of 

LB media (25 g/L) supplemented with 30 µg/mL kanamycin being cultivated overnight at 37 °C 

and 250 rpm in a shake flask until the OD600nm reached 8. Afterwards, 2 mL of cultured volume 
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was centrifuged at 11,000 g for 2 minutes and the pellets were further used to obtain plasmid 

DNA using NZYMiniprep kit. 

3.2.1.3 Plasmid purification using NZYTech NZYMiniprep kit 

The pellet previously obtained were re-suspended in 250 µL cold A1 buffer which contains RNase 

A followed by vortex until complete suspension. 250 µL A2 buffer (lysis buffer containing 

NaOH/SDS and supplemented with RNase) were added and the solution was gently mixed by 

inverting the tube 4 to 6 times. Then, 300 µL A3 buffer (neutralization buffer containing high 

salt concentration) were added and mixed gently by inverting the tube 4 to 6 times. The mixture 

was then centrifuged at 11,000 g for 10 minutes. The supernatant was transferred into NZYTech 

spin column, followed by centrifugation at 11,000 g for 1 minute. After discarding the flow-

through, 500 µL AY buffer was added and centrifuged for 1 minute at 11,000 g. The column was 

then washed by adding 600 µL A4 buffer and centrifuged at 11,000 g for 1 minute. In order to 

fully remove the washing buffer, the spin column was spun for 2 extra minutes at 11,000 g. The 

plasmid DNA was eluted by adding 50 µL AE buffer followed by incubation at room temperature 

for 1 minute and centrifugation at 11,000 g for 1 minute and stored at -20 °C for further use. 

The concentration of the purified plasmid DNA was measured with NANOPhotometer (Implen). 

3.2.1.4 pVAX1-lacZ digestion 

A double digestion of pVAX1-lacZ with restriction enzymes Speedy BamHI and PstI was 

performed in order to create cohesive ends in the vector. 1 µg of plasmid was digested with 1 

µL (10 units) BamHI and 1 µL (10 units) PstI in 2 µL NZYSpeedyBuffer and sterilized ultrapure 

water in a final volume of 20 µL. The mixture was incubated for 1 hour at 37 °C. In order to 

purify the digested and linearized vector, the reaction mixture was loaded in a 1% agarose gel 

and run for 40 minutes at 140 volts next to a sample of undigested plasmid as control. Next, 

the band corresponding to the linearized vector was excised from the gel and purified using 

GeneJET™ Gel Extraction Kit. Concentration of the purified vector was determined by 

NANOPhotometer in order to perform the necessary calculations for the ligation reaction. 

3.2.1.5 Oligonucleotides preparation 

The reverse and forward sequences of the desired insert used for cloning contained cohesive 

ends for BamHI and PstI restriction sites, in order to perform insertion of the sequence into 

pVAX1-lacZ polylinker (Figure 22). The oligonucleotide insert was prepared by performing 

annealing of the complementary oligonucleotides. Both complementary oligonucleotides were 

re-suspended at 100 µM in an annealing buffer (10 mM Tris. 50 mM NaCl, 1 mM EDTA, pH 7.5-

8). The annealing procedure was performed by adding 10 µL of each oligonucleotide and 80 µL 

of annealing buffer to a 1.5 mL tube and placing it in a heat block at 95 °C. After 2-3 minutes, 

the block was removed from the heating unit and the tube was let to cool on the bench top for 

45 minutes while in the heat block. The success of the annealing method was assessed by 

comparison of single-stranded forward and reverse oligonucleotides and the double-stranded 

obtained from the annealing procedure in a 2% agarose gel electrophoresis. 
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Figure 22 – Schematic diagram of pVAX1/lacZ. Obtained from http://www.lifetechnologies.com 
/order/catalog/product/V26020 

3.2.1.6 Ligation 

For the ligation reaction, the masses of vector and insert were determined according to a 6:1 

and 4:3 insert:vector molar ratios using equation (1). The required volumes of insert and vector 

were mixed with 1 µL T4 DNA ligase enzyme and 2 µL T4 ligase buffer (300 mM Tris-HCl pH 7.8, 

100 mM MgCl2, 100 mM DTT, 10 mM ATP), to a final volume of 20 µL. The mixtures were then 

incubated for 3 hours at room temperature. After incubation, 10 µL were used for the 

transformation of competent E. coli DH5α cells, while the remaining 10 µL of the mixture were 

incubated overnight at 4 °C and then used for transformation. The cloning process is shown 

schematically in Figure 23. 

𝐼𝑛𝑠𝑒𝑟𝑡 𝑚𝑎𝑠𝑠 (𝑛𝑔) = (
𝑛𝑔 𝑜𝑓𝑣𝑒𝑐𝑡𝑜𝑟×𝑘𝑏 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡

𝑘𝑏 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟
) × 𝑚𝑜𝑙𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 (

𝑖𝑛𝑠𝑒𝑟𝑡

𝑣𝑒𝑐𝑡𝑜𝑟
)   (1) 

 

Figure 23 – Schematic representation of the molecular cloning process for the construction of pVAX-G4. 

3.2.1.7 Transformation 

Transformation of plasmid into E. coli DH5α cells was achieved by thermal shock. 10 µL of 

plasmid DNA were added to 100 µL of previously thawed on ice cells and left on ice for 30 

minutes. The mixture was then heat-shocked at 42 °C for 1 minute to allow the plasmid DNA 

to enter and be retained inside the cells and once again placed on ice for 2 minutes. 200 µL of 
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sterile LB medium were added to the cells and incubated at 37 °C and 250 rpm for 2 hours. 

Afterwards, the suspension was plated in LB agar plates (tryptone 10 g/L; yeast extract 5 g/L; 

NaCl 5 g/L and agar 15 g/L) supplemented with 30 µg/mL kanamycin, and incubated overnight 

at 37 °C. A negative control with cells missing the plasmid was used. Single colonies containing 

the plasmid of interest, selected to confirm the correct plasmid construction, were picked from 

the agar plate and used to inoculate 15 mL LB medium supplemented with 30 µg/mL kanamycin, 

and incubated overnight at 37 °C. 2 mL of the cultured volume were then centrifuged at 11,000 

g for 2 minutes and the plasmid DNA was purified using NZYMiniprep kit (see section 3.2.2.2) 

followed by storage at -20 °C until further use. 

3.2.1.8 Confirmation of clones by automated sequencing 

In order to confirm the success of the cloning process, plasmid constructions with the expected 

insert were sequenced by Sanger sequencing method. About 150-200 ng of plasmid DNA was 

subjected to a pre-heat treatment at 98 °C for 5 minutes in 3.75 µL sterilized water. Then, 4 

µL of Quick Start Kit sequencing mastermix (GenomeLabTM GeXP, Beckman Coulter, Inc., 

Indianapolis, IN, USA) and 0.25 µM of primer (Table 3.1) were added to DNA sample in a reaction 

final volume of 10 µL. The PCR cycling conditions were the following: initial denaturation at 96 

°C for 3 minutes, followed by 30 cycles of 20 seconds at 96 °C, 20 seconds at 55 °C and 4 

minutes at 60 °C. The final extension was carried at 60 °C for 10 minutes. The DNA was then 

precipitated by adding 5 µL of Stop Solution/Glycogen mixture (2 μL of 3M Sodium Acetate (pH 

5.2), 2 μL of 100 mM Na2-EDTA (pH 8.0) and 1 μL of 20 mg/mL of glycogen) followed by 60 μL 

ice-cold 95% ethanol and mixed thoroughly. The mixture was centrifuged at 3,000 rpm and 4 

°C for 30 minutes. The supernatant was carefully removed and the pellet was rinsed two times 

with 200 μL ice-cold 70% ethanol, being the sample centrifuged at 3,000 rpm and 4°C for a 

minimum of 5 minutes, for each rinse. After centrifugation, the supernatant was removed and 

the pellet carefully dried and re-suspended in 20 μL Sample Loading Solution. The re-suspended 

sample was transferred into the sample plate, covered with one drop of light mineral oil and 

loaded into the instrument. Sequence data was analyzed using GenomeLab system Beckman 

Coulter version 10.2 software. 

