
UNIVERSIDADE DA BEIRA INTERIOR
Engenharia

Towards Preemptive Text Edition using Topic
Matching on Corpora

Acácio Filipe Pereira Pinto Correia

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática
(2º ciclo de estudos)

Orientador: Prof. Doutor João Paulo Cordeiro
Co-orientador: Prof. Doutor Pedro R. M. Inácio

Covilhã, outubro de 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UBibliorum repositorio digital da ubi

https://core.ac.uk/display/304000264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Dedicated to my beloved family.

iv

Acknowledgments

I have received tremendous support throughout my academic life, and this year was no excep-

tion. With the help of many people I was able to focus on the work at hand with ease. As such,

I would like to thank those who supported me and ensured I was able to finish this dissertation.

A special thanks to my family for always backing me up in my decisions and providing the nec-

essary conditions for me to work. Their love and support has been the most important factor in

my personal and professional development.

I am very grateful for the help and guidance that was given to me by both my supervisors,

without whom I would be unable to deliver this work. I would like to thank Professor João Paulo

Cordeiro and Professor Pedro Ricardo Morais Inácio for their wisdom and advisement.

I acknowledge that meeting with my friends has always been a good stress reliever, providing me

with lots of joy and fun. Thank you for all the moments that enriched my day. I am grateful to

João Neves for the interesting discussions that allowed me to develop a better critical thinking.

Finally, I would like to thank Musa Samaila, Manuel Meruje and specially Bernardo Sequeiros,

mostly for the great environment they have created in the laboratory and their help in the

development of this work.

v

vi

Resumo

Hoje em dia, a realização de uma investigação científica só é valorizada quando resulta na publi-

cação de artigos científicos em jornais ou revistas internacionais de renome na respetiva área

do conhecimento. Esta perspetiva reflete a importância de que os estudos realizados sejam

validados por pares. A validação implica uma análise detalhada do estudo realizado, incluindo

a qualidade da escrita e a existência de novidades, entre outros detalhes. Por estas razões,

com a publicação do documento, outros investigadores têm uma garantia de qualidade do es-

tudo realizado e podem, por isso, utilizar o conhecimento gerado para o seu próprio trabalho.

A publicação destes documentos cria um ciclo de troca de informação que é responsável por

acelerar o processo de desenvolvimento de novas técnicas, teorias e tecnologias, resultando na

produção de valor acrescido para a sociedade em geral.

Apesar de todas estas vantagens, a existência de uma verificação detalhada do conteúdo do

documento enviado para publicação requer esforço e trabalho acrescentado para os autores.

Estes devem assegurar-se da qualidade do manuscrito, visto que o envio de um documento

defeituoso transmite uma imagem pouco profissional dos autores, podendo mesmo resultar na

rejeição da sua publicação nessa revista ou ata de conferência. O objetivo deste trabalho é

desenvolver um algoritmo para ajudar os autores na escrita deste tipo de documentos, propondo

sugestões para melhoramentos tendo em conta o seu contexto específico.

A ideia genérica para solucionar o problema passa pela extração do tema do documento a ser

escrito, criando sugestões através da comparação do seu conteúdo com o de documentos cien-

tíficos antes publicados na mesma área. Tendo em conta esta ideia e o contexto previamente

apresentado, foi realizado um estudo de técnicas associadas à área de Processamento de Lingua-

gem Natural (PLN). O PLN fornece ferramentas para a criação de modelos capazes de representar

o documento e os temas que lhe estão associados. Os principais conceitos incluem n-grams e

modelação de tópicos (topic modeling). Para concluir o estudo, foram analisados trabalhos

realizados na área dos artigos científicos, estudando a sua estrutura e principais conteúdos,

sendo ainda abordadas algumas características comuns a artigos de qualidade e ferramentas

desenvolvidas para ajudar na sua escrita.

O algoritmo desenvolvido é formado pela junção de um conjunto de ferramentas e por uma

coleção de documentos, bem como pela lógica que liga todos os componentes, implementada

durante este trabalho de mestrado. Esta coleção de documentos é constituída por artigos com-

pletos de algumas áreas, incluindo Informática, Física e Matemática, entre outras. Antes da

análise de documentos, foi feita a extração de tópicos da coleção utilizada. Deste forma, ao

extrair os tópicos do documento sob análise, é possível selecionar os documentos da coleção mais

vii

semelhantes, sendo estes utilizados para a criação de sugestões. Através de um conjunto de

ferramentas para análise sintática, pesquisa de sinónimos e realização morfológica, o algoritmo

é capaz de criar sugestões de substituições de palavras que são mais comummente utilizadas na

área.

Os testes realizados permitiram demonstrar que, em alguns casos, o algoritmo é capaz de for-

necer sugestões úteis de forma a aproximar os termos utilizados no documento com os termos

mais utilizados no estado de arte de uma determinada área científica. Isto constitui uma evi-

dência de que a utilização do algoritmo desenvolvido pode melhorar a qualidade da escrita de

documentos científicos, visto que estes tendem a aproximar-se daqueles já publicados. Apesar

dos resultados apresentados não refletirem uma grande melhoria no documento, estes deverão

ser considerados uma baixa estimativa ao valor real do algoritmo. Isto é justificado pela pre-

sença de inúmeros erros resultantes da conversão dos documentos pdf para texto, estando estes

presentes tanto na coleção de documentos, como nos testes.

As principais contribuições deste trabalho incluem a partilha do estudo realizado, o desenho e

implementação do algoritmo e o editor de texto desenvolvido como prova de conceito. A análise

de especificidade de um contexto, que advém dos testes realizados às várias áreas do conheci-

mento, e a extensa coleção de documentos, totalmente compilada durante este mestrado, são

também contribuições do trabalho.

Palavras-chave

Artigos, Documentos Científicos, Language Tool, Latent Dirichlet Allocation, LDA, N-gram, Pro-

cessamento de Linguagem Natural, PLN, Qualidade, Sugestões, Wordnet.

viii

Resumo alargado

Introdução

Este capítulo serve de resumo ao trabalho descrito nesta dissertação, expandindo um pouco mais

o que foi exposto no resumo. A primeira subsecção apresenta o enquadramento da dissertação, o

problema que se pretende analisar e os objetivos propostos para este trabalho. Depois seguem-

se as principais contribuições, o estado da arte e o desenho e implementação do algoritmo

desenvolvido no contexto do projeto. Finalmente, as últimas subsecções apresentam os testes

mais importantes e as principais conclusões extraídas do trabalho realizado.

Enquadramento, Descrição do Problema e Objetivos

As sociedades evoluem através da criação, recolha e utilização do conhecimento. A sua utiliza-

ção permite o desenvolvimento de ideias que podem resultar emmelhorias na qualidade de vida.

Uma das principais fontes de conhecimento é o trabalho realizado pela comunidade científica.

Este consiste fundamentalmente na experimentação, com o objetivo de testar uma ideia, pro-

var um resultado teórico ou procurar novas soluções para um problema existente, entre outros.

Quando estas experiências apresentam resultados promissores, é escrito um artigo científico

que descreve a experiência realizada, as ideias que motivaram este desenvolvimento e procedi-

mentos seguidos para a sua realização. Estes artigos são depois submetidos a revistas e jornais

científicos da área, que são responsáveis por assegurar a qualidade do documento, garantindo

a existência de novidade na experiência e verificando a qualidade da escrita. Quando aceites,

os artigos publicados resultam na partilha de conhecimento dentro da comunidade científica,

possibilitando o posterior desenvolvimento desse estudo por outros investigadores, ou servindo

de inspiração para a realização de outros estudos. Este processo de publicação resulta num

ciclo de partilha de informação que é responsável por acelerar o progresso do conhecimento e

assegurar a correção do trabalho desenvolvido.

O facto de ser realizada uma verificação do trabalho apresentado implica um esforço acres-

cido para o investigador, visto que este deve assegurar a qualidade do documento. A falta de

qualidade de um documento pode transmitir uma imagem pouco profissional dos seus autores,

dificultando a sua publicação numa comunidade onde esta é a única forma de valorizar a inves-

tigação desenvolvida [CK11]. A escrita deste tipo de documentos é uma prática difícil [RKEO15],

requerendo um elevado grau de conhecimento da linguagem utilizada. Assegurar que o texto

escrito transmite corretamente a mensagem desejada pelo autor é uma das dificuldades senti-

das pelos investigadores, visto que o significado de um termo depende do contexto no qual este

está inserido. A utilização de uma terminologia específica para cada área do conhecimento é

outra dificuldade encontrada.

ix

Dado o problema apresentado, os principais objetivos deste trabalho são:

• O desenvolvimento de um algoritmo capaz de assistir um investigador na escrita de docu-

mentos científicos, onde o contexto do documento é tido em conta. Este desenvolvimento

pode ser repartido em dois sub-algoritmos: o primeiro é responsável por extrair o contexto

do documento e encontrar fontes de informação de acordo com esse contexto; e o segundo

é responsável pelo cálculo de sugestões de melhorias e de correções de acordo com a in-

formação recolhida das fontes selecionadas pelo primeiro;

• A avaliação do desempenho do algoritmo desenvolvido. Esta deve ser acompanhada da

configuração do algoritmo de forma a maximizar o seu desempenho, de acordo com os

resultados obtidos;

• A implementação de um editor de texto com a integração do algoritmo. Este último ob-

jetivo serve como prova de conceito da utilização do algoritmo num contexto realista.

Principais Contribuições

As principais contribuições resultantes do trabalho realizado no âmbito deste projeto podem ser

sumariamente descritas da seguinte forma:

• A primeira contribuição é a apresentação de um estudo ao estado da arte de conceitos

relacionados com o trabalho desenvolvido. Este estudo descreve alguns conceitos intro-

dutórios relativamente à área de Processamento de Linguagem Natural (PLN), incluindo

modelação de linguagem através de n-grams e algumas técnicas de smoothing, utilizadas

na resolução do problema da escassez de dados (data sparsity). A segunda parte do estudo

apresenta algoritmos de modelação de tópicos (topic modeling) para extração de temas

de uma coleção de documentos. O estudo contém ainda a apresentação de trabalhos

realizados na área da escrita e avaliação de documentos científicos;

• O algoritmo capaz de propor sugestões relativamente a melhorias ou correções, tendo em

conta o contexto específico do documento que se encontra sobre análise é outra contri-

buição importante. O código fonte do editor de texto que instancia este algoritmo irá ser

aberto, permitindo o estudo e desenvolvimento de melhorias pela comunidade;

• A aplicação desenvolvida como prova de conceito do algoritmo é ela própria uma contri-

buição visto que permitirá aos investigadores receber sugestões para os seus documentos;

• A análise dos resultados de um sistema que combina este conjunto específico de ferra-

mentas e técnicas de PLN não foi encontrada no estado da arte, sendo também esta uma

contribuição;

• Depois de desenvolvido o algoritmo foram realizados testes para determinar o desempenho

do mesmo. Os testes realizados utilizaram um conjunto de tabelas com n-grams de vários

x

géneros de Inglês. Este conjunto inclui: tabelas com n-grams de Inglês genérico; e várias

tabelas com n-grams específicos de cada uma das áreas contidas na coleção de documentos

utilizada. A variedade de contextos descrita pelas tabelas utilizadas permitiu a realização

de um pequeno estudo relativo à especificidade da escrita em documentos científicos.

A coleção de documentos recolhida é outra contribuição que resultou como colateral do tra-

balho realizado. Após uma extensa procura, sem sucesso, por coleções de documentos, que

apresentassem as características necessárias à realização deste trabalho, a solução encontrada

foi recolher documentos para a construção de uma nova coleção. Esta coleção segue uma apro-

ximação à distribuição uniforme relativamente ao número de documentos de cada área (e sub-

área), contendo mais de trinta mil documentos das áreas de Informática, Matemática, Física,

Estatística, Biologia Quantitativa e Finanças Quantitativas.

Estado da Arte

Os n-grams são o modelo mais utilizado para a representação do texto de um subconjunto de

uma linguagem [CG96]. Como tal, este é o principal foco da secção inicial do Capítulo 2, onde é

descrito o processo utilizado para o cálculo da probabilidade de expressões ou frases. Segue-se

uma descrição do problema, que se depara com o facto da maioria dos n-grams nunca ocorrer no

conjunto de treino (data sparsity), bem como da sua resolução através de técnicas de smoothing,

que permitem atribuir uma probabilidade a estes n-grams. São apresentadas algumas técnicas

de smoothing, culminando na versão modificada do Kneser-Ney que é aquela que apresenta

melhor desempenho [CG96]. Para concluir esta secção são apresentados os métodos utilizados

na avaliação deste tipo de técnicas.

A secção do Capítulo 2 que se segue é referente à modelação de tópicos (topic modeling) uti-

lizada na extração de temas de um conjunto de documentos. O resultado da modelação de

tópicos é a representação reduzida de cada um dos documentos na coleção analisada de acordo

com os tópicos extraídos. Os algoritmos apresentados nesta secção são classificados como al-

goritmos de generative probabilistic topic modeling, visto que assentam na ideia de que cada

documento na coleção foi gerado através de um processo chamado generativo (generative). O

objetivo destes algoritmos é o de reconstruir a estrutura associada ao processo generativo, onde

estão definidas as representações de cada um dos documentos, entre outras variáveis. São en-

tão apresentados alguns dos métodos utilizados para estimação desta estrutura. Esta secção

finaliza com a descrição de procedimentos que podem ser utilizados para comparar documentos

através da representação obtida por este processo.

Para terminar o Capítulo 2, o estudo do estado da arte apresenta um conjunto de trabalhos de

investigação realizados na área dos documentos científicos. Esta secção começa por apresentar

estudos que descrevem uma das estruturas mais utilizadas neste tipo de documentos, a estrutura

Introduction Methods Results and Discussion (IMRAD). Para esta estrutura, são apresentadas

xi

algumas teorias sobre o intuito dos segmentos apresentados em cada uma das secções. A secção

que se segue apresenta algumas características relacionadas com o estudo da qualidade de um

documento científico e uma ferramenta para análise automática de ensaios. Finalmente, é

descrito um conjunto de ferramentas desenvolvido com um intuito similar ao deste trabalho,

que é o de ajudar na escrita de documentos científicos.

Algoritmo

O algoritmo desenvolvido pode ser dividido em dois sub-algoritmos: o primeiro é responsável

por extrair os temas tratados no documento, de forma a conseguir selecionar um conjunto de

documentos cujos temas sejam semelhantes; e o segundo é responsável por calcular sugestões

para melhoramentos e correções de palavras num documento, de acordo com os documentos

selecionados pelo primeiro sub-algoritmo. Este primeiro sub-algoritmo baseia-se principalmente

na utilização de modelação de tópicos (topic modeling) para encontrar documentos semelhantes

num corpus. O segundo recorre a um conjunto de técnicas para criar uma lista de candidatos

a possíveis substituições de palavras existentes no documento. Depois, através da utilização

de um modelo de n-grams pré calculado nos documentos selecionados, o algoritmo propõe ao

utilizador os três candidatos mais prováveis de aparecer.

Testes

Os testes realizados tinham como principal objetivo avaliar o desempenho do algoritmo desen-

volvido. Foram realizados testes de dois tipos: objetivos, onde foram avaliadas as sugestões

propostas pelo algoritmo em documentos com alterações realizadas automaticamente; e subje-

tivos, através da avaliação subjetiva de várias versões de um conjunto de parágrafos, em que

alguns aplicavam as sugestões propostas pelo algoritmo.

Os testes objetivos verificavam se o algoritmo era capaz de propor como sugestões as palavras

que estavam no documento antes da sua alteração. A avaliação foi realizada de acordo com o

Mean Reciprocal Rank (MRR), permitindo uma análise da correção das palavras tendo em conta a

posição em que a palavra correta ocorre, valorizando pouco palavras que aparecem nas posições

mais baixas da lista. O melhor valor de MRR obtido diz respeito à utilização dos n-grams de todos

os documentos do conjunto de treino de Informática, como fonte para a análise dos documentos

do conjunto de teste de Informática.

Os testes subjetivos analisaram a opinião de um pequeno conjunto de sujeitos em relação a

várias versões de um mesmo conjunto de parágrafos. O primeiro conjunto tinha sido escrito

pelo autor deste documento sem recorrer a quaisquer análises externas. O segundo resultou

da aplicação da melhor sugestão proposta pelo algoritmo para todas as palavras cuja própria

palavra não estivesse na lista de sugestões, para o conjunto original. O terceiro resulta de um

processo semelhante ao segundo com ummaior grau de liberdade, onde a aplicação de sugestões

xii

só era feita nos melhores casos, permitindo ainda a conjugação das sugestões propostas. Os

resultados destes testes demonstraram que a maioria dos sujeitos concordou que os parágrafos

provenientes deste último processo eram aqueles cujo vocabulário era o melhor.

Conclusões e Trabalho Futuro

Os objetivos foram atingidos, sendo o principal o desenvolvimento de um algoritmo com o ob-

jetivo de ajudar na escrita de artigos científicos e os restantes a sua avaliação e posterior

integração num editor de texto.

Os resultados obtidos através dos testes objetivos apresentam uma clara aproximação do docu-

mento analisado aos documentos utilizados para o cálculo das sugestões. No melhor caso, os

testes demonstraram que o algoritmo era capaz de recuperar mais de um terço das palavras

originais que foram alteradas automaticamente. Isto é uma indicação de que algumas caracte-

rísticas linguísticas estão a ser capturadas pelo algoritmo.

Os testes subjetivos apresentaram resultados menos claros, onde, ainda que por pouco, a mai-

oria dos sujeitos selecionou mais vezes os parágrafos sem nenhuma das alterações fornecidas

pelo algoritmo. Uma possível justificação depara-se com o facto da lista de sugestões utilizada

conter todos os candidatos, sem uma seleção prévia dos três mais prováveis. Isto pode ter indu-

zido em alterações onde a palavra substituta era menos provável do que aquela já apresentada

nos parágrafos originais.

A combinação dos resultados obtidos em ambos os tipos de teste parecem indicar que a utilização

do algoritmo pode ajudar a ultrapassar algumas das dificuldades sentidas pelos investigadores

aquando da escrita de documentos científicos. No entanto, esta melhoria está dependente da

realização de uma análise detalhada das sugestões propostas, tornado este processo moroso e

demorado. Como tal, o melhor será talvez recorrer às sugestões apenas em palavras onde o

autor tenha dúvidas, diminuindo o esforço necessário mas continuando a beneficiar do seu uso.

xiii

xiv

Abstract

Nowadays, the results of scientific research are only recognized when published in papers for in-

ternational journals or magazines of the respective area of knowledge. This perspective reflects

the importance of having the work reviewed by peers. The revision encompasses a thorough

analysis on the work performed, including quality of writing and whether the study advances

the state-of-the-art, among other details. For these reasons, with the publishing of the docu-

ment, other researchers have an assurance of the high quality of the study presented and can,

therefore, make direct usage of the findings in their own work. The publishing of documents

creates a cycle of information exchange responsible for speeding up the progress behind the

development of new techniques, theories and technologies, resulting in added value for the

entire society.

Nonetheless, the existence of a detailed revision of the content sent for publication requires

additional effort and dedication from its authors. They must make sure that the manuscript is

of high quality, since sending a document with mistakes conveys an unprofessional image of the

authors, which may result in the rejection at the journal or magazine. The objective of this

work is to develop an algorithm capable of assisting in the writing of this type of documents, by

proposing suggestions of possible improvements or corrections according to its specific context.

The general idea for the solution proposed is for the algorithm to calculate suggestions of im-

provements by comparing the content of the document being written in to that of similar pub-

lished documents on the field. In this context, a study on Natural Language Processing (NLP)

techniques used in the creation of models for representing the document and its subjects was

performed. NLP provides the tools for creating models to represent the documents and identify

their topics. The main concepts include n-grams and topic modeling. The study included also an

analysis of some works performed in the field of academic writing. The structure and contents

of this type of documents, the presentation of some of the characteristics that are common to

high quality articles, as well as the tools developed with the objective of helping in its writing

were also subject of analysis.

The developed algorithm derives from the combination of several tools backed up by a collection

of documents, as well as the logic connecting all components, implemented in the scope of this

Master’s. The collection of documents is constituted by full text of articles from different areas,

including Computer Science, Physics and Mathematics, among others. The topics of these doc-

uments were extracted and stored in order to be fed to the algorithm. By comparing the topics

extracted from the document under analysis with those from the documents in the collection,

it is possible to select its closest documents, using them for the creation of suggestions. The

xv

algorithm is capable of proposing suggestions for word replacements which are more commonly

utilized in a given field of knowledge through a set of tools used in syntactic analysis, synonyms

search and morphological realization.

Both objective and subjective tests were conducted on the algorithm. They demonstrate that,

in some cases, the algorithm proposes suggestions which approximate the terms used in the doc-

ument to the most utilized terms in the state-of-the-art of a defined scientific field. This points

towards the idea that the usage of the algorithm should improve the quality of the documents,

as they become more similar to the ones already published. Even though the improvements to

the documents are minimal, they should be understood as a lower bound for the real utility of

the algorithm. This statement is partially justified by the existence of several parsing errors

both in the training and test sets, resulting from the parsing of the pdf files from the original

articles, which can be improved in a production system.

The main contributions of this work include the presentation of the study performed on the state

of the art, the design and implementation of the algorithm and the text editor developed as a

proof of concept. The analysis on the specificity of the context, which results from the tests

performed on different areas of knowledge, and the large collection of documents, gathered

during this Master’s program, are also important contributions of this work.

