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Resumo alargado 
 

A infeção causada pelo Vírus do Papiloma Humano (HPV) é uma doença sexualmente 

transmitida, que afeta tanto homens como mulheres a nível mundial. Em último caso, a 

infeção causada pelo HPV pode levar ao aparecimento de massas tumorais. De facto, o ácido 

desoxirribonucleico (DNA) do HPV foi encontrado em 99,7% dos casos de cancro do colo do 

útero, provocando mais de meio milhão de mortes. A progressão do cancro é devida à 

expressão das oncoproteínas E6 e E7, consideradas tumorogénicas pela sua capacidade de 

alterar o ciclo celular, sendo estas responsáveis pela replicação viral e transformação e 

imortalização das células hospedeiras. Atualmente, existem apenas duas vacinas 

comercializadas contra a infeção pelo HPV: a Gardasil® e a Cervarix®. Estas vacinas 

profiláticas ativam unicamente a imunidade humoral, pela geração de anticorpos contra o 

HPV e são somente preventivas, ou seja, apenas são efetivas antes de ocorrer a infeção. 

Assim, as vacinas terapêuticas têm a promissora vantagem de conseguir eliminar lesões pré-

existentes e até tumores. 

Surgem então algumas estratégias terapêuticas inovadoras, como a terapia génica e as 

vacinas de DNA, que ativam tanto a resposta humoral como a celular, permitindo a prevenção 

e o tratamento de doenças como o cancro do colo do útero. Nas vacinas de DNA, o uso do DNA 

plasmídico (pDNA) como vetor não viral torna-se bastante apelativo, não só pela sua baixa 

toxicidade e elevada segurança, mas também pela simples produção e aplicação. A produção 

destas vacinas requer a purificação à escala preparativa do pDNA superenrolado (sc), 

considerada a isoforma biologicamente ativa. É, por isso, necessário explorar diversas 

estratégias de purificação de forma a obter o maior rendimento e pureza do pDNA sc. 

A cromatografia de afinidade com aminoácidos tem demonstrado ser uma abordagem 

promissora, pois permite a interação seletiva entre ligandos específicos e as biomoléculas de 

interesse, à semelhança de interações biológicas que ocorrem naturalmente entre proteínas a 

aminoácidos no organismo. Para além disso, o uso de monolitos como suporte cromatográfico 

tem vindo a demonstrar que estes suportes são uma excelente alternativa aos convencionais, 

visto terem uma maior capacidade de ligação para moléculas de grandes dimensões e que 

possibilitam a utilização de fluxos mais elevados, diminuindo o tempo de retenção da 

biomolécula de interesse, evitando assim a sua degradação. 

Assim, o presente trabalho teve como primeiro objetivo explorar diferentes estratégias de 

eluição cromatográficas, utilizando um monolito de arginina com um braço espaçador, no 

sentido de purificar o pDNA sc a usar numa vacina de DNA contra o cancro do colo do útero. 

Inicialmente, foram realizados vários ensaios, quer em condições de eluição iónicas quer 

hidrofóbicas, para avaliar o comportamento cromatográfico e a influência dos diferentes 

grupos imobilizados no monolito de epóxi. Depois, o monolito de arginina com um braço 
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espaçador foi caracterizado em termos de capacidade dinâmica de ligação (2.53 mg/mL 

obtido a 10% da curva “breakthrough”), confirmando que este suporte apresenta maior 

capacidade de ligação do que um suporte convencional (0.133 mg/mL), modificados com o 

mesmo ligando (arginina). Por outro lado, este valor é menor que o valor de capacidade de 

ligação obtido com o monolito de arginina (3.55 mg/mL), provavelmente devido à 

eletronegatividade do braço espaçador que promove repulsão pelo pDNA. Para avaliar a 

seletividade do suporte, vários ensaios foram realizados utilizando amostras de plasmídeo 

pré-purificado com o kit comercial (isoformas circular aberta, linear e sc), manipulando a 

concentração de cloreto de sódio (NaCl) e o pH do tampão de eluição. Os resultados 

comprovaram que é possível obter a isoforma sc purificada, apesar da sua recuperação ser 

ligeiramente sacrificada. Posteriormente, prosseguiu-se para a purificação do pDNA sc a 

partir de uma amostra mais complexa de lisado de Escherichia coli (E. coli). Diferentes 

estratégias de eluição foram abordadas, incluindo a manipulação de NaCl e pH, assim como a 

adição de arginina no tampão de eluição como agente de competição. Após várias 

otimizações, a estratégia que melhor resultou na purificação da isoforma de interesse foi a de 

um gradiente por passos com o tampão de equilíbrio a 680 mM de NaCl em tampão 10 mM tris 

e 10 mM EDTA (Tris-EDTA), pH 7 e o tampão de eluição a 649 mM e 1 M de NaCl em Tris-EDTA, 

pH 7,5. Esta estratégia cromatográfica permitiu obter o plasmídeo sc com 93,3% de pureza e 

72% de recuperação. A aplicabilidade do monolito de arginina com um braço espaçador na 

purificação do plasmídeo à escala preparativa também foi avaliada, tendo-se recuperado o 

plasmídeo com 98,5% de pureza. As impurezas (DNA genómico, proteínas e endotoxinas) das 

frações recolhidas de pDNA sc, tanto na escala laboratorial como na preparativa, foram 

quantificadas, estando os resultados dentro dos valores recomendados pelas agências 

reguladoras. Assim sendo, o monolito de arginina com um braço espaçador permitiu uma 

rápida e eficaz separação do pDNA sc, recorrendo a baixas concentrações de sal, tanto numa 

escala laboratorial como preparativa. 

Por outro lado, sabe-se que apenas um em mil plasmídeos apresentados às células 

eucarióticas conseguem alcançar o núcleo e levar à expressão do gene de interesse. Desta 

forma, torna-se crucial desenvolver estratégias que permitam a proteção do pDNA e que 

facilitem a sua entrada no núcleo. O uso de nanopartículas tem revelado ser uma valiosa 

solução, pois além de protegerem o pDNA da degradação enzimática, permitem uma entrega 

específica e, consequentemente, um aumento na transfeção celular. Assim sendo, este 

trabalho teve como segundo objetivo a formulação de nanopartículas de carbonato de 

magnésio (MgCO3) e gelatina, funcionalizadas com os ligandos de manose e galactose para 

direcionar as nanopartículas para as células alvo (células dendríticas). Em termos da 

morfologia, as imagens obtidas na microscopia eletrónica de varrimento (SEM) e na 

microscopia eletrónica de transmissão (TEM) permitiram concluir que todos os sistemas 

adquirem uma forma arredondada. Foi também calculada a eficiência de encapsulação (EE) 

dos diferentes sistemas com diferentes quantidades de pDNA, constatando-se que o sistema 
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com 5 μg de pDNA possibilitou uma melhor encapsulação (cerca de 87%). Para além disso, a 

gelatina permitiu diminuir o tamanho médio das nanopartículas e a funcionalização com os 

ligandos de manose e galactose não aumentou significativamente o tamanho das 

nanopartículas de gelatina, estando os valores entre 99,7 nm e 237,4 nm. Por fim, os valores 

do potencial zeta foram positivos, o que sugere uma interação facilitada das nanopartículas 

com a membrana celular que é carregada negativamente, possibilitando uma transfeção mais 

eficiente. Todos os sistemas estudados apresentam características promissoras para um 

uptake celular adequado, o que foi comprovado pela transfecção de células HeLa. 

Em conclusão, o presente trabalho mostrou que o monolito de arginina com braço espaçador 

permitiu a purificação do pDNA sc com um bom grau de pureza e recuperação e as 

nanopartículas de MgCO3 provaram ser um sistema de entrega eficiente, sendo uma estratégia 

promissora para o desenvolvimento de uma vacina de DNA eficaz contra infeções provocadas 

pelo HPV. 
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Abstract 

 

Human Papillomavirus (HPV) is worldwide sexually transmitted and associated with 99.7% of 

cervical cancer. The cancer progression is due to the expression of the oncoproteins E6 and 

E7, which can alter the cell cycle and are responsible for the viral replication and 

transformation of host cells. The vaccines available are only preventive ones, it being 

necessary to develop therapeutic ones, to prevent and treat a pre-existent infection. 

Deoxyribonucleic acid (DNA) vaccination along with the use of plasmid DNA (pDNA) as a non-

viral vector arises as a good strategy that can activate both humoral and cellular immune 

responses, allowing the prevention and treatment of HPV infections. The combination of the 

amino-acid affinity chromatography (AC) with the innovative monolithic supports appears as a 

promising approach to obtain highly purified supercoiled (sc) pDNA – the active biological 

conformation – with high purity and recovery. This allows the selective interaction of specific 

ligands to the target biomolecule adding to the higher capacity of monoliths when compared 

to conventional chromatographic supports. Monoliths also allow the use of high flow rates, 

which allows a fast purification procedure and decreases the retention time of the target 

biomolecule, avoiding its degradation. In the present work, different elution strategies 

(manipulation of sodium chloride (NaCl) concentrations and/or pH and competition) were 

explored, in order to purify the supercoiled HPV-16 E6/E7MUT pDNA, by using the arginine 

monolith with spacer arm. The best elution strategy applied on both laboratorial and 

preparative scales allowed the removal of impurities within the regulatory agency 

recommendations, with 93.3% and 98.5% of purity degree, respectively. This reinforces the 

applicability of this monolith for the sc pDNA purification.  

Moreover, only one in thousands naked plasmids presented to the cells reach the nucleus and 

are expressed. The use of nanoparticles is a valuable strategy that permits the protection of 

the pDNA by avoiding the enzymatic degradation and facilitates the specific delivery, 

enhancing the cellular transfection. Thus, different magnesium carbonate (MgCO3) systems 

were characterized regarding its encapsulation efficiency (around 87%), morphology (round 

shape), size (99.7-237.4 nm) and zeta potential (positive). These data suggest that the 

developed nanoparticles are suitable for cellular uptake and thus appropriate for therapeutic 

applications. Additionally, in vitro studies accompanied with confocal microscopy were 

performed, which revealed that all the formulated systems are able to transfect eukaryotic 

cells. 
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Chapter I – Introduction 

 

1.1 Human Papillomavirus 

HPV infection is a widespread and most common sexually transmitted disease, that affects 

both women and men [1]. Even though the risk of this infection remains during a woman’s 

lifetime, it is often acquired by adolescents and young adults, especially in ages between 15 

and 19 years old [2]. It can infect the anogenital region and other mucosal sites of the body 

and it can lead to vulvar/vaginal precancerous lesions, genital warts and respiratory 

papillomatosis and also different kinds of cancer, such as vulvar, vaginal, anal, penile or 

cervical cancer  [2, 3]. This last one represents the second largest cause of cancer death of 

women worldwide. In fact, the HPV DNA has been found in 99.7% of cervical cancer, being the 

most common cause of mortality by this type of cancer – more than half a million cases, 

270.000 ending with death [4, 5]. Furthermore, recent studies suggest that this type of 

infection might also affect fertility and change the efficacy of assisted reproductive 

technologies [1]. As listed before, HPV infections cause a large spectrum of epithelial lesions. 

This happens because there are more than 150 different HPV types that have been already 

identified based on DNA sequence analysis and each is associated with an infection at a 

specific epithelial site [1, 3].  Of these, more than 30 cause cervical epithelium lesions and 

some of these lesions can ultimately lead to cancer [6]. 

HPVs belong to Papovaviridae family [7]. They are divided into several groups or genera. The 

two main ones are the Alpha and the Beta Papillomaviruses. Beta Papillomaviruses are 

normally associated to cutaneous infections and Alpha Papillomaviruses are associated to 

genital/mucosal infections and they represent the largest group of HPVs. Some Alpha HPVs, 

such as HPV-2, can also include some cutaneous lesions, like common skin warts and are 

hardly ever related to cancer [6, 7]. According to their tendency to cause cervical cancer, 

this group is then subdivided into those that have low risk, intermediate risk and high risk [8]. 

Inside the high risk group, also called oncogenic group, HPV-16 is the most prevalent one and 

is responsible for nearly 60% of cervical cancer and HPV-18 is the second most common, 

causing 10-20% of this type of cancer [3, 9]. The low risk type of HPVs usually causes genital 

warts and it almost never progresses to cancer. The HPVs that belong to the other genera 

cause mostly cutaneous papillomas and verrucas, but not any type of cancer [3]. Seeing that 

HPV can induce a diversity of lesions and cancers and it is the responsible for the majority of 

cervical cancers, it has been studied increasingly and so have been the ways to prevent and 

treat his consequences, like vaccination. 

1.1.1 HPV structure and genome organization 

HPV is small, with approximately 55 nm in diameter, does not have any envelope and has an 

icosahedral capsid composed of 72 capsomers. His DNA is double-stranded and circular, with 



 2 

around 8000 base pairs (bp) [10, 11]. HPV genome is divided into three main regions: the long 

control region (LCR), that covers about 10% of the genome, the region of the early genes, 

over 50% of the genome, and the region of the late genes, almost 40% of the genome (figure 

1) [12] . These two last regions are generally called open reading frames (ORFs) [10]. 

 

Figure 1 - Genome and structural organization of the HPV-16. The HPV-16 genome is represented as a 

black circle with the early (p97) and late (p670) promoters marked by arrows. The early genes (E1, E2, 

E4 and E5) are represented in green and the early genes (E6 and E7) in red. The late genes (L1 and L2) 

are represented in yellow. The LCR is presented between yellow and red regions [6]. 

The LCR is a segment of about 850 bp next to the origin of viral replication. This part of the 

genome does not encode any protein, but despite that it is also relevant since it has several 

binding sites for a lot of different transcriptional repressors and activators, including the 

activator protein 1 (AP1), the keratinocytic-specific transcription factor 1 (KRF l), nuclear 

factor (NF-I/CTF) and some viral transcriptional factor that are encoded by the early region. 

For this reason, the LCR regulates the transcription of the early and late regions, hence it 

controls the expression of viral proteins and infectious particles. The host range of specific 

HPV types is quite determined by LCR, since it has the capacity for binding so many 

transcription factors [11]. 

The segments of the genome that actually encode proteins are called ORFs. The late gene 

region has two of this ORF and encodes for two proteins: the L1 protein and the L2 protein. 

