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Resumo 

 

A analise da aerodinâmica desempenha um papel determinante nas provas de velocidade em 

cadeiras de rodas. Assim, o objetivo desta tese passou por analisar a aerodinâmica de um 

sujeito das provas de velocidade em cadeiras de rodas, com recurso à análise computacional 

de fluidos. Para tal, foram realizados quatro estudos, uma revisão de literatura e três estudos 

empíricos. Foram objetivos dos estudos: (i) rever a literatura quanto ao estudo da 

aerodinâmica das provas de velocidade em cadeiras de rodas; (ii) comparação de dois 

capacetes do tipo contrarrelógio e pista em duas posições (olhar em frente e olhar para 

baixo); (iii) comparação aerodinâmica entre as diferentes fases de um ciclo de puxada com 

recurso às simulações numéricas; (iv) estimativa da potência mecânica e custo energético 

num sprinter das provas de velocidade em cadeiras de rodas através de procedimentos 

analíticos e simulações numéricas. As principais conclusões obtidas foram que: (i) existe 

pouca literatura e conhecimento acerca das provas de velocidade em cadeiras de rodas, 

nomeadamente no estudo da aerodinâmica com recurso às simulações numéricas; (ii) os 

capacetes contrarrelógio são mais efetivos desde que o atleta mantenha o olhar em frente 

tanto quanto possível; (iii) a aerodinâmica de um atleta das provas de velocidade em cadeiras 

de rodas variou nas diferentes fases do ciclo de puxada; (iv) a potência mecânica e custo 

energético foram maiores na fase da pegada, seguida da largada e por fim a fase de 

recuperação. A principal conclusão desta tese é que torna-se possível melhorar a 

aerodinâmica de um sujeito das provas de velocidade em cadeiras de rodas através do correto 

uso do capacete ideal e mantendo tanto quanto possível o alinhamento e sincronização 

corporal durante as puxadas.  
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Abstract 

 

Aerodynamics can play an important role in the performance of a wheelchair spinter. The aim 

of this thesis was to analyse the aerodynamics of a wheelchair sprinter by computer fluid 

dynamics. This thesis comprises a series of four studies (a review of the literature and three 

empirical studies). The studies aimed to: (i) review the literature on aerodynamics in 

wheelchair racing; (ii) compare two different helmets (road vs time trial) at several speeds 

and head positions by CFD. (iii) assess the aerodynamics in different key-moments of the 

stroke cycle by CFD; (iv) compare the mechanical power and energy cost of transportation 

delivered by an elite wheelchair sprinter in key-moments of the stroke cycle. The main 

conclusions were: (i) there is a lack of research on wheelchair racing aerodynamic’s assess by 

CFD; (ii) a time trial helmet imposed lower drag keeping a neck hyperextension; (iii) the 

aerodynamics of a wheelchair racing athlete varied over the different phases of the stroke 

cycle; (iv) the mechanical power and energy cost in elite wheelchair racing varied in different 

phases of the stroke cycle. The main conclusion of this thesis was that it is possible to 

enhance the aerodynamics of a wheelchair sprinter by selecting the best sport garement and 

equipment, as well as keeping a good body alignment in the key-phases of the stroke cycle.   
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Chapter 1. General Introduction 

 

1.1. Background 

There is a concern about not to include people with disabilities in several areas of society 

(Duarte & Santos, 2003). Sports play an important role in including people with disabilities in 

the society (Paciorek, 2004; Winnick, 2004).  

Wheelchair sports appeared after World War II. The first wheelchair games were organized in 

1948. In 1952 were organized the first international wheelchair sporting competition for 

disable people (Cooper, 1990). Wheelchair racing was recognized as an Olympic sport in 1986. 

Paralympics are the major event for athletes with disabilities. Now, every race detail may 

help athletes to excel and define new strategies. The subject participations are in accordance 

to their category and injury type in spine C5-6, C7-8, T1-7e T8-S4 for the classes T51, T52, 

T53 and T54 respectively (IPC, 2007).  

In wheelchair racing, the athlete had to push the handrim to generate motion (Cooper, 1990; 

Fuss, 2009; Forte, Marinho and Barbosa, 2015). It is possible to divid the stroke cycle in 

propulsion and and recovery. The propulsive moment is subdivided in: the catch phase (the 

hand contact moment on the handrim, usually near 12 and 14 o’clock); drive (is the moment 

that the hand wrist acceleration on the handrim); and release phase (the time period that the 

hand does not contact on the handrim) (Fuss, 2009). The recovery moment is the period of 

time between the release moment and a new catch moment. During the two moments is 

possible to observe three or four equilibrium horizontal forces. During the propulsion it is 

possible to observe the inertial force in negative direction in pair with drag and rolling 

friction force. The generated force by the ground on the rear wheel as a positive direction. In 

the recovery phase, the forces are the rolling resistance, aerodynamic drag and inertial 

(Petrushov, 1998; Fuss, 2009). Thus, to reach a higher acceleration, the inertial force and the 

ground force on the rear wheels must be maximized. The rolling friction and drag must be 

minimized to sooner reach and maintain the maximal speed. Then, it is possible to observe 

that drag plays an important role in athlete’s performance.  

 

1.2. Aerodynamics 

In wheelchair racing, drag plays an important role in athlete’s performance (LaMere & 

Labanowich, 1984; Candau et al., 1999; di Prampero, 1986; Martin et al., 2006; Millet and 
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Candau, 2002).  At world record speed, drag force may account by 34.89% of the overall 

resistive forces (Barbosa et al., 2014). The aerodynamics of the wheelchair-athlete system, is 

mainly determined by the frontal area and the subject’s posture. The drag area in racing 

wheelchairs ranges between 0.123 and 0.145 m2 (Fuss, 2009).  

The rolling friction and drag encompasses the resistive forces. The drag reduction will 

minimize the resistive forces. For that, during the race, some athlete’s concerns are the head 

and body alignment (Barbosa et al., 2016). Equipment’s such as helmets may help to reduce 

the aerodynamic drag. The ideal body position may also contribute about 10% for 

aerodynamic drag reduction (Harder et al. 2010). Reducing the drag, athlete’s will need less 

effort to reach the maximal speed.  

 

1.3. Drag Assessment by Computer Fluid Dynamics 

It is possible to measure the aerodynamic drag by analytical procedures, experimental tests 

and numerical simulations by computer fluid dynamics (CFD) (Forte, Marinho and Barbosa, 

2015). CFD is a biomechanics subarea that analyses the fluid flow behaviour around an object. 

This methodology consists in the discretization of Navier-Stokes equations by the finite 

volumes approach. These equations are underpinned by Newton’s second law of fluid 

mechanics. It is assumed that the fluid stress is the sum of its viscosity diffusion resulted from 

the applied pressure term. The equations solution determines the fluid velocity in a given 

space and time moment. Then, CFD is based in one approximated finite volume. The space is 

subdivided in small particles intending to generate a mesh of greed. Then, an algorithm is 

applied to resolve the volume motion equations (Marinho, et al., 2012). CFD can be used to 

predict the fluid flow behaviour, the mass and hot transference, chemic reactions and other 

related issues. This analysis allows to answer different questions without resource to 

experimental tests. CFD can provide a bridge between theory and practice and could be used 

for aerodynamics studies (Lyttle & Keys, 2006).  

In sports sciences, CFD has presented validity and accuracy in different fluids, bodies and 

tasks in sports. It has been validated and classified as feasible in hydro and aerodynamics 

testing (Liu, 2002). CFD has been presented as a valid and appropriated instrument assess 

aerodynamics and to simulate wind tunnel testing (Forte, Barbosa & Marinho, 2015; Dabnichki 

& Avital, 2006).  

CFD is a reproducible methodology, in experimental tests the outputs may depend of several 

factors. This does not occur in numerical simulations where the output depends only from the 

input (Dabnichki & Avital, 2006). 
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1.4. Research Gap 

The athlete’s posture and equipment’s use seem to influence drag. To better understand the 

equipment’s and posture influence on drag, aerodynamics analysis must be performed. It was 

not founded any study in literature about wheelchair racing aerodynamics analysis by CFD. 

However, is is possible to find some studies assessing aerodynamics by experimental tests and 

analytical models. Thus, there is a need to fulfil this lack of research assessing the 

aerodynamics of a wheelchair racer by CFD. Then, it becomes possible to provide details 

about pressure, viscosity and total drag, respective drag coefficients, effective surface area 

and estimate the mechanical power and energy cost to overcome the resistive forces. 

 

1.5. Study aims 

This thesis aimed to: 

 Review the literature on aerodynamics in wheelchair racing;  

 Compare two different helmets (road vs time trial) at several speeds and head 

positions by CFD.  

 Assess the aerodynamics in different key-moments of the stroke cycle by CFD;  

 Compare the mechanical power and energy cost of transportation delivered by an 

elite wheelchair sprinter in key-moments of the stroke cycle. 

 

1.6. Hypotheses 

The hypotheses under testing were: 

 There is a lack of research in the use of numerical simulations by CFD in wheelchair 

racing. 

 A time trial helmet is more effective compared to a track helmet keeping a neck 

hyperextension. 

 The aerodynamics of a wheelchair racing athlete varies in different phases of the 

stroke cycle. 

 The mechanical power and energy cost in elite wheelchair racing vary in different 

phases of the stroke cycle. 
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1.7. Significance of the study 

This thesis gave insights about the type of helmet to wear. This may prevent that para-

athletes adopt postures and/or positions that can impair the aerodynamics and ultimately 

their performance. This thesis may help athletes about which garment’s wear and body 

postures and positions adopt during a sprinting event. 

Based on the findings reported here, researchers may design, produce and customize helmets 

for a specific athlete. Advice on the athlete’s positions and helmets to be wear can also be 

provided. Knowing athletes drag, coaches can also estimate the mechanical power and energy 

cost of the athletes at different positions and speeds. Based on this work, coaches should 

develop an evidence-based practice basing their sets on a target mechanical power. 

1.8. Thesis structure 

This thesis is composed by a series of four studies: 

 Chapter 2 is a revision of the determinant factors in wheelchair racing sprinting 

events, technological appliance in this modality and aerodynamic drag evaluation 

methods. 

 Chapter 3 compares the differences between aerodynamic drag in two different 

positions (looking downwards and forward) with a time-trial helmet at different 

speeds. 

 Chapter 4 compares the variations on the aerodynamics of a world-ranked wheelchair 

sprinter in the key-moments of the stroke cycle: a numerical simulation analysis.  

 Chapter 5 compares an estimation of mechanical power and energy cost in elite 

wheelchair racing by analytical procedures and numerical simulations. 

As last chapter a final discussion will be presented by the presented studies (Chapter 4), 

followed by the main conclusion and limitations of this study (Chapter 5). Some suggestions 

for further studies are presented in chapter 6. 



   

 5 

Chapter 2. Technologic Appliance and 

Performance Concerns in Wheelchair 

Racing – Helping Paralympic Athletes to 

Excel. 

 

Abstract 

Numerical simulations have provided useful evidence in helping several sportsmen to excel in 

their field. This methodology aims to have a deeper understanding on the influence of 

equipment and sports techniques on sports performance. In wheelchair racing, technology 

was used without considering specific sport (some of the Paralympic sports used the same 

technology of their Olympic counterparts). It has induced unique changes in prosthetic and 

wheelchair devices. Eventually, technology has become an essential part of Paralympic 

sports, wheelchair-racing being one of the most popular events. Numerical simulations can 

help us gather evidence on the effects of drag force acting upon the athlete-chair system. 

Different types of wheelchairs are designed for racing (track and road races), net, and 

invasion sports. One of the various strategies to enhance performance is to minimize the 

aerodynamic drag of the frame, tires, helmet, sports outfit, and body posture.  

Numerical simulations can be used to predict the fluid dynamics.  

The goal of this chapter is to review the state-of-the-art numerical simulations and suggest 

further studies in wheelchair racing. The chapter will include sections covering: (i) main 

determinants in wheelchair racing; (ii) the effect of aerodynamic force in in wheelchair 

racing performance; (iii) analytical models, experimental testing, and numerical simulations 

in wheelchair racing; and (iv) numerical simulations on equipment and techniques. 

Keywords: CFD, Paralympic, Performance. 
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2.1. Introduction 

Wheelchair racing it’s a major event in Paralympics. In this sport are held races from short 

(100m) to long distances (42km). The athletes are classified according to their condition into 

classes (T5i, i.e., i=1, 2, 3 and 4 with injuries at C5-6, C7-8, T1-7 and T8-S4 respectively) 

(IWAS, 2008; IPC, 2007)]. In wheelchair racing sports science, has been expressed as a need 

the modelling and computer simulations of racing wheelchairs and the racing itself (Depaux, 

1986; Depaux, 1988). 

In 1960 took place in Rome, the first games for disabled persons in pair with the Olympic 

Games.  Pioneer research on wheelchair racing happened in the 1980s based on high-speed 

films at laboratory or running track settings (Cooper, 1990c). In the 1980s, manufacturers 

estimated that more than 10,000 racing wheelchairs commercialized worldwide (Lakomy, 

Cambell & Williams, 1987). Being this sport increasingly popular, the competitions became 

tighter between contenders and research is eagerly needed to help Paralympic athletes to 

excel.  

These days, most world-ranked Paralympic athletes, including wheelchair racers, develop an 

evidence-based practice with the help of coaches and sports analysts. Every detail of a race is 

deeply examined to have a deeper insight of the determinant factors that might help to 

excel. The resistance acting on the wheelchair racer is one of the major concerns for 

practitioners. The resistance force having an opposite direction to the displacement must be 

minimized so that for a given amount of thrust, the subject can reach a higher acceleration 

and speed. Lately a few research projects were reported in the literature under this topic. 

So, the aim of this chapter is to review the state of the art on the numerical simulations in 

wheelchair racing and suggest further studies in the sport. 