Table 1 - Primers used for pVAX-G4 sequencing 

Primers Sequence 

T7 Forward 5’–TAATACGACTCACTATAGGG–3’ 

BGH Reverse 5’-TAGAAGGCACAGTCGAGG-3’ 

 

3.2.1.9 Preparation of E. coli DH5α cell banks for pVAX-G4 

The colonies confirmed to be harboring the correct plasmid construction were incubated at 37 

°C and 250 rpm in 10 mL LB medium (25 g/L) supplemented with 30 µg/mL kanamycin, until 

the OD600nm reached 0.7 (beginning of exponential phase). Afterwards, 3 mL of sterile 99% 
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glycerol was added to the culture medium and cell banks with the constructed plasmids were 

prepared by pipetting 1 mL of suspension in cryogenic tubes and stored at -80 °C. 

3.2.2 pVAX-G4 plasmid production and insert purification 

3.2.2.1 pVAX-G4 production 

pVAX-G4, the pVAX1-lacZ-based plasmid bearing the desired 58-bp sequence, was amplified by 

autonomous replication in E. coli DH5α host. E. coli DH5α cells harboring the plasmid of interest 

were plated in an LB agar plate supplemented with 30 µg/mL kanamycin, and incubated 

overnight at 37 °C. Multiple colonies were used to inoculate 62.5 mL TB media (12 g/L tryptone, 

24 g/L yeast extract, 4 mL/L glycerol, 0.017 M KH2PO4 and 0.072 M K2HPO4) and incubated until 

OD600nm reached 2.6. Then, a determined volume of cell suspension calculated with equation 

(2) for a starting OD600nm of 0.2 was added to 250 mL TB media, in 1 L shake flasks, supplemented 

with 30 µg/mL kanamycin and grown at 37 °C and 250 rpm. Cell growth was suspended at late 

log phase (OD600nm≈8), cells were harvested by centrifugation at 5,000 g for 15 minutes at 4 °C, 

and the cell pellets were stored at -20 °C. During the incubation period, 1 mL aliquots of cell 

suspension were taken hourly in order to construct a growth curve. Data was plotted using 

OriginPro 8.0 (Microcal Software Inc, USA). 

𝑂𝐷𝑖 × 𝑉𝑖 = 𝑂𝐷𝑓 × 𝑉𝑓 (2) 

3.2.2.2 Plasmid recovery and purification 

Plasmid DNA was recovered by alkaline lysis and purified using NZYMaxiprep kit. The following 

procedure was set to be used with 125 mL cell suspension pellets. The pellet was re-suspended 

in 10 mL P1 buffer (25 mM Tris-HCl, 10 mM EDTA, 100 µg/mL RNase A, pH 8.0) using vortex. 

Cell lysis was achieved by the addition of 10 mL P2 buffer (200 mM NaOH, 1% (m/v) SDS, pH 8), 

mixed by gently inverting the tube 4 to 5 times and incubated at room temperature for 5 

minutes. Then, 10 mL P3 buffer (3 M potassium acetate, glacial acetic acid to adjust pH, pH 

5.5) were added and mixed by gently inverting the tube 4 to 5 times, in order to stop lysis and 

precipitate genomic DNA, followed by 10 minutes of incubation on ice. The alkaline lysate was 

centrifuged at 20,000 g for 30 minutes at 4 °C, in a AllegraTM 25R centrifuge (Beckman Coulter, 

Miami, FL, USA), in order to eliminate cell debris, gDNA and proteins. The supernatant was 

placed in new centrifuge tubes and spun in the same conditions in order to ensure complete 

elimination of cell debris, gDNA and proteins. The supernatant was then transferred into 

NZYTech Maxiprep anion-exchange column, previously equilibrated with 10 mL QBT buffer (750 

mM NaCl, 50 mM MOPS, 15% (m/v) Isopropanol, 0.15% (m/v) Triton X-100, pH 7). After binding 

of the pDNA, the column was washed with 30 mL QC buffer (500 mM NaCl, 50 mM MOPS, 15% 

(m/v) isopropanol, pH 7) twice. Finally, the plasmid is eluted with 15 mL QF buffer (1.25 M 

NaCl, 50 mM Tris, 15% (m/v) isopropanol, pH 8.5) followed by the addition of 10.5 mL ice-cold 

isopropanol and gentle mixing by inverting 3 times. The mixture was centrifuged at 15,000 g 

for 30 minutes at 4 °C, the supernatant was discarded and the pDNA pellet was re-suspended 
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in buffer 1 mL Tris-HCl. Concentration of the purified pDNA was measured with 

NANOPhotometer and the samples were stored at -20 °C for further use. 

3.2.2.3 Agarose gel electrophoresis 

The plasmid isoforms content and purity of each sample were assessed by horizontal 

electrophoresis using 15 cm, 1% agarose gels stained with 0.01% GreenSafe Premium and 

visualized under UV light in UVItec FireReader system (UVItec, Cambridge, UK). Electrophoresis 

was carried at 120 V, for 35 minutes, with TAE buffer (40 mM Tris base, 20 mM acetic acid and 

1 mM EDTA, pH 8.0). Hyper Ladder I was used as a DNA molecular weight marker. 

3.2.2.4 pVAX-G4 digestion 

In order to excise the insert, a double digestion with the restriction enzymes Speedy BamHI and 

Speedy PstI was performed. The enzymatic reaction was scaled-up to 100 µg of plasmid in a 

total reaction volume of 400 µL. 30 µL (300 units) BamHI and 30 µL (300 units) PstI in 30 µL 

NZYSpeedyBuffer were added to the plasmid DNA sample followed by sterilized ultrapure water 

in order to make up the final volume. The mixture was incubated overnight at 37 °C. The 

effectiveness of the restriction digestion was assessed by horizontal agarose gel 

electrophoresis. 10 µL of the reaction mixture was loaded in a 2% agarose gel and run for 40 

minutes at 120 volts. NZYDNA Ladder VI was used as a DNA molecular weight marker. Digested 

samples were stored at -20 °C for further use. 

3.2.2.5 Size-exclusion Chromatography (SEC) 

In order to separate and purify the restriction fragment from the plasmid backbone, size-

exclusion chromatography was performed using a Superose 12® column (125 mm x 20 mm), an 

agarose-based matrix suitable for restriction fragments purification [92,94]. Separations were 

performed on ÄKTA Pure 25 L system with UNICORN 6.3 software. The column was washed with 

milliQ H2O and equilibrated with 10 mM Tris-HCl pH 8.0 with 150 mM NaCl. The elution buffer 

used was the same as the equilibration buffer. Purified DNA restriction fragment was typically 

recovered at room temperature (≈ 20 °C) with a flow-rate of 0.5 mL/min, after injection of 1 

mL of sample volume. The elution buffer was 10 mM Tris-HCl, pH 8 with 150 mM NaCl. The 

fractions were pooled according to the chromatograms obtained, concentrated and desalted 

with Vivaspin concentrators. The purity of the recovered samples was assessed by horizontal 

2% agarose gel electrophoresis, run for 40 minutes at 120 volts.  

