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Resumo 

 

A doença de Parkinson é uma doença neurodegenerativa cujas causas não se encontram 

totalmente compreendidas. Os modelos animais de Parkinson são ferramentas fundamentais 

em investigação permitindo o entendimento dos mecanismos envolvidos na patogénese da 

doença. O modelo animal ideal deve reproduzir muitas, se não todas, as características da 

doença de Parkinson. Os modelos atuais de Parkinson para além de não mimetizarem os 

modelos de exposição a toxinas que se pensa ocorrer nos humanos, não apresentam todas as 

características moleculares e bioquímicas fundamentais da doença de Parkinson, como por 

exemplo a acumulação de alfa-sinucleína, tornando-se assim restritivos no que se refere à sua 

aplicação. Deste modo, é necessário o permanente desenvolvimento de novos modelos que 

mimetizem a doença de Parkinson nos humanos de uma forma mais consistente. Neste 

projeto, desenvolvemos um novo modelo através da administração crónica de paraquato, via 

difusão lenta e prolongada de pequenas doses de paraquato assegurada por cápsulas de 

difusão osmótica. Este modelo desenvolvido por nós reproduz características importantes da 

doença humana, como é o caso da acumulação de alfa-sínucleina que não se observa nos 

anteriores modelos animais da doença de Parkinson induzidos por esta toxina. Em paralelo, 

estudos recentes têm-se focado no estudo da barreira hemato-encefálica que é uma estrutura 

pouco explorada nesta doença neurodegenerativa. Evidências clinicas demonstram que as 

disfunções nesta barreira estão associadas a um número elevado de doenças do sistema 

nervoso central. O HMGB1 tem sido demonstrado como um sinalizador de inflamação, sendo 

libertado por células necróticas durante estes processos, e tem como recetor, entre outros, o 

RAGE. Este recetor entre outras células está presente nas células endoteliais, que são o 

principal componente da barreira hemato-encefálica, e está envolvido em processos 

inflamatórios através da promoção da proliferação e migração celular. Apesar da importância 

deste recetor em doenças como AVC, tumores cerebrais e Alzheimer, não existe informação 

consistente acerca do seu envolvimento na doença de Parkinson. Em estudos anteriores, outro 

ligando do recetor RAGE (S100B) apresentou-se aumentando em doentes de Parkinson, e 

existem evidências de que a neuroinflamação observada em Parkinson compromete o 

funcionamento normal da barreira hemato-encefálica. Deste modo, existem boas indicações 

para analisar os níveis de expressão de HMGB1 e do recetor RAGE em modelos experimentais 

de Parkinson. Os resultados obtidos revelam um aumento da expressão de HMGB1 e RAGE com 

mais significado nos modelos in vivo de PQ e 6-OHDA. Os resultados obtidos sugerem que o 

papel do ligando HMGB1 tal como do seu recetor na doença de Parkinson, deve ser explorado 

como forma de perceber se serão marcadores consistentes da neuroinflamação observada 

nesta doença e se poderão constituir importantes alvos terapêuticos. 
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Resumo Alargado 

 

No ano de 1817, James Parkinson descreveu pela primeira vez a doença de Parkinson. Esta 

patologia caracteriza-se por uma degeneração progressiva da via nigrostriatal dopaminérgica. 

Os mecanismos moleculares e celulares responsáveis pelo desenvolvimento da doença de 

Parkinson não se encontram totalmente compreendidos devido, em parte, ao facto de não 

existir um modelo que mimetize o que se passa nos humanos. Vários estudos apontam para 

que esta doença tenha uma causa multifatorial, incluindo disfunção mitocondrial, aumentos 

de stress oxidativo, neuroinflamação, disfunção do proteossoma e agregação de proteínas, 

como responsáveis pela degeneração dos neurónios dopaminérgicos na substantia nigra pars 

compacta. Esta doença foi a primeira doença neurológica a ter um modelo animal de estudo e 

a ser tratada através de terapia de substituição de neurotransmissores. Diversos estudos têm 

demonstrado uma relação entre a exposição a neurotoxinas ambientais e o desenvolvimento 

da doença de Parkinson. O Paraquato é um herbicida capaz de induzir toxicidade seletiva nos 

neurónios dopaminérgicos, levando à sua degeneração podendo assim ser utilizado para 

mimetizar o ambiente patológico observado na doença. Ainda outros modelos de Parkinson 

incluem o tratamento com 1-metil-4-fenil-1,2,3,6-tetraidropiridina (MPTP) e 6-

hidroxidopamina. Contudo, até à data, não existe um modelo capaz de reproduzir 

completamente as características observadas na doença humana, que apresenta um caracter 

crónico. Nenhum dos modelos até hoje desenvolvidos apresenta consistentemente a 

característica fulcral da doença, a alfa-sínicleinopatia, limitando o estudo dos seus 

mecanismos patogénicos. O modelo ideal deve incluir, se não todas, as principais 

caraterísticas da patologia em estudo. Este é um desafio difícil, uma vez que surgem 

continuamente novos dados acerca da patologia. O desenvolvimento de um modelo que se 

aproximasse da doença crónica observada em humanos representaria um avanço para o 

estudo dos mecanismos envolvidos na doença de Parkinson. Neste projeto, foi desenvolvido 

um novo modelo animal da doença de Parkinson através da administração lenta e continua de 

paraquato ao longo de 4 semanas. Para este efeito recorreu-se a um método que por difusão 

osmótica garantiu a libertação gradual de pequenas doses do pesticida. Este novo modelo de 

Parkinson reflete caraterísticas fulcrais da patologia incluindo perda neuronal dopaminérgica 

e acumulação e agregação de alfa-sinucleína. O modelo animal desenvolvido representa uma 

ferramenta atrativa para estudar não só os diversos mecanismos envolvidos na doença, mas 

também, a aplicação de diversas terapias para a doença de Parkinson.   