2.1.1. The wheelchair race 

The stroke cycle in wheelchair racing is divided in two phases, the propulsion and the 

recovery phase (figure 1). The propulsion phase is characterized by the tangential force 

applied to the handrim. In the beginning of the race, these one should be as high as possible 

and for the longest contact time so that the mechanical impulse is high (Ridgway, Pope & 

Wilkerson, 1988). Propulsion phase represents 33% to 35% of the full stroke cycle. 65% to 67% 

of the stroke time is the recovery phase in elite wheelchair racers (Bymes, 1983; Cooper, 

1990b; Ridgway, Pope & Wilkerson, 1988; Sanderson & Sommer, 1985). In the recovery phase 

we have the time period that the hand does not contact the rims. The hand tends to follow 

different paths until being positioned in the rim again to a new propulsion phase (Cooper, 

1990; Davis, Ferrara & Byrnes, 1988; Higs, 1985). However, the recovering phase may change, 



Chapter 2. Technologic Appliance and Performance Concerns in Wheelchair Racing – Helping 
Paralympic Athletes to Excel.   

 7 

the free chosen push frequency (the preferred stroke frequency adopted by each subject) 

ranged from 32 to 86 pushes/min at a 6.58 m/s in wheelchair racing. 

The stroke cycle can also be divided in 5 phases: catch, drive, release, lift and stretch and 

finally acceleration. Catch is the hand contact moment on the handrim, it usually occurs 

nearly the 1 and 2 o’clock. Drive phase is the moment of the hand and wrist acceleration on 

the handrim and it usually occur nearly the 2 and 5 o’clock. Release phase is the moment of 

the contact breaking of the hand with the handrim, closer to the 6 o’clock. Lift and stretch 

phase is characterized by the elbow flexion and elevation in the sagittal plan. Acceleration 

moment is when the elbow extension is done before the handrim contact. 

 

Figure 1. Stroke cycle in wheelchair racing. 

During a race, the racers aim to reach the maximal speed as soon as possible and keep it for 

the remaining time (Figure 2). Figure 2 also depicts the intra-cycle speed (i.e due to hand 

contact and recovery phase). So, from here this becomes clear that at a given moment 

propulsive forces are higher than resistance ones (i.e. positive acceleration) and other than 

the later ones have a higher intensity (i.e. negative acceleration). 
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Figure 2. Theoretical representation of the speed over time in 20 stroke cycles. 

Stroke kinematics are selected on regular basis to report the stroke cycle. These include the 

assessment of the average speed, stroke frequency and stroke length. 

The stroke frequency can be evaluated by measuring the number of cycles per minute and 

stroke speed is given by the product of stroke length by the stroke frequency. Stroke length is 

the difference between the contact distance of a stroke and the contact covered distance of 

the next stroke. Thus, stroke length can be explained as the covered distance with handrim 

contact in one stroke (Chow & Chae, 2007). The average speed is calculated dividing the 

stroke length by the stroke frequency (Chow & Chae, 2007). 

A higher stroke frequency combined with the hand linear velocity will lead to a greater 

energy cost, and probably will enhance cardiorespiratory stress affecting blood lactate and 

heart rate (Costa et al., 2009). The increase of speed it is related with blood lactate 

concentration and the rise of heartrate. Despite this, the increase of the handrim diameter 

seems to reduce the blood lactate concentration at 20km/h, however it didn’t happen at 

22km/h (Costa et al., 2009). 

An increased time of hand contact on the handrim without wrist acceleration will generate 

deceleration by friction resistance applied by the hand on the handrim. Therefore, to achieve 

a lower contact it is recommended to produce a high speed soon after the start (O’Connor, 

Robertson & Cooper, 1998), which is possible to improve as demonstrated by sprinters in 

strength development (Keogh, 2011). The elbow motion seems to range from 60.9º to 5.2º in 

flexion to extension movement and the maximum flexion velocity ranges between 515.4º/s 

and 572.8º/s, which is independent of the light weight of the wheelchair. However, the 

propulsion arc reduces by 12º to 14º in the pumping-stroke technique, that results from the 
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shortest handrim contact possible, usually at the start of the race (Rudins et al., 1997). In the 

1986 National Wheelchair Track and field Championship in Illinois, in elite finalists, both in 

paraplegic and quadriplegic wheelchair racers, the mean velocity-time ranged in each stroke 

from 5.1m/s to 5.5m/s and 3.7m/s to 4.27m/s respectively. The mean velocity in each stroke 

ranged 0.4m/s and 0.6m/s between the propulsion and recovery phase for the same subjects 

respectively. As the stroke frequency increases, velocity peak also enhances, despite the 

negative correlation between the velocity peak and the hand contact time with the handrim. 

The contact phase of the hand in handrim ranged from 13.58º to 15.6º for quadriplegics and 

paraplegics. The start acceleration phase at the rims starts at 48.54º and 71.1º. The break 

contact happens at 187.5º and 238.9º. The peak velocity for each stroke, occur at 181.1º and 

223.5º for quadriplegics and paraplegics respectively. These results were founded in a 10 

second sprint with 20 to 25 propulsive cycles (strokes) for each subject (Gehlsen, Davis & 

Bahamonde, 1990).  

The velocity peak seems to occur near to the 10 seconds of sprint in wheelchair track racers 

(Ridgway, Pope & Wilkerson, 1988). Wheelchair basketball players, achieve 80% of the peak 

velocity in the first three strokes. Otherwise, wheelchair racers at the third stroke only 

achieve 55% of the peak velocity. The stroke frequency in short distances is greater than in 

long distances. In 10 seconds, sprints were obtained with 2 strokes per second (Couts, 1990). 

However, in an 800m race, the stroke frequency ranged between 1.77 and 1.72 Hz (Ridgway, 

Pope & Wilkerson, 1988). 

 

2.2. Main Determinants in Wheelchair Racing 

The wheelchair racing athlete intends to reach the maximum acceleration as soon as possible. 

According to Newton’s second law the acceleration (a) in given as the ratio between force (f) 

and mass (m) (Equation 1).  

           (1) 

In the wheelchair racing case, it is also possible to say that, 

          (2) 

Where, FProp and FResist, are the propulsive forces and the resistive ones respectively. 

Positive acceleration is obtained by the applied propulsive forces on the wheels, overcoming 

the resistive ones (Figure 3). In wheelchair racing the propulsive force is the push on the 
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handrim, generating motion (i.e. the applied force by the ground in the wheel). The resistive 

forces are the rolling friction (Fr) and aerodynamic drag (Fd).  

 

Figure 3. Free body diagram in wheelchair racing [21]; FI – Inertial force; FD – Drag force; FR – Rolling 

friction forces; FA – The applied force by the ground on the rear wheels. 

Fuss (2009) reported an analytical model to describe the performance based on these major 

determinants. The inertial force is the required force to change the body state and start the 

motion. The drag force is the air resistance to the wheelchair-athlete system. Rolling friction 

is the resistive force of the ground on the wheels’ tires. Considering Newton’s third law, the 

applied force by the ground on the rear wheel is the opposite one of the wheel in the ground 

derived by propulsion.  

According to Fuss (2009), the total energy expended by the athlete is taken by rolling friction 

and air drag. It is possible to say, that the velocity is dependent on the kinetic energy of the 

system, and mass. 

          (3) 

In the equation, v is the velocity, Ein is the energy produced by the athlete and Eloss is the 

energy lost. 

        (4) 

The total kinetic energy is obtained from the sum of all mobile parts with a speed higher than 

zero. It is also considered that other movement oscillations do not contribute to the kinetic 

energy. Then: 

          (5) 
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In equation 5, Ii is the moment of inertia and ωi is the angular velocity of wheel i. 

When the inertia force (FI) gets combined with distance, the kinetic energy (Ekin) can be 

formulated as: 

         (6) 

Equations 7 and 8 consider that velocity comes from the work of the rear wheel (ωri) and 

acceleration is the angular velocity of the rear wheel (a = αri), then solving it for FI, we 

obtain: 

         (7) 

In this formula, m is the mass of wheelchair-athlete system and I is obtained from the relation 

between the one wheel mass and the wheel radius gyration squared. The mass of one wheel 

times its radius of gyration squared. When accelerated, an equivalent mass results in FI: 

          (8) 

The propulsion cycle is given by the stroke and recovery phases, the equilibrium forces in the 

stroke one are given by: 

,         (9) 

       (10) 

CD is the drag coefficient, v is the instantaneous velocity (considering distance and time at a 

given moment) and the acceleration (d2x/ dt2). The CD cluster is obtained from, 0.5ρcDA, 

being the product of air density (ρ) with the drag coefficient of the air (CD) and the frontal 

surface area (A). Considering that wheelchairs are in straight line and according to Equation 

14, 12 and 13, FR is given by: 

         (11) 

Where µR is the rolling friction coefficient, m is the mass, g the gravitational acceleration and 

kf the coefficient of speed. 

         (12) 

C1 is given by, 
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          (13) 

And C2, 

           (14) 

Thereby, in a wheelchair-athlete system the responsible variables for the energy losses are FD 

and FR and both forces are equal to zero in a loss-free environment. 

2.2.1. Propulsion 

In the propulsion phase, Fuss (2009) described 4 forces as the main ones. The ground applied 

one at the rear wheel, aerodynamic drag force and the rolling friction one.  When the mass 

gets accelerated produces an inertial force (FI). The kinetic energy derived from FI, is stored 

on the wheels, it depends of the moment of inertia and the angular speed of the wheels 

creating the system motion. The 4 forces in equilibrium are described as, 

         (15) 

FA Is the force applied to the ground on the wheels derived from the tangential force applied 

on the handrim (FI). For movement occurring, FA must be higher than FI, FD and FR. 

Several investigations have been made to better understand the physiological factors and 

demands that may affect the wheelchair propulsion. Others for instance, (Sanderson & 

Sommer, 1985) presented the motion of the racing wheelchair derived by the sum of all 

external forces by: 

F(R/rpr) = My + Iv/R + If v/r + Fa + MB/rax + Mb/raxf + FR + Fr + Wsin0(x)  (16) 

Where, “R/rpr” represents the gear ratio of the handring to the wheel. F - The tangential 

force in the handrings; R and rpr - The radius of the rear wheels and handrings; M - The mass 

of the system athlete-wheelchair; v - The velocity of the athlete-wheelchair system, given by: 

v = x = dx/dt; I and If- The inertia of the rear wheels and the wheels inertia; r - The radius of 

the front wheels; Fa - The air resistance of the athlete-wheelchair system; MB - The rear hubs 

bearing resistance; Mb - The front hubs bearing resistance; rax and raxf - The radius of the rear 

and front axles respectively; FR and Fr- The rolling resistance of the rear and front wheels 

respectively; W - The weight of the athlete-wheelchair system; Θ (x) - The inclination angle (i 

.e., changes in elevation); x - The covered distance; 
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2.2.2. Inertia 

The sum of the kinetic energy to all mobile parts is given by equation 5. that includes the 

energy of the 3 wheels and the translational energy. The kinetic energy is equal to the 

inertial force combined with distance (equation 6). Thus, the inertial force (FI) is given by:  

           (17) 

M represents the sum of the inertial moments. 

The Inertial Force is the required force for a body state change. At the beginning of the 

wheelchair race, the inertial force is the required force for starting the wheelchair. 

Therefore, it is clear that the mass influences the inertial moment in the system and that the 

mass reduction will lead to a sooner and/or higher speed. Fuss (2009) reported that a 

reduction of 1kg in a wheelchair-athlete system will improve the winning time by 0.132sg. 

2.2.3. Air Drag and Rolling Resistance 

In wheelchair racing, the air drag results from the air resistance in the surface area of the 

athlete-wheelchair system. In contrast, the rolling resistance results from the friction of the 

tyres on the ground. Aerodynamic resistance can be minimized by reducing the frontal area of 

the subject, intending to improve the winning time of a racing wheelchair. At speeds greater 

than 5m/s aerodynamic drag represents 90% of the resistive forces (LaMere & Labanowich, 

1984). Between 5.32m/s and 6.83m/s, rolling resistance is greater than aerodynamic drag 

with a partial contribution of 65% to 75% and 25% to 35% respectively. At greater speeds, 

aerodynamic drag starts to represent a greater contribution of the resistive forces (Barbosa, 

Forte, Morais & Coelho, 2014). 

Air drag and rolling resistance can be acceded from equation 18 for rolling resistance and 

equation 19 for air drag:  

          (18) 

          (19) 

In these two equations, FR is the rolling friction, µg is the rolling friction coefficient, m is the 

mass of the athlete-wheelchair system, g is the gravity acceleration and kf is the coefficient 

of the speed influence in rolling resistance force, ρ is the air density, Ad is the frontal area, v2 

is the velocity and CD is the drag coefficient. 
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Lightweight clothes worn by wheelchair racers to reduce the aerodynamic drag (Barbosa, 

Forte, Morais & Coelho, 2014). A flexed upper trunk position also reduces the aerodynamic 

drag, as does reducing the rear wheel spokes to 24 (LaMere & Labanowich, 1984). In cycling, 

a flexed upper trunk position reduces the frontal area in 20% to 29% (Burke, 1986). In 

wheelchair racing, the same position reduces the frontal area in 3% to 4% (Hedrick, Wang, 

Moeinzadeh & Adrian, 1990). 

Mass would also influence the rolling friction; reducing the wheelchair-athlete system would 

also improve the speed, mainly in short distances. A 1kg reduction would improve 1-2.3% of 

the winning time in wheelchair racing (Fuss, 2009).  

 

2.3. Analytical Models, Experimental Testing and Numerical 

Simulations in Wheelchair Racing 

2.3.1. Experimental testing: Coast-down Technic 

Aerodynamic and rolling resistance can be tested providing realistic opportunities that cannot 

be achieved in laboratory. The coast down-methods founded in literature are: (i) - roll 

distance applying the ramp methods; (ii) – the timing gate method, that measures the 

velocity decrease in different points between two marks (gates); (iii) – The velocity method 

that measures directly the speed in each time. 

