
UNIVERSIDADE DA BEIRA INTERIOR
Engenharia

Forensic Box for Quick Network-Based Security
Assessments

João Bernardo Ferreira Sequeiros

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

(2º ciclo de estudos)

Orientador: Prof. Doutor Pedro Ricardo Morais Inácio

Covilhã, outubro de 2016

ii

Acknowledgements

Approaching the end of this chapter of my academic life, I would like to express my gratitude

to some very special people that made it all possible.

I start with my parents for all their unconditional support, love and care. For always being

there when needed, for every word of encouragement, and for all the insight and knowledge

they impart on me on a daily basis.

No less important, I thank my supervisor, Professor Doutor Pedro Inácio, for all the support given,

and for giving me the opportunity to work with him, share ideas and to learn under his tutelage.

I am also particularly grateful to some special colleagues from the lab and from next door, namely

to Acácio Correia, Manuel Meruje, João Neves, Musa Samaila and Pedro Tavares. A special thank

you goes to my borrowed little sister, Patrícia.

Last but not least, to some very special friends. To João Pais, Nuno Carapito, José Ribeiro,

Mafalda Baptista, Miguel Fernandes and Guilherme Fernandes (sorry if I forgot someone!). Their

support has been paramount and duly appreciated over these last few years.

iii

iv

Resumo

As avaliações de segurança de uma rede (e dos seus dispositivos) são vistas como tarefas im-

portantes, mas pesadas e que consomem bastante tempo, devido à utilização de diferentes

ferramentas manuais. Normalmente, estas ferramentas são bastante especializadas e exigem

conhecimento prévio e habituação, e muitas vezes a necessidade de criar um ambiente de teste.

No entanto, em muitos casos, seria útil obter uma auditoria rápida e de forma mais direta, ainda

que pouco profunda. Nesses moldes, poderia servir como passo inicial para uma avaliação mais

detalhada, complementar outra auditoria, ou ainda ajudar a prevenir fugas de dados e falhas de

sistemas devido a problemas comuns de configuração, gestão ou implementação dos sistemas.

Esta dissertação descreve o trabalho efetuado com o objetivo de desenhar e desenvolver um

sistema portátil para avaliações de segurança de uma rede de forma rápida, e também a in-

vestigação efetuada com vista à automação de várias tarefas (e ferramentas associadas) que

compõem o processo de auditoria. Uma concretização do sistema foi criada utilizando um Rasp-

berry Pi 2, várias ferramentas conhecidas e de código aberto, cujas funcionalidades variam

entre descoberta da rede, identificação de sistema operativo, descoberta de vulnerabilidades a

captura de tráfego na rede, e scripts e programas personalizados que interligam as várias par-

tes que compõem o sistema. As ferramentas são integradas de forma transparente no sistema,

que permite ser lançado em ambientes cablados ou wireless, onde o dispositivo executa uma

análise meticulosa e maioritariamente automatizada. O dispositivo é praticamente plug and

play e produz um relatório estruturado no final da avaliação. Várias funções simples, tais como

analisar novamente a rede ou efetuar ataques de envenenamento da cache Address Resolution

Protocol (ARP) na rede estão disponíveis através de um pequeno ecrã LCD montado no topo do

dispositivo. Este oferece ainda uma interface web, também desenvolvida no contexto do traba-

lho, para configuração mais específica das várias ferramentas e para obter acesso ao relatório

da avaliação. Outros outputs mais específicos, como ficheiros com tráfego capturado, estão

disponíveis a partir desta interface.

O sistema foi utilizado em redes controladas e reais, de forma a verificar a qualidade das suas

avaliações. Os resultados obtidos foram comparados com aqueles obtidos através de auditoria

manual efetuada às mesmas redes. Os resultados obtidos mostraram que o dispositivo deteta a

maioria dos problemas que um auditor detetou manualmente, mas mostrou algumas falhas na

deteção de algumas vulnerabilidades específicas, maioritariamente injeções Structured Query

Language (SQL).

A imagem do Sistema Operativo com as ferramentas pré-configuradas, scripts de automação

e programas está disponível para download de [Ber16b]. Esta imagem corresponde a um dos

v

principais resultados deste trabalho.

Palavras-chave

Análise Forense, Auditoria de Segurança, Automação de Ferramentas e Processos, Avaliação de

Segurança da Rede, Deteção de Vulnerabilidades, Segurança de Sistemas, Testes de Penetração

vi

Resumo alargado

Este resumo alargado tem como objetivos apresentar, na Língua Portuguesa, o conteúdo desta

dissertação de uma forma um pouco mais detalhada que a secção anterior. A maior parte desta

dissertação está escrita na Língua Inglesa.

Introdução

O primeiro capítulo tem como objetivo enquadrar o trabalho descrito ao longo desta dissertação,

introduzindo o tema geral, e apresentando a motivação e enquadramento em que este se insere.

É também neste capítulo que é apresentado o problema que este trabalho se propõe a resolver, e

os seus objetivos gerais. Neste capítulo é ainda apresentada a abordagem tomada para resolver

o problema proposto, e as principais contribuições do trabalho.

Enquadramento, Descrição do Problema e Objetivos

Hoje em dia, a maioria das organizações são suportadas for infrastruturas de rede tecnologica-

mente complexas, que se apresentam como potenciais pontos críticos de falha. Devido a estas

falhas, todos os anos, dados de instituições e de clientes estão expostos a ataques. Consequen-

temente, as auditorias de segurança a uma rede são uma prática comum e uma ferramenta para

garantir um maior nível de segurança, e manter dados e serviços melhor protegidos de ameaças,

quer internas quer externas. Estas auditorias, no entanto, são de complexidade elevada, visto

requererem a utilização de diferentes ferramentas, e conhecimentos avançados e técnicos a

nível da sua utilização, assim como de guias e metodologias a seguir de maneira a efetuá-las da

melhor forma possível.

O objetivo deste trabalho passa então pelo desenvolvimento de um dispositivo compacto e de

baixo custo que permita efetuar auditorias de segurança a uma rede de forma rápida. Isto inclui

desenvolvimento e implementação das regras de negócio que permitem ao dispositivo efetuar

diferentes tarefas de uma forma automática, transparente e simples para o utilizador. O sistema

deve detetar não só problemas no funcionamento da rede, mas também auditar o estado dos

sistemas e redes identificados. Deve ser ainda possível ligar o dispositivo rapidamente tanto

numa rede cablada como sem fios. Para a maior parte das funcionalidades, o utilizador deve

apenas necessitar de ligar o dispositivo a um cabo Ethernet ou colocá-lo no alcance de uma rede

sem fios, e ligar o dispositivo. Como principais funcionalidades, o dispositivo deve ser capaz de

capturar e analisar tráfego, descobrir sistemas numa rede, detetar vulnerabilidades e reportar

os resultados.

vii

Principais Contribuições

Esta secção apresenta as principais contribuições científicas resultantes do trabalho desenvol-

vido e apresentado aqui. As principais contribuições podem ser então descritas da seguinte

forma:

• A primeira contribuição deste trabalho é o estudo efetuado acerca de análise e auditoria de

segurança numa rede, dos diferentes trabalhos científicos existentes na área e principais

metodologias e guias a seguir. Este estudo compreende diferentes ferramentas existentes

e comummente utilizadas em auditorias, assim como os procedimentos seguidos durante

uma auditoria, e as melhores práticas na sua realização. Foram também analisadas várias

propostas de frameworks ou infraestruturas integradas de análise de segurança;

• A segunda contribuição é a definição das especificações de hardware e requisitos de fun-

cionamento do sistema, assim como as ferramentas selecionadas e automatizadas e toda

a lógica desenvolvida de forma a permitir que o dispositivo efetue auditorias de segurança

em rede de forma automática. O desenvolvimento e definição do sistema materializou-

se numa comunicação, intitulada Forensic Box for Quick Network-Based Security Assess-

ments, publicada nos procedimentos da INForum 2016, que se realizou em Lisboa, Portugal,

entre os dias 8 e 9 de Setembro de 2016;

• Outra contribuição do trabalho é o sistema em si, que pode ser utilizado por qualquer

administrador de sistemas ou redes de forma a efetuar auditorias rápidas à segurança da

sua rede. Este dispositivo foi apresentado e o seu funcionamento demonstrado na Techdays

Aveiro, um fórum de tecnologia que decorreu entre os dias 15 a 17 de Setembro de 2016

em Aveiro, Portugal.

Trabalho Relacionado e Tecnologia

O capítulo 2 explora as ferramentas de auditoria existentes, juntamente com metodologias e

guias gerais de como proceder na realização de uma auditoria. É também apresentada uma

análise de vários trabalhos científicos de sistemas de análise e auditoria de segurança de uma

rede.

Destacam-se alguns trabalhos acerca de análise de segurança em redes, tanto a nível da criação

de frameworks que permitem analisar o estado de segurança numa rede, como a CNSSA [XJYZ11],

ou a descrita por Hallberg et. al. [HHP05], como a nível de ferramentas a utilizar em análises

de segurança [CA06], ou políticas de segurança a tomar e os passos que as constituem, incluindo

análise e testes [Cis03].

A análise de várias ferramentas apresenta alguns dos softwares mais comummente utilizados

nesta área, incluindo suites completas e software profissional. São descritos softwares populares

viii

como o Nessus ou o Snort, de forma a dar um melhor entendimento em relação às opções

existentes e as suas vantagens e desvantagens.

Este capítulo também apresenta as linhas gerais que definem uma auditoria de segurança, sendo

que a definição apresentada é o fio condutor da especificação e desenvolvimento do dispositivo

que este trabalho descreve. Esta definição é maioritariamente baseada no guia proposto pelo

National Institute for Standards and Technology (NIST). Mencionam-se as principais recomen-

dações de uma auditoria de segurança e as algumas técnicas e tipos de testes efetuados.

Especificações de Hardware e Blueprinting

O capítulo 3 apresenta as especificações de hardware definidas para o dispositivo a ser utilizado,

assim como a definição das principais funcionalidades a serem disponibilizadas, interações entre

as diferentes partes e módulos que o dispositivo deve integrar.

Tendo em conta as definições abordadas no estudo efetuado sobre trabalhos relacionados e

aquilo que compõe uma auditoria de segurança na sua essência, bem como o que é proposto

como objetivo final deste trabalho, podem-se definir diferentes requisitos de forma a selecionar-

se o hardware a ser utilizado no desenvolvimento do dispositivo, nomeadamente: necessidade

de portabilidade; eficiência energética; alimentação através de uma bateria; ligação à rede

tanto cablada como sem fios; compatibilidade com ferramentas de segurança conhecidas e,

devido a isto, de correr um sistema operativo de tempo real, como um baseado em UNIX; possi-

bilidade de o utilizador interagir fisicamente com o dispositivo e de receber informação básica

direta a partir do mesmo; capacidade de alojar uma interface web; e ainda ter um custo redu-

zido. Destas especificações, foi escolhido um Raspberry Pi 2, que à data do início do trabalho era

a versão mais recente e poderosa do Raspberry Pi. Para complementar os restantes requisitos,

foi adicionado um módulo wi-fi e um módulo com botões físicos e um pequeno ecrã montados

no topo do dispositivo.

A parte seguinte passou pela definição das funcionalidades de auditoria que o dispositivo deve

apresentar, a saber: ligação à rede; descoberta de máquinas na rede; descoberta de portas;

serviços e sistema operativo das máquinas; descoberta de vulnerabilidades nas máquinas; e

descoberta de vulnerabilidades nos serviços. A adicionar à parte da auditoria, o dispositivo

deve também permitir captura de tráfego, disponibilizar um relatório final com a informação

recolhida, dar acesso a alguns parâmetros de configuração e input direto pelos botões físicos.

Foram assim projetados vários módulos: análise da rede; análise de vulnerabilidades de sistema;

análise de vulnerabilidades em serviços; recolha de dados e criação de relatório; interface web;

interface de hardware; captura de tráfego; e ferramentas wireless.

ix

Automatização e Interfaces

Os capítulos 4 e 5 apresentam o principal desenvolvimento realizado no decorrer do trabalho,

incluindo a seleção, automatização e desenvolvimento de ferramentas, assim como as interfaces

para comunicação com o utilizador e a geração do relatório final.

A partir da definição de funcionalidades e dos módulos projetados, várias ferramentas foram

selecionadas para integrar o dispositivo, e posteriormente automatizadas de forma a permitir

que a auditoria decorra de forma automática, com um mínimo de intervenção por parte do uti-

lizador. Foram selecionadas para integrar o dispositivo as seguintes ferramentas: Nmap, OWASP

ZAP, SSLyze, Hydra, Ettercap, SQLmap e Aircrack-ng. Foi ainda desenvolvido um agregador de

tráfego recorrendo à biblioteca Pcap.

Estas ferramentas foram então automatizadas e configuradas no sistema com parâmetros pré-

definidos de forma a tentar garantir a maior abrangência possível. Algumas fornecem Appli-

cation Programming Interfaces (APIs), e o processo de chamada às suas funções é o processo

de automatização escolhido, enquanto outras apenas funcionam através de linha de comandos.

Nestes casos, foram testados e escolhidos os melhores comandos e criados scripts de forma a

efetuar a chamada destas ferramentas, tendo em conta os dados adquiridos ao longo do processo

de auditoria, de forma a otimizar a utilização das mesmas.

Em termos de interfaces, foram implementadas duas, uma de hardware, através do módulo

RGB1602, e que dá acesso a algumas funcionalidades mais simples e diretas, como permitir efe-

tuar nova análise à rede a que o dispositivo está ligado, ou iniciar captura de tráfego, permitindo

também obter informações simples através do ecrã que o módulo possui. A interface web, por

sua vez, dá acesso às configurações mais avançadas do dispositivo, como a definição de alguns

parâmetros das ferramentas que integram a auditoria, visualização do relatório da auditoria e

ainda a possibilidade de definir que ferramentas se pretendem excluir do processo, com vista a

permitir agilizar o processo quando apenas se pretende analisar áreas ou vulnerabilidades espe-

cíficas. Também é possível, através desta interface, lançar uma auditoria a um sistema remoto,

desde que o dispositivo tenha ligação a este através da Internet.

Testes

O sexto capítulo descreve os testes efetuados para validar a implementação efetuada, assim

como alterações e melhoramentos adicionados, e ainda os resultados de um estudo comparativo

do dispositivo num ambiente real com um auditor humano.

Vários testes foram então preparados, baseados sobretudo na deteção de vulnerabilidades co-

nhecidas em sistemas de teste. Foram utilizados uma rede doméstica previamente conhecida,

as aplicações web BodgeIt, ZAP-WAVE e Awstats, um servidor com um certificado com erros pro-

positados e serviços File Transfer Protocol (FTP), Secure Shell (SSH) e MySQL com palavras-passe

x

fracas.

Dos testes efetuados, o dispositivo funcionou, no geral, como esperado, não tendo, no entanto,

sido capaz de detetar injeções de Structured Query Language (SQL). Durante o seu funciona-

mento, detetou todos os dispositivos da rede doméstica, assim como as portas abertas e serviços

que corriam neles, e os seus sistemas operativos. Foi ainda capaz de detetar as restantes vul-

nerabilidades nas aplicações web, incluindo Cross-Site Scripting (XSS), redirecionamento para

endereços externos e inclusão remota de ficheiros, e foi capaz de descobrir as credenciais de

autenticação dos serviços referidos.

Para validar a utilização do dispositivo num ambiente real, este foi utilizado numa auditoria

realizada na Universidade da Beira Interior, promovida pela equipa UBI-CSIRT, uma equipa de

análise de segurança localizada no departamento de informática da instituição. Após compara-

tivo com a auditoria realizada por um dos peritos da equipa, e a realizada de forma automática

pelo dispositivo, verificou-se um cenário semelhante ao obtido nos testes controlados: o dis-

positivo foi capaz de identificar os mesmos sistemas e vulnerabilidades que o auditor, tendo

falhado na deteção de injeções SQL.

Conclusões

O capítulo 7 enumera as principais conclusões a serem retiradas deste trabalho e apresenta

possível trabalho futuro a realizar.

O processo de auditar uma rede em termos da sua segurança é sempre um processo moroso que

exige capacidades técnicas e conhecimentos aprofundados da área. Através de um dispositivo

que permite obter informações acerca de potenciais vulnerabilidades na rede, sem que para isso

os administradores de sistemas ou de redes tenham de possuir os conhecimentos supra referidos,

há uma mais-valia em termos da segurança da rede, sem a necessidade de despender muitos

recursos para efetuar análises regulares.

Algumas dificuldades notadas durante este projeto advieram da utilização exclusiva de código

open-source, por vezes não documentado, ou aplicações não preparadas para correr em dispo-

sitivos com arquitetura Advanced RISC Machine (ARM), na qual o Raspberry Pi é baseado. No

entanto, o protótipo foi criado com sucesso. Observando os testes efetuados, pode-se concluir

que os objetivos principais foram atingidos, tendo-se obtido um rácio de deteção globalmente

positivo, e completa automação nas tarefas principais.