O ambiente inflamatório crónico observado em doentes de Parkinson leva à libertação de 

citocinas pro-inflamatórias que resultam em claros sinais de inflamação central e periférica 

do sistema nervoso. De acordo com a literatura, existem evidências de que a inflamação 

observada em Parkinson pode comprometer o normal funcionamento da barreira hemato-

encefálica. Nos últimos anos, o envolvimento desta barreira tem sido estudado em diversas 

http://pt.wikipedia.org/wiki/Metil
http://pt.wikipedia.org/wiki/Fenil
http://pt.wikipedia.org/wiki/Piridina
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patologias como o AVC, tumores cerebrais ou a doença de Alzheimer. Em ambientes de 

inflamação a libertação de citocinas tem-se revelado um forte alvo terapêutico. A molécula 

HMGB1 trata-se de um mediador de inflamação presente na maioria das células humanas e 

tem-se revelado fortemente envolvida em processos inflamatórios de diferentes naturezas. O 

seu recetor principal, RAGE, é um multi-ligando da superfamília das imunoglobulinas descrito 

pela primeira vez em 1992. Este é amplamente expresso em vários tipos de células, incluindo 

as células endoteliais conhecidas pelo seu papel fundamental na barreira hemato-encefálica. 

Os seus diversos ligandos são denominados de moléculas associadas ao dano e são libertadas 

por células necróticas. Após a sua ativação, esta molécula induz proliferação e migração 

celular. Estudos recentes têm desvendado o papel deste recetor em doenças como Alzheimer 

contudo, apesar da importância deste recetor em diversas doenças neurodegenerativas não 

existe nenhuma informação acerca do seu envolvimento na doença de Parkinson. A literatura 

indica ainda que as espécies reativas de oxigénio geradas na doença de Parkinson conduzem 

ao aumento de HMGB1, por outro lado, um estudo envolvendo outro ligando do recetor RAGE 

(S100B) revelou um aumento da sua expressão em doentes de Parkinson. Deste modo e de 

acordo com a literatura, existem fortes evidências que reforçam a necessidade de aprofundar 

a análise da expressão de HMGB1 e RAGE em modelos experimentais de Parkinson. Neste 

projeto avaliou-se a expressão de HMGB1 e RAGE em modelos in vivo e in vitro de Parkinson. 

Os níveis de expressão foram obtidos por Western Blot de tecidos das regiões substantia nigra 

e estriado, recolhidos dos cérebros de animais expostos a diferentes neurotoxinas (paraquato, 

MPTP e 6-hidroxidopamina), bem como de células neuronais dopaminérgicas (células da linha 

celular N27) expostas a paraquato, MPP+ e 6-hidroxidopamina e células endoteliais (células 

endoteliais da veia umbilical humana) expostas a 6-hidroxidopamina. Os resultados obtidos, 

revelam um aumento mais expressivo de HMGB1 e RAGE nos modelos in vivo de paraquato e 

6-hidroxidopamina. 

Deste modo, os resultados obtidos indicam que um estudo mais detalhado do papel tanto do 

ligando HMGB1 como do seu recetor RAGE na doença de Parkinson, bem como dos seus 

mecanismos celulares e moleculares associados, seria uma mais-valia para melhor perceber se 

estes têm potencial para servirem como moléculas para monitorizar a inflamação neuronal, 

bem como para testar potenciais abordagens terapêuticas para o tratamento desta doença. 
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Abstract  

 

Parkinson’s disease (PD) is a common neurodegenerative disorder with no known cure. The 

animal models, in particular the PD models, are important tools in experimental medical 

science to better understand the mechanisms involved in disease pathogenesis. The ideal 

animal model for PD should recapitulate most, if not all, features of the human disease. 

Actual PD animal models available do not show prominent alpha-synucleinopathy, an hallmark 

of the disease, leading to their restrictive application to undisclosed important molecular 

mechanisms responsible for PD development. In this way, the implementation of a new model 

that mimic PD in a more consistent way will be an important step to improve future 

investigations. In this work, we developed a novel paraquat (PQ)-based chronic PD model by 

using osmotic minipumps to assure the continuous administration of low doses of PQ for a 

longer period. Besides the fact that the exposure paradigm mimics in a closer way what 

happen in humans, this model also reproduces several key characteristics of the human PD, 

including the important alpha-synucleinopathy. Recent studies have implicated the Blood-

Brain Barrier (BBB) as one of the underexplored brain structures in PD. Clinical evidences 

indicate that BBB dysfunctions are associated with a number of serious CNS diseases. HMGB1 

has been shown to be a long-searched-for nuclear danger signal passively released by necrotic 

cells inducing inflammation. Its receptor, RAGE, is expressed in various cells, including 

endothelial cells that are largely present in BBB being involved in chronic inflammation and 

cell proliferation and migration. Despite the importance of this receptor in several diseases 

such as multiple sclerosis, stroke, brain tumors, AD and cancer, there is no consistent 

information about this receptor in Parkinson's disease neuroinflammation. In previous studies, 

another RAGE ligand (S100B) have been reported to be overexpressed in PD patients, despite 

there are evidences that neuroinflammation associated with PD can compromise the BBB. In 

this way, it will be of great importance to analyse the expression levels of HMGB1 and RAGE 

within PD experimental models. Our results revealed an increase of HMGB1 and RAGE 

expression levels with more significance in vivo models, specifically in PQ and 6-

hydroxidopamine models. In this way, the obtained results indicates that a deeper study of 

the role of both HMGB1 and RAGE in PD will be of great interest to understand they role in PD 

neuroinflammation and to know if they targeting may serve as a neuroprotective approaches 

against the development and/or progression of PD. 
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Chapter 1- Introduction 