The roll distance applying the ramp method consists rolling, a wheelchair from a ramp to the 

field, measuring the covered distance by the wheelchair (FIFA, 2001). The timing gate 

method was developed as an alternative to the roll distance, produced in less time and space 

compared with the whole roll until the wheelchair stops. Two marks should be performed 

counting the time when the wheelchair passes between them (Kolitzus, 2003). In the velocity 

method, the racer reaches the maximum speed, stops the propulsion and the velocity is 

recorded in each instant (Kolitzus, 2003; Fuss, 2009). A dynamometer-based coast-down test 

was used for the wheel deceleration calculus (Kwarciak, Yarossi, Ramanujam, Dyson-Hudson 

& Sisto, 2009). For wheel deceleration in each trial, hub (Hubxyz) and handrim (Rimxyz) 

markers were placed. The wheel rotation on each time was assessed by the law of cosines: 

          (20) 

A = Rimxyz(i) – Hubxyz(i); B = Rimxyz (i + 1) – Hubxyz (i + 1). 
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To avoid wheel size differences, the angular speed was converted in linear one. It was fitted 

a line to the linear velocity (v) data intending to determine the wheel deceleration (ad), the 

time to coast down from 2 m/s to 1 m/s is represented by “t” and the initial wheel velocity is 

represented by “v0”. 

         (21) 

The estimation for rolling resistance can be done based on Cooper’s method (Sanderson & 

Sommer, 1985). Intending to simplify the method, aerodynamic drag, wheel and roller 

bearing resistances, as other external resistances were neglected. Thus, the rear wheel 

motion was described by: 

         (22) 

Where, “Tw” was the torque applied by the hand to the rear wheel; “Ir” and “Iw” were the 

moment of inertia of the roller and the rear wheel, respectively; “r” and “R”, the roller and 

rear wheel radius, respectively; “aw” and “FRR” as the angular acceleration of the rear 

wheel and the rolling resistance force respectively. 

Considering that the propulsive force was discontinued, “Tw” is equal to zero, and “aw” 

represents the wheel angular deceleration. The equation is being used to describe the rear 

wheel rotation. The roller inertial moments (0.87 ± 0.15 kg-m2) and wheels (0.12 ± 0.02 kg-

m2) were experimentally acceded resourcing the acceleration method by DiGiovine et al. 

(2009). Applying the “Ir” and “r” values into Equation 22, and rewriting “aw” as the ratio 

between linear deceleration and radius (ad/R), rolling resistance force is obtained from the 

wheel radius, inertia, and deceleration, calculated by: 

         (23) 

Coast-down distance (CDD) calculation was computed using the equation of motion, where 

acceleration is assumed to be constant and t is the time for coast-down technic ends, when 

the wheelchair stops: 

          (24) 

Another method consists in accelerating the wheelchair (e.g., from 2.5 to 12.8m/s). The rider 

stops the propulsive phases reaching the target speed counting the length and/or time until 

the wheelchair stops (Candau et al., 2001). In this method both aerodynamic drag and rolling 

resistance are obtained. The figure 4 depicts a speed decay of wheelchair considering the 

velocity method, measuring the speed in each time. 
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Figure 4. The velocity decay of a manual wheelchair over a typical trial. 

2.3.2. Wind tunnel testing 

At least one paper can be found in the literature reporting the assessment of the 

aerodynamics in wind tunnel between two wheelchair models (MacLeish, Cooper, Harralson & 

Ster, 1993). The drag forces were measured for speeds between 54.86km/h and 164.60km/h 

with intervals of 18.28km/h. However, air viscosity and ground motion effect are not taken 

into account with this methodology. Besides this, a better wind tunnel test should be 

performed intending to determine the best helmet and clothes to use in races (MacLeish, 

Cooper, Harralson & Ster, 1993). The Drag was proportional with the speed in the two models 

A and B. Model A presented a strict nose, with fenders at the wheels and an exceeded front 

angle attack. The drag force was acceded in grams (gr) and ranged from 26(gr) to 360(gr) in 

booth models, with and without pilot. With and without pilot, the model B presented a lower 

drag force for velocities lower than 91.44km/h. At higher speeds the model A presented 

lower drag force with and without pilot. 

From this experimental test it is possible to confirm that specific wheelchairs should be made 

for specific racers, and a sprint race wheelchair should be different to a long race 

wheelchair. 

2.3.3. Analytical method for drag assessment 

For rolling friction and aerodynamic drag, Burton, Fuss & Subic (Burton, Fuss & Subic, 2010) 

presented an analytical procedure to estimate rolling friction and aerodynamic drag. FR is 

non-linear when calculated from visco-elastic models, considering the deformation of the 
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tyres, reduces in the ground higher speed in parabolic function. The equations for these two 

forces are expressed before in equations 18 and 19. 

According to Fuss (2009), based in vehicles data (Petrushov, 1998), considering that the µg of 

a racing wheelchair is 0.01, Kf is 5x10-6 s2m-2, a mean speed of 10 m/s and a mass athlete-

wheelchair system of 80kg the first and second term of the equation 22 is 7.85 and 0.35N. 

In a partial contribution assessment of air drag, Barbosa et al., (2014) assumed the air density 

of 1.2041 kg/m3 in the sea level at 20º C. The surface area was measured with the 

photogrammetric technique in the frontal plane and the drag coefficient was assumed to be 

0.7. All estimations were completed in each speed moment between 0 m/s and 13m/s 

increasing in every 0.1m/s. considering the world speed record, the air drag represents 

34.89%. 

 

Figure 5. Partial Contribution of aerodynamic drag and rolling friction by Barbosa et al. [23]. 

2.3.4. Numerical simulations: Computer Fluid Dynamics 

Computational Fluid Dynamics (CFD) has been used over the last 20 years. There are a lot of 

benefits on CFD and tools such as FLUENT, CFX, STAR-CD and FiDAP are all commercially 

available and used in industrial settings in the engineering community since the 1990s. 

Engineers and scientists started to use these simulations in competitive sports to reach a 

performance advantage, to improve sports equipment design and elite athletes’ aerodynamics 

or hydrodynamic enhancements (Hanna, 2012). 
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In sport sciences, the CFD presented concordance between numerical simulations and in vivo 

tests. For the simulation, a 3D body model scan is required and the images processing can be 

made with recourse to Anatomics Pro (Anatomics, Kannapolis, NC, USA) and FreeForm 

(Sensable Technologies, Woburn, MA, USA). The scan files are saved as IGES (*.igs) format, 

intending to be executable in Gambit/Fluent (Fluent Inc, Hanover, NH, USA). In 

Gambit/Fluent it is possible generate the greed and to define the finite elements in 3D areas. 

The numerical simulation consists in discretization of Navier-Stokes equations by the finites 

volumes methods. These equations come from Newton’s second law in fluid mechanics, 

assuming that the fluid stress is the sum of diffusion of its viscosity, resulting from an applied 

pressure term. The equation resolution determines the fluid speed in a determined point at 

space and time. CFD is based in an approximated finite volume. In this approximation space is 

divided in small cells to form a mesh or greed, applying a solver algorithm for the equations 

of fluid volume motion resolution (Marinho, Barbosa, Mantha, Rouboa & Silva, 2012; Marinho 

et al., 2011). 

The Reynolds-Averaged Navier-Stokes (RANS) comes from decomposing the instantaneous 

values into means and/or fluctuating components. Fluid flow behaviour (equation 25), 

Reynolds Stresses (equation 26), temperature (equation 27) and mass transfer (equation 28) 

can be solved in this methodology.  

           (25) 

      (26) 

       (27) 

         (28) 

The µi and xi are the instantaneous velocity and the position, p the instantaneous pressure, t 

is the time, ρ the fluid density, ʋ is the molecular kinematic viscosity, cp heat capacity, k the 

thermal conductivity and Sij the strain-rate tensor, c is the instantaneous concentration and D 

the molecular diffusion coefficient. 

The Reynolds stresses component ( ), describes the turbulence of the mean flow being 

the exchange of momentum by the change of the fluid parcels. In a laminar flow, the 

molecules are the responsible for momentum exchange (molecular viscosity). However, in a 

turbulent flow (turbulent viscosity) the parcels of flow are the ones that exchange the 
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momentum. To finish this calculus, it is also necessary to use a turbulence model to represent 

flow scales. The first order Boussinessq eddy-viscosity hypothesis to model the Reynolds stress 

in function of velocity and time is used. However, it is also a necessary model for the linear 

or non-linear eddy-viscosity distinction. The Reynolds stress is given by: 

         (29) 

Where, vt is the turbulent viscosity and the mean strain rate Sij is given by, 

          (30) 

The turbulent kinetic energy (k) is given by, 

           (31) 

And the kronecker delta (δij), 

          (32) 

Assuming the gradient diffusion (Gradient-diffusion Assumption) for heat and mass fluxes, as 

function of the temperature gradients in the mean flow, the turbulence hot flow is given by, 

           (33) 

Where Dθt is the turbulent heat diffusivity (turbulent Prandtl number), and  is the 

temperature gradient in the mean flow. The turbulent Prandtl number is obtained by, 

           (34) 

And the turbulent mass flow  is given by, 

          (35) 

Where, Dc,t is the turbulent mass diffusivity (turbulent Schmidt number) and  the 

concentrated gradient in the mean flow. The turbulent Schmidt number is calculated from 

equation 36, 
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           (36) 

Once RANS needed a turbulence model, less expensive equations are created with additional 

variables, transforming in meanings of the instantaneous equations calculations. This results 

from removing several small equations and adding other unknown variables, determined by 

the turbulence models. Standard K – ε turbulence model was used by Caboz (2010) in a 

computational simulation on a counter-clock cyclist helmet, however it is only valid in a 

completely turbulent fluid. The same mode is assumed for wheelchair racing. In Fluent the 

turbulence models available are: (i) Standard K – psilon; (ii) Standard K – ε; (iii) Spalart – 

Allmoras; (iv) Reynolds Stress (RSM) (White, 1999). 

In this model (Standard K – ε) the Bussinesq hypothesis is given by, 

        (37) 

Where the turbulent viscosity, 

           (38) 

The mean tension rate is given by the equation 30. The kinetic energy of turbulent 

fluctuation and the dissipation of the kinetic energy (m2/s2) are given by equations 31 and 40 

respectively. 

       (39) 

k, is the energy measuring associated with the turbulent fluctuations in the flow. 

           (40) 

ε, is caused by the work of the smallest eddies against the viscous stresses in the flow. 

Then the determination of k (equation 41) and ε (equation 42) by their transport equations 

are, 

    (41) 

  (42) 
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Where,  and  are the variation of the local in time,  and  the 

adjective term,  and  are the diffusion, Gk is the 

generation of k by the gradients mean velocity, Gb the generation of k due the fluctuation 

and ρε the dissipation of k. σk and σε are the turbulent Prandtl numbers for k and ε 

respectively. And the constants C1ε, C2ε, Cµ, σk e σε were experimentally determined, C1ε = 

1.44; C2ε = 1.92; Cµ = 0.09; σk =1.0; σε = 1.3. 

The Gambit software allows the building of a representative graphic model of the volume 

subdivided in sub volumes, trying to make the process as realistic as possible. This software 

also allows defining the frontiers. In solid frontiers and close to them, the FLUENT software 

computes the Reynolds tension and ε. It applies solid specific frontiers conditions for Reynolds 

tension using balance hypotheses, without considering the convection and diffusion of tension 

transport (equation 25). In a local coordinate system, T is tangential coordinate, η the normal 

and λ the binomial one. The Reynolds tension in the adjacent cells to the frontier, are 

calculated by the equation: 

     (42) 

FLUENT solves the transport equation (41) for k obtaining. For calculous convenience the 

equation is globally solved, albeit the calculus of the k values is only necessary near the 

frontier. In the rest of the domain the k is calculated by the equation (26). 

The mesh can be constructed by quadrangular elements, with a space size of 0.1mm. The 

resulting data from the computational simulation of the determined flow regime and the 

visualisation of the pressure profiles and speed are obtained by FLUENT. The data’s 

processing allows calculating the drag coefficient in the diverse forms (Carvalho, 2008).  

2.3.5. Numerical Simulations on Wheelchair Racing 

CFD methodology starts being used for equipment tests. In wheeler riders’ helmets, CFD has 

shown that airflow velocities could be improved with grooves in polymer foam liner and also 

improving the sweat evaporation. A top helmet hole would improve the velocity in that point, 

however velocities at the back became lower (Pinnoji & Mahajan, 2006). 

The ideal posture and some changes in the wheelchair could be possible to define the three 

first places. The tests revealed that the most drag negative influence in performance came 

from the athlete and not from the wheelchair. With a subtle modification in the seating 

position it could save 10% of the aerodynamic drag. No results were presented by the authors 

relatively to the wind tunnel test (Rushby-Smith & Douglas, 2012). 
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CFD methodology must be applied in different fabrics, helmets and wheelchairs. The frame 

design, as the tube sizes must influence the fluid flow behaviour. Also different positions 

should be considered to be analysed the flexed head in the start of the race or the look 

forward position. In each stroke phase, the different fluid flows should also be analysed 

intending to reach the ideal motion in the stroke phase and recovery one, as the effect of the 

wheelchair designs and materials in the fluid flow (Barbosa, Forte, Morais & Coelho, 2014).  

Thus, fluid dynamics analysis should be performed intending to evaluate possible different 

designs of the wheelchairs and fulfil the lack of literature in this area. There is a need of 

results presentation such as drag and drag coefficient in different positions, helmets and 

cloths at different speeds. 

 

Figure 6. CFD methodology of a scanned model in TotalSim (http://www.totalsimulation.co.uk/wp/cfd-

image-gallery/) 

 
 

2.4. Summary and Conclusions 

The sports science of wheelchair racing lacks research. However, there is some information 

that could positively contribute to increase performance in athletes. Managing the 

mathematical models based on physics laws, coaches could identify the mechanic 

performance obstacles and try to minimize them. 

The drag reduction by the rolling and air resistance assess also contributed to increase the 

performance in athletes. Better propulsion could be obtained by reducing the total drag 

combined with a mass reduction and other possible aerodynamic positions. The purpose of 

computational simulations and/or computer fluid dynamics is the time improvement achieved 

by reducing the aerodynamic drag. No data was found about CFD tests in wheelchair racing. 