These two proteins are the structural components that form the viral capsid and are only 

expressed in productive infected cells [10, 13]. The L1 protein is the major viral capsid 

protein and is highly conserved through the different Papillomavirus species. In turn, the L2 

protein is the minor viral capsid protein and has much more sequence variation amongst HPV 

types than the L1 protein [11]. Their expression is tightly regulated and linked to the 

differentiation of infected epithelial cells [4]. 
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The early gene region encodes for viral replication and cellular transformation and it consists 

of six ORFs: the E1, E2, E4, E5, E6 and E7 (table 1) [10, 12]. Depending on the HPV type, the 

E4, E5 and E7 genes usually encode for a single polypeptide, while the E1, E2 and E6 genes 

can suffer different splicing and so be expressed as several related polyproteins [14]. 

The E1 gene is expressed in 68 and 27 kDa polypeptides. The 68 kDa protein has adenosine 

triphosphatase (ATPase) and helicase activities and it can bind to specific sequences within 

the LCR so the DNA replication starts [14]. The HPV E2 gene encodes for two proteins that, 

along with E1, are necessary for extrachromosomal DNA replication [11]. The E2 proteins have 

from 370 to 430 amino acids in length and DNA binding domains, that can function as 

transcriptional activators or repressors – they are the major regulator in virus transcription 

and genome replication [14]. 

The HPV E4 protein seems to have an important role on the maturation, replication of the 

virus and the release on the HPV particles and, like the L1 and L2 capsid proteins, it is only 

expressed in later stages of the infection, at the assembly of the complete virions [11, 14]. 

Apparently, this protein does not transform the cells, but it can associate with cellular 

membranes and accumulate in the cytoplasm, inducing the collapse of the cytoplasmic 

cytokeratin network, in human keratinocytes, promoting the necessary conditions to the 

release of the virions [15]. 

The HPV E5 is a small polypeptide with highly conserved 44-80 amino acids [14]. Usually, the 

E5 gene is not expressed in cervical carcinoma cells, suggesting that is not essential in the 

malignant transformation of the host cell and thus its exact role in human cancers is yet to be 

known. Despite this, it is already established that E5 interacts with cell membrane receptors, 

like epidermal growth factor, platelet-derived growth factor β and colony stimulating factor, 

stimulating the cell proliferation of HPV infected cells [11, 15]. 

Lastly, the E6 and E7 genes express two oncoproteins indispensable for the viral replication 

and the host cell immortalization and transformation [15]. These are pleiotropic proteins, 

since they can make transmembrane signaling, regulate cell cycle, immortalize primary cell 

line and regulate chromosomal stability [16].  

These two proteins are considered tumorigenic, because they have the capacity to bind to 

some tumor suppressor proteins, like p53 and retinoblastoma protein (pRb), consequently 

preventing the HPV infected cell’s apoptosis and enhancing their malignant conversion [13]. 

The function of E6 and E7 will be detailed in next chapters. 
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Table 1 - A summary of the HPV ORFs (adapted from [14]). 

Viral protein Function 

L1 Major capsid protein 

L2 Minor capsid protein 

E1 Viral DNA synthesis 

E2 Transcription regulation 

E4 Disrupts cytokeratins, late protein 

E5 Interacts with growth factor receptors 

E6 Transforming protein; binds and initiates p53 degradation 

E7 Major transforming protein; binds pRb, p103 and p107 

 

1.1.1.1 E6 oncoprotein 

The E6 protein has approximately 150 amino acid residues and 18 kDa and it can be found in 

the nuclear matrix and other nonnuclear membranes [17, 18]. E6 and E7 proteins bind to zinc 

ion through the coordination of cysteine residues [19]. The E6 contains four Cys-X-X-Cys 

motifs that form two zinc-binding domains, joined by an interdomain linker of 36 amino acids 

[19, 20]. E3 ubiquitin ligase, also known as E6 associated protein (E6AP), forms a complex 

with both E6 and some target proteins. The motif through which there is a binding between 

E6, E6AP and the target proteins is referred to as LXXLL motif and is conserved throughout 

the E6 proteins of numerous Papillomaviruses. Another motif that all high risk E6 proteins 

have is referred to as XT/SXV and it is responsible for the binding to specific domains on 

cellular proteins that are known as PDZ proteins. Some other proteins, namely p53, Bak and 

procaspase 8, do not have the LXXLL nor the PDZ domain, nevertheless they bind to E6 

protein, possibly through other yet undefined motifs or indirectly through binding to E6AP or 

other E6 associated proteins. As mentioned above, the E6 protein can interact with a wide 

number of target proteins, but the most well studied E6-protein interaction is with the p53 

tumor suppressor protein [19]. 

p53 is a nuclear protein that functions as a transcriptional factor and regulates the 

transcription of various downstream target genes, which controls cell cycle arrest, apoptosis, 

DNA repair, senescence and metabolism [21]. The increase of p53 is triggered by cellular 

damage and it activates pathways for DNA repairs, cell arrest and/or apoptosis [19]. When 

there is damage in the DNA, p53 induces cell growth arrest in the G1 phase of the cell cycle, 

so it can be repaired. This is important for the genomic integrity maintenance [11]. 
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Therefore, by targeting p53 for degradation and so interfering with its biological function, E6 

promotes cell transformation and proliferation. This degradation occurs via the formation of 

the complex that includes p53, E6 and E6AP, causing the transfer of ubiquitin peptides to 

p53, which marks it for degradation by a proteasome. Low risk HPV E6 cannot target p53 for 

degradation by the proteasome as it happens with the high risk HPV E6. In this way, the E6 

disturbs the control of the cell cycle progression, leading to an increase of tumor cell growth 

at the end (figure 2) [16]. 

 

Figure 2 - Representation of the E6 protein-p53 tumor suppressor protein interaction. The E6 binds 

to E6-AP and to p53, which gets marked for ubiquitination mediated by the E6-AP and then suffers 

proteasomal degradation [16]. 

1.1.1.2 E7 oncoprotein 

The E7 protein has approximately 100 amino acids and 25 kDa and its found mostly in the 

nucleus, but also in the soluble cytoplasmic fraction and nucleolus [22, 23].  There are three 

domains in the E7 protein called conserved regions (CR) – (CR1, 2 and 3) [24]. Two of these 

regions, the CR1 and CR2, share homology with SV40 T antigen and adenovirus E1A [25]. This 

homology is also conserved amongst different HPV E7 proteins and are separated by a non-

conserved sequence of variable size and amino acid composition [22]. Both CR1 and CR2 are 

necessary for cellular transformation [26]. CR1 can stimulate the cellular transformation in a 

pRb-binding independent way, whereas CR2 associates with pRb through the conserved LXCXE 

(Leu-X-Cys-X-Glu) motif [25]. The HPV E7 protein is capable of associating with a group of 

proteins known as pocket protein family, such as the pRb and its related proteins p107 and 

p130, which act as negative regulators of cell growth, including in the G0/G1, G1/S and G2/M 

transitions [16, 18]. 

In a normal biological situation, when the pRb is hypophosphorylated, it binds to transcription 

factors of the E2F family. As these transcriptional factors are responsible for regulating the 
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expression of cellular genes that are involved in the DNA synthesis, like the DNA polymerase, 

by blocking its functions, the hypophosphorylated pRb negatively controls the progression of 

the cell cycle. As mentioned earlier, the E7 is able to form complexes with the pRb and its 

related proteins, preventing them to bind to the E2F that is now free to activate and 

stimulate the expression of several host genes necessary for DNA replication, allowing the cell 

to proliferate [11, 18]. It has been shown that the ability to disrupt the E2F-pRb complex is 

bigger for the high risk HPV E7 than it is for the low risk HPV E7 (figure 3) [25]. 

 

Figure 3 – Representation of the E7 protein-pRb protein. In physiologic conditions, the 

hypophosphorylated pRb form complexes with E2F, negatively regulating the progression of the cell 

cycle. When the infection occurs, the E7 binds to the hypophosphorylated pRb, which inhibits its binding 

to the E2F that stays free to stimulate transcription of DNA synthesis genes, allowing the cell cycle to 

progress [16]. 

1.1.2 Preventive Vaccines 

It has been reported that HPVs are associated with approximately 99% of cervical cancers, 

particularly HPV type 16. Thus, HPV is a potential target for development of vaccines, being 

necessary a basic understanding of HPV biology [4]. There are two types of vaccines that can 

be used in cervical cancer or other HPV-associated malignancies. The first strategy is to 

prevent infection with preventive vaccines that are based on HPV virus-like particles 

containing HPV structural proteins and can generate neutralizing antibodies to block HPV 

infection. The second one is to eliminate HPV infection by inducing a virus-specific T cell-

mediated response by the use of therapeutic vaccines [4, 10]. 

At present, there are two preventive vaccines (bivalent and quadrivalent) against HPV 

infection, also called prophylactic vaccines, both approved by the Food and Drug 

Administration (FDA) [3]. The quadrivalent one is called Gardasil®, developed by Merck (NJ, 

USA), and is expressed in yeast Saccharomyces cerevisiae [27]. Gardasil® acts successfully 

against infection by four of the most clinically relevant HPV types: the low risk HPV-6 and 11 

and the high risk HPV-16 and 18 [10, 28]. The bivalent vaccine is called Cervarix®, developed 
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by GlaxoSmith-Kline (GlaxoSmith-Kline Biologicals, Rixensart, Belgium), and is expressed in an 

insect cell system [27]. This vaccine protects against HPV-16 and 18 and also does partial 

cross-protection against HPV-31 and 45, which are phylogenetically related to the two 

previous ones [28].  

Both Gardasil® and Cervarix® contain a non-infectious recombinant L1 virus-like protein with 

the aim to generate neutralizing antibodies against major capsid protein, L1 [4]. They are 

highly immunogenic, have high avidity for the systemic antibody response and are capable of 

producing memory of B cell response, which enables the cell to make a rapid burst of 

antibodies upon a secondary exposure [10, 29]. Despite the L1 is not expressed in the basal 

cells infected with HPV, it still is deeply studied and targeted for preventive vaccines [4]. 

However, preventive vaccines are limited in their action to few types of HPVs, they do not 

have therapeutic effects against pre-existing HPV infections nor HPV-associated lesions and 

the vaccination program has relatively high cost [4, 30]. 

1.1.3 Therapeutic vaccines 

As the name implies, preventive vaccines only have a preventive effect and can only be 

applied before the infection, unlike the therapeutic ones that can eliminate pre-existing 

lesions and even malignant tumors. To do that, it is important to select the ideal target 

antigen. As described above, HPV early proteins are expressed throughout the virus life cycle 

and help regulate progression of the disease. In particular, the HPV E6 and E7 proteins are of 

great interest for potential targets as they are essential to induce and maintain the cellular 

transformation and malignancy [31].  

Nevertheless, before using E6 and E7 in DNA vaccines for human application and regarding 

safety, there is the need to eradicate their oncogenic potential. There are two ways to 

accomplish this: the first and most used one is to introduce point mutations that have been 

reported to prevent interaction of E6 with p53 and E7 with pRb. The second method is called 

‘gene-shuffling’ and involves the rearrangement of the primary gene sequences, so the ligand 

binding domains are disrupted. To be sure that no loss of possible T-cell epitopes is caused, 

the original sequence junctions that are destroyed are added as an appendix [32]. 

1.2 DNA technology 

In the last decades, the knowledge about genes and their function augmented significantly, 

allowing the  discovery of recombinant DNA technology and gene cloning, in the 80s, and the 

increase in genomics data, in the 90s [33]. The decoding of the entire human genome has 

provided the knowledge to define some disease-causing genetic factors and the association 

between DNA (genes) and proteins have generated a fullness of potential therapeutic 

opportunities based on engineered genes and cells [33, 34]. 
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Despite the evolution on the Biotechnology field, a great number of diseases are yet to be 

conquered, with millions of people dying each year due to the inefficiency of the current 

therapeutic methods [35]. To overcome the demands of present and emerging public health 

problems, some innovative therapeutic strategies are being developed, like gene therapy and 

DNA vaccines, that seem to be really promising [36]. 

1.2.1 Gene therapy 

Gene therapy is the transfer of genetic material (DNA) to cells that have defective or mutant 

genes, creating a therapeutic effect, by either assisting or replacing the genetic defects or by 

overexpressing proteins that are therapeutically useful [33, 36]. By the definition of United 

States FDA, gene therapy is the product “that mediate their effects by transcription and/or 

translation of transferred genetic material and/or by integrating into the host genome and 

that are administered as nucleic acids, viruses, or genetically engineered microorganisms” 

[37]. Therefore, gene therapy uses genes as a medicine to cure, or at least to improve the 

clinical status of a patient, a broad spectrum of serious acquired and inherited diseases, 

namely cancer, acquired immunodeficiency syndrome (AIDS), cardiovascular diseases, 

infectious diseases and other [38, 39]. However, this is a complex process, since there is the 

need to ensure the arrival of the transgene into the nucleus without suffering any 

degradation. To overcome this obstacles, namely the degradation and the passing through the 

plasma membrane to the nucleus, it is necessary to use a gene delivery system [39]. This 

topic will be discussed later. 

Gene therapy is generally classified into two categories according to the nature of the 

targeted cell: germ line gene therapy and somatic gene therapy. In the first one, the 

functional gene is inserted in the reproductive cells, like sperm or zygote, and thus it will be 

integrated into the individual genome and the modification might pass along to the next 

generation. In the second one, the transgene is inserted in the somatic cells (non-

reproductive cells), narrowing the effects and modifications to the specific individual, not 

passing to the next generation. So far, the legislation only allows the use of somatic gene 

therapy, due to ethical reasons [37, 39]. The somatic gene therapy may also be divided into 

two different approaches: ex vivo, where the cells are removed from the patient’s body, 

genetically manipulated and then returned to the patient’s body, and in vivo, where the cells 

manipulation occurs in the patient’s body. Both are under investigation and their great goal is 

to successfully deliver therapeutic genetic material to the target cells [40]. 

It is important to refer that up until now cancer composes over 60% of all ongoing clinical 

trials on gene therapy, followed by monogenetic and cardiovascular disease, being by far the 

most common disease treated by gene therapy [37]. 
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1.2.2 DNA vaccines 

Looking back to the past century, it can be said that the development and widespread use of 

vaccines against a large number of infectious agents have been a great triumph of medical 

science. It all started over 200 years ago when Jenner succeeded to show that prior exposure 

to cowpox could prevent infection by smallpox, emerging the concept of vaccination [41]. 