 

1.1. Parkinson´s Disease (PD) 

 

1.1.1. Definition and Pathophysiology 

Parkinson’s disease (PD), described in 1817 by James Parkinson [1-3]. This neurodegenerative 

disease affect an important fraction of world population. It is estimated that 1-2% of the 

population over 55 years of age is affected by PD and its prevalence dramatically increases 

after this age, illustrating the effect of aging in this disease [4-6].  In the US it is prevised 

that in 2040, the population aged 65 years and older will be as high as 80 million [4, 7, 8]. 

There is no curative treatment [4, 9] and the current management is limited to supportive 

care and treatment that partially alleviates disease symptoms but does not slow the disease 

progression [10]. PD is the second most common neurodegenerative disease and is 

characterized by a severe loss (~50-70%) of dopaminergic neurons in the substantia nigra (SN) 

[1, 11] and of its fiber projections in putamen and caudate nucleus with the consequent loss 

of dopamine (DA) levels in the striatum (ST), resulting in motor control impairment [2] 

(Figure 1A and B). Another pathological hallmark of PD is the observation of intracytoplasmic 

inclusions called Lewy bodies, containing alpha-synuclein and ubiquitin in dopaminergic 

neuron, [1, 2, 4, 11] (Figure 1C).  

 

Figure 1- Schematic representation of PD hallmarks. (A) In a normal nigrostriatal pathway the 
pigmentation of the SNpc produced by neuromelanin within the DA neurons is projected to the ST. (B) In 
PD the degeneration of the nigrostriatal pathway result in loss of dark-brown pigment neuromelanin due 
to marked loss of DA neurons and decrease of fibers projecting to ST. (C) Intraneuronal inclusions (Lewy 
bodies) showing alpha-synuclein and ubiquitin. Figure from Dauer and Przedborski (2003) [12]. 
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The PD pathogenesis is characterized  by motor problems of patients and several non-motor 

features [3]. Impaired motor function is typically used to establish the clinical diagnosis of PD 

and result from nigral neuron degeneration and consequent decrease in dopaminergic striatal 

innervation, (Figure 1) [6, 11]. The main symptoms are bradykinesia, rigidity, falls, tremor, 

speech and swallowing difficulties and postural instability with an asymmetric onset spreading 

to become bilateral with time [3, 13]. The non-motor symptoms such as depression [14], 

anxiety, apathy [15, 16], psychosis [17], and sleep disturbance, have greater significance 

when assessed by quality-of-life measures or health economics [3, 13, 18]. 

The precise ethiology of PD has been under investigation for almost two centuries [19]. 

Approximately 95% of PD cases are sporadic with no apparent genetic linkage to the pathology 

resulting in idiopathic PD. There are some risk factors for PD, such as, ageing or 

environmental exposure to toxins like the herbicides in example (i.e) paraquat (PQ) and the 

synthetic heroin analogue 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP) resulting in 

acquired PD [1, 10, 19] . On the other hand, genetic risk factors include mutations in an ever 

increasing list of genes which affect either protein metabolism or mitochondrial function, 

such as Pink1 (PARK6) [20], Parkin (PARK 2) [21], DJ-1 (PARK7) [22] and alpha-synuclein (PARK 

1) [23], thus highlighting that the dysfunction in either is sufficient to cause PD in 5% of the 

cases [12, 19, 24].  

 

1.1.2. Mechanism of Neurodegeneration 

Decades of investigation of toxin-based models and genetic models of PD, as well as of 

sporadic PD patients, have unveiled a number of potential molecular biomarkers of pathology 

that include protein aggregation [25], proteasomal stress, oxidative stress [26], mitochondrial 

dysfunction, lysosomal dysfunction and aberrant autophagy proving that PD is a multisystem 

disorder [6, 27].  

Oxidative stress remains a keystone of the concepts underlying the loss of dopaminergic 

neurons in PD [6, 28, 29]. The mitochondria produces an important amount of reactive oxygen 

species (ROS). In addition, SN neurons are subjected to oxidative stress derived from their 

own endogenously occurring dopamine metabolism [30]. Also, it is known that Nox1-

generated superoxide is implicated in the oxidative stress elicited by PQ in DA cells [29]. 

Oxidative stress may induce PD due to altered accumulation of iron in SNpc, changes in 

calcium channel activity, altered proteolysis (proteasomal and lysosomal), changes in alpha-

synuclein aggregation, and the presence of mutant proteins (i.e. DJ-1) [6].  
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The effect of mitochondrial dysfunction has been discussed for over 3 decades and is 

considered an important contributor to the pathogenesis of PD [6]. The discovery that MPTP 

impair the mitochondrial electron transport chain by inhibiting complex I lead to subsequent 

studies that allowed the identification of abnormalities in the activity of this complex 

resulting in cellular oxidative stress [2].  

There are several molecular mechanism contributing to the neurodegenerative process of 

dopaminergic neurons in the SN in PD. Some of these mechanism are represented in (Figure 

2). It is important to consider not only the oxidative stress and mitochondrial dysfunction, but 

also the changes occurring in the inflammatory environment as important contributors to PD 

pathogenesis [30].  