The stroke technique should also be focused. Despite that there are no indications about how 

many hours that should be taken off training after an injury occurrence. It is defined that the 

high angular velocities near the shoulder and the elbow generated by the strokes, induce an 
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overuse stress increasing the risk for joint injuries. There are also some indications about the 

contact zones, force applying and contact break at the rear wheels. 

Physiological variables should also be studied in wheelchair racing athletes, an area that also 

has a lack of information in this sport. Thus, a precise control of the total drag and the 

efficiency of the stroke technique, which is related to high levels of strength derived by the 

strength and physical condition training, will positively contribute for a better performance.  
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Chapter 3. Comparison by computer 

fluid dynamics of the drag force acting 

upon two helmets for wheelchair racers. 

 

Abstract 

The aim of this study was to compare the drag force created by two helmets (time trial and 

track) used by a wheelchair racer. The head and helmet of the racer were scanned to obtain 

the 3D models. Numerical simulation was run on Fluent, having as output the drag force for 

both helmets (track and time trial) in two different positions (0º and 90º) and increasing 

velocities (from 2.0 to 6.5 m/s). The greatest aerodynamic drag was noted wearing a time 

trial helmet in 90º ranging from 0.1025N to 0.8475N; this was also the position with the 

highest drag. The velocity with higher drag for booth helmets was at 6.5 m/s. The time trial 

helmet at 0º had the lower aerodynamic drag, compared with the same position of track 

helmet. The drag force seems to be lower wearing the time trial helmet and keeping the 0º 

position and, thus, should be considered for sprinting events. 

Keywords: Helmets, CFD, Wheelchair Racing, Drag.  
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3.1. Introduction 

Computer Fluid Dynamics (CFD) is an area under Computer-Aided Engineering and provide 

insights on 2D and 3D digital geometries. This methodology has been applied to assess 

competitive sports such as cycling, swimming, golf or ski jumping. It also allows to assess 

variables such as drag force, drag coefficient and pressure, of gears, equipment and apparel 

in these sports (Martin, 2009).  

Aerodynamics plays an imports role in sprinting events. It represents more than 90% of the 

resistive forces at speeds higher than 5m/s (LaMere and Labanowich, 1984). This analysis was 

done as well at greater speeds, such as 15m/s, 20m/s or even higher (Alam et al., 2014). In 

sports like cycling, the rider’s posture could be evaluated. Small variations in the rider’s 

position could account for 10% variation in the drag force (Rushby-Smith and Douglas, 2012). 

Being based on the same rational, the helmet used and the position of a wheelchair racer may 

have a meaningful effect on the resistance, notably in racing sprinting events.  

CFD presents concordance between the numerical simulations and experimental testing. A 3D 

model obtained with specific 3D scan is needed for the computer simulations. Software’s such 

as Artec Studio 0.7 (Artec, USA), Geomagic (3D Systems, USA) and Maya (Autodesk Inc., USA) 

allows model digitalization, and scans merge and editing. Upon merging the scans and 

editing, it is possible to generate a 3D mesh, and areas and elements definition (Forte et al., 

2015). 

This methodology consists in the discretization of Navier-Stokes equations by the finite 

volumes methods. This set of equations encompass the Newton’s second law of motion. The 

fluid stress, resulted from an applied pressure term and it comes from the sum of diffusion of 

its viscosity. Reynolds-Avereged Navier-Stokes equations decompose instantaneous values into 

means and/or fluctuation compounds (Marinho et al., 2011; Marinho et al., 2012). The fluid 

flow behaviour (equation 1), Reynolds stress (equation 2), temperature (equation 3) and mass 

transfer (equation 4) could be solved with resource to this methodology. 

  (1) 

  (2) 

  (3) 

  (4) 
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Therefore, this technique can be used to learn the effects of different helmets and positions 

by the wheelchair racer, as the racer can wear either a track helmet or a time trial helmet. It 

is unclear which model will impose a lower aerodynamic drag. Thus, the aim of this study is 

to compare two different helmets (track vs time trial) at different speeds and head positions 

by CFD. 

 

3.2. Methods 

A Paralympic wheelchair racer (category T-52) was recruited for this research. He is a 

European medallist in sprinting events and a world championships finalist. The subject wore 

two different models of helmets. One is a track helmet (LAS, Istron) and the other a time trial 

model (LAS, Cronometro). 

The geometries were obtained by a 3D scan Artec (Artec-L, Artec Group, Inc., USA). The scans 

were performed by Artec Studio 0.7 (Artec, USA) (Figure 1).  

Fluent (Fluent, Inc., USA, New York) code, allows to compute numerical simulations applying 

a mathematical model to the fluid flow, at a created domain with discretized algebraic 

expressions of the Navier-Stokes equations. Fluent software solves the equations with a finite 

volume approach (Marinho et al., 2011). The domain is represented by a 3D mesh of 

subdivided cells representing the fluid flow around the head and helmets in the different 

positions. 

Realizable k-epsilon was the applied turbulence model, this one, is much more efficient in 

computation economy and converged after 1404 interactions (Aroussi et al., 2001). 

The 3D mesh was made with more than 6 million cells for booth helmets domains. The angles 

of attack were set as 0º (i.e., looking forward, with the opposite direction of the fluid flow) 

and 90º (looking downwards, perpendicular to the fluid flow direction). 

The fluid flow velocity was set in inlet portion of the dome surface at 2m/s, with increments 

of 1.5 m/s up to 6.5 m/s. Typically the wheelchair racer will reach these range of speed over 

an event. The aerodynamic drag was computed as: 

  (5) 

Where FD is the drag force, CD represents the drag coefficient, v the velocity, Ad surface 

area and ρ is the air density (Sanders, 1999). 

 



Chapter 3. Comparison by computer fluid dynamics of the drag force acting upon two helmets 
for wheelchair racers.   

 28 

3.3. Results 

The contours of static pressure obtained in fluent, represents the pressure zones (Pa) in the 

helmets at 6.5m/s. Zones with red colour indicate high pressure and low pressure with blue 

colour (figure 1). It is possible to observe that the helmet at 90º increases the surface area 

and consequently the pressure zones. 

  

(a) (b) 

Figure 1. Static pressure zones of the time-trial helmet at 0º (a) and 90º (b) position, at 6.5 m/s. 

It is also possible to recreate the fluid flow velocity simulation around the object at 6.5 m/s. 

With this simulation it is possible to observe the velocity vectors coloured with the static 

pressure around the surface area of the geometry (figure 2). 

  

(a) (b) 

Figure 2. Flow velocity vectors at 6.5 m/s colored by static pressure on the surface area in time-trial 

helmet at 0º (a) and 90º position (b) respectively. 

Aerodynamic drag is prone to increase for booth helmets with increasing velocities. The drag 

force ranged between 0.0660 N and 0.8475 N (table 1). 

In both helmets, a higher drag was noted at 90º angle of attack, when compared to a 0º 

angle. 

The time trial helmet presented higher aerodynamic drag compared to the track model at 

90º. These are kept for all velocities selected though. However, at 0º time trial helmet 

presented lower drag compared with the track one. 
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Table 1. Drag force at different velocities and attack angles. 

Velocity 

[m/s] 

Track Helmet (Fd) 

[N] 

Time trial Helmet (Fd)  

[N] 

 0º 90º 0º 90º 

2.0 0.0884 0.0899 0.0660 0.1025 

3.5 0.2139 0.2474 0.1615 0.2659 

5.0 0.4012 0.4607 0.3116 0.5423 

6.5 0.6675 0.7323 0.4667 0.8475 

   

 

3.4. Discussion 

The obtained aerodynamic drag ranged from 0.0660 and 0.8475 N. Some authors presented 

similar results, near 1 N. However, reports in the literature assessed the performed at 

velocities higher than 6.5 m/s and the rider shoulders were also included in the simulations 

(Alem et al., 2014). A higher surface area (because the shoulders were scanned) will 

contribute for a higher aerodynamic drag. 

Others reported 0.319N of drag force for a time trial helmet. This data is in accordance to our 

outputs. However, it should be noted that they run the simulation only for the helmet (i.e., 

without scanning the head) but at a higher velocity (13.4 m/s or faster) (Sidelko, 2007). 

 

3.5. Conclusion 

Wheelchair racing athletes might wear time trial helmets when they keep looking forward. In 

the event of looking downwards, the aerodynamic drag will increase meaningfully in 

comparison to track helmet. Thus, racers should be aware of this drawback wearing time trial 

models. 

CFD methodology might be useful for better understanding the technical features intending to 

optimize athlete’s performance. Namely with, different helmets, speeds and angles of attack 

study. Futures researches could evaluate and create customized helmets for each athlete in 

agreement with his characteristics. 
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3.6. Practical Applications 

The helmets use seems to be one of the strategies to reduce drag in wheelchair racing 

athletes. A time trial helmet, should be used by athletes for short or long distances. The 

athletes must look forward with a time trial helmet. A neck flexed position during the race 

will increase the surface area and drag. Thus, for a time trial helmet use, coaches should 

perform training sessions for the garments adaptation. This technic training should intend to 

help the athlete to maintain the head raised, with the neck in hyperextension with a helmet 

use. 
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Chapter 4. The variations on the 

aerodynamics of a world-ranked 

wheelchair sprinter in the key-moments 

of the stroke cycle: a numerical 

simulation analysis. 

 

Abstract 

Biomechanics plays an important role helping Paralympic sprinters to excel, where the 

aerodynamic drag has a significant impact on athlete’s performance. Thus, the aim of this 

study was to assess the aerodynamics in the different key-moments of the stroke cycle by 

Computational Fluid Dynamics. A world-ranked wheelchair sprinter was scanned on the racing 

wheelchair wearing his competition gear and helmet. The sprinter was scanned in three 

different positions: (i) catch (hands in the 12h position on the hand-rim); (ii) the release 

(hands in the 18h position on the hand-rim) and; (iii) recovery phase (hands do not touch the 

hand-rim and are hyper-extended backwards). After the numerical simulations computation, 

mean viscous and pressure drag components and total drag force were retrieved. The 

simulations were performed at 2.0, 3.5, 5.0 and 6.5 m/s. The values for viscous drag ranged 

from 3.35 N to 2.94 N, pressure drag from 0.38 N to 5.51 N, total drag force from 0.72 N to 

8.45 N and effective area from 0.24 to 0.41 m2. The results demonstrated that less drag is 

obtained in the recovery phase, in opposing to higher drag at the catch. This reinforces the 

importance on maintaining an adequate body alignment to avoid drag increase. 

Keywords: CFD, wheelchair racing, aerodynamics, drag. 
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4.1. Introduction 

Wheelchair sprinting events are some of the most popular races in Paralympics. In these 

events, athletes compete on racing wheelchairs designed to let them reach their maximal 

speed (Forte et al., 2017).  

Biomechanics plays an important role helping Paralympic sprinters to excel. The proper 

alignment of the body segments and a good stroke technique will help to reduce the winning 

time (Forte, Barbosa & Marinho, 2015). To reach the maximal acceleration as soon as possible 

and maintain a maximal speed over the race, the resistive forces must be minimized and 

propulsive forces maximized (Forte, Barbosa & Marinho, 2015; Fuss, 2009). The propulsive 

forces (pushing the hand-rim and the wheels producing force on the ground), should 

overcome the resistive forces (i.e., the rolling friction and aerodynamic drag). Each stroke 

cycle can be broken-down into three key-moments. The first moment is the beginning of the 

propulsive phase, being the hands in the 12h position on the hand-rim (known as catch 

phase). When the hands are in the 18h position on the hand-rim, the propulsion phase ends 

(known as release phase). When the hands are not in contact with the hand-rim and 

hyperextended backwards, this is known as the recovery phase (Forte, Barbosa & Marinho, 

2015). The propulsive phases (between catch and release) account for approximately 35% of 

the stroke cycle´s duration and the recovery the remaining 65% (Forte, Barbosa & Marinho, 

2015).  

In wheelchair racing, aerodynamic drag has a significant impact on the performance at speeds 

higher than 5 m/s (Cooper, 1990; Candau et al., 1999; di Prampero, 1986; Martin et al., 2006; 

Millet & Candau, 2002). At world record pace, drag force may account for 34.89% of the 

overall resistive forces (Barbosa et al., 2014).  However, no study was carried out comparing 

the aerodynamics of a sprinter in the key-moments of the stroke cycle (i.e. catch, release 

and recovery phases). 

It was claimed that marginal shifts in the rider’s position on the wheelchair might change the 

drag by 10% (Ryschon & Stray-Gundersen, 1991; Mc Lean, et al., 1994; Paton, 2006). Still, 

there is scarce evidence on this. Barbosa et al. (2016), compared by experimental testing the 

resistive forces in three different head and torso positions, noting variations in the 

aerodynamics. Thus, the drag force may change in the key-moments of the stroke cycle 

depending on the relative position of the upper arms, torso and head. E.g., the change in the 

relative position may have influence on the surface area and, hence, on the drag coefficient.  

Numerical simulations by Computational Fluid Dynamics (CFD) are arguably the best 

technique available to run this comparison. Benchmarked with other procedures to monitor 

the aerodynamics, CFD has the advantage of minimizing confounding factors such as the intra-

subject variability and the changes in the environmental conditions across trials. It is possible 
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to control with higher accuracy the temperature, pressure and speed of each simulation. 

Unfortunately, the control of these factors in experimental tests is more challenging. Besides 

that, using CFD it is possible to breakdown the total drag force into viscous and pressure drag 

(Forte, Barbosa & Marinho, 2015).  

Pressure drag can be characterised as the fluid distortion in the rear edges and the pressure 

differences between the front and back boundaries of the body (in our study the wheelchair-

athlete system) (Schlichting, 1979; Debraux et al., 2011). The fluid separation from the back 

boundaries will generate a low pressure zone, mainly caused by the object/body shape 

(Schlichting, 1979; Debraux et al., 2011). The pressure drag is dependent on several factors, 

including the body size and geometry (Debraux et al., 2011; Kennedy & Lamo, 2013; Kyle, 

2013; Harun, 2012; Defraeye et al., 201; Kulfan, 2000). As such, arguably in wheelchair 

racing, the athlete’s position will influence the pressure drag. Nevertheless, it was not found 

any evidence on this in the literature.  