Como trabalho futuro foram apontados vários melhoramentos que podem ser incorporados no

protótipo. Entre outros, os melhoramentos mencionados incluem a integração de novas ferra-

mentas, tanto como alternativas às existentes como para adicionar novas funcionalidades, como

por exemplo testes de penetração, melhorar a automatização a nível de deteção de injeções

xi

SQL, onde se verificou a maior falha do dispositivo, ou ainda melhorar a interface de hardware

de forma a permitir a ligação a uma rede sem fios sem a necessidade de aceder ao dispositivo

sem necessitar de ter acesso a este através de linha de comandos.

xii

Abstract

Network security assessments are seen as important, yet cumbersome and time consuming tasks,

mostly due to the use of different and manually operated tools. These are often very specialized

tools that need to be mastered and combined, besides requiring sometimes that a testing envi-

ronment is set up. Nonetheless, in many cases, it would be useful to obtain an audit in a swiftly

and on-demand manner, even if with less detail. In such cases, these audits could be used as

an initial step for a more detailed evaluation of the network security, as a complement to other

audits, or aid in preventing major data leaks and system failures due to common configuration,

management or implementation issues.

This dissertation describes the work towards the design and development of a portable system

for quick network security assessments and the research on the automation of many tasks (and

associated tools) composing that process. An embodiment of such system was built using a Rasp-

berry Pi 2, several well known open source tools, whose functions vary from network discovery,

service identification, Operating System (OS) fingerprinting, network sniffing and vulnerability

discovery, and custom scripts and programs for connecting all the different parts that comprise

the system. The tools are integrated in a seamless manner with the system, to allow deployment

in wired or wireless network environments, where the device carries out a mostly automated

and thorough analysis. The device is near plug-and-play and produces a structured report at

the end of the assessment. Several simple functions, such as re-scanning the network or doing

Address Resolution Protocol (ARP) poisoning on the network are readily available through a small

LCD display mounted on top of the device. It offers a web based interface for finer configuration

of the several tools and viewing the report, aso developed within the scope of this work. Other

specific outputs, such as PCAP files with collected traffic, are available for further analysis.

The system was operated in controlled and real networks, so as to verify the quality of its

assessments. The obtained results were compared with the results obtained through manually

auditing the same networks. The achieved results showed that the device was able to detect

many of the issues that the human auditor detected, but showed some shortcomings in terms

of some specific vulnerabilities, mainly Structured Query Language (SQL) injections.

The image of the OS with the pre-configured tools, automation scripts and programs is available

for download from [Ber16b]. It comprises one of the main outputs of this work.

xiii

Keywords

Forensic Analysis, Network Security Assessment, Pentesting, Process and Tools Automation, Se-

curity Audit, System Security, Vulnerability Detection

xiv

Contents

1 Introduction 1

1.1 Motivation and Scope . 1

1.2 Problem Statement and Objectives . 2

1.3 Adopted Approach for Solving the Problem . 3

1.4 Main Contributions . 3

1.5 Dissertation Organization . 4

2 Related Work and Technology 5

2.1 Introduction . 5

2.2 Related Work . 5

2.2.1 CNSSA . 5

2.2.2 A Framework for System Security Assessment 6

2.2.3 Web Application Security Assessment Tools 6

2.2.4 Security Wheel - Cisco . 7

2.2.5 How to Build Your Own Penetration Testing Drop Box 8

2.3 Technology . 8

2.3.1 Lynis . 9

2.3.2 Metasploit . 9

2.3.3 Nessus . 9

2.3.4 OpenVAS . 10

2.3.5 Snort . 10

2.3.6 dsniff . 10

2.3.7 Xplico . 11

2.4 Network Based Security Audits . 11

2.5 Conclusions . 13

3 Hardware Specifications and Blueprinting 15

3.1 Introduction . 15

3.2 Hardware Specifications . 15

3.3 Blueprinting . 17

3.4 Conclusions . 19

4 Forensic Tools Automation 21

4.1 Introduction . 21

4.2 Forensic Tools . 21

xv

4.2.1 Nmap . 21

4.2.2 OWASP ZAP . 22

4.2.3 SSLyze . 23

4.2.4 Hydra . 23

4.2.5 Ettercap . 23

4.2.6 SQLmap . 24

4.2.7 Traffic Sniffer . 24

4.2.8 Aircrack-ng . 24

4.3 Automation . 25

4.3.1 Nmap . 25

4.3.2 OWASP ZAP . 26

4.3.3 SSLyze . 26

4.3.4 Hydra . 27

4.3.5 Ettercap . 28

4.3.6 SQLmap . 28

4.3.7 Aircrack-ng . 29

4.4 Conclusions . 30

5 Interface and Reporting 31

5.1 Introduction . 31

5.2 Interfaces . 31

5.2.1 Hardware Interface . 31

5.2.2 Web Interface . 34

5.3 Reporting . 35

5.4 Conclusions . 36

6 Testing, Fine-Tunning and Security Audits 37

6.1 Introduction . 37

6.2 Testing . 37

6.3 Fine-Tunning . 40

6.4 Security Audits . 41

6.5 Conclusions . 43

7 Conclusions and Future Work 45

7.1 Main Conclusions . 45

7.2 Future Work . 47

Bibliography 49

xvi

A Code Excerpts 53

B Full Report 57

xvii

xviii

List of Figures

3.1 The assembled device based on the Raspberry Pi 2. 17

3.2 Simplified blueprint of the system components and their interactions. 20

5.1 The buttons module placed on top of the Raspberry Pi. Button 1 and 2 allow for

navigation when choosing different functionalities, while buttons 4 and 5 cycle

through options for a specific functionality. Button 3 works as a selection button. 33

5.2 Screenshot of part of the web interface. 34

5.3 Scheme detailing the structure of a report. 36

xix

xx

List of Tables

6.1 Results concerning the network hosts identification, and detection of open ports

and associated services. 38

6.2 Results of the audit to vulnerable web applications. 38

6.3 Results of the audit targeting SSL issues. 39

6.4 Results concerning the password cracking feature. 39

6.5 Excerpt of audit results and comparison with the manual audit. 41

xxi

xxii

Listings

4.1 Excerpt of the script that invokes nmap. 25

4.2 Excerpt of the Python script that invokes ZAP. 26

4.3 Small excerpt of the script invoking Hydra on available hosts. 27

4.4 Small excerpt of a script that starts and directs SQLMap towards available hosts. 28

4.5 Steps taken to obtain a WEP key. 29

5.1 Output to LCD display example. 32

5.2 Function that captures the pressing of a button. 33

5.3 Excerpt of menu structuring on the module. 33

5.4 Part of the data structure that encompasses information of the hosts. 35

6.1 Part of the report produced by the device developed in the scope of this project

during the audit on Host 1. 42

6.2 Part of the report produced by the auditor during the audit on Host 1. 42

A.1 Invocation of the SSLyze Python script from the service scanning module. 53

A.2 Excerpt of the code that parses the XML output from ZAP. 54

A.3 Example of the processing applied to an SSLyze output file. 54

B.1 A full report output of the device. 57

xxiii

xxiv

Acronyms

API Application Programming Interface

ARM Advances RISC Machine

ARP Address Resolution Protocol

CPU Central Processing Unit

CSRF Cross Site Request Forgery

CVE Common Vulnerabilities and Exposures

DBMS DataBase Management System

eMMC embedded MultiMedia Controller

FTP File Transfer Protocol

GPIO Global Pin Input Output

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IBM International Business Machines

IP Internet Protocol

IV Initialization Vector

LCD Liquid Crystal Display

MAC Media Access Control

NIST National Institute of Standards and Technology

ONT Optical Network Terminal

OS Operating System

OWASP Open Web Application Security Project

PCB Printed Circuit Board

PHP PHP: Hypertext Preprocessor

PwC PricewaterhouseCoopers

xxv

RAM Random Access Memory

SHA1 Secure Hash Algorithm 1

SQL Structured Query Language

SSH Secure SHell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UBI University of Beira Interior

UBI-CSIRT University of Beira Interior Computer Security Incident Response Team

UDP User Datagram Protocol

URL Uniform Resource Locator

VM Virtual Machine

VoIP Voice over Internet Protocol

WEP Wired Equivalent Privacy

XML eXtensible File Format

XSS Cross Site Scripting

ZAP Zed Attack Proxy

xxvi

Chapter 1

Introduction

This document describes the work performed in the scope of a project for the attainment of a

master’s degree in Computer Science and Engineering at the University of Beira Interior (UBI).

This dissertation addresses the subject of network security assessment, and how its automation

may simplify auditing processes on a network. The following section presents the motivation

and scope of the work. Section 1.2 discusses the adopted approach. The penultimate section

presents the main contributions of this work, and the last section describes the structure of this

dissertation.

1.1 Motivation and Scope
Most organizations nowadays are supported by complex technological and network infrastruc-

tures, which represent a critical point of failure for most of them. Every year, costumer and

institutional data are exposed due to attacks on these infrastructures. Included in the top 10 list

of most common vulnerabilities by Open Web Application Security Project (OWASP) [OWA16a]

are injections, security misconfiguration and the use of components with known vulnerabilities.

Most of which could be prevented if systems and their services were up-to-date, patched and

properly configured.

To provide a better perspective on the extent of the issue it can be mentioned that, in 2015, 90%

of large organizations in the UK had a security breach, as reported by PricewaterhouseCoopers

(PwC) [PwC15]. Also, and according to International Business Machines (IBM) [Pon15], the cost

of these data breaches is increasing each year. The single largest data breach in 2015 saw data

of 80 million users exposed. Hacking continues to be the main threat responsible for security

breaches in 2016 [Ver16]. Many of these hacks are due to successful exploitation of Common

Vulnerabilities and Exposures (CVE). 85% of the exploited vulnerabilities are from the top 10

vulnerabilities and the remaining 15% concern over 900 different vulnerabilities.

As such, network security audits have become common practices in the process of guaranteeing

the security of computer systems and networks, and keep data and services protected from

threats, both external and internal. The security assessment phase is one of the most time

consuming tasks in the audit process, due to being typically based on the use of a varied set

of tools, each requiring knowledge of its inner workings, with several different configuration

parameters. For these reasons, the existence of a device capable of automating the process,

1

even if only partially, constitutes a valuable addition to an audit team.

The scope of this dissertation is limited by the areas of networking and computer security, as it

aims to explore connectivity to perform the assessment of a network and of its systems in terms

of security. Under the 2012 version of the ACM Computing Classification System (CCS), the topics

that best describe this dissertation can be defined as follows:

• Security and Privacy~Network Security;

• Security and Privacy~Software and application security;

• Security and Privacy~Systems Security;

• Networks~Network services.

1.2 Problem Statement and Objectives
The main problem addressed in this work is the complexity inherent to network security assess-

ments and the time they consume, which can easily be associated with monetary costs for the

infrastructure or services owner. Due to the rapid advancement of technology, proliferation of

malware and discovery of breaches, exploits and bugs every day, it becomes a taxing work to

keep up and monitor a network in an efficient way. Additionally, in many cases, direct access

to systems or social engineering is not permitted during an audit, which means that the auditor

may not have access to target systems, which are previously configured and connected to the

network, or be able to plug in any device into a machine. A device like the one proposed in the

scope of this work may prove itself to be an invaluable resource, as the only way to gain access

to the network is by connecting said device into the network.

The main objective is then to design and construct a compact and inexpensive device for quickly

performing network based security assessments. This includes the required programming logic

that will enable the box to perform several tasks in a fully automated, near-transparent and

user-friendly manner. The system should not only detect functioning problems, but also assess

the security state of previously identified systems and networks. The system should be able

to be quickly deployed in a wired or wireless network, or deploy-and-play. For most of the

functionality, the user should only need to connect the cables or place the device in range of

a wireless network, and turn the system on. As the main functions, the system should be able

to sniff and analyze network traffic, perform network discovery, assess vulnerabilities and do

penetration testing, and finally produce a report.

2

1.3 Adopted Approach for Solving the Problem
The chosen approach to solve the aforementioned problem began with the study of what gen-

erally comprises a security audit, the components tested and the utilized techniques. Such

information was needed to identify and test different tools before integration and to under-

stand how they were executed. The identification of the functionalities that should be made

available to the user, both automated and manual, also needed to be performed. This was done

in a third phase of the project. Next, it was necessary to choose the most appropriate tools to

be integrated. As the system should be able to present a final report with minimal input from

the user, the next step was to find a way to automate and cascade the execution of tools and

organize the collection and aggregation of relevant output data. To complete the system, a

graphical interface for ease of use and transparent communication with the user needed to be

developed. After the development of an initial version of a prototype, several tests needed to

be conducted, both in a controlled environment and in-the-wild, deploying the device in a real

network and comparing results with a manual audit to validate its utility.

1.4 Main Contributions
The main contributions achieved from the research and development of the idea herein pre-

sented can be enumerated as follows:

1. The design, assembling and testing of a small computer system for network based security

assessments, along with the disclosure of its plans;

2. The study and structuring of a basic network security assessment, and the development

and setting up of the means required to automate it. This included the configuration

of the operating system, adaptation of tools and development of scripts, all disclosed as

open-source;

3. The development and disclosure of specialized lightweight tools, required for the correct

functioning of the forensic box, taking its limited computational resources into account.

The traffic sniffer is an example of such a tool.

The work developed in this dissertation was presented in the form of a communication entitled

Forensic Box for Quick Network-Based Security Assessments, published in the proceedings of

INForum 2016 conference, held in Lisbon, Portugal, between the 8th and 9th of September,

2016. It was also presented in Techdays, a technology forum held from the 15th to the 17th

of September in Aveiro, Portugal. The device developed during the course of the master’s

project was used in an audit to several machines of UBI in the scope of activities promoted by

the University of Beira Interior Computer Security Incident Response Team (UBI-CSIRT) team, a

security audit team based on the computer science and informatics services department of the

3

institution.

1.5 Dissertation Organization
The dissertation is organized in 7 chapters and 2 appendices, which can be briefly presented as

follows:

• Chapter 1 — Introduction — presents the motivation and scope of this project, the prob-

lem that it attempts to solve, the main objectives, the chosen approach for solving the

presented problem, the main contributions of this work and the organization of the docu-

ment;

• Chapter 2 — Related Work and Technology — the analysis on similar works and differ-

ent existing tools, along with the existing main technologies related to the work herein

presented or used within its scope;

• Chapter 3 — Hardware Specifications and Blueprinting — presents the chosen hard-

ware for the device, the reasoning behind the choices and the blueprint of the system

components and their interactions;

• Chapter 4 — Forensic Tools Automation — discusses the tools chosen to integrate the

device, the choices made and the reasons for such choices, and the steps taken towards

integration, automation and correct functioning of said tools;

• Chapter 5 — Reporting and Interface — presents the development and inner workings

of the functionality for creating the report of the security assessments, including their

structuring, as well as those of the interface, and its functionalities;

• Chapter 6 — Testing, Fine-Tuning and Security Audits — specifies and discusses the

tests done to validate the results of this work, the fine-tuning done to improve the given

results, and examples and comparisons with audits done in both controlled and in-the-wild

environments, to validate the utility of the device;

• Chapter 7 — Conclusions and Future Work — discusses the main achievements and con-

clusions and contains a list of possible improvements that can be made in future revisions

of this work;

• Appendix A — Code Excerpts — presents some of the larger code excerpts as a complement

to the explanation of the automation process presented in chapter 4;

• Appendix B — Full Report — contains a full report of a performed audit, for better insight

on report structure and detection parameters.

4

Chapter 2

Related Work and Technology

2.1 Introduction
This chapter describes several works related to the subject at hands and technologies that can

be considered alternatives or complements to the system present herein. Performing security

audits on a regular basis is paramount to keep data and services protected from threats, both

internal and external [Mid02, Tan14]. Audits are typically based on the use of a varied set

of tools, each requiring knowledge of its inner workings, with several different configuration

parameters. While there are several guidelines and methodologies that can be followed during

security assessments, there is still not a de facto standard for such complex tasks. Section 2.2

presents works related to auditing processes, automation suites, methodologies and guidelines.

Some of the tools used in penetration testing make the task of a network audit cumbersome.

They also require advanced technical expertise and consume a considerable amount of time, due

to their many configuration parameters and different functioning modes. Section 2.3 is devoted

to the description of some of the most popular tools used in network or system security audits,

and since the main purpose of this work is to provide a device capable of performing automated

security audits, a better insight on what comprises an audit is provided in section 2.4.

2.2 Related Work
In this section, several works towards automation, regulation and standardization of security

assessments and audits are described, together with a brief discussion on how they influenced

this work.