 

Figure 2 - Key molecular mechanisms that result in neurodegenerative processes in PD. The innate 
inflammation plays an important role trough activated microglia that in association with proteasome 
and mitochondrial disjunction lead to oxidative stress. In the cause of these dysfunctions are genetic 
mutations or neurotoxins exposure. Figure from D.T Dexter and P. Jenner (2013) [6]. 

 

1.1.3. Inflammatory Response 

The term “inflammation” refer the complex biological response of the immune system to cell 

injury and tissue damage. Also, this response occurs after exposure to toxic proteins, 

infection, or abnormal molecular signals [31]. Chronic inflammation is an important feature of 

this neurodegenerative disease [32]. In PD patients, pro-inflammatory cytokines are increased 

in the brain and cerebrospinal fluid. Also in pre-clinical animal models of PD there are obvious 

signs of central and peripheral inflammation [33]. 

Microglia is thought to play a several role in the Central Nervous System (CNS) innate immune 

response [31]. They are the resident innate immune cells in the brain being only 5-15% of the 
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whole population of cells [32]. In healthy conditions, microglia generally exhibit a surveying 

phenotype and perform a scavenging role by removing debris and waste material from the 

parenchyma. These actions are enhanced following infection, tissue damage, accumulation of 

toxic protein, or other triggering signal [31, 34]. 

Activated microglia produce ROS during neuroinflammatory process through intracellular 

peroxidases, cell surface NADPH oxidase activity and oxidative processes in mitochondria [26, 

34]. High levels ROS can damage or inactivate proteins leading to aberrant intracellular 

signalling, cellular degeneration and death [31]. Pro-inflammatory molecules released by 

activated microglia such as HMGB1 [35], interleukin-1 (IL)-1, tumour necrosis factor-alpha 

(TNF-α), and nitric oxide (NO) can be neurotoxic. For instance, the NO reacts with superoxide 

(O2
-), produced by activated microglia, producing highly reactive peroxynitrite anions (ONOO-) 

leading to DNA base modifications. These events lead to a disruption of enzymatic function by 

altered  transcription due to DNA damage resulting in loss of structural protein integrity, 

which can generate cellular apoptosis or necrosis [26]. 

 

1.1.4. Animal models  

Animal models of PD have been widely used to explore the pathogenesis and pathophysiology 

of this neurodegenerative disorder [7, 36]. Various pesticides, herbicides and drugs have been 

used in animals and in vitro models of PD [37]. Animal models are essential tools in 

experimental biomedical science to better understand pathogenesis of human diseases [28, 

38], providing the opportunity to test different therapeutic approaches [28, 38]. The 

classification of these models depends on systemic or local (intracerebral) administration of 

neurotoxins that are capable to reproduce most of the pathological and phenotypic features 

of PD in mammals [36]. Actually, the major animal models used for PD are the ones induced 

by the toxins rotenone, PQ, MPTP and 6-Hydroxidopamine (6-OHDA), (Figure 3). 

The ideal model should reproduce the clinical and pathological features of PD such as 

progressive loss of dopaminergic neurons and deposition of LB-like inclusions in brain, 

however no animal model reproduce all the features of the human disease [18]. Naturally, 

actual animal models of PD have their own specificities and limitations, which must be 

carefully taken into consideration when choosing the one to be used [12, 36].  
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Figure 3- Molecules like PQ, rotenone, 6-OHDA and MPP+ are currently used to produce experimental 
models of PD. These neurotoxins easily cross cell membrane through the dopamine transporter (DAT) 
thus inducing the formation of alpha-synuclein aggregates and mitochondrial impairment. These events 
result in ROS production and eventually in cell death. Figure adapted from Cabezas, R et al. (2013) [37].  

 

PQ Model 

Exposure to the herbicide 1,1’-dimethyl-4,4’-bipyridinium or PQ, used in agriculture, is 

considered a putative risk factor for PD [39]. The toxicity of PQ appears to be mediated by 

the formation of superoxide radicals [12, 40]. The effects of PQ through oxidative stress 

mediated by redox cycling, generates ROS. The superoxide radical, hydrogen peroxide, and 

hydroxyl radicals can lead to the damage of lipids, proteins, DNA and RNA [7, 41]. In this way, 

PQ can induce PD-like lesions in certain mouse strains and rats [24]. 

Recent studies have shown fundamental features of PD induced by PQ exposure, such as, the 

selective degeneration of dopaminergic neurons [42], dopamine depletion in the ST, alpha-

synuclein up-regulation [43], as well as lipid peroxidation [44]. In result, the PQ-based model 

represent great importance to PD research due to its ability to induce increases in alpha-

synuclein and Lewy body-like inclusions in dopaminergic neurons in the SN [12, 43]. 

PQ is structurally similar to 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 

MPTP [7, 24, 28, 41] however their biochemical lesions are substantially different. The 

primary mechanism of MPP+ toxicity is the impairment of mitochondria. This impairment 

result in excess radical formation and subsequent oxidative/nitrosative stress. The toxicity 
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induced by PQ is mainly by cellular redox cycling [24, 28, 41]. There are reports revealing 

that PQ also target complex I and III of mitochondria [24]. 