Viscous drag is produced due to the interaction between the body’s surface and the fluid 

(Schlichting, 1979). In the case of a fluid with viscosity, such as air, the fluid is going to stick 

to the body’s surface and being dragged. Because of the viscosity, this layer of fluid attached 

to the body will make the following layer to attach to itself. Same phenomenon happens to 

nearby layers. Viscous drag is the force needed to drag the sum of all layers of fluid. Thus, 

this component is strongly dependent on the speed and surfaces roughness. Although viscous 

drag might have arguably a smaller impact compared to pressure drag, it has important 

implications on the athlete’s performance. The body position, garments’ design and materials 

used, as well as, surface’s roughness will have an effect on viscous drag (Schlichting, 1979; 

Edwards & Byrnes, 2007). There are claims that in wheelchair racing, viscous drag can be 

decreased by reducing the surface roughness, for instance, wearing light and tight garments. 

However, no study was founded assessing viscous drag in wheelchair racing. 

Effective aerodynamic area (ACd) is a well-rounded parameter to assess the aerodynamics of 

a body. It is obtained by the multiplication of the drag coefficient by the surface area. ACd is 

the area that acts in the drag-production direction (opposite direction of the flow) 

(Schlichting, 1979; Crouch, et al., 2017). E.g., in cycling, time trial positions are 

recommended to decrease the ACd (Crouch et al., 2017; Bouillod et al., 2016). Thus, ACd is 

mainly dependent of the athlete’s surface area and position. Some studies monitored the ACd 

of wheelchair sprinters (Barbosa et al., 2016; Hoffman et al., 2003). Barbosa et al. (2016), 

observed values between 0.1456m2 and 0.1747m2; whereas, Hoffman at el. (2003), reported 

an ACd of 0.37m2. The data reported by these authors are mean values for the entire stroke 

cycle. There is no evidence on the changes in the ACd in different key-moments of the stroke 

cycle in wheelchair sprinting.  
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The aim of this study was to assess the aerodynamics in different key-moments of the stroke 

cycle by CFD. It was hypothesised that the drag varies in different phases of the stroke cycle, 

depending on the relative position of the segments.  

 

4.2. Methods 

4.2.1. Subject 

A world-ranked wheelchair sprinter (ranked 4th in the 100m and 400m T-52 category at the 

time of the data collection) volunteered to take part of this study.  

Approval was granted by the Ethics Committee of the University of Beira Interior. All 

procedures were in accordance to the Helsinki Declaration regarding human research. A 

written consent by the participant was obtained beforehand. 

4.2.2. Scanning the model 

The sprinter was scanned on the racing wheelchair wearing his competition gear and helmet. 

The scans were made in three different positions (Fig 1): (i) catch (i.e., the beginning of the 

propulsive phase, being the hands in the 12h position on the hand-rim); (ii) the release (i.e., 

hands in the 18h position on the hand-rim) and; (iii) recovery phase (i.e., hands do not touch 

the hand-rim and are hyperextended backwards). The 12h position is set when the hand 

catches the hand-rim (the catch phase). In this position, the hands contact the hand-rim in an 

angle of about 0º to 15º with the vertical axis (i.e. on the top of the wheel). The 18h position 

is set when the hands leave the hand-rim (release phase). The hand contact breaks off, 

usually near the 180º angle with the vertical axis (i.e. on the bottom of the wheel). 

The scanning was made by the 3D Artec Scanner (Artec Group, Inc., Luxembourg) and saved in 

the Artec Studio 0.7 (Artec Group, Inc., USA). The same software was used to edit the scans 

(e.g., smooth and merge all the scan layers). Upon that, Geomagic studio (3D Systems, USA) 

was used to mesh the object and improve it by smoothing self-intersections, clean noun-

manifold edges, and spikes correction being then converted in a computer aided design (CAD) 

model. 
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Figure 1. Three different scanned positions: (i) catch (i.e., the beginning of the propulsive phase, being 

the hands in the 12h position on the hand-rim); (ii) the release (i.e., hands in the 18h position on the 

hand-rim) and; (iii) recovery phase (i.e., hands do not touch the hand-rim and are hyperextended 

backwards) respectively. 

4.2.3. Numerical simulation 

The CAD models were imported into Fluent CFD code (Ansys Fluent 16.0, Ansys Inc., 

Pennsylvania, USA). The numerical simulation was underpinned by the discretization of the 

Navier-Stokes equations by the finite volumes methods. The Reynolds-Averaged Navier-Stokes 

converts instantaneous values into means. Fluent CFD code (Ansys Fluent 16.0, Ansys Inc., 

Pennsylvania, USA.) allowed to solve these equations using the finite volume approach, 

having the equations been integrated over each control volume. The behaviour of the fluid 

flow (equation 1), Reynolds stresses (equation 2), temperature (equation 3) and mass transfer 

(equation 4) have been solved as follows: 

  (1) 

  (2) 

  (3) 

  (4) 
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Where, μi and xi are the instantaneous velocity and the position, p is the instantaneous 

pressure, t is the time, ρ is the fluid density, v is the molecular kinematic viscous, cp is the 

heat capacity, k is the thermal conductivity, Sij is the strain-rate tensor, c is the 

instantaneous concentration, and D is the molecular diffusion coefficient. The Reynolds 

stresses component ( ), describes the turbulence of the mean flow being the exchange 

of momentum by the change of the fluid parcels. 

The realizable k-epsilon was the turbulence model selected for this research. This model 

present velocity histograms similar to standard k-ε, RST and RNG k-ε models. The latter 

models converged after 11876, 3208 and 2874 interactions respectively. However, earlier one 

(i.e. realizable k-ε) only required 1404 interactions to converge the solution, therefore, 

showing a higher computation economy (Aroussi et al., 2001). The aerodynamic drag force 

was computed as: 

                (5) 

Where FD is the drag force, CD represents the drag coefficient, v the relative velocity, Ad 

surface area and ρ is the fluid density. 

4.2.4. Boundary Conditions 

The three-dimensional domain was meshed to depict the fluid flow around the athlete-

wheelchair system (Fig 2). The whole domain (3m x 2m x 1.5m) was composed by 35 million 

of prisms and pyramids elements and created in the Ansys meshing module (Ansys Inc., 

Pennsylvania, USA).  

 

Figure 2. Wheelchair-athlete system in the enclosure. 

To create an accurate model, the grid node separation in areas of high velocity and pressure 

was decreased (Bixler, Pease & Fairhurst, 2007; Marinho et al., 2010). The subtract operation 

was used to separate the wheelchair-athlete from the enclosure and define it as an object 

inside the tunnel. This procedure was carried out for the three different positions (catch, 
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release and recovery phases). The body of the athlete-wheelchair system was aligned with 

the z-axis direction.  

The air velocity was set in the inlet portion of the dome surface (-z direction), with steady 

values between 2.0 and 6.5 m/s (increments of 1.5 m/s in each simulation). The turbulence 

intensity was set at 1×10−6%. The surface of the sprinter was modelled as a non-slip wall with 

zero roughness, at which scalable wall functions were assigned. The SIMPLE algorithm scheme 

was selected to solve the pressure-velocity coupling. For the spatial discretization, the 

Green-Gauss cell-based gradient was chosen (Ansys Inc, 2013). Pressure and momentum were 

defined as second order and second order upwind, respectively. Turbulent kinetic energy and 

turbulent dissipation rate were set as first order upwind.  

4.2.5. Outcomes 

The mean viscous and pressure drag components, total drag coefficient and total drag force 

were retrieved. The surface area was obtained by Geomagic studio (3D Systems, USA) and 

then the ACd computed. 

 

4.3. Results 

Viscous drag force ranged between 0.35 N and 2.94 N, from 2.0 m/s to 6.5 m/s, respectively 

(Fig 3). The highest magnitude was noted in the catch phase and the lowest in the recovery 

phase. The difference between catch and release phases was 3-4% across the selected speeds. 

The release and recovery phases differed by 1-2%. The differences between the catch and 

recovery phases were 3-4%. Thus, the differences between key-moments of the stroke cycle 

ranged between 1% and 4%.  

 



Chapter 4. The variations on the aerodynamics of a world-ranked wheelchair sprinter in the 
key-moments of the stroke cycle: a numerical simulation analysis.  

 38 

Figure 3. Viscous drag over the stroke cycle at 2.0 m/s (black column), 3.5m/s (dark grey column), 5.0 

m/s (light grey column) and 6.5 m/s (white column). 

The pressure drag ranged between 0.38 N and 5.51 N for the same speed range (Fig 4). The 

highest magnitude was noted in the catch phase; whereas, the lowest values in the recovery 

phase. The differences between catch and release phases were about 3% to 8% across the 

selected speeds. From the release to recovery phases, the differences ranged from 37% to 

43%. The catch phase differed in 43% to 52% from the catch phase. Therefore, the pressure 

drag differed about 3% to 52% over the entire stroke cycle. 

 

Fig 4. Pressure drag force over the stroke cycle at 2.0 m/s (black column), 3.5m/s (dark grey column), 

5.0 m/s (light grey column) and 6.5 m/s (white column). 

The total drag force ranged between 0.72 N and 8.45 N (Fig 5). The key-moment under less 

drag was the recovery, and the catch phase the highest. At the selected speeds, it was 

observed a decreasing drag from the catch to the release phase (3-7%). Between the release 

and recovery phase, total drag decreased between 21% and 24%. The catch phase differs from 

the recovery by 25-31%.  
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Fig 5. Total drag force over the stroke cycle at 2.0 m/s (black column), 3.5m/s (dark grey column), 5.0 

m/s (light grey column) and 6.5 m/s (white column). 

The ACd ranged from 0.24 to 0.41 m2 across the selected speeds. The lowest value was noted 

in the recovery phase and the highest in the catch phase (fig 6). From the catch to the 

release phases, the ACd decreased between 7% and 17%. From the release to the recovery 

phase, the difference was about 21-24%. The differences between the recovery and catch 

phases were 30-41%. Altogether, the best ACd was of the three key-moments was found in the 

recovery phase. 

 

Fig 6. Effective area over the stroke cycle at 2.0 m/s (black column), 3.5m/s (dark grey column), 5.0 

m/s (light grey column) and 6.5 m/s (white column). 
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4.4. Discussion. 

The aim of this study was to compare the aerodynamics in three key-moments of the stroke 

cycle in wheelchair racing by CFD. The recovery phase was the most aerodynamic position, 

followed-up by the release and catch phases. 

As above-mentioned, no research has been conducted assessing the aerodynamics of 

wheelchair sprinters by CFD. However, Forte et al. (2017) performed a numerical simulation 

of a road helmet in two different positions at speeds slower than 6.5m/s (near the typical 

speed reached by wheelchair sprinters in the T52 category). The ACd ranged from 0.024 to 

0.034 m2. The most aerodynamic position of the head and helmet was keeping an angle of 

attack of 0º (looking forward). Several studies can be found in the literature monitoring high-

speed vehicles in other sports. Winkler and Pernpeintner (2010) tested the brakeman’s 

(behind the pilot) arms position in bobsleigh. The authors reported that the bent arms 

position showed an ACd of 0.0596 m2 and with the arms stretched holding the sidewalls of the 

bobsleigh 0.0609 m2. The authors noted that the arms’ positions influenced by about 2% the 

ACd. Defraeye et al. (2010) performed a numerical simulation of a cyclist in three different 

positions. The ACd ranged from 0.169 m2 to 0.235 m2. Other studies were performed 

evaluating the cyclists’ ACd (Blocken et al., 2013; Griffith et al., 2014; Grappe et al., 1997; 

Defraeye et al., 2014). Blocken et al. (2013), performed an analysis of two cyclists in three 

different positions (upright, dropped and time-trial position) between 60 and 100km/h. The 

authors reported an ACd between 0.131 m2 and 0.211 m2. Time-trial was the most 

aerodynamic position. In this position the cyclists were keeping a flexed trunk and looking 

forward. Griffith et al. (2014), assessed the effect of the leg position on the ACd. The ACd 

ranged from 0.16 m2 to 0.24 m2 keeping symmetric and asymmetric knees alignment. The 

asymmetric knees alignment (one leg fully extended and the other flexed and raised close to 

the torso) presented the highest ACd.  

The values for viscous drag ranged from 3.35 N to 2.94 N. There are no reports about viscous 

drag in wheelchair racing that we can use to benchmark our data. It is possible to reduce 

viscous drag by decreasing the surface roughness, for instance, wearing specific garment. 

Viscous drag in cycling is about 5% of total drag (Defraeye et al., 2010). In our study, the 

viscous drag ranged from 35% to 49% of total drag. The higher contribution by viscous 

component to total drag in wheelchair racing in comparison to cycling can be due to: (i) 

maximal speed in the T52 category is about 6.5 m/s (i.e., 23.40 km/h). In cycling, performers 

can reach a higher speed. Studies are conducted at speeds over 60 km/h (Blocken et al., 

2013) and; (ii) the surface area of an athlete-wheelchair system is larger than a bicycle-

athlete system. Viscous drag is strongly dependent on the surface area, where a higher area 

will lead to a higher magnitude of this force. In the 12h arms position, viscous drag ranged 

from 0.36 N to 2.93 N. In the 18h arms position, the viscous drag varied from 0.35 N to 2.83 
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N. In the recovery phase, viscous drag values were between 0.34N and 2.81 N. In the 12h 

arms position it was noted the largest ACd. On top of that, the arms flection may had 

increased the surface roughness. In the 18h position, the arms were fully stretched 

downwards and the surface roughness might have decreased. This roughness can be due to 

wrinkles and folded tissue in the racing suit. Over the recovery phase, the arms are 

overstretched backwards and the trunk flexed forward. In this position, arguably the surface 

might have had a lower roughness because the arms are hyperextended backwards. 