Keywords

Language Tool, Latent Dirichlet Allocation, LDA, Natural Language Processing, NLP, N-gram,

Papers, Quality, Scientific Documents, Suggestions, Wordnet.

xvi

Contents

1 Introduction 1

1.1 Motivation and Scope . 1

1.2 Problem Statement and Objectives . 3

1.3 Adopted Approach for Solving the Problem . 3

1.4 Main Contributions . 4

1.5 Dissertation Organization . 5

2 State of the Art 7

2.1 Introduction . 7

2.2 General Language Modeling . 7

2.2.1 N-grams . 7

2.2.2 Smoothing . 10

2.2.3 Performance Evaluation . 14

2.3 Topic Modeling . 14

2.3.1 Plate Notation and Terminology . 15

2.3.2 Generative Probabilistic Topic Modeling 15

2.3.3 Estimation methods . 18

2.3.4 Number of Topics and Evaluation . 19

2.3.5 Document Comparison . 19

2.4 Scientific Text Standards . 20

2.4.1 Structure . 20

2.4.2 Quality . 22

2.4.3 Tools . 23

2.5 Conclusion . 24

3 Design and Implementation 27

3.1 Introduction . 27

3.2 Context and Similar Documents . 27

3.3 Corpus . 28

3.4 Context Based Suggestions . 32

3.4.1 Synonyms . 32

3.4.2 N-grams . 33

3.4.3 Previous and Next Words . 33

3.4.4 Morphological Realization . 33

3.4.5 Prepositions . 33

xvii

3.5 Used Tools . 34

3.5.1 MALLET . 34

3.5.2 LanguageTool . 35

3.5.3 Wordnet - JWI . 35

3.5.4 Stanford Parser . 35

3.5.5 Other Tools . 36

3.6 Algorithm . 36

3.6.1 Context and Similar Documents . 36

3.6.2 Sentence Level . 37

3.6.3 Word Level . 37

3.7 Conclusion . 39

4 Tests and Prototype 43

4.1 Introduction . 43

4.2 Objective Testing . 43

4.2.1 Evaluation . 43

4.2.2 Discussion of Results . 44

4.2.3 Failed Cases . 47

4.3 Subjective Testing . 47

4.4 Proof of Concept . 50

4.5 Conclusion . 52

5 Conclusions and Future Work 53

5.1 Objectives . 53

5.2 Results and Conclusions . 54

5.3 Future Work . 55

Bibliography 57

A Software Engineering 63

A.1 Introduction . 63

A.2 Requirement Analysis . 63

A.2.1 Functional Requirements . 63

A.2.2 Non-functional Requirements . 64

A.3 Use Cases . 65

A.3.1 Open, Edit and Save Text Files . 65

A.3.2 Change Proximity Level . 65

A.3.3 Interact with Suggestions . 66

A.3.4 Force Analysis . 67

xviii

A.4 Activity Diagrams . 67

A.5 Class Diagrams . 68

B Results 71

B.1 Introduction . 71

B.2 Parameters . 71

B.3 Objective Tests . 71

B.4 Subjective Tests . 74

xix

xx

List of Figures

2.1 Graphical model representation of Probabilistic Latent Semantic Indexing (PLSI). 16

2.2 Graphical model representation of Latent Dirichlet Allocation (LDA). 17

2.3 Graphical model representation of Hierarchical Dirichlet Processes (HDP). 17

2.4 Representation of the IMRAD organization. 22

3.1 Context and Similar Documents sub-algorithm. 28

3.2 General procedure to analyze a document. 40

4.1 Screenshot of the text editor developed in the scope of this project. 51

A.1 Representation of the use case for opening, editing and saving files. 65

A.2 Representation of the use case for changing the proximity level of similar docu-

ments. 66

A.3 The use case for the user interaction with a suggestion. 66

A.4 A representation of the use case for forcing an analysis. 67

A.5 Activity diagram representative of the activities responsible for the main functions

provided by the system. 68

A.6 Class diagram for the system from an implementation perspective. 70

B.1 Probability of the Computer Science and Mathematics validation sets for different

number of topics. 71

xxi

xxii

List of Tables

3.1 Document distribution for each area of knowledge in the corpus. 30

3.2 N-grams obtained from the Example 4. 31

3.3 Example of five topics extracted from the physics documents of the corpus. . . . 34

3.4 N-grams obtained from the Example 8. 38

4.1 Results for the tests with 1030 documents from Mathematics using the math table,

with a document threshold of 6.0. 45

4.2 Results for the tests with 1103 documents from Computer Science using the csTotal

table. 46

4.3 Results for 1031 documents from Mathematics using the 3gram table. 46

4.4 Results for 1031 documents from Mathematics using the csCut table. 46

4.5 Summary of the results for the automatic tests. 47

4.6 Results for the subjective testing of the suggestions proposed by the algorithm. . 50

A.1 A description of the use case for opening, editing and saving files. 65

A.2 Description of the use case for changing the proximity level of similar documents. 66

A.3 Description of the user interaction with a suggestion. 67

A.4 Description of the use case for forcing a new analysis 67

A.5 Description of the main activity diagram. 68

B.1 Results for the tests with 1104 documents from Computer Science using the cs

table. 72

B.2 Results for the tests with 1103 documents from Computer Science using the csTotal

table. 72

B.3 Results for the tests with 1103 documents from Computer Science using the csCut

table. 72

B.4 Results for the tests with 1103 documents from Computer Science using the math

table. 72

B.5 Results for the tests with 1105 documents from Computer Science using the mathTotal

table. 72

B.6 Results for the tests with 1103 documents from Computer Science using the mathCut

table. 72

B.7 Results for the tests with 1103 documents from Computer Science using the 3gram

table. 72

B.8 Results for the tests with 1029 documents from Mathematics using the cs table.

with a document threshold of 6.0. 73

xxiii

B.9 Results for the tests with 1031 documents from Mathematics using the csTotal

table. 73

B.10 Results for the tests with 1031 documents from Mathematics using the csCut table. 73

B.11 Results for the tests with 1030 documents from Mathematics using the math table.

with a document threshold of 6.0. 73

B.12 Results for the tests with 1033 documents from Mathematics using the math table.

with a document threshold of 5.0. 73

B.13 Results for the tests with 1033 documents from Mathematics using the math table.

with a document threshold of 4.0. 73

B.14 Results for the tests with 1035 documents from Mathematics using the math table.

with a document threshold of 3.0. 73

B.15 Results for the tests with 1030 documents from Mathematics using the mathTotal

table. 74

B.16 Results for the tests with 1029 documents from Mathematics using the mathCut

table. 74

B.17 Results for the tests with 1031 documents from Mathematics using the 3gram table. 74

xxiv

Acronyms

ACM Association for Computing Machinery

AES Automatic Essay Scoring

API Application Programming Interface

CARS Create A Research Space

CCS Computing Classification System

COCA Corpus of Contemporary American English

DBMS Database Management System

DP Dirichlet Process

EM Expectation Maximization

HDP Hierarchical Dirichlet Processes

HTML5 HyperText Markup Language 5

IMRAD Introduction Methods Results and Discussion

JWI Java Wordnet Interface

KL Kullback Leibler

LDA Latent Dirichlet Allocation

MALLET MAchine Learning for LanguagE Toolkit

MCMC Monte Carlo Markov Chain

MIT Massachusetts Institute of Technology

ML Maximum Likelihood

MRR Mean Reciprocal Rank

NLP Natural Language Processing

OS Operating System

PEG Project Essay Grade

PLSI Probabilistic Latent Semantic Indexing

POS Part of Speech

xxv

TEM Tempered Expectation Maximization

TNG Topical N-Gram

UBI Universidade da Beira Interior

XIP Xerox Incremental Parser

xxvi

Nomenclature

DT Determiner

IN Preposition or subordinating conjunction

JJ Adjective

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

xxvii

xxviii

Chapter 1

Introduction

This document concerns the work performed under the scope of the project for attaining a

Master’s degree in Computer Science and Engineering at the Universidade da Beira Interior (UBI).

The main subject of the dissertation is the study and development of an algorithm to assist in

the writing of scientific documents. As a proof of concept, the implementation of the algorithm

was included in a very simple text editing tool, analyzed later in the document. The subsequent

sections of the chapter describe the scope of this dissertation, the motivation that led to the

realization of the project, the associated problem and the fundamental objectives. Afterwards,

the chapter includes a description of the adopted approach, main contributions and a section

with the organization of the remaining parts of the document.

1.1 Motivation and Scope
Societies evolve through the creation, gathering and use of knowledge. This knowledge can

then be levered to create tools and develop ideas that sometimes improve quality of life. The

main point of origin for this knowledge is the scientific community and its experiments, which

are performed with the goal of testing an idea, proving a theoretical result, searching for new

algorithms, tools or novel adaptations for using old tools, among others. When an experiment

presents promissory results, a scientific paper describing the main findings, ideas and proce-

dures that led to such development is written and submitted to scrutiny. By submitting these

documents to scientific journals and magazines of the area, the work gets analyzed by scientific

committees that verify the novelty, scientific correctness, and quality of writing of the proposed

text. If accepted, the publication results in the sharing of the experiment with the remaining

scientific community, allowing for other investigators to work on those findings and improving

that work, or taking inspiration for new developments in that or different areas. This process

results in a cycle of information sharing responsible for speeding up the progress of science and

ensuring the correctness of the work performed.

“Research writing is classified as a type of academic writing. Therefore, it is considered for-

mal writing.” [NSH12]. Learning to write in this context is a challenging task [RKEO15], since

there are many important factors that should be thoroughly considered, including the selec-

tion of appropriate vocabulary, correct use of grammar and following a strict writing struc-

ture. These factors and the writing of persuasive arguments, necessary for effectively con-

veying information, are specially hard for beginners [UU15, LS15] and non-native English re-

1

searchers [NSH12, CK11, LS15].

Since the time humans realized the true potential of computers to these days, we have been

restricted to a set of predefined interactions with machines. These interactions are usually per-

formed through the selection of options or done by the introduction of very specific instructions.

Deviating from these interactions results in failing to perform the desired actions. The objec-

tive of Natural Language Processing is to retrieve information from a natural language input. In

theory, this could allow a user to introduce text or speak to a machine, without restrictions, and

the machine would be capable of identifying the intention of the user and responding accord-

ingly. This scenario would provide users with major improvements both in terms of comfort as

well as effectiveness in terms of response. These serve as motivation for abundant researches

and studies in this area, each tackling a different task, including analysis on the semantic and

extraction of the syntactic structure of an input. However, due to the complexity inherent to

the study of natural languages, the creation of a model capable of capturing a natural language

in its entirety is still an utopia, continuing limited to smaller tasks. Polisemy, which is the pos-

sibility of words having more than one meaning, depending on the context, and ambiguity of

interpretation are just some examples of problems that investigators have to face in this field

of expertise, justifying the limitations in progress made so far.

In this context and while fully understanding natural language is still just an idea, suggestions

have been introduced as a way of improving humans interaction both in speed and efficiency,

as in the cases of word completion and prediction available in most mobile devices [vdBB08].

Their utilization can also impact effectiveness, by providing users with what they most likely

need or want, as is the case of search engines. These advantages have molded the human mind

into accepting suggestions as a beneficial tool for their interactions, paving the way for new

tools and technologies that implement this sort of techniques.

The aforementioned reasons are on the basis of the proposal for the development of an algo-

rithm designed to provide the user with suggestions for improvements in academic texts. The

suggestions should include corrections for grammatical errors, such as orthographic errors, syn-

tax and semantics, already provided by some tools. Nonetheless, the main focus of this work

concerns the misuse of terms in a specific field of knowledge. This algorithm, and its inher-

ent study, should improve the understanding on the specificity of the syntactic structures in

academic writing.

The area that best describes the scope of this Computer Science and Engineering Master’s project

is natural language processing, as it focuses on presenting suggestions for possible improvements

to the text being written in the academic field. Under the 2012 version of the ACM Computing

Classification System (CCS), the de facto standard for Computer Science, the scope of this dis-

sertation can be described by the following topics:

2

• Computing methodologies~Natural language processing;

• Information systems~Language models;

• Information systems~Document topic models;

• Applied computing~Text editing.

1.2 Problem Statement and Objectives
The problem addressed in this dissertation is closely related with the difficulties that investi-

gators have to face when writing scientific documents. A major difficulty is ensuring that a

sentence conveys the exact meaning the author intends to. Since natural languages are in-

trinsically ambiguous and imprecise, words can have multiple interpretations depending on the

context. Correctly selecting the appropriate words requires experience and knowledge on the

language being used. This knowledge is something most non-native English speakers lack, mak-

ing them more susceptible to incorrectly select words which have a meaning that, in the given

context, is different from the one intended.

The terminology is yet another difficulty faced when entering a new area of expertise. Each

area makes use of specialized terms and expressions, which are used in detriment of others with

a similar meaning. These words and expressions evolved alongside the area, and now provide

a very specific meaning, which is difficult to express in a different way. Failing to use them

creates inconsistent manuscripts, hardly publishable or accepted by other investigators, since

they transmit the image of an unprofessional investigation.

Given the problem statement, the main objectives proposed for this dissertation are:

1. The development of an algorithm for assisting the writing of scientific documents. The

algorithm can be divided into two sub-algorithms: one should be capable of identifying

the context of a document and searching for related sources; and the second should cre-

ate suggestions for term replacement and correction of text, according to the context

recovered by the first one;

2. The next objective is the evaluation of the performance and fine tuning of the algorithm;

3. The final objective serves as a proof of concept, which is the development of a simple text

editing tool with the integration of the aforementioned algorithm.

1.3 Adopted Approach for Solving the Problem
The approach taken to solve this problem and meeting the objectives, included the following

steps:

3

1. The first step was to study the state of the art, including NLP concepts, techniques and

technologies. This was followed by a study into the specific area of academic writing,

analyzing the work of other investigators and gathering the knowledge which could be

levered for the current research;

2. The study mentioned in the previous step, allowed for a better understanding on which

techniques and technologies could be used for each of the desired purposes. With this

knowledge, the design of the algorithm became the next step;

3. Both the language modeling and the topics modeling, used in the extraction of the context

of a document, required a corpus of scientific documents. To fulfill this need the next step

became the search for a corpus with the desired characteristics;

4. After a thorough search without obtaining a viable corpus, an alternative procedure con-

sisting of gathering enough documents for the creation of a corpus that could fit the spe-

cific needs of this work was pursued;

5. With the corpus complete, the next step was to study the extraction of n-grams from the

collection of scientific papers, and, subsequently, to calculate and store the extracted

n-grams;

6. The exploration of tools that implemented the techniques and technologies defined in the

design of the algorithm formed the next steps;

7. The remaining step for completing the implementation of the algorithm was the combina-

tion of all the selected tools;

8. The eighth step was the testing and, after analyzing the results, fine-tunning of the algo-

rithm;

9. The next to last step consisted on the software engineering process for the implementation

of a text editor that would integrate the developed algorithm;

10. The final step was the implementation of the text editor with the inclusion of simple

functions common to most text editors.

1.4 Main Contributions
The work and research performed within the context of this project resulted in a set of contri-

butions for the advance of scientific knowledge, which can be summarized as follows:

• The first contribution is the presentation of a brief study on the related work. This study

features general concepts related to NLP theory and techniques, including a discussion

about n-grams and smoothing techniques. A second section presents topic modeling algo-

rithms used in the extraction of topics from a collection of documents. Given the nature

4

of the dissertation the study then shifts to the specific realm of academic writing, with a

more refined development;

• The sub-algorithm developed for the identification of a context and finding related sources

and the sub-algorithm that calculates suggestions, according to the defined context, are

another important contribution. The complete source code of the text editing tool will be

open source, allowing for the study and improvement of the algorithm by the community;

• The delivery of an application capable of assisting the users in the writing of scientific

documents with some success, integrating the aforementioned algorithm, constitutes a

contribution as well;

• The combination and analysis of the results provided by a system formed with several

known techniques and tools for NLP is not described in the literature, to the best of the

knowledge of the author;

• After the development of the algorithm, test suites were created with the purpose of

refining the results. The tests suites included tests on a variety of tables, with n-grams

extracted from different subsets of English. The aforementioned tables comprised: a table

with one million of the most frequent trigrams from generic English, from the Corpus of

Contemporary American English (COCA); and one set of tables for each of the contemplated

disciplines, with the n-grams from the respective documents. The variety of contexts

presented in the tables allowed studying the importance of the specificity of the context

on academic writing.

The corpus of scientific documents is another contribution that resulted as a bi-product of this

work. During the planning phase it became clear that the extraction of context from a docu-

ment was necessary for providing appropriate suggestions. The use of topic modeling for this

purpose required a corpus of scientific documents for the creation of topics. An extensive search

for existing corpus proved unfruitful when the only corpus found, with the desired character-

istics, SciTex [DOKLK+13], was unavailable for download. The solution followed was to create

a corpus by gathering documents from the electronic archive, arXiv [Lib98]. The corpus fol-

lows an approximation to an uniform distribution over the areas contemplated, including over

thirty thousand scientific documents from Computer Science, Mathematics, Physics, Statistics,

Quantitative Biology and Quantitative Finance.

1.5 Dissertation Organization
The dissertation is divided into five main chapters and two appendices. Their contents can be

briefly described as follows:

• Chapter 1 — Introduction — describes the context and motivation that led to the devel-

5

opment of this work, the problem to be addressed and the proposed objectives. These

sections are followed by the adopted approach for solving the problem, the main contri-

butions to the advance of knowledge and the document organization;

• Chapter 2 — State of the art — presents concepts and techniques related to NLP. It

then focuses on presenting some of the work done in the specific area of academic writing.

A comparative analysis on similar tools and their functionalities is also included in this

chapter;

• Chapter 3 — Design and Implementation — presents the developed algorithm, the com-

ponents involved and how they interact with each other. The corpus is yet another subject

contained within this chapter;

• Chapter 4 — Tests and Prototype — contains the specification of the tests performed to

evaluate the algorithm and the discussion of the respective results. These are divided into

objective and subjective test sets. The remaining parts of the chapter introduce the text

editing tool and describes its functioning;

• Chapter 5 — Conclusions and Future Work— discusses the results, analyses the objectives

that were accomplished, and presents some of the reasons that justify those that were

not met. The chapter then concludes with the description of a small set of features and

improvements that could be used to extend and improve this work;

• Appendix A — Software Engineering — describes the process of software engineering

followed in the development of the text editing tool, used as a proof of concept for the

developed algorithm. The appendix includes the requirement specification, use cases and

both activity and class diagrams;

• Appendix B — Results — presents the results for all the tests performed on the algorithm,

and the resulting sections used in the subjective testing.

6

Chapter 2

State of the Art

2.1 Introduction
This chapter presents the main methods and techniques related with this work. Helping authors

achieve a high standard quality in terms of the linguistic constructions used was the primary con-

cern and motivation for this work. Therefore, a study on NLP related issues, such as language

modeling and topic modeling, is presented along with its corresponding importance duly justi-

fied. The chapter starts with a general study on NLP, namely language modeling (Section 2.2).

It then proceeds with the description of techniques used in topic modeling (Section 2.3) and

with a study focused on scientific text standards (Section 2.4).

2.2 General Language Modeling
Language Modeling concerns mainly the knowledge and usage of language patterns in human lan-

guage, which is a dynamic phenomenon, constantly evolving through time [Vog00]. For instance,

the Portuguese language used by Luís de Camões, or the English language from William Shake-

speare, are substantially different from their contemporary versions. Language is a communi-

cation protocol grounded by social convention and community agreement. Language evolves

over time. Even in a given time period, different language patterns are employed in different

text genres, as one can easily recognize by comparing texts from soap operas with scientific

texts. Even within the scientific domain, there are variations where different stylistic features

and sentence patterns are more likely employed in certain areas than others. This work is es-

pecially focused on the study and use of the linguistic features characterizing scientific text

production, in order to assist an author in his or her work. The information presented in this

section is primarily based on [CG96, JM00], following a similar structure and presentation.

2.2.1 N-grams

In general, language modeling is grounded on discovering the probability of a sequence of words

in a predefined context. Considering a sentence s constituted of l words (w1w2 . . . wl), by fol-

lowing the chain rule of probability, one could calculate the joint probability with:

P(s) = P(w1)P(w2|w1)P(w3|w1w2) . . .P(wl|w1 . . . wl−1) =
l∏

i=1

P(wi|w1 . . . wi−1), (2.1)

7

which represents the P(s) as the product of the conditional probability of each word given every

previous word.

Due to the practical difficulties in calculating the probability of every sequence necessary in the

computation of larger sequences of text using Equation 2.1, a simplification was created based

on the Markov Assumption [JM00]. The Markov Assumption determines that the probability of a

future event (word) can be predicted by its nearest past, instead of its full past [JM00]. With

this assumption, one may calculate the probability of a bigger sequence resorting only to the

n− 1 words previous to each word, instead of using all the previous words. These sequences of

n words (wi plus the n − 1 previous words) used in the calculation of the probability of bigger

sequences are called n-grams, presenting the most widely-used language models [CG96] (where

n is the order of the model). The adaptation of Equation 2.1 with the use of n-grams is:

P(s) ≈
l∏

i=n

P(wi|wi−n+1 . . . wi−1). (2.2)

In Equation 2.2, i starts at n because n-grams are being used and, as such, an n-gram needs n−1

previous words, which do not exist before word n. To calculate the probability of a sentence

starting with i = 1, one could consider the existence of n − 1 special words preceding the

sentence. For similar reasons one may also consider adding special words after the sentence.

In this context, word sequences of the type w1w2 . . . wl are usually represented as wl
1.

Given that with each operation the probability tends to reduce, using the Equation 2.2 in real

situations would easily result in underflow. Considering the computational limitations, the prob-

ability of an expression is usually calculated by the sum of the logarithm of the probability of

each of its n-grams as in:

log(P(s)) ≈
l∑

i=1

log(P(wi|wi−1
i−n+1)). (2.3)

With Equation 2.3, one can compute the probability of large sequences of text based on the

probability of n-grams, but notice that the definition of how to compute the probability of an

n-gram was not yet presented. The probability of a given n-gram can be estimated by dividing

the count of that n-gram in a collection (corpus) of texts by the count of its prefixed (n-1)-gram,

previously computed [JM00], as in:

P(wi|wi−1
i−n+1) =

c(wi
i−n+1)

c(wi−1
i−n+1)

, (2.4)

where c(wi−1
i−n+1) is the count of the times the previous words occur in the corpus. This value

is more commonly represented by
∑

wi
c(wi

i−n+1), in the sense that it can be the sum of the

counts for all n-grams where the previous words are wi−1
i−n+1, with the advantage that this will

8

work even for unigrams. This form of estimation is called the Maximum Likelihood (ML), because

it provides the highest possible probability for the data that appeared on the corpus (the training

data) [CG96].