2.2.1 CNSSA

Rongrong Xi et. al., present what they call CNSSA (Comprehensive Network Security Situation

Awareness) [XJYZ11]. This tool gives a quantitative assessment on the state of the security of

a network by analyzing information from different sources, from data flowing between hosts

on the network to information on threats, vulnerabilities and alerts. It is based on three main

modules: (i) an information collector module, which gathers data from the network and stores

it in a database; (ii) a situation awareness module, that takes the collected data as input and

generates assessments on threats, vulnerabilities, stability and situation, where each of these

assessments outputs a score that can measure from 0 to 10, where higher values indicate an

5

insecure network; and (iii), a situation visualization module, which provides a user interface

that gives different views on the security status of the network.

2.2.2 A Framework for System Security Assessment

Hallberg et al. describe a framework [HHP05] that attempts to include the system structure

in the assessments. The objectives are to help categorize existent methods for performing

assessments and aiding in developing new methods. The framework is based on the hypothesis

that, by knowing the security values of all security-relevant system entities and knowing all

security-relevant relations between those entities, one can decide the security values for the

entire system. The framework defines a workflow involving two main tasks: (i) model the system

in terms of its entities and their relations and (ii), use this model to assess the security of the

system. System modeling comprises the description of the system under analysis, its predefined

entities and their relations. The modeling of entities and relations is one of the most critical

steps in terms of information gathering of the framework, since it will be later used to assess the

security status. Using entities that have been previously assessed may simplify the assessment

process, just as using standardized relations. Adjusting parameters to attempt to bring these

standard relations and entities closer to the real characteristics of the entities and their relations

can also improve their modeling. The final steps comprise the assessment of the entities and

their relations, and interpretation of the gathered information. The presentation of the results

is the final step of the framework. The framework does not necessary specify the method for

calculating the level of security of a system. Different methods can be used for such purpose.

2.2.3 Web Application Security Assessment Tools

Mark Curphey and Rudolph Araujo approach the security assessment on web applications and

websites topic on their work [CA06]. Assessing the security of these applications is becoming

the focus of most companies, mostly due to the fact that web applications are becoming the main

entry and exit point for data everywhere. According to them, the starting point for assessing

the security of web applications is threat modeling. Modeling immediately provides an overview

on the architecture of the system. It then becomes important to identify the two major types

of vulnerabilities, implementation bugs and design flaws, which allows for the definition of an

analysis framework. Different vulnerability types can be defined in the framework, such as

configuration mismanagement, authentication issues or user session management. This facet of

the framework shows once again that there is no one size fits all for security audits.

The tools utilized in the framework can then be divided into several categories. Source-code

analyzers search through the source-code of an application looking for specific strings or patterns

that can represent security issues. There are static and dynamic analyzers and their outputs may

comprise invaluable resources during the development process, where correcting security flaws

is simpler and has reduced costs. Code analyzers are typically better when applied to languages

6

such as C and C++, and less efficient when applied in Java or .NET applications. This is mainly

due to the maturity and structure of the traditional languages. Web application scanners, also

known as black-box scanners, use browser-based exploration techniques, looking for Uniform

Resource Locators (URLs) and executing predefined tests on each page found with the previous

procedure. They are not suitable for testing during the production stage, as they require a

minimally functional application to be used, and the detected issues are often not enough to

determine where the application code is problematic, leaving developers to explore and find

the issues. Other tools used in the context of security assessments of web applications include:

• database scanners, acting as Structured Query Language (SQL) clients and doing various

queries to analyze the security configuration of a database;

• binary analysis tools, used to test a number of different inputs and identify unexpected

behaviors or crashes in C and C++ applications;

• runtime analysis tools, which work as profilers and can log function calls and parameter

values. They are mainly used during the development phase and for code reviewing;

• configuration analysis tools, mostly used to inspect configuration files, host settings or

server configurations, or proxies that intercept web traffic and allow packet manipula-

tion. These tools are typically used to evaluate the effectiveness of implemented security

measures at both the client and the server side.

The authors conclude by stating that it is not possible to pinpoint a specific tool for every job

and that tools should also be tested for their effectiveness, since different tools of the same

class can perform differently when confronted with different types of vulnerabilities.

2.2.4 Security Wheel - Cisco

Cisco uses a security wheel [Cis03] when referring to network security to emphasize that it is a

continuous and cyclical process, encouraging regular testing and updating of security measures

as a way of protecting a network. The entry point of the wheel is the definition of a security

policy, that should identify the main security objectives of the organization/network, document

the resources that should be protected, identify the infrastructure and also the critical resources

of the network. The main four steps of the wheel are called secure, monitor, test and improve.

The first step – secure – refers to the need of establishing and implementing security measures,

from user authentication and firewall configuration to vulnerability patching. The second step

– monitoring – involves detection of security violations, mainly through the analysis of event

logs. The third step – test – engages in testing the policies and measures implemented in the

first step, through system and network auditing, resorting to different tools. The last phase –

improvement – picks on the data collected on the previous two phases and extracts the required

7

improvements that are needed to solve the issues that arose. The new improvements will be

applied in a new phase one, and the cycle proceeds to the initial stage again.

2.2.5 How to Build Your Own Penetration Testing Drop Box

Beau Bullock [Bea16] created a penetration testing and auditing drop box, based on a device

similar to a Raspberry Pi. The defined requirements were that it should be a portable, inex-

pensive device, easily hidden, that could connect using wired and wireless means, run a full

Operating System (OS) and be fast enough to be used in a real environment. The author tested

three devices, a Raspberry Pi 3, a Beaglebone Black and a Hardkernel ODROID-C2. He chose the

ODROID-C2 as the final platform for the device, due to its superior performance and possibility

of installing embedded MultiMedia Controller (eMMC) storage.

The device was added a wireless adapter, the eMMC memory chip and a case with active cooling

to complement its base configuration. In terms of OS, Kali Linux was used for its ease of use,

fast installation and Advances RISC Machine (ARM) support.

To assess the performance and utility of the devices, the author made several different tests,

from the time they took from booting up to opening a Metasploit console, to password crack-

ing, port scanning, and read and write operations speed on their storage. From the tests, the

ODROID-C2 pulled consistently ahead in terms of its performance, with the exception of the

Nmap test, where all the devices had similar performance, mainly due to the test being more

dependent on the network connection than on the processing power of the device.

The author used the device in a Red Team exercise (an exercise where a team of security experts

assess the security of an organization, usually without knowledge to clients and staff, nor previ-

ous knowledge from the team on the target network), where the device was left connected for

three days and remotely accessed, through a Secure SHell (SSH) tunnel, to perform penetration

tests directly from the inside of the network. The author supplies a detailed description on the

installation process and configuration of the device for simple replication.

It should be mentioned that the drop box does not perform automated audits. Its purposes

slightly different from the ones of this project, since the idea is to provide a box that can be

eventually connected to a network and hidden to perform pentesting from a remote location.

2.3 Technology
This section presents several existing tools and security software available and commonly used

for auditing the security of systems and/or networks. Some of these tools were considered to

be integrated in the prototype of the device developed in the scope of this work. The tools

automated and integrated in the device will be described in the next chapter.

8

2.3.1 Lynis

Lynis [cis16b] is a powerful security auditing tool for the cases where one has direct access

to the system and administrative rights to run software on it. It is capable of revealing more

vulnerabilities than the common security scanners can do remotely. It runs on a wide variety of

UNIX-based distributions, and is an open-source software.

The tool is an opportunistic scanner, which means that it only tests what it finds, for efficiency

purposes. It starts with the detection of the operating system, and proceeds with the identi-

fication of tools, services and utilities. It then runs tests based on installed plugins for each

category discovered in the beginning of the process. It finishes by presenting a report of its

findings.

In terms of end results, Lynis has some similarities with what is proposed in this work (e.g., it is

semi-automated and runs plugins based on previous findings). The main difference is that Lynis

can only run locally, and must be installed on the machine one wants to test. This is its biggest

limitation, alongside with lack of support for non UNIX-based systems, which renders the tool

useless when wanting to audit a Windows system, for example.

2.3.2 Metasploit

Metasploit [Rap16b] is a powerful framework that handles hundreds of different payloads capa-

ble of compromising a system. Featuring a database with over 1300 exploits, it is one of the

most well known penetration testing suites existing today. It is offered both in a paid and a free

version, where the paid version allows for integration with other tools from Rapid7 (responsible

for its maintenance) for increased productivity, better reporting and extended functioning.

Metasploit can be further improved with the addition of a Graphical User Interface (GUI) open-

source tool, like Armitage [Str16], which improves usability and gives access to some useful

features, chief among them being Hail Mary. Hail Mary is a brute force method of attempting

any potential exploit in every host, given the operating system and the services available. While

not a subtle method (as brute force never is), it can achieve positive results without the need

to specifically search and individually test different exploits.

Another available suite to complement Metasploit is Cobalt Strike [Rap16a], a paid tool which

allows for threat emulation and security assessment, creating an environment that can be de-

ployed on a real network to test security and incident response. It gives access to different

types of testing, from phishing to payload injection.

2.3.3 Nessus

Nessus [Ten16] is a proprietary vulnerability scanner developed by Tenable Network Security.

Available for free as a trial for personal use, it is comprised of two main components: (i) a

9

daemon, for scanning, and (ii) a client, to control the scans. When executed, it begins with

a port scan, and attempts several exploits on the open ports. Other functionalities include

password auditing through dictionary attacks and brute force attacks.

Nessus can be deployed in physical, virtual and even cloud environments, adding to its versatility

in terms of usage scenarios. As a full vulnerability assessment solution, Nessus is not only able

to find potential vulnerabilities and misconfigurations, as also to detect malware, viruses and

even communications with botnets. The plugin database is updated on a regular basis, so as

to incorporate new vulnerabilities and threat signatures. Reports can be generated following

standards compliant with the specific area the company is integrated.

2.3.4 OpenVAS

OpenVAS [Gre16] is an open-source fork off of Nessus, after the software became proprietary

in 2005. It is, much like Nessus, a framework that offers several services and tools for com-

prehensive vulnerability scanning and vulnerability management. It has over 47000 network

vulnerability tests in its database, which are executed by the scanner provided with the frame-

work. The tests offered by OpenVAS are served through a public feed, updated weekly. The

tool allows for the change of the feed for a commercially licensed one.

2.3.5 Snort

Snort [Cis16a] is an open-source network intrusion prevention and detection system developed

by Cisco. It performs real-time traffic analysis and packet logging, as well as packet sniffing

(displays or logs all captured packets). It allows for the specification of different rules that can

then be matched with the analyzed packets, allowing detection of OS fingerprinting attempts,

port scans and other probes and attacks.

Snort has its own language for creating rules. There is also a group – Talos – composed by

several security experts, that provides a suite of rules that are constantly updated for improving

detection in hacking activities, intrusion attempts, malware and vulnerabilities. This suite of

rules is available for a subscription fee.

2.3.6 dsniff

Dsniff [Dug00] is a group of network analysis, auditing and penetration testing tools, that monitor

a network for relevant data, such as passwords, e-mails or files. Several of its tools facilitate the

interception of such traffic, while others allow for the realization of man-in-the-middle attacks.

It mainly works as a network sniffer, but can also be used to disrupt the normal functioning of

the network, and even cause traffic from other hosts on the network to be visible. Dsniff is

available on some UNIX-based platforms, mainly OpenBSD, Redhat and Solaris and is available

for free, though as a closed-source software.

10

2.3.7 Xplico

Xplico [Cos16] is a network forensics analysis tool whose purpose is to reconstruct data extracted

from captured network packets. It analyzes not only the protocol of a packet, but the application

data itself, namely HyperText Transfer Protocol (HTTP), Voice over Internet Protocol (VoIP) calls,

File Transfer Protocol (FTP) files, etc. Data can be dumped into a database or eXtensible File

Format (XML) file, and decoding can be defined on a pert protocol basis, allowing for decoding

only the protocols the user desires. The tool is able to decode large amounts of data at a

time, claiming inclusively that several terabytes of data supplied from different sources can be

decoded, due to its multithreaded implementation. Xplico is available as a free and open-source

software.

2.4 Network Based Security Audits
A security audit on a network comprises different steps to achieve the final goal of assessing

the status of the security of the elements (e.g., servers, hosts and routers) on that network.

There are many different standards and guidelines to guide the process of an audit, many of

them specific to certain areas of business (health, energy, among others)- There are also gen-

eral guidelines published by different organisms whose main objective is to create a basis on

what a network security audit should cover, its principles and objectives. One of the most

concrete and respected documents on this subject is the Guideline on Network Security Test-

ing [WTS03] by the National Institute of Standards and Technology (NIST), which includes the

following recommendations concerning security audits:

• make network security testing a routine and integral part of the system and network op-

erations and administration;

• test the most important systems first;

• use caution when testing;

• integrate security testing into the risk management process;

• ensure that system and network administrators are trained and capable;

• ensure that systems are kept up-to-date with patches;

• look at the big picture;

• understand the capabilities and limitations of vulnerability testing.

From these points, one can see that the auditing process should be done on a regular basis, if

possible in a non-intrusive way, and giving priority to critical systems. The need for trained and

capable administrators is an issue that the work presented herein attempts to minimize through

11

the construction of a plug-and-play device for such task. Nonetheless, a deeper understanding

on cyber-security should be a prerequisite for people performing security audits. In this case,

the capacity of placing oneself in the mindset of an attacker is specially useful.

Additionally to the recommendations, different techniques and areas to take into account when

performing tests are also discussed in the aforementioned document. The following list sum-

marizes some of them:

• network scanning, which involves the use of Internet Protocol (IP) sweep and port scanning

to identify hosts on a network and the services they provide;

• vulnerability scanning, involving the attempt to find vulnerabilities on the detected ser-

vices on the hosts, following the data gathered from the previous step;

• password cracking, which attempts to identify weak passwords used in different services

or systems, using either a dictionary or simply brute forcing by generating thousands of

attempts to find a valid login;

• log review, comprising the analysis of logs from different components of the network, from

firewalls to intrusion detection systems, in an attempt to find deviations from the normal

functioning of these systems. This is usually not seen as testing but serves as a way to

detect anomalies or check the correctness of functioning of defined policies;

• integrity checkers, involving the creation and comparison of checksums for every file on

each computer on a network, and joining these checksums in a database, to prevent tam-

pering of files;

• virus detection, both the type installed on hosts (commonly known as antivirus software)

and those installed on the network infrastructure;

• war dialing, which consists in dialing a wide spectrum of phone numbers in an attempt to

find a modem that may provide access to a network;

• war driving, the act of moving around collecting wireless networks;

• penetration testing, which attempts to circumvent security features on a system knowing

the design of the system and its implementation, trying to gain access and, if possible,

scale privileges to gain control over a host or even the entire network.

Log reviewing, integrity checking, virus detection and war dialing are tests that are not well

suited for the work at hands, given the application scenarios and objectives of the forensic box.

Some of these tests are host based, while others are clearly more suitable for offline execution.

From the remaining, a system can be designed to fit the different techniques and attempt to

automate them.

12

When defining the frequency of an audit, one should take into consideration the importance of

the system and of the data it stores within the surrounding ecosystem. Critical systems should

be audited with greater frequency, although some tests should be conducted more sparingly due

to their offensive nature.

2.5 Conclusions
This chapter laid ground on different methodologies, guidelines and tools related with the sub-

ject of security assessments. One of the main conclusions is that there is no one size fits all

solution for security audits. The ever changing and increasingly large landscape contribute for

this problem. Fortunately, there seems to be plenty of tools, under active development, to aid

in the task of analyzing the security of systems and networks. Some of those tools are open-

source and community driven, regardless of the fact of being extremely powerful and effective.

Related works mention that modeling may comprise an interesting resource for an initial phase

of an assessment. Network topology discovery via IP sweeps and port scanning can be seen as a

means to construct part of the model automatically. The intermediate phase of audits can then

be performed using different tools, depending on the objectives and, mostly, on the information

that was previously obtained. Efficiency is dependent on how well the tasks can be branched

out. The final phase is typically the one concerning the presentation of data, i.e., reporting. It

can be said that the device developed in the scope of this work respects this general flow.

According to NIST and to Cisco, security testing should be a routine. The former also states

that specialized personnel should be in charge of security, and that critical systems should be

analyzed first. As it will become clearer in the following chapters, the development of the

forensic box was partially influenced by some of the guidelines and recommendations discussed

herein, specially its architecture and the sequencing of the several tools it integrates.

13

14

Chapter 3

Hardware Specifications and Blueprinting

3.1 Introduction
This chapter presents the specifications of the chosen hardware and the reasoning behind it, as

well as the process of blueprinting the system structure and software components.

Taking the technologies and ideas in works presented in the previous chapter and the definition

of a network based security audit, the requirements of the system to be developed were thus

defined. Section 3.2 presents the hardware requirements and the reasoning behind them, of

what specific needs the device has, as well as the different possibilities, choices made and the

argument for them. The following section, 3.3, defines the blueprint of the system and its main

components, their purpose, functionalities, and how they communicate with each other and the

user, in terms of software. From these components, or modules, specifications, the software

features and implementation can then be defined.