Despite this progress, as mentioned above, some diseases still cause death to millions of 

people. Hence, the world urgently requires new technologies able to respond quicker and 

that are able to be developed faster for new vaccines. An opportunity to answer this matter 

relies on DNA vaccines [42]. The DNA vaccination is a recent therapeutic strategy that is 

based on the use of a vector that encodes one or more antigens corresponding to the 

protein(s) of interest under a promoter, capable of function in the transferred cells [43].  

Compared to the conventional vaccines, DNA vaccines have some advantages that are worth 

to considered, as briefly presented in table 2. A big difference between them is that the 

gene-based vaccines can generate both humoral and cellular immune responses [44]. 

Table 2 - Advantages of DNA vaccination (adapted from [45]). 

Advantages of DNA vaccines comparing with conventional vaccines 

Design DNA vector optimization through codon and ribonucleic acid (RNA) structure 

changes 

Can generate effective cytotoxic T lymphocyte and antibody responses 

Can be engineered to express tumor antigenic peptides or proteins 

Enables prolonged expression of antigens and enhancement of immunologic memory 

Safety Unable to revert into virulent forms, unlike live vector–based vaccines 

Capacity for repeated administration safely and effectively 

No significant adverse events in any clinical trial 

Stability Temperature-stable 

Long shelf life 

Manufacture Suitable for large scale production at high purity 

Rapid production and formulation 

Easy to store and transport 

 

The DNA vaccination is capable of inducing the adaptive immunity, while producing 

antibodies and activating helper T cells and cytotoxic T cells, and even the innate immunity 

[46]. Upon DNA vaccine transfection, the host cell transcribes, translates and expresses the 

viral antigen [47]. When professional antigen presenting cells (APCs) encounter an exogenous 
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and foreign antigen, they take it up into their endolysosomal pathway. The protein is then 

processed and degraded to peptide fragments that are loaded and presented on the cell 

surface by the major histocompatibility complex (MHC) class II [35, 48]. This antigen peptide-

MHC class II complex is recognized by specific helper T cells, the CD4+ T cells that can 

produce cytokines that will help in other cell activities. For example, they can help B cells 

generate effective antibody responses and/or help cytolytic T lymphocyte responses, 

depending on the cytokine [35, 41]. This via is known as humoral response (figure 4). 

Considering the antibody responses, B cells recognize and respond to extracellular antigens or 

exposed extracellularly antigens that belong to transmembrane proteins [35]. 

On the other hand, there is the cellular response, where the foreign protein can be 

intracytoplasmic and so it is processed by the proteosome into peptide fragments. The 

peptide fragments associate to MHC class I molecules, transported to the cell membrane and 

then are presented on the APC surface. This peptide-MHC class I complex is recognized by 

cytolytic T lymphocytes, the CD8+ T cells, that become activated also by the action of co-

stimulatory molecules (figure 4) [35, 48]. 

 

Figure 4 - Representation of the mechanisms of both humoral and cellular immune responses. DNA 

vaccination aims these two responses. If the foreign antigen is exogenous, it will be taken up by 

professional APCs into its endolysosomal pathway. The protein is degraded to peptide fragments, which 

are presented by the MHC-II and recognized by CD4+ T cells. These are activated to produce cytokines 

that help B cells to become activated and produce antibodies (humoral response) and also help cytolytic 

T cells response. The antigen can likewise be intracytoplasmic, being degraded by the proteosome into 

fragment peptides that are presented by the MHC-I to the CD8+ T cell, leading to its activation (cellular 

response) [35]. 

1.2.3 DNA delivery systems 

The delivery of naked DNA to target cells for therapeutic purposes has its drawbacks, as it is 

susceptible of degradation by endonucleases, its crossing through the cell membranes is 
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limited by its net negative surface charge and large hydrodynamic diameter and if it is 

endocytosed it may be degraded by the endolysosome. To ensure that none of these occurs, it 

is imperative to use a DNA delivery system [49]. The ideal DNA delivery system, also known as 

vector, must not trigger a strong immune response, it must be capable of transporting the 

DNA independently of its size and deliver the transgene to target cells, it must be episomal or 

integrate into a specific genome region without randomly integration and it must be easily 

prepared, not expensive and available at high concentrations commercially [39]. Currently, 

there are two types of available vehicles for gene delivery: the viral and nonviral vectors 

[50]. 

1.2.3.1 Viral vectors 

Viruses have a number of biological properties that made them one of the first choices for 

gene delivery vehicles: they can recognize and enter cells, specifically penetrate into the 

host cell nucleus and then take advantage of the cellular machinery and express its own 

genetic material and replicate it in the host cell and spread to other cells [39, 51]. Before 

using a virus as a gene transfer vector, it must be modified by genetic engineering, in order to 

reduce patho/immunogenicity. To accomplish this, the dispensable and pathogenic genes are 

removed and replaced by the gene(s) of interest. On the other hand, the viral genes that are 

necessary for the assembly of viral particles, the packing of the viral genome into particles 

and the therapeutic gene delivered to the target cells still remain in the vector construction 

[39, 50]. The main viruses used on gene delivery are adenovirus, adeno-associated virus, 

lentivirus, retrovirus and also herpes simplex virus. These viral vectors are the most used 

system to transfer genes, because they have high transfection efficiency, but they also have 

some downsides, as briefly presented in table 3 [39]. 
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Table 3 - Advantages and disadvantages of the main viral vectors [34]. 

Viral vector Advantages Disadvantages 

Adenovirus 

 

 

 

 

High transfection efficiency 

Transfects proliferating and non-
proliferating cells 

Substantial clinical experience 

Strong immune response 

Insert size limit of 7.5 kbp 

Difficult to manufacture and quality control 

Poor storage characteristics 

Short duration of expression 

Retrovirus High transfection efficiency 

Fairly prolonged expression 

Low immunogenicity 

Substantial clinical experience 

Low transfection efficiency in-vivo 

Insert size limit of 8 kbp ex-vivo 

Transfects only proliferating cells 

Difficult manufacture and quality control 

Safety concerns (mutagenesis) 

Lentivirus  Transfects proliferating and non-
cells 

Transfects haematopoietic stem 
cells 

Very difficult manufacture and quality 
control 

Poor storage characteristics 

Insert size limit of 8 kbp 

No clinical experience 

Safety concerns (origins in HIV) 

Adeno-
associated virus 

Efficient transfection of wide 
variety of cell types in-vivo 

Prolonged expression 

Low immunogenicity 

Difficult manufacture and quality control 

Insert size limit of 4.5 kbp 

Safety concerns (mutagenesis) 

Limited clinical experience 

 

1.2.3.2 Nonviral vectors 

As presented in table 3, the viral vectors have disadvantages that have to be seriously 

considered, like the capacity to cause several immune responses. This has led to the need of 

finding safer alternatives and nonviral vector delivery systems are emerging as a favorable 

solution to overcome some of the viral vector drawbacks [52]. Comparing to viral vectors, the 

nonviral vectors are relatively safe, have low immunogenicity and less toxicity, have easy 

formulation and assembly and can be prepared in large quantities at low cost. Furthermore, 

they are capable of transferring different and larger therapeutic genes, with no limit on size, 
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and because of their stability they can be stored for long periods [34, 39]. Unfortunately, 

their use in large amounts is limited by their low transfection efficiency [39]. 

There are two categories when considering nonviral DNA delivery systems: the physical and 

the chemical one. The physical approach is applied when the DNA delivery into the target 

cells is made by the use of physical forces that weakens the cell membrane, causing it to be 

temporarily permeable, which facilitates the diffusion of the transgene. This process is not 

mediated by a carrier. The physical methods include needle injection, electroporation, gene 

gun, ultrasound and hydrodynamic injection. The chemical approach occurs when the DNA is 

delivered into the target cell nucleus by a carrier that can be prepared by several types of 

chemical reactions [39, 53]. Within this group, the most studied strategy so far has been the 

formulation of DNA into condensed particles by using cationic lipids or cationic polymers. 

Hence, these particles suffer cell endocytosis, macropinocytosis or phagocytosis as 

intracellular vehicles, from which a small part of the DNA is released into the cytoplasm and 

migrates into the nucleus, where the therapeutic gene is expressed [53]. Our research group 

has been conducting several studies with nanoparticles, including chitosan nanoparticles for 

the delivery of p53 sc pDNA [54]. The subject-matter of nanoparticles will be discussed later. 

1.3 Plasmid DNA 

Within the huge variety of vectors for gene delivery, there is the pDNA. Because of its safety, 

its easiness of production on a large-scale, its simple application and also the fact that it does 

not cause toxicity, the pDNA has received an increased attention and has gained a huge 

interest for therapeutic applications [49]. It is used to deliver the desired genetic information 

into the target cells and to induce the production of the relevant proteins. Consequently, in 

the past few years, the use of pDNA as a delivery system on approved gene-therapy protocols 

has increased exponentially, representing 64.4% of the gene therapy clinical trials in 2016 

[55]. 

Plasmids are double-stranded DNA molecules that are covalently closed. Each strand is a 

linear polymer of deoxyribonucleotides that are linked by phosphodiester bonds, negatively 

charged at pH>4 [42]. The two strands wind in an anti-parallel sense around each other and 

around a common axis that forms the double helix structure, stabilized by hydrogen bonds 

and stacking forces [56]. This structure has a hydrophilic backbone, composed by sugars and 

phosphate groups, and a hydrophobic interior, composed by planar aromatic bases stacked on 

each other. pDNA can have different sizes and normally they are small (2 to 20 kbp and a 

molecular weight of 106 to 107 Daltons), although they are very large when compared with 

proteins [56, 57]. Despite this, in the future it will be needed multigene vectors, including 

extensive control regions, that may require the production of larger plasmids [58]. The pDNA 

molecule can be coiled in space, causing the formation of a higher order molecule known as 

sc pDNA [56]. The active sc pDNA form, also called covalently closed circular DNA (cccDNA), is 
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the main one, but under stress or unfavorable environment conditions, such as extreme pH or 

high temperature, it can generate other forms [57]. The other topological pDNA 

conformations can be the open circular (oc) or the linear form, caused by single-stranded and 

double-stranded nicks, respectively [42]. Linear and oc pDNA isoforms are formed by random 

nick(s) that might damage at different gene locations, such as the promoter or gene coding 

regions that become destroyed, and so they are inefficient to induce the expression of the 

therapeutic gene [57]. Therefore, the sc pDNA is the most appropriate and desired form for 

therapeutic applications [59]. 

By estimates, it is known that only one per thousand plasmid molecules presented to the cells 

reaches the nucleus and is expressed [60]. Thus, there is the need to improve the current 

strategies of sc pDNA production, so it may be of high copy number, highly pure and 

successfully delivered to the targets cells. Moreover, it is also important to develop adequate 

delivery systems that protect pDNA vector from degradation and also that facilitates the 

entrance and delivery to the nucleus of the higher number of pDNA. 

1.3.1 pDNA manufacture 

The manufacture of pDNA is divided into three different stages: upstream processing, 

fermentation and downstream processing (figure 5). Firstly, there is the construction and 

selection of an appropriate plasmid vector and production of microorganisms, followed by 

selection and optimization of the fermentation conditions and cell growth and then the 

isolation and purification steps, with the aim of producing large quantities of stable and 

highly purified sc pDNA [61]. 

 

Figure 5 - Representation of the three essential stages to obtain pure sc pDNA [61]. 

When the purpose is pDNA vaccination, the design of the pDNA vector must include some 

typical elements, such as an origin of replication for efficient propagation in the adequate 
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host cell, a selectable marker like an antibiotic resistance gene for growth selection, a strong 

eukaryotic promoter to drive expression, a polyadenylation signal to terminate the 

transcription and the transgene that encodes the antigen of interest (figure 6) [62]. 

 

Figure 6 - Representation of the construction of the plasmid DNA [62]. 

The typical host used in fermentation is E. coli. To obtain the pDNA, the cells are usually 

disrupted by alkaline lysis [56]. Unfortunately, the pDNA only represents around 3% 

mass/mass (w/w) of the E. coli extract [63]. To eliminate some of the impurities, it follows a 

primary isolation process that involves clarification and concentration steps [57]. This allows 

the removal of some impurities like RNA, genomic DNA (gDNA), endotoxins and proteins [63]. 

Lastly, a chromatographic purification step is used to separate sc pDNA from structurally 

related impurities, like relaxed and denatured pDNA, gDNA, low molecular weight RNA and 

endotoxins [61]. 

1.3.2 pDNA purification 

With the progress in therapeutic approaches, emerges the need to develop a good pDNA 

purification process, in order to obtain sc pDNA homogeneity near to 100% and to follow the 

quality specifications recommended by the regulatory agencies, such as FDA and the 

European Medicines Evaluation Agency (EMEA) [56, 64]. At present, liquid chromatography is 

the central technology used in pDNA purification, as it is simple, robust, versatile and it has 

high resolution and high reproducibility [57, 65]. Despite its plusses, chromatography has a 

challenge when it comes to the separation of pDNA from the contaminants, because they 

share similar characteristics, like the negative charge (RNA, gDNA, endotoxins), similarity in 

size (gDNA, endotoxins) and hydrophobicity (endotoxins) [63]. Numerous chromatography 

processes have been developed by exploring different properties including charge, molecular 

size, hydrophobicity and affinity [56]. 

1.3.2.1 Size exclusion chromatography 

Size exclusion chromatography can fractionate and purify plasmids from a clarified lysate 

based on the wide variety of molecular mass. The larger molecules, like pDNA and gDNA, are 



 16 

incapable of penetrate the pores, eluting first, so they can be separated from the smaller 

ones, like RNA, endotoxins and proteins [42, 57]. But because the lysate is a complex mixture 

of different molecules, the resolution here is limited, as well as the isolation of sc pDNA in 

one single step [57]. 

1.3.2.2 Anion exchange chromatography 

Anion exchange chromatography is based on the interaction between the negatively charge 

phosphate groups in the DNA backbone and the positively charged ligands on the stationary 

phase [56]. After the binding occurs, it is applied an increasing salt concentration to displace 

and elute the different nucleic acids by order of an increasing overall net charge, which is 

function of chain length and conformation [65]. Given that sc pDNA is more compact and has 

higher charge than the oc pDNA, it is possible to separate these two isoforms [42]. 

Nevertheless, this type of chromatography presents poor selectivity towards pDNA and 

impurities, like RNA, gDNA and endotoxins, due to their similar binding affinities, making the 

purification of pDNA insufficient [66]. 