One is now capable of computing the probability of any sequence of text. As a toy example1,

consider that the text in Example 1 is the corpus and that the objective is to calculate the

probability of the second sentence (They live in New York.) using trigrams (n-grams where

n = 3).

Example 1. We live in San Francisco, more precisely near San Francisco bay.

They live in New York.

Their parents live outside, in the middle of the jungle.

Using Equation 2.2 the probability of the sentence can be written as:

P(s) = P(”in”|”They” ”live”)P(”New”|”live” ”in”)P(”Y ork”|”in” ”New”),

whose individual values can be obtained resorting to Equation 2.4, as follows:

P(”in”|”They” ”live”) =
c(”They live in”)
c(”They live”)

=
1

1
= 1,

P(”New”|”live” ”in”) =
c(”live in New”)

c(”live in”)
=

1

2
= 0.5,

P(”Y ork”|”in” ”New”) =
c(”in New Y ork”)

c(”in New”)
=

1

1
= 1.

Replacing those values in the equation, the result is:

P(”They live in New Y ork.”)) = 1 ∗ 0.5 ∗ 1 = 0.5.

The n-gram probabilities are modeled from a training corpus, which makes the corpus a very

important subject of study. Using a corpus too specific for the calculations may lead to failing to

generalize the n-grams for new sentences. On the other hand, if the corpus is too broad, the n-

grams may not capture the specificity of the domain one might be interested in modeling [JM00].

Even though language modeling through n-grams is a somewhat simple process, there are details

that need to be adjusted depending on the context. Punctuation is one such example. Whether

punctuation should be represented in the n-grams, or simply ignored, is highly dependent on the

context. Author-identification and spelling error detection are just some of the examples where

punctuation is fundamental to the process. The decision of whether the capture of n-grams

1Some important details are ignored for the sake of simplification.

9

should be done in a case sensitive fashion, or not, is yet another important detail that needs to

be accounted for. The representation of each word form of the same abstraction, separately or

together, as for instance cat and cats, should also be considered given the resulting impact of

such change [JM00].

2.2.2 Smoothing

The fact that the n-grams are calculated from a finite corpus results in many cases of n-grams

which do not get represented, thus obtaining a probability of zero when they should not. This

problem is called data sparsity.

Smoothing is a process used to assign a value to some of the n-grams with zero probability,

re-evaluating and adjusting the probability of others with low and high incidence [JM00]. The

simplest case of smoothing is the Add-One smoothing, which is the addition of one to the count

of each n-gram in order to prevent n-grams from having zero probability. With these changes

applied to Equation 2.4 the result is:

Padd(wi|wi−1
i−n+1) =

1 + c(wi
i−n+1)

|V |+
∑

wi
c(wi

i−n+1)
, (2.5)

where wi
i−n+1 are all the words from the n-gram. Adding one to the count of each n-gram would

result in an increase of the total probability of n-grams, which is balanced by adding |V | in the

denominator. V denotes the vocabulary containing all the words that should be considered, and

|V | is the number of words in the vocabulary. Once again, considering that Example 1 is the

corpus, using the ML to estimate the probabilities of the 2-grams in live and in middle would

result in 0, while using Equation 2.5:

Padd(”live”|”in”) =
1 + c(”in live”)
|V |+ c(”in”)

=
1 + 0

19 + 3
=

1

23
= 1/22 and

Padd(”middle”|”in”) = 1 + c(”in middle”)
|V |+ c(”in”)

=
1 + 0

19 + 3
=

1

22
= 1/23.

This particular case of smoothing is actually worse than not using smoothing at all [JM00], mainly

due to the fact that adding one to each n-gram represents a significant change in the mass,

removing weight from the most important cases.

When the existing information on some n-gram is insufficient, resorting to lower order models

might provide useful information on the higher order models [CG96]. Following upon this idea,

some smoothing techniques use, for instance (n-1)-grams to help estimate the probability of

some n-grams. This can be applied recursively, using the probability of (n-2)-grams to help

estimate the probability of (n-1)-grams, and so on. There are two ways of resorting to this

n-gram hierarchy [JM00], interpolation or backof. In the case of interpolation, the information

10

from the hierarchy is always used to estimate the probability of an n-gram as follows:

Pinterp(wi|wi−1
i−n+1) = λP(wi|wi−1

i−n+1) + (1− λ)Pinterp(wi|wi−1
i−n+2). (2.6)

Interpolation continues until it reaches the unigram case, which is directly calculated from its

probability. The value of λ ≤ 1 is obtained from the training on held out data. Instead of using

a single value for all n-grams, a specific value of λ for each (n-1)-gram (λwi−1
i−n+1

) could provide

a more refined calculation of the probability. However, training each individual value would

require a large amount of data and, as such, in most cases, buckets are created, attributing the

same values of λ to groups of n-grams.

As for backof, it only resorts to the hierarchy when the count for the n-gram is zero, which

results in:

P(wi|wi−1
i−n+1) =

P(wi|wi−1
i−n+1), if P(wi|wi−1

i−n+1) > 0

α1P(wi|wi−1
i−n+2), if

P(wi|wi−1
i−n+1) = 0

and P(wi|wi−1
i−n+2) > 0

...

αn−1P(wi), otherwise,

(2.7)

where the α values ensure that the probability distribution does not sum to more than one.

Jelinek-Mercer smoothing is the simple application of interpolation to the ML. Considering

once again that Example 1 is the corpus, one can estimate the probabilities of the same 2-grams

in live and in middle, using Equation 2.6 with, for example λ = 0.5:

PJM (”live”|”in”) = λPML(”live”|”in”)+(1−λ)PJM (”live”) = 0.5∗0+(1−0.5)∗ 3

26
= 3/52 and

PJM (”middle”|”in”) = λPML(”middle”|”in”)+(1−λ)PJM (”middle”) = 0.5∗0+(1−0.5)∗ 1

26
= 1/52,

unlike the results using Add-one, this time in live receives a higher probability than in middle

even without any of the sequences ever appearing on the corpus. This is a reflection of the

higher number of occurrences of live when compared to middle.

Absolute discounting also uses interpolation, but instead of multiplying the probability of the

n-gram by λ (or λwi−1
i−n+1

) it subtracts a fixed discount D ≤ 1 from each non zero count, resulting

in:

Pabs(wi|wi−1
i−n+1) =

max{c(wi
i−n+1)−D, 0}∑

wi
c(wi

i−n+1)
+ (1− λwi−1

i−n+1
)Pabs(wi|wi−1

i−n+2), (2.8)

11

in which 1− λwi−1
i−n+1

is calculated from:

1− λwi−1
i−n+1

=
D∑

wi
c(wi

i−n+1)
N1+(w

i−1
i−n+1•), (2.9)

to ensure that the sum of the distribution is one. N1+(w
i−1
i−n+1•) is the number of unique words

that follow the left context (or history (wi−1
i−n+1)) of the n-gram, formally defined as:

N1+(w
i−1
i−n+1•) = |{wi : c(w

i−1
i−n+1wi) > 0}|, (2.10)

where the N1+ denotes the number of words that have one or more counts, and the • a variable

that is summed over.

The value of D in Equation 2.8 is calculated from:

D =
n1

n1 + 2n2
, (2.11)

where n1 and n2 denote the total number of n-grams with the count of one and two, respectively,

in the training data.

Kneser-Ney smoothing is an extension to the absolute discounting, based on the idea that

the probability of an n-gram should not be proportional to the number of occurrences, but

proportional to the number of words it follows. Kneser-Ney smoothing formula uses backof and

it can be calculated by:

PKN (wi|wi−1
i−n+1) =

max{c(wi

i−n+1)−D,0}∑
wi

c(wi
i−n+1)

, if c(wi
i−n+1) > 0

γ(wi−1
i−n+1)PKN (wi|wi−1

i−n+2), if c(wi
i−n+1) = 0

, (2.12)

where γ(wi−1
i−n+1) is chosen to make the distribution sum to one, using the right hand side from

Equation 2.9. For the case of the unigram:

PKN (wi) =
N1+(•wi)

N1+(••)
, (2.13)

where N1+(•wi) is the number of words that appear in the corpus before the word wi, and

N1+(••) being the number of bigrams in the corpus. If Example 1 is the corpus and one wants

to estimate the probability of the 2-grams live San and live Francisco using Equation 2.13,

and given that neither of them appears the corpus (c(wi
i−n+1) = 0):

PKN (”San”|”live”) = γ(”live”)PKN (”San”),

where:

γ(”live”) =
D

c(”live”)
N1+(”live”•),

12

where:

D =
n1

n1 + 2n2
=

19

19 + 2 ∗ 2
=

19

23
= 19/23,

with n1 and n2 being the number of bigrams with count one and two, respectively. For the

calculation concerning the unigram, one should use:

PKN (”San”) =
N1+(•”San”)

N1+(••)
=

2

21
= 2/21.

Wrapping up everything:

γ(”live”) =
19/23

3
∗ 2 =

19 ∗ 2
23 ∗ 3

= 38/69,

and finally:

PKN (”San”|”live”) = γ(”live”)PKN (”San”) = (38/69)(2/21) ≈ 0.052.

For the live Francisco 2-gram the calculation is similar:

PKN (”Francisco”|”live”) = γ(”live”)PKN (”Francisco”),

where:

PKN (”Francisco”) =
N1+(•”Francisco”)

N1+(••)
=

1

21
= 1/21,

resulting in:

PKN (”Francisco”|”live”) = γ(”live”)PKN (”Francisco”) = (38/69)(1/21) ≈ 0.026.

The only difference between the two n-grams is the second word and both words appear the

same number of times in the corpus. Nonetheless, San is the successor of two different words

while Francisco only follows one (San), justifying the obtained values.

Chen and Goodman [CG96] introduced a modified version of Kneser-Ney smoothing with three

major differences:

• interpolation is used instead of backof;

• three discounts are used, one for counts of one, another one for counts of two and the

third one for every other counts;

• discounts are estimated on held out data, instead of using a formula based on the training

data (as in Equation 2.11).

Not all methods of smoothing were presented in this subsection. Instead, it focused on those

13

which allow for a better understanding of the modified version Kneser-Ney smoothing provided

that it is the one with the best performance [CG96]. Nonetheless, there is another version of the

Kneser-Ney modified, in which the discounts are once more calculated from the formula used in

the original algorithm on the training data, avoiding the optimization of these parameters with

only a slight drop in performance [CG96].

There are other techniques with the purpose of solving the problem with sparse data besides

smoothing. However, techniques such as word classing and decision-tree models assume the

use of language models different from n-grams [CG96]. Given that the most common language

model and the one used in this work are n-grams, these methods will not be further described

or explained.

2.2.3 Performance Evaluation

Evaluating the performance of a language model means measuring how well the computed model

represents the data under analysis. The most common metrics used for evaluating the perfor-

mance of a language model are the probability, cross-entropy and perplexity. They are usually

calculated on a set of held out test data [CG96]. The probability of a set of data is simply the

product of the probability of all sentences in the set.

The cross entropy can be measured using:

Hp(T) = − 1

WT
log2 p(T), (2.14)

where WT is the number of words of a text T and the result can be interpreted as the average

number of bits need to encode each word from the test data.

As for the perplexity (PPp(T)), it can be calculated using Equation 2.15:

PPp(T) = 2Hp(T). (2.15)

Models with lower cross entropies and perplexities are better. Depending on the type of text,

cross entropies can be between 6 and 10 bits/word for English texts, corresponding to values of

perplexity between 50 and 1000. [CG96].

2.3 Topic Modeling
Topic modeling algorithms are statistical methods that are used with the objective of finding

the subjects (or topics) presented in a collection of documents [Ble12]. These algorithms resort

to the words of each document, and the topics at which they are most commonly associated

14

with. For this reason, the analysis usually ignores the words belonging to a stop-words list 2.

With the analysis complete, the result is a distribution over the topics for each document in the

collection. Even though the topics associated with each document are the same, the differences

between the probabilities in each distribution allow for a characterization of each document by

its most probable topics.

The resulting distribution over the topics is a representation of the document in what is known

as the latent semantic space. This representation presents a dimensionality reduction, when

compared to the term frequencies vector, which is capable of more easily capturing the differ-

ences and similarities between documents in a collection [Hof99b]. The idea “is that documents

which share more frequently co-occurring terms will have a similar representation” [Hof99b]

(distribution), even if they have no terms in common.

Topic modeling is used in this work with the objective of finding similar documents to the one

being written, and then using their content to calculate suggestions of improvements.

2.3.1 Plate Notation and Terminology

Topic modeling formally defines: a word as the basic unit of data, an item from a vocabulary;

a document as a sequence of N words; and a corpus as a collection of D documents [BNJ03].

Plate notation is a graphical model for simplifying the process of representing variables that

repeat themselves and their interdependencies (example in Figure 2.1). Each rectangle (or

plate) groups a set of variables (circles) that are repeated, in the same context, a predefined

number of times (in the case of both Zd,n and Wd,n, at Figure 2.1, they are repeated N times).

The color of the circle represents the visibility of the variable: white circles are hidden variables,

while gray circles are observed variables. Each link that connects two variables represents a

dependency. For instance, in Figure 2.1 Wd,n depends on Zd,n and Zd,n depends on Id. When a

link crosses the border of a plate it means that the variable on the outside is connected to each

of the instances of the variable on the inside (Id connects to each Zd,i, i ∈ [1, N]).

2.3.2 Generative Probabilistic Topic Modeling

Generative probabilistic topic modeling is a group of algorithms that find topics by considering

that each document in the collection is created by a process called the generative process. This

process considers the existence of a latent structure, also known as hidden. The objective of this

set of algorithms is then to reconstruct the structure, resorting to the observed variables which

are, in most cases, the words of each document in the collection. As for the hidden structure,

it is composed of (latent) variables that vary from model to model but, that generally include

a probability distribution over topics, when the model considers each document a mixture of

topics, representing the possibility of each document depicting more than one topic. This pro-

2Stop-words are words which contain very little topical information (e.g. and, or and for).

15

cess usually assumes that the topics exist prior to their execution, including their probability

distribution over the words.

The generative model associated with Probabilistic Latent Semantic Indexing (PLSI) is called

the aspect model [Hof99a, Hof99b] and is represented in Figure 2.1. The generation of each

word in a document, according to the asymmetric formulation of this model, starts with the

selection of a document d, with index Id in the collection, with a predefined probability inside

the collection. Then, for each word token 3, a latent class Zd,n is chosen from the probability

distribution of the document over the latent classes and, according to the probability distribu-

tion over the words in that class, a word Wd,n is finally selected. This process is repeated for

each of the documents in the collection.

As represented in Figure 2.1, the fact that Id is an observed variable means that the model

considers only documents in the analyzed collection, and thus is unable to determine the topics

for a new document afterwards.

Id Zd,n Wd,n

D
N

Figure 2.1: Graphical model representation of PLSI.

This process is based on three main assumptions: each word is considered independent from

the others when conditioned on the topic assignment, describing each document as a bag-of-

words, in which the order of the words is ignored; considers that words conditioned on the topic

assignment are independent of the document in which they insert themselves; the number of

existing topics is considered known and fixed [BNJ03]. All of these assumptions simplify the

process of recovering the latent structure, which would be infeasible otherwise.

The Latent Dirichlet Allocation (LDA) (Figure 2.2) considers a generative process with com-

plementary parameters to those presented in the PLSI process with the addition of two new

parameters: α and β. α serves as a configuration parameter for the Dirichlet distribution, de-

termining the distribution of topics for each document. On one hand, a small value of α is

responsible for promoting distributions that have few topics with high probability. On the other

hand, a high value of α promotes a high number of topics with identical probabilities. Similarly,

β is a configuration parameter for the Dirichlet distribution over words. A small value of β

means that each topic will describe few words with high probability, while a high value would

describe a big number of words with comparable probabilities [GS04]. Usually, the objective is

3A representation of the position of a word in the document.

16

to have both a reduced number of topics as well as a reduced number of words in each topic.

α θ Zd,n Wd,n

β

D
N

Figure 2.2: Graphical model representation of LDA.

Another noticeable difference is the exchange of the observed Id for an unobserved θd. This

change shows that, unlike PLSI, the LDA is capable of calculating a distribution over topics for

new documents (outside of the collection), since it does not depend on a given index. θd is the

topics distribution for a given document d.

Hierarchical Dirichlet Processes (HDP) is a nonparametric Bayesian model for clustering prob-

lems, where nonparametric colloquially represents that the number of clusters (topics, in this

case,) is open ended [TJBB05]. This means that, unlike LDA and PLSI that consider the number

of topics to be fixed and defined by the user, HDP is capable of updating the number of topics

according to the data. The number of topics can even increase with new documents, which can

be helpful when analyzing a growing and changing collection [BCD10].

The generative process (represented in Figure 2.3) begins with the selection of the base distri-

bution G0 from a Dirichlet Process (DP) (with H and γ). Each document is generated by first

selecting the topics distribution Gd from a DP (with G0 and α) and then the topic βd,n for each

word token. Finally, the word Wd,n from that topic is selected [BCD10].

H G0 Gd βd,n Wd,n

γ α

D
N

Figure 2.3: Graphical model representation of HDP.

According to its authors [TJBB05], HDP showed similar results to the ones presented by LDA

when running with the best possible number of topics. This presents a clear advantage towards

17

HDP given that the user no longer needs external methods for discovering the number of topics

while continuing to achieve the best possible results.

Topical N-Gram (TNG) is a model that combines topics with n-grams, allowing for the context

to influence the results, rather than considering each word token an independent variable, as in

the bag-of-words assumption taken by other models. Through the analysis on the context, each

word token is either considered an unigram, which means it is independent from the context,

or a bigram, uniting it to another word, in order to fully capture their topic. white house is a

good example of this [WMW07]. Depending on the context, it can either be related to politics

and have a special combined meaning, or simply be a description of a house in a real estate

article, that can be separated without the loss of meaning. N-grams with order higher than two

(bigrams) are possible by concatenating consecutive bigrams. The authors consider that the

results show that their model is easier to interpret than the LDA due to the combination of word

tokens.

The models described up to this point include the ones more commonly used for the topic

modeling of documents and those closely related to this work. The following descriptions are

introductions to other proposals of models.

The author-topic model proposed by Michal Rosen-Zvi et. al., in [RZGSS04] is an extension to

the LDA that introduces authors. The objective of this model is to simultaneously capture the

topics of a document as well as the interests of an author. The composite model was proposed

by Griffiths et. al., in [GSBT05] and its main characteristics include the distinction between

content and function words and the enforcement of syntactic structure for the generation of the

document. The model proposed by Cohn and Hofmann [CH01] is an extension to the PLSI model

where the topics assigned to a document are also dependent on the hyperlinks and citations

existing in the document.

2.3.3 Estimation methods

The objective of generative probabilistic topic modeling is to obtain the topics that define

a document, by calculating the latent structure defined in the generative model. Since the

number of variables is usually big, the posterior distribution of the latent variables becomes

intractable for exact inference, and thus, one needs to resort to other methods for estimation

and inference. Some methods for estimation are introduced in this subsection.

According to the literature, namely Hofmann in [Hof99a, Hof99b], the standard procedure at

that time (1999), for the estimation of the maximum likelihood in latent variable models was

the Expectation Maximization (EM) algorithm. This algorithm is constituted by two steps, a

step (E), where the posterior probabilities are calculated, which represent the probabilities of

each topic being assigned to a given word, based on current parameters; and a maximization

18

step (M) where these parameters are updated. However, this estimation could not be directly

interpolated for documents outside of the collection. As a solution for this problem and as a

method of preventing overfitting towards the documents in the collection, those same papers

proposed Tempered Expectation Maximization (TEM). The results reported that the usage of this

algorithm led to increased precision and recall in the test data.

Griffiths and Steyvers showed that topic modeling with Gibbs Sampling was possible and a vi-

able alternative to the previously proposed methods, in terms of both speed and memory us-

age [GS04]. The Gibbs Sampling algorithm utilizes a Monte Carlo Markov Chain (MCMC) for

estimating the topic assignments and then infer the distribution over words in a topic and the

probability distribution over topics for each document. The MCMC updates the values for the

latent variables at every interaction by conditioning on the previously calculated values for the

very same variables, until it starts converging to the target distribution.

2.3.4 Number of Topics and Evaluation

The number of topics is considered, by many algorithms, to be a fixed number. As such, external

methods were required for helping in the choice of such number in the scope of this work.

The classic approach is to choose the number of topics that yields the highest probability for a

test set of held out data. The user starts by dividing the documents into two sets: a train set

where the topic modeling is performed; and a test set for the calculation of probability of the

resulting topic distributions. Then, by experimenting on a range for the number of topics and

then performing tests on the test set, the user is capable of discovering the number of topics

resulting in the highest probability.

There is a large set of methods for performing the calculation of the probability on the held out

data but, according to the study presented in [WMSM09], some provide more accurate results

than others. The study analyses some importance sampling methods, namely the harmonic mean

method, the annealed importance sampling and two new methods proposed by the author. The

author concludes that both Chib-style method and left-to-right method produce more accurate

results and should be the ones used in most cases. As an alternative, Griffiths and Steyvers

proposed a method for the calculation of the number of topics in an automatic fashion [GS04].

As described in Subsection 2.3.2, HDP (and other nonparametric models) solve this problem by

updating the number of topics according to the train data.

2.3.5 Document Comparison

The similarity of documents can be measured by comparing their topic distribution. A standard

function to measure the difference between two distributions (p and q) is the Kullback Leibler

19

(KL) divergence [SG], given by:

D(p, q) =

T∑
j=1

pj log2
pj
qj

. (2.16)

In many applications it may be convenient to apply a symmetric measure based on the KL diver-

gence [SG]. In these cases, one can use:

KL(p, q) =
1

2
[D(p, q) +D(q, p)]. (2.17)

Other alternatives include Jensen-Shannon divergence and, considering that these topic distri-

butions are vectors, Euclidean distance, dot product and cosine.