3.2 Hardware Specifications
When considering the appropriate type of device to be chosen, it was necessary to make an

uplift of the requirements that the device had to meet. The requirements were mostly derived

from the application scenario and objectives of the device and network based security audits,

described in section 2.3. The following requirements were identified during this phase:

• Portable - the system should be able to be easily transported and deployed in any place;

• Energy Efficient - it should have low power consumption, much lower than a standard

desktop or even laptop computer;

• Be able to run from a battery - this ties in with the need of being energy efficient, as a

battery pack (such as a powerbank) should be able to supply the device;

• Wired and wireless connection to networks - the system should have both an ethernet port

and wireless support for the most common standards;

• Capable of running a real time OS - as the system should have some fairly advanced capa-

bilities, a real time OS (such as a UNIX based one) is needed;

15

• Compatible with security tools - security tools comprise the bulk of the system, and as

such, it should be compatible with these;

• Physical interaction with the user - some simple commands should be able to be issued by

the user without the need to access the device through its web interface, resorting to some

form of hardware interaction, both to issue commands and receive basic information;

• Hosting a web service - for more complex customization and to supply the user with the

findings of the device, a web interface must be made available. This interface will allow

to configure parameters in several tools, access to reporting, and allow the user to target,

for example, a machine with a public IP address outside of the network the device is in;

• Inexpensive - the device should have a low cost so it can be easily acquired and assembled

by any professional.

The best option was to choose a single board computer: small form factor devices, with all

needed hardware and features integrated in a single Printed Circuit Board (PCB). Looking at

the remaining requirements, some of these devices would fit the specified requirements. Due

to size and cost restrictions, the choice would have to fall upon a low-power device. However,

Arduino and other similar devices, such as the Beaglebone A6 or the Texas Instruments MSP430

LaunchPad, are too under powered in terms of processing capabilities and cannot run a real

time OS, rendering them inappropriate for the system. This reasoning narrows the list down to

devices such as the Raspberry Pi or the Beaglebone Black as the best-suited alternatives. These

devices meet the majority of the requirements, with the exceptions of wireless connection and

providing a physical interface for interaction. However, both can be expanded very easily to

support both features.

The main major difference between the two aforementioned devices, the Raspberry Pi 2 and

the Beaglebone Black, concerns performance: the Raspberry Pi 2 (and upwards) has twice the

amount of RAM and a much more powerful quad-core processor. Considering that the device will

be used mainly to run different demanding software applications, the performance advantage

benefits the Raspberry Pi.

The Raspberry Pi, being the most popular device, also has a much greater community behind

it, and better support and accessories. The main advantages of the Beaglebone are the I/O in

terms of pinout, the slightly lower price and the embedded storage. However, and considering

the lesser role the hardware output has in the project, and the need for more storage space

than what the device has, rendering the final cost similar, they do not comprise real comparative

advantages for the device.

The choice fell then on the Raspberry Pi 2. The main reasoning behind the choice was the low

16

cost, advantage in performance, the existence of several specific Linux distributions, as well as

the community behind the device, both in terms of support and software.

To cover all requirements and features, additional modules were required. A wi-fi USB module

and a small PCB with a LCD display and hardware buttons, for physical interaction, were added.

The PCB is a RGB1602 module from PI52 [PI515], which integrates a MCP 23017 Global Pin Input

Output (GPIO) expansion chip, for which several libraries are available for the Raspberry Pi. The

wi-fi adapter is an Edimax EW-7811Un USB adapter,with support for the 802.11b/g/n standards

and plug-and-play compatibility with the Raspberry Pi [Edi16]. The final assembled device has

a compact design, as can be seen in figure 3.1.

Figure 3.1: The assembled device based on the Raspberry Pi 2.

3.3 Blueprinting
To achieve its objectives, the proposed system needs several modules, each with a specific

function, that interconnect and send or receive data from one another. From the analysis of

what comprises a security audit, and establishing what data must be gathered to generate a

concise, yet informative report, it is possible to identify components that the system needs and

the interactions needed between them, and with the environment and the user.

To identify the required components, a definition of what the system will offer must be pro-

posed. Looking at the existing methodologies and guidelines, the path for an audit can be

established in the following steps:

• connect to the network - if the device is plugged in into a network, it should be able to

acquire an IP address and connect to said network;

17

• discover hosts in the network - after being connected, the system should be able to discover

all hosts on the network;

• discover open ports, services running, and the OS of the hosts - the system should scan the

detected hosts for this data;

• discover vulnerabilities on the hosts - from the system data of the detected hosts, a list

of vulnerabilities can be compiled;

• discover vulnerabilities in the services running on the hosts - in a similar fashion, a list of

vulnerabilities can be created through scanning and probing the different services running

on the network hosts.

Adding to the auditing part, the system should also be able to capture traffic (and be able to do

so in a switched network), report on its findings, allow for some manual configuration of specific

tools (both these functions available through a web interface), and allow for input through its

hardware buttons.

With these prerequisites in mind, the following modules can be projected:

• network scan;

• system vulnerability scan;

• service vulnerability scan;

• data parsing and report creation;

• web interface;

• hardware interface;

• traffic capture;

• wireless tools.

Beginning with the network scan, this module should be able to be either manually or automat-

ically launched (when detecting a wired or wireless connection), discover the existing hosts on

the network, their ports and services, and the OS of each host. The data gathered in this module

is of critical importance for the system, since it is the input that will be fed to the majority of

the remaining modules.

The system vulnerability scan should encompass the discovery of possible vulnerabilities in hosts

in terms of their OS or running programs. The information generated in this module should then

be sent to the data parsing module for integration in the final report.

18

The service vulnerability module, with the input of the data acquired on the services running on

the hosts, should check for vulnerabilities in these services. It should be noted that this module

encompasses, among others, web scanning and brute force attacks. The results are also sent to

the data parsing module.

The data parsing module will be responsible for receiving the output of all the tools involved

in the auditing process, parsing said outputs and compiling them into a report that can then be

presented to the user with the results of the automated audit.

The web interface will allow for the user to fine tune some parameters on the integrated tools,

as well as direct the audit to a specific network or host, view the report, and use some of the

tools manually.

The hardware interface module will allow the user to interact with the device through its top

mounted display and buttons, and issue some simple commands, such as starting network traffic

capture. Some information on the status of an ongoing audit, for example, can also be displayed.

The traffic capture interface makes use of packet capture, that will then be stored in a file the

user can consult and extract to an external device for detailed analysis, or for cataloging the

main type of traffic circulating on the network. This module will also support some man-in-

the-middle attacks to redirect traffic on a switched network, so that all network traffic can be

captured (more details about this feature in chapter 4).

The wireless tools module will allow for the attempt on cracking Wired Equivalent Privacy (WEP)

keys when a WEP protected network is in range.

All interactions between the aforementioned modules are represented in figure 3.2. Dashed

arrows denote data flows, while normal arrows denote issuance of commands. For example,

the web interface can issue commands for the several modules, and the network discovery

module provides data to many other modules.

3.4 Conclusions
This chapter laid the foundation for both hardware and software comprising the device. Having

defined the hardware components and the software interactions and structure of each module

in this chapter, it is possible to define OS, types of tools needed to implement and automate,

as well as interaction logic and interfacing. The next chapter presents the forensic tools im-

plemented in the system and the steps towards their automation. The chapter after the next is

also influenced by several decisions taken in this chapter.

19

Figure 3.2: Simplified blueprint of the system components and their interactions.

20

Chapter 4

Forensic Tools Automation

4.1 Introduction
This chapter describes the tools integrated in several system modules and the process towards

their automation.

Starting from the modules identified, presented and defined in chapter 3, a study of the exist-

ing tools for the appropriate tasks was made and different tools were selected. The basis for

this selection is given in this chapter, with the reasoning for the choices duly presented from

several angles, from the effectiveness of the tool, the type of output given to the existence of

an Application Programming Interface (API) for controlling the tool. Section 4.2 presents the

different tools integrated in the system along with an explanation of its objectives, its main

role in the system and the module it integrates, as well as its main options and functionalities.

Section 4.3 introduces and provides details on the steps towards the automation of the tools

referred in the previous section. Along with the steps taken, some examples are also shown to

illustrate the approach.

4.2 Forensic Tools
The different tools used in the system developed in the scope of this project are presented

herein. Each tool is accompanied by a description of its functionalities, its role in the system

and why the choice befell on that particular software.

4.2.1 Nmap

As the first part of an audit is the detection of hosts on the network, a network scanner (or map-

per) was the first type of tool to be taken into consideration. While several options exist, such as

the Network Scanner from SoftPerfect [Sof16] or the Advanced IP Scanner by Famatech [Fam16],

most existing tools are either exclusive to Windows OSs or only give access through a GUI, nei-

ther of which proves suited for the intended use. The choice fell upon Nmap [Gor16b] for the

prospect of network scanning.

As its name implies, Nmap discovers hosts on a given network as its core functionality. However,

Nmap can double as a potential vulnerability scanner. Among its many functionalities, the

service scanning and OS fingerprinting features are the most interesting ones for the system.

21

The first one, service scanning, provides means to perform the scanning of services running on

any open port on a host. Nmap is able to discover these services through probing the port and

analyzing the received answer. Most of the time, it is even able to discover the version of the

service. This can prove invaluable as it allows the system to report the version of the service

so that the user can check if it is up-to-date or not, or what known vulnerabilities the current

version has. The second functionality, OS fingerprinting, ties in with the first one advantages as

well. By being able to detect the OS a host is running, it is also possible to, through the version

of the OS, discover potential system vulnerabilities.

On a more practical side, one of the major advantages of Nmap is the possibility of exporting its

result into a XML file. This proves advantageous due to the ease with which such a file can be

read and parsed, and its data registered on a structure that can then be directly accessed. As this

part of the audit is the one whose data branches out towards the other parts, the convenience

of this functionality is highly valued.

4.2.2 OWASP ZAP

Usually, most systems accessible from the outside of a network (public servers, for example)

provide some type of service or services that anyone can access. These services typically span

from simple web pages to advanced web applications. They are entry points in attack attempts

and their vulnerabilities are critical, as emphasized by the OWASP Top 10 project.

There are several tools for scanning web services for potential vulnerabilities. These tools are

usually known as web application vulnerability scanners or, for short, web scanners. Some exam-

ples are the Burp Suite [Por16], Acunetix WVS [Acu16], OpenVAS [Gre16] and Nexpose [Rap16c].

Most of these tools are closed-source and expensive, though they incorporate other function-

alities, such as network scanning. As the system developed is based solely on open-source

software, the chosen vulnerability scanner is the Zed Attack Proxy (ZAP) [OWA16b] by OWASP.

It encompasses vulnerability discovery in web applications, and has a set of features that ben-

efit its integration in the system. Among these features, the existence of an API written in

different languages, such as Java or Python, and the XML output of the scan results are the

most advantageous ones.

The features of ZAP are structured into two main parts. The first one is the spider. The spider

finds all the URLs existent on a given site. Internally, ZAP has two spiders; the original one,

mostly for HyperText Markup Language (HTML), and an AJAX spider for Javascript and XML-rich

sites. The second part of ZAP is the scanner, which works in both a passive and an active way.

The passive scan analyzes the responses of the web application in an attempt to find potential

issues. The active scan, as the name implies, actively attacks the web application to find vul-

nerabilities.

22

4.2.3 SSLyze

Transport Layer Security (TLS) provides secure communications over a network, and it is nowa-

days used on most websites and web applications. It can guarantee that the connection between

a client and a server is private, as all data is encrypted with symmetric cryptography, and it

can enable the authentication of the identity of both parties involved in the connection through

the use of public key cryptography, as well as ensure the integrity of each message resorting to

message authentication codes.

SSlyze [Alb16] is an Secure Sockets Layer (SSL)/ TLS analysis tool, written in Python, that checks

the configuration of SSL on a given host, in an attempt to find misconfigurations and problems

with SSL. It checks certificates, cipher suites, insecure renegotiation, and commonly known SSL

vulnerabilities such as Heartbleed, among others.

This tool is available for Linux systems and interacts with the user through the command line. It

supports different configuration parameters, allowing to choose what needs to be tested. An-

other advantage of this tool, just like the ones already presented in this section, is the possibility

to output the data into an XML file.

4.2.4 Hydra

Many servers offer different services, such as FTP, that require simple authentication through

a username and password. Many times these services do not offer protection against brute

force attacks. Brute forcing, in this situation, is attempting several different combinations of

usernames and passwords so as to discover a valid combination. While this method is not refined

nor discrete, many times it proves successful due to the usually simple credentials utilized by

the majority of users.

Among the plethora of password cracking tools that exist, Hydra, John the Ripper and Medusa are

the most popular ones. All of these are open-source tools that accept different parameters, can

use passwords and usernames saved on dictionaries, or deliver a pure brute force attack where

they attempt all possible character combinations up to a definable length. All have support for

several different protocols, from FTP, HTTP or Hypertext Transfer Protocol Secure (HTTPS) to

SSH, and are able to run several concurrent threads to enable a higher number of attempts per

second. From these three, Hydra was chosen to integrate the system due to its better protocol

support and superior performance [Hac16].

4.2.5 Ettercap

Man-in-the-middle attacks are a common practice when attempting to listen to encrypted com-

munications, usually with the intent of acquiring confidential data. However, and in the scope of

this work, a particular type of attack is a valuable addition. Address Resolution Protocol (ARP)

23

poisoning consists in spoofing the ARP cache of the network hosts. In this case, it is used to

route all network traffic through the device. This is needed in a switched network when the

user wishes to capture network traffic.

Ettercap [Alb15] is one of the most well known man-in-the-middle attack suites, and is imple-

mented in the system with the purpose described in the previous paragraph. Different from the

other tools presented above, it does not incorporate the auditing part of the system, but inte-

grates the traffic capture module described in 3.3. Along with the traffic sniffer, kit composes

the core of this module.

4.2.6 SQLmap

While webscanners are able to detect most vulnerabilities in webservices, SQL injections can

be more difficult to detect, and even harder to explore. Due to the relevance that this type of

vulnerabilities have, the system should integrate a specific tool to detect them.

SQLmap [Ber16a] is a SQL injection scanner, capable of finding potential vulnerable fields in

webpages and exploit them. SQLmap can, beyond discovering potential injections, perform the

injections and dump databases. It has support for most of the common DBMS, from MySQL to

Microsoft SQL Server.

4.2.7 Traffic Sniffer

A network or system administrator may have the need to check the type of traffic flowing through

a network. Many times, specific traffic flows can be a sign of an attack or of an abnormal activity.

As such, being able to capture packets for later analysis, or have a real-time classification of

the type of traffic can prove to be a boon for the administrator.

Resorting to the Libpcap [Tim15] library, a lightweight traffic sniffer was implemented. It allows

for swift packet classification or capture and subsequent storage in a file for a more thorough

offline analysis (i. e., through wireshark or other similar software). The tool was specifically

constructed within the scope of this work to meet the conditions of the less powerful system in

which it was going to run, and it was released as an open open-source project in [Ber16c].

4.2.8 Aircrack-ng

Nowadays, wireless networks are as ubiquitous as wired networks, perhaps even more. Mostly

because of this, many tools capable of capturing packets or crack weak security wireless proto-

cols have been developed. Aircrack-ng [Air16a] is one of those tools. It aggregates several util-

ities regarding wireless networks, and works with a wide variety of wireless adapters. Through

Aircrack-ng, it is possible to capture traffic, or attempt to crack a wireless network protected

with a vulnerable protocol, such as WEP.

24

4.3 Automation
After identifying the most suitable tools, the next step consisted of their integration, automation

and orchestration to perform an audit. Several steps were taken towards automation, beginning

with the definition of the parameters for each tool. This was made while striving to encompass

the largest amount of vulnerabilities possible, while keeping the execution time within reason-

able operating intervals. The second step was the definition of the order in which tools were to

be invoked and their input/output data. This was particularly relevant in the context of how the

parsing of the network mapping was to be performed. The last step was the automation in itself,

either through API calls or by executing commands directly. The automation and orchestration

scripts were all developed within the scope of this project.

4.3.1 Nmap

As the first step of the audit is the detection of network hosts, Nmap is the first automated tool

in the system to be run. As the tool also performs OS fingerprinting, to attempt to identify the

OS running on the host, and service detection, it fulfills the service version detection part as

well.

In terms of parameters, -sV and -O add the service detection and OS fingerprinting functional-

ities, respectively. Due to potential time constraints, the -T3 option was also added to avoid

the mapping to take a significant amount of time. From performed tests, utilizing this option

in detriment of a more thorough scan had no influence on the performed detection.

For the automation part, as the scanning should be automatically started on a network con-

nection, a small bash script was created that calls Nmap on detecting a network connection.