1.3.2.3 Hydrophobic interaction chromatography 

Hydrophobic interaction chromatography relies on the differences in the hydrophobic 

interactions of pDNA, single-stranded nucleic acid and endotoxins, using high salt 

concentration for the biomolecules retention [57]. To elute the bound species, the salt 

concentration of the mobile phase is decreased, weakening the hydrophobic interactions and 

the elution occurs by increasing the hydrophobicity order. This property is mainly defined by 

base composition, size and structure [56, 57]. This technique is inefficient on separating 

different pDNA isoforms and in addition the use of high salt concentration, which is associated 

with higher costs and environmental impact, is also a downside [57, 67]. 

1.3.2.4 Affinity chromatography 

Affinity chromatography (AC) is a separation technique that exploits natural biological 

processes like molecular recognition for the selective purification of target biomolecules 

based on their biological function or chemical structure [42]. The high specificity and 

efficiency of affinity interactions allow this method to eliminate additional steps, to increase 

yields and to improve process economics [57, 66]. Nonetheless, it has some limitations, as the 

fragility and low binding capacity of the biological ligands. To overcome this, synthetic 

ligands were designed, combining the selectivity of natural ligands with the high capacity and 

durability of synthetic systems [57]. 

This purification method separates biomolecules based on reversible interactions between the 

target one and its specific ligand that is immobilized on the chromatographic matrix [57]. 

Under appropriate pH and ionic strength, the sample is injected onto the column and the 

target biomolecule binds to the specific ligand [68]. After, elution steps are performed, being 
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specific with a competitive ligand or non-specific with a change in pH, ionic strength or 

polarity, depending on the matrix and the characteristics of the biomolecule [57]. 

The interactions between target biomolecule and its ligand result of the combination of 

electrostatic interactions, hydrophobic interactions, van der Waals forces and/or hydrogen 

bonding. As these interactions are so specific, they represent a crucial advantage of AC, 

because they allow to obtain high selectivity and high resolution [57]. 

Within AC, there are several types like immobilized metal-ion, triple-helix, polymyxin B, 

protein-DNA and amino acid-DNA [57]. For the purpose of this project, we will only focus on 

the last method. 

1.3.2.4.1 Amino acid-DNA AC 

The use of amino acids in AC has already demonstrated to be efficient on the successful 

biorecognition of the sc isoform, by using a single purification step. 

Amino acids have been of great use in biotechnology applications, since they are natural 

compounds that can be safely used in pharmaceutical applications [42, 69]. Besides, based on 

atomic studies, amino acids preferentially promote specific interactions with nucleic acid 

bases, especially the positively charged ones like histidine, lysine and arginine [69]. The use 

of these amino acids as ligands has allowed an efficient purification of sc pDNA and the 

recognition of this isoform proved the presence of specific interactions between pDNA 

molecule and the amino acid-based matrices [70]. 

In fact, our research group has already showed the successful application of some amino acids 

for the purification of pDNA. For instance, the use of lysine and histidine for the separation of 

sc pDNA from a clarified lysate sample resulted on a high purity degree of this biomolecule of 

interest, being in accordance with the regulatory agencies specifications [64, 66, 71]. 

Nonetheless, the overall recovery yield of these two strategies was low: 45% and 40%, 

respectively [66, 71]. On the contrary, the use of arginine on the affinity chromatography 

resulted on a recovery of 79% of sc pDNA and also a high purity degree, under mild elution 

conditions, thus representing a smaller environmental impact [72].  

Taking this into account, the arginine amino acid reveals itself to be a good affinity ligand to 

purify the sc pDNA, due to its high selectivity for the sc pDNA recognition and thus high 

recovery and purity. Despite this, the conventional stationary phases have some drawbacks, 

like the low capacity, working at low flow rates that results in longer retention time and 

possible degradation of the target biomolecule [73]. Consequently, raises the need to explore 

alternative chromatographic supports. 
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1.3.3 Monoliths: innovation on chromatographic supports 

As discussed above, the studies with affinity matrices have revealed positive results, however 

there are still some limitations to be surpassed. Monoliths have been gaining attention owing 

to their appealing properties. Considered the fourth generation of the chromatographic 

stationary phases, a monolith is a continuous and highly porous bed; the pore size is 

adjustable considering the desired application, depending on polymerization process [68, 70, 

74]. They are polymerized into a column as a single unit and thus the scale-up and scale-down 

variations in packing quality and the need to repack the column because of the appearance of 

air bubbles are eliminated [74]. Monoliths exhibit increased permeability and 

interconnectivity, allowing high mass transfer and more access to binding sites for the target 

biomolecule, having a very high binding capacity for pDNA [68]. Additionally, this innovative 

support has flow independent resolution, allowing the same separation and resolution even 

working at high flow rates. This enables a very fast separation and reduced retention time, 

which ensures less biomolecule degradation [70, 73, 74]. 

Bearing all this positive characteristics in mind along with the amino acids’, combining a 

monolithic support with amino acids ligands or derivatives for the purification of sc pDNA 

using AC has been a promising and favorable strategy. 

For instance, our research group has already demonstrated that arginine monolith allows the 

separation of a sc pDNA, at a laboratorial scale, with 86% of purity. This support was also 

characterized in terms of dynamic binding capacity (DBC), which has presented a higher value 

that the equivalent conventional support [75]. On the other hand, agmatine and histamine 

monoliths also revealed themselves to be efficient at separating sc pDNA, with 99.6% and 

96.66% of purity, respectively [76, 77]. Thus, the monolithic approach allows higher 

selectivity for the sc pDNA and higher binding capacity. 

1.4 Nanotechnology 

Nanotechnology is a recent and promising field that involves multiple disciplines and within it 

there is the Cancer Nanotechnology, which includes the use of nanoparticles to detect and 

treat cancerous cells [78, 79]. As previously mentioned, estimates indicate that only one per 

thousand plasmid molecules presented to the cells reaches the nucleus and is expressed [60]. 

Thus, there is the need to create and develop strategies that help protect vectors, like pDNA, 

from degradation and that facilitates the entrance into the nucleus. Nanoparticles emerge as 

a good solution, offering many advantages over the delivery of free pDNA: they protect the 

therapeutic cargo against enzymatic degradation; they allow more specific targeting and 

delivery; by targeting to specific cells, there is an improvement of distribution and reduction 

of side-effects; the therapeutic cargo is more probably delivered to the desired intracellular 

compartment, with an improvement of cellular penetration [80–82]. 
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1.4.1 Cellular trafficking of pDNA – barriers to cross 

The pDNA vector comes across several physical barriers before it can finally enter the 

nucleus, where it should be expressed into the protein(s) of interest (figure 7). The first one 

is the plasma membrane, since it is negatively charged, like the pDNA, due to the 

glycosaminoglycan groups [80, 83, 84]. This causes electrostatic repulsions between the cell 

surface and the pDNA, preventing the last to readily crossing the plasma membrane, thus 

lowering the number that can actually enter the cell. If pDNA is delivered by nanoparticles, 

its entrance into the cell is higher. In general, nanoparticles are immobilized on the cell 

surface, due to non-specific electrostatic interactions or receptor-mediated ligand 

interactions, and then suffer internalization via endocytosis [80, 84]. The uptake of 

nanoparticles can be facilitated and enhanced by ‘active targeting’, which is accomplished by 

coupling ligands to them that must target them to specific cells, ensuring an efficient 

internalization by endocytosis [80]. Endocytosis results in the formation of endosomal 

vesicles, which represent another barrier for an efficient transfection [84, 85]. These vesicles 

– endosomes – have an internal pH around 5 and mature from early to late endosomes, before 

fusing with lysosomes that contain digestive enzymes. Hence, it is crucial that the 

nanoparticles with the nucleic acid cargo escape the endosome promptly, avoiding the 

enzymatic degradation within the lysosomes [86]. A way to escape the endosome is increasing 

endosomal osmotic pressure [87]. Depending on several factors, like composition, some 

nanoparticles are dissolved in the low acidic medium of endosomes. An example of these 

nanoparticles is the inorganic ones, which will be presented later. This dissolution destabilize 

the endosome through osmotic imbalance, disrupting the endosome membrane, enabling the 

cargo delivery into the cytosol [88]. Now, the pDNA must reach the nucleus for expression. 

The nuclear membrane represents another barrier. The crossing of this membrane could be 

through the nuclear pores, but they are size-limited and generally too small for free diffusion 

of plasmids [80, 84]. Despite this, plasmids are capable of reaching the nucleus during 

mitosis, due to an increase in the nuclear permeability [89]. 
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Figure 7 - Representation of the cellular trafficking of pDNA within the nanoparticles and the 

barriers that it has to overcome: 1 – crossing the plasma membrane; 2 – avoiding lysosomal 

degradation; 3 – crossing nuclear membrane [90]. 

1.4.2 Nanoparticles 

As mentioned before, nanoparticles have the main goal of protecting and helping the delivery 

of the therapeutic molecules, like the pDNA vector. Besides, the ideal nano-carrier presents 

good biodistribution, has no toxicity with reduced side-effects and inflammation and allows 

the therapeutic cargo to be delivered to a specific target cell [80]. These carriers can have 

several types of composition, like phospholipids, lipids, dextran, chitosan, polymers, carbon, 

silica, metal and many other [81]. Taking into account the manufacturing method and the 

material used, the nanoparticles can be of various shapes and sizes, along with diferent 

characteristics (figure 8) [91]. 

 

Figure 8 – Several examples of nanoparticles with diferent materials, sizes and structures [92]. 
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The world of nanoparticles is tremendous and has developed a lot, however there is still much 

to improve and many limitations to overcome. For instance, some delivery systems still 

present cytotoxicity and low amount of gene expression in the target cells [93]. The use of 

inorganic nanoparticles might eliminate limitations of other nano-carriers, because they have 

good biocompatibility and low toxicity, mild preparation conditions, they are relatively 

inexpensive, they possess the ability for loading different therapeutic agents and a pH 

dependent dissolution that favors intracellular delivery [93–95]. Moreover, they are not 

subjected to microbial attack and exhibit excellent storage ability, facts that cannot be 

pointed out to the organic ones [93]. 

1.4.2.1 Mg2CO3 Nanoparticles 

Nano-carriers based on calcium carbonate (CaCO3) have already been described as a good 

delivery system [94, 96, 97]. Our research group has also obtained satisfactory results with 

this system [95]. pDNA/CaCO3 nanoparticles are produced by co-precipitation of Ca2+, an 

inorganic cation, with DNA, in the presence of CO3
2-, an inorganic anion. Taking into account 

that these nanoparticles are already well-described and present good results, a small 

alteration can be performed to this delivery system - the Ca2+ substitution by other divalent 

ion, magnesium (Mg2+), to investigate if the pDNA/MgCO3 nanoparticles present even better 

results at gene transfection. Although the co-precipitation technique is simple and rapid, it 

can create precipitates, resulting in large nanoparticles, which in turn has negative effects on 

the cellular uptake and gene transfection. Thus, to increase the stability and the transfection 

efficiency of the proposed nano-carrier, a cationic polymer, gelatin, can be added to the 

nanoparticles. The use of gelatin, a biocompatible and biodegradable polymer, leads to the 

formulation of nanoparticles with enhanced properties concerning size, surface charges and 

gene delivery efficiency [98]. 
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Chapter II - Global aims 

 

 

 
The main objective of the present work is to obtain a pure DNA vaccine to prevent or treat 

the cervical cancer caused by HPV infection and create an appropriate delivery system that 

can protect and specifically deliver the DNA vaccine. In order to achieve this purpose, the sc 

pDNA must be highly pure, considering safety concerns recommended by the regulatory 

agencies. Hence, after the production of the pDNA in the recombinant E. coli host, the 

purification strategy has to be explored and optimized, maximizing the sc HPV-16 E6/E7MUT 

pDNA recovery and purity degree. After the purification step, nano-carriers will be 

formulated with the purpose of protection, targeted delivery and enhancement of 

transfection. Then, the nano-carriers will be characterized to assure that they have the best 

properties and conditions to enhance the gene transfection and the therapeutic effects. At 

last, the transfection efficiency will be evaluated. 

Overall, the goals are the optimization of the sc HPV E6/E7MUT pDNA purification by the 

arginine monolith with spacer arm, the formulation of adequate nano-carriers for gene 

transfection and evaluation of the gene transfection efficiency. 
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Chapter III – Materials and methods 

 

3.1 Materials 

The chromatographic experiments were performed using the AKTA Püre system (GE 

Healthcare Biosciences Uppsala, Sweden), with a separation unit and a computer with 

Unicorn 6.3 software. Four epoxy monoliths (non-modified, modified with the 2-

allyloxyethanol spacer arm, modified with arginine amino acid and modified with the 2-

allyloxyethanol spacer arm and arginine) of 0.34 mL column bed volume were kindly prepared 

and provided by BIA Separations (Ajdovščina, Slovenia). For the pDNA pre-purification, it was 

used the Qiagen Plasmid Purification Maxi Kit from Qiagen (Hilden, Germany). Ethylene-

diamine tetraacetic acid (EDTA), NaCl and ammonium sulfate ((NH4)2SO4) were acquired from 

Panreac (Barcelona, Spain) and tris (hydroxymethyl) aminomethane (Tris) from Merck 

(Darmstadt, Germany). All of the solutions necessary for the chromatographic experiments 

were prepared with deionized ultra-pure grade water, purified with Milli-Q system from 

Millipore (Billerica, MA, USA) and analytical grade reagents. The elution buffers were 

previously filtered through a membrane with pores of 0.20 μm (Schleicher Schuell, Dassel, 

Germany) and sonicated ultrasonically. For the gDNA quantification, it was used the iQ SYBR 

Green Supermix (Bio-Rad, Hercules, CA, EUA). 

3.1.1 Plasmid DNA 

The 8.702 kbp HPV-16 E6/E7 plasmid vector was purchased from Addgene (plasmid 8641) 

(Cambrige, MA, USA) [99]. This vector contains the human beta-actin mammalian expression 

promotor and the ampicillin resistance gene (figure 9). 

 

Figure 9 - Representation of HPV-16 E6/E7 pDNA. 

E6 and E7 genes were mutated in different points to prevent the oncogenic role of the 

respective proteins, thus avoiding the recognition by the p53 and pRb tumor suppressor 
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proteins. The HPV-16 E6/E7 mutated (HPV-16 E6/E7MUT) was prepared by NZYtech (NZYtech, 

Lisbon, Portugal). 