Pressure drag ranged between 0.38 N and 5.51 N. The total drag ranged between 0.72 N and 

8.45 N. In cycling, the pressure drag accounts for 90% of the total drag. Apparel, such as 

helmets, may help to reduce pressure drag (Forte et al., 2017). Authors also reported that 

pressure drag is the main contributor for total drag in cycling, running and swimming (Barbosa 

et al., 2014; Faria, Parker & Faria, 2005; Barbosa et al., 2017). In our study, pressure drag 

had a contribution of 51-65% to total drag. Again, this might be caused by the wheelchair-

athlete surface area and the selected speeds. At higher speeds, pressure drag is prone to 

increase meaningfully. In this study, pressure drag varied in 12h arms position between 0.54 N 

and 5.51 N. In the 18h position, the differences were between 0.52 N and 5.09 N. In the 

recovery phase pressure drag values ranged between 0.34 N and 2.91 N. Pressure drag is 

generated by the pressure differences between the front and back boundaries of the body (in 

our case the wheelchair-athlete system) (Debraux et al., 2011; Kennedy & Lamo, 2013; Kyle, 

2013; Harun, 2012; Defraeye et al., 201; Kulfan, 2000). The recovery phase had the lowest 

pressure drag because the sprinter kept the upper-arms hyperextended backwards. In this 

position, the total length of the wheelchair-athlete system (length from the front wheel to 

the tip of the fingers extended backwards in the horizontal plane) increases slightly. 

Moreover, the geometry of the system is modified, keeping a more aerodynamic position 

(lower angle of attack by the upper-body) and decreasing the ACd. On the other side, in the 

18h position the overall geometry of the system increases the surface area. The upper-body is 

in an upright position and the upper-arms fully extended and facing downwards, increasing 

the area exposed on the direction of displacement. 

The ACd values ranged from 0.24 to 0.41 m2 across the selected speeds. Barbosa et al. (2016) 

noted an ACd of about 0.15 m2 in one elite wheelchair racer. The authors tested 

aerodynamics by coast-down technique. Hoffman et al. (2003), tested five different 

wheelchairs also by the coast-down technique, noting a value of 0.37 m2. Our findings (ACd: 

0.24-0.41 m2) are in alignment with these latter results. In our study, ACd varied in the 12h 

position from 0.32 m2 to 0.41 m2. In the 18h position, ranged between 0.31 m2 and 0.35 m2. In 

the recovery phase the ACd values were between 0.24 m2 and 0.29 m2. The ACd is the 

wheelchair-athlete system area that acts in the drag-production direction (Bouillod et al., 

2016). Thus, it is possible to argue that the different positions influenced the drag force 

(Crouch et al., 2017; Bouillod et al., 2016). The 12h arms position presented the highest drag-
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production area. In the 18h arms position, the trunk flection and the arms near the hand-rims 

seem to explain the decrease in the drag-production. The same might had occur in the 

recovery phase; despite the trunk flection and the arms in a hyperextended backwards 

position decreased ACd and the drag-production area. The drag coefficient (and as such the 

ACd of our sprinter) is affected by Reynolds number. In this study, our subject showed a 

Reynolds number of 2.82×105, 4.93×105, 7.04×105 and 9.15×105 at 2.0, 3.5, 5.0 and 6.5 m/s, 

respectively. For several bodies it is noted a significant drop in the drag coefficient at 

Reynolds number of 105 (Schlichting, 1979; 37]. E.g., in a sphere the drag coefficient 

decreased from about 0.6 to 0.4 increasing the Reynolds number between 4×105 and 8×105 

(Schlichting, 1979). At Reynolds number between 2×106 and 8×106 the drag coefficient 

decreased from 0.5 to 0.1 (Munson, Young & Okiishi, 1990). This effect is known as “drag 

crisis” and it is associated with the separation of the boundary layer from the surface of the 

sphere (Munson, Young & Okiishi, 1990). Similar phenomenon can explain why the ACd of the 

wheelchair-sprinter system decreased with increasing speed. 

Total drag ranged between 7% and 31%. However, between the catch and release phases the 

differences were only 3% to 7%. It is to note that the arms’ positions have a meaningful 

impact on the surface area. The different arms’ positions may increase the surface area and, 

therefore, the total drag. These results seem to be in accordance with literature. Reports in 

cycling and wheelchair racing noted that small variations in the rider’s positions may 

influence drag in about 10% (Ryschon & Stray-Gundersen, 1991; McLean et al., 1994; Paton, 

2006). In our case, the 12h arms position had a higher surface area in comparison with 18h 

and the recovery phase.  

In short distances, coaches should advise their athletes to perform the propulsive phase of 

the stroke cycle as fast and powerful as possible. This strategy aims to reduce the winning 

time. In elite wheelchair racers, the recovery phase represents 65% to 67% of the stroke cycle 

(Candau et al., 1999; Ridgway, Pope & Wilkerson, 1988; Gehlsen, Davis & Bahamonde, 1990; 

Cooper, 1990; Sanderson & Sommer, 1985). The remaining 33% to 35% represents the 

propulsive phase (Candau et al., 1999; Ridgway, Pope & Wilkerson, 1988; Gehlsen, Davis & 

Bahamonde, 1990; Cooper, 1990; Sanderson & Sommer, 1985). During the recovery phase, 

athletes should maintain a good body alignment and limbs’ symmetry as much as possible to 

prevent an increase in the drag. The arms must be kept backwards and fully stretched. In the 

propulsive phase, the arms must perform the propulsion in a symmetric position and athletes 

must avoid spending too much time in the 12h arms position. The athletes must start a new 

stroke cycle as faster as possible to avoid increasing the drag. Moreover, insights on the 

aerodynamics can also help coaches to prescribe training sessions. E.g., designing training 

session or drills/sets with the goal of reducing the intra-cycle speed decay (over the recovery 

phase) caused by a poor body alignment. 
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It can be addressed as main limitations of this study: (i) the simulations were performed in 

static positions; (ii) one single athlete was recruited; (iii) the maximal speed selected in this 

study was 6.5 m/s and the average pace of the world record at the moment of the data 

collection was 6.62 m/s; (iv) the numerical simulations were performed assuming a 

temperature of 15º C and no other temperatures were tested. 

 

4.5. Conclusion. 

The obtained results shown that aerodynamics varies along the three key-moments of the 

stroke cycle in wheelchair racing. The position with less drag acting on the athlete-chair 

system was the recovery phase. The positions submitting higher drag were the catch 

followed-up by the release phase. These findings suggest the importance of keeping an 

adequate body alignment to avoid an increase in the drag force and likewise an increase of 

the intra-cyclic variations of the speed within the stroke cycle. 

 

4.6. Practical Applications 

During a sprinting event athletes must perform their strokes as faster and powerful as 

possible. This will allow to reach sooner their maximal speed. A better knowledge of 

aerodynamics helps coaches to advise their athletes to maintain the body alignment and 

synchronization during propulsion. Thus, during the recovery phase, athlete’s upper limbs 

must assume a back and stretched position. It is also convenient to maintain a body alignment 

and symmetry as much as possible to prevent drag increase. Whereas, during the propulsive 

phase, the athlete’s arms must perform the propulsion in a symmetric position. Even more, 

the drag knowledge may help coaches to prescribe training sessions intending to surpass the 

resistive forces. The training prescription based in this data’s can help to reduce the intra-

cycle speed decay (due the recovery phase) from the drag force. 
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Chapter 5. Estimation of mechanical 

power and energy cost in elite 

wheelchair racing by analytical 

procedures and numerical simulations. 

 

Abstract 

The aim was to compare the mechanical power and energy cost of an elite wheelchair 

sprinter in the key-moments of the stroke cycle. The wheelchair-athlete system was 3D 

scanned and then Computational Fluid Dynamics was used to estimate the drag force. 

Mechanical power and energy cost were derived from a set of formulae. The effective area in 

the catch, release and recovery phases were 0.41m2, 0.33m2 and 0.24m2, respectively. Drag 

increased with speed and varied across the key-moments. The catch required the highest 

total power (range: 62.76-423.46W), followed-up by the release (61.50–407.85W) and the 

recovery (60.09-363.89W). 

Keywords: Paralympics, drag, sprinting, kinetics, power. 
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5.1. Introduction 

In wheelchair racing, propulsive forces play an important role in the athlete’s performance. 

Propulsive forces are produced pushing the wheel’s handrim periodically over a race (Forte et 

al. 2015). In a 100 m sprint, world-ranked wheelchair racers can perform about 40 full cycles 

pushing the handrim (Barbosa & Coelho. 2017). After each push, the athlete must reposition 

the hands on the handrim to perform another cycle (Forte et al. 2015; Barbosa & Coelho. 

2017).  So, it is possible to breakdown each stroke cycle in two main phases: (i) propulsive 

phase and (ii) recovery phase. The propulsive phase is split-up in catch phase (the first 

contact of the hand on the handrim) and release phase (the moment that hand break off 

contact with the handrim). During the recovery phase, athletes usually perform an elbow 

flection and hyperextension of the shoulder to bring back the upper-arms forward and 

prepare a new push (Barbosa & Coelho. 2017). 

A sprinter aims to reach the resultant maximal velocity as soon as possible, and keep it over 

the race. The wheelchair-athlete system is considered more efficient if it can deliver less 

mechanical power and/or energy cost of transportation for a given velocity or pace (Forte et 

al. 2015; Barbosa et al. 2016; Hoffman et al. 2003). To reach the maximal velocity, energy is 

required to generate motion and overcome the resistive forces (Forte et al. 2015; Barbosa & 

Coelho. 2017), thus: 

  (1) 

 
Where v is the wheelchair velocity, Ein the athlete delivered energy, Eloss the lost energy by 

the system and m the mass. The difference between Ein and Eloss encompasses the kinetic 

energy of the system (Barbosa et al. 2016). 

In wheelchair racing, the main forces of energy lost (resistive forces) are the rolling friction 

and the drag force (Barbosa et al. 2016; Fuss 2009). Coaches and sports analysts aim to 

reduce the resistive forces as much as possible to improve the final race time (Barbosa et al. 

2016; Fuss 2009; Barbosa et al. 2014; Forte et al. 2016). Small shifts in the rider’s position 

and the garments used can also help reducing the drag in about 10% (Barbosa et al. 2016; 

Forte et al. 2016; Rushby-Smith & Douglas. 2012; Martin. 1996; Forte et al. 2015). 

Nevertheless, the athlete’s position varies over the stroke cycle. To produce propulsion, the 

athlete must bend the upper-body (i.e. torso and head) from a reasonably vertical to 

horizontal position, looking forward and arms pushing the handrim between the twelve and 

eighteen hours’ positions (these are known as the catch and release phases, respectively) 

(Forte et al. 2015). After the release, the athlete performs the recovery phase. The arms are 
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back overstretched and will flex forward to prepare a new catch phase. Concurrently, the 

upper-body may do an extension reaching a slightly vertical position.  The change in the 

upper-body and arms’ position over the entire cycle is going to affect the drag force acting on 

the wheelchair-racer system (Forte et al. 2015; Forte et al. 2016).  

At least in cycling, small variation in the bike-rider system have a meaningful effect on the 

aerodynamic drag (Martin. 1996).  However, there is scarce evidence on this matter in 

wheelchair racing (Barbosa et al. 2016; Candau et al. 1999). These drag changes in the 

different positions of the stroke cycle may also affect the power and energy to reach the 

maximal speed. At 1.80 m/s, the drag accounts to almost 5% of the total resistive forces, and 

at 6.30 m/s nearly 30% (Barbosa et al. 2014). The rolling resistance accounts with 95% and 

70% of the total resistive forces at 1.80 m/s and 6.30 m/s, respectively (Barbosa et al. 2014).  

In wheelchair racing, it is possible to monitor the resistive forces by experimental testing 

(e.g. coast-down tests or wind tunnel), numerical simulations (e.g. computational fluid 

dynamics) and analytical models (a set of formulae) (MacLeish et al. 1993; Barbosa et al. 

2014; Forte et al. 2015).  Upon measuring the resistive forces and the inertial characteristics 

of the system, a set of analytical procedures can be used to estimate the mechanical work, 

power and energy (Wilson. 2004). Assessing the changes in the resistive forces over the stroke 

cycle by any of the above mentioned methods (experimental testing, numerical simulations or 

analytical procedures) enables the estimation of the intra-cyclic variation of the mechanical 

work, power and energy in the key moments of the cycle (i.e., catch, release, recovery). As 

far as our understanding goes, this has not been yet reported in the literature. One previous 

study selected the same analytical procedure, but having as inputs data collected by coast-

down technique (Barbosa et al. 2016). Nevertheless, Barbosa et al. (2016) aimed to compare 

the aerodynamics, mechanical work, power and energy at different racing positions (upright 

position, racing position with neck in flexion and racing position with neck in hyperextension) 

at a mean velocity of 6.298m/s (Barbosa et al. 2016). As far as our understanding goes, this 

study is the first attempt to run such analysis based on computational fluid dynamics (CFD) 

and comparing the three key-moments of the stroke cycle. 

Hence, the aim was to compare the mechanical power and energy cost of transportation 

delivered by an elite wheelchair sprinter in the key-moments of the stroke cycle. It was 

hypothesized that: (i) the mechanical power and energy cost will vary in the different key-

moments of the stroke cycle, and; (ii) the catch is the phase that demands more power and 

energy cost, followed-up by the release and then the recovery phases. 
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5.2. Methods 

5.2.1. Participant 

A male wheelchair sprinter competing in the T52 category was recruited for this research. He 

holds the national records in the 100 m and 400 m events, was a finalist at Paralympic Games 

and World Championships in these same events and is an European medallist in the 100 m 

event. He was wearing his race suit and competition helmet. All procedures carried out in this 

research are in accordance to the Declaration of Helsinki. A written consent was obtained 

from the participant.  

5.2.2. Scanning the Model 

The wheelchair-athlete system (49.16 kg) was 3D scanned (Artec Group, Inc., Luxembourg) in 

three different positions (Figure 1) of the stroke cycle (catch: with the hands on the handrims 

in the 12 h position; release: with the hands on the handrims in the 18 h position; recovery 

phase: with the arms hyperextended backwards and overstretched). 