This is done both when a network cable is plugged in or the device connects to a wireless net-

work. The output is saved into an XML file. From this file, and with recourse to the LibXML2

library [Dan16], the file is parsed into a structure where all relevant host data is kept. A small

excerpt of the script that is called on a network connection is presented in 4.1.

1 . . .

2 c id r =$ (ipca l c −b $ip $nm | grep Network | cut −d” : ” −f2)

3 i f [” $ IF ” == ”eth0”]

4 then

5 case ”$2” in

6 up)

7 logger −s ”NM Sc r i p t up t r i ggered ”

8 sudo nmap −T5 −oX /var/www/html/nmap−output . xml −O −sV $c idr

9 . . .

Listing 4.1: Excerpt of the script that invokes nmap.

25

4.3.2 OWASP ZAP

From the data acquired in the network mapping part, ZAP is called to scan the hosts where web

services are detected. Since ZAP is a webscanner, it will detect different types of vulnerabilities,

ranging from Cross Site Scripting (XSS) injections to Cross Site Request Forgery (CSRF). The tool

usually presents a GUI for easy interaction and usage. Nonetheless, in this particular case,

the integration with the remaining components was made through its Python API, being called

individually for each scanned host. A new session is created for each host, executing the spider

functionality first, only then to be followed by the scan. Potential higher risk alerts (low risk

alerts are ignored, since they are normally considered non-threatening, and would only make

the report harder to read) are then exported into an XML file for later parsing.

In terms of parameters, ZAP is run in a straightforward fashion and mostly using its default

parameters. The spider was nonetheless setup not to run for the full length scanning, due to

time related concerns. This choice is the result of several (unit) tests during integration, so as

to be certain that it would have minimal impact in terms of detection. The spider is setup to

run until the 35% mark only. The scanner is allowed to run its full length.

An example of the use of the API to start ZAP through a Python script is presented in Listing 4.2.

1 subprocess . Popen ([’/ root/Documents/ Aud i tCont ro l l e r s /ZAP_2 .5.0/ zap . sh ’ , ’−daemon ’ , ’−

port ’ , ’ 8090 ’] , stdout=open (os . devnull , ’w’))

2 pr in t ’Waiting for ZAP to load , 20 seconds . . . ’

3 time . sleep (20)

4

5 # Spec i fy the URL to s t a r t the attack

6 TARGET = ”http ://”+ sys . argv [1]+ ”/”

7

8 pr in t ”Attacking %s with ZAP” % TARGET

9

10 zap = ZAPv2 (prox ies ={ ’ http ’ : ’ http ://127.0.0.1:8090 ’ , ’ https ’ : ’ http

://127.0.0.1:8090 ’ })

11 zap . core . new_session (apikey = ’mbml8683889jr88up9s872p9b2 ’)

12 zap . urlopen (TARGET)

Listing 4.2: Excerpt of the Python script that invokes ZAP.

4.3.3 SSLyze

If one of the detected services is an HTTP server, and if it supports HTTPS, SSLyze is automatically

invoked to audit the SSL security of the server. SSLyze is initialized with the -regular parameter,

so as to assess the most common SSL issues. The output is stored into an XML file, and the parsing

26

processes the data to present potential issues, namely if the certificate issuing and expiration

dates are still valid, if the host name coincides with the one of the system and the one on the

certificate. It also reports on other SSL specific misconfiguration problems and commonly known

vulnerabilities, such as cipher suite downgrading and Heartbleed.

An example of the programming logic that invokes SSLyze is presented in listing A.1, included

in the appendix. The snippet of code only shows the call for the script that runs SSLyze after

verifying the host is running HTTPS. SSLyze itself runs through a Python script.

4.3.4 Hydra

Due to its nature, Hydra is only called when certain services are detected on a host (e.g.,

protocols requiring authentication). The system is shipped with a dictionary to be used on the

attacks, though the user can supply its own dictionaries via the web interface also.

The automation script developed for this tool performs a verification on the detected services,

as emphasized by the code snippet in listing 4.3. The services that spawn this tool are FTP,

MySQL and SSH. When one of these services is found in the output of Nmap, Hydra is called

using the provided dictionaries or the default one provided with the system. This function of

the system is one of the most time consuming, due to the way a brute force or dictionary attack

works. This is also why the number of services is only 3. They are some of the most commonly

vulnerable [Dan13] [Den13] [Den16] and if successfully exploited, they can provide access to

sensible information (or to the entire system, in the case of SSH). A small example of how the

call of Hydra is made is shown in 4.3.

1 . . .

2 i f (strcmp (hosts [i] . ports [j] . serviceName , ” ftp ”) == 0)

3 {

4 char *hydraCommand = concat (”hydra −L users . tx t −P passwords . txt f tp ://” , hosts [i

] . address) ;

5 . . .

6 }

7 else i f (strcmp (hosts [i] . ports [j] . serviceName , ” ssh”) == 0)

8 {

9 . . .

10 }

11 else i f (strcmp (hosts [i] . ports [j] . serviceName , ”mysql”) == 0)

12 . . .

Listing 4.3: Small excerpt of the script invoking Hydra on available hosts.

27

4.3.5 Ettercap

Ettercap is not part of the main auditing done by the system. As a Man-in-the-Middle attack

suite, it is used mainly for the ARP poisoning functionality, with the purpose of capturing traffic

in a switched network. In this case, the call is not done on an automated way, but manually

triggered by the user. Only the parameters themselves are predefined. By default, Ettercap

is called with the -Tq -w dump -M arp:remote //// parameters, where -Tq calls the tool in

text-only mode and using quiet mode (it does not print packet contents), -w dump writes the

captured traffic file into a file called dump, -M arp:remote // designates ARP poisoning as the

attack, where remote enables sniffing of remote traffic the hosts make through the gateway,

and the //// defines the poisoning for all hosts on the network.

4.3.6 SQLmap

SQLmap is perhaps the most focused tool integrated in the forensic box. While many other tools,

namely ZAP, are able to detect SQL injection related problems (and even exploring them), this

tool is focused only on the exploration of this type of vulnerability. Its main advantages are

that it is capable of discovering potential injection-vulnerable fields and then launch different

exploits in an attempt of finding a more precise security breach.

The main issue with the automation of SQLmap is that it requires the URL of the page with the

HTML fields. It is not capable of automatically detect all URLs that a webpage may have. As

such this detection is performed with the spider of ZAP and an additional file is kept with all

URLs of a specific host, which is then fed to SQLmap. When service detection identifies the type

of DataBase Management System (DBMS) existent on the system, it is passed on to SQLmap also,

so that injections specific to the other DBMSs can be bypassed, and thus reduce the auditing

time.

The tool is run with the option to detect fields and immediately attempt the exploit. An excerpt

of code triggering SQLmap is shown in listing Listing 4.4. As can be seen, the tool is initialized

with the --dbms option, so as to set up the target DBMSs. The port is also provided and the

output is redirected to the file named sqlmap-output-HOST_ADDRESS.txt, where HOST_ADDRESS

is a placeholder for the IP address of the target host.

1 . . .

2 i f (strcmp (hosts [i] . ports [j] . serviceName , ”http”) == 0)

3 {

4 for (k = 0; k < hosts [i] . nPorts ; k++)

5 {

6 i f ((strcmp (hosts [i] . ports [k] . serviceName , ”mysql”) == 0) || (strcmp (hosts [i] .

ports [k] . serviceName , ” postgresq l ”) == 0) ||

7 . . .

28

8 {

9 db = 1;

10 char * sqlCommand = concat (concat (”sqlmap −m ” , concat (hosts [i] . address , ”−u r l s .

tx t ”)) , concat (” −−dbms=” , strcmp (hosts [i] . ports [k] . serviceName) , concat (

concat (concat (” −−smart −−forms −−batch −o > sqlmap−output−” , hosts [i] .

adress) ,” . txt ”) , ”2>&1”))) ;

11 system (sqlCommand) ;

12 . . .

Listing 4.4: Small excerpt of a script that starts and directs SQLMap towards available hosts.

4.3.7 Aircrack-ng

The module that integrates Aircrack-ng is used in WEP cracking attempts. This module is only

triggered when a network with such protocol is in the vicinity. The detection of the wireless

protocol per se is not performed by Aircrack-ng, but by the iwlist tool, which is invoked on

a regular basis, until a WEP protected network is found. When such network is found, the

wireless network interface is placed in monitor mode, so that the card can listen to any packet

transmitted wirelessly. The tool then proceeds with the injection of packets towards the access

point. This is done so that a large number of Initialization Vectors (IVs) is generated, which are

later on captured. The device then attempts to make a fake authentication with the access

point, with the objective of leading the access point into the acceptance of frames with the

Media Access Control (MAC) address of the device. The last two steps are the capturing of ARP

packets and their re-injection in the network, so that more IVs are generated, consequently

leading to obtaining the WEP key of the network. A list of the commands and steps taken

comprising the described procedure is shown in listing Listing 4.5, where ESSID and myMAC are

placeholders for the real values. The options used are typical for the attack under analysis and

their description can be found, e.g., in [Air16b].

1

2 i w l i s t wlan0 scan | grep ’ ESSID \| IE : W\| Address \| Frequency ’

3 airmon−ng s t a r t wlan0 9

4 aireplay−ng −9 −e ESSID −a Address ath0

5 airodump−ng −c channel −−bss id Address −w output−ESSID ath0

6 aireplay−ng −1 0 −e ESSID −a Address −h myMAC ath0

7 aireplay−ng −3 −b Address −h myMAC ath0

8 aircrack−ng −b 00:14:6C:7E :40:80 output * . cap

Listing 4.5: Steps taken to obtain a WEP key.

29

4.4 Conclusions
This chapter presented several tools that were integrated in the device prototyped in the scope

of this work and also the steps taken towards their automation. Each tool follows similar process

in terms of automation, though their specificity had to be dealt with individually. While some of

the tools provide APIs, simplifying the process of integration and automation, or allow outputting

in a well-behaved XML file, others must be invoked directly from the command line, and their

outputs saved in a file for dedicated processing.

A report can be generated to be presented to the user compiling the data generated with the

automated processes of these tools, providing the appropriate interfaces. Some of the tools

presented in this chapter can also be manually operated through these interfaces. Both these

functionalities are presented in the following chapter, along with the interfaces design and

report structuring. Though several (unit) tests were performed along the integration and au-

tomation phase, the system as a whole needs to be validated in a real scenario. This will be the

subject of chapter 6.

30

Chapter 5

Interface and Reporting

5.1 Introduction
This chapter presents the interfaces available for the interaction between the user and the

prototyped device, as well as the functioning of the reporting process for conveying the audit

results. The previous discussion emphasizes that the user will need simple means to access and

control the system, and all the different functionalities presented in chapter 4, and that the

data coming from all pentesting tools needs to be presented in a very clear manner. These

requirements led to the creation of two different interfaces to the system: (i) a web-based

interface, where the user can both consult results from an audit, or launch and configure the

majority of the system tools; and (ii), a hardware interface, where the user can issue simple

commands and receive basic feedback on the status of an operation. Both interfaces and their

implementation are presented in section 5.2. Section 5.3 defines the system reporting, providing

details on how the data is parsed and presented to the user, and the overall structure of a report.

5.2 Interfaces
The software and hardware interfaces allow the user to interact with the device and receive both

feedback from the execution of the tools and output data from audits. They have mostly distinct

functions, with only a few overlapping, and they both are implemented with user-friendlyness

in mind. Though access through SSH is possible also, it is not practical nor user-friendly, and

no additional programming logic was added to the panoply of already available commands and

scripts for this particular protocol. The hardware interface is presented in subsection 5.2.1 and

the web interface in subsection 5.2.2.

5.2.1 Hardware Interface

The hardware interface is based on the RGB1602 module, briefly described in chapter 3. This

module connects to the Raspberry Pi through its GPIO pins and offers a small Liquid Crystal

Display (LCD) display with two lines of effective output and five hardware buttons, four of them

positioned in a D-pad shape, which is optimal for menu navigation. The LCD is used to output

simple text messages, which typically rotate from the right to the left.

The module integrates the MCP23017 expansion chip. To enable communication with the module

and the chip, a library called WiringPi52 [Gor16a], with support for the components, was used.

31

It is possible to directly access the LCD to display messages and capture button presses through

the several methods provided by the library.

The programming logic behind the hardware interface makes it possible to display status mes-

sages and access to a simple menu for issuing direct commands. When an audit is in progress, the

LCD displays the message Audit in Progress. Once it is finished, it displays Audit Finished.

An example of how text output to the display is done can be seen in Listing 5.1.

1 wir ingPiSetup () ;

2 mcp23017Setup (100 , 0x20) ;

3 p r i n t f (”Raspberry Pi \ n”) ;

4 for (i =0; i <16; i ++)

5 pinMode (100+ i ,OUTPUT) ;

6 d i g i t a lWr i t e (101 ,0) ;

7 d i sp lay = l c d I n i t (2 ,16 ,4 ,100 ,102 ,103 ,104 ,105 ,106 ,0 ,0 ,0 ,0) ;

8 lcdHome (d i sp lay) ;

9 l cdClear (d i sp lay) ;

10 l cdPo s i t i on (d i sp lay ,0 ,0) ;

11 lcdPuts (d i sp lay , ”Audit in Progress ”) ;

12 pinMode (0 , OUTPUT) ;

13 pinMode (2 , OUTPUT) ;

14 pinMode (3 , OUTPUT) ;

Listing 5.1: Output to LCD display example.

When the system is capturing traffic, the LCD display is also periodically updated to show the

main type of traffic being captured (e.g., Transmission Control Protocol (TCP), User Datagram

Protocol (UDP), etc.). This feature was added because it might come in handy during audits to

a single computer, in which case it will be possible to detect, for example, if a virus is sending

HTTP requests when all applications are shutdown.

In terms of operations directly accessible through the module, the user can: (i) launch a new,

full audit on the connected network (for cases when new hosts were connected and the user

wishes to scan again); (ii) begin packet capturing (to a file or only to check the main type of

traffic passing in the network); or (iii), launch an ARP poisoning attack. The selection is done

through the hardware buttons, following the scheme shown in figure 5.1.

32

Figure 5.1: The buttons module placed on top of the Raspberry Pi. Button 1 and 2 allow for navigation
when choosing different functionalities, while buttons 4 and 5 cycle through options for a specific

functionality. Button 3 works as a selection button.

The access to reading button pressing values is also provided by the WiringPi library. An example

on how a button is read is presented in Listing 5.2.

1 i n t pressedButton ()

2 {

3 i n t i ;

4 while (1)

5 for (i = 108; i < 113; i ++)

6 i f (d ig i ta lRead (i)) return i ;

7 }

Listing 5.2: Function that captures the pressing of a button.

A small example on how the option selection is processed is given in Listing 5.3. As can be seen

in the excerpt of code, ettercap is being used as the tool for poisoning the network.

1 i n t button = pressedButton () ;

2 switch (button)

3 {

4 case 108:

5 l cdPo s i t i on (d i sp lay ,0 ,0) ;

6 lcdPuts (d i sp lay , ”Network w i l l be poisoned . ”) ;

7 l cdPo s i t i on (d i sp lay ,0 ,1) ;

8 lcdPuts (d i sp lay , ”Are you sure ? Other button to cancel”) ;

9 while (1) {

10 button = pressedButton () ;

11 switch (button) {

12 case 108:

13 system (”ettercap −Tq −w dump −M arp : remote //”) ;

14 while (1)

15 . . .

Listing 5.3: Excerpt of menu structuring on the module.

33

5.2.2 Web Interface

The web interface gives access to the majority of features and results. From this interface, the

user can define parameters, launch audits, launch specific tools on an assortment of targets,

consult the complete report and have access to the different output of the tools.

The interface is implemented in HTML and PHP: Hypertext Preprocessor (PHP), where the user

preference submissions are stored in a file, read by the auditing scripts. From the user pref-

erences, different parameters can be chosen, and tools can be excluded from the automated

process. The user can also launch some of the tools directly from the interface, with their out-

put being directed to the report page. Also provided are a link for the report, and the option to

download captured traffic in the shape of a pcap file. A screenshot demonstrating a small part

of the interface is depicted in Figure 5.2.

Figure 5.2: Screenshot of part of the web interface.

34

5.3 Reporting
When all data is gathered and an audit is finished, the user can consult a digital document

where all the information is presented in a structured and simple to read manner. Most tools

output data either in XML format or directly to the command line. Within the system, the tools

outputting to the command line have their stdout redirected into text files, so that the data is

always stored and identified. The files are named according to the targets of the audit, meaning

they all use the IP address of each host as an identifier.

For building up the final report, the data is parsed from the text files and XML outpus and

rearranged in a concise manner. For parsing the XML files, the LibXML2 [Dan16] is used. An

excerpt of the code for parsing of a ZAP output is given in Listing A.2, included in the appendix to

keep this explanation shorter. The aforementioned listing only presents the parsing of the nodes

in the XML file. The complete treatment of the parsed data is handed out to a different function,

where each node is processed. A better insight on how the node processing is performed, in this

case for the output of SSLyze, is shown in Listing A.3.