3.2.3 G-quadruplex characterization and interaction studies 

3.2.3.1 Circular dichroism (CD) studies 

All CD measurements were performed at 25 °C, unless stated otherwise, with 6-15 µM strand 

concentration of oligonucleotides in a 30 mM phosphate buffer (15 mM KH2PO4, 15 mM K2HPO4, 

pH 7.1) containing 100 or 500 mM KCl. When required, oligonucleotides were annealed by 

heating at 95 °C for 15 minutes and slowly cooling to 4 °C for 2 hours. For CD titration with 

ligands, in order to study the association between the ligands and quadruplex structure, a 480 
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µM stock solution of each ligand was prepared in the same buffer as the oligos and the required 

volume was added directly in the cell. In the case of the KCl titration, a 2.5 M stock solution 

was used. CD spectra were recorded using a Jasco J-815 spectrapolarimeter equipped with a 

Peltier-type temperature control system (model CDF-426S/15), in a 1-mm quartz cell using an 

instrument scanning speed of 50 nm/min with a response time of 1 s over wavelengths ranging 

from 200 to 340. The recording bandwidth was 1 nm with 1 nm step size. The spectra were 

signal-averaged over three scans and baseline by subtracting a buffer spectrum. Data analysis 

and plotting was performed using OriginPro version 8.  

3.2.3.2 CD melting 

CD melting studies were performed in the temperature range 25-105 °C, at the heating rate of 

5°C/min from 25 to 65 °C and 1°C/min from 65 to 105 °C by measuring the ellipticity at the 

wavelength of maximum variation upon oligonucleotide folding, 265 nm. Sampling was 

performed at every 1 °C with oligonucleotides at 6 µM strand concentration in the adequate 

buffer. Quadruplex samples were annealed as described above. CD values were normalized to 

the equation (3) 

CDnorm = (CD − CDmin)/(CDmax − CDmin) (3) 

where CD is the signal at a given temperature; CDmax is the maximum signal observed at 265 

nm; and CDmin is the minimum value obtained at 265 nm. Data was converted into fraction 

folded plots and fit to a Boltzmann distribution (OriginPro 8) without boundary constraints and 

the melting temperatures were determined from the two-state transition model used. 

3.2.3.3 PCR stop assay 

The stabilization of G-quadruplex structure by specific ligands was assessed by a PCR stop assay 

using a test oligonucleotide and a complementary oligonucleotide that hybridizes to the last G-

repeats. 50 nM of primer and 200 nM of template DNA were mixed and annealed in the presence 

of 500 mM KCl by heating at 90 °C for 5 minutes followed by gradual cooling to room 

temperature over 1 h. The reactions were performed in a final volume of 20 µL. The annealed 

primer-template was mixed with 1x DreamTaq Green Buffer, 0.2 nM dNTP and increasing 

concentrations of the ligands (0-16 eq.). After the addition of the ligands, the reaction mixture 

was incubated for 30 minutes at room temperature. Primer extension was initiated by adding 

1U DreamTaq DNA polymerase followed by incubation in a thermocycler with the following 

cycling conditions: 94 °C for 2 minutes, followed by 30 cycles of 94 °C for 30 s, 58 °C for 30 s, 

and 72 °C for 30 s. Amplified products were resolved on a 2% agarose gel stained with 0.01% 

GreenSafe Premium. Relative fluorescence was scanned and determined with ImageJ [96]. 

Relative fluorescence data was fit to a dose-response model and IC50 was determined for each 

ligand (OriginPro 8). Results represent the average of 2 independent experiments. 
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3.2.3.4 Fluorescence intercalator displacement assay (G4-FID) 

The experiment was performed by using a modified protocol of the previously reported method 

[80]. Each run was performed in duplicate with 96-well microplates, in a final volume per well 

of 50 µL for each sample. Oligonucleotides were annealed as described above at 5 µM strand 

concentration and mixed with two molar equivalents (10 µM) of Thiazole Orange (TO). Eight 

equivalents of each ligand were added to both quadruplex and duplex DNA (40 µM). The 

fluorescence of each sample was measured at 25 °C in a qPCR instrument (Biorad CFX 

Connect™). Thiazole Orange was excited at 492 nm and the emission was collected at 516 nm. 

The percentage of TO displacement is calculated by the formula: 

𝑇𝑂 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (%) = 100 − ((𝐹𝐴/𝐹𝐴0) × 100) (4) 

where the initial fluorescence with and without ligand (FI and FI0, respectively) is subtracted 

by the background fluorescence Fb: FA = FI – Fb or FA0 = FIo – Fb [80]. A representation of a 96-

well microplate and the disposition of the wells is presented in Figure 24. 

 

Figure 24 - Representation of a 96-well plate and disposition of wells in a G4-FID assay. 
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Chapter 4 

 

Results and Discussion 

Cancer is a major public health problem all over the world. According to the World Health 

Organization, approximately nine million new cases of cancer are detected per year. In 2014 in 

the United States only, around 1.6 million new cases were reported and 585000 deaths due to 

cancer occurred [97]. The common treatments for cancer are surgery, radiotherapy and 

chemotherapy. However, these treatments lack selectivity and can harm healthy cells as well, 

besides weakening the immune system. Because of these and other secondary effects, 

extensive research is being undertaken to find new alternatives for cancer treatment. Ever 

since G-quadruplexes were shown to exist in vivo and that the formation of such DNA structures 

were shown to be involved in cellular key processes, such as telomerase activity and oncogene 

transcription regulation, this has become a significant approach for anti-cancer drug 

development. The development of new small molecules with the ability to bind and stabilize 

the G-quadruplex structure, as well as the identification of new candidate sequences 

throughout the genome, and possible new G-quadruplex structures, is of the utmost importance 

in providing new scaffolds for this therapeutic approach. In this work, the production of a novel 

G-quadruplex—forming sequence is reported. The G-quadruplex structure is assessed and the 

interaction between the quadruplex and novel ligands is studied. 

4.1 Initial studies and G-quadruplex sequence selection  

The first approach to obtain a putative G-quadruplex—forming sequence was performed using 

plasmid pPH600, kindly provided by N. Maizels. pPH600 plasmid (3562 bp) is a derivative of 

pBluescript KS(+), which carries a 604 bp fragment of the murine Sγ3 switch region with repeats 

of the consensus sequence CTGGGCAGCTCTGGGGGAGCTGGGGTAGGTTGGGAGTGTGGG-

GACCAGG [60]. Immunoglobulin switch regions are G-rich sequences, with high potential to fold 

into stable G-quadruplex structures. The objective was to replicate pPH600 plasmid in a 

suitable host, in this case E. coli DH5α, recover the plasmid and then excise a particular DNA 

sequence using the suitable restriction enzymes. Since pPH600 plasmid map was unknown, 

automated sequencing had to be performed in advance, in order to get information relative to 

the identity of the insert and its restriction map. All the necessary experimental procedures, 

namely cell transformation, plasmid production and recovery, and automated sequencing, were 

the same as described in the Materials and Methods section for pVAX-G4. Using primers T7 and 

T3 (Table 2), plasmid pPH600 was sequenced and the position and identity of the 604 bp insert 

was confirmed by comparison to the nonredundant nucleotide database at GenBank by using 

BLAST tool (NCBI) [98]. BLAST returned a significant alignment with Mouse Ig germline gamma-

3 switch region (GenBank accession number M12182), with 100% identity, therefore confirming 
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the insert’s identity. Afterward, the restriction map of the plasmid’s insert was constructed 

using the online software RestrictionMapper (www.restrictionmapper.org/) (Figure 25).  