3.2 Methods 

3.2.1 Bacterial growth conditions 

The HPV-16 E6/E7MUT plasmid amplification was obtained by E. coli DH5α fermentation. The 

cells were plated on LB-agar medium with ampicillin and they grow overnight at 37 ºC. The 

colonies were then inoculated in Terrific Broth medium (20 g/L tryptone, 24 g/L yeast 

extract, 4 mL/L glycerol, 0.017 M KH2PO4, 0.072 M K2HPO4), complemented with 100 μg of 

ampicillin/mL and the growth was run at 37 ºC, under 250 rpm shaking. The bacterial growth 

was interrupted at the OD600≈7 and the cells were recovered by centrifugation, at 3900 g for 

10 minutes (min) at 4 ºC and the pellets were stored at 20 ºC. 

3.2.2 Alkaline lysis with Qiagen Kit 

The pDNA was obtained by alkaline lysis, with the Qiagen Plasmid Purification Maxi Kit, 

following the protocol provided by the manufacturer. Then, the binding of pDNA to the 

Qiagen Anion-Exchange columns was promoted under appropriate low salt concentrations and 

pH conditions. After the binding of the pDNA to the columns, a wash was made under a 

medium salt concentration, eluting the impurities (RNA, proteins and others impurities of low 

molecular weight). To elute the pDNA, a buffer with high salt concentration was used. Lastly, 

the pDNA was concentrated by isopropanol precipitation. The final pre-purified sample was 

used in some chromatographic experiments and DBC studies. 

3.2.3 Modified alkaline lysis 

The cells obtained from fermentation were lysed by a modified alkaline lysis method [100], as 

previously described [101]. The pellet was ressuspended in 20 mL of solution I (50 mM 

glucose, 25 mM Tris-HCl and 10 mM EDTA, pH 8.0). To perform the alkaline lysis, it was added 

20 mL of solution II (200 mM NaOH and 1% (w/v) sodium dodecylsulfate (SDS)) and incubation 

at room temperature during 5 min. To neutralize the previous solution, it was added 20 mL of 

solution III (3 M potassium acetate, pH 5.0), followed by 20 min of incubation in ice. There 

were made two centrifugations (30 min and 20 min), at 20 000 g and 4 ºC, with an AllegraTM 

25R centrifuge (Beckman Coulter, Miami, FL, USA), so the cellular debris, some gDNA and 

proteins were eliminated. Then, to precipitate the pDNA, it was added 0.7 volumes of 

isopropanol and incubated in ice (30 min). The precipitate was recovered by centrifugation 

(16000 g, 30 min, 4 ºC). The resulting pellet was dissolved with 1 mL of 10 mM Tris and 10 mM 

EDTA (Tris-EDTA), pH 8.0. To precipitate protein and RNA, it was added ammonium sulfate up 

to a final concentration of 2.5 M and incubation in ice during 15 min. Next, impurities were 

removed by centrifugation, 16000 g, 20 min, 4 ºC. To remove the salt, the sample was passed 

through the PD-10 column, using Tris-EDTA, pH 8.0 elution buffer, according to the 
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manufacturer’s instructions. EDTA was added to the elution buffers to stabilize the pDNA, 

avoiding its degradation. 

3.2.4 Affinity Chromatography 

All chromatographic experiments were performed using an AKTA Pure system. In order to 

characterize the chromatographic behavior of each monolith (non-modified, modified with 

the 2-allyloxyethanol spacer arm, modified with arginine amino acid and modified with the 2-

allyloxyethanol spacer arm and arginine) with a pre-purified pDNA sample, linear gradients 

were performed by decreasing the ammonium sulfate concentration from 3 to 0 M or 

increasing the NaCl concentration from 0 to 3 M. 

Several elution strategies were explored in the arginine monolith with spacer arm with a 

lysate sample, by increasing the NaCl concentration, pH manipulation from 6.5 to 9 and 

addition of arginine in the elution buffer as a competition agent, to determine the optimal 

conditions for the sc pDNA isolation. Thus, the sc pDNA purification was achieved at 

laboratorial scale, by injection of 200 µL of lysate sample and by increasing stepwise gradient 

from 680 mM NaCl in Tris-EDTA, pH 7 to 649 mM and 1 M NaCl in Tris-EDTA, pH 7.5, at 1 

mL/min. 

To evaluate the applicability of arginine monolith with spacer arm in the sc pDNA purification 

at preparative scale, the column was equilibrated with the conditions described above and 

overloaded with 68 mL of lysate sample (5 μg of pDNA/mL), prepared in the same equilibrium 

buffer. After that, it was used the same elution strategy described above. All the experiments 

were carried out at room temperature and the absorbance was constantly monitored at 260 

nm. Fractions were collected according to the obtained chromatograms, concentrated and 

desalted with Vivaspin® 6 Centrifugal Concentrator (Vivaproducts, Littleton, MA, USA) at 1000 

g for further electrophoretic analysis and impurity (gDNA, proteins and endotoxins) 

quantification. 

3.2.5 Agarose gel electrophoresis 

The pooled fractions from each chromatographic experiment were analyzed by horizontal 

electrophoresis in a 15 cm long of 0.8% agarose gel (Hoefer, Holliston, MA, USA) and stained 

with Greensafe (0.012 μL/mL) (NZYTech, Lda. – Genes and Enzymes, Lisbon, Portugal). 

Electrophoresis was made at 120 V, during 30 min, with TAE buffer (40 mM Tris base, 20 mM 

acetic acid and 1 mM EDTA, pH 8.0). The gel was then visualized under ultraviolet (UV) light 

in a FireReader (Uvitec Cambridge, UK). 

3.2.6 Supercoiled plasmid DNA quantification 

The pDNA purity and recovery yield from the recovered fractions of the chromatographic 

experiments were evaluated with the CIMac™ pDNA analytical column, by applying a modified 
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analytic method, as previously described [77] and using an AKTA purifier system (GE 

Healthcare Biosciences, Upssala, Sweden) with a Unicorn 5.11 software. A calibration curve 

was constructed using pDNA standards from 1 to 50 µg/mL (figure 10). The pDNA standards 

were obtained by dilution of the highest concentration of sc pDNA with 200 mM Tris-HCl, pH 

8.0, and the respective concentrations were confirmed by Ultrospec 3000 UV/Visible 

Spectrophotometer (Pharmacia Biotech, Cambridge, England). Firstly, the column was 

equilibrated with 600 mM NaCl in 200 mM Tris-HCl, pH 8.0 and 20 μL of sample was injected, 

at 1 mL/min. After, a linear gradient from 600 mM to 700 mM NaCl in 200 mM Tris-HCl (pH 

8.0) was applied for 10 min, eluting all pDNA isoforms. Purity degree was calculated through 

the ratio between sc pDNA peak area and total peak area in the analytical chromatogram and 

the recovery yield through the ration between the recovered sc pDNA concentration and the 

sc pDNA concentration from the lysate sample. 

 
 

Figure 10- Calibration curve with pDNA standards (1 - 50 μg/mL). 

3.2.7 Protein quantification 

The protein concentration was measured by the micro-bicinchoninic acid (BCA) protein assay 

from Pierce (Rockford, USA). The quantification consists on adding 50 μL of each sample to 

200 μL of BCA reagent in a microplate and 30 min of incubation at 60 ºC. Then, absorvance 

was measured at 595 nm in microplate reader (Biochrom, Cambridge, United Kingdom). The 

calibration curve was constructed with Bovine Serum Albumin (BSA) (St. Louis, MO, United 

States of America) as a standard protein (20-2000 μg/mL) (figure 11). 
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Figure 11 - Calibration curve with Bovine Serum Albumin standards (20 – 2000 μg/mL). 

3.2.8 Genomic DNA quantification 

The quantification of gDNA was obtained by real-time polymerase chain reaction (PCR) in a 

iQS Multicolor Real-Time PCR Detection System (BioRad), according to instructions described 

by Martins et al. [102]. Sense (5’-ACACGGTCCAGAACTCCTACG-3’) and antisense (5’- 

CCGGTGCTTCTTCTGCGGGTAACGTCA-3’) primers were used to amplify a 181-bp fragment of 

the 16S rRNA gene. PCR amplicons were quantified by following changes in fluorescence of 

the DNA binding dye Syber Green I. The calibration curve was constructed by a serial of 

dilutions of the E. coli DH5α gDNA sample, purified with the Wizard gDNA purification kit 

(Promega) in the range of 0.005 to 50 ng/mL (figure 12). 

 

Figure 12 - Calibration curve of E. coli DH5α genomic DNA standards (0.005 – 50 ng/mL). 

3.2.9 Endotoxin quantification 

Endotoxin content was measured by ToxinSensorTM Chromogenic Limulus Amoebocyte Lysate 

(LAL) Endotoxin Assay Kit from GenScrip (USA, Inc.), following the manufacturer’s 

instructions. The calibration curve was constructed with 10 EU/mL stock solution provided 

with the kit (0.01-0.1 EU/mL) (figure 13). Samples to analyze and samples from the kit were 
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diluted and dissolved, respectively, with non-pyrogenic water, which was also used as blank, 

to avoid external endotoxin interference. All tubs and tips or diluents used to perform this 

quantification must be endotoxin-free. 

 

 

 

 

 

 

 

 

 

 

Figure 13– Calibration curve of endotoxins standards (0.01 – 0.1 EU/mL). 

3.2.10 Nanoparticle synthesis 

The synthesis of the nanoparticles was based on the co-precipitation method previously 

described [95]. Two solutions were prepared: solution A containing 5 μg de pDNA, 96 μL de 

MgCl2 (30 mg/mL) and 120 μL of deionized water; solution B containing 255 μL of NaCO3 (42.5 

μg/mL), 5 μL of deionized water, 5 μL of gelatin (5 mg/mL) and 5 μL of mannose or galactose 

(5 mg/mL). Solution A was added dropwise to solution B to form the nanoparticles. The new 

solution was centrifuged at 13 000 rpm, for 15 min. The pellet containing the pDNA/MgCO3 

nanoparticles was washed five times. 

3.2.11 Nanoparticles morphology 

The nanoparticles morphology was analyzed by two equipments. For the first one, the pellet 

of nanoparticles was suspended in 40 μL of tungsten 1% and diluted 1:20. 10 μL of the 

recently formed solution was set in roundly shaped cover-slip and incubated to dry, at room 

temperature, overnight. On the following day, the nanoparticles are coated with gold using 

an Emitech K550 sputter coater (London, England) and analyzed by scanning electron 

microscope (SEM) (Hitachi S-2700, Tokyo, Japan), operated at an accelerating voltage of 20 

kV with variable magnifications. For the second one, the pellet nanoparticles were suspended 

in deionized water, sonicated and analyzed by transmission electron microscopy (TEM) 

(Hitachi, Japan). 

3.2.12 Encapsulation Efficiency 

After the nanoparticles formulation and centrifugation, the supernatant was recovered. The 

supernatant corresponds to the unbound pDNA that was not encapsulated by the MgCO3 

nanoparticles. The concentration of the unbound pDNA was measured by Ultrospec 3000 UV-
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Visible Spectrophotometer (Pharmacia Biotech, Cambridge, England), at 260 nm. Three 

independent measurements were performed and the components of the nanoparticles without 

the pDNA were used as blank. The encapsulation efficiency was determined by the following 

formula: 

 

   (1) 

 

Similarly, galactose encapsulation efficiency was determined by using the equation above, 

with pDNA being replaced by galactose. The non-incorporated galactose was determined 

quantitatively by using the Galactose Colorimetric/Fluorimetric Assay kit (Sigma-Aldrich). In 

this assay kit, galactose is oxidized resulting in a colorimetric (570 nm)/fluorimetric (λex = 

535nm/ λex = 587 nm) product, proportional to the galactose present. In this work, galactose 

has been quantified by the colorimetric detection, measuring the absorbance at 570 nm. 

3.2.13 Nanoparticles Size and Zeta (ζ) Potential 

The average size and the surface charges (ζ potential) of the nanoparticles were determined 

at 25 ºC, using a Zetasizer Nano ZS and a zeta dip cell. Determination of the nanoparticles 

size was made by dynamic light scattering (DLS) using a He-Ne laser 633 nm with non-invasive 

backscatter optics (NIBS). For the ζ potential determination, electrophoretic light scattering 

using a patented laser interferometric technique named M3-PALS (Phase analysis Light 

Scattering) was applied. It was used the Malvern Zetasizer software v6.34. The average values 

of size and ζ potential were determined with the obtained data from three measurements and 

the respective standard deviations (SD), presented as ± SD. 

3.2.14 Cell Culture 

HeLa cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM)-High Glucose Medium 

(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% (v:v) of fetal bovine serum (FBS) 

and a mixture of penicillin (100 μg/mL) and streptomycin (100 μg/mL). Fibroblasts were 

cultured in DMEM-F12, suplemented with 10% of FBS and a mixture of penicillin (100 μg/mL) 

and streptomycin (100 μg/mL). All cells were grown at 37 ºC in a humidified atmosphere with 

5% of CO2 in air. 

3.2.15 Cell Cytotoxicity 

Before cell seeding, the plates were UV irradiated for 30 min. Human fibroblast cells were 

plated at confluency in 96 well plate, with 2×104 per well, respectively, at 37 ºC in 5% CO2 

humidified atmosphere, for 24 and 48h. . The pDNA nanoparticles were applied to a 96-well 

plate (Nunc.) After incubation, the redox activity was assessed through the reduction of the 

3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). 100 μL of MTT dye 

solution (0.05 mg/mL in Krebs) was added to each well, followed by incubation for 2 h at 37 

ºC, in a 5% CO2 atmosphere. The medium was aspirated and the cells were treated with 50 μL 
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of isopropanol/HCl (0.04 N) for 30 min. Absorbance at 570 nm was measured using a Biorad 

Microplate Reader Benchmark. The spectrophotometer was calibrated to zero absorbance 

using the culture medium without cells. The relative cell viability (%) related to control wells 

was calculated by: 

                                                               (2) 

where [A] test is the absorbance of the test sample and [A]control is the absorbance of the 

control sample. All the experiments were repeated three times. The statistical analysis of 

experimental data used the Student´s t-test and the results were presented as mean ± SD. 

Statistical significance was accepted at a level of p < 0.05. 

3.2.16 FITC-pDNA staining 

For the pDNA staining with fluorescein isothiocyanate isomer I (FITC), 71 μg of labeling buffer 

and 2 μg of FITC were added at 5 μg of pDNA and incubated for 4h. Then, 1 volume of NaCl 3 

M and 2.5 volumes of ethanol 100% were added to the solution and incubated at -20ºC 

overnight. The solution was centrifuged during 30 min, at 12 000g and 4ºC and washed two 

times with ethanol 75% (centrifugation during 5 min at 12 000g and 4ºC). The pellet with the 

FITC-pDNA was used for the nanoparticles preparation. 