The gathered data is compiled into structures, part of which can be seen in Listing 5.4. These

structures are then compiled into a final txt file to be presented to the user. This structure,

defined in C programming language as many of the remaining scripts and logic, contains data

concerning each host and all the relevant information found by each tool. The structures is used

not only to store data for the report, but also to feed data into the different tools during the

auditing process.

1 typedef s t ruc t {

2 char *name; char * r i s k ; char * attack ; char * evidence ; char * desc r ip t i on ;

3 } hos tA le r t ;

4

5 typedef s t ruc t {

6 i n t pNumber ; char * protocol ; char * se rv ice ; char * serviceName ; char *

se rv iceVers ion ;

7 } port ;

Listing 5.4: Part of the data structure that encompasses information of the hosts.

Figure 5.3 exemplifies the way a report is structured for each host found and probed by the

device. The report encompasses the main information on the encountered hosts, and details on

the services running, their versions and potential vulnerabilities. Note that this report does not

include results of other tools that the device integrate. For example captured network traffic

is located on a file that a user can download, and it is not available in the report.

35

Figure 5.3: Scheme detailing the structure of a report.

The report starts by showing information regarding the wired or wireless network, such as the

network name (IP address and network mask) and wireless key, if applicable. For each host, it

will then present the IP address, OS, services and vulnerabilities. Vulnerabilities are shown at

the host and at the services level. A full report of the system can be found in the appendix,

namely in Listing B.1.

5.4 Conclusions
This chapter elaborated further on the approaches taken to enable the user to communicate

with the forensic box, and how the different data is gathered and treated before being made

available. Since the interaction with the device was to be non-intrusive and simple, this phase

comprised one of the most important ones for the project at hands. Two different interfaces

were developed: an HTTP based and an hardware interface. From the interfaces, the user can

interact with the device on different levels, namely fine-tunning and launching tools and audits,

or obtain feedback on the status of some operations. From the reporting, it is possible to have

a concise and comprehensive view on the state of the audited system(s).

The following chapter will describe some tests performed on the system to assess its efficiency,

as well as adjustments made to improve its functioning. A comparison with a manual audit done

on real servers.

36

Chapter 6

Testing, Fine-Tunning and Security Audits

6.1 Introduction
This chapter is focused on the fine-tuning of the system and on tests made to evaluate its

performance. Fine-tunning was necessary at a later stage of the project to make sure that the

device was not taking too much time while performing its main tasks. A comparison of the

outputs of the device with the ones obtained during a human assisted audit is also included

herein. This comparison was performed to evaluate, to a certain extent, if the detection of the

main vulnerabilities was on par with the ones detected during human analysis.

After completing the implementation and initial configuration of the device, different tests

were performed to assess its correctness in terms of functioning. The results of these tests are

presented in section 6.2. During these tests, several tweaks and changes to the parameters of

the tools had to be made in an attempt to improve detection rates in some key areas. These

changes and their results are explored in greater depth in section 6.3. Section 6.4 compares the

results of real life audits performed with the human assistance and with the device on several

servers of the university (whose addresses or configurations were not disclosed, due to security

reasons). Loosely speaking, these results can be understood as a benchmark for the success rate

of the device when compared with an actual expert directly utilizing different tools.

6.2 Testing
To assess if the main functionalities of the device were working correctly, namely the detection

of vulnerabilities and reporting, different existing servers were used. Most of these servers

are purposely configured for penetration testing. Local machines were also used with that

objective. The tables contained in this section show the different vulnerabilities and issues

exhibited by different servers, and the capability of the device to detect (or failure to detect)

those vulnerabilities or issues.

The first test performed on the system concerns the mapping of the network, and the detection

of open ports and available services. This test was performed on a local network, consisting of

the Raspberry Pi itself, running Kali Linux, a laptop computer, running Windows 10, a set-top

box, a router and an Optical Network Terminal (ONT) from an Internet service provider. Table 6.1

summarizes the results concerning the identification of the devices and the enumeration of their

37

ports and services. The hosts identified in the table are the Raspberry Pi (in the first row), the

Table 6.1: Results concerning the network hosts identification, and detection of open ports and associated
services.

Host Ports Services OS

.71 22, 80 ssh, http Linux

.77 8080, 8086 http-proxy, d-s-n Linux

.84 22, 443, 902, 912, 2869, 5357 ssh, https, iss-realsecure, apex-mesh, icslap, wsdapi Windows
.253 22, 80, 139, 443, 515 ssh, http, netbios-ssn, https, printer Linux
.254 21, 23. 53, 80, 443, 1723, 8000 ftp, telnet, domain, http, https, pptp, http-alt Router

The order of the services running in each port correlates with the port order presented on the table directly.

set-top box (in the second row), the laptop computer (third row), the ONT (fourth row) and

lastly the router (fifth row). As this is a known and fully controlled network, verification that

the device detected all existing hosts and their open ports and services can be done easily.

The OSs are also correctly detected (for example, the router detected as host .254 is indeed

a Thomson with the model TG799vn). The results were obtained by plugging the Raspberry Pi

into the switch that is directly connected to the router, and letting it perform the detection

autonomously.

The next step consisted in testing the detection of potential service vulnerabilities. In this

case, web services containing different vulnerabilities were setup on a local machine to which

the device was then connected to. The BodgeIt [Sim16], ZAP-WAVE [OWA15] and Awstats [Lau16]

web applications were used as targets for these tests. The Awstats web application is a real

application, whose older versions are known to suffer from different vulnerabilities. These

web applications ran on a Virtual Machine (VM), using the VMWare virtualization software, with

Elementary OS as the OS. The machine was configured with 4GB of Random Access Memory (RAM)

and two dedicated processing cores (the used Central Processing Unit (CPU) was an Intel Core

i7 4720HQ). All three applications have XSS vulnerabilities, while both BodgeIt and ZAP-WAVE

have SQL injections, and ZAP-WAVE also includes URL redirection and remote file inclusions.

Table 6.2 shows the detection performed by the device on the vulnerable web service.

Table 6.2: Results of the audit to vulnerable web
applications.

Vulnerability BodgeIt ZAP-WAVE Awstats
XSS Y/D Y/D Y/D

External URL Redirect N/ND Y/D N/ND
SQL Injection Y/S Y/S N/ND

Remote File Inclusion N/ND Y/D N/ND

Y - The vulnerability is present on the service; N - The vul-
nerability is not present on the service; D - The vulnerability
was detected by the device; ND - The vulnerability was not
detected by the device; S - Vulnerability suspected by the
device but not discovered.

38

As can be observed, the main web vulnerabilities were detected. The SQL injection vulnerabil-

ities were the exception in this case. During an initial phase of the scan, a potential injection

vulnerability was discovered (hence suspected), but further testing was not able to discover a

functional injection. Nonetheless, these results would suffice to trigger further investigation.

The tests that followed focused on testing SSL and related vulnerabilities detection. To achieve

that purpose, a VM with several known SSL issues was used. This is the same VM that was used

in the previous test, using Elementary OS. It was known a priori that the certificate was from an

invalid authority and that it an older signature scheme was being used. Table 6.3 summarizes

the results of these tests.

Table 6.3: Results of the audit targeting SSL issues.

Issue Detected
Downgrade Attack 3

Hostname invalid 3

Weak Signature 3

Self Signed 3

Certificate Expired 3

As can be seen in the table, the vulnerable server had a self-signed, expired certificate, an

invalid host name (www.example.com), was susceptible to a downgrade attack (so the client can

attempt to negotiate using an older, vulnerable SSL protocol version) and was using Secure Hash

Algorithm 1 (SHA1) as the hash function for the signature. SHA1 is considered insecure nowadays

and will stop being accepted by most browsers in the near future.

The last test performed in a controlled environment was that of the cracking capabilities of the

device. In order to do that, a virtual machine with Elementary OS was setup with the SSH, FTP

and MySQL services. These services were configured with passwords contained in dictionaries

from dumps. The experiment assessed if the device was (i) automatically attempting to crack

the logins of the detected service, (ii) if the attempt was successful or not and (iii), it measured

the time the process took. Part of the results of this test can be found on Table 6.4.

Table 6.4: Results concerning the password cracking feature.

Service Password Cracked
FTP 123 3

SSH toor 3

MySQL password 3

Since one of the objectives was to test if the device was starting the cracking attempt auto-

matically, the passwords were chosen from the dictionary therein contained. This way, it was

certain that any failure would not be due to that fact. During the audit, all passwords were

successfully discovered, though the time spent on this part of the auditing process was signifi-

39

cant. In a real world situation, it would certainly take more time than all the remaining parts

together. Actually, based on additional experiments and given the hardware involved, it can

be said that the procedure takes more than one hour when the password is located halfway on

a 10000 password list file. This poses an issue in terms of the efficiency of the device and this

issue has no easy solution, since the limitations of using a small, portable device such as the

Raspberry Pi cannot be overcome.

6.3 Fine-Tunning
After performing different tests, some parameters and scripts were changed to improve the

detection capabilities and reduce the time the device takes to perform the audit.

From the tests, it was possible to observe that SQL injection detection had a low success rate.

At the time of the first SQL injection tests, SQLmap was simply being called for a given host,

with the DBMS discriminated when the service was previously detected. The change done for

this tool was already explained in chapter 4, where all URLs captured by ZAP are saved and then

used with SQLmap. This improved detection, but did not solve all the issues. When a website

utilizes a POST instead of a GET, SQLmap requires that the data on the forms is given as input.

As such, in its present state, SQLmap is unable to detect SQL injections in fields that use POST.

Another issue that arose was that the PHP version is not detected, most of the times, when

scanning for services. The auditor that performed the audits presented in the following section

always issued a warning when PHP was out-of-date, which means that this was an important

detail that needed to be addressed. It was solved by using curl to get an answer from the

server where, most of the time, the PHP version is shown in a line similar to X-Powered-By:

PHP/4.3.2. This line is then captured and included in the report.

It was noticed that the time to perform an audit increases considerably if a web scan is per-

formed. On the other hand, if the device performs an attempt at login cracking, the time

increases exponentially, and the audit takes several hours. While the problem mentioned in

last could not be solved, as password cracking is a brute-force attack and the only way to in-

crease its speed was to increase the power of the hardware, which goes against the design

philosophy of the device, the web scanning time was reduced by limiting the depth of the spi-

der. By limiting it to 50 or even 30% of the progress before beginning the scanning activity, the

time of the audit was reduced considerably (from over 10 minutes per host where the web scan

is executed to under 2 minutes) without affecting the detection performance of the device.

From the executed tests, and after applying the aforementioned tweaks and adjustments, the

attained results were the same as before the modifications.

40

6.4 Security Audits
UBI hosts a team of students and collaborators whose main objective is to deal with security

aspects affecting the information technology infrastructure of the institution. This group per-

forms security audits on predefined production systems on demand and on a regular basis. These

audits are scheduled and performed over the real world systems. A senior member (the auditor)

of the team performs the audits, eventually helped by a junior member. In order to test the

usefulness of the developed device, it was used in one of the major audits performed in 2016,

where several servers were tested. This section presents a comparison of the results obtained

via both types of audit (human assisted and automated with the device) and a brief conclusion

on the actual efficacy of the device on an uncontrolled environment is drawn.

Table 6.5 identifies the different servers and the vulnerabilities that were detected for each one

of them both manually and automatically. Since these servers are actually publicly available,

they are herein referred to by numbers, i.e., symbolically. As can be concluded from the analysis

of the the table, most of the issues detected by the auditor were also detected by the device.

The main exceptions are SQL injections and directory traversal (having a list with all directory

paths of folders and files that comprise the website).

Table 6.5: Excerpt of audit results and comparison with the manual audit.

Host
Out-of-date Services

XSS SQLi Brute-Force SSL issues Other
Apache PHP FTP SSH

1 Y/D Y/D N/ND Y/D Y/D S/ND N/ND N/ND Directory Traversal/ Y/ND
2 Y/D Y/D N/ND N/ND N/ND N/ND Y/D Y/D Dangerous Ports Open Y/D
3 Y/D Y/D N/ND N/ND N/ND Y/ND Y/D Y/D Dangerous Ports Open Y/D
4 Y/D Y/D N/ND N/ND N/ND N/ND N/ND Y/D N/ND
5 Y/D Y/D N/ND N/ND N/ND Y/ND N/ND Y/D N/ND

Symbols: Y - Detected by the auditor; S - Suspected by the auditor; N - Not detected by the auditor; D - Detected
by the device; ND - Not detected by the device.

The following two listings contain excerpts of the reports produced by the device (Listing 6.1)

and by the auditor (Listing 6.2). The first listing shows that the device correctly detected the

open ports and the respective bound services, along with their versions. It also found the XSS

vulnerability that the auditor also pointed out in e) of Listing 6.2. The automated system proved

its usefulness after pointing out an out-of-date version of SSH, which the auditor failed to see.

On the other hand, the auditor raised a suspicion on a potential SQL injection on Host 1, but he

was not able to discover if it could be exploited or not during the audit. The device, being an

automated machine, does not make assumption and only reports on the results it finds. This is

an obvious advantage of humans on these tests, as they can flag a suspicion for further testing

on a later date, or leave the verification for the system administrator, while the device simply

does not report it. The main conclusion drawn from this experiment is that the automated audit

should be complementary to the human assisted assessment, but with the great advantage of

41

never forgetting tiresome tasks such as verifying obsolete versions for the services. Interestingly,

the device was able to perform all tasks within the time frame that the expert took to perform

the audit.

1 IP Address : xxx . xxx . xx . xxx

OS: MontaVista embedded Linux 2.4.17

3 −−−Open Ports−−−−

Port Number : 22

5 Protocol : tcp

Serv ice : OpenSSH

7 Serv ice Name: ssh

Serv ice Vers ion : 3.6.1 p2

9 −−−−−−−//−−−−−−−−

Port Number : 80

11 Protocol : tcp

Serv ice : Apache httpd

13 Serv ice Name: http

Serv ice Vers ion : 2.0.46

15 −−−−−−−//−−−−−−−−

Port Number : 1720

17 Protocol : tcp

Serv ice : table

19 Serv ice Name: h323q931

Serv ice Vers ion : (nu l l)

21 −−−−−−−//−−−−−−−−

PHP Vers ion : PHP/4.3.2

23 −−−−−−//−−−−−−−

−−−−−−−−−−−−Alerts−−−−−−−−−−−−

25 Risk : High

Name: Cross S i te S c r i p t i n g (Reflected)

27 Attack : l t ;/ s c r i p t g t ; l t ; s c r i p t g t ; a l e r t (1) ; l t ;/ s c r i p t g t ; l t ; s c r i p t g t ;

Evidence : l t ;/ s c r i p t g t ; l t ; s c r i p t g t ; a l e r t (1) ; l t ;/ s c r i p t g t ; l t ; s c r i p t g t ;

29 . . .

Listing 6.1: Part of the report produced by the device developed in the scope of this project during the

audit on Host 1.

1 xxxxxxxx . xxx . pt (xxx . xxx . xx . xxx)

a] Apache out−of−date vers ion (2 .0 .46) .

3 F ix : Upgrade Apache for the l a t e s t s tab le vers ion .

42

5 b] PHP out−of−date vers ion (4 . 3 . 2) .

F ix : Upgrade Apache for the l a t e s t s tab le vers ion .

7

c] System i s vulnerable to the d i rec tory t r a ve r s a l .

9 Target URL: [http :// arqueotex . ubi . pt/db/funcoes/ j s] .

11 d] System appears vulnerable to SQLi (high p o s s i b i l i t y) .

Target : [http :// arqueotex . ubi . pt/main . php ? sor tpesqu i sa =1] .

13

e] XSS I n jec t i on .

15 Result : The system i s vulnerable .

17 Target1 : http :// arqueotex . ubi . pt/main . php ? sor tpesqu i sa ={% inject ion_here %}

Options : [’”>< sc r ip t > a le r t (document . cookie) </ s c r i p t ’ >]

19 . . .

Listing 6.2: Part of the report produced by the auditor during the audit on Host 1.

6.5 Conclusions
The experiments reported in this chapter clearly demonstrate the usefulness of the approach and

device developed along this project. The overall performance was very satisfactory, achieving

detection levels that are close to the ones of a human auditor and producing the results in the

time frame of the audit. Actually, since the device is fully automated, lengthier audits may be

left executing during less busy periods, though human monitoring is advised.

An automated approach for such complex scenario is still inferior to a human analysis, mostly

because there are many possible paths for an audit after some point. As such, the report of the

device may be seen as both complementary to and as an initial step towards a more detailed

audit.