 

MPTP Model 

The MPTP administration is one of the most common animal models used to study PD and has 

shown to produce permanent parkinsonism in humans, non-human primates and rodents, by 

exerting an effect primarily of mitochondrial complex I  function [24, 28, 45]. The mechanism 

of MPTP toxicity has been extensively studied and characterized, [12, 46]. MPTP can rapidly 

cross the blood-brain barrier due to his lipophilic nature [12] being posteriorly metabolized in 

astrocytes by monoamine oxidase-B, and subsequently converted to the active toxic cation 

MPP+ that is released from the nigral and striatal astrocytes through the organic cation 

transporter 3 into the extracellular space [12, 46]. MPP+ is a polar molecule that is not able to 

enter dopaminergic cells freely, thus, its uptake depends on active plasma membrane carrier 

systems, being taken up by neighbouring dopaminergic neurons and terminals through the DAT 

[12, 46, 47]. Within the mitochondria, MPP+ lead to production of ROS and decreases the 

synthesis of adenosine triphosphate by blocking the complex I that interrupt the transfer of 

electrons from complex I to ubiquinone [12]. 

The MPTP model of PD have some limitations, most of protocols of MPTP administration apply 

acute drug treatments and do not mimic the progressive nature of PD [28, 36]. The chronic 

MPTP model may overcome this limitation however long-term administration of MPTP in 

smaller doses may result in the recovery of motor behaviour deficits. In addition, the MPTP 

model does not directly mimic the systemic mitochondrial impairment found in PD [28, 36].   

 

6-OHDA Model 

The classic model based on local (i.e. intracerebral) injection of a neurotoxin is the 6-OHDA 

model, which was also the first PD animal model ever generated [36, 38]. This model was 

used to cause lesion of the nigrostriatal dopaminergic pathway in the rat, being used today 

for both in vitro and in vivo investigations [7, 48].  

The neurotoxin, 6-OHDA, is structurally similar to dopamine and norepinephrine presenting 

high affinity for the plasma membrane transporters of these catecholamines [45]. 6-OHDA 

cannot cross the blood-brain barrier [12, 38], being most commonly injected unilaterally to 

the SN, medial forebrain bundle, or ST [46]. When delivered to the ST, 6-OHDA induces 

progressive and partial damage to the nigrostriatal pathway [46].  

The 6-OHDA, once inside of neurons is readily oxidized and produces hydrogen peroxide and 

paraquinone, both of which are highly toxic and 24 hours after 6-OHDA injections 
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dopaminergic neurons start degenerating and die [12, 45]. The degree of loss is dependent on 

the injection location and dose of the toxin, as well as the survival time following the lesion. 

However, like many other PD models, this model lacks the progressive, age-dependent effects 

of PD and does not produce extra-nigral pathology or Lewy body-like inclusions [45, 46]. 

PD is a chronic disease developed gradually with the typical symptoms expressed over a long 

period of time [28]. Neurotoxins such as PQ, 6-OHDA and MPTP used to induce dopaminergic 

neurodegeneration, mainly by ROS generation, have received the most attention [12]. Few 

models so far reproduce the progression of extranigral and alpha-synuclein pathology 

pathology that characterizes PD [28, 45]. Eventually, the ideal model would exhibit all the 

clinical and pathologic features of PD, but this may be a difficult challenge. 

 

 

1.2. HMBG1-RAGE 

 

The HMGB1 previously known as amphoterin, is a DNA binding protein and an important 

mediator of inflammation via receptors of the innate immune system that are present in the 

cell nucleus of most mammalian cells [49-51]. 

There are a few number of identified receptors for HMGB1, among them the principals are 

the toll-like receptor (TLR) 4 and receptor for advanced glycation end products (RAGE) [52, 

53]. These receptors are increased in neurons and glia cells resulting in acute and chronic CNS 

injuries [52, 54].   

The functional role of HMBG1 depends upon its location. Inside the nucleus, HMGB1 acts as an 

architectural protein that binds DNA, where it exerts different roles and functions, once 

outside the cell it acts as a pro-inflammatory cytokine [55].  As an extracellular protein, 

HMGB1 exerts autocrine and paracrine effects. It is responsible for activation of nuclear 

factor kappa B (NF-κB), diffuse endothelial activation, systemic activation of inflammatory 

cells, stimulation of innate immune cell migration and activation [55]. To act as inflammatory 

mediator, HMGB1 must be released by active secretion from living inflammatory cells or from 

necrotic cells. HMGB1 is the only nuclear protein that have the capacity to induce cytokines 

and activate inflammatory cells when it is applied extracellularly [56]. After its release from 

stressed and necrotic cells, HMGB1 triggers inflammation, induces cell proliferation, 

migration and survival, mainly through interactions with RAGE [57].  

RAGE was first described in 1992 [58] as a multi-ligand receptor of the immunoglobulin 

superfamily of cell surface molecules that can interact with several ligands named damage-
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associated molecular pattern molecules, released by dying or necrotic cells during tissue 

damage [57, 59-62]. The β-amyloid peptide (Aβ), S100B, HMGB1 and advanced glycation end 

products (AGE) are examples of these molecules and are represented in (Figure 4) [59-61]. 

AGEs are a product of a series of reactions, the initial one being nonenzymatic glycoxidation 

that is followed by mechanisms involving ROS [61]. This receptor is expressed in cerebral 

endothelial cells, neurons, macrophages, monocytes and microglia [63-65]. In humans and 

mice, the gene encoding RAGE is located on chromosome 6 resulting in a protein with a 

molecular weight of about 55 kDa [66]. 