3.2.17 Transfection 

Cell live imaging 

HeLa cells were cultured up to 80-90% confluence and trypsinized. After the cells were 

ressuspended in new complete medium, a small volume was seeded in a μ-slide of 8 wells. 

After 24h, the complete medium was substituted by medium without antibiotic and FBS and 

the nucleus stained with Hoescht 33342 1:1000, for 20 min in the dark. The μ-slide of 8 wells 

was transfer to the confocal microscope, containing a camera to maintain 37ºC and 5% of CO2, 

and the pDNA-FITC/MgCO3 nanoparticles were injected and imagens of z-stacks were 

captured (20 min each) during 6h of transfection. 

 
 
 
 

 

 

 



 33 

Chapter IV – Results and Discussion 

 

4.1 HPV E6/E7MUT plasmid DNA purification 

4.1.1 Epoxy monolith modification 

With the aim of understanding the influence of different functional groups immobilized in 

epoxy monoliths used in the present work, a screening was performed to evaluate the 

chromatographic behavior of a pre-purified pDNA sample in different epoxy monoliths (non-

modified, modified with the 2-allyloxyethanol spacer arm, modified with arginine amino acid 

and modified with the 2-allyloxyethanol spacer arm and arginine). Thus, two chromatographic 

strategies were performed on each monolith: to analyze their behavior under hydrophobic 

conditions, a decreasing linear gradient from 3 to 0 M of (NH4)2SO4 in Tris-EDTA, pH 8, was 

implemented and to analyze their behavior under ionic conditions, an increasing linear 

gradient from 0 to 3 M NaCl in Tris-EDTA, pH 8, was conducted. Each linear gradient was 

performed during 15 min.  

Analyzing the retention time (rt) values summarized in table 4, the non-modified epoxy 

monolith retained the pDNA only under hydrophobic elution conditions, eluting at around 11 

min. This chromatographic behavior might be justified by the interaction of the exposed 

hydrophobic bases of nucleic acids and the hydrophobic epoxy groups, in the presence of high 

(NH4)2SO4 concentrations [103]. After, it was evaluated the addition of the 2-allyloxyethanol 

spacer arm in the epoxy monolith, that retained the pDNA also only under hydrophobic 

conditions, with a rt of 12 min, meaning a slight increase on the ligand hydrophobicity. The 

epoxy monolith with immobilized arginine amino acids had an entirely different 

chromatographic behavior, since only retained the pDNA under ionic elution conditions, being 

eluted after 10 min. At last, the arginine monolith with the 2-allyloxyethanol spacer arm had 

a lower rt (8.6 min and only under ionic conditions) comparing to the arginine monolith.  

Table 4 - Evaluation of the retention time of four epoxy monoliths (non-modified, modified with the 

2-allyloxyethanol spacer arm, modified with arginine amino acid and modified with the 2-

allyloxyethanol spacer arm and arginine), under hydrophobic and ionic elution conditions. 

 Hydrophobic condition  Ionic condition 

Non-modified 10.7  — 

With spacer arm 12  — 

Arginine —  10 

Arginine with spacer arm —  8.6 
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This might be because of the mild influence of the spacer arm on the pDNA interactions due 

to its electronegative feature. A similar behavior was already described in previous studies 

with arginine and agmatine monoliths [75, 104]. The agmatine ligand is a neurotransmitter 

derived from the decarboxylation of arginine amino acid. The absence of the negative 

carboxyl group favored multiple non-covalent interactions that result in higher pDNA 

retention and the need of higher NaCl concentrations (>1.8 M) for the pDNA elution [104], 

comparing to the arginine ligand (795 mM NaCl) [75]. The arginine monolith with spacer arm 

was later characterized and explored for the sc pDNA purification. 

4.1.2 Dynamic binding capacity 

The DBC is an important factor to characterize the chromatographic support. It is already 

described that monoliths have higher binding capacity when compared to the conventional 

chromatographic supports [73, 75, 105]. These last ones are designed with small size pores 

that cannot handle large molecules, such as pDNA [65]. 

For instance, Eon-Duval and coworkers demonstrated that a DEAE column has a dynamic 

capacity of 3 mg/mL [106] and Ongkudon and coworkers showed that polymethacrylate 

conical monolith has a DBC of 21.54 mg/mL [107]. Moreover, some latest results also shown 

that methacrylate monolithic supports exhibit DBC up to 8 mg/mL [108]. Recently, Amorim 

and coworkers showed that the capacity of L-histidine monolith (6.24 mg/mL) is 29-fold 

higher than that of the conventional histidine–agarose matrix (0.217 mg/mL) at 50% of 

breakthrough curves [109]. 

Hence, the arginine monolith with spacer arm was characterized in terms of DBC and was 

compared to the conventional agarose-based matrix and arginine monolith. Breakthrough 

experiments were performed at 1 mL/min, with 0.05 mg/mL of the pre-purified pDNA (figure 

14). The column was equilibrated with Tris-EDTA, pH 8.0 and then overloaded with the pDNA 

sample. To determine the DBC of the arginine monolith with spacer arm, it was calculated 

the amount of pDNA per mL of support at 10%, 50% and 100% breakthrough curve. After, the 

pDNA was eluted with 1 M NaCl in Tris-EDTA, pH 8.0 and the monolith was regenerated with 

0.5 M NaOH solution. 
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Figure 14 - Breakthrough curve (continuous line) and void volume (dashed line) of arginine monolith 

with spacer arm. pDNA solution (0.05 mg/mL) was loaded at 1 mL/min. 

The DBC at 10% of breakthrough curve was 2.53 mg/mL, which is much higher than the 0.133 

mg/mL of the conventional support of arginine agarose but lower than the 3.55 mg/mL of the 

arginine monolith [75]. The difference between the DBC of the arginine monolith and the 

arginine monolith with spacer arm can be due to the lower amount of available ligands in the 

last one or to the electronegativity of the 2-allyloxyethanol spacer arm, which may promote 

some repulsion by the pDNA phosphate groups under ionic conditions. 

The conventional agarose-based matrix does not have channels like the monolithic support, 

thus the pDNA molecules only interact with the functional groups that are at the bead surface 

which represents a lower surface area. 

On the other hand, monoliths have become the chromatographic support of choice for the 

purification of sc pDNA, since they are capable of separating large biomolecules, such as 

pDNA, they enable a fast separation with a reduced retention time, allowing the pDNA 

integrity maintenance. Monoliths have the great advantage of higher binding capacity 

comparing to conventional supports [65, 73, 110]. In fact, the DBC of the arginine monolith 

with spacer arm was 19-fold higher than the DBC of the arginine agarose-based support at 10% 

breakthrough. For this reason, the arginine monolith with spacer arm presented in this work 

can be a promising affinity chromatographic support. 
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4.1.3 Separation of HPV E6/E7MUT plasmid DNA isoforms 

The purification strategy explored initially in the present work, for the arginine monolith with 

spacer arm, had already been described by our research group for HPV E6/E7 pDNA 

purification in the arginine monolith, based on increasing stepwise gradient of NaCl (ionic 

elution conditions) [75]. For a first evaluation of the selectivity, several experiments were 

performed to study the elution/retention chromatographic behavior of the arginine monolith 

with spacer arm, towards finding the ideal conditions to separate the pDNA isoforms. All the 

experiments were performed at room temperature. First, the monolith was equilibrated with 

584 mM NaCl in Tris-EDTA, pH 8.0, at 1 mL/min. After injection of 200 µl of the pDNA sample 

resulting from alkaline lysis and pre-purification with Qiagen Plasmid Purification Maxi Kit 

from Qiagen, the unbound species were eluted. Then, the ionic strength was increase to 1 M 

NaCl in Tris-EDTA, pH 8.0, to elute the bound species (figure 15 A). The agarose gel 

electrophoresis showed that the linear pDNA started to elute in the first peak, but some 

amount still elute in the second peak, along with the sc pDNA (figure 15 A, lane 1 and 2, 

respectively). Thus, the concentration of NaCl on the equilibrium step was increased, aiming 

the total elution of the linear pDNA on the first peak. The monolith was equilibrated with 596 

mM NaCl in Tris-EDTA, pH 8.0, and after the elution of unbound species the ionic strength was 

increased to 1 M NaCl in Tris-EDTA, pH 8.0, caused the elution of the bound species (figure 15 

B). As shown at figure 15 B, the sc pDNA started to elute in the first peak with the linear 

isoform, which continues to have an amount that elutes in the second peak. A higher NaCl 

concentration (620 mM) was also tested in the equilibrium step but the agarose gel 

electrophoresis presented on figure 15 C reveals that the linear and the sc pDNA were eluted 

in both peaks, showing that the desired selectivity was not achieved only by the manipulation 

of NaCl concentrations in the equilibrium step. 
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Figure 15 – Chromatographic profile of the pre-purified pDNA sample in the arginine monolith with 

spacer arm, at a laboratorial scale, using a stepwise gradient of 584 (A), 596 (B) and 620 (C) mM in 

the equilibration steps and 1 M NaCl in Tris- EDTA, pH 8.0 in the elution steps, 1 mL/min. Injection 

volume: 200 μL of pre-purified pDNA (oc + linear + sc). Agarose gel electrophoresis of the recovered 

peaks. Lane A - pDNA sample; lane 1 and 2 - peak 1 and peak 2, respectively. 
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According to Almeida and coworkers, the pH manipulation can improve the selectivity of 

arginine ligand and the sc pDNA recovery yield [111]. Therefore, the pH buffer was change to 

7.0. After several experiments by manipulating the NaCl concentration on the equilibrium 

step at pH 7.0, the elution conditions that seem to be the best are described below. The 

monolith was equilibrated with 680 mM NaCl in Tris-EDTA, pH 7.0. After the injection of 200 

µl of pre-purified pDNA sample onto the column, the unbound species were eluted in the 

flow-through. Thereafter, the ionic strength was increase to 1 M NaCl in Tris-EDTA, pH 7.0 

and a second peak was obtained with the bound species, at 1 mL/min (figure 16 A). The 

agarose gel electrophoresis confirmed that the linear pDNA elution occurred in the first peak 

together with a small amount of sc pDNA (figure 16 B, lane 2). The second peak contained the 

sc pDNA, totally isolated (figure 16 B, lane 3). In this way, the total recovery of the sc pDNA 

must be sacrificed, in favor of obtaining the desired isoform with the required purity at the 

second peak. 

 

Figure 16 – (A) Chromatographic profile of the pre-purified pDNA sample in the arginine monolith 

with spacer arm, at a laboratorial scale, using a stepwise gradient of 680 mM and 1 M NaCl in Tris- 

EDTA, pH 7.0, 1 mL/min. Injection volume: 200 μL of pre-purified pDNA (oc + linear + sc). (B) Agarose 

gel electrophoresis of the recovered peaks. Lane A - pDNA sample; lane 1 and 2 - peak 1 and peak 2, 

respectively. 

4.1.4 Purification of HPV E6/E7MUT plasmid DNA from a complex E. coli 

lysate sample 

The previous results indicate that the immobilized arginine in the monolith with spacer arm 

recognizes specifically the sc pDNA isoform. For the purpose of separating the sc pDNA from a 

lysate sample (other pDNA isoforms, RNA, gDNA, proteins and endotoxins), different 

strategies can be explored such as the use of competitive ligand or the manipulation of pH, 

ionic strength or polarity, depending on the matrix and the characteristics of the biomolecule 
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[57]. Thereby, the results previously described were taken into account to start the 

experiments on the purification of sc pDNA from a lysate sample, at a laboratorial scale. 

The first experiment was based on the ideal elution conditions that allowed the isolation of 

the sc pDNA isoform from the pre-purified pDNA sample. Thus, the monolith was equilibrated 

with 680 mM NaCl in Tris-EDTA, pH 7.0, at 1 mL/min. After injection of 200 µL of lysate 

sample, the unbound species were eluted in the flow-through. To elute the bound species, 

the ionic strength was increased to 1 M NaCl in Tris-EDTA, pH 7.0. The correspondent 

chromatogram and agarose gel electrophoresis of each peak are presented on figure 17 A. 

 

Figure 17 – (A) Chromatographic profile of the E. coli lysate sample in arginine monolith with spacer 

arm, at a laboratorial scale, using a stepwise gradient of 680 mM and 1 M NaCl in Tris-EDTA, pH 7.0. 

Injection volume: 200 μL of lysate sample. (B) Agarose gel electrophoresis of the recovered peaks. Lane 

A - lysate sample; lane 1 and 2 - peak 1and 2, respectively. 

Figure 17 B revealed that only the RNA eluted in the first peak and all of the different 

plasmid isoforms eluted in the second one. Although RNA molecules are negatively charged 

and single stranded, they have low molecular weight, comparing to pDNA [42]. In addition, 

this result also shows that the presence of other nucleic acids can alter the binding/elution 

behavior of the pDNA isoforms, which were eluted together in the second peak. Thus, more 

experiments were performed, adding an additional step and manipulating the NaCl 

concentration. Considering that the equilibration step with 680 mM NaCl in Tris-EDTA, pH 7.0 

allowed the total elimination of the RNA in the flow-through, this step was maintained. Then, 

two elution steps were performed by increasing the NaCl concentration to separate the 

retained species (710 mM and 1 M NaCl in Tris-EDTA, pH 7.0). The agarose gel electrophoresis 

revealed that both linear and sc pDNA isoforms were eluted in both peaks (figure 18 A). 
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Since there was no selectivity with previous elution steps, different concentrations of NaCl 

were explored in the first elution step. For instance, it was used a concentration of 800 mM 

NaCl in Tris-EDTA, pH 7.0, but, as it is presented on figure 18 B, although the recovery of the 

sc pDNA in the last peak is sacrificed, it was not possible to obtain the desired conformation 

totally purified. These results allow to conclude that the strategy by manipulation of NaCl 

concentration in the elution step was unable to selectively separate the sc pDNA from the 

other isoforms. 

    

 

Figure 18 - Chromatographic profile of the E. coli lysate sample in arginine monolith with spacer 

arm, at a laboratorial scale, using a stepwise gradient of 680 mM in the equilibrium steps, 710 mM 

(A), 800 (B) in the first elution steps and 1 mM NaCl in Tris-EDTA, pH 7.0 in the second elution 

steps. Injection volume: 200 μL of lysate sample. Agarose gel electrophoresis of the recovered peaks. 