There is still room for improvement, as shown in section 6.3, where some tweaks and adjust-

ments to make the device perform more efficiently were discussed. Nonetheless, the main ob-

jective of this master’s project was achieved with a fully functional prototype. Improvements

and main conclusions are discussed in the next chapter.

43

44

Chapter 7

Conclusions and Future Work

This final chapter presents the main conclusions of the work described in this dissertation,

in section 7.1, and points out potential lines of research and development that may be used to

improve this work in the future in section 7.2.

7.1 Main Conclusions
The objective of the work presented in this dissertation was to research and devise a system ca-

pable of detecting security issues on a network in an automated way. Chapter 2 presented some

existing tools and works whose purpose was as similar to the one presented herein. Nonetheless,

analysis of the literature and of these works revealed that most existing softwares and tools are

either paid or not fully autonomous, emphasizing the gap that partially motivates this work.

The aforementioned chapter also shed some light on network based security audits, establish-

ing a basis on what a system for security audits should be capable of, and allowing for a better

definition of its design and functioning.

The flow of work evolved to the definition of the hardware and software requirements, and to

the structuring of the several tools that would allow the system to operate autonomously. The

prototyping phase comprised the selection and configuration of the OS, installing of the security

related tools and their parameterization, and the development of scripts and programs that glue

all of them together. Some difficulties were felt during this phase, which were mostly due to the

using only open source programs and code, which led to situations where documentation was

scarce or non existent, and to some incompatibilities related with the usage of an ARM based

device (the Raspberry Pi). However, it was possible to integrate all the tools selected after the

prototyping phase, as shown in chapter 4. The OS image was made available in [Ber16b], so

that anyone can immediately use the outputs of this work.

The interfaces provided and presented in chapter 5 were created so that they enable an in-

experienced user to control the system and obtain feedback, without requiring an extensive

knowledge on any of the tools tasked with the auditing nor on networking and security. The

objective of building a plug-and-play device is partially achieved by these interfaces.

The proposed objectives for this work were achieved, though there is still room for additions

and improvements. Network audits are very complex tasks and the time frame of the master’s

45

project is limited. By implementing several well known and community-verified open source

tools, and connecting them to perform an automated work, it was possible to obtain satisfying

results both in a closed, controlled environment and on a real network, as discussed in chapter 6.

From the results obtained, it can be concluded that, for now, the major issues with the device

automation are the time spent and the detection of SQL injections. The latter is mostly due

to the usage of POST (instead of GET) in forms of many websites, where the injections are

precisely to occur. Automation of the tools to perform SQL injection is easier when GET is used,

since the injection is simply introduced in the URL and no additional, very granular, information

regarding POST forms needs to be passed to, e.g., SQLmap. The current version of the system

can only successfully perform automatic injection exploration when forms use the GET method.

The other type of exploit requires human intervention. Many times, an experienced auditor

will also exploit some of the vulnerabilities as a proof-of-concept, which the device does not

do. In light of the tests performed, both in a controlled environment, where the true state of

a machine/network was known, and in a real life audit, where the status of the servers was

analyzed without prior knowledge of security state they were in, it can be concluded that the

device and approach may comprise an added value for any institution or company.

An effort was made to fine-tune some parameters of the tools in order to favor the performance

of the device, both in terms of detection and time consumed to perform an audit. These ad-

justments were discussed in section 6.3. Nonetheless, depending on the number of hosts on a

network and the need to use some of the more time consuming tools, such as password cracking,

the device may take up to several hours to perform an audit. This may not comprise a problem

since the device can be left running autonomously up to the point of producing the report.

Even though the device is able connect to a cabled network automatically, wireless connection

is not as straightforward, as it usually requires the user to input a key or password for the

connection to be allowed. The current version of the system requires either connecting to the

device through a cable, and accessing the device via SSH, or plugging in a monitor and keyboard,

and use the graphical interface of the OS to perform the connection. This is not very practical

when in need to quickly connect the device or when a computer is not accessible to configure

the wireless card.

The report that the device output after an audit was also structured in the scope of this work. It

presents the data from the different tools in an integrated manner through the web interface.

In terms of out-of-date service versions, the device will only report the version of a service, and

will not indicate if that version is the most recent one or not.

46

7.2 Future Work
Several functionalities and tools can be added to the system to improve its utility and value.

On a purely functional side, an easier wireless configuration through the hardware interface,

allowing the user to choose a nearby network and provide the password, requiring only physical

access to the device and forgoing the need to connect via SSH, would comprise a significant

improvement for the plug-and-play character of the device. Having more detailed information

through the LCD screen, such as an estimate on the time to completion, would also comprise a

valuable addition regarding the feedback to the user.

The integration of other tools, so as to actually allow the user to choose between a set of differ-

ent tools for each task, increasing granularity in terms of the options on the automated audits,

and giving an auditor the possibility to choose between the tools they are most accustomed

with, is another possible line of future work. Adding more options for the user to choose from

for each tool, including configuration parameters, is something that can be added with some

work on the web interface, potentially as a side project.

The current version of the system does not integrate a framework such as Nessus or Metasploit.

Configuring and executing such frameworks in an ARM systemmay comprise a challenge requiring

extra effort, but it should be worth it. The possibility to actively exploit the audited systems

may be beneficial in some cases, e.g., to assess to which extent a vulnerability can be exploited

and for proof-of-concept.

Configuring the device to scan a network it is attached to on a set time interval and report any

changes it finds between audits is an advanced functionality that may prove useful in the long

run. With this functionality, the device can be used as a monitoring tool on a dynamic network,

detecting changes in terms of hosts, services and vulnerabilities. It would be specially useful in

cases where machines are being added or removed from the network on a regular basis.

Since it was out of scope, the updating of the tools and operating system of the device was

not dealt with in this work. Nonetheless, assessing how the system can be updated without

jeopardizing its automation and functioning constitutes and interesting (and potentially very

challenging) line of future work. The solution may be to maintain a Linux based distribution as

a long term project.

47

48

Bibliography

[Acu16] Acunetix. Web application security with acunetix web vulnerability scanner [online].

2016. Available from: http://www.acunetix.com/vulnerability-scanner/ [cited

04 October 2016]. 22

[Air16a] Aircrack-ng. Aircrack-ng [online]. 2016. Available from: https://www.aircrack-ng.

org/ [cited 21 September 2016]. 24

[Air16b] Aircrack-ng. simple_wep_crack [Aircrack-ng] [online]. 2016. Available from:

https://www.aircrack-ng.org/doku.php?id=simple_wep_crack [cited 21 Septem-

ber 2016]. 29

[Alb15] Alberto Ornaghi, Marco Valleri. Ettercap [online]. 2015. Available from: https:

//ettercap.github.io/ettercap/ [cited 14 July 2016]. 24

[Alb16] Alban Diquet. isecpartners/sslyze: Fast and full-featured ssl scanner [online]. 2016.

Available from: https://github.com/iSECPartners/sslyze [cited 23 September

2016]. 23

[Bea16] Beau Bullock. Black hills information security [online]. 2016. Available from: http:

//www.blackhillsinfosec.com/?p=5156 [cited 04 October 2016]. 8

[Ber16a] Bernardo Damele. sqlmap: automatic sql injection and database takeover tool [on-

line]. 2016. Available from: http://sqlmap.org/ [cited 25 September 2016]. 24

[Ber16b] Bernardo Sequeiros. Automatedauditingsystem download | sourceforge

[online]. 2016. Available from: https://sourceforge.net/projects/

automatedauditingsystem/ [cited 07 October 2016]. v, xiii, 45

[Ber16c] Bernardo Sequeiros. Pcappacketsniffer - small program that captures packets and

prints header information. [online]. 2016. Available from: https://github.com/

Inthen/PcapPacketSniffer [cited 01 October 2016]. 24

[CA06] Mark Curphey and Rudolph Arawo. Web application security assessment tools. IEEE

Security & Privacy, 4(4):32–41, 2006. viii, 6

[Cis03] Cisco Systems, Inc. Cisco networking academy program [online]. 2003. Available

from: http://www.cisco.com/web/learning/netacad/demos/FNSDemo1_1/ch1/1_

3_1/index.html [cited 25 September 2016]. viii, 7

[Cis16a] Cisco. Snort - network intrusion detection & prevention system [online]. 2016. Avail-

able from: https://www.snort.org/ [cited 25 September 2016]. 10

49

http://www.acunetix.com/vulnerability-scanner/
https://www.aircrack-ng.org/
https://www.aircrack-ng.org/
https://www.aircrack-ng.org/doku.php?id=simple_wep_crack
https://ettercap.github.io/ettercap/
https://ettercap.github.io/ettercap/
https://github.com/iSECPartners/sslyze
http://www.blackhillsinfosec.com/?p=5156
http://www.blackhillsinfosec.com/?p=5156
http://sqlmap.org/
https://sourceforge.net/projects/automatedauditingsystem/
https://sourceforge.net/projects/automatedauditingsystem/
https://github.com/Inthen/PcapPacketSniffer
https://github.com/Inthen/PcapPacketSniffer
http://www.cisco.com/web/learning/netacad/demos/FNSDemo1_1/ch1/1_3_1/index.html
http://www.cisco.com/web/learning/netacad/demos/FNSDemo1_1/ch1/1_3_1/index.html
https://www.snort.org/

[cis16b] cisofy. Lynis - security auditing tool for unix/linux systems [online]. 2016. Available

from: https://cisofy.com/lynis/ [cited 20 June 2016]. 9

[Cos16] Costa, Gianluca and Franceschi, Andrea de. Xplico - open source network forensic

analysis tool (nfat) [online]. 2016. Available from: http://www.xplico.org/ [cited

02 October 2016]. 11

[Dan13] Daniel Cid. Ssh brute force – the 10 year old attack that still per-

sists [online]. 2013. Available from: https://blog.sucuri.net/2013/07/

ssh-brute-force-the-10-year-old-attack-that-still-persists.html [cited 25

July 2016]. 27

[Dan16] Daniel Veillard. The xml c parser and toolkit of gnome [online]. 2016. Available from:

http://www.xmlsoft.org/ [cited 01 October 2016]. 25, 35

[Den13] Denis Sinegubko. Ftp brute force attacks? [online]. 2013. Available from: http://

blog.unmaskparasites.com/2013/06/26/ftp-brute-force-attacks/ [cited 25 July

2016]. 27

[Den16] Denis Sinegubko. Atlas attack report - global mysql brute-force login attempts [on-

line]. 2016. Available from: https://atlas.arbor.net/attacks/2001689 [cited 04

Octobers 2016]. 27

[Dug00] Dug Song. dsniff [online]. 2000. Available from: https://www.monkey.org/

~dugsong/dsniff/ [cited 02 October 2016]. 10

[Edi16] Edimax. Edimax - wireless adapters - n150 - n150 wi-fi nano usb adapter, ideal

for raspberry pi [online]. 2016. Available from: http://www.edimax.com/edimax/

merchandise/merchandise_detail/data/edimax/global/wireless_adapters_

n150/ew-7811un [cited 15 August 2016]. 17

[Fam16] Famatech. Advanced ip scanner - download free network scanner. [online]. 2016.

Available from: http://www.advanced-ip-scanner.com/ [cited 01 October 2016].

21

[Gor16a] Gordon Henderson. Wiring pi [online]. 2016. Available from: http://wiringpi.com/

[cited 12 July 2016]. 31

[Gor16b] Gordon Lyon. Nmap: The network mapper [online]. 2016. Available from: https:

//nmap.org/ [cited 20 September 2016]. 21

[Gre16] Greenbone Networks GmbH. Openvas - openvas - open vulnerability assessment sys-

tem [online]. 2016. Available from: http://www.openvas.org/index.html [cited 07

August 2016]. 10, 22

50

https://cisofy.com/lynis/
http://www.xplico.org/
https://blog.sucuri.net/2013/07/ssh-brute-force-the-10-year-old-attack-that-still-persists.html
https://blog.sucuri.net/2013/07/ssh-brute-force-the-10-year-old-attack-that-still-persists.html
http://www.xmlsoft.org/
http://blog.unmaskparasites.com/2013/06/26/ftp-brute-force-attacks/
http://blog.unmaskparasites.com/2013/06/26/ftp-brute-force-attacks/
https://atlas.arbor.net/attacks/2001689
https://www.monkey.org/~dugsong/dsniff/
https://www.monkey.org/~dugsong/dsniff/
http://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/wireless_adapters_n150/ew-7811un
http://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/wireless_adapters_n150/ew-7811un
http://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/wireless_adapters_n150/ew-7811un
http://www.advanced-ip-scanner.com/
http://wiringpi.com/
https://nmap.org/
https://nmap.org/
http://www.openvas.org/index.html

[Hac16] Hacker Target Pty Ltd. Brute forcing passwords with ncrack, hydra and

medusa [online]. 2016. Available from: https://hackertarget.com/

brute-forcing-passwords-with-ncrack-hydra-and-medusa/ [cited 01 October

2016]. 23

[HHP05] Jonas Hallberg, Amund Hunstad, and Mikael Peterson. A framework for system secu-

rity assessment. In Proceedings from the Sixth Annual IEEE SMC Information Assur-

ance Workshop, pages 224–231. IEEE, 2005. viii, 6

[Lau16] Laurent Destailleur. Awstats - free logfile analyzer for advanced statistics (gnu gpl).

[online]. 2016. Available from: http://www.awstats.org/ [cited 04 October 2016].

38

[Mid02] Paul Midian. Perspectives on penetration testing?black box vs. white box. Network

Security, 2002(11):10–12, 2002. 5

[OWA15] OWASP. Owasp broken web applications project - owasp [online]. 2015. Avail-

able from: https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_

Project [cited 04 October 2016]. 38

[OWA16a] OWASP. Owasp: Owasp top ten project [online]. 2016. Available from: https://www.

owasp.org/index.php/Category:OWASP_Top_Ten_Project [cited 18 June 2016]. 1

[OWA16b] OWASP. Owasp zed attack proxy project [online]. 2016. Available from: https://

www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project [cited 12 September

2016]. 22

[PI515] PI52. Rgb 1602(english) - 52 pi wiki [online]. 2015. Available from: http://wiki.

52pi.com/index.php/RGB_1602(English) [cited 16 August 2016]. 17

[Pon15] Ponemon Institute LLC. 2016 ponemon cost of data breach study [online]. 2015. Avail-

able from: http://www-03.ibm.com/security/data-breach/ [cited 17 June 2016].

1

[Por16] PortSwigger Ltd. Burp suite [online]. 2016. Available from: https://portswigger.

net/burp/ [cited 04 October 2016]. 22

[PwC15] PwC. 2015 information security breaches survey [online]. 2015. Avail-

able from: http://www.pwc.co.uk/services/audit-assurance/insights/

2015-information-security-breaches-survey.html [cited 17 June 2016]. 1

[Rap16a] Raphael Mudge. Adversary simulations and red team operations software - cobalt

strike [online]. 2016. Available from: https://www.cobaltstrike.com/ [cited 17

June 2016]. 9

[Rap16b] Rapid7. Penetration testing software | metasploit [online]. 2016. Available from:

https://www.metasploit.com/ [cited 17 June 2016]. 9

51

https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
http://www.awstats.org/
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://wiki.52pi.com/index.php/RGB_1602(English)
http://wiki.52pi.com/index.php/RGB_1602(English)
http://www-03.ibm.com/security/data-breach/
https://portswigger.net/burp/
https://portswigger.net/burp/
http://www.pwc.co.uk/services/audit-assurance/insights/2015-information-security-breaches-survey.html
http://www.pwc.co.uk/services/audit-assurance/insights/2015-information-security-breaches-survey.html
https://www.cobaltstrike.com/
https://www.metasploit.com/

[Rap16c] Rapid7. Vulnerability management software, top rated tool | rapid7 [online]. 2016.

Available from: https://www.rapid7.com/products/nexpose/ [cited 04 October

2016]. 22

[Sim16] Simon Bennetts. psiinon/bodgeit: The bodgeit store is a vulnerable web application

which is currently aimed at people who are new to pen testing. [online]. 2016.

Available from: https://github.com/psiinon/bodgeit [cited 04 October 2016]. 38

[Sof16] SoftPerfect. Softperfect network scanner - fast and free network scanner. [online].

2016. Available from: https://www.softperfect.com/products/networkscanner/

[cited 01 October 2016]. 21

[Str16] Strategic Cyber LLC. Armitage - cyber attack management for metasploit [online].

2016. Available from: http://www.fastandeasyhacking.com/ [cited 17 June 2016].

9

[Tan14] Andrew Tang. A guide to penetration testing. Network Security, 2014(8):8–11, 2014.