RAGE acts like a pattern recognition receptor being involved in inflammation resolution 

responsible for tissue repair or alternatively, through its perpetuation, may results in chronic 

inflammation [62]. Recently, a study developed by Li and colleagues [64], suggest that 

intracerebral Aβ interaction with RAGE at the blood-brain barrier (BBB) up-regulates 

endothelial cognate ligand chemokine ligand 5 expression and causes circulating T cell 

infiltration in Alzheimer Disease (AD) brain  [64]. The RAGE-ligand interaction lead to up-

regulation of RAGE (Figure 4) via positive feedback loop. The RAGE activation increases pro-

inflammatory cytokines secretion promoting inflammatory cell recruitment. RAGE also 

activates pathways responsible for acute and chronic inflammation [66] that have been 

associated with various diseases such as vascular disease, diabetes, cancer, and 

neurodegenerative disorders like AD [67, 68] suggesting that RAGE might be an effective 

target to treat many different diseases [62, 66].  

 

 

Figure 4- RAGE signalling resulting in sustained inflammation by activation of the transcription factor 
NF-kB. Figure from Chuah Y. et. al. (2013) [66]. 
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1.3. Blood-Brain Barrier (BBB) 

 

Recently, the role of the pathophysiological importance of the BBB in neurological disorders 

and the influence of its physiological changes in boosting the neurodegenerative process has 

been intensively investigated [69].  

The BBB is localized at the interface between the blood and the cerebral tissue [70, 71], and 

it is formed by endothelial cells of cerebral blood vessels (Figure 5) which present 

intercellular tight junctions and the polarized expression of many transport systems. The 

transport systems at BBB are the carrier-mediated transport (glucose, amino acids, water-

soluble vitamins), the active-efflux transport (low-molecular-mass metabolic products) and 

receptor-mediated transcriptosis (peptide-specific receptors) [70, 72-74]. The surface area of 

these microvessels is the largest interface for blood–brain exchange [72]. The BBB endothelial 

cells, together with pericytes, astrocytes and microglia, separates the components of the 

circulating blood from neurons and forms the functional neurovascular unit [75].  The crossing 

of components through the BBB in an uncontrolled way generates neurotoxic products 

compromising synaptic and neuronal dysfunction. This can happen due to an ischemic injury, 

intracerebral hemorrhage, neurodegenerative process, inflammation, or vascular disorder, 

this typically [75]. This barrier have several other functions in the brain. Some of that 

functions are the supply of the brain with essential nutrients and the efflux of waste 

products. Also, the BBB protects the brain from fluctuations in ionic composition that can 

occur after meals or exercise, which may disturb the synaptic and axonal signalling. Globally, 

the BBB plays an important role to maintain a tightly regulated microenvironment for reliable 

neuronal signalling [69, 72, 76]. 

 

Figure 5- The BBB is composed by endothelial cells, basement membrane, astrocytes, microglia, 
neurons and pericytes. Brain microvascular endothelial cells acts as mediators between blood and brain 
interacting with the basement membrane and cells of the neurovascular unit such as neurons, astrocytes 
and microglia. Figure from Cardoso, F. et al. (2010) [73].  

 



Evaluation of dopaminergic degeneration influence on endothelial activity in experimental models of 
Parkinson’s Disease 

  

10 

 

1.3.1. Blood-brain barrier in PD 

BBB is one of the underexplored brain structures in ageing and PD and its dysfunction is 

associated to a number of CNS diseases such as multiple sclerosis, stroke, brain tumors, 

epilepsy or AD [70].  

Recently, in vivo studies have shown that BBB dysfunction is related to the course of PD [77].  

A study developed by Gray, M. et al. [77], used histologic markers of serum protein, iron, and 

erythrocyte extravasation to demonstrate significant increased permeability of the BBB in the 

postcommissural putamen of PD patients. Another investigation in PD patients, reported an 

elevated uptake of the P-glycoprotein (Pgp) substrate [11C] verapamil in the midbrain, which 

is consistent with disturbed Pgp function described by other authors such as Bartels, A. L., et 

al. [76, 78]. Altogether, these events could facilitate the accumulation of toxic compounds in 

the brain. 

Taking as an example animal models of AD, Aβ accumulation is first seen in the 

neighbourhood of blood vessels. The toxicity including the endothelium and astrocytes is 

observed before significant neuronal loss and disturbances of CNS homeostasis. These events 

happens as a result of barrier deficiencies contributing to exacerbate the later 

neuropathology [76]. Moreover, observations of post-mortem brain tissue from AD patients 

revealed a number of brain endothelium alterations, such as decreased number of 

mitochondria, increased number of pinocytosis vesicles, collagen accumulation in basal 

lamina and necrosis [70].  

More recently, studies reached the identification and functional characterization of peptides 

and proteins transport through the BBB. The transport of Aβ through cerebral endothelium is 

now well known, as shown in (Figure 6), Aβ peptide influx into the brain is dependent on Aβ 

chaperones and mediated by RAGE [79]. Due to a lower expression of lipoprotein receptor-

related protein 1 (LRP-1) and increased expression of RAGE [79-81], the influx of Aβ increases 

into the brain. Moreover, soluble forms of LRP-1 are detected in lower amounts conditioning 

the normal sequester of Aβ peptide that increase in the brain [81]. In summary, these 

observations strongly suggest that AD progression may involve the age-dependent alteration 

of Aβ transport across the BBB via RAGE and LRP-1 pathways [70]. 
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Figure 6- The BBB in AD. The Aβ peptide is transported to brain by RAGE and cleared from the brain to 
the blood by LRPs, in healthy conditions (right). In AD (left), RAGE is overexpressed and the expression 
of LRPs is decreased, leading to the accumulation of Aβ in the brain. Figure from Weiss, N. et al. (2009) 
[70]. 

 

In PD the involvement of ROS and inflammatory processes in neurodegeneration is evident 

[61]. Recent studies suggest that AGE-RAGE–induced cytosolic ROS production facilitates 

mitochondrial superoxide production. This fact show the evident role of the advanced 

glycation pathway in the development of disorders such as diabetic or nephropathy [82]. 