Lane A - lysate sample; lane 1, 2 and 3 - peak 1, 2and 3, respectively. 

As mentioned above, the elution strategy can be through the addition of a competitive agent, 

where the elution buffer has the same pH, ionic strength and polarity as the equilibrium 
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buffer. The competing agent can bind to the retained biomolecule or to the immobilized 

ligand, thus preventing interactions between the biomolecule and the ligand. This allows a 

biospecific elution, it being more selective [112]. In fact, Pereira and coworkers have already 

demonstrated the successful application of arginine as a competing agent on the purification 

of pre-miR-29 [113]. Bearing this in mind, further experiments were carried out, using a 

competitive elution strategy, always maintaining the equilibration step to eliminate the RNA. 

Arginine was used as a competing agent on the elution buffer and several concentrations were 

tested (10 mM, 5 mM, 2 mM, 1 mM, 0.5 mM and 0.01 mM). All the experiments showed an 

identical chromatographic behavior as the chromatographic profile presented on figure 19 A, 

where the second step was executed with the equilibrium buffer supplemented with 0.01 mM 

arginine and the third step was performed with 1 M NaCl in Tris-EDTA, pH 7.0. The 

correspondent electrophoresis revealed that the majority of the sc pDNA was eluted in the 

second step, along with the other isoforms (figure 19 B).  

   

Figure 19 - (A) Chromatographic profile of the E. coli lysate sample in arginine monolith with spacer 

arm, at a laboratorial scale, using a stepwise gradient of 680 mM, 680 mM + 0.01 mM arginine and 1 

M NaCl in Tris-EDTA, pH 7.0. Injection volume: 200 μL of lysate sample. (B) Agarose gel electrophoresis 

of the recovered peaks. Lane A - lysate sample; lane 1, 2 and 3 - peak 1, 2and 3, respectively. 

This competitive elution is based on the interaction between the retained biomolecule (pDNA) 

and the competing agent (free arginine). Hence, in the presence of free arginine in the 

elution buffer, the target biomolecule is no longer retained, being eluted. The low selectivity 

of this strategy might be due to the fact that the arginine positive charge promotes 

preferential binding of pDNA  with free arginine present in the elution buffer, through 

electrostatic interactions [114]. 
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As it was previously referred, the pH manipulation can improve the selectivity of arginine 

ligand and the sc pDNA recovery yield [111]. Therefore, other strategy to explore in the 

purification of the sc pDNA from E. coli lysate was the pH variation in the elution buffer (9, 8, 

7.5, 7.3 and 6.5). This experiments demonstrated that the higher the pH, the lower the 

retention, since there is a weaker ionic interaction (data not shown). Considering that the 

pKa of arginine is 12, high pH leads to less effectiveness of the arginine positive charges, 

causing a weaker interaction with the pDNA. 

The condition that showed the best outcome was with pH 7.5. Likewise, the equilibration 

step with 680 mM NaCl in Tris-EDTA, pH 7.0, was also maintained on these experiments, since 

it allows the RNA elution on the flow-through. Then, the elution buffer was changed to 650 

mM and 1 M of NaCl in Tris-EDTA, pH 7.5, resulting in the elution of two peaks (figure 20 A). 

The analysis of the respective agarose gel electrophoresis proved that this strategy enables 

the selective separation of non-functional plasmid isoforms in the second peak and the 

recovery of sc pDNA almost isolated in the third peak (figure 20 B, lane 2 and 3, respectively).  

 

Figure 20 - (A) Chromatographic profile of the E. coli lysate sample in arginine monolith with spacer 

arm, at a laboratorial scale, using a stepwise gradient of 680 mM in Tris-EDTA, pH 7.0, 649 mM and 

1 M NaCl in Tris-EDTA, pH 7.5. Injection volume: 200 μL of lysate sample. (B) Agarose gel 

electrophoresis of the recovered peaks. Lane A - lysate sample; lane 1, 2 and 3 - peak 1, 2and 3, 

respectively. 

The results described earlier indicate that the differential interactions between nucleic acids 

of the lysate sample and the arginine monolith with spacer arm comply with what was 

previously described [75, 111]. The predominant electrostatic interactions, mostly between 

the arginine positive charges and the negative phosphate groups of the nucleic acids, are due 

to the fact that the working pH is lower that the pKa of arginine (12) [115]. These 
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interactions can be weakened by competition with the ions of the NaCl buffer, increasing its 

concentration and thus reducing the effective net charge between the ligand and lower 

affinity species [116]. This is why RNA was eluted in the flow-through of the equilibration 

buffer, since it has less interaction points when compared to pDNA under these equilibrium 

conditions. Moreover, the specific recognition of the sc pDNA isoform in relation to other 

isoforms might be because of the additional non-covalent interactions with the arginine 

ligand, such as cation-п interactions, bifurcate hydrogen bonds and hydrogen-п interactions, 

mainly with the more exposed bases of this conformation caused by the supercoiled 

phenomena [56, 117]. Consequently, the slight increase of the buffer pH, along with the 

adjustment of the ionic strength, allowed the elution of species with lower affinity (oc and 

linear pDNA isoforms) and the isolation of the sc pDNA in the last peak. 

4.1.5 Recovery and purity quantification of the recovered peaks 

The sc pDNA purified fractions obtained from the optimized chromatographic elution strategy 

were analyzed in terms of purity and recovery yield, by CIMac™ pDNA analytical column, 

according to the method previously described [77]. First, the analytical column was 

equilibrated with 600 mM of NaCl in 200 mM Tris-HCl buffer (pH 8.0). After, 20 μL of the 

sample recovered from the peak of interest was injected onto the column and a linear 

gradient from 600 mM to 700 mM of NaCl was applied, during 10 min, eluting the retained 

pDNA isoforms.  

The purity degree was determined by the ratio between the sc pDNA peak area and the total 

peak area in the analytical chromatogram, it being 93.3%.  This value supports the fact that 

arginine monolith with spacer arm can highly purify sc pDNA from a lysate sample. The 

recovery yield was calculated through the ration between the recovered sc pDNA 

concentration and the sc pDNA concentration from the lysate sample, it being almost 72%. 

This value can be due to the sc plasmid loss during its recuperation, concentration and 

desalting steps [73, 75]. Though this recovery yield is lower than the 86% obtained with the 

arginine monolith [75], it is satisfactory, comparing to other chromatographic strategies, like 

the 62% of recovery yield obtained with anion exchange [118] and the triplex affinity 

chromatography [119], as well as the 70%  attained from hydrophobic interaction 

chromatography [101]. 

4.1.6 Preparative chromatography 

The applicability of arginine monolith with spacer arm was also explored in the purification of 

sc pDNA isoform at a preparative scale (figure 21 A). The elution conditions were conducted 

in order to ensure the purity of the final pDNA sample. The column was loaded with 68 mL of 

lysate sample prepared in the same equilibrium buffer (680 mM NaCl in Tris-EDTA, pH 7.0). 

The agarose gel electrophoresis revealed that the RNA was eluted throughout the assay, 
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joined by the oc and linear isoforms elution and lastly the sc plasmid isoform partial elution 

(figure 21 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 - (A) Chromatographic profile of the E. coli lysate sample in arginine monolith with spacer 

arm, at a preparative scale under overloading conditions, using a stepwise gradient of 670 mM in 

Tris-EDTA, pH 7.0, 649 mM and 1 M NaCl in Tris-EDTA, pH 7.5. (B) Respective agarose gel 

electrophoresis. Lane 1-8 - peak 1; lane 9 - peak 2, respectively. 

This behavior is similar to the one observed in the laboratorial scale assay, suggesting that 

the preferential retention of sc pDNA also occurred in overloaded conditions. After the 

column loading, two steps were performed (with 649 mM and 1 M NaCl in Tris-EDTA, pH 7.5) 

to elute the bound species. Figure 21 shows the recovery of sc pDNA in the first elution step, 

almost free of other plasmid isoforms. In this approach, 0.83 mg of pDNA/mL of column were 

recovered, with a purity higher than the result obtained in the laboratorial approach (98.5% 

and 93.3%, respectively). These results indicate that the elution strategy applied on the 

preparative approach is more suitable to obtain the required purity of sc pDNA, although it is 
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not possible to load higher amount of lysate sample without compromising the sc pDNA 

recovery. 

4.1.7 Host impurities assessment in the purified sc pDNA 

To apply the sc HPV-16 E6/E7MUT pDNA vaccine pharmaceutically, it must be obtained from a 

complex E. coli lysate sample and the impurities elimination must be assured, following the 

regulatory agency specifications: sample homogeneity higher than 97% supercoiled, proteins 

and RNA undetectable by micro-BCA method and 0.8% agarose gel electrophoresis, 

respectively, gDNA under 2 μg/mg plasmid by PCR and endotoxins under 0.1 EU/ng plasmid by 

LAL assay (table 5) [60, 120]. 

Table 5 - Regulatory agency specifications (adapted from [60, 120]). 

Impurities and homogeneity  Criteria 

Homogeneity  >97% sc 

Proteins  Undetectable 

RNA  Undetectable 

gDNA  <2 μg/mg 

Endotoxins  <0.1 EU/μg pDNA 

 

To reduce pathogenic effects and adverse reactions, the pDNA for therapeutic application 

should be free from contaminants and host impurities [121]. Regarding the content of 

protein, is must be undetectable, since they can cause immune responses, like anaphylactic 

shock or autoimmune diseases, or induce biological reactions due to the production of 

cytokines, hormones and/or antibodies [122, 123]. Hence, the regulatory agencies define that 

proteins should be undetectable in the sc pDNA sample (table 5). The protein content was 

assessed by the micro-BCA assay, already described on chapter 3.2.7. The results shown in 

table 6 present that the protein content of the lysate sample and the pDNA sample was 

undetectable, either at the laboratorial or preparative scale, being in agreement with the 

requirements of the regulatory agencies. These results suggest that the clarification step with 

2.5 M of ammonium sulfate in the end of the lysis procedure was effective in the removal of 

proteins.    

Another parameter that must be measured is the gDNA, because some of its fragments can 

encode an oncogene that can integrate the cell genome after transfection, possibly causing 

tumor formation [122]. The quantification of gDNA was obtained with real-time PCR. As 

presented in table 6, the gDNA amount at the laboratorial scale was initially 9.980 ng/μg of 

pDNA and considerably reduced to 0.090 ng/μg of pDNA. At the preparative scale, the initial 

gDNA amount was 7.320 ng/μg of pDNA and reduced to 0.680 ng/μg of pDNA. Both values are 

below the limit imposed by the regulatory agencies (2 μg/mg of pDNA).  
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Endotoxins are highly negatively charged lipopolysaccharides (LPS) that constitutes the cell 

wall of gram negative bacteria, such as E. coli [122]. They can cause strong biological effects, 

including activation of the immune system, stimulation of cytokines overproduction, fever, 

induction of endotoxin shock, tissue injury and ultimately death [122, 124, 125]. Endotoxins 

assessment was performed by the LAL endotoxin assay kit. Endotoxins were reduced from the 

initial value of 0.434 EU/μg of pDNA in the lysate sample to 0.011 EU/μg of pDNA, at the 

laboratorial scale. Regarding the preparative scale, endotoxins were also significantly 

reduced from 5.402 EU/μg of pDNA to 0.003 EU/μg of pDNA. Both values are in agreement 

with the limits of the regulatory agencies. 

Table 6- Protein, gDNA and endotoxins measurement in the sc pDNA recovered fraction from the 

laboratorial and preparative chromatography approaches. 

 

Sample Proteins (mg/mL) 

gDNA  Endotoxins 

 (μg/mL) 
(ng/μg 

pDNA) 
 (EU/mL) 

(EU/μg 

pDNA) 

Laboratorial 

chromatography 

Lysate sample Undetectable 0.649 9.980  28.198 0.434 

pDNA Undetectable 0.004 0.090  0.539 0.011 

Preparative 

chromatography 

Lysate sample Undetectable 0.038 7.320  28.141 5.402 

pDNA Undetectable 0.054 0.680  0.264 0.003 

 

 

4.2 Nanotechnology 

4.2.1 MgCO3 Nanoparticles synthesis 

The nanoparticles were synthesized by the co-precipitation method, where the solution A 

with MgCl2 and pDNA is added to the solution B with CaCO3, gelatin and the functionalization 

compound (mannose or galactose). This creates a precipitate – the nanoparticles - that can be 

easily recovered by centrifugation. 

Mg𝐶𝑙2(𝑎𝑞)+ 𝑁𝑎2𝐶𝑂3 (𝑎𝑞)→ Mg𝐶𝑂3 (𝑠)+2𝑁𝑎𝐶𝑙 (𝑎𝑞) (3) 

The choice of these materials for the nanoparticles formation is based on the already well 

described and effective nanoparticles CaCO3 synthesis protocol [95], but the Ca2+ ion was 

substituted by the Mg2+ ion, to investigate if the results of transfection and gene delivery can 

be improved. The use of inorganic nanoparticles, such as carbonates of Ca2+ and Mg2+, might 

eliminate some limitations of the current non-viral genetic vaccine systems, like the 

inefficiency of activation of the APCs [126]. Moreover, it has been demonstrated that the 

incorporation of Mg2+ into the nanoparticles caused inhibition of particle growth, leading to a 

remarkably improvement on the DNA cellular uptake [127]. 
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On the other hand, gelatin is a biocompatible and biodegradable polymer, non-toxic and with 

low immunogenicity. Its use on the nanoparticles synthesis improves their properties: it 

reduces the nanoparticles size, enhances their stability and ζ potential, thus improving the 

gene delivery efficiency [98]. 

The mechanisms of both humoral and cellular immune responses have already been 

explained. DNA vaccination aims to activate these two responses, by activating the cytotoxic 

T lymphocytes (CD8+) as well as the T helper cells (CD4+). These cells recognize the MHC-(I 

and II, respectively)-peptide complex that is presented on APC surface [35].  The major APC is 

the dendritic cell (DC). Therefore, with the purpose of delivering the HPV-16 E6/E7MUT pDNA 

vaccine, targeting the DCs seemed to be a promising strategy to enhance the activating of 

humoral and cellular immune responses. 

DCs express on their surface c-type lectin receptors (CLRs) that recognize glycosylated self-

antigens or foreign pathogens [128, 129]. This is particularly relevant and useful considering 

that an approach of DC-targeting vaccine delivery is desired. Thus, the nanoparticles surface 

was functionalized with mannose or galactose (carbohydrates that are recognize by CLRs) 

[128, 130]. This selective delivery of the nanoparticles can facilitate binding and endocytosis 

by the DC. 