2.4 Scientific Text Standards
Since the main objective of this master’s project is the development of a set of algorithms

capable of improving the quality of scientific documents, this section presents some of the

studies performed on this subject. The studies focus on the structure of scientific articles and

purpose of each section, on the analysis of the quality of a document and on tools developed

with the objective of assisting in the writing of this type of documents.

2.4.1 Structure

IMRAD is the structure used in many research articles and, as suggested by the name, it refers to

scientific documents which follow the structure: Introduction, Methods, Results and Discussion.

An important concept in this subject is the concept of move, which refers to a “text segment

with a specific rhetorical value” [Rei06].

In the context of IMRAD structure, Swales pioneered the analysis on themoves that constitute the

Introduction, presenting the Create A Research Space (CARS) model. According to the moves

determined by Swales (and explained in [Sut00]), the Introduction should include: (i) “the

significance and centrality of the research area” [Sut00]; (ii) a discussion on some examples of

previous studies and related work; (iii) the specification of a gap in the related work, justifying

the proposed study; and (iv) a brief description of the study (which might be left implicit),

including how it solves the aforementioned problem. Example 2 was extracted from [Sut00] and

it helps in providing a better intuition on each move. The first sentence describes the centrality

of the research area (move one). The next three sentences describe previous studies (second

move) and the fifth sentence specifies a problem that was missed by the related work (move

three).

20

Example 2. Many writers have noted the conflict between idealism and reality in Athol

Fugard’s “Master Harold” …and the Boys. Dennis Walder, for example, describes a “gap

between the […] harsh, even violent reality” the play’s characters endure and the “ideal

world imagined by Sam” with his “idea of dancing as a paradigm of universal harmony”

(122). Others have noted a second, closely related conflict, that between self-esteem

and self-loathing. Frank Rich observes, “Fugard’s point is simple enough: before we can

practice compassion […] we must learn to respect ourselves” (C21). But no writer has

pointed out that both conflicts are neatly summarized within the play by one more conflict:

that between looking up and looking down. (120)

In 1997, Nwogu [Nwo97] proposed a model with modifications to Swales moves and with the

addition of moves for the remaining sections of a document (following an IMRAD organization).

This model can be summarized as follows, skipping the previously discussed Introduction: the

Methods section generally includes a description on the data and method used for recovering

it, on the experimentation performed and on the data analysis and classification; the Results

section identifies the observations, distinguishing between successful and unsuccessful obser-

vations; finally, the Discussion section highlights the outcome of the research, explains the

results obtained and presents the conclusions [Nwo97].

Swales, and then Ping et. al., [HZW10], point out that the importance of each move is highly

dependent on the discipline. Some moves might not be used in certain disciplines, while others

are used more than once, as is the case of the second move, which can sometimes be used in a

cyclic fashion, for instance in Computer and Security and Computer Languages [HZW10].

Louvigné et. al., [LS15] focused on the Results section, concluding that it is closely related

to the Methods section, resulting in the use of related moves. According to the authors, this

happens mostly to improve the connection between the methods proposed and their findings,

better justifying the results achieved [LS15].

Figure 2.4 presents a representation of this structure [GD10], considering the moves of each

section of the IMRAD organization. The representation is vertically symmetrical because the

Discussion will serve some of the same purposes of the Introduction, in reverse order. [GD10]

justifies this fact with two examples: the first is the need for a way to start and a way to

end the document; and the second one is the need for the creation of an interface with the

central section (Methods and Results). Another important detail presented in Figure 2.4 is

that the central report section is narrower, getting widener as it gets further away from this

section. This concerns the general tone used in the beginning of the Introduction, which

gradually focuses on the specific subject detailed in the document, and the opposite is true for

the Conclusion [Rei06].

21

Introduction

Methods

Results

Discussion

Figure 2.4: Representation of the IMRAD organization.

2.4.2 Quality

Well written texts are described by characteristics that go beyond the correct use of grammar,

correct spelling and organization of the document [LN13]. A well written story is characterized

by different factors than the ones taken into account when studying a good scientific publication.

Specificity of the text and communicative goals are the two characteristics studied in [LN13],

in the context of science journalism with a parallel to scientific documents. The specificity

of text refers to the hypothesis that a correct balance between providing general high level

information and very specific details can contribute to the text quality. The communicative

goals refer to the intentions of each segment in the text, and to the order in which they appear.

These communicative goals are similar to the definition of move described in Subsection 2.4.1.

The writing of articles containing a mixture of general and specific statements is a good formula

to retain the attention from the reader, delivering the message with increased clarity [LN13]. As

for scientific publications, documents usually follow a very thorough and well defined structure

in terms of specificity of statements, presenting general content at the beginning and end, and

detailed content in between. Example 3, extracted from [LN13], shows an example of a general

sentence (first sentence) and a specific sentence (second sentence).

Example 3. Dr. Berner recently refined his model to repair an old inconsistency. [general]

The revision, described in the May issue of The American Journal of Science, brings the

model into closer agreement with the fact of wide glaciation 440 million years ago, yielding

what he sees as stronger evidence of the dominant role of carbon dioxide then. [specific]

Given that the organization of intentions at low levels contribute to the coherence of the overall

conveying of purpose of a document, analyzing them constitutes a method for determining the

quality of a text. In scientific documents the communicative goals include aim, background,

results, among others [LN13].

22

Automatic Essay Scoring (AES) is the use of computer technology for the automatic evaluation

and scoring of written prose [Dik06], which provides a good source for analyzing the quality of

a document. Project Essay Grade (PEG) is one example of an AES system and the idea behind

its scoring was to use indirect measures (referred to as proxy measures [COJ97]) to estimate a

specific quality in the writing of the essay. The example given in [COJ97] is that of diction (which

is the appropriate words choice) is measured via estimation of the proportion of uncommon

words in an essay [COJ97]. The PEG is first trained with human rated essays, adjusting its

weights according to the measures recovered from the essays and the grades provided by the

human raters.

2.4.3 Tools

This subsection presents three subsets of tools related to the study of scientific documents.

The first subset is constituted of tools that provide general information helpful in the writing

or analysis of this sort of documents. The two tools that follow are included in this category of

tools:

• Thesis Writer [RKEO15] is a support system developed by Christian Rapp et. al., with

the goal of aiding in the writing of a thesis. It provides support tools and tutorials for

every phase of the process, from the conception to the completion of the thesis. It was

designed with collaboration in mind, allowing tutors, instructors and other students to

provide feedback directly in the online text editor;

• Duygu Simsek et. al., [SSDL+14] describe a new tool called Xerox Incremental Parser (XIP),

which is capable of automatically highlighting metadiscourse markers. These markers

are present in every document in research articles, and point to the introduction of key

arguments. The tool labels certain sentences inside a document, according to the type of

function it provides: summary, novelty, contrasting ideas, and others. By analyzing the

labels, users can more easily understand and study research articles.

The second subset of tools provides information specific to the document being written in but

without proposing automatic solutions, and includes:

• O’Rourke et. al., [OC09] proposed a method for visually representing the flow of para-

graphs in a document. The process starts with the modeling of the topic mixture for each

paragraph in the document. This mixture is then reduced to a two dimensions space,

allowing for the visual representation of each paragraph in the document. The authors

defend that, by visualizing the positioning of each paragraph in space, and the distance

between them, the user should be capable of more easily uncovering problems in the flow

of ideas;

23

• OpenEssayist [WTR+15] is an analytics tool that provides automatic feedback on an essay.

Users can access its web application, submit their essays and get feedback on summaries,

keywords, words distribution and a collection of other statistics. According to the reported

analysis, students who used the system more frequently had a tendency to obtain better

results;

• Masaki Uto et. al., [UU15] propose a system of support in the writing of arguments for

academic documents. It consider the difficult inherently associated with the writing of

arguments in an academic context, namely in long arguments, as the motivation for the

developed system. The system uses a Bayesian Network representation of the Toulmin

model, which is the standard model for evaluating an argument. They concluded, through

subjective testing, that the system is indeed capable of supporting the elaboration of

arguments.

The last set contains tools with a similar purpose to the one proposed in this dissertation, pro-

viding automatic suggestions for improvements or replacements. The tools include:

• Jian-Cheng Wu et. al., [WCMC10] developed a system capable of providing suggestions for

English academic texts. A classifier was trained with the verb-noun collocations, and their

context information was extracted from a corpus of abstracts of published articles using

machine learning. Every time a new sentence is checked, the system parses the sentence

and extracts the verb-noun collocation. The collocation is then analyzed and the system

selects the most likely collocates as suggestions for that verb. The main limitation of this

solution is the fact that it can only provide suggestions for verbs;

• In [NSH12], a study with the purpose of choosing the best approach in the suggestion of

verbs, given the left context of the verb, was presented. An academic writing model was

used to create a corpus of abstracts and a verb ranking. Resorting to this model and rank-

ing, queries are performed and the results considered a success when the proposed verb

is the original one. The various approaches include searching for the exact left context,

expanded versions of the left context with wildcards and pronoun and noun tags, as well

as their potential combinations. The results show that the best approach is to utilize the

expanded versions that include the wildcards and pronoun and noun tags when the ex-

act match is not found. Once again, the limitations of this solution include the fact that

suggestions are restricted to verbs.

2.5 Conclusion
This chapter discussed concepts on the most important subjects related to the work under

development. General language modeling concepts were introduced, covering the most widely-

used language models, which are n-grams [CG96]. These allow for the capture of important

24

features in documents but need to account for the data sparsity problem. This problem in n-

grams is mainly solved by using smoothing techniques of which the best is the modified version of

Kneser-Ney [CG96]. The state of the art then shifted to the field of topic modeling, introducing

different methods for the extraction of subjects in a collection of documents and posterior

comparison with documents outside of this collection. Of these arguable the most studied and

used technique is the LDA [Ree12], mainly due to its simplicity [Ble12] but also for its overall

good results. At last, given the main focus on assisting in the writing of scientific documents

specifically, several characteristics of this type of document were studied and tools with similar

purposes were presented. The study on this specific type of writing seems to show that even

though there are some characteristics related to the evaluation of the quality of a document,

there are no standards on the subject which makes it a hard task to perform.

This collection of knowledge should, hopefully, provide enough background for the complete

understanding of the algorithm and its implementation presented in Chapter 3. Some of the

aforementioned details were the basis for the selection of the methods implemented in the

algorithm.

25

26

Chapter 3

Design and Implementation

3.1 Introduction
A study on the state of the art was presented in the previous chapter, introducing the main tech-

niques related with the problem at hands. Considering the problem statement, the algorithm

was designed with the objective of providing suggestions of replacements that are more com-

monly utilized in the area of knowledge of the documents under analysis. The algorithm can be

understood as a combination of two sub-algorithms, as stated in the master’s proposal: the first

one is responsible for recovering the context of the document under analysis and finding docu-

ments under that context; and the second calculates suggestions for the document resorting to

the documents selected by the first sub-algorithm.

The chapter begins with a high level description of the Context and Similar Documents sub-

algorithm, which is based on the techniques presented in the previous chapter (Section 3.2).

The chapter follows with a description of the corpus that was build in the context of the project

and associated processes, in Section 3.3). It proceeds with the description on how the Context

Based Suggestions sub-algorithm evolved, presenting the changes and reasons justifying those

changes (Section 3.4). The subsequent section presents the tools utilized in the implementation

of the algorithm (Section 3.5) and the chapter culminates with a complete walk-through over

the algorithm, presenting examples for each of the phases (Section 3.6).

3.2 Context and Similar Documents
After the study performed on the state of the art, all the necessary techniques for the Context

and Similar Documents sub-algorithm had been presented. This sub-algorithm (presented in

Figure 3.1) is responsible for automatically extracting the context of a document in terms of

its subjects (topics), and then selecting a set of similar documents for use in the calculation

of suggestions. It begins with the processing of the corpus. Using a topic modeling algorithm,

such as LDA, the hidden structure from the associated generative process is estimated (step

1), including a representation of the topic probability distribution for each document in the

corpus. Using the same hidden structure, a topic probability distribution is estimated for the

document under analysis (step 2). This distribution (representation) can then be compared

with the distributions for each document in the corpus, using a method such as the KL so as to

select its closest documents (step 3). Using the n-grams extracted from the corpus (step 4),

27

Collection (Corpus)
1. Topic
Modeling
(LDA)

Hidden Structure

2. Topic
Modeling
(LDA)

Document
4. N-
grams

Rep.

3. Doc-
ument
compar-
ison (KL)

List

Context
Based Sug-
gestions

Representation
of the docu-

ment in topics.

List of closest
documents.

Using the
precalculated
hidden struc-
ture, estimate
a topic distri-
bution for the
new document.

Figure 3.1: Context and Similar Documents sub-algorithm.

the document under analysis and the list of closest documents from the corpus, it should be

possible to calculate suggestions according to the specific context of the document (Context

Based Suggestions sub-algorithm). The second sub-algorithm is described further ahead in this

section.

3.3 Corpus
The search for a corpus was one of the first steps of this work, preceding and accompanying the

development of the algorithm. The corpus was necessary for feeding the topic model process,

and as a baseline to be used later for the newly written documents.

The predefined requirements for the corpus resulted from the study of the state of the art. The

main requirements identified for this corpus are the following:

• all documents must be scientific articles or papers published in journals or magazines.

This requirement reflects the objective of providing assistance in the writing of scientific

documents, thus the necessity for similar documents as a means of comparison and as a

source of information. By resorting to previously published documents, a higher confidence

that the documents to be used later as a reference have been thoroughly analyzed by

scientific committees is achieved;

28

• the documents must be of at least two different areas of knowledge. Studying the speci-

ficity of the terminology used in different areas arose as an objective of the project. By

performing tests using manuscripts from the area of the document under analysis, and then

using manuscripts from other areas, and analyzing the results, one would expect that the

existing differences between the areas would give rise to poorer results for the manuscripts

from different areas. If similar results were achieved, then this could be interpreted as a

sign that the identified areas have similar syntactic organization and terminology;

• the collection must include full documents and not only abstracts. The algorithm under

development has to assist the author in the writing process of an article, and given the

distinctive pattern [YXL10, YFL02] present in the abstracts, they are clearly insufficient

to achieve that goal.

The search for a corpus with the desired characteristics proved to be more difficult than orig-

inally thought. Most of the corpus found were entirely formed by abstracts of scientific doc-

uments [KOTT03] or contained a single field of study [BDD+08]. There was one, however –

SciTex [DOKLK+13] – which filled all the desired requirements. SciTex is constituted by two

sub corpus, the SaSciTex, which includes scientific documents from the 1970s and early 1980s,

and the DaSciTex, whose scientific documents are from the 2000s. These documents belong to

categories including Computational Linguistics, Linguistics, Computer Science, Bioinformatics,

Biology and Computer-aided design, among others. Nonetheless, SciTex was not used in the

scope of this work because access is restrained to the direct interaction with Sketch Engine,

which is a corpus manager. Even though corpus managers perform comprehensive analysis on

the corpus, providing powerful tools and metrics for their study, the failure in the implemen-

tation of methods to call upon procedures from the Application Programming Interface (API) of

this specific corpus manager, led to the pursuit of a new corpus.

After having no success in finding a suitable corpus, the alternative was to create a new one.

The gathered corpus is composed of published scientific documents from an electronic archive,

namely arXiv, whose main categories belong to: Physics, Mathematics, Computer Science,

Quantitative Biology, Quantitative Finance and Statistics. Each category is subdivided into a

varied number of subtopics. The documents were then chosen by following an approximation of

an uniform distribution in respect to both the topics and each subtopic, even though limited to

the number of existing documents. The download of the documents was performed through the

execution of a Java script responsible for making a request for the information on a predefined

number of documents from a discipline, parsing the response of arXiv and downloading each

link obtained from the meta information. The script for downloading the files was entirely

implemented during the course of this project.

The distribution of documents between the topics is shown in Table 3.1, in terms of number

29

Table 3.1: Document distribution for each area of knowledge in the corpus.

Area of Knowledge Number of Documents
Physics 5051

Mathematics 5136
Computer Science 5321

Quantitative Biology 5000
Quantitative Finance 3977

Statistics 4163

of documents in each topic. The documents were then divided into training and testing sets:

80% of the documents from each subtopic were selected for training and the remaining for

testing. Then, another division split 80% of the training set for training and the remaining 20%

for validation. The validation set will be used to test different configurations, allowing for the

fine tunning of the algorithm and consequent improvement of the results.

Given that the scientific papers from the corpus never change and the documents themselves

are not needed, only their text, a set of preprocessing tasks were executed before using them.

These tasks include the following:

1. Automatic parsing of each pdf document into a text document, resorting to the Apache

PDFBox library [Fou10]. The resulting text documents contained parsing errors which, in

some cases, resulted in splitting a word into multiple lines or adding spaces between char-

acters. In order to attenuate this problem, all lines that had less than fifteen characters

were removed from the parsed document. The number fifteen was chosen after an anal-

ysis on some of the resulting texts, by choosing the biggest number that could remove

parsing errors, while retaining all the important sentences untouched;

2. Aggregation of all scientific papers from the training set into a single text document, where

each line contains one of the original papers. This was the specific format required by the

topic extraction tool;

3. Calculation of the n-grams for each document individually and their inclusion in the database.

The first time the insertion of the n-grams in the database was tried, it took between two

to ten minutes for each document, depending on the number of existing n-grams. With

this latency, it would have taken more than a month just to insert the initial data into the

database. It was found that the culprit was related with the fact that the table where the

data was being inserted contained a PRIMARY KEY constraint, which involved the updating

of an index each time a new row was inserted, slowing the entire process down. The so-

lution was to remove the index and insert all the data, and only then recreate the index.

With this procedure each document took less than a second to process and the insertion

was complete after two hours. After the insertion was complete, the recreation of the

primary key was tried, but failed with the report of duplicate entries. After checking some

30

of the cases that were flagged as duplicates, and noticing that even though with similar

characters, the strings were not the same. This problem was then solved by changing the

charset and collation for the fields in question, which determined the codification and

rules used for storing and comparing data, respectively. The next step was then again the

recreation of the primary key, which took another ten minutes.

The extracted n-grams resulted from the application of rules and restrictions that derived

from the initial experiments on the data and from the study of the state of the art, specially

from [JM00]. The applied rules are the conversion of each character to lower case, replacing

each numeral 1 with a special tag and adding two special tags before the initial word and two

special tags after the last word in each sentence (two special tags in order to form a complete

trigram with the existing word). The restrictions applied to the data concern the exclusion of

any character, besides punctuation, words and numbers, that breaks the sequence of n-grams.

The whole process can be better understood by examining the n-grams in Table 3.2 obtained

from Example 4. Notice that four extra n-grams were created due to the inclusion of the special

tags signaling the beginning and end of the sentence. The restrictions also modify the results,

removing all the n-grams with the symbol #.

Table 3.2: N-grams obtained from the Example 4.

N-gram Count
[<string1>, <string2>, this] 1
[<string2>, this, is] 1
[this, is, a] 1
[is, a, simp] 1
[e, text, resulting] 1
[text, resulting, from] 1
[resulting, from, automatic] 1
[from, automatic, parsing] 1
[automatic, parsing, of] 1
[parsing, of, a] 1
[of, a, pdf] 1
[a, pdf, file] 1
[pdf, file, .] 1
[file, ., <stringn-1>] 1
[., <stringn-1>, <stringn>] 1

Example 4. This is a simp#e text resulting from automatic parsing of a pdf file.

The database was created using MySQL as Database Management System (DBMS) and the data

organized into tables, whose name and purpose can be described as follows:

• 3gram, which contains a million of the most frequent n-grams from COCA. These n-grams

represent generic English;
1A sequence of digits.

31

• file_arxiv, which stores the references to each document that constitutes the corpus;

• cs, containing the n-grams from Computer Science, with a pointer to the document of

origin;

• csTotal, containing the n-grams from Computer Science, combining all equal n-grams,

independently of the document of origin;

• csCut, which contains the n-grams from csTotal whose count is larger than one.

Additionally to the aforementioned tables, there are three other tables (similar to the ones from

Computer Science) for each remaining topic.

3.4 Context Based Suggestions
This section presents the evolution of the method used for the calculation of the suggestions,

alongside the reasons that led to the implementation of several changes.

3.4.1 Synonyms

The initial method for calculating suggestions resulted from a simple combination of tools, de-

scribed in Section 3.5. The text was split into sentences using a BreakIterator and each sen-

tence treated separately. Syntactic parsing was applied to each sentence using the Stanford

Parser (Subsection 3.5.4) to tag the words from each sentence with their correspondent Part of

Speech (POS) tags. The tags were then filtered as either adjectives, verbs, nouns or adverbs,

and ignoring all other syntactic classes, since these provide no meaning on its own and, conse-

quently, have no synonyms. N-grams were formed from every set of three consecutive words

and synonyms of the last word of the n-gram were then obtained using Java Wordnet Inter-

face (JWI) (Subsection 3.5.3). Each synonym was used to form a new n-gram, constituted by

the two previous words and the synonym. The resulting suggestions came from the n-grams that

had the highest chance of occurring, according to a database of n-grams. This can be though of

as the base module (every node outside of other modules) in Figure 3.2 combined with module

B.

The probability of the n-grams is calculated using the ML, with the backup probability of 1.0E−11

being attributed to the cases when the probability was 0. The probability of the n-grams is de-

pendent on the closest documents selected. This backup probability means that the probability

distribution is incorrect (given that the remaining probabilities are not adjusted in accordance),

but it attenuates for the non use of smoothing techniques.

The main problem associated with this approach was the small suggestion coverage. By re-

straining the words to a fixed set of syntactic classes (adjectives, verbs, nouns and adverbs),

the suggestion coverage was vastly reduced, excluding possible replacements for other classes,

32

for instance between prepositions, as in in and on mistakes. In Example 5, the preposition

on should be used instead of in, but with the aforementioned algorithm, only the words did,

example and Monday were analyzed.

Example 5. I did this example in a Monday.