Table 2 - Primers used for pPH600 sequencing 

Primers Sequence 

T7 Forward 5’–TAATACGACTCACTATAGGG–3’ 

T3 Reverse 5’- ATTAACCCTCACTAAAGGGA-3’ 

 

Figure 25 - Schematic diagram of pPH600. The plasmid was sequenced using primers T7 and T3. The 
restriction map was constructed using RestrictionMapper. The image was created with SnapGene®. 

In order to find a putative G-quadruplex—forming sequence of interest, the DNA sequence of 

the 604 bp insert was submitted to a GQRS Mapper analysis, an online software that generates 

information on composition and distribution of putative Quadruplex forming G-Rich Sequences 

(QGRS) in nucleotide sequences [18].  The user can define the minimum number of tetrads, the 

maximum length of the G-quadruplex motif, as well as the size and composition of the loops. 

In this case, the search was limited to a maximum length of 40, a minimum of 2 G-quartets and 

no constraints relatively to the loops. The software found 16 putative G-quadruplex—forming 

sequences, with G-Scores ranging from 13 to 40 and different lengths, confirming the abundant 

occurrence of G-rich sequences within immunoglobulin switch regions (Table 3). Taking into 

account the availability of restriction enzymes and the G-Score, three DNA sequences were 

chosen for further studies: d[ATATGGAGACCTGGCTGGGGAGC], d[TCGAGGGGGGGCCCGGTAC], 

and d[TGTGAATAACCTGCCTGAAGGGCCACAGGGGAGCTGGGGCTATCAGATCACAGGGTCC] (bold 

letters indicate quadruplex-forming region), excisable with the restriction enzyme 

combinations Eco31I/BbvCI, XhoI/KpnI and BspMI/PpuMI, respectively. 
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Table 3 - QGRS sequences found and the respective length and G-Scores. 

Length QGRS G-Score 

30 GGACAGATGGAGCAGTTACAGAGGAAAAGG 13 

29 GGCGAATTGGAGCTCCACCGCGGTGGCGG 14 

23 GGACCAGGCTGGGCAGCTACAGG 16 

12 GGGGGGGCCCGG 18 

15 GGTCAGGGTAGGAGG 19 

29 GGTTAGTGGGAGTGTAGGGACCAGACTGG 19 

29 GGCAGCTACAGGTGAGCTGGGTTGGATGG 19 

27 GGGAGCTAGGGTAGGTGGAAGCATAGG 20 

26 GGGTAGGAGGGAGTGTGGGGACCAGG 21 

26 GGGGAGGTGGAGCTGTGGGGACCAGG 21 

26 GGGTAAGTGGGAATATGGAGACCTGG 21 

26 GGAGCTGAGGTAGGTGGGAACATAGG 21 

29 GGTGAGCTGGGGTAGGAGGGAGTATGAGG 21 

28 GGGAGCTAGGGTAAGTGAGGGTATGGGG 39 

20 GGGAGCTGGGGTGGGTGGGG 40 

36 GGGCCACAGGGGAGCTGGGGCTATCAGATCACAGGG 46 

 

In order to excise the DNA fragments of interest, sequential and double digestions using the 

suitable restriction enzymes were undertaken. However, it was not possible to fully digest the 

plasmid, as no restriction fragment was produced upon enzymatic digestion. Several attempts 

were made, with different plasmid DNA/enzyme ratios and different incubation times, without 

success. The possibility of the fragments being non-detectable on agarose gels upon enzymatic 

reaction was also accounted and other staining methods such as ethidium bromide were used, 

however with the same outcome. A possible explanation is the fact that G-quadruplexes are 

able to resist attack by enzymes that target single-stranded or duplex DNA [60]. In fact, as seen 

by the QGRS analysis, there are 16 putative G-quadruplex forming sequences within the 604 bp 

insert, which could contribute to the stabilization of the plasmid and resultant enzyme attack 

resistance. In order to solve this issue, it was decided to construct a new plasmid by cloning 

one of the putative G-quadruplex—forming sequences into pVAX1-lacZ. 

4.2 Construction of plasmid pVAX-G4 

The chosen sequence to clone into pVAX1-lacZ was d[TGTGAATAACCTGCCTGAAGGGCCACAGG-

GGAGCTGGGGCTATCAGATCACAGGGTCC], a 58 bp sequence which had the highest G-score in 

the QGRS analysis (46) and was named 58Sγ3. The forward and reverse synthetic 

oligonucleotides of 58Sγ3 were purchased containing cohesive ends for BamHI and PstI 

restriction sites, in order to perform insertion of the sequence into pVAX1-lacZ polylinker 

(Table 4). 
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Table 4 - Sequences of forward and reverse oligonucleotides used for the construction of the 58Sγ3 insert. 

Oligonucleotide Sequence 

58Sγ3 Forward 
5'-GATCCTGTGAATAACCTGCCTGAAGGGCCACAGGGGAGCTGGGGCTATCA-

GATCACAGGGTCCCTGCA-3' 

58Sγ3 Reverse 
5’-GGGACCCTGTGATCTGATAGCCCCAGCTCCCCTGTGGCCCTTCAGGCAGG-

TTATTCACAG-3’ 

 

Prior to the molecular cloning procedures, the two oligonucleotides were annealed in order to 

produce the 58 bp double-stranded insert. The success of the annealing procedure was 

confirmed by 2% agarose gel electrophoresis (Figure 26).  

The results clearly show a different pattern of migration in the agarose gel between the 

annealed double–stranded oligonucleotide (Lane 1) and the single-stranded oligonucleotides 

(Lane 2). Due to higher molecular weight, the double-stranded DNA (ds DNA) has a slower 

migration rate than single-stranded DNA (ss DNA), therefore the corresponding band is seen 

above in the gel as expected. This result allowed to proceed with the construction of the pVAX-

G4 plasmid. The base plasmid pVAX1-lacZ was double digested with BamHI and PstI in order to 

create compatible cohesive ends for the DNA insert. The fact that both enzymes use the same 

buffer and optimal reaction temperature, enables the simultaneous use. Following enzymatic 

double digestion, the base plasmid was run in a 1% agarose gel and purified using GeneJET™ 

Gel Extraction Kit, as described in Chapter 3 section 3.2.1.4. 