4.2.2 Cytotoxicity assay 

The MTT assay was performed to assess the MgCO3 nanoparticles effect on cell viability. The 

results revealed a cell viability of 85% ± 0.9 at 24h and 84% ± 1.0 at 48h. This means that 

these nanoparticles do not have an acute cytotoxic effect. 

The components that were later added to the nanoparticles formulation – gelatin, mannose 

and galactose – are not expected to be cytotoxic, since they were already used on some 

transfection studies [131, 132]. 

4.2.3 Encapsulation efficiency 

For therapeutic purposes, the formulation of a suitable pDNA delivery system must 

incorporate a large amount of genetic material. To evaluate the EE parameter, different 

quantities of pDNA (5 μg, 7.5 μg, 10 μg, 15 μg and 20 μg) were tested for the different 

systems and are presented in table 7. Either nanoparticles functionalized with mannose or 

galactose showed a decay of %EE by increasing the pDNA quantity. This may be due to the 

large size of the plasmid. Moreover, there was a slight decrease on the %EE of the 

functionalized nanoparticles when comparing to the non-functionalized ones. Other 

nanoparticles formulations allowed the same or less %EE. For example, CaCO3 nanoparticles 

only allowed 51-63% EE [95], chitosan–TPP nanoparticles allowed only up to 80% [133] and 

poly(lactic acid)-poly(ethylene glycol) nanoparticles allowed up to 90% EE [134]. Therefore, 

the entire %EE was relatively high. 
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Table 7 – Average %EE of the different pDNA based nanoparticles. Values were calculated with the 

data obtained from three independent measurements (mean ± SD, n = 3). 

System (MgCO3) % EE 

5 µg pDNA/Gelatin 88.4 ± 1.9 

5 µg pDNA/Gelatin/Mannose 87.8 ± 0.5 

7.5 µg pDNA/Gelatin/Mannose 79.3 ± 8.0 

10 µg pDNA/Gelatin/Mannose 70.6 ± 2.3 

15 µg pDNA/Gelatin/Mannose  66.3 ± 0.6 

20 µg pDNA/Gelatin/Mannose 62.6 ± 1.7 

5 µg pDNA/Gelatin/Galactose 86.3 ± 1.8 

7.5 µg pDNA/Gelatin/Galactose 77.6 ± 8.4 

10 µg pDNA/Gelatin/Galactose 66.9 ± 5.0 

15 µg pDNA/Gelatin/Galactose 61.1 ± 1.0 

20 µg pDNA/Gelatin/Galactose 57.9 ± 2.7 

 

4.2.4 Galactose Encapsulation Efficiency 

The efficiency of the galactose encapsulation was satisfactory and the differences between 

the studied quantities of pDNA (5 µg or 10 µg) were not notorious. These results are 

presented in table 8. 

Table 8 - Average %EE of galactose of the pDNA based nanoparticles. Values were calculated with the 

data obtained from three independent measurements (mean ± SD, n = 3). 

System (MgCO3) % Galactose EE 

5 µg pDNA/Gelatin/Galactose  78.7 ± 0.9 

10 µg pDNA/Gelatin/Galactose 80.1 ± 1.4   

 

4.2.5 Nanoparticles morphology 

Scanning Electron Microscopy (SEM) and transmission electron microscopy (TEM) are 

techniques that rely on the use of a beam of highly energetic electrons to obtain information 

about the sample, like morphology. SEM and TEM images of the studied nanoparticles are 

presented on figure 22. 
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Figure 22 - Morphology of the different system studied. (A and B) Images of pDNA/MgCO3 

nanoparticles morphology. (C and D) Images of pDNA/5 mg/mL Gelatin/MgCO3 nanoparticles 

morphology. (E and F) Images of pDNA/10 mg/mL Gelatin/MgCO3 nanoparticles morphology. (G and H) 

Images of pDNA/Galactose/MgCO3 nanoparticles morphology. (I and J) Images of pDNA/5 mg/mL 

Gelatin/Galactose/MgCO3 nanoparticles morphology. (K and L) Images of pDNA/Mannose/MgCO3 

nanoparticles morphology. (M and N) Images of pDNA/5 mg/mL Gelatin/Mannose/MgCO3 nanoparticles 

morphology. All images on the left were obtained by SEM and all images on the right were obtained by 

TEM. 

 By analysis of figure 22, the nanoparticles for all the different formulations present a round 

or oval shape. This is relevant, considering that this morphology allows a quick absorption by 

the cells membrane, facilitating the nano-carrier internalization. 
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Two concentrations of gelatin (5 mg/mL and 10 mg/mL) were studied to test the ability of 

this polymer to reduce the nanoparticles size, but the higher concentration led to the 

formation of crystals. Thus, 5 mg/mL of gelatin was chosen to formulate the functionalized 

nanoparticles. 

A more detailed analysis of the obtained images revealed that the use of gelatin decreased 

the size of the nanoparticles, it being in agreement with what was expected  [98]. Besides, 

the functionalization with either mannose or galactose led to the synthesis of nanoparticles 

with similar sizes. 

4.2.6 Nanoparticles size 

The morphology influences internalization of the nanoparticles, as well as their size. The 

mean size of each nanoparticle system studied was determined using the Zetasizer Nano ZS 

and the obtained values are presented in table 9. 

Table 9 - Average size of the different pDNA based nanoparticles. Values were calculated with the 

data obtained from three independent measurements (mean ± SD, n = 3). 

System (MgCO3) Particle size (nm) 

pDNA/5 mg/mL Gelatin  237.4 ± 8.7 

pDNA/10 mg/mL Gelatin  213.2 ± 9.0 

pDNA/5 mg/mL Mannose 192.6 ± 4.9 

pDNA/5 mg/mL Galactose 178.1 ± 4.5 

pDNA/5 mg/mL Gelatin/Mannose  142.1 ± 5.7 

pDNA/5 mg/mL Gelatin/Galactose 112.8 ± 2.3 

pDNA/10 mg/mL Gelatin/Mannose  109.4 ± 9.1 

pDNA/10 mg/mL Gelatin/Galactose  99.7 ± 5.9 

 

Is has been described that smaller particles (<300 nm) [126], when complexed with DNA, 

induce better immune responses than the larger ones. This might be due to the ability of 

smaller particles to be taken up more readily by APCs. Considering that the studied nano-

carriers have sizes between 99.7 nm and 237.4 nm, they have the ideal size. These values are 

in agreement with the relative sizes from the images obtained with SEM and TEM and are 

lower than the sizes of CaCO3 nanoparticles (300-500 nm) [95] and similar or lower than the 

sizes obtained with other formulations [133, 135]. 

Moreover, it is important to notice that the addition of gelatin causes a reduction on the 

nanoparticle size, which allows a better absorption and cellular internalization. Besides, the 

functionalization with mannose or galactose does not lead to the formation of larger 
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nanoparticles. In summary, all the studied systems present sizes in the nano scale, making 

them suitable for cellular uptake and thus appropriate for applications within the DNA 

vaccination. 

4.2.7 Zeta (ζ ) potential 

The ζ potential of each system was measure, as well as the ζ potential of the pDNA and each 

compound (table 10). 

Table 10 - Average zeta potential of the different pDNA based nanoparticles. Values were calculated 

with the data obtained from three independent measurements (mean ± SD, n = 3). 

System (MgCO3) Zeta Potential (mV)            

pDNA -174.2 ± 9.1 

Gelatin                                 +78.2 ± 5.2 

Mannose +18.4 ± 0.8 

Galactose +37.1 ± 1.3 

pDNA/5 mg/mL Gelatin  +65.9 ± 1.5 

pDNA/ 10 mg/mL Gelatin  +81.4 ± 3.1 

pDNA/5 mg/mL Mannose +32.1 ± 0.8 

pDNA/ 5 mg/mL Galactose +50 ± 1.7 

pDNA/5 mg/mL Gelatin/Mannose  +71.5 ± 6.1 

pDNA/5 mg/mL Gelatin/Galactose +88.9 ± 4.4 

pDNA/10 mg/mL Gelatin/Mannose  +82.2 ± 5.1 

pDNA/10 mg/mL Gelatin/Galactose  +90.3 ± 6.2 

 

All systems presented positive ζ potential. Besides, it is worth to mention that the presence 

of gelatin increases the positive charge of the nanoparticles, as it was expected. The positive 

ζ potential facilitates the future interaction of the nanoparticles with the negatively charged 

cellular membrane, favoring cell internalization and uptake, therefore enabling a more 

effective gene transfection. 

4.2.8 Transfection studies 

Transfection is the process of uptake of nucleic acids, like pDNA, by eukaryotic cells. Thus, 

the ultimate aim of transfection is to reach the nucleus, where the expression of the 

therapeutic gene occurs. Besides protection of the pDNA, the goal of the nanoparticles is to 

mediate and facilitate the cellular uptake. 

To evaluate the transfection process, cell live imaging has been performed and applied in 

fluorescence confocal microscopy. This technique allows for the continuous monitoring of the 

process for which it was chosen. Cell live imaging was performed through a co-localization 



 53 

study where the nucleus were stained with Hoechst (blue) and the pDNA within the 

nanoparticles was previously stained with FITC (green) (figure 23). 

      
 

  
 

Figure 23 – Transfection ability for the different studied systems. (A) pDNA/Gelatin/MgCO3 

nanoparticles transfection. (B) pDNA/Gelatin/Galactose/MgCO3 nanoparticles transfection. (C) 

pDNA/Gelatin/Mannose/MgCO3 nanoparticles transfection. 

Unfortunately, the captured images had some background noise, but still it is possible to 

observe that the nanoparticles were able to enter the cell and even the nucleus and caused a 

light blue stain. Although more experiments are required, the images on figure 23 are strong 

evidence that the nanoparticles were indeed internalized. 
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Chapter V - Conclusions and future perspectives 

 

Despite the constant and tireless evolution in biotechnology, there are pathologies that 

remain unaddressed due to the lack of successful treatments, such as HPV infection. DNA 

vaccination arises as a possible answer to this problem, urging the need to develop efficient 

purification methods. The use of monolithic chromatography combined with amino acid 

ligands allows faster separations and increases the selectivity, emerging as a potential way 

for the sc pDNA purification. After the purification step, it is also crucial to develop systems 

that can protect and direct the delivery to the target cells, in order to maximize the 

transfection efficiency and the gene expression of the pDNA molecules. 

Hence, the purpose of the present work was to explore different elution strategies and 

optimize the purification of the sc HPV-16 E6/E7MUT pDNA, using the arginine monolith with 

spacer arm, in order to fulfil the criteria of the regulatory agencies for therapeutic 

applications. This work also aimed the formulation and characterization of MgCO3 

nanoparticles for in vitro transfection. 

Initially, a screening of elution gradients were performed to confirm the presence and 

influence of different functional groups immobilized in epoxy monoliths, namely the 

electronegative spacer arm and the arginine amino acid ligand, in the pDNA retention. 

Thereafter, for a complete characterization of the arginine monolith with spacer arm, the 

dynamic binding capacity was determined, and the value at 10% of breakthrough curve was 

2.53 mg/mL, which is lower than the 3.55 mg/mL of the arginine monolith, probably due to 

the presence of the electronegative spacer arm that promote repulsion by the pDNA. After 

the preliminary studies of the retention/elution of the different isoforms from a pre-purified 

sample, different strategies (manipulation of NaCl concentration and/or pH and addition of a 

competing agent) were explored to obtain the sc pDNA purified from a clarified E. coli lysate. 

After optimizing the conditions, the best strategy was to combine the manipulation of NaCl 

concentration with the manipulation of pH in the elution buffer (applying a stepwise gradient 

of 680 mM NaCl in Tris-EDTA, pH 7, 649 mM and 1 M NaCl in Tris-EDTA, pH 7.5), resulting in a 

sc pDNA purification degree of 93.3% and a recovery yield of 72%. The applicability of this 

monolith was also evaluated in the purification of the sc pDNA at a preparative scale, with 

the overloading of the column with a lysate sample. This approach allowed the recovery of 

0.83 mg of pDNA/mL of column, with 98.5% of sc pDNA purity (higher than the result obtained 

at the laboratorial scale). Additionally, all the impurities (RNA, gDNA, proteins and 

endotoxins) were significantly reduced at acceptable levels by the regulatory agencies, either 

at laboratorial and preparative scale. 
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Moreover, a suitable nano-carrier was developed and tested in vitro. After adjusting the 

concentrations of the components, the MgCO3 nanoparticles were functionalized for further 

targeted delivery. After, the nanoparticles were characterized in terms of encapsulation 

efficiency (between 60% and 90%), morphology (round shape), size (99.7-237.4 nm) and zeta 

potential (positive). All these data suggested that the developed nanoparticles were suitable 

for cellular uptake and thus appropriate for therapeutic applications. Therefore, the in vitro 

studies accompanied with confocal microscopy proved transfection occurrence showing cell 

internalization, as well as, nucleus targeting of nanoparticles. 

In conclusion, it was confirmed that the arginine monolith with spacer arm allowed the sc 

pDNA purification with a good purity and recovery yield and the MgCO3 nanoparticles proved 

to be an efficient delivery system, it being a promising strategy for the development of an 

effective DNA vaccine against HPV infections. 

However, the transfection studies must be optimized and immunocytochemistry must be 

applied in order to evaluate the transfection efficiency of all three developed delivery 

systems through the analysis of fluorescence intensity differences of the FITC-pDNA. 

Considering that the DCs are excellent APCs and they have a key role on the activation of the 

cytotoxic T lymphocytes and the T helper cells, it is important to evaluate the transfection 

efficiency in these cells. If the functionalization of the nanoparticles by the ligands mannose 

and galactose enhances the transfection in DCs, then it can be predictable that the in vitro 

systems can perform a targeted delivery to in vivo DCs. After selecting the more promising 

delivery system, in vitro transfection studies in DCs should be conducted to evaluate the 

expression of the E6 and E7 antigenic proteins by immunohistochemistry or western blot. 

Moreover, in vivo studies with mice should be performed to administer the DNA vaccine, using 

the pDNA encapsulated in the nano-carrier that revealed to be more promising. In addition, to 

evaluate the activation of immune responses, the quantification of cytotoxic T lymphocytes 

and T helper cells should be accomplished by flux cytometry. 
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