3.4.2 N-grams

To fix the coverage problem affecting the initial method, a backup routine was implemented

with the objective of obtaining a set of n-grams for the cases where the last word did not belong

to the accepted syntactic classes. This function creates new n-grams for the ten most probable

words that come after the two initial words of the n-gram and, once again, the most probable

words are suggested as replacement. To improve the calculation of the most probable words,

the words that occur after the word of interest are taken into account. The probability of each

word is defined by the probability of the expression formed by the n-gram and the two next

words (in case of trigrams), resulting in the combination of the probability of the three n-grams

(in case of trigrams) in the expression. The words with the most likely expressions are selected

as suggestions. This resulted in the addition of a simplified version of module E, in Figure 3.2,

to the scheme described in Subsection 3.4.1.

3.4.3 Previous and Next Words

The version of the method described in Subsection 3.4.2 created a list of candidates for re-

placements, in the case that the word did not belong to the classes with synonyms on the

Wordnet. Nonetheless, the choice of candidates did not include words which could occur with

high probability before the next words and between the previous and next words. With this

change performed, module E, in Figure 3.2, was complete. The remaining problem concerned

the fact that the proposed suggestions for the accepted syntactic classes were in its base form,

which is the only form of words existent in the Wordnet.

3.4.4 Morphological Realization

SimpleNLG was integrated to attenuate the base form problem. SimpleNLG is capable of calcu-

lating the inflected forms of a word given a set of defined features (morphological realization),

including tense, number and person (in the case of verbs), among others. The integration of

this tool allowed the algorithm to obtain the inflected form of some of the synonyms, resulting

in the addition of module C, in Figure 3.2, to the scheme proposed in Subsection 3.4.3.

3.4.5 Prepositions

The last addition to the algorithm comprised the introduction of a particular treatment for the

prepositions. Given that the most commonly used prepositions, in English, form a small list

of words, whenever a preposition is analyzed, the prepositions from the list are all treated

33

as possible candidates for replacement. This change should improve upon the most frequent

preposition mistakes, by providing a bigger set of alternative replacements. The addition of a

special treatment for the prepositions is represented by module D, forming the complete scheme

in Figure 3.2.

3.5 Used Tools
This section provides a succinct description for each of the tools that were integrated in the

algorithm or used in the development of this work.

3.5.1 MALLET

The first component integrated into the algorithm was MAchine Learning for LanguagE Toolkit

(MALLET), which is a “Java-based package for statistical natural language processing, document

classification, clustering, topic modeling, information extraction, and other machine learning

applications to text” [McC02]. MALLET is used in the algorithm for its topic modeling capabil-

ities. A model of the corpus is initially created using LDA with the parameters α = 50/T and

β = 0.1 (as suggested in [GS04]), where T is the number of topics. The number of topics was

previously selected by calculating the probability of the model with T ∈ [50, 1250], 50 by 50, in

the validation set (as suggested in [GS04]). The results for Computer Science and Mathematics

are represented in Figure B.1, highlighting the selected number of topics for each of the sets.

With the model for the corpus calculated, MALLET is capable of calculating a topic probability

distribution for the text being processed, using the same topics. Finally, through the comparison

of the distribution of the document and the distributions from each document in the corpus, it

is possible to identify the closest documents and use them as a source of information. Before

extracting topics from a set of documents, all text is converted to lower case and stop-words

are removed.

Table 3.3 shows five topics that were obtained from a total of 100 topics extracted using LDA,

as an example of the topic modeling operation. Each topic represents a set of words that are

usually associated with the same content. The example shows the probability distribution of

each topic in the collection of physics documents from the corpus (Section 3.3) and the most

common words from each topic. A quick analysis of the results suggests that the words from

topic 0 belong to the astrophysics branch, while topic 2 presents generic words, not exclusively

related to physics.

Table 3.3: Example of five topics extracted from the physics documents of the corpus.

Topic Probability Characteristic Words
0 0,00626 mass fomalhaut disk planet
1 0,03401 semileptonic decays phys gev
2 0,02901 university usa united kingdom
3 0,01339 structure ring atoms surface
4 0,04978 phys amplitudes phase decays

34

3.5.2 LanguageTool

LanguageTool represents a language-independent proofreading checker that allows a user to

receive corrections to grammatical errors missed by most common spell checkers [Mił10, Nab03].

Errors are detected by checking existing rules and using dictionaries of the language of interest,

creating a modular system that is constantly being expanded. The fact that it is open source

allows for the analysis and verification of its functioning by the community. Using LanguageTool

to analyze the sentence from Example 6 results in two suggestions: the first one concerns the

fact that the first letter of the first word in the sentence is not a capital letter; and the second

is related to the use of a plural word (tests) after an indefinite article (a).

Example 6. this is a tests.

3.5.3 Wordnet - JWI

The Massachusetts Institute of Technology (MIT) JWI [Fin14] constitutes an interface for the

wordnet English electronic lexical database [Mil95]. This database contains a dictionary of words

organized according to its semantic meaning. The database includes a definition of the asso-

ciated concept, as well as relations between words such as synonymy, hyperonymy, hyponymy

and antonymy, which represent associations between words referring to the same concepts,

more generic concepts, more specific concepts and opposite concepts, respectively. All this

information is made available by JWI, allowing for the retrieval of synonyms and creation of

suggestions, based on the word and respective POS tag. As an example, using JWI to retrieve

the synonyms for the word skill and the POS tag set to NOUN, results in the following list of

words: skill, accomplishment, acquirement, acquisition, attainment, science. The

main problem with the usage of this tool in the algorithm comes from the fact that all stored

words are in its base form, thus becoming inadequate synonyms for most situations where the

original word is in an inflected form.

3.5.4 Stanford Parser

The Stanford Parser groups a set of natural language parsers and models for some languages,

including English, German, Chinese and Spanish. A natural language parser is a program re-

sponsible for splitting a text into sentences and finding the syntactic structure inherent to each

one [KM03]. Example 7 shows the result of the application of Stanford Parser for POS tagging

the sentence “Dr. Maboul is an experimental sentence.”. In the example,

Example 7. Dr./NNP, Maboul/NNP, is/VBZ, an/DT, experimental/JJ, sentence/NN, ./.

The utilized tags are defined in [San90] and include: Proper noun, singular (NNP); Verb, 3rd

person singular present (VBZ); Determiner (DT); Adjective (JJ); and Noun, singular or mass (NN).

35

The developed algorithm uses this tool to obtain the syntactic function of each word in a sen-

tence, represented by the POS tags. The POS tags are necessary for the processing performed

by the JWI, with the objective of obtaining synonyms. They are also used to deduce extra infor-

mation about some words, including number, person and tense, providing them to SimpleNLG.

3.5.5 Other Tools

The SimpleNLG is a realization engine for English capable of generating syntactic structures [GR09].

This engine is used to obtain the inflected form of a specific base form, in a given tense, person

and number. By integrating this engine, the editor is capable of producing some suggestions in

the appropriate form, instead of suggesting the base form.

The Apache PDFBox is an open source Java tool for working with pdf documents. It allows for

the creation of new documents, and manipulation and extraction of content from the existing

documents [Fou10]. This tool was used to extract text from scientific articles in the corpus,

which were available as pdf documents.

3.6 Algorithm
Building up in the discussion included up to this point, the algorithm that resulted from the

study performed is now presented. This section explains the entire process (represented in

Figure 3.2), describing how each piece fits together to form the main algorithm, accompanied

by examples with the outputs for each phase of processing. This section skips the treatment

performed on the corpus before the execution of the algorithm since it was previously described

in Section 3.2.

The algorithm was implemented in Java, with each of the examples deriving from the iterative

application of the steps of the algorithm to the baseline in Example 8.

Example 8. Generative probabilistic topic modeling is a group of algorithms that find

topics by considering that each document in the collection is created by a process called

the generative process.

3.6.1 Context and Similar Documents

Each analysis starts with the calculation of the topic probability distribution for the words of

the entire document using LDA from MALLET (step 1). Given the probability distribution, the

Kullback–Leibler distance is calculated for each document in the selected subset of the corpus.

Those with a value inferior to a threshold (a parameter provided by the user) are selected and

used in all queries for the computation of suggestions (step 2). These steps form the Context

and Similar Documents sub-algorithm (module A in Figure 3.2), and they are ignored when the

table utilized for the calculation of the suggestions contains the n-grams from the entire corpus

36

without a specification of the origin documents. The remaining steps are performed for each

sentence instead, independently forming the Context Based Suggestions sub-algorithm.

3.6.2 Sentence Level

Using the Stanford Parser, the algorithm creates a tree structure representative of the syntactic

structure of the sentence, attributing a POS tag to each word (step 3). Example 9 shows the

output of this step of the algorithm for the sentence in Example 8. Even though a tree structure

is created by Stanford Parser, the algorithm resorts only to the POS tags of each word.

Example 9. Generative/JJ, probabilistic/JJ, topic/NN, modeling/NNS, is/VBZ, a/DT,

group/NN, of/IN, algorithms/NNS, that/WDT, find/VBP, topics/NNS, by/IN, considering/VBG,

that/IN, each/DT, document/NN, in/IN, the/DT, collection/NN, is/VBZ, created/VBN, by/IN,

a/DT, process/NN, called/VBN, the/DT, generative/JJ, process/NN, ./.

Once again, the tags in the example are defined in [San90] and the new ones include: Noun,

plural (NNS); Preposition or subordinating conjunction (IN); Wh-determiner (WDT); Verb, non-

3rd person singular present (VBP); Verb, gerund or present participle (VBG); and Verb, past

participle (VBN).

All the trigrams formed throughout the analysis of the sentence in Example 8 are shown in

Table 3.4.

The remaining steps are performed for each word in the sentence under analysis. A word can

be classified into two types of words: (i) content words, which are responsible for introducing

the semantic content of the sentence and (ii), function words, which serve a syntactic function,

providing no meaning by themselves (distinction defined in [GSBT05]). This classification is

derived from the POS tag of the word.

3.6.3 Word Level

The first word in the sentence of Example 8 is Generative with JJ as the POS tag. This POS tag

means the word is an adjective, which is one of the syntactic classes that represents a content

word. Given that this is a content word, synonyms are gathered using the JWI (step 4). The list

of synonyms provided for this word is presented in Example 10.

Example 10. generative, productive, procreative, reproductive.

Since the tag JJ provides no information on the form of the adjective under analysis, SimpleNLG

is unnecessary in this case.

Fast forwarding the analysis to the word is, it may be seen that it was tagged with VBZ, meaning

37

Table 3.4: N-grams obtained from the Example 8.

N-gram Count
[<string1>, <string2>, generative] 1
[<string2>, generative, probabilistic] 1
[generative, probabilistic, topic] 1
[probabilistic, topic, modeling] 1
[topic, modeling, is] 1
[modeling, is, a] 1
[is, a, group] 1
[a, group, of] 1
[group, of, algorithms] 1
[of, algorithms, that] 1
[algorithms, that, find] 1
[that, find, topics] 1
[find, topics, by] 1
[topics, by, considering] 1
[by, considering, that] 1
[considering, that, each] 1
[that, each, document] 1
[each, document, in] 1
[document, in, the] 1
[in, the, collection] 1
[the, collection, is] 1
[collection, is, created] 1
[is, created, by] 1
[created, by, a] 1
[by, a, process] 1
[a, process, called] 1
[process, called, the] 1
[called, the, generative] 1
[the, generative, process] 1
[generative, process, .] 1
[process, ., <stringn-1>] 1
[., <stringn-1>, <stringn>] 1

38

that the verb form is the third singular person of the present. With this information, JWI recovers

synonyms for is (presented in Example 11).

Example 11. be, exist, equal, constitute, represent, make up, comprise, follow, embody,

personify, live, cost.

The information provided by the VBZ tag is then utilized by SimpleNLG to perform the correct

inflection of the synonyms (step 5). The resulting list is presented in Example 12 and it includes

both the base and inflected forms of the synonyms.

Example 12. is, be, exists, exist, equals, equal, constitutes, constitute, represents,

represent, make up, make up, comprises, comprise, follows, follow, embodies, embody,

personify, personify, lives, live, costs, cost.

The next word (a) is tagged as a DT, which means its a function word. Since it is not a preposition,

no special treatment is performed on the word. Then comes the word of with the IN tag,

meaning that it is a preposition. In this case, the entire list of prepositions is added to the list

of candidate replacements (step 6).

In either of these cases, and similarly to the processing done for the word prediction, candidates

for replacement are added based on the context of the word (step 7). The context n-grams uti-

lized for the word Generative are [<string1>, <string2>, *], [<string2>, *, probabilistic]

and [*, probabilistic, topic], where Generative has been replaced with a *. The * repre-

sents the position under analysis. The words that are most likely to appear at that specific

location are added to the list of candidates. This step completes the collection of candidate

replacements.

The final step is the selection of the most likely candidates (step 8). For Generative, for

example, the same n-grams are used with the * being replaced by each of the candidates, and

the combined probability of each n-gram with that candidate determines its chance of occurring.

The user is then the entity responsible for either choosing to ignore or apply each suggestion.

3.7 Conclusion
The previous sections provided a description on the functioning of the algorithm. It started

with a description of the sub-algorithm responsible for the extraction of the context and sim-

ilar documents, followed by the discussion on how the corpus was build along with its main

characteristics. It then proceeded to the presentation of the various implementations of the

sub-algorithm responsible for the calculation of suggestions and the integrated tools afterwards.

In the end, the entire algorithm was described with examples for each of the phases.

39

Document
1. MALLET

(LDA)

2. Cal-
culate
Closest

Documents

All Sen-
tences

Analyzed?

Get Next
Sentence

3. Stan-
ford
Parser

All Words
Analyzed?

Get Next
Word and
POS Tag

Is content
word?4. JWI

5. Sim-
pleNLG

Is it a
proposi-
tion?

6. Add
Preposition
Candidates

7. Cal-
culate
Context

Candidates

8. Select
Three Most

Likely
Candidates

Add to
Sugges-
tions

no

yes

yes

no

yes

no

yes

no

Calculate
the topics
distribution

for the
document.

Resorts to the
topics distribution
of each document

in the corpus
that has been
precalculated.

Parse the sen-
tence and at-

tribute a POS tag
to each word.

Obtain the
synonyms
from the
selected
word.

Morphological
Realization of
the Synonyms.

A

B

C
D

E

Context and Similar Documents

Context Based Suggestions

Figure 3.2: General procedure to analyze a document.

40

With the development of the algorithm complete, tests are required for analyzing the correct-

ness of results and fine tunning the existing parameters, accordingly. The tests for determining

the best number of topics for each of the existing subjects in the corpus were presented here

and the values obtained are the ones used in the next chapter. Tests are then performed for

the analysis on the best context for the calculation of suggestions.

Smoothing techniques are not used in the current version of the algorithm, even though they

were introduced in Chapter 2 and Kneser-Ney has been effectively implemented. The reasons

for not using it were the lack of information on some important details, for instance on how to

select a vocabulary from a corpus, and the lack of time for performing these changes (and tests)

for all tables.

41

42

Chapter 4

Tests and Prototype

4.1 Introduction
With the design and posterior implementation of the complete algorithm, testing was the next

logical step. The tests were performed with the objective of analyzing the performance of the

algorithm and also to fine tune its parameters. This chapter presents a battery of tests that

were performed in order to evaluate the performance of the algorithm proposed. They were

divided into two main subcategories: objective testing (presented in Section 4.2), where all the

tests utilize a well specified metric; and subjective testing (Section 4.3), where human raters

analyze the results of the application of the algorithm to a text. After the fine tunning of the

algorithm, a simple text editor was developed as a proof of concept. This text editor is briefly

described in Section 4.4.

4.2 Objective Testing
The quality of a document is a subjective matter and, as such, there is no standard metric for

evaluating the suggestions provided by the system and how they impact the text. Given these

circumstances, a battery of objective tests was created in order for the system to be tested in

very specific cases.

The tests in this section are automatically created by applying changes to published scientific

articles. A program developed intentionally for this purpose iterates over each document in

the testing set, selects a sentence between the 10th and the 60th (preventing the selection

of the initial sentences, such as title and authors, which most commonly suffer from parsing

errors) and calculates its most relevant words. It then proceeds with the modification of some

of them, while avoiding changes in words closer than three spaces (since trigrams are being

used), to prevent changes of context.

4.2.1 Evaluation

The documents resulting from the previously described procedure are analyzed and the result is

considered a success if the algorithm is capable of proposing the word that was originally used

in the published document, otherwise, a failure is signaled. The metric used to evaluate the

43

list of possible replacement is the MRR, as suggested by [WCMC10]. MRR is calculated by:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
, (4.1)

where Q is the list of errors and |Q| its length. The ranki is the position of the correct replace-

ment in the list of replacements for error i. When the correct position is not present in the list,
1

ranki
is considered to be zero. The values of MRR can be between 0 and 1, with 0 meaning that

the answer is never on the list and with 1 meaning the answer is always at the first position of

the list.

This evaluation approach is far from perfect, as it assumes that every single sentence in the

selected document is already written in the best possible way. The system is penalized when

it provides better solutions that differ from the original text and beneficed when it suggests

the original text, thought it may not be the most correct word, thus somewhat balancing the

results.

4.2.2 Discussion of Results

The whole set of results obtained during this phase of the project is included in Section B.3,

structured in tables. This subsection contains solely a representative subset along with a more

detailed analysis. Each table presents the results for one set of documents and a table in the

database (the tables have been described in Section 3.3). The first column is the error type, with

the following meanings: type 0 errors are the ones created by replacing a content word with

a random synonym, representing the cases when the user fails at choosing the most adequate

synonym for that specific context; type 1, created by replacing a preposition with another one,

in a random manner, representing the case where users wrongly select another preposition; type

2, created by replacing a word with a predefined set of characters which form something of a

placeholder, representing missing words or misspells. The second column is the number of errors

created for each one of the aforementioned types. The six next columns are each of the types

of suggestion:

1. The suggestions provided by the language tool;

2. The suggestions of the most likely synonyms;

3. Three types of suggestions purely based on context, namely using the three possible po-

sitions for a single word (in a trigram) when the word is at the end, the middle or at the

beginning and;

4. The list of prepositions.

The values in each cell are the percentage of suggestions that could be provided using solely

44

Table 4.1: Results for the tests with 1030 documents from Mathematics using the math table, with a
document threshold of 6.0.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1158 1.63 / 1.63 54.35 / 2.72 56.52 / 9.24 47.83 / 12.50 34.78 / 13.04 0.00 / 0.00 15.89 0.12
1 1946 0.00 / 0.00 0.00 / 0.00 59.57 / 11.45 53.19 / 5.51 35.80 / 4.49 65.80 / 1.45 35.46 0.30
2 1308 0.00 / 0.00 0.00 / 0.00 63.42 / 33.85 44.75 / 11.28 43.97 / 16.73 0.00 / 0.00 19.65 0.16
All 4412 0.27 / 0.27 8.84 / 0.44 59.95 / 16.18 50.40 / 7.96 37.49 / 8.66 40.14 / 0.88 25.63 0.21

that specific suggestion type and which percentage is specific to that suggestion type. The

column named Total presents the percentage of errors which are effectively corrected by the

algorithm but without taking the order of the suggestion into account, in opposition to MRR.

Table 4.1 presents the results for 1030 documents from Mathematics using the math table. This

table contains the n-grams for the Mathematics training set with the specification of the doc-

ument of origin for each n-gram. The tests used a document threshold of 6.0, resulting in the

selection of an average of 90.28 documents. The results present an overall MRR of 0.21, im-

plying a somewhat good response to the errors created during the tests. The errors of type 0

and 2 show similar levels of correction, with type 1 being the type of error where the algorithm

performs best. The expectation was for this set to have the best results, since it only uses the

n-grams from the most similar documents in the corpus. Nonetheless, the analysis on some of

the results seems to show that the number of selected documents is too small, given that most

n-grams are not represented in the table, justifying the results.

Table 4.2 presents the results for 1103 documents from Computer Science using the csTotal

table. This is the test set with the best results, presenting an MRR of 0.36. This database table

combines the n-grams from the entire Computer Science training set. These were extracted

from 3305 documents which, according to the results, seem to be sufficient for capturing some

of the characteristics inherent to this field. Through the analysis on the values of the total

percentage and MRR, their divergence means that when the algorithm is capable of correcting

the error, the correct suggestion is mostly in the first position.

The first value from the Synonyms column in the first data row of Table 4.2 means that, if the

algorithm only used the synonyms to calculate suggestions for this error type, then it would have

achieved 59.05% of the total 24, 58% score (resulting in 14.51%). The second value means that,

if the algorithm were to provide suggestions without the Synonyms type of suggestions, then it

would lose 6.23% of the total 24, 58% score (resulting in 23.05%) since the remaining suggestions

provided by it are also provided by the other types.

Table 4.3 presents the results for 1031 documents from Mathematics using the 3gram table. This

is the test with the worst results, presenting an MRR of 0.17. The 3gram database table is the

one containing one million of the most frequent trigrams extracted from the COCA, including

n-grams from all types of text in English. This broader representation of the English language

45

Table 4.2: Results for the tests with 1103 documents from Computer Science using the csTotal table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1371 2.97 / 2.97 59.05 / 6.23 45.99 / 7.72 63.20 / 10.68 36.50 / 5.93 0.30 / 0.00 24.58 0.19
1 2063 0.68 / 0.68 0.00 / 0.00 68.26 / 4.77 70.04 / 3.06 52.09 / 2.55 70.81 / 1.70 56.96 0.48
2 1160 0.00 / 0.00 0.00 / 0.00 58.71 / 14.32 71.78 / 11.41 62.66 / 8.71 0.00 / 0.00 41.55 0.34
All 4594 0.90 / 0.90 9.98 / 1.05 62.19 / 7.57 69.31 / 6.37 52.01 / 4.61 41.78 / 1.00 43.40 0.36

Table 4.3: Results for 1031 documents from Mathematics using the 3gram table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1128 4.24 / 4.24 35.59 / 5.08 36.44 / 5.93 58.47 / 20.34 38.14 / 13.56 0.00 / 0.00 10.46 0.09
1 2045 0.15 / 0.15 0.00 / 0.00 49.07 / 8.64 48.46 / 6.48 43.06 / 7.87 64.51 / 0.77 31.69 0.28
2 1395 0.00 / 0.00 0.00 / 0.00 50.58 / 27.33 52.33 / 22.09 40.12 / 17.44 0.00 / 0.00 12.33 0.09
All 4568 0.63 / 0.63 4.47 / 0.63 47.76 / 11.72 50.42 / 11.08 41.89 / 10.34 44.56 / 0.53 20.53 0.17

and terms might be the justification for the results obtained, given that the n-grams are most

likely failing to capture the specificity of the domain of Mathematics [JM00].