One of the principal factors linked to the induction of inflammation in PD pathogenesis is the 

NF-kB [83-85]. According to previous studies, RAGE ligation leads to a sustained activation of 

NF-kB pathway [86]. Due to an enhanced level of RAGE ligands in chronic disorders, this 

receptor is hypothesized to have a causative effect in a range of inflammatory diseases [57]. 

Moreover, ROS involved in PD pathogenesis such as increased levels of hydrogen peroxide, 

induces the secretion and release of HMGB1 by macrophages, monocytes [56, 87]. The use of 

antioxidants such as ethyl pyruvate [88] or green tea [89] have shown a protective effect in 

inflammatory response, by decreasing systemic HMGB1 accumulation. Although the 

interaction of HMGB1 with RAGE was shown to play a major role in oxidative stress-associated 

diseases its role in PD pathogenesis remains unclear [90]. 
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1.4. Main Goals 

 

There are several models for PD, however few in vivo models clearly exhibit the most 

important hallmarks of the disease which is alpha-synuclein pathology. With this in mind, we 

proposed to develop a new PQ-based rat PD model that closely recapitulates cardinal features 

of PD including dopaminergic neuronal loss and alpha-synuclein pathology markers providing 

an attractive tool to evaluate the pathologic mechanism as well as various therapeutics 

approaches for PD. In order to better understand PD pathogenesis, we also propose to 

evaluate the interplay between the BBB and the dopaminergic neurodegenerative process, 

induced by the activation of RAGE by its ligand HMGB1, which is so far underexplored in PD.  

The main goals of this study were: 

Development a new animal model for PD by chronic administration of PQ using osmotic 

minipumps; 

Characterize the protein expression profile of HMGB1 and RAGE in experimental models of 

PD. 

Evaluation of the dopaminergic degeneration influence on endothelial activity, through 

HMGB1-RAGE pathway. 
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Chapter 2- Material and Methods 

 

2.1. Animal Models and Treatment Paradigm 

 

The experiments were carried out on rats and mice, in accordance with protocols approved 

by the national ethical requirements for animal research, and in accordance with the 

Directive 2010/63/EU of the European Parliament and the Council on the protection of 

animals used for scientific purposes. The experiments in vivo involved 8-10 weeks old male 

wistar rats for the PQ model and 8-12 weeks old C57BL6 mice for MPTP and 6-OHDA model. 

All animals were kept in appropriate cages, under temperature/humidity-controlled 

environment on a 12-hr light/dark cycle with free access to food and water. All efforts were 

made to reduce the number of animals to be used for the study and to minimize their 

suffering.  

 

2.1.1. PD rat model induced by chronic exposure to low doses of 

PQ 

The chronic administration of PQ was carried out using osmotic minipumps (Alzet  Durect, 

Cupertino, CA) at a dose of 2.5 mg/kg/day with a fluid delivery rate of 0.25 µL/h for a period 

of four weeks (Alzet model 2004, large pumps). The pumps were implanted subcutaneously on 

the back, slightly posterior to the scapulae (shoulder blades). All the rats were weighed at 

day 1 and every other day for 5 weeks. One week after the end of infusion (5 weeks after 

implantation), all animals were anesthetized with 5 µl/g of ketamine and xylazine (900 and 

500 µg in 4,9 ml 0,9% NaCL total volume, respectively)  euthanized and the brains were then 

recovered (Figure 7). For Western blot analysis, eleven (5 saline and 6 treated) brains were 

collected and total protein lysates from SN and ST were prepared. For immunohistochemistry 

studies, animals were anesthetized, euthanized by transcardial perfusion with 0.9% NaCl 

followed by perfusion with 4% paraformaldehyde (PFA). Following perfusion with saline and 

4% PFA, brains were removed, and immersion-fixed in 4% PFA overnight and cryoprotected in 

30% sucrose. Serial coronal sections (40 m) were cut on a cryostat, collected in 

cryopreservative solution, and stored at -20ºC until processed for immunohistostainings. 
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 Figure 7- Timeline experiments for PQ chronic administration carried out in vivo. 

 

2.1.2. MPTP Model 

MPTP (Sigma-Aldrich, St. Louis, Missouri, USA) was dissolved in sterile 0.9% NaCl and injected 

intraperitoneally (i.p) four times in the same day, each injection separated by 2 h intervals. 

The experiments were carried out on 8-12 weeks old male C57BL6 mice and the dose used 

was 15 mg/kg body weight, been the total dose after the 4 injections of 60 mg/kg [91]. Saline 

group (four mice) were exposed to the same procedure, receiving an equivalent volume of 

sterile 0.9% NaCl. Seven days after the MPTP exposure (Figure 8), all animals were 

anesthetized with 5 µl/g of ketamine and xylazine (900 and 500 µg in 4,9 ml 0,9% NaCL total 

volume, respectively) and euthanized by transcardial perfusion with 0.9% NaCl and the brains 

were then recovered. Afterward, for Western-blot analysis, brains were collected and total 

protein lysates from SN and ST were prepared. 

 

Figure 8- Timeline experiments for MPTP performed in vivo. 