Once both DNA insert and base plasmid were prepared, it was possible to perform the ligation 

reaction with T4 DNA ligase. T4 DNA ligase catalyzes the joining of two strands of DNA between 

the 5’-phosphate and the 3’-hydroxyl groups of adjacent nucleotides. The ligation reaction was 

carried at room temperature for 3 hours and overnight at 4 °C, with different insert:vector 

molar ratios, 6:1 and 4:3. The ligation mixtures were transformed by thermal shock into 

Figure 26 – 2% Agarose gel electrophoresis for the confirmation of annealing procedure. Lane 1: double-
stranded oligonucleotide. Lane 2: single-stranded oligonucleotides. 
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competent E. coli DH5α cells and plated in kanamycin-supplemented LB agar plates, along with 

the negative controls. After the incubation period, single colonies containing the plasmid of 

interest were selected to confirm the correct plasmid construction. After purifying the plasmids 

using NZYMiniprep kit, these were sequenced in order to confirm the cloned insert, size and 

location. Automatic sequencing shown that only the plasmids constructed with the ligation 

reaction at room temperature harbored the desired DNA insert, by comparison with 58Sγ3 

sequence. In fact, the optimal temperature of T4 DNA ligase is 25 °C, while reactions with 

shorter DNA inserts (less than 16 bases long) are advisable to be performed at lower 

temperatures, as indicated by the product’s manufacturer. Cell banks of the correct plasmid 

constructions (Figure 27) were prepared and stored for further use. 

 

Figure 27 - Schematic diagram of the constructed plasmid pVAX-G4. The image was created with 
SnapGene®. 

4.3 Biosynthesis of 58Sγ3 and purification 

The amplification of the DNA insert 58Sγ3 was performed by autonomous replication in E. coli 

DH5α host harboring pVAX-G4 plasmid. E. coli has been extensively used as the cellular host for 

plasmid DNA amplification due to its easy transformation and fermentation, low nutritional 

requirements and rapid growth rate [87]. Therefore, this DNA amplification strategy has the 

advantage of being a relatively low cost process when compared to chemical synthesis. For this 

purpose, transformed E. coli DH5α cells were grown until late log phase (OD600nm≈8) and 

harvested by centrifugation. The experimentally determined growth curve is shown in Figure 

28.  
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Recovered cells were disrupted by alkaline lysis and plasmid DNA was recovered using 

NZYMaxiprep kit. NZYTech columns are charged with a silica-based anion-exchange resin which 

allows the binding of plasmid DNA to the resin under appropriate low-salt and pH conditions. 

RNA, proteins and low-molecular–weight impurities are removed by a medium-salt wash while 

the plasmid DNA is finally eluted in a high-salt buffer and then concentrated and desalted by 

isopropanol precipitation. A representative 1% agarose gel electrophoresis resulting of a 

plasmid extraction is shown in Figure 29. 

Through the analysis of the gel is possible to see that the plasmid has the expected size (6086 

bp) in comparison to the DNA molecular weight marker. It is important that no RNA and genomic 

DNA contamination results from the plasmid extraction process since it can interfere with the 

Figure 28 – Transformed E. coli DH5α growth curve. The latent (lag), exponential (log) and stationary 
phases of the bacterial growth can be identified between ≈0-1, ≈1-7 and ≈7-9 hours, respectively. 

Figure 29 – Analysis of the purity and quality of pVAX-G4 by 1% agarose gel electrophoresis. Lanes 1-4 are 
plasmid samples obtained from the extraction procedure. Lane M: Molecular weight marker (Hyper Ladder 

I, Bioline). Plasmid DNA samples correspond to ≈300 μg per sample (1 mL). 
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enzymatic reactions performed afterwards. Two different plasmid isoforms are possible to 

detect in lanes 1-4, namely supercoiled (sc) with traces of open-circular (oc) isoform. During 

the extraction process, supercoiled plasmid DNA degradation is likely to occur due to alkaline 

lysis, non-optimal pH and temperature and several centrifugations, so other isoforms, such as 

open-circular and linear, are often found in the plasmid samples. The structural conformation 

of the isoforms can be assessed by the agarose gel electrophoresis migration. The sc 

conformation migrates further in the gel than oc isoform since it has a more compact structure, 

which facilitates the migration through the agarose gel pores. The linear (ln) isoform, if 

present, would appear between the sc and oc isoforms. Following plasmid DNA extraction, 

pVAX-G4 had to be double digested with BamHI and PstI in order to isolate 58Sγ3 

oligonucleotide. The enzymatic reaction was scaled-up in order to digest the maximum amount 

of plasmid DNA possible. The scale-up was accomplished by scaling the following basic reaction 

proportionately: one enzyme unit is defined as the amount of enzyme required to digest 1 μg 

of plasmid DNA in 1 hour at 37°C in a total reaction volume of 50 μL (as indicated by the 

restriction enzyme manufacturer). Moreover, the restriction reaction was set up in order to use 

the minimum enzyme concentration needed to achieve effective results. The effectiveness of 

each restriction digestion was assessed by horizontal agarose gel electrophoresis (Figure 30). 

On top, the brighter bands correspond to the plasmid backbone while the lower bands 

correspond to 58Sγ3 oligo, indicated by the correspondent expected molecular weight of 58 

bp. Moreover, the enzymatic reaction confirmed the correct plasmid construction and the 

effectiveness of the enzymatic digestion reaction as no other isoform than linear is observed. 

Downstream, the 58 bp oligonucleotide was separated and purified from the plasmid backbone 

by size-exclusion chromatography (SEC) using a pre-packed Superose 12® column, an agarose-

Figure 30 – Assessment of the effectiveness of the enzymatic double digestion. 2% agarose gel 
electrophoresis, lanes 1-5 are digested plasmid samples. Lane M: Molecular weight marker (NZYDNA 
Ladder VI, NZYTech). 
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based matrix suitable for restriction fragments [92,94,95]. All the digested samples were pooled 

together and loaded into the column at different flow-rates of 1 mL/min, 0.75 mL/min and 0.5 

mL/min. The elution was monitored by UV absorption at 260 nm. The higher flow rates of 1 and 

0.75 mL/min didn’t offered the needed resolution as the restriction fragment would often elute 

together with the plasmid backbone (Figure 31).  

 

Figure 31 - Example of the chromatographic profiles obtained in the purification of 58Sγ3 at 1 mL/min 
and 0.75 mL/min. All experiments were performed during >1 hour, isocratically, with 150 mM NaCl in 10 
mM Tris-HCl pH 8.0. (a) 1) Plasmid backbone sample; 2) 58Sγ3 sample; (b) Lane 1: Purified plasmid 
backbone; Lane 2: Unpurified sample of plasmid and 58Sγ3; Lane S: Injected sample. 

SEC resolution is influenced by many factors: sample volume, ration sample volume/column 

volume, column dimensions, particle size, pore size and flow-rate [99]. Sample volume should 

be from 0.5-2% of the total column volume to achieve maximum resolution, while the longer 

columns are generally better. The resolution decreases as the flow-rate increases, despite 

providing faster separation, and it must be optimized to provide the necessary resolution [99]. 

The use of the lower flow-rate 0.5 mL/min, although increasing each chromatographic run time, 

offered the needed resolution for a complete separation of the two species (Figure 32). 
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Figure 32 - Example of the chromatographic profiles obtained in the purification of 58Sγ3 at 0.5 mL/min. 
All experiments were performed during >1 hour, isocratically, with 150 mM NaCl in 10 mM Tris-HCl pH 
8.0. (a) 1) Plasmid backbone sample; 2) 58Sγ3 sample; (b) Lane 1: Purified plasmid backbone; Lane 2: 
purified 58Sγ3; Lane S: Injected sample. 