Table 4.4 shows the results for 1031 documents from Mathematics using the csCut table. This

table contained n-grams extracted from documents from Computer Science, which means that

the algorithm was making suggestions based on a field different from the one of the documents.

Even though the results are lower than the equivalent tables from Mathematics, the difference

seems to imply that the differences between the two fields are not that many.

Table 4.5 shows a summary of the results for all the objective tests performed on Computer

Science and Mathematics documents. Overall, the results are consistent with the previous anal-

yses: the tables containing the n-grams from the entire training set are the ones with the best

performance (...Total), followed closely by those without the 1-count n-grams (...Cut); and

the tables with n-grams from a different field perform almost as good as the equivalent table

from the same field. This table presents the time it took for the algorithm to perform each test

set also. If the time is considered in combination with the results, then the best method would

probably be to use the ...Cut tables, which perform almost at the level of the best, while

taking less than half the time. Another point of interest is the document threshold, a small set

of values was tested for the Mathematics test set with the math table. The results show that

the performance is proportional to the document threshold, which is explained by the increase

in the number of selected documents and thus increase in variety of n-grams.

Table 4.4: Results for 1031 documents from Mathematics using the csCut table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1148 1.68 / 1.68 62.63 / 4.71 60.27 / 8.42 67.00 / 9.43 38.38 / 5.05 0.34 / 0.00 25.87 0.22
1 1935 0.00 / 0.00 0.00 / 0.00 61.95 / 6.46 65.44 / 4.00 47.38 / 2.77 65.95 / 1.33 50.39 0.42
2 1275 0.00 / 0.00 0.00 / 0.00 63.52 / 21.00 62.99 / 8.66 56.17 / 9.19 0.00 / 0.00 29.88 0.24
All 4358 0.30 / 0.30 11.25 / 0.84 62.00 / 10.16 65.15 / 6.04 47.79 / 4.65 38.95 / 0.78 37.93 0.31

46

Table 4.5: Summary of the results for the automatic tests.

Table Documents Field
Number of

Documents Analyzed
Documents
Threshold

Average Number of
Closest Documents

Duration
(h)

Error Type 0
(MRR)

Error Type 1
(MRR)

Error Type 2
(MRR)

Total
(MRR)

cs cs 1104 6.0 63.82 28.26 0.12 0.33 0.21 0.24
csTotal cs 1103 - - 8.15 0.19 0.48 0.34 0.36
csCut cs 1103 - - 2.76 0.19 0.47 0.29 0.34
math cs 1103 6.0 100.54 16.23 0.09 0.27 0.15 0.18

mathTotal cs 1105 - - 4.56 0.16 0.42 0.28 0.30
mathCut cs 1105 - - 2.19 0.15 0.40 0.27 0.29
3gram cs 1103 - - 1.62 0.12 0.35 0.14 0.23
cs math 1029 6.0 65.88 24.16 0.13 0.29 0.15 0.21

csTotal math 1031 - - 7.42 0.20 0.42 0.25 0.31
csCut math 1031 - - 2.67 0.22 0.42 0.24 0.31
math math 1030 6.0 90.28 9.46 0.12 0.30 0.16 0.21
math math 1033 5.0 54.25 5.17 0.11 0.24 0.13 0.17
math math 1033 4.0 8.72 2.77 0.08 0.19 0.11 0.14
math math 1035 3.0 3.62 2.17 0.05 0.15 0.09 0.11

mathTotal math 1030 - - 4.67 0.23 0.45 0.28 0.34
mathCut math 1029 - - 2.16 0.25 0.45 0.28 0.35
3gram math 1031 - - 1.51 0.09 0.28 0.09 0.17

4.2.3 Failed Cases

This subsection presents some cases where the algorithm failed at proposing the correct words.

The failed cases can be mostly divided into:

• parsing errors – the errors resultant from the parsing of the original pdf document affect

several parts of the algorithm and of the method used for testing. The syntactic parsing

performed on the sentences of the documents is one of the steps affected by these errors,

resulting in the incorrect attribution of POS tags to some of the words and disrupting the

correct calculation of suggestions. Another mistake induced by this type of errors happens

during the creation of the tests. If the word selected as a test contains parsing errors,

then the algorithm is most likely going to fail at proposing it, since its probability in the

corpus should be rather small;

• conjugation problems – given that the algorithm is only capable of performing the morpho-

logical realization of a small number of words, it frequently continues to propose the base

form, even when the original word was in an inflected form, resulting in poorer results;

• lack of n-grams – too many cases are being assigned with the backup probability due to

the lack of n-gram counts in the database tables, resulting in a somewhat random choice

of words for suggestions. One probable solution for this problem would include the im-

plementation of a smoothing algorithm, which could most likely provide more accurate

probabilities for the n-grams.

4.3 Subjective Testing
The algorithm was subjected to a smaller battery of subjective tests at a later stage of the

project, further supporting the analysis performed through objective testing.

To perform these specific tests, a section of this very dissertation was selected and submitted

47

to the algorithm. The respective excerpt of text was written and got no exterior revisions prior

to the analysis. The result of the analysis comprised the full list of suggestions, including all

the candidates for each word in the document, proposed using the csTotal table as the source

of n-grams. With the suggestions proposed from the algorithm, two new versions of this section

were created: the first resulted from the replacing of each word with the best replacement

proposed by the algorithm, which excluded words whose replacement list contained themselves

(Dummy Version (DV)); and the second was a similar procedure, but with a more intelligent

selection of replacements, where the change could be done by any word with any form of the

words proposed by the algorithm (Intelligent Version (IV)).

Examples 13, 14 and 15 show the original first paragraph of that section (Original Version (OV)),

the paragraph after the dummy application of changes (DV) and the paragraph after performing

a thorough and intelligent choice of modifications (IV), respectively. The background color of

the words that were changed between versions was highlighted. The red background color

represents a change with loss of meaning, while the blue background represents a change that

does not disrupt the content. The three complete versions of the section are presented in

Section B.4.

Example 13. Generative probabilistic topic modeling is a group of algorithms that find

topics by considering that each document in the collection is created by a process called

the generative process. This process considers the existence of a latent structure, also

known as hidden, that was used in the generation of the documents. The objective of this

set of algorithms is then to reconstruct the structure, resorting to the observed variables

which are, in most cases, the words of each document in the collection. As for the hidden

structure, it is composed of (latent) variables that vary from model to model but, that

generally include a probability distribution over topics, when the model considers each

document a mixture of topics, representing the possibility that a document depicts more

than one topic.

Example 14. Generative probabilistic topic modeling is a group of approaches which find

topics by showing beyond framework document in a collection is defined by a process ,

the generative process. This process considers the existence of a conceptual structure,

also known as hidden one that was used in the generation of class documents. The ob-

jective of the set of programs is then to reconstruct the structure of according to the

observed variables there represent shown in most cases, the words of framework docu-

ment in a collection. As for instance hidden structure, it is made of (latent) variables

that vary frommodel to model however , because generally include a probability distribu-

tion over topics, if the model considers each document a mixture of topics in stand for a

possibility as enum document depicts more than one topic.

48

Example 15. Generative probabilistic topic modeling is a series of algorithms which

detect themes by assuming that each document from the collection is defined by a

procedure known as the generative process. This process conceives the existence of a

latent structure, also referred as hidden, that was employed in the generation of the

documents. The objective of this set of algorithms is then to reconstruct the structure,

resorting to the observed variables which represent , in most cases, the words from each

document of the collection. As for the hidden structure, it is comprised of (latent) vari-

ables that differ between models but, that in general define a probability distribution

over topics, when the model considers each document a mixture of topics, representing

the possibility that a document portrays more than one topic.

The original section in Example 13 seems to reflect the use of a poor vocabulary by the author,

falling in a repetition of terms or in the usage of mostly basic terms. The application of the

replacements proposed by the algorithm without a proper analysis, as in Example 14, leads to

a complete change of intention and subject of the text, thus resulting in an inappropriate use

of the algorithm. On the other hand, the intelligent approach shows that the author is capable

of deciding which words should or should not be changed, with the added bonus of being able

to correctly inflect some of the words proposed by the algorithms in its base form. This form

seems to help the author with a variety of synonyms, enhancing the overall quality of the text.

The tests were then expanded to the remaining paragraphs of the section and to a small group

of subjects. Each test contains the three versions of a paragraph randomly ordered. Subjects

with some knowledge in the area were tasked with selecting the best paragraph from each test.

The results are presented in Table 4.6, with each row being the answers of a subject to each

test. The tests can be described as follows:

• Test A contained the first paragraph, with the order being DV, OV, IV;

• Test B contained the second paragraph, with the order being IV, OV, DV;

• Test C contained the third paragraph, with the order being OV, DV, IV;

• Test D contained the fourth paragraph, with the order being DV, IV, OV;

• Test E contained the fifth paragraph, with the order being IV, DV, OV.

49

Table 4.6: Results for the subjective testing of the suggestions proposed by the algorithm.

Test A Test B Test C Test D Test E
3 (IV) 2 (OV) 3 (IV) 3 (OV) 1 (IV)
2 (OV) 2 (OV) 1 (OV) 3 (OV) 1 (IV)
2 (OV) 2 (OV) 1 (OV) 3 (OV) 3 (OV)
3 (IV) 2 (OV) 2 (DV) 3 (OV) 1 (IV)
3 (IV) 1 (IV) 3 (IV) 2 (IV) 1 (IV)
2 (OV) 2 (OV) 3 (IV) 3 (OV) 1 (IV)
3 (IV) 2 (OV) 2 (DV) 3 (OV) 1 (IV)
3 (IV) 2 (OV) 3 (IV) 3 (OV) 3 (OV)

The results present three tests where most people agreed on their choice: for Test B most

subjects choose the Original Version; for Test D they also choose Original Version; and for Test

E they choose the Intelligent Version. As for tests A and C the choices were somewhat balanced

between the OV and the IV. Test C is the only one where two people choose the DV paragraph

as the best. This is most likely justified by the small number of changes performed, which is a

consequence of the short size of the corresponding paragraph. A direct count on the responses

from the subjects shows: 21 counts for the OV; 2 counts for the DV; and 17 counts for the IV.

The results from the subjective tests show that all subjects agree with the fact that the pro-

cedure for the generation of the Dummy Version is not a good method, disrupting the flow and

intention of the text. A deeper analysis of these results is performed in Chapter 5.

4.4 Proof of Concept
The resulting algorithm (Section 3.6) was integrated in a simple text editor developed as a

proof of concept for the implementation of this type of suggestions in real life scenarios. It was

configured with the best parameters obtained from testing, including the number of topics, the

most appropriate table from the database and the document threshold. The text editor is very

simple, following the software engineering process detailed in Appendix A.

The system was designed with the main objective of providing productive suggestions to the

user, allowing for the improvement of the scientific content of the document. It should help

the user in a preemptive manner, with minimal interaction and effort, while allowing him or

her to maintain complete control over the final result. In order for the system to be usable,

basic functionalities, common to most text editors and most tools nowadays, needed to be

included. Some of the functionalities are the opening of existing documents and the find/search

subsystem. The system implements simple versions of these functionalities, which allow for the

user to open any text document and finding words or regular expressions in the text.

The editor tracks changes in the text in real-time, forming a list of sentences and annotating

which ones are changed for future analysis. Providing suggestions in real-time was not possible

50

Figure 4.1: Screenshot of the text editor developed in the scope of this project.

for the current version, mostly due to the large amount of data (which, depending on the table,

could reach up to 18 million entries) and the number of queries that are needed for each word in

each sentence (up to ten). The solution found was to calculate suggestions in the background,

after a predefined time interval or when requested by the user.

Each time a sentence is changed or a suggestion is applied, every suggestion proposed for that

sentence is automatically removed, as they are no longer applicable given that the context

has changed. The next analysis will once again process this new sentence and provide new

suggestions according to the new context.

A screenshot of the text editor can be observed in Figure 4.1, including a representation of

the suggestions provided for the sentence typed in the left side pane. The editor has two

main sections, the left one is where the user introduces the text and the right one is where

the suggestions are presented. By selecting a word in the suggestions section, that word is

highlighted in the left section and a list of possible replacements is shown in the right section.

The user can then apply a suggestion by double clicking a replacement. The word in the text

will be immediately replaced.

51

4.5 Conclusion
This chapter presented the specification of the tests performed and the discussion of the results

achieved. The test sets were of two types: objective, measuring the algorithm performance in

specific cases; and subjective, resorting to humans for their opinion on the results. The chapter

finalized with an overview over the text editor that was developed as a proof of concept.

An analysis on the importance of each type of suggestions in the results indicates that the

context suggestions are the ones with the biggest impact in the performance of the algorithm.

The second value of each cell is the percentage of correct suggestions provided exclusively

by each type of suggestion. The values in the suggestions from Language Tools, Synonyms

and Prepositions are mostly very low, under 1%, meaning that at least one of these types of

suggestions could be suppressed with minimal impact in the performance of the algorithm. One

reason that might justify the lack of improvements provided by the Synonyms suggestions is the

fact that most words are still being proposed in its base form, even with the combination of

SimpleNLG.

The fine tunning of the algorithm includes the tests performed, in the previous chapter, for the

discovery of the number of topics to use (850 for both the Computer Science and Mathematics

sets). The appropriate selection of the table to use, which, as shown by the results, should be

the (...Total) table from the area of interest is another tunning feature. The last tuning option

is the definition of the document threshold, which, due to limitations of time, was restricted

to a small set of values, with the best performance achieved with a document threshold of 6.0,

but at the cost of increased amounts of time. Perhaps with a bigger collection, a smaller value

of threshold could be used to select the same amount of documents, with a better performance

given that the files selected would be more specific to that context.

The next chapter presents an analysis on the results and main conclusions that resulted from

the work performed under this scope.

52

Chapter 5

Conclusions and Future Work

This chapter presents the final remarks of this work. It includes a discussion on the objectives,

an analysis of the obtained results and the identification of several different ideas for future

work.

5.1 Objectives
The main objective of this work was the development of an algorithm capable of proposing sug-

gestions for improving or correcting mistakes in a document, according to its specific context.

The development of the algorithm was completed, with the automatic extraction of a represen-

tation of the context being done using topic modeling, and the matching of similar documents

performed via comparison of these representations. The application of the algorithm to a text

document gives rise to a list of candidate replacements for each word, effectively selecting

those that are most likely to appear in the closest documents.

Another objective was the evaluation of the developed algorithm, which was performed via

combined analysis on two main testing approaches. The first approach included objective tests,

which were automatically generated from the test documents of the corpus. Different parts

of the documents were changed in order to simulate errors that commonly occur during the

writing process. Each test is considered a success if the algorithm proposes the original word

as a replacement for the changes performed. The second approach resorted to the opinion

of human raters towards three different versions of the same section, two of those containing

suggestions proposed by the algorithm.

The last objective was the integration of the algorithm in a functional text editor as a proof of

concept. In order to fulfill this objective, a simple text editor was developed with the algorithm

in mind. The text editor automatically splits and analyses each sentence of the text with the

algorithm, displaying the proposed suggestions to the user. The user is capable of defining the

document threshold for the selection of closest documents, as well as selecting which sugges-

tions to apply. The source code for the text editor is publicly available at [Cor16], including its

Java documentation (Javadoc), as suggested in this Master’s proposal.

53

5.2 Results and Conclusions
This Master’s project targeted a problem felt by many investigators when writing scientific

documents for sharing their findings with the community. The problem includes the need to

ensure that the text written conveys the exact meaning intended by the authors and makes

appropriate usage of the terminology specific to that area of knowledge. The proposed solution

comprised the development of an algorithm, which would analyze the text from a document

and calculate suggestions for improvements and corrections, based on the document itself and

on related documents from the same field.

Through the gathering of a collection of documents and the integration of several NLP tools,

the implemented algorithm is capable of first selecting the closest documents to the one being

written and then using them as the source for the calculation of the replacements which are

more likely to appear. Tests were prepared for evaluating the performance of the algorithm,

both at an objective level with automatically generated errors, as well as at a subjective level

through the rating of humans.

The results from the objective tests show a clear approximation of the text in the document to

the published documents selected as the source. Being able to propose suggestions with an MRR

of 0.35 means that the algorithm is capable of recovering over a third of the words originally

contained within the documents that were automatically altered. This corroborates the fact

that the algorithm is partially capturing very specific linguistic features of the field.

The results from the subjective tests provide a more confusing indication, with the choices of

the subjects slightly leaning towards the original versions of the paragraphs. Perhaps the choice

of removing the filter that selected the three most likely candidates from the entire candidate

list was not a good idea. This choice was made for the Intelligent Version of the paragraphs

in order to contain a bigger number of changes, otherwise resulting in very similar paragraphs.

The large number of choices might have resulted in the confusion that these were all likely to

be used at that context, thus resulting in the selection of bad replacements.

The combination of the results from both types of tests leads to the conclusion that the algo-

rithm is capable of helping with the difficulties felt by investigators in the writing of this type

of documents. Nonetheless, it requires a very thorough analysis of the candidate suggestions

proposed by the algorithm, resulting in a cumbersome process. As such, perhaps a better ap-

proach would be to only check the suggestions proposed for the words in doubt, requiring far

less effort while still benefiting from its use.

The proposed solution shows an emphasis on the context, both at the sentence level, where

the words are analyzed according to their surrounding words, and at the document level, by

resorting to the closest documents. These point towards the conclusion that the the context is

54

a key point on the analysis of the quality of documents, which is further strengthened by the

high percentage of correct suggestions provided by the algorithm.

The implementation of the text editor with the algorithm and the tests performed have demon-

strated that even though the algorithm can be successfully employed in the improvement of

the scientific coherence of a document, it takes too long for it to able to produce real time

suggestions. The alternative solution, found and developed, helps improve the usability of the

algorithm by allowing the user to continuously work while the suggestions are being calculated

on the background.

5.3 Future Work
Mainly due to the lack of time and information on key details, the integration of the Kneser-

ney smoothing did not happen posterior to its implementation. As shown before, this type of

techniques is very important for achieving a more realistic probability calculation for the n-

grams and, consequently, expressions or sentences. Once this addition has been made, new

tests should be performed and the results compared to those presented here.

It is envisioned to make the findings and tool available in the form of a web application in

the future, to potentially foster its usage in the scientific community. It will be required to

redesign the interface in HyperText Markup Language 5 (HTML5) and the controllers in a web

friendly language. Nonetheless, it will not be required to change the information model. The

application logic may eventually use the Java core classes developed in the scope of the project

or, alternatively, be translated into another application as well.

Several ideas arose during the course of this project, some of which could be studied as a com-

plement to the work herein. The first concerns the exploration of expressions and collocations,

instead of resorting only to words for the analysis of a document. As described by [WMW07],

word order is important and phrases contain more information as a whole than the sum of its

individual parts (words). This study could begin with the implementation and analysis of TNG

proposed by X. Wang et. al., [WMW07], which creates topics based on expressions and words.

Another tool within this realm is Senta [DGGPL00], which evaluates a text in the search for

multiword expressions.

As shown by the study performed on the writing of scientific documents, the documents follow

a rigorous structure, with each section describing different topics of the work. As such, each

section is also characterized by differences in the writing, using different verb tenses and per-

sons or having different specificity of its sentences, among other. The proposal of suggestions

while taking the specific section in which the text is included would possibly translate into more

suitable suggestions.

55

Another interesting option would be to resort to corpus managers. This option would include

the testing of the algorithm in different corpus available in such managers, such as the Sci-

Tex [DOKLK+13], and using the corpus manager to analyze the created corpus.

56

Bibliography

[BCD10] D. Blei, L. Carin, and D. Dunson. Probabilistic topic models. IEEE Signal Processing

Magazine, 27(6):55–65, Nov 2010. 17

[BDD+08] Steven Bird, Robert Dale, Bonnie J Dorr, Bryan R Gibson, Mark Joseph, Min-Yen Kan,

Dongwon Lee, Brett Powley, Dragomir R Radev, and Yee Fan Tan. The acl anthology

reference corpus: A reference dataset for bibliographic research in computational

linguistics. In LREC, 2008. 29

[Ble12] David M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–

84, April 2012. 14, 25

[BNJ03] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.

Journal of Machine Learning Research, 3:993–1022, March 2003. 15, 16

[CG96] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques

for language modeling. In Proceedings of the 34th Annual Meeting on Association

for Computational Linguistics, ACL ’96, pages 310–318, Stroudsburg, PA, USA, 1996.

Association for Computational Linguistics. xi, 7, 8, 9, 10, 13, 14, 24, 25

[CH01] David A. Cohn and Thomas Hofmann. The missing link - a probabilistic model of

document content and hypertext connectivity. In T. K. Leen, T. G. Dietterich, and

V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages

430–436. MIT Press, 2001. 18

[CK11] Ching-Fen Chang and Chih-Hua Kuo. A corpus-based approach to online materials

development for writing research articles. English for Specific Purposes, 30(3):222

– 234, 2011. ix, 2

[COJ97] Gregory KWK Chung and Harold F O’Neil Jr. Methodological approaches to online

scoring of essays. 1997. 23

[Cor16] Acácio Correia. Master editor - text editor for scientific documents, 2016. [Online;

accessed on 07/10/2016]. Available from: https://bitbucket.org/correia55/

mastereditor/. 53

[DGGPL00] Gaël Dias, Sylvie Guilloré, and José Gabriel Pereira Lopes. Benefiting from mul-

tidomain corpora to extract terminologically relevant multiword lexical units. In

9th EURALEX International Congress, pages 339–348, Stuttgart - Germany, 2000.