5

[Ten16] Tenable Network Security. Nessus vulnerability scanner | tenable network se-

curity [online]. 2016. Available from: https://www.tenable.com/products/

nessus-vulnerability-scanner [cited 08 August 2016]. 9

[Tim15] Tim Carstens. Tcpdump/libpcap public repository [online]. 2015. Available from:

http://www.tcpdump.org/ [cited 25 May 2016]. 24

[Ver16] Verizon Enterprise Solutions. Verizon data breach investigations report

[online]. 2016. Available from: http://www.verizonenterprise.com/

verizon-insights-lab/dbir/ [cited 16 June 2016]. 1

[WTS03] John Wack, Miles Tracy, and Murugiah Souppaya. Guideline on network security test-

ing. Nist special publication, 800:42, 2003. 11

[XJYZ11] Rongrong Xi, Shuyuan Jin, Xiaochun Yun, and Yongzheng Zhang. Cnssa: a compre-

hensive network security situation awareness system. In 2011IEEE 10th International

Conference on Trust, Security and Privacy in Computing and Communications, pages

482–487. IEEE, 2011. viii, 5

52

https://www.rapid7.com/products/nexpose/
https://github.com/psiinon/bodgeit
https://www.softperfect.com/products/networkscanner/
http://www.fastandeasyhacking.com/
https://www.tenable.com/products/nessus-vulnerability-scanner
https://www.tenable.com/products/nessus-vulnerability-scanner
http://www.tcpdump.org/
http://www.verizonenterprise.com/verizon-insights-lab/dbir/
http://www.verizonenterprise.com/verizon-insights-lab/dbir/

Appendix A

Code Excerpts

This appendix presents some of the longer code excerpts mentioned in the body of the dis-

sertation. They were included so as to provide more details on the implementation presented

in chapter 4, mainly on how tools are invoked and on how the parsing of their output is per-

formed.

1 void launchSSLyze (host * hosts)

2 {

3 i n t i , j ;

4

5 fo r (i = 0; i < nHosts ; i ++)

6 {

7 for (j = 0; j < hosts [i] . nPorts ; j ++)

8 {

9 i f ((strcmp (hosts [i] . ports [j] . serviceName , ”http”) == 0) && (hosts [i] .

ports [j] . pNumber == 443))

10 {

11 char * sslyzeCommand = concat (”python s s l y z e _ c l i . py −−regu lar ” ,

hosts [i] . name) ;

12

13 char * ss lyzeOutput ;

14

15 i f (hosts [i] . name != NULL)

16 ss lyzeOutput = concat (hosts [i] . name, ”−output . xml”) ;

17 else

18 ss lyzeOutput = concat (hosts [i] . address , ”−output . xml”) ;

19

20 sslyzeCommand = concat (sslyzeCommand , ” −−xml_out=”) ;

21 sslyzeCommand = concat (sslyzeCommand , ss lyzeOutput) ;

22 system (sslyzeCommand) ;

23

24 streamSSLFi le (sslyzeOutput , hosts , i) ;

25 }

26 }

53

27 }

28 }

Listing A.1: Invocation of the SSLyze Python script from the service scanning module.

1 s t a t i c void s t reamAler tF i le (const char * filename , host * hosts)

2 {

3 xmlTextReaderPtr reader ;

4 i n t ret ;

5 reader = xmlReaderForFile (filename , NULL , 0) ;

6

7 i f (reader != NULL)

8 {

9 ret = xmlTextReaderRead (reader) ;

10 p r i n t f (”%s \ n” , xmlTextReaderConstName (reader)) ;

11 while (ret == 1) {

12 i f ((ret == 1) && (strcmp (xmlTextReaderConstName (reader) , ” a l e r t ”) == 0))

13 {

14 hosts [nHosts−1]. nA ler t s ++;

15 hosts [nHosts−1]. a l e r t s = rea l l oc (hosts [nHosts−1]. a le r t s , hosts [

nHosts−1]. nA ler t s * s i zeo f (hos tA le r t)) ;

16 }

17 processAlertNode (reader , hosts) ;

18 ret = xmlTextReaderRead (reader) ;

19 }

20

21 xmlFreeTextReader (reader) ;

22 i f (ret != 0)

23 f p r i n t f (stderr , ”%s : f a i l ed to parse \ n” , filename) ;

24 }

25 else

26 f p r i n t f (stderr , ”Unable to open %s \ n” , filename) ;

27 }

Listing A.2: Excerpt of the code that parses the XML output from ZAP.

1 hosts [i] . s s l I s s u e s . SSLEnabled = 1;

2

3 i f ((strcmp (name, ” ce r t i f i ca teCha in ”) == 0) ||

4 (strcmp (name, ”hostnameValidation”) == 0) ||

5 (strcmp (name, ”compressionMethod”) == 0) ||

54

6 (strcmp (name, ” t l s Fa l l backSc s v ”) == 0) ||

7 (strcmp (name, ”openSslHeartbleed”) == 0) ||

8 (strcmp (name, ” openSs lCcs In ject ion ”) == 0) ||

9 (strcmp (name, ” sess ionRenegot iat ion ”) == 0) ||

10 (strcmp (name, ”notAfter ”) == 0))

11 {

12 i f (strcmp (name, ” ce r t i f i ca teCha in ”))

13 {

14 i f (strcmp (xmlTextReaderGetAttributeNo (reader , 0) , ”True”) == 0)

15 hosts [i] . s s l I s s u e s . weakSignature = 1;

16 else

17 hosts [i] . s s l I s s u e s . weakSignature = 0;

18

19 i f (strcmp (xmlTextReaderGetAttributeNo (reader , 1) , ”True”) == 0)

20 hosts [i] . s s l I s s u e s . chainOrderOK = 1;

Listing A.3: Example of the processing applied to an SSLyze output file.

55

56

Appendix B

Full Report

This appendix contains a full report from an audit performed by the device. Its purpose is to

provide a clear perspective on the information gathered by the device and how it is displayed

and structured. It complements the discussion in chapter 5. Note that the IP addresses in

the report were obscured since this audit was performed on a network that contains publicly

accessible machines.

−−−−−−−//REPORT//−−−−−−−

2 Network : xxx . xxx . xx . x/24

−−−−−−−−−−−−//−−−−−−−−−−−−

4

Ip Address : xxx . xxx . xx . xx

6 MAC Adress : (nu l l)

Vendor : (nu l l)

8 OS: (nu l l)

−−−Open Ports−−−−

10 Port Number : 80

Protocol : tcp

12 Serv ice : Apache httpd

Serv ice Name: http

14 Serv ice Vers ion : 2.2.3

−−−−−−−//−−−−−−−−

16 Port Number : 443

Protocol : tcp

18 Serv ice : Apache httpd

Serv ice Name: http

20 Serv ice Vers ion : 2.2.3

−−−−−−−//−−−−−−−−

22 Port Number : 1720

Protocol : tcp

24 Serv ice : table

Serv ice Name: H.323/Q.931

26 Serv ice Vers ion : (nu l l)

−−−−−−−//−−−−−−−−

57

28 −−−−−−−−−−−−Alerts−−−−−−−−−−−−

−−−−−−−//−−−−−−−−

30 −−−−−−−−−−−−Password Cracking−−−−−−−−−−−−

−−−−−−−//−−−−−−−−

32 −−−−−−−−−−−−SSL−−−−−−−−−−−−

SSLEnabled : 1

34 Ce r t i f i c a t e expired : 0

Hostname Correct : 1

36 Weak Signature : 0

Chain OK: 1

38 Vulnerable to compression : 0

Vulnerable to downgrade attack : 0

40 Vulnerable to Heartbleed : 0

Vulnerable to CSS In ject ion : 0

42 Vulnerable to renegot iat ion : 0

−−−−−−−−−−−−//−−−−−−−−−−−−

44

Ip Address : xxx . xxx . xx . xxx

46 MAC Adress : (nu l l)

Vendor : (nu l l)

48 OS: (nu l l)

−−−Open Ports−−−−

50 Port Number : 80

Protocol : tcp

52 Serv ice : Apache httpd

Serv ice Name: http

54 Serv ice Vers ion : 2.4.7

−−−−−−−//−−−−−−−−

56 Port Number : 631

Protocol : tcp

58 Serv ice : CUPS

Serv ice Name: ipp

60 Serv ice Vers ion : 1.7

−−−−−−−//−−−−−−−−

62 Port Number : 3306

Protocol : tcp

64 Serv ice : MySQL

Serv ice Name: mysql

66 Serv ice Vers ion : 5.5.50−0ubuntu0 .14.04.1

58

−−−−−−−//−−−−−−−−

68 −−−−−−−−−−−−Alerts−−−−−−−−−−−−

Risk : High

70 Name: Cross S i te S c r i p t i n g (Reflected)

Attack : l t ;/ h2gt ; l t ; s c r i p t g t ; a l e r t (1) ; l t ;/ s c r i p t g t ; l t ; h2gt ;

72 Evidence : l t ;/ h2gt ; l t ; s c r i p t g t ; a l e r t (1) ; l t ;/ s c r i p t g t ; l t ; h2gt ;

Descr ip t ion : Cross−s i t e S c r i p t i n g (XSS) i s an attack technique that invo l ves echoing

attacker−suppl ied code into a user ’ s browser instance . A browser instance can

be a standard web browser c l ient , or a browser object embedded in a software

product such as the browser within WinAmp, an RSS reader , or an email c l i e n t .

The code i t s e l f i s u sua l l y written in HTML/JavaScr ipt , but may a l so extend to

VBScript , ActiveX , Java , Flash , or any other browser−supported technology .

74 When an attacker gets a user ’ s browser to execute h i s /her code , the code w i l l run

within the secu r i t y context (or zone) of the host ing web s i t e . With t h i s l eve l

of p r i v i l ege , the code has the a b i l i t y to read , modify and transmit any

sen s i t i v e data acces s ib le by the browser . A Cross−s i t e Scr ipted user could have

h i s /her account hijacked (cookie theft) , the i r browser redirected to another

locat ion , or po s s i b l y shown fraudulent content del ivered by the web s i t e they

are v i s i t i n g . Cross−s i t e S c r i p t i n g attacks e s s e n t i a l l y compromise the t ru s t

r e l a t i on sh i p between a user and the web s i t e . App l i ca t ions u t i l i z i n g browser

object ins tances which load content from the f i l e system may execute code under

the l oca l machine zone al lowing for system compromise .

76 There are three types of Cross−s i t e S c r i p t i n g attacks : non−pers i s tent , pe r s i s ten t

and DOM−based .

Non−per s i s ten t attacks and DOM−based attacks require a user to e i ther v i s i t a

s pec i a l l y crafted l i n k laced with mal ic ious code , or v i s i t a mal ic ious web page

conta in ing a web form , which when posted to the vulnerable s i te , w i l l mount the

attack . Using a mal ic ious form w i l l oftentimes take place when the vulnerable

resource only accepts HTTP POST requests . In such a case , the form can be

submitted automatical ly , without the victim ’ s knowledge (e . g . by us ing

JavaScr ipt) . Upon c l i c k i n g on the mal ic ious l i n k or submitt ing the mal ic ious

form , the XSS payload w i l l get echoed back and w i l l get interpreted by the user ’

s browser and execute . Another technique to send almost a rb i t r a r y requests (GET

and POST) i s by us ing an embedded c l ient , such as Adobe Flash .

78 Per s i s ten t attacks occur when the mal ic ious code i s submitted to a web s i t e where i t

’ s stored for a period of time . Examples of an attacker ’ s f avo r i t e ta rget s often

include message board posts , web mail messages , and web chat software . The

unsuspecting user i s not required to in te rac t with any add i t i ona l s i t e / l i n k (e . g

59

. an attacker s i t e or a mal ic ious l i n k sent v ia email) , j u s t s imply view the web

page conta in ing the code .

−−−−−−−//−−−−−−−−

80 −−−−−−−−−−−−Password Cracking−−−−−−−−−−−−

[3306] [mysql] host : xxx . xx . xx . xx l og in : root password : toor

82 −−−−−−−//−−−−−−−−

−−−−−−−−−−−−SSL−−−−−−−−−−−−

84 SSLEnabled : 0

Ce r t i f i c a t e expired : 0

86 Hostname Correct : 0

Weak Signature : 0

88 Chain OK: 0

Vulnerable to compression : 0

90 Vulnerable to downgrade attack : 0

Vulnerable to Heartbleed : 0

92 Vulnerable to CSS In ject ion : 0

Vulnerable to renegot iat ion : 0

94 −−−−−−−−−−−−//−−−−−−−−−−−−

96 Ip Address : xxx . xxx . xx . xxx

MAC Adress : (nu l l)

98 Vendor : (nu l l)

OS : Linux 2.6.17 − 2.6.36

100 −−−Open Ports−−−−

Port Number : 22

102 Protocol : tcp

Serv ice : OpenSSH

104 Serv ice Name: ssh

Serv ice Vers ion : 5.3p1 Debian 3ubuntu4

106 −−−−−−−//−−−−−−−−

Port Number : 80

108 Protocol : tcp

Serv ice : Apache httpd

110 Serv ice Name: http

Serv ice Vers ion : 2.2.3

112 −−−−−−−//−−−−−−−−

−−−−−−−−−−−−Alerts−−−−−−−−−−−−

114 −−−−−−−//−−−−−−−−

−−−−−−−−−−−−Password Cracking−−−−−−−−−−−−

60

116 −−−−−−−//−−−−−−−−

−−−−−−−−−−−−SSL−−−−−−−−−−−−

118 SSLEnabled : 0

−−−−−−−−−−−−//−−−−−−−−−−−−

120

Ip Address : xxx . xxx . xx . xxx

122 MAC Adress : (nu l l)

Vendor : (nu l l)

124 OS: (nu l l)

−−−Open Ports−−−−

126 Port Number : 53

Protocol : tcp

128 Serv ice : probed

Serv ice Name: tcpwrapped

130 Serv ice Vers ion : (nu l l)

−−−−−−−//−−−−−−−−

132 Port Number : 80

Protocol : tcp

134 Serv ice : Apache httpd

Serv ice Name: http

136 Serv ice Vers ion : 2.2.9

−−−−−−−//−−−−−−−−

138 Port Number : 139

Protocol : tcp

140 Serv ice : table

Serv ice Name: netbios−ssn

142 Serv ice Vers ion : (nu l l)

−−−−−−−//−−−−−−−−

144 Port Number : 445

Protocol : tcp

146 Serv ice : table

Serv ice Name: microsoft−ds

148 Serv ice Vers ion : (nu l l)

−−−−−−−//−−−−−−−−

150 Port Number : 1001

Protocol : tcp

152 Serv ice : OpenSSH

Serv ice Name: ssh

154 Serv ice Vers ion : 5.1

61

−−−−−−−//−−−−−−−−

156 Port Number : 1720

Protocol : tcp

158 Serv ice : table

Serv ice Name: H.323/Q.931

160 Serv ice Vers ion : (nu l l)

−−−−−−−//−−−−−−−−

162 −−−−−−−−−−−−Alerts−−−−−−−−−−−−

−−−−−−−//−−−−−−−−

164 −−−−−−−−−−−−Password Cracking−−−−−−−−−−−−

−−−−−−−//−−−−−−−−

166 −−−−−−−−−−−−SSL−−−−−−−−−−−−

SSLEnabled : 1

168 Ce r t i f i c a t e expired : 0

Hostname Correct : 1

170 Weak Signature : 1

Chain OK: 1

172 Vulnerable to compression : 1

Vulnerable to downgrade attack : 0

174 Vulnerable to Heartbleed : 0

Vulnerable to CSS In ject ion : 0

176 Vulnerable to renegot iat ion : 0

−−−−−−−−−−−−//−−−−−−−−−−−−

Listing B.1: A full report output of the device.

62

	Introduction
	Motivation and Scope
	Problem Statement and Objectives
	Adopted Approach for Solving the Problem
	Main Contributions
	Dissertation Organization

	Related Work and Technology
	Introduction
	Related Work
	CNSSA
	A Framework for System Security Assessment
	Web Application Security Assessment Tools
	Security Wheel - Cisco
	How to Build Your Own Penetration Testing Drop Box

	Technology
	Lynis
	Metasploit
	Nessus
	OpenVAS
	Snort
	dsniff
	Xplico

	Network Based Security Audits
	Conclusions

	Hardware Specifications and Blueprinting
	Introduction
	Hardware Specifications
	Blueprinting
	Conclusions

	Forensic Tools Automation
	Introduction
	Forensic Tools
	Nmap
	OWASP ZAP
	SSLyze
	Hydra
	Ettercap
	SQLmap
	Traffic Sniffer
	Aircrack-ng

	Automation
	Nmap
	OWASP ZAP
	SSLyze
	Hydra
	Ettercap
	SQLmap
	Aircrack-ng

	Conclusions

	Interface and Reporting
	Introduction
	Interfaces
	Hardware Interface
	Web Interface

	Reporting
	Conclusions

	Testing, Fine-Tunning and Security Audits
	Introduction
	Testing
	Fine-Tunning
	Security Audits
	Conclusions

	Conclusions and Future Work
	Main Conclusions
	Future Work

	Bibliography
	Code Excerpts
	Full Report