Artec Studio 0.7 (Artec, USA) software was used to record, smooth and merge all the scans. 

The Geomagic studio (3D Systems, USA) software was used to edit the merged scans into a 

single object without surface errors and upon than export it as a CAD model (*.iges) (Figure 

1). Then, the model was imported in Fluent code (Ansys Fluent 16.0, Ansys Inc., Pennsylvania, 

USA) to run the numerical simulations. 

 

Figure 1. CAD model of the three different scanned positions: (i) catch phase; (ii) the release phase and; 

(iii) recovery phase respectively. 
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5.2.3. Boundary Conditions 

The entire domain featured 35 million prismatic and pyramidal elements. The grid node 

separation reduction in selected areas of high velocity and pressure, allowed to generate an 

accurate model (Bixler et al. 2007; Marinho et al. 2010). The domain was created in Ansys 

meshing module (Ansys Fluent 16.0, Ansys Inc., Pennsylvania, USA) with a tunnel form (3 m 

length, 2 m height and 1.5 m width). The boolean subtract action was made to separate the 

wheelchair-athlete from the enclosure, this procedure defined that the wheelchair-athlete 

was an object (i.e., body) inside the tunnel. The described procedure was repeated for the 

three key-moments of the stroke-cycle (i.e., catch, release and recovery phase).  

The air velocity was set in the –z direction and in the inlet portion of the dome surface. The 

initial velocity of the numerical simulations was set at 2 m/s with increments of 1.5 m/s up to 

6.5 m/s. The fluent (Ansys Fluent 16.0, Ansys Inc., Pennsylvania, USA) post process allowed 

the estimation of the aerodynamic drag (Forte et al. 2015). 

5.2.4. Numerical Simulation 

The CFD simulations encompassed the discretization of the Navier-Stokes equations by the 

finite volumes approaches. The equations result from Newton’s Second Law where in 

mechanics, the fluid stress is the sum of the diffusion of its viscosity. This diffusion of its 

viscosity results from an applied pressure term (Marinho et al. 2012; Marinho et al. 2011). The 

Reynolds-Averaged Navier-Stokes converts instantaneous values into means. The fluid flow 

behaviour (equation 2), Reynolds stresses (equation 3), temperature (equation 4) and mass 

transfer (equation 5) are then solved: 

  (2) 

   (3) 

   (4) 

    (5) 
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Fluent CFD code (Ansys Fluent 16.0, Ansys Inc., Pennsylvania, USA) was selected to run the 

above mentioned simulations. To represent the domain and fluid flow around the wheelchair-

athlete system, a 3D grid or mesh with divided cells was formed in Ansys Meshing module 

(Ansys Fluent 16.0, Ansys Inc., Pennsylvania, USA). 

The realizable k-epsilon was selected as turbulence model. This model delivered velocity 

histograms identical to the standard k-e model, RST and RNG k-e model. Standard k-e, RST 

and RNG k-e models used to converge after 11876, 3208 and 2874 interactions respectively. 

Moreover, as far as computation economy is concerned, the realizable k-epsilon is much more 

efficient because the solutions converge after 1404 interactions (Pogni & Nicola. 2016) (Pogni 

and Nicola, 2016).  

5.2.5. Drag force 

Total aerodynamic drag (Fd) and frontal surface area were retrieved from Fluent code (Ansys 

Fluent 16.0, Ansys Inc., Pennsylvania, USA) software. 

To compute the drag force, equation 6 was used: 

  (6) 

where, Fd is the drag force, CD represents the drag coefficient, v the velocity, A the surface 

area and ρ is the air density. The effective area (ACd) was calculated by the multiplying CD 

by A. The A was extracted also from Fluent software. 

5.2.6. Mechanical Power and Energy Cost 

The power to overcome drag was calculated at the selected speeds as (Barbosa et al., 2016): 

          (7) 

Where Pd is the power to overcome drag, Fd the drag force and vx the horizontal velocity.  

The assumed gross efficiency of wheelchair racers was 18% (Barbosa et al., 2016; Candau et 

al., 1999). The assumed CR was 0.01 as reported for this same participant in another paper 

(Barbosa et al., 2016; Barbosa and Coelho, 2017). The power output (i.e. energy expenditure 

per unit of time), the energy cost (i.e., energy expenditure per unit of distance) and the 

external mechanical power delivered were estimated as (Cooper et al., 2003): 



Chapter 5. Estimation of mechanical power and energy cost in elite wheelchair racing by 
analytical procedures and numerical simulations.  

 51 

        (8) 

          (9) 

         (10) 

Where, Ptot is the total power, CR the rolling coefficient, m the body mass of the wheelchair-

sprinter system, g the gravitational acceleration, v the mean velocity over the race, ρ the air 

density, A is the surface area and CD the drag coefficient, C the energy cost, Pext the 

external mechanical power and η the gross efficiency. 

 

5.3. Results 

Figure 2 reports the Pd, Ptot, C and Pext per unit of distance in the key-moments of the 

stroke cycle at the selected speeds. The Fd increased with speed, ranging  between 0.72 N 

and 8.45 N. The recovery phase showed the lower drag intensity, followed by the release and 

then the catch phases. The Fd decreased from the catch to the release phase between 3% and 

7% and, from the release to the recovery in about 21% to 24%. The increase from the recovery 

to catch phase was 25-31%. The ACD values were 0.24m2 in the recovery phase, 0.33m2 in the 

release phase and 0.41m2 in the catch phase. 

The power to overcome drag also increased with speed and ranged between 1.45 W and 54.93 

W. The recovery phase presented the lower power to overcome the drag, followed by the 

release phase. The catch phase presented the highest values. Between the catch and release 

phase, Pd decreased about 3% to 7%. Between catch and recovery phase decreased by 25% to 

31% and from the release to the recovery phases between 21% and 24%.  

The total power varied from 60.09 W to 423.46 W and increased with speed. The lowest 

values were observed in the recovery; whereas, the highest Ptot were noted in the catch 

phase. The differences between the catch and release were about 3% to 7% across selected 

speeds. The catch phase differed from the recovery phase about 8% to 21%. The differences 

between the release and recovery phases were about 4% to 15%. 

The external mechanical power values ranged from 10.82 W to 76.22 W across the different 

positions and increased with speed. The phase showing less Pext being delivered was the 

recovery. The catch phase presented the highest Pext. The catch phase differed from the 
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release phase in about 3% to 8% and from the recovery phase in approximately 7% to 21%. 

Between the release and recovery phase differences were about 4-15%. 

 

Figure 2. Power to overcome drag (Pd), external mechanical power (Pext) and total power (Ptot) in the 

three key-moments of over the stroke cycle at 2.0, 3.5, 5.0 and 6.5 

The C ranged between 33.33 J/m and 276.26 J/m. The key-moment that demanded less C, at 

the selected speeds, was the recovery phase; conversely, the catch phase demanded the 

highest cost. From the catch to the release, differences were about 6% to 12%. From the 

catch to the recovery phase, C decreased between 13% to 30%. The release phase differed 

from recovery phase about 6% to 21%. 

 

Figure 3. Energy cost (C) over the three key-moments of the stroke cycle at 2.0, 3.5, 5.0 and 6.5 m/s. 
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5.4. Discussion 

The aim of this study was to compare the mechanical power and energy cost of transportation 

delivered by an elite wheelchair sprinter in key-moments of the stroke cycle. The main 

findings were that: (i) the mechanical power and energy cost of transportation varied in the 

different key-moments of the stroke cycle; (ii) the catch was the phase that required more 

power and energy cost followed-up by the release and then the recovery phases.  

A wheelchair for team sports was noted as having a CR between 0.015 on a carpet, and 0.005 

on wood floor (Chua et al. 2010). A standard wheelchair had a different CR on hard surface, 

smooth surface and carpet, depending of the wheel’s type (0.001 in soft caster on hard and 

smooth surfaces and 0.007 of solid tire on a carpet) (Sauret et al. 2012). Similar CR was 

reported for five different types of wheelchairs on linoleum and carpet (0.0013 on linoleum 

for a racing wheelchair and 0.0212 of a folding wheelchair on linoleum) (McLean et al. 1994). 

Our assumption was a CR of 0.01 as measured by experimental testing on this same 

participant early on (Barbosa & Coelho. 2017; Barbosa et al. 2016; Hoffman et al. 2003). 

Other assumptions were a temperature of 15ºC and  density of 1.225 kg/m3. This same 

temperature and density were also noted by Blocken et al. (2016) for road cycling.  Indeed, 

this environmental conditions are Fluent’s default values (Ansys Fluent 16.0, Ansys Inc., 

Pennsylvania, USA) (ANSYS, 2013).Gross efficiency was assumed to be 18% as noted in the 

literature (Cooper et al. 2003; Vanlandewijck & Thompson. 2011). E.g., Cooper et al. (2003) 

tested twelve elite wheelchair racers on a computer monitored wheelchair dynamometer. 

The authors reported a gross mechanical efficiency of 18% as well. Vanlandewijck & 

Thompson (2011), also reported a gross mechanical efficiency of wheelchair racers between 

15% and 23%.  

The drag ranged between 0.72 N and 8.45 N. These results seem to match the range reported 

using cost-down techniques (Barbosa et al. 2016; Hoffman et al. 2003). Hoffman et al. (2003) 

noted an ACD of 0.37 m2. Barbosa et al. (2016) studied the ACD of a racing wheelchair in 

three different racing positions by cost-down and photogrammetric techniques. The ACD 

ranged between 0.1456 m2 and 0.1747 m2. In cycling and wheelchair racing it is noted that 

small variations in the rider’s positions may influence drag in about 10% (Rushby-Smith & 

Douglas. 2012; Martin. 1996; McLean et al. 1994). The ACD ranged between 0.24 m2 and 0.41 

m2. These values seem to be in accord with findings by Hoffman et al. (2003). Even so, in our 

research, at 6.5 m/s, the differences between the ACD and the values reported by Barbosa et 

al. (2016), at a racing position was almost 0.2 m2. The difference can be explained by the 

testing techniques selected (numerical simulations vs cost-down), testing conditions 

(comparison of the key-moments in the stroke cycle vs comparison of different racing 

positions) and inputs or assumptions (e.g. different climacteric conditions selected as inputs). 

The ACD values in our study are dependent of athlete’s anthropometry and individual 
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characteristics. The catch phase showed the highest Fd. It differed from the release between 

3% and 7% and from the recovery between 25 and 31%. The release phase had higher values 

than recovery in about 21% to 24%. These differences can be explained by the surface area in 

the different phases of the stroke cycle. The catch phase had a larger surface area when 

compared to the release; whereas, the release phase had a larger surface in comparison to 

the recovery phase. The increase in surface area in the catch phase might be due the arms 

position (elbow flection and with lateral projection). In the release phase, the subject upper-

limbs were stretched and closed to the handrims. In the recovery phase, the upper limbs 

were overstretched backwards. 

The power to overcome the resistive forces had been studied in wheeled vehicles (Barbosa et 

al. 2016; Hoffman et al. 2003; Candau et al. 1999). In cycling, the Pd ranged between 10 W at 

1.2 m/s and 80 W at 5.5 m/s (Candau et al. 1999). In wheelchair racing, Barbosa et al. (2016) 

reported that less power was needed to overcome the drag in the racing positions with the 

neck in hyperextension (22.19 W). In this study, in a similar position and at 6.5m/s the power 

to overcome the drag was 54.93 W. Firstly, the relationship between power and speed is 

cubed (Pd=D.v=k.v2.v=k.v3). Secondly, the ACD reported by these authors was smaller than 

the one obtained in this study. The chair and garment used by the athlete was different in 

both studies. Others aimed to assess the resistive forces by coast-down in different types of 

wheelchairs (Hoffman et al. 2003). In a racing wheelchair at 5m/s, Pd was 35 W. However, 

after the acceleration the subject placed the hands on his knees and the torso was kept in the 

upright position (Hoffman et al. 2003). This position increases the surface area and hence, 

the Pd. Despite the difference, and considering that the subject was not in a racing position, 

the results seem to match ours. At 5m/s, the Pd was 25.59 W, 24.45 W and 19.67 W in the 

catch, release and recovery phases, respectively. Between positions, the catch phase had the 

highest Pd, followed by the release and then the recovery phase. Pd is dependent on the 

speed and Fd (equation 6). Thus, a poor aerodynamic position will require an increase in the 

Pd. 

Barbosa et al. (2016) reported a total power between 602.55 W and 630.71 W at 6.238 m/s in 

different racing positions. Pelland-Leblanc et al. (2013) noted the power transfer evaluated 

by an optical encoder on a track, reporting a mean value of 555 W at 5.34 m/s. These results 

seem to match what was obtained at 6.5 m/s. Breaking down by key-moments of the stroke 

phase, the catch phase demanded the highest Ptot and the recovery the lowest. The catch 

phase presented a higher drag due the arms position near the handrims. The elbows flexion 

and abduction in the catch phase increased the wheelchair-athlete’s width. A higher width 

may lead to a higher surface area and a higher Ptot is required to surpass drag. In our study, 

Ptot increased with speed. 

The energy cost reported by Barbosa et al. (2016) ranged between 95.67 J/m and 100.14 

J/m. Abel at al. (2003) assessed the energy cost on handbiking and wheelchair racing by 
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spirometry in an endurance test. At almost 6 m/s, the C was on average 95.55 ± 19.14 J/m. 