55

[Dik06] Semire Dikli. An overview of automated scoring of essays. The Journal of Technol-

ogy, Learning and Assessment, 5(1), 2006. 23

57

https://bitbucket.org/correia55/mastereditor/
https://bitbucket.org/correia55/mastereditor/

[DOKLK+13] Stefania Degaetano-Ortlieb, Hannah Kermes, Lapshinova-Koltunski, Ekaterina, and

Elke Teich. New Methods in Historical Corpus Linguistics, chapter SciTex – A Di-

achronic Corpus for Analyzing the Development of Scientific Registers. Narr: Tübin-

gen, 2013. 5, 29, 56

[Fin14] Mark Alan Finlayson. Java libraries for accessing the princeton wordnet: Com-

parison and evaluation. In Proceedings of the 7th International Global WordNet

Conference (GWC 2014), Tartu, Estonia, pages 78–85. Global WordNet Association,

2014. 35

[Fou10] Apache Software Foundation. Apache PDFBox - Java PDF Library, 2010. [Online;

accessed on 02/09/2016]. Available from: http://pdfbox.apache.org/. 30, 36

[GD10] H. Glasman-Deal. Science Research Writing for Non-native Speakers of English.

Imperial College Press, 2010. 21

[GR09] Albert Gatt and Ehud Reiter. Simplenlg: A realisation engine for practical ap-

plications. In Proceedings of the 12th European Workshop on Natural Language

Generation, ENLG ’09, pages 90–93, Stroudsburg, PA, USA, 2009. Association for

Computational Linguistics. 36

[GS04] Thomas L. Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of

the National Academy of Sciences, 101(suppl 1):5228–5235, 2004. 16, 19, 34

[GSBT05] Thomas L. Griffiths, Mark Steyvers, David M. Blei, and Joshua B. Tenenbaum. Inte-

grating topics and syntax. In L.K. Saul, Y. Weiss, and L. Bottou, editors, Advances

in Neural Information Processing Systems 17, pages 537–544. MIT Press, 2005. 18,

37

[Hof99a] Thomas Hofmann. Probabilistic latent semantic analysis. In Proceedings of the

Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI’99, pages 289–

296, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. 16, 18

[Hof99b] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the

22Nd Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’99, pages 50–57, New York, NY, USA, 1999. ACM. 15,

16, 18

[HZW10] P. Han, Z. Zhu, and Q. Wei. An analysis of disciplinary variation in the structure of

research article introductions. In Computational Intelligence and Software Engi-

neering (CiSE), 2010 International Conference on, pages 1–4, Dec 2010. 21

[JM00] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Intro-

duction to Natural Language Processing, Computational Linguistics, and Speech

58

http://pdfbox.apache.org/

Recognition. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2000. 7,

8, 9, 10, 31, 46

[KM03] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Pro-

ceedings of the 41st Annual Meeting on Association for Computational Linguistics

- Volume 1, ACL ’03, pages 423–430, Stroudsburg, PA, USA, 2003. Association for

Computational Linguistics. 35

[KOTT03] J-D Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi Tsujii. Genia corpus—a semanti-

cally annotated corpus for bio-textmining. Bioinformatics, 19(suppl 1):i180–i182,

2003. 29

[Lib98] Cornell University Library. arXiv - electronic archive, 1998. [Online; accessed on

03/09/2016]. Available from: http://arxiv.org. 5

[LN13] Annie Louis and Ani Nenkova. A corpus of science journalism for analyzing writing

quality. Discourse and Dialogue, 4(2):87–117, 2013. 22

[LS15] S. Louvigné and J. Shi. Corpus-based analysis of academic RA genre: The ”Results”

sub-genre. In 2015 International Conference on Advanced Mechatronic Systems

(ICAMechS), pages 185–189, Aug 2015. 1, 2, 21

[McC02] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit, 2002.

[Online; accessed on 02/09/2016]. Available from: http://mallet.cs.umass.edu.

34

[Mil95] George A. Miller. Wordnet: A lexical database for english. Communications of the

ACM, 38(11):39–41, November 1995. 35

[Mił10] Marcin Miłkowski. Developing an open-source, rule-based proofreading tool. Soft-

ware, Practice and Experience, 40(7):543–566, 2010. 35

[Nab03] Daniel Naber. A rule-based style and grammar checker. Diplomarbeit Technische

Fakultät, Universität Bielefeld, Germany, 2003. 35

[NSH12] N. Nakmaetee, M. Sodanil, and C. Haruechaiyasak. Verb suggestion for english

academic writing using wildcard query. In Computing and Convergence Technology

(ICCCT), 2012 7th International Conference on, pages 668–672, Dec 2012. 1, 2, 24

[Nwo97] Kevin Ngozi Nwogu. The medical research paper: Structure and functions. English

for Specific Purposes, 16(2):119 – 138, 1997. 21

[OC09] Stephen T. O’Rourke and Rafael A. Calvo. Visualizing paragraph closeness for

academic writing support. 2014 IEEE 14th International Conference on Advanced

Learning Technologies, 0:688–692, 2009. 23

59

http://arxiv.org
http://mallet.cs.umass.edu

[Ree12] Colorado Reed. Latent dirichlet allocation: Towards a deeper understanding, 2012.

25

[Rei06] Arianne Reimerink. The Use of Verbs in Research Articles: Corpus Analysis for

Scientific Writing and Translation. New Voices in Translation Studies, 2, 2006. 20,

21

[RKEO15] Christian Rapp, Otto Kruse, Jennifer Erlemann, and Jakob Ott. Thesis writer: A sys-

tem for supporting academic writing. In Proceedings of the 18th ACM Conference

Companion on Computer Supported Cooperative Work & Social Computing,

CSCW’15 Companion, pages 57–60, New York, NY, USA, 2015. ACM. ix, 1, 23

[RZGSS04] Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth. The

author-topic model for authors and documents. In Proceedings of the 20th Confer-

ence on Uncertainty in Artificial Intelligence, UAI ’04, pages 487–494, Arlington,

Virginia, United States, 2004. AUAI Press. 18

[San90] Beatrice Santorini. Part-of-speech tagging guidelines for the penn treebank project

(3rd revision). 1990. 35, 37

[SG] M. Steyvers and T. Griffiths. Latent Semantic Analysis: A Road to Meaning, chapter

Probabilistic topic models. Laurence Erlbaum. 20

[SSDL+14] Duygu Simsek, Simon Buckingham Shum, Anna De Liddo, Rebecca Ferguson, and

Ágnes Sándor. Visual analytics of academic writing. In Proceedings of the Fourth

International Conference on Learning Analytics And Knowledge, LAK ’14, pages

265–266, New York, NY, USA, 2014. ACM. 23

[Sut00] Brian Sutton. Swales’s” moves” and the research paper assignment. Teaching

English in the Two Year College, 27(4):446, 2000. 20

[TJBB05] Yee W. Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Sharing clusters

among related groups: Hierarchical dirichlet processes. In L. K. Saul, Y. Weiss, and

L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages

1385–1392. MIT Press, 2005. 17

[UU15] Masaki Uto and Maomi Ueno. Academic writing support system using bayesian net-

works. In Proceedings of the 2015 IEEE 15th International Conference on Advanced

Learning Technologies, ICALT ’15, pages 385–387, Washington, DC, USA, 2015. IEEE

Computer Society. 1, 24

[vdBB08] Antal van den Bosch and Toine Bogers. Efficient context-sensitive word completion

for mobile devices. In Proceedings of the 10th International Conference on Human

Computer Interaction with Mobile Devices and Services, MobileHCI ’08, pages 465–

470, New York, NY, USA, 2008. ACM. 2

60

[Vog00] Paul Vogt. Grounding language about actions: Mobile robots playing follow me

games. In SAB2000 Proceedings Supplement Book. International Society for Adap-

tive Behavior. MIT Press, 2000. 7

[WCMC10] Jian-Cheng Wu, Yu-Chia Chang, Teruko Mitamura, and Jason S. Chang. Automatic

collocation suggestion in academic writing. In ACL 2010, Proceedings of the 48th

Annual Meeting of the Association for Computational Linguistics, July 11-16, 2010,

Uppsala, Sweden, Short Papers, pages 115–119, 2010. 24, 44

[WMSM09] Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. Evalua-

tion methods for topic models. In Proceedings of the 26th Annual International

Conference on Machine Learning, ICML ’09, pages 1105–1112, New York, NY, USA,

2009. ACM. 19

[WMW07] Xuerui Wang, Andrew McCallum, and Xing Wei. Topical n-grams: Phrase and topic

discovery, with an application to information retrieval. In Proceedings of the 2007

Seventh IEEE International Conference on Data Mining, ICDM ’07, pages 697–702,

Washington, DC, USA, 2007. IEEE Computer Society. 18, 55

[WTR+15] Denise Whitelock, Alison Twiner, John T. E. Richardson, Debora Field, and Stephen

Pulman. Openessayist: A supply and demand learning analytics tool for drafting

academic essays. In Proceedings of the Fifth International Conference on Learning

Analytics And Knowledge, LAK ’15, pages 208–212, New York, NY, USA, 2015. ACM.

24

[YFL02] Yang Yonglin, Yang Fang, and Yang Li. A research on english thesis writing. China

Central Radio and TV University Press, pages 124–144, 2002. 29

[YXL10] H. Yang, J. Xu, and F. Liu. Lexical hedges in english abstract writing. In Computa-

tional Intelligence and Software Engineering (CiSE), 2010 International Conference

on, pages 1–4, Dec 2010. 29

61

62

Appendix A

Software Engineering

A.1 Introduction
This appendix describes the software engineering process for the text editor, including the re-

quirement analysis (Section A.2), use cases (Section A.3), activity (Section A.4) and class (Sec-

tion A.5) diagrams. The text editor is briefly described in Chapter 1, though it received full

attention at some point of this work, namely during the proof of concept section (Section 4.4).

A.2 Requirement Analysis
The requirement specification defines the main requirements a software must fulfill after the

development is complete. This specification is used to ensure that the most important func-

tionalities are implemented, and to reduce the costs associated with software development,

since adding new functionalities/properties becomes more expensive with the advance in the

development cycle.

A.2.1 Functional Requirements

The functional requirements identified for the text editor prototyped in the scope of this work

were the following:

• allow the user to open, edit and save text documents;

• automatically retrieve the context from the document. This context should describe the

syntactic structures and most common words that are involved in the writing of documents

of the same type;

• automatically retrieve similar documents from a corpus of scientific documents, based on

the context;

• allow the user to define the desired level of proximity for the similar documents;

• automatically infer the syntactic structure of the sentences;

• automatically gather synonyms or synonymous expressions from the text in the document;

• automatically suggest changes, such as word replacements, that approximate the docu-

ment according to its context;

63

• automatically suggest corrections to grammatical errors;

• allow the user to interact with a suggestion, accepting the proposed changes;

• automatically change the text to apply a suggestion accepted by the user;

• allow the user to force the processing of the current text.

A.2.2 Non-functional Requirements

The non-functional requirements are characteristics and technicalities associated with the func-

tional requirements that ensure certain properties of the system. These requirements are pre-

sented alongside their category.

Starting with interoperability/portability properties, the system:

• should be portable (available for all Operating Systems);

• allow users to work in different systems, as documents should be portable between Oper-

ating Systems.

User friendliness:

• should be easy to operate the main functionalities without requiring a manual;

• the interface should be as simple as possible, preventing distractions from the core work.

In terms of maintainability/extensibility:

• the system should be developed in a modular manner, allowing for the addition of new

modules that introduce new functionalities;

• the source code should be open, allowing the continuous development by the community.

As for performance properties, the text editor should:

• require low specification hardware (at the level of state of the art portable computers),

as a way of meeting a greater audience;

• calculate suggestions while ensuring that the processing of the input is uninterrupted,

allowing the user to continue with the writing.

The response time:

64

• for finding the context of the document should be inferior to thirty seconds;

• for calculating and presenting the suggestions should be inferior to five minutes.

A.3 Use Cases
This section presents the use cases for the primary features provided by the proposed system.

The use case diagrams represent the system seen by the perspective of the user, displaying

the user interactions and the system responses. The user is the only actor of the system and it

represents any person whose objective is to write or improve a scientific or academic document.

A.3.1 Open, Edit and Save Text Files

The first use case depicts the main function of any text editing tool, which is to open, edit

and save text files. These use cases are represented at figure A.1 and described in detail in

table A.1.

Text Editor
Text Editor

Open File Choose File

Edit File

Save File Choose Location

include

include
user

Figure A.1: Representation of the use case for opening, editing and saving files.

Table A.1: A description of the use case for opening, editing and saving files.

Actors Description
User The user is able to open text files by browsing through the file system and selecting the file.

The text editor then tries to open and show the text from the file, allowing its edition and,
when chosen, saving of the result. The document can be saved to the same file or to another
one, by selecting the location and name of the file. Note: Opening any type of file will still
result in reading the file as a text file.

A.3.2 Change Proximity Level

The next use cases concern the ability to change the desired level of proximity for similar

documents, directly affecting the proposed suggestions. Its representation can be observed in

figure A.2 and a more detailed description is provided in table A.2.

65

Text Editor
Text Editor

Change Level
of Proximity for

Similar Documents
user

Figure A.2: Representation of the use case for changing the proximity level of similar documents.

Table A.2: Description of the use case for changing the proximity level of similar documents.

Actors Description
User The user can change the level of desired proximity, defining the file threshold for the ac-

ceptance of similar documents. Increasing this value represents a generalization in the area,
which results in the inclusion of increasingly different documents in the suggestions calcula-
tion.

A.3.3 Interact with Suggestions

The functionalities associated with the capabilities of the user interacting with the suggestions

that are provided by the editor are represented in figure A.3 and described with greater detail

in table A.3.

Text Editor
Text Editor

Interact with
a suggestion

Select the Word
of interest

Check Suggestions

Accept Suggestions

Apply Suggestions

include

extend

extend

include

user

Figure A.3: The use case for the user interaction with a suggestion.

66

Table A.3: Description of the user interaction with a suggestion.

Actors Description
User After the suggestions have been calculated, the user can select a word, and check the pro-

posed suggestions for that word. The user is then capable of analyzing each suggestion and
accept it, if its his or her will. By accepting the suggestion, the system automatically makes
the necessary changes. After accepting a suggestion, every other suggestion available for
the same sentence is removed, avoiding the proposal of changes inappropriate for the new
context.

A.3.4 Force Analysis

The user is capable of forcing the system to start a new analysis on the system, restarting all

the associated processes. This action is depicted in figure A.4 and described with further detail

in table A.4.

Text Editor
Text Editor

Force Analysis

user

Figure A.4: A representation of the use case for forcing an analysis.

Table A.4: Description of the use case for forcing a new analysis

Actors Description
User The user forces a new analysis on the text, restarting all the associated processes, including

the search for context and related documents, and the calculation of the suggestions.

A.4 Activity Diagrams
The activity diagrams are used to describe the flow between correlated activities. Given the

simple nature of most actions performed in the text editor, this section contains only one diagram

for the overall activities between the user and the system.

Table A.5 describes the steps involved in the main functions of the system, represented in

Figure A.5. It combines both the treatment of the user input and the simultaneous calculation

of suggestions, following a conceptual perspective.

67

Choose
Open File
or New File

User Input

New Tab

Open File

Wait Input

Treat Input

Force Analysis

Update Time

Find Context

Suggestions

Close File

open file

new file

other input

force analysis

close file

else

defined time has
passed or analysis

was forced

file closed

User System

Figure A.5: Activity diagram representative of the activities responsible for the main functions provided
by the system.

Table A.5: Description of the main activity diagram.

Steps Description
1 The process starts after the user decides to either open an existing file or to create a new

one.
2 The system then processes this input creating a new tab and, if the selected option was to

open a file, displaying the text from the file.
3 A new thread should be created with the objective of calculating the suggestions in the

background, while the main thread processes the user input.
4 The user can then introduce text, choose to force an analysis or close the file. The first two

actions result in the appropriate process by the system and posterior wait for a new input to
process. The latter results in the system closing the file and ending the entire process.

5 Once the defined time has passed or the user has chosen to force an analysis, the system starts
to calculate the suggestions. The process begins with the finding of a context, followed by
the calculation of suggestions according to that context. This process is repeated until the
file is closed.

A.5 Class Diagrams
Class diagrams are used to describe the structure of the system in a static manner. They provide

information about the classes available in the system, including their attributes and methods,

68

and how they interact with each other. Figure A.6 is the class diagram for the text editor, rep-

resenting its main classes. Each class includes the name and only the most important attributes

and methods, to benefit readability and the understanding of the system. A description of the

purpose and importance of each class can be described as follows:

• SuggestedReplacement — contains a word or expression which has been proposed as a re-

placement for a word in the text under analyses. Each suggested replacement is classified

according to the method behind the suggestion. The considered types are: Language tool,

synonyms, prepositions and each of the types of context suggestions (one for each position

of the trigram);

• Suggestion — a suggestion groups a set of suggested replacements concerning the same

word in the text and contains the position of the word inside the corresponding sentence;

• Sentence — a sentence is represented by the text of the sentence, the position of the

sentence in the text and a list of all the suggestions that concern words in that sentence.

An extra variable has been added to describe whether the sentence has been updated

since the last analysis of the text;

• Document — a document stores a list of all the sentences it contains and a context, which

is defined by its closest documents;

• FileContext — lists the closest documents to a document;

• EditorDocument — is an extension to Document, adding variables necessary to the editor.

The stack of changes that form both the undo and redo stacks are some of these variables,

and the TextArea associated with each document is another one;

• FXMLDocumentController — is the main class, which is responsible for coordinating most

of the work performed by every other class. It performs all the actions that are available

in a regular text editor: processing input, opening, saving and closing files. Other func-

tions include the automatic parsing of the text into sentences and keeping track of which

ones have been modified, in real-time. It resorts to the NGramDB for performing the word

prediction and interacts with both LDA and CalculateSuggestions objects for calculating

the suggestions;

• NGramDB — serves as the interface with the database where the tables with the n-grams

were stored. It implements all methods concerning the calculation of suggestions, query-

ing the DBMS (MySQL) for the most likely words in a given position, the most likely expres-

sions formed by a set of n-grams, or the probability of an n-gram or expression, among

others;

• LDA — utilizes MALLET for the estimation of the probability distribution over the topics for

the current document;

69

• CalculateSuggestions — corresponds to the class that combines the answers obtained

from NGramDB to calculate the suggestions;

• JWI — is the class responsible for interacting with the lexical database WordNet, through

the use of JWI. Its main function is to provide synonyms for a word, given its POS tag;

• StanfordParser — parses the grammatical structure of a sentence, determining the POS

tag for each of the words;

• LanguageTool — provides an extra layer of grammatical corrections to the editor. It checks

the text, based on a set of rules, providing an explanation for the problem and a set of

replacements as a solution;

• SimpleNLG — performs the morphological realization of some of the words, by extracting

information about the person, number and tense from a POS tag.

SuggestedReplacement

type : int
replacement : String

getReplacement() : String

Suggestion

fromPos : int
toPos : int
message : String
replacements : List<SuggestedReplacement>

getReplacements() : List<SuggestedReplacement>
addReplacementsFromType(...) : void

Sentence

sentence : String
startPos : int
endPos : int
wasEdited : boolean
suggestions : List<Suggestion>

getSentence() : String
getSuggestions() : void
setWasEdited(wasEdited : boolean) : void

Document

context : Context
sentences : List<Sentence>

getClosestDocuments() : List<Integer>

FileContext

closestDocuments : List<Integer>

getClosestDocuments() : List<Integer>

EditorDocument

textA : TextArea
undoStack : Stack<TextChange>
redoStack : Stack<TextChange>

NGramDB

dbConnection : Connection
stmtQuery : Statement
initialFile : int

getMostLikelyWords(...) : List<String>
getMostLikelyNextWords(...) : List<String>
getProbabilityNgram(...) : double
getProbabilityExpression2(...) : double
getMostLikelyExpressions(...) : List<String>
getInitialFile(...) : void

FXMLDocumentController

fileThreshold : float
wordPrediction : boolean
editorDocuments : List<EditorDocument>
selectedIndex : int
lastWords : List<String>
dbPredictions : NGramDB
dbSuggestions : NGramDB
cs : CalculateSuggestions
topicsModel : LDA

openTextFile() : void
saveTextFile() : void
updateTopicDocuments() : void
getTabTextSuggestions() : void
predictWords() : void

LDA

ldaModel : ParallelTopicModel
instances : InstanceList

distributionNewDocument(documentText : String) : double[]
getClosestDocuments(...) : List<Integer>
getDocumentsUnderThreshold(...) : List<Integer>

CalculateSuggestions

db : NGramDB
document : Document
lt : LanguageTool
wordnet : JWI
sp : StanfordParser

ngramWordnetSuggestions : void

JWI

dict : IDictionary

getSynonyms(word : String, pos : POS) : List<String>

StanfordParser

lp : LexicalizedParser
tokenizerFactory : TokenizerFactory<CoreLabel>

parseSentence(sentence : String) : List<TaggedWord>
getPOSWordnet(tag : String) : POS

LanguageTool

languageTool : JLanguageTool

checkSentence(sentence : String) : List<RuleMatch>

SimpleNLG

lexicon : Lexicon
realiser : Realiser
originalWord : String
posTag : String
inflectedElements : List<InflectedWordElement>

setWord(...) : void
getCategory(posTag : String) : LexicalCategory
getVariants() : List<String>

1...*1*1

*

1

* 1

*

1

Figure A.6: Class diagram for the system from an implementation perspective.

70

Appendix B

Results

B.1 Introduction
This appendix contains the results obtained for the majority of the tests. They include the

ones concerning choice of the number of topics (in Section B.2) and all results for the automatic

tests performed to ascertain the validity of the developed algorithm, in Section B.3. Section B.4

contains the three complete versions of the text used in subjective testing.

B.2 Parameters
Figure B.1 presents charts with the probability vs. the number of topics for the fields of Mathe-

matics and Computer Science. Topics were ranging in the interval ([50, 1250]). They were used

to select the number of topics to be considered in the embodiment of the algorithm.

0 500 1,000
−3.2

−3.15

−3.1

·107

(850,−3.09)

Number of Topics

Pr
ob

ab
ili
ty

Computer Science

0 500 1,000

−2.3

−2.25

−2.2

·107

(850,−2.20)

Number of Topics

Pr
ob

ab
ili
ty

Mathematics

Figure B.1: Probability of the Computer Science and Mathematics validation sets for different number of
topics.