The use of 150 mM NaCl in the elution buffer prevents the DNA from interacting with the agarose 

matrix through ionic interactions, being the separation based strictly on molecular weight and 

size differences, which governs the access of the analytes to the pore volume inside the column 

packing particles [92,94,95]. As shown in Figure 31, the plasmid backbone elutes first while the 

restriction fragment 58Sγ3 elutes last. This result is in accordance with the expected since the 

molecules with higher molecular weight elute first. This is due to the fact that, with the 

increase of size, it becomes increasingly difficult for large DNA molecules to penetrate the 

matrix agarose gel pores that would be available for more compact molecules. Therefore, small 

DNA molecules will virtually penetrate each pore, eluting later than the large DNA molecules. 

The use of low flow-rates increases the resolution but has the advantage of increasing the 

experiment’s duration, being the average time of each chromatographic run 1 hour. 

4.4 58Sγ3 G-quadruplex formation and structure assessment 

Immunoglobulin switch region Sγ3 was already reported as a G-quadruplex-forming region 

[11,15]; however there seem to be no other studies regarding its structure or interaction with 

ligands. Due to the limited time remaining to perform the proposed tasks of this work, an 

oligonucleotide stock was purchased in advance for the remaining studies. The oligonucleotide 
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58Sγ3 was purchased from Stab Vida Inc., dissolved in 30 mM phosphate buffer (15 mM KH2PO4, 

15 mM K2HPO4, pH 7.1) containing 100 mM KCl and stored at -20 °C.  

CD spectroscopy has been extensively used to study the polymorphism of G-quadruplexes, most 

notably to distinguish parallel structures from antiparallel structures by comparing their spectra 

with those of quadruplex DNAs of known structure [71]. It requires very little sample (µM 

concentration range) and is appropriate to examine a wide range of solution conditions and 

their influence on quadruplex formation [19]. G-quadruplex formation is induced by monovalent 

cations such as K+ and Na+, being K+ considered more biologically relevant due to its higher 

intracellular concentration [25]. The formation of 58Sγ3 G-quadruplex and its topology were 

assessed by CD by performing a KCl titration. In K+ solution it’s expected that 58Sγ3 

spontaneously fold into a stable G-quadruplex. Increasing concentrations of KCl (100 to 550 

mM) were added to a 58Sγ3 solution and the CD spectra were acquired (Figure 33).  

The analysis of the spectra indicates that 58Sγ3 adopts a parallel-stranded conformation 

displaying the maximum ellipticity at around 265 nm and the minimum at around 240 nm, 

characteristic of parallel G-quadruplexes [100]. As the concentration of KCl increased, the 

positive band shifted into 265 nm. These results also indicate that 500 mM KCl is necessary for 

the complete folding of the DNA strands. The existence of a shoulder peak at around 285 nm 

may also be indicative of a mixed parallel/antiparallel conformation as previously reported for 

other G-quadruplexes, such as bcl2 and d[TAGGGUTAGGGT], however it is not clear [71,101]. 

The higher KCl concentration needed in this case relatively to other sequences may be due to 

the strands length, requiring a higher ionic strength to fold into G-quadruplex structure. A 

similar experiment was performed with hTel49 oligonucleotide d[AG3T2]8 and the same 

concentration of KCl was needed to fold into a stable G-quadruplex structure, supporting the 

Figure 33 - CD titration spectra of 58Sγ3 G-quadruplex at 25 °C with increasing concentrations of KCl. 
Arrow indicates the increasing salt concentration. 
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hypothesis regarding the strands length [102]. The fact that 58Sγ3 sequence comprises four 

consecutive uneven G-tracts lead to the assumption that the parallel-stranded conformation is 

unimolecular but probably not the only conformation possible in terms of loop arrangement 

[19]. In order to confirm the formation of a parallel G-quadruplex structure, the well described 

porphyrin TMPyP4, which is known to induce the folding of DNA into quadruplex, was used 

[103,104]. The CD spectra were collected at differing TMPyP4/58Sγ3 molar ratios (from 0.1 to 

4 eq.) in phosphate buffer without KCl (Figure 34).  

The results clearly indicate the DNA folding in a parallel-stranded conformation with 4 molar 

equivalents of TMPyP4 which confirms the assumption relatively to quadruplex structure. It 

should be noted that CD results cannot be used to unambiguously determine the G-quadruplex 

structural type, and more potent techniques such as NMR and X-ray crystallography should be 

employed in the future. 

4.5 Binding and stabilization of 58Sγ3 quadruplex with ligands 

The development of naphthalene and quinoline-based ligands that exhibit both hydrophobic 

and hydrophilic characteristics presents itself as a promising strategy in G-quadruplex 

targeting. While the aromatic naphthalene and quinoline are capable of π-stacking with the G-

tetrads, the protonated amine arms improve both the water solubility and DNA-binding by 

electrostatic interactions [2]. Four novel quadruplex-ligands were used in this study along with 

the porphyrin TMPyP4 (Figure 35) for control reasons. 

Figure 34 - CD titration spectra of 58Sγ3 G-quadruplex at 25 °C with increasing concentrations of TMPyP4. 
Arrow indicates the increasing ligand concentration. 
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Figure 35 - Chemical structures of the ligands used in this work L1, L2, L3, L4 and TMPyP4. 

Ligands L1, L2 and L3 are naphthalene-derivatives with variable size amine arms, 

diethylenetriamine, triethylenetetramine and tetraethylenepentamine, with three, four and 

five protonable N, respectively. Ligand L4 is a quinoline-derivative functionalized with a 

diethylenetriamine side arm. CD titrations and melting studies with the ligands were performed 

in order to explore the binding and stabilization of the quadruplex structure. The ligands were 

added to 58Sγ3 at different ligand/DNA molar ratio (from 0.1 to 8 eq.) in 500 mM KCl and the 

spectra were acquired. Upon addition of ligands, changes in the CD spectra were observed 

suggesting interaction of these molecules with the DNA (Figure 36).  

 

Figure 36 - CD titration spectrum of 58Sγ3 G-quadruplex at 25 °C in 30 mM phosphate buffer (500 mM KCl) 
with increasing concentrations of (a) L1, (b) L2, (c) L3 and (d) L4. Arrow indicates the increasing ligand 
concentration. 
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As the concentration of ligand increases, a slight decrease of ellipticity was observed; however 

the characteristic bands for parallel-stranded topology were maintained, demonstrating 

binding of the ligands and no disruption of the structure, maintaining the parallel topology. The 

degree of variation in the CD spectra is the same for all ligands with no induced CD band present 

which demonstrates that there is no structure interconversion induced by the ligands. CD 

spectra of the ligands was also recorded to demonstrate that the ligand had no CD absorption 

whatsoever in the wavelength range used (L1, L2, L3 and L4 spectra light-gray lines).  

The thermal stabilization of 58Sγ3 quadruplex was further studied by measuring the ligand-

induced change in the melting temperature (Tm) using CD melting analysis. Thermal 

denaturation of the quadruplex was monitored at 265 nm in the presence of K+ and ligands 

when required (Figure 37).  

In order to determine Tm, the CD signal is normalized between 0 and 1, and the Tm is defined 

as the temperature for which the normalized CD is 0.5. In order to apply this method, the 

oligonucleotide must be (quasi)completely folded at the lowest recording temperature and 

unfolded at the highest temperature, otherwise the Tm will be overestimated. The determined 

melting temperature of 58Sγ3 quadruplex was 89.5 °C in 500 mM KCl. Upon addition of the 

ligands the stability of the quadruplex was enhanced with a clear increase of 58Sγ3 Tm values 

for ligands L1, L2 and slightly for L3 while L4 led to a decrease of Tm. (Table 5). 