These results seem to be in tandem to our data. Therefore, our estimation seems to be a 

good approximation. At 5 m/s the C ranged between 142.98 J/m and 115.99 J/m, depending 

on the position adopted. The catch phase imposed the highest energy cost in comparison to 

release and recovery phases. The recovery phase led to the lowest energy cost. Because there 

is no propulsion been applied on the handrim, one may argue that the C should be almost 

null, or at least, neglectable. Nevertheless, the wheelchair-athletes keeps its motion due the 

inertia. Thus, the system’s motion will not stop unless the resistive forces overcomes the 

inertial force. At each propulsive phase, the inertial force increase and allows to keep the 

wheels in  motion during the recovery phase. In our study, the C increased with speed. Also in 

handbiking, the C increased with speed (Abel et al., 2003). In cycling, it was possible to 

observe that different positions lead to a higher or lower energy cost (Ryschon & Stray-

Gundersen, 1991). The standing position presented a higher energy cost compared to a sitting 

position when monitored by the measurement of the oxygen uptake. The standing position 

presented a larger surface area and a higher energy cost. In our study the position with the 

largest effective area also denoted the highest energy cost. 

The external mechanical power ranged between 10.82 W and 76.22 W. Barbosa et al. (2016), 

noted a variation between 108.51 W and 113.59 W for different racing positions. It is to point 

out that the authors presented a higher Pext in comparison to our results. In a study on 

basketball wheelchairs, the Pext was evaluated on a roller ergometer in two different time 

periods (Theisen et al. 1996). The mean Pext was calculated during 15 cycles in each stage 

and was computed by the momentary torque and angular velocity in the rear wheels. The 

exercise test was continuous with stages of three minutes. The subjects started at the tests 

at 0.58 m/s with increments of 0.28 m/s. The subjects did not reach their maximal capacity 

in the same stage, four reached 1.94 m/s, six reached 2.22 m/s and one was able to continue 

up to 2.50 m/s. Pext values ranged between 12 W and 63 W over the incremental 

protocol.The mean Pext values were 50.92± 6.02 W and 50.73± 5.74 W. In our study, Pext 

ranged between 10.82 W and 11.30 W at 2 m/s. might be explained by the fact that racing 

wheelchairs require less power to reach a higher speed. The maximal speed reached in 

basketball wheelchair was 2.5 m/s and in racing wheelchair almost 7 m/s.  

Altogether, the ACD and speed play important roles in Fd, Pd, Ptot, C and Pext (equations 6, 

7, 8, 9 and 10). The evaluated variables increased with speed. This was expected hence Fd, 

Pd, Ptot, C and Pext are speed dependents. The variables also varied in the different key-

moments of the stroke cycle. That was explained by the effective area differences between 

positions. Positions with higher surface area and effective area lead to higher drag and 

required a higher Pd, Ptot, C and Pext to surpass the resistive forces. 

Athletes’ technique and muscle strength are determinant to deliver maximal power. So, they 

must be advised to enhance muscular strength and power, to perform explosive pushes in 
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each stroke cycle (Barbosa and Coelho, 2017). In the 100m event in the T52 category, it is 

hard to reach the maximal muscular power and speed due to the athletes’ handicap. Thus, 

they must start the race performing, faster and explosive pushes (Barbosa and Coelho, 2017). 

For instance, these results may help coaches and athletes to design training sets at the 

required muscle power for a given speed or pace (i.e., sets of 15 seconds at 423 W). 

The main limitations of this study were: (i) a set of assumptions were used to run the 

calculations (the rolling resistance, temperature, density and gross efficiency); (ii) the 

participant recruited is only representative of world-class athletes and not counterparts of 

other tiers; (iii) a comparison of mechanical power and energy cost estimation by numerical 

simulations and experimental testing (e.g., wind tunnel) is suggested. 

 

5.5. Conclusion 

The resistance acting upon the wheelchair racing sprinter increased with speed and varied 

across the different key-moments of the stroke cycle. The mechanical power and energy cost 

increased with speed. The phase demanding more power and energy cost was the catch 

phase, followed-up by the release and then the recovery phases. Athletes should maintain a 

proper body alignment and synchronization during the stroke cycles, enabling to reach and 

keep a maximal speed with a lower energy cost. Coaches and other practitioners can use 

these findings to carry out and evidence-based practice helping the athletes to improve their 

efficiency. 

 

5.6. Practical Applications 

Coaches should be aware that the stroke technique and muscle strength are determinant 

factor to improve speed. Training these two variable it becomes easier for athletes to 

accelerate and overcome inertia. Increasing the muscle power will allow produce explosive 

movements, determinant at the beginning of the race. 
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Chapter 6. General Discussion 

The aim of this thesis was to assess the aerodynamics of a world-ranked wheelchair racer by 

computer fluid dynamics. In addiction it was intended to verify the helmets impact on drag. 

Our findings were that time-trial helmets had lower drag than track helmets. However, 

athletes must look forward using a time trial helmet; whereas, if they perform a neck flection 

during the race, a track helmet is recommended. Analysing the different positions that the 

athletes adopt during a race (key-moments during a stroke cycle), the recovery phase 

presented the lower drag, followed by the release phase and then, the catch phase. Our data 

showed that the aerodynamics of a world-ranked wheelchair racer vary in the different key-

moments of the stroke cycle. Even more, athletes must wear a time-trial helmet and looking 

forward during the sprinting events. The body alignment and synchronization during the 

strokes must be a concern for athletes and coaches intending to reduce drag. 

The first step of this thesis was to conduct a review that comprised the published studies on 

aerodynamics in wheelchair racing. Chapter 2 allowed noting that the knowledge about the 

wheelchair-racing aerodynamics was scarce. It was possible to find information about: (i) the 

main determinants in wheelchair racing; (ii) the effect of aerodynamic force in wheelchair 

racing performance; (iii) tools like analytical models, experimental testing, and numerical 

simulations to evaluate the resistive forces in wheelchair racing; and (iv) report the existence 

and appliance of the numerical simulations on equipment and techniques. However, no study 

was founded testing wheelchair racing aerodynamics by computer fluid dynamics. The main 

determinants in wheelchair racing are the propulsive and resistive forces. The propulsive 

force is the push on the handrim, producing motion (i.e. the applied force by the ground in 

the wheel). The resistive forces are the Fr and Fd (Fuss, 2009). The propulsive stroke cycle 

can be split up in propulsion phase (catch of the hands on the handrims, drive and release) 

and recovery phase (Fuss, 2009). Thus, it is possible to identify three key-moments in the 

stroke cycle, the catch and release phases and the recovery phase. Some analytical models 

can be founded in literature assessing aerodynamics in wheelchair racing (Forte et al., 2015). 

Wind tunnel tests have also been performed in wheelchair racing (MacLeish, Cooper, 

Harralson & Ster, 1993). Even more, coasting deceleration methods had also been used in this 

sport (Barbosa et al., 2014; Barbosa et al., 2016). 

CFD methodology has already been used for equipment tests in wheeler riders’ helmets. CFD 

can provide information about the helmets (Pinnoji & Mahajan, 2006). Some tests revealed 

that the most drag came from the athlete and that small shifts in ridder position could save 

10% of the aerodynamic drag (Rushby-Smith & Douglas, 2012). CFD can be applied in different 

fabrics, helmets and wheelchairs. Also different rider’s positions must be analysed, like the 

head position during the race (flexed head in the start of the race or the look forward 
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position). The fluid flow analysis in each stroke phase should also be analysed aiming to reach 

the ideal motion in the stroke phase and recovery one (Barbosa et al., 2014). Thus, CFD 

analysis should be performed to fulfil the lack of literature in this area. 

The literature presents some studies testing helmets by CFD. However, the studies were 

performed at higher speeds than in wheelchair racing. Thus, aiming to test equipment’s wear 

by wheelchair racing athletes, numerical simulations on a track and time trial helmet was 

performed until 6.5 m/s. This aimed to compare two different helmets (track vs time trial) at 

different speeds and head positions by CFD.  

In the Chapter 3 the aim was to compare two different helmets (track vs time trial) at 

different speeds and head positions by CFD. The drag ranged from 0.0660 to 0.8475 N. Arlem 

et al. (2014), reported drag value near 1 N. However, the selected velocities were higher 

than 6.5 m/s and the rider shoulders were also included in the simulations. Others were in 

accordance with our results, reporting 0.319 N of drag force for a time trial helmet. However, 

the simulation was performed only for the helmet (i.e., without scanning the head) but at a 

higher velocity (13.4 m/s or faster) (Sidelko, 2017). Time trial helmets produced less drag in 

the looking forward position. Thus, wheelchair racing athletes might wear time trial helmets 

if they keep looking forward during the race. 

Chapter 3 provided details on the best helmet to be selected racing a sprinting event. 

However, the athlete’s position on the wheelchair during the race remains to be analysed. 

That said, a new study was designed to assess the aerodynamics of a wheelchair-athlete 

system. 

The aim of chapter 4 was to compare the aerodynamic intra-cyclic variation in three key-

moments of the stroke cycle in wheelchair racing by CFD. The recovery phase was the most 

aerodynamic position, followed by the release and catch phases. No research was founded 

assessing racing wheelchair aerodynamics by CFD. Several studies can be found in the 

literature on other sports involving high-speed vehicles (Winkler and Pernpeintner, 2010; 

Blocken et al., 2013; Griffith et al., 2014; Grappe et al., 1997; Defraeye et al., 2014). 

The values for viscous drag ranged from 3.35 N to 2.94 N. There are no reports about viscous 

drag in wheelchair racing. In cycling viscous drag represents roughly about 5% of total drag, 

and the remaining 95% is due to the pressure drag (Defraeye et al., 2010). In our study, the 

viscous drag ranged from 35% to 49%. The total drag ranged between 0.72 N and 8.45 N. In 

our study, pressure drag had a contribution of 51% to 65% to total drag. The ACd values 

ranged from 0.24 to 0.41 m2 across the selected speeds. Barbosa et al. (2016), noted an 

effective area of about 0.15 m2 in one elite wheelchair racer and Hoffman et al. (2003) 

reported an ACd for wheelchair racing of 0.37 m2. During the recovery phase, athletes should 

maintain a body alignment and symmetry as much as possible to prevent drag increase. The 
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arms must assume a back and stretched position. In the propulsive phase, athlete’s arms must 

perform the propulsion in a symmetric position.  

Chapter 4 allowed assessing the drag of a wheelchair racing sprinter. Then, knowing the 

resistive forces, estimations about mechanical power and energy expenditure over an official 

race are possible to obtain. The aim of chapter 5 was to assess the mechanical power and 

energy cost in different athlete’s positions. 

In Chapter 5, the aim was to compare the mechanical power and energy cost of 

transportation delivered by an elite wheelchair sprinter in key-moments of the stroke cycle. 

The main findings were that: (i) the mechanical power and energy cost of transportation 

varied in the different key-moments of the stroke cycle; (ii) the catch was the phase that 

required more power. 

The obtained drag ranged between 0.72 N and 8.45 N. No results were founded in the 

literature on the Fd of wheelchair sprinters. However, our results seem to be similar to what 

was reported assessing the aerodynamics by a cost-down technique (Barbosa et al., 2016; 

Hoffman et al., 2003). The authors noted an ACd of a racing wheelchair between 0.1456m2 

and 0.1747m2 and 0.37m2 respectively. In our study, ACd ranged between 0.24m2 and 0.41m2.  

The power to overcome the resistive forces had been studied in wheeled vehicles (Barbosa et 

al., 2016; Hoffman et al., 2003; Candau et al., 1999). In wheelchair racing, Barbosa et al., 

(2016) reported that the necessary power to overcome the drag racing positions with the neck 

in hyperextension was 22.19 W. In this study, the power to overcome the drag was 54.93 W. It 

can be founded some reports in literature that report a Ptot between 555 W and 6630.71 

(Barbosa et al., 2016; Pelland-Leblanc et al., 2013). In our study Ptot ranged between 60.09 

W and 423.46 W. In literature, the energy cost by wheelchair racing and handbiking athletes 

varied between 95.55 and 100.14 J/m (Barbosa et al., 2016; Abel at al., 2003). Our 

estimation seems to be a good approximation. At 5 m/s the C ranged between 142.98 J/m 

and 115.99 J/m. The external mechanical power ranged between 10.82 W and 76.22 W. 

Barbosa et al., (2016), noted a variation between 108.51 W and 113.59 W for different racing 

positions. It is to note that the authors presented a higher Pext compared to our simulations. 

The resistance acting upon the wheelchair racing sprinter increased with speed and varies 

across the different key moments of the stroke cycle. The mechanical power and energy cost 

increased with speed. The phase demanding more power and energy cost is the catch phase, 

followed-up by the release and then the recovery phases.  

Altogether, a time trial helmet imposed lower drag keeping a neck hyperextension. The 

athletes must keep looking forward wearing a time trial helmet. The Athletes must be aware 

that the aerodynamics varied over the different phases of the stroke cycle. Finally, the 

mechanical power and energy cost in elite wheelchair racing varied in different phases of the 
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stroke cycle. Power targets can be defined during a race or a set of trainings. Finally, 

athletes must maintain the body alignment during the stroke cycle intending to reduce drag, 

mechanical power and energy expenditure during a race. 
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Chapter 7. Overall Conclusion 

7.1. Conclusions 

The main findings of this thesis were: 

i. There is a lack of research on wheelchair racing aerodynamics’ assess by CFD (chapter 

2);  

ii. A time trial helmet imposed lower drag keeping a neck hyperextension (chapter 3);  

iii. The aerodynamics of a wheelchair racing athlete varied over the different phases of 

the stroke cycle (chapter 4);  

iv. The mechanical power and energy cost in elite wheelchair racing varied in different 

phases of the stroke cycle (chapter 5). 

The main conclusion of this thesis was that it is possible to improve the aerodynamics of a 

wheelchair sprinter by wearing the appropriate helmet and keeping the body alignment 

during the stroke cycle.   

7.2. Limitations 

The main limitations of this thesis were:  

 The recruited athlete is only representative of his category; 

 The standard K-ε turbulence model was not selected for these simulations;  

 The enclosures for helmet and wheelchair-athlete did not have the same formats and 

sizes. 

7.3 Suggestions for Future Research 

Suggestions for follow-up studies or spin-offs of this thesis are: 

 To evaluate and design customized helmets for each wheelchair sprinter. 

 To perform the numerical simulations in different categories and athletes. 

 To perform numerical simulations with other wheelchair-athlete’s geometries, 

evaluating the side-by-side drag effect during a race. 
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