B.3 Objective Tests
This section contains the results obtained during the objective testing.

71

Table B.1: Results for the tests with 1104 documents from Computer Science using the cs table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1328 1.00 / 1.00 43.50 / 4.00 46.00 / 8.50 53.00 / 18.00 32.00 / 15.00 0.00 / 0.00 15.06 0.12
1 1968 0.92 / 0.92 0.00 / 0.00 58.78 / 8.06 53.37 / 3.83 39.89 / 3.96 71.99 / 1.32 38.47 0.33
2 1254 0.00 / 0.00 0.00 / 0.00 52.48 / 30.43 45.65 / 13.98 49.38 / 21.43 0.00 / 0.00 25.68 0.21
All 4550 0.70 / 0.70 6.80 / 0.63 55.20 / 13.76 51.37 / 8.60 41.05 / 10.09 42.61 / 0.78 28.11 0.24

Table B.2: Results for the tests with 1103 documents from Computer Science using the csTotal table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1371 2.97 / 2.97 59.05 / 6.23 45.99 / 7.72 63.20 / 10.68 36.50 / 5.93 0.30 / 0.00 24.58 0.19
1 2063 0.68 / 0.68 0.00 / 0.00 68.26 / 4.77 70.04 / 3.06 52.09 / 2.55 70.81 / 1.70 56.96 0.48
2 1160 0.00 / 0.00 0.00 / 0.00 58.71 / 14.32 71.78 / 11.41 62.66 / 8.71 0.00 / 0.00 41.55 0.34
All 4594 0.90 / 0.90 9.98 / 1.05 62.19 / 7.57 69.31 / 6.37 52.01 / 4.61 41.78 / 1.00 43.40 0.36

Table B.3: Results for the tests with 1103 documents from Computer Science using the csCut table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1429 1.77 / 1.77 55.75 / 7.08 53.69 / 5.31 58.11 / 7.37 44.25 / 11.21 0.00 / 0.00 23.72 0.19
1 2141 0.34 / 0.34 0.00 / 0.00 64.28 / 4.52 69.14 / 3.24 52.17 / 2.22 73.32 / 0.77 54.79 0.47
2 1143 0.00 / 0.00 0.00 / 0.00 62.44 / 15.96 68.54 / 10.09 56.10 / 10.09 0.00 / 0.00 37.27 0.29
All 4713 25/0.51 / 0.51 9.75 / 1.23 62.02 / 7.17 67.07 / 5.46 51.65 / 5.52 44.37 / 0.46 41.12 0.34

Table B.4: Results for the tests with 1103 documents from Computer Science using the math table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1442 5,33 / 5,33 46,15 / 4,73 50,30 / 8,28 40,83 / 8,88 35,50 / 21,30 0,00 / 0,00 11,72 0,09
1 1993 1,13 / 1,13 0,00 / 0,00 56,96 / 8,90 55,50 / 6,31 34,95 / 3,88 68,12 / 2,27 31,01 0,27
2 1243 0,00 / 0,00 0,00 / 0,00 55,84 / 33,77 42,86 / 11,26 53,25 / 23,81 0,00 / 0,00 18,58 0,15
All 4678 1,57 / 1,57 7,66 / 0,79 55,60 / 14,44 50,20 / 7,86 39,19 / 11,30 41,36 / 1,38 21,76 0,18

Table B.5: Results for the tests with 1105 documents from Computer Science using the mathTotal table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1412 1.74 / 1.74 55.05 / 7.67 46.34 / 8.36 57.14 / 10.10 45.30 / 10.10 0.00 / 0.00 20.33 0.16
1 1924 0.52 / 0.52 0.10 / 0.00 59.12 / 5.97 64.78 / 3.98 46.96 / 2.20 69.50 / 2.20 49.58 0.42
2 1238 0.00 / 0.00 0.00 / 0.00 53.76 / 18.91 63.78 / 12.76 53.08 / 14.12 0.00 / 0.00 35.46 0.28
All 4574 0.60 / 0.60 9.46 / 1.31 55.54 / 9.76 63.21 / 7.32 48.27 / 6.67 39.46 / 1.25 36.73 0.30

Table B.6: Results for the tests with 1103 documents from Computer Science using the mathCut table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1363 2.31 / 2.31 50.00 / 4.62 49.23 / 7.31 56.92 / 10.00 50.38 / 12.69 0.00 / 0.00 19.08 0.15
1 2093 0.30 / 0.30 0.00 / 0.00 55.26 / 6.78 62.96 / 4.86 43.32 / 2.94 70.65 / 1.42 47.20 0.40
2 1226 0.00 / 0.00 0.00 / 0.00 53.05 / 16.75 61.68 / 10.15 59.64 / 17.01 0.00 / 0.00 32.14 0.27
All 4682 0.54 / 0.54 7.91 / 0.73 53.77 / 9.25 61.69 / 6.94 48.35 / 7.85 42.50 / 0.85 35.07 0.29

Table B.7: Results for the tests with 1103 documents from Computer Science using the 3gram table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1426 2.37 / 2.37 31.75 / 3.79 30.81 / 4.74 55.92 / 21.33 44.55 / 20.85 0.00 / 0.00 14.80 0.12
1 2021 0.72 / 0.72 0.00 / 0.00 51.38 / 7.19 46.95 / 5.15 44.19 / 6.11 71.50 / 0.36 41.32 0.35
2 1175 0.00 / 0.00 0.00 / 0.00 49.06 / 27.83 43.87 / 16.04 47.17 / 27.36 0.00 / 0.00 18.04 0.14
All 4622 0.87 / 0.87 5.32 / 0.63 47.53 / 10.25 47.93 / 9.69 44.75 / 12.16 47.45 / 0.23 27.22 0.23

72

Table B.8: Results for the tests with 1029 documents from Mathematics using the cs table. with a
document threshold of 6.0.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1116 1.80 / 1.80 63.47 / 6.59 55.09 / 7.78 55.69 / 8.98 34.13 / 10.18 0.00 / 0.00 14.96 0.13
1 2008 0.00 / 0.00 0.00 / 0.00 57.99 / 10.79 52.66 / 6.62 37.12 / 4.03 65.04 / 1.73 34.61 0.29
2 1240 0.00 / 0.00 0.00 / 0.00 56.30 / 33.61 43.70 / 11.34 46.22 / 19.33 0.00 / 0.00 19.19 0.15
All 4364 0.27 / 0.27 9.64 / 1.00 57.18 / 15.27 51.18 / 8.00 38.64 / 8.27 41.09 / 1.09 25.21 0.21

Table B.9: Results for the tests with 1031 documents from Mathematics using the csTotal table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1107 0.72 / 0.72 69.20 / 8.70 56.52 / 6.88 66.67 / 4.35 49.28 / 5.07 0.00 / 0.00 24.93 0.20
1 1990 0.00 / 0.00 0.00 / 0.00 64.08 / 5.43 67.91 / 3.92 50.00 / 2.82 67.51 / 1.91 49.95 0.42
2 1329 0.00 / 0.00 0.00 / 0.00 61.61 / 14.43 73.11 / 9.78 61.37 / 9.54 0.00 / 0.00 30.78 0.25
All 4426 0.11 / 0.11 11.37 / 1.42 62.23 / 7.86 68.96 / 5.41 52.65 / 4.82 39.96 / 1.13 37.93 0.31

Table B.10: Results for the tests with 1031 documents from Mathematics using the csCut table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1148 1.68 / 1.68 62.63 / 4.71 60.27 / 8.42 67.00 / 9.43 38.38 / 5.05 0.34 / 0.00 25.87 0.22
1 1935 0.00 / 0.00 0.00 / 0.00 61.95 / 6.46 65.44 / 4.00 47.38 / 2.77 65.95 / 1.33 50.39 0.42
2 1275 0.00 / 0.00 0.00 / 0.00 63.52 / 21.00 62.99 / 8.66 56.17 / 9.19 0.00 / 0.00 29.88 0.24
All 4358 0.30 / 0.30 11.25 / 0.84 62.00 / 10.16 65.15 / 6.04 47.79 / 4.65 38.95 / 0.78 37.93 0.31

Table B.11: Results for the tests with 1030 documents from Mathematics using the math table. with a
document threshold of 6.0.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1158 1.63 / 1.63 54.35 / 2.72 56.52 / 9.24 47.83 / 12.50 34.78 / 13.04 0.00 / 0.00 15.89 0.12
1 1946 0.00 / 0.00 0.00 / 0.00 59.57 / 11.45 53.19 / 5.51 35.80 / 4.49 65.80 / 1.45 35.46 0.30
2 1308 0.00 / 0.00 0.00 / 0.00 63.42 / 33.85 44.75 / 11.28 43.97 / 16.73 0.00 / 0.00 19.65 0.16
All 4412 0.27 / 0.27 8.84 / 0.44 59.95 / 16.18 50.40 / 7.96 37.49 / 8.66 40.14 / 0.88 25.63 0.21

Table B.12: Results for the tests with 1033 documents from Mathematics using the math table. with a
document threshold of 5.0.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1171 2,41 / 2,41 46,39 / 3,01 54,82 / 12,65 46,39 / 12,05 29,52 / 13,25 0,60 / 0,00 14,18 0,11
1 1969 0,36 / 0,36 0,00 / 0,00 54,22 / 12,03 51,35 / 6,64 38,78 / 3,95 63,91 / 0,72 28,29 0,24
2 1269 0,00 / 0,00 0,00 / 0,00 54,87 / 35,90 43,59 / 10,26 50,26 / 20,00 0,00 / 0,00 15,37 0,13
All 4409 0,65 / 0,65 8,39 / 0,54 54,47 / 17,21 48,80 / 8,39 39,54 / 9,04 38,89 / 0,44 20,82 0,17

Table B.13: Results for the tests with 1033 documents from Mathematics using the math table. with a
document threshold of 4.0.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1098 1,92 / 1,92 54,81 / 4,81 60,58 / 12,50 46,15 / 11,54 25,96 / 9,62 0,00 / 0,00 9,47 0,08
1 1965 0,00 / 0,00 0,00 / 0,00 52,76 / 11,04 49,01 / 6,84 34,22 / 7,51 66,45 / 1,99 23,05 0,19
2 1226 0,00 / 0,00 0,00 / 0,00 47,17 / 33,33 36,48 / 10,69 50,94 / 26,42 0,00 / 0,00 12,97 0,11
All 4289 0,28 / 0,28 7,96 / 0,70 52,65 / 16,20 45,81 / 8,38 36,73 / 12,01 42,04 / 1,26 16,69 0,14

Table B.14: Results for the tests with 1035 documents from Mathematics using the math table. with a
document threshold of 3.0.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1134 0,00 / 0,00 52,86 / 2,86 60,00 / 8,57 44,29 / 14,29 31,43 / 15,71 0,00 / 0,00 6,17 0,05
1 1959 0,58 / 0,58 0,00 / 0,00 58,21 / 16,43 49,57 / 7,20 26,22 / 3,46 61,96 / 2,59 17,71 0,15
2 1322 0,00 / 0,00 0,00 / 0,00 51,08 / 37,41 29,50 / 6,47 52,52 / 31,65 0,00 / 0,00 10,51 0,09
All 4415 0,36 / 0,36 6,65 / 0,36 56,65 / 20,68 43,88 / 7,91 33,45 / 12,05 38,67 / 1,62 12,59 0,11

73

Table B.15: Results for the tests with 1030 documents from Mathematics using the mathTotal table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1112 0.96 / 0.96 63.38 / 3.50 57.64 / 6.69 73.89 / 7.32 50.00 / 4.46 0.00 / 0.00 27.74 0.23
1 1985 0.00 / 0.00 0.00 / 0.00 63.20 / 5.20 73.23 / 3.22 50.33 / 1.42 65.66 / 2.74 53.25 0.45
2 1280 0.00 / 0.00 0.00 / 0.00 61.47 / 11.47 75.92 / 10.55 64.45 / 6.88 0.00 / 0.00 34.06 0.28
All 4397 0.16 / 0.16 11.01 / 0.60 61.81 / 6.97 73.99 / 5.70 53.68 / 3.26 38.40 / 1.60 41.10 0.34

Table B.16: Results for the tests with 1029 documents from Mathematics using the mathCut table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1106 1.22 / 1.22 60.86 / 4.89 58.72 / 7.65 69.11 / 8.26 42.51 / 3.98 0.00 / 0.00 29.57 0.25
1 1963 0.00 / 0.00 0.00 / 0.00 63.52 / 6.06 68.82 / 3.75 48.22 / 2.98 65.26 / 2.02 52.93 0.45
2 1395 0.00 / 0.00 0.00 / 0.00 65.08 / 16.70 67.90 / 8.89 58.35 / 10.63 0.00 / 0.00 33.05 0.28
All 4464 0.21 / 0.21 10.89 / 0.87 63.05 / 9.04 68.63 / 5.85 49.75 / 5.09 37.11 / 1.14 40.93 0.35

B.4 Subjective Tests
This section contains the three complete versions of the text selected for the subjective testing.

It resorts to the same scheme of colors described in Section 4.3, where a blue background repre-

sents a word that was altered and a red background a word that was altered with a change in the

meaning. Examples 16, 17, 18 depict the original section, the section after dummy application

of suggestions and the section with a thorough choice of suggestions applied, respectively.

Example 16. Generative probabilistic topic modeling is a group of algorithms that find

topics by considering that each document in the collection is created by a process called

the generative process. This process considers the existence of a latent structure, also

known as hidden, that was used in the generation of the documents. The objective of this

set of algorithms is then to reconstruct the structure, resorting to the observed variables

which are, in most cases, the words of each document in the collection. As for the hidden

structure, it is composed of (latent) variables that vary from model to model but, that

generally include a probability distribution over topics, when the model considers each

document a mixture of topics, representing the possibility that a document depicts more

than one topic.

The generative model associated with PLSI is called the aspect model [Hof99a, Hof99b]

(represented in Figure 2.1). The generation of each word in a document, according to the

asymmetric formulation of this model, starts with the selection of a document d, with the

index I d in the collection, with a predefined probability inside the collection. Then, for

Table B.17: Results for the tests with 1031 documents from Mathematics using the 3gram table.

Error
Type

Number
of Errors

Language Tool
(% / %)

Synonyms
(% / %)

After
(% /%)

Between
(% /%)

Before
(% /%)

Prepositions
(% / %)

Total
(%)

MRR

0 1128 4.24 / 4.24 35.59 / 5.08 36.44 / 5.93 58.47 / 20.34 38.14 / 13.56 0.00 / 0.00 10.46 0.09
1 2045 0.15 / 0.15 0.00 / 0.00 49.07 / 8.64 48.46 / 6.48 43.06 / 7.87 64.51 / 0.77 31.69 0.28
2 1395 0.00 / 0.00 0.00 / 0.00 50.58 / 27.33 52.33 / 22.09 40.12 / 17.44 0.00 / 0.00 12.33 0.09
All 4568 0.63 / 0.63 4.47 / 0.63 47.76 / 11.72 50.42 / 11.08 41.89 / 10.34 44.56 / 0.53 20.53 0.17

74

each word token, a latent class Z d,n is chosen from the probability distribution of the

document over the latent classes. And, according to the probability distribution over the

words in that class, a word W d,n is finally selected. This process is repeated for each of

the documents in the collection.

As represented in Figure 2.1, the fact that I d is an observed variable means that the model

considers only documents in the analyzed collection, and thus is unable to determine the

topics for a new document afterwards.

This process is based on three main assumptions: each word is considered independent from

the others when conditioned on the topic assignment, describing each document as a bag-

of-words, in which the order of the words is ignored; considers that words conditioned on

the topic assignment are independent of the document in which they insert themselves; the

number of existing topics is considered known and fixed [BNJ03]. All of these assumptions

simplify the process of recovering the latent structure, otherwise infeasible.

The LDA (Figure 2.2) considers a generative process with complementary parameters to

those presented in the PLSI process with the addition of two new parameters: α and β.

The α serves as a configuration parameter for the Dirichlet distribution that determines the

distribution of topics for each document. On one hand, a small value of α is responsible

for promoting distributions that have few topics with high probability. On the other hand,

a high value of α promotes a high number of topics with identical probabilities. Similarly,

the β is a configuration parameter for the Dirichlet distribution over words. A small value

of β means each topic will describe few words in high probability, while a high value would

describe a big number of words with comparable probabilities.

Example 17. Generative probabilistic topic modeling is a group of approaches which find

topics by showing beyond framework document in a collection is defined by a process ,

the generative process. This process considers the existence of a conceptual structure,

also known as hidden one that was used in the generation of class documents. The ob-

jective of the set of programs is then to reconstruct the structure of according to the

observed variables there represent shown in most cases, the words of framework docu-

ment in a collection. As for instance hidden structure, it is made of (latent) variables

that vary frommodel to model however , because generally include a probability distribu-

tion over topics, if the model considers each document a mixture of topics in stand for a

possibility as enum document depicts more than one topic.

The generative model link up with a is called the aspect model [Hof99a, Hof99b] (rep-

resented in Figure 2.1). The generation of each word in a document, according to the

75

asymmetric formulation of this model it starts with the selection of a document k , with

the index I used in a collection, with a proper probability inside the collection. Then, for

each word appear , a modified class Z l:n is decided from the probability distribution

of the document over the random classes. This , according to the probability distribu-

tion over the words in the class of other word W d:n is finally decided . This process is

repeated for each of the documents in a collection.

As represented in Figure 2.1, the fact that the d is an observed variable means that the

model considers only documents in the same collection, and thus is unable to determine

the topics for a new document afterwards.

This process is based on the main assumptions of each word is reckon independent

from the text in based on the topic assignment, with each document as appear bag-of-

words, in which the order of the words is snub ; considers as words depending on the

topic assignment exist independent of the document in that one insert data and the

number of live topics is reckon spotted and level [BNJ03]. Most of these assumptions

simplify the process of generating the conceptual structure, otherwise infeasible.

The joe (Figure 2.2) considers a generative process with complementary parameters than

methods exhibit in the ldc’s process with the addition of the new parameters; α and β.

The α serves as a configuration parameter for the same distribution that determines the

distribution of topics for each document. On one hand, a small value of α is responsible

for providing distributions that have few topics with high probability. On the other hand,

a high value of α promotes a high number of topics with identical probabilities. Similarly,

there β is a configuration parameter for the resulting distribution over words. A small

value of β means each topic will describe few words in high probability, with a high value

would describe a big number of words with comparable probabilities.

Example 18. Generative probabilistic topic modeling is a series of algorithms which

detect themes by assuming that each document from the collection is defined by a

procedure known as the generative process. This process conceives the existence of a

latent structure, also referred as hidden, that was employed in the generation of the

documents. The objective of this set of algorithms is then to reconstruct the structure,

resorting to the observed variables which represent , in most cases, the words from each

document of the collection. As for the hidden structure, it is comprised of (latent) vari-

ables that differ between models but, that in general define a probability distribution

over topics, when the model considers each document a mixture of topics, representing

the possibility that a document portrays more than one topic.

76

The generative model associated with PLSI is known as the aspect model [Hof99a, Hof99b]

(represented in Figure 2.1). The generation of each word in a document, consorting to the

asymmetric formulation of this model, begins with the selection of a document d, with

the index I d from the collection, with a predefined probability across the collection.

Then, for each word token, a latent class Z d,n is chosen from the probability distribution

of the document over the latent classes. And, according to the probability distribution over

the words in that class, a word W d,n is finally selected. This procedure is replicated for

each of the documents in the collection.

As represented in Figure 2.1, the fact that I d is an observed variable means that the model

considers only documents in the analyzed collection, and hence is unable to estimate

the topics for a new document afterwards.

This process is grounded on three main assumptions: each word is considered independent

from the others when conditioned on the topic assignment, describing each document as

a bag-of-words, in which the order of the words is disregarded ; considers that words

conditioned on the topic assignment are independent of the document in which they insert

themselves; the number of existing topics is reckon known and fixed [BNJ03]. All of the

assumptions simplify the process of recovering the latent structure, otherwise infeasible.

The LDA (Figure 2.2) considers a generative process with complementary parameters to

those exhibited in the PLSI process with the addition of two new parameters: α and β.

The α serves as a configuration parameter for the Dirichlet distribution which regulates the

distribution of topics for each document. On one hand, a small value of α is responsible for

promoting distributions that feature few topics with high probability. On the other hand,

a high value of α promotes a high number of topics with identical probabilities. Similarly,

the β is a configuration parameter for the Dirichlet distribution over words. A small value

of β means each topic will depict few words with high probability, while a high value

would describe a large number of words with comparable probabilities.

77

	Introduction
	Motivation and Scope
	Problem Statement and Objectives
	Adopted Approach for Solving the Problem
	Main Contributions
	Dissertation Organization

	State of the Art
	Introduction
	General Language Modeling
	N-grams
	Smoothing
	Performance Evaluation

	Topic Modeling
	Plate Notation and Terminology
	Generative Probabilistic Topic Modeling
	Estimation methods
	Number of Topics and Evaluation
	Document Comparison

	Scientific Text Standards
	Structure
	Quality
	Tools

	Conclusion

	Design and Implementation
	Introduction
	Context and Similar Documents
	Corpus
	Context Based Suggestions
	Synonyms
	N-grams
	Previous and Next Words
	Morphological Realization
	Prepositions

	Used Tools
	MALLET
	LanguageTool
	Wordnet - JWI
	Stanford Parser
	Other Tools

	Algorithm
	Context and Similar Documents
	Sentence Level
	Word Level

	Conclusion

	Tests and Prototype
	Introduction
	Objective Testing
	Evaluation
	Discussion of Results
	Failed Cases

	Subjective Testing
	Proof of Concept
	Conclusion

	Conclusions and Future Work
	Objectives
	Results and Conclusions
	Future Work

	Bibliography
	Software Engineering
	Introduction
	Requirement Analysis
	Functional Requirements
	Non-functional Requirements

	Use Cases
	Open, Edit and Save Text Files
	Change Proximity Level
	Interact with Suggestions
	Force Analysis

	Activity Diagrams
	Class Diagrams

	Results
	Introduction
	Parameters
	Objective Tests
	Subjective Tests