 

Figure 37 - CD melting curves of 58Sγ3 G-quadruplex in the absence and in the presence of 8 molar 
equivalents of ligands. Data was converted into folded fraction plots and fit to a Boltzmann distribution 
(OriginPro 8). 
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Table 5 - Thermal Stability of 58Sγ3 with Ligands Measured by CD Melting Experiments. 

Ligand Tm (°C) ∆Tm (°C) 

No ligand 89.5 ± 0.38 - 

TMPyP4 92.9 ± 0.37 3.4 

L1 92.4 ± 0.29 2.9 

L2 93.6 ± 0.33 4.1 

L3 89.8 ± 0.27 0.3 

L4 79.6 ± 0.27 -9.9 

 

Ligand L1 promoted an increase of around 3 °C in the Tm, similarly to the reference compound 

TMPyP4, while L2 enhanced the stability of the quadruplex, reflected in the 4 °C increase in 

Tm. In turn, ligand L3 led only to a slight increase of Tm. The length of the amine arm seems to 

play an important role in the stabilization of the G-quadruplex by naphthalene ligands; 

diethylenetriamine and triethylenetetramine arms promoted an increase in Tm when compared 

to the ligand with tetraethylenepentamine arm. On the contrary, the quinoline-based ligand L4 

with diethylenetriamine arm seems to destabilize the quadruplex resulting in a decrease of 10 

°C in the Tm. This result indicates that, besides the amine arms, the naphthalene ring plays a 

major role in the stabilization of G-quadruplex, probably by π-stacking with the G-quartets.  

In order to confirm the complete thermal denaturation of the G-quadruplex structure during 

the CD melting experiment and validate the applicability of the Tm determination method, a 

CD spectrum of 58Sγ3 at 95 °C was recorded (Figure 38). 

The CD spectrum of 58Sγ3 at 25 °C shows a characteristic CD signature of a parallel G-

quadruplex structure. Notably, the dominant CD band at 265 is weakened at 95 °C and shifted 

Figure 38 – CD spectra of the comparison between the folded (25 °C) and unfolded (95 °C) 58Sγ3 G-
quadruplex. 
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to the characteristic CD spectrum of an unstructured single strand [105,106]. The calculated 

Tm values by this method can therefore be considered as accurate. 

4.6 Ligands block Taq DNA polymerase in a concentration-

dependent manner 

The stabilization of 58Sγ3 quadruplex was further investigated by PCR-stop assay. In this 

experiment, primer extension of DNA is inhibited by the stabilization of the quadruplex 

structure and inhibition of hybridization of the complementary sequence. The assay was carried 

out in the presence of 500 mM KCl. Despite quadruplex formation was induced by the presence 

of K+, primer extension was not inhibited in absence of ligands and the full amplification 

product is detected. This indicates that Taq DNA polymerase is capable of unfolding the 

quadruplex easily leading to the extension of the full product (Figure 39).  

 

Figure 39 - PCR-stop assay and the effect of the ligands on the 58 bp double-stranded PCR product. 58Sγ3 
was incubated with increasing concentrations of the ligands (0-16 eq) prior to PCR reaction. 

The addition of ligands L1, L2 and L3 led to a concentration-dependent decrease in the 58 bp 

amplification product. These results are in agreement with the stabilization observed in the CD 

melting experiments and indicate that the ligands are capable of inducing or stabilizing G-

quadruplex formation in biological systems. The ligands demonstrated considerable 

amplification inhibition with 8 molar equivalents and with 16 equivalents there was almost a 

complete inhibition of Taq DNA polymerase. On the other hand, ligand L4 showed dissimilar 

results, inhibiting Taq DNA polymerase with 16 equivalents but not in a concentration-depended 

manner as the results with 2, 4 and 8 equivalents are not concise. This may arise from the G-

quadruplex destabilization upon ligand binding indicated by the CD melting results and the fact 

that the ligand appears to bind the duplex portion of 58Sγ3 in a similar extent as the 

quadruplex, inhibiting Taq DNA polymerase in an unspecific manner (discussed below in section 

4.7). The fluorescence of each amplification product was scanned and quantified with ImageJ 

software and plotted for a better visual representation of the ligand effect (Figure 40). 
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Figure 40 – Fluorescence quantification of the PCR-stop assay gel bands. The fluorescence is expressed in 
percentage of product amplification relatively to the untreated control. 

The analysis of the plots reinforces the visual analysis of the agarose gels of Figure 39. As stated 

above, ligands L1, L2 and L3 decreased the PCR products in a concentration-dependent manner, 

showing around 90% inhibition at the highest concentration of 3.2 μM of ligand. The highest 

values of inhibition at the maximum concentration used were observed for ligand L3; this may 

be due to the fact that L3 seems to bind selectively the G-quartets as was demonstrated by G4-

FID assay and discussed below. To further demonstrate that the inhibition of the DNA 

amplification was due to G-quadruplex stabilization, a similar experiment was performed with 

a mutated oligonucleotide in one of the G-tracts with the substitution of two guanines by two 

adenines (58Sy3mu, 5'-TGTGAATAACCTGCCTGAAGGGCCACAGAAGAGCTGGGGCTATCAGATCACA-

GGGTCC-3'). The mutated oligo does not fold into a G-quadruplex structure since one of the G-

tracts has been disrupted and can be used to discriminate whether the Taq inhibition is due to 

G-quadruplex—ligand interaction or to unspecific interactions. In this case, no inhibition of the 

DNA amplification was observed at the higher concentration tested (Figure 41), which 

demonstrates that the ligands bound specifically to the G-quadruplex structure. A similar 

analysis using ImageJ was also performed. 
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The existence of values above 100% is possible since, in this case, the amplification reaction 

depends only on the availability reagents and Taq’s activity and the results may differ from the 

PCR-tubes. From the fluorescence quantification plots is possible to determine the IC50 values 

which indicate the concentration of ligand required to achieve 50% inhibition of the 

amplification reaction [107]. Moreover, from the ratio IC50 58Sy3mu/ IC50 58Sy3 is possible to 

estimate a selectivity index. The values are listed in Table 6. 

Table 6 - Effect of the ligands on 58Sy3 measured by the PCR-stop assay. 

Ligand 

IC50 (μM) Selectivity 

index 58Sy3a 58Sy3mua 

L1 1.11 >3.2 >2.88 

L2 0.89 >3.2 >3.59 

L3 0.94 >3.2 >3.40 

L4 - - - 

a Mean of duplicates 

All the ligands presented IC50 around 1 μM and selectivity indexes ranging from 2.88 to 3.40. 

Ligand L2 presented the highest selectivity index and the lower IC50 when compared to the other 

ligands, which is in agreement with the results obtained previously. For L4 it was not possible 

to determine IC50 or selective index since the results are not conclusive and the fitting to a 

dose-response model is inadequate. It should be noted, that the method here employed to 

determine IC50 values through fluorescence quantification is subjected to potential bias, since 

some subjective judgment is needed to decide where the gel bands end and the background 

noise begins. Therefore the values are qualitative and used to support the discussion. 

Figure 41 – Effect of the ligands on the 58 bp double-stranded PCR product with a control mutated 58Sy3mu 
oligonucleotide. (a) Fluorescence quantification plot and the (b) 58 bp double-stranded PCR product 
(representative agarose gel image of ligand L2 shown). 
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4.7  Ligands affinity towards G-quadruplex over duplex DNA 

To provide additional information regarding the interaction and specificity of the ligands 

towards the G-quadruplex, a fluorescence intercalator displacement (G4-FID) assay was 

performed using thiazole orange (TO) as a fluorophore. The assay is based on the competitive 

displacement of TO from quadruplex or duplex DNA when the ligand binds to the DNA. Since TO 

is totally quenched when free in solution but strongly fluorescent when bound to DNA (≈500- to 

3000-fold exaltation), one can monitor the decrease of fluorescence induced by the ligand 

binding [80]. Therefore, the quadruplex-affinity of a candidate ligand can be determined 

through its ability to displace TO from the G-quadruplex DNA. Additionally, the selectivity of 

the ligands can be assessed by comparing the ability of the ligand to displace TO from 

quadruplex and duplex DNA [80]. The fluorescence is measured using two equivalents of TO as 

this is the preferential stoichiometry of the assay [79]. 

The analysis of the TO displacement plots (Figure 42) indicates that ligands L1 and L2 bind 

strongly to 58Sy3 G-quadruplex (TO displacement around 60%) while ligand L3 binds more 

moderately with TO displacement around 40%. In the case of ligand L4, it appears to bind weakly 

to G-quadruplex as the TO displacement is only 10%. The results are in agreement with the 

previous data obtained from CD melting curves with L1 and L2 strongly stabilizing the G-

quadruplex structure. Regarding the specificity of the ligands, a similar assay was performed 

in the presence of duplex DNA and the results indicate that ligands L1, L2 and L3 are quadruplex-

specific as the TO displacement in those cases is significantly lower, in the case of L3 is close 

to 0. Ligand L4 seems to bind to duplex DNA in a similar extent as to G-quadruplex, being 

therefore non-specific. The results support the data obtained from the PCR-stop assay. 

  

Figure 42 - TO displacement plot with the percentage of displacement of TO for each ligand with G-
quadruplex and duplex DNA. For ligands L1, L2 and L3 TO displacement is higher in the case of G4 DNA 
relatively to duplex, indicating that the ligands are quadruplex-specific and bind more strongly to this 
DNA topology. 
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Chapter 5 

 

Conclusions and Future Perspectives 

Since the discovery of the G-quadruplex, these high order structures have been proposed to 

have roles in many biological processes such as transcription, translation, recombination and 

genome stability. The biological relevance is reinforced by the presence of putative G-

quadruplex—forming sequences in human genome promoters, oncogenic promoters for 

instance, and telomeric regions. The unique structural features of G-quadruplex DNA present a 

remarkable opportunity for the targeting of DNA in a structure-specific manner, leading to 

increased selectivity for quadruplex over duplex DNA. Moreover, current research focuses on 

the targeting of a particular G-quadruplex structure over other quadruplexes, increasing the 

selectivity. Such selectivity is important in order to reduce cytotoxicity from duplex-binding 

and to increase the bioavailability of the compounds, since the drug loss from non-specific 

binding is prevented. 

The main objectives of this work were: i) firstly, the production of a novel G-quadruplex 

forming sequence and the assessment of its effective folding into a stable G-quadruplex 

structure; finally, the study of the interaction and stabilization of the G-quadruplex structure 

by novel acyclic quadruplex-ligands by a set biophysical  and biochemical techniques. 

The first approach for the production of a putative G-quadruplex—forming sequence shown to 

be unproductive, since the enzymatic digestion of the plasmid pPH600 was unsuccessful despite 

all the attempts made with different conditions, enzymes and approaches. The existence of 

several G-quadruplex motifs within the 604 bp insert of pPH600, possibly offered a higher 

degree of stabilization to the plasmid and resistance to enzymatic attack as was previously 

reported for G-quadruplex structures. To overcome such problems, a new plasmid based on 

pVAX1-lacZ was constructed, harboring a 58 bp putative G-quadruplex—forming sequence 

58Sγ3, previously selected based on bioinformatics data. The plasmid construction and 

production were successful implemented and a restriction fragment purification strategy was 

employed. The use of plasmid amplification and size-exclusion chromatography purification 

strategy was found to be a less expensive and labor-intensive approach when compared to 

chemical synthesis of DNA sequences, although being slower and with lower yields. Circular 

dichroism studies with 58Sγ3 suggested that the sequence folded into a parallel-stranded G-

quadruplex in 500 mM KCl buffer, with the characteristic signals at ≈240 nm and ≈265 nm, 

confirming the putative formation of DNA G-quadruplexes within the immunoglobulin switch 

regions. The same results were obtained in the presence of the G-quadruplex—inducing 

porphyrin TMPyP4. Moreover, four ligands derived from naphthalene and quinoline were tested 

to interact and stabilize the G-quadruplex structure. The naphthalene-based ligands L1, L2 and 
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L3 were found to bind and stabilize the 58Sγ3 G-quadruplex structure improving its thermal 

stability in 2.9, 4.1 and 0.3 °C, respectively. However, the quinoline-based ligand L4 seems to 

destabilize the structure, decreasing its melting temperature in 9.9 °C. PCR-stop assay shown 

that the naphthalene-based ligands are capable of inhibiting Taq DNA polymerase in a 

concentration-dependent manner. Ligand L4 produced dissimilar results, probably due to the 

DNA structure destabilization, being the amplification inhibition at 16 eq possibly due to 

unspecific inhibition. The use of the control mutated oligo 58Sγ3mu made it possible to 

discriminate whether the inhibition of Taq polymerase was due to quadruplex-binding. Ligands 

L1, L2 and L3 presented good results as no inhibition was detected, suggesting that the ligands 

were quadruplex-specific binders. The IC50 for ligands L1, L2 and L3 was 1.11, 0.89 and 0.94, 

respectively. Finally, using G4-FID assay it was further shown that ligands L1, L2 and L3 bound 

strongly and specifically quadruplex over duplex DNA. L3 was found to be the more selective 

ligand as no TO displacement was produced for duplex DNA. On the other hand, L4 bound in a 

similar extent to duplex DNA as to quadruplex, and with low affinity. The naphthalene-based 

ligands may therefore be potentially used as therapeutic agents to inhibit genes transcription 

in tumor cells. 

In the future, the newly discovered G-quadruplex needs to be validated in terms of structure 

and biological role (linking the G-quadruplex formation in the immunoglobulin S region and 

immunodeficiency, meiosis was already proposed as one of the involved processes as well), 

with high resolution techniques such as crystallography and NMR and in vivo assays, 

respectively. A comprehensive picture of ligand binding interactions can also be provided by 

the crystallographic techniques. The quadruplex ligands should be tested with other G-

quadruplex sequences such as telomeric or promoter quadruplexes and its cytotoxicity should 

be assessed. Moreover, the 58Sγ3 biosynthesis should be further optimized in order to obtain 

higher yields, probably through the use of new bacterial strains and plasmid combinations that 

offer higher production rates and easier DNA recovery. Relatively to the G-quadruplex field, 

still much effort is needed in the future, in order to clarify questions such as: what is the impact 

of the G-quadruplexes on gene expression? How can we discriminate its existence in vivo? Do 

the different topologies have an influence on the formation and regulation of G-quadruplex? 

Much work is still to be done. 
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