 

2.1.3. 6-Hydroxydopamine Model 

6-OHDA (Sigma-Aldrich) was dissolved in sterile 0.02 % ascorbic acid. Mice were deeply 

anesthetized with 5 µl/g of ketamine and xylazine (900 and 500 µg in 4,9 ml 0,9% NaCL total 

volume, respectively) and placed in a mice stereotaxic apparatus, and a site in the right ST 

(coordinate: anteroposterior (AP), –0.6 mm; dorsolateral (DL), -2mm; dorsoventral (DV),–3 

mm relative to bregma, in accordance to [92]), was selected to inject 10 g of 6-OHDA at a 

rate was 0.2 μl/min [93]. Afterward, the syringe was kept in place for additional 5 min before 
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being slowly retracted. Mice were sacrificed after 3 and 7 days (3 and 2 mice respectively). 

All animals were anesthetized and euthanized by transcardial perfusion with 0.9% NaCl and 

the brains were then recovered (Figure 9). For Western blot analysis, brains were collected 

and total protein lysates from SN and ST Ipsi and Contralateral hemispheres were prepared. 

The ipsilateral side was considered the brain hemisphere injected with 6-OHDA and the 

contralateral side the non-injected one. 

 

Figure 9- Timeline experiments for 6-hydroxydopamine administration carried out in vivo. 

 

2.2. Immunohistochemistry  

 

The TH immunohistostaining was carried out to determine the number of dopaminergic 

neurons in the SNpc of the PD rat model induced by PQ developed in the present project, by 

stereological count. We have also evaluated by immunohistochemistry the reactivity of p129 

alpha-synuclein antibody in the SN of treated and untreated rats.  In this way, sections were 

incubated at room temperature with blocking solution for 1 hour (5% FBS and 0.3 % Triton X-

100 in PBS, pH 7.5). The endogenous peroxidase were inactivated by incubating the section in 

3% H2O2 for 30 min and afterward with primary antibodies overnight. Finally, sections were 

incubated with secondary antibodies in blocking solution at room temperature for 1 hour. The 

primary antibodies used were mouse anti-TH (1:10,000) and rabbit anti-p129alpha-synuclein 

(1:250). The secondary antibodies used were, respectively, mouse and rabbit biotinylated 

secondary antibodies (1:200). The staining procedure was performed by the manufacturer’s 

protocol (Vectastain ABC kit, Vectorlab, Burlingame, CA) and the reaction was visualized 

using 3,3’-diaminobenzidine (DAB) reagent in Tris buffer saline containing 0.02% H2O2. 

Unbiased counting of TH-positive dopaminergic neurons was performed in the SNpc using the 

optical fractionator method. For each rat brain, the TH+ neurons were count in the SNpc of 

eight coronal sections, serially selected with 200 m apart representing the whole SNpc. 



Evaluation of dopaminergic degeneration influence on endothelial activity in experimental models of 
Parkinson’s Disease 

  

16 

 

2.3. Protein Extraction and Western Blot Analysis 

 

For the western blot protein analysis, the dissected SN and ST brain tissues (in vivo setting), 

and the N27 cells lines (in vitro setting), were lysed on ice in RIPA buffer (0.15 M NaCl, 0.05 M 

Tris-Base, 5mM E ethylene glycol tetraacetic acid, 1% Triton X-100 (Fisher Chemicals, 

Hampton, New Hampshire), 0.5% deoxycholic acid 0.1% SDS, 10mM  

dichlorodiphenyltrichloroethane containing a cocktail of proteinase inhibitors). The total 

protein concentration from lysates was determined using the Thermo Scientific Pierce BCA 

Protein Assay Kit (Massachusetts, USA) following the manufacturing instructions. To perform 

the western blot, samples (100 µg of protein of cell lysates or 40 µg of brain tissue lysates) 

were loaded to each lane of a 12% bis-acrylamide gel (Applichem, Darmstadt, Germany). The 

proteins were separated by a sodium dodecyl sulfate-polyacrylamigel gel. The running buffer 

used was Tris-glycine SDS: 25mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3). After 

electrophoresis at 120 V proteins were transferred at constant 300 mA onto a polyvinylidene 

difluoride membrane (GE, Heathcare, Little Chanfont, UK), using transfer buffer (10 mM Tris-

glycine and 20% methanol (Fisher Chemicals). Afterwards, the membranes were blocked for 1 

hour or 15 min in 5% low fat milk or 0.1% gelatin (Fluka, St.Louis, Missouri, USA), respectively, 

in tris-buffer saline containing tween-20 (0.1%) (Fisher Scientific, Massachusetts, USA). The 

membranes were incubated overnight at 4ºC with the following primary antibodies: mouse 

anti-HMGB1 (1:500) from (HMGBiotech srl, Milano, Italy); goat anti-RAGE (1:300) and rabbit 

anti-p129alpha-synuclein (1:500) both from Santa Cruz Biotechnologies; mouse anti--actin 

(1:5000) and mouse anti-GAPDH (1:1000) from Millipore. Specific protein bands were detected 

using the appropriate secondary antibodies (goat anti-mouse (1:5000), donkey anti-rabbit 

(1:5000) or chicken anti-goat (1:5000) all from Santa Cruz Biotechnologies) conjugated to 

horseradish peroxidase and detected by Enhanced Chemiluminescence detection (Millipore). 

Densitometric analyses of the protein bands were performed using the ImageLab software 

(Bio-Rad, Hercules, CA, USA).  

 

2.4. Cell Cultures and Treatments  

 

2.4.1. Human Umbilical Vein Endothelial Cells (HUVECs) 

The HUVECs were grown in EGM Plus Growth Medium (Lonza, USA) containing 2% FBS and BBE, 

100 units penicillin, and 50 μg/ml streptomycin, growth factors, cytokines and supplements. 

The cells were maintained in a humidified atmosphere of 5 % CO2 at 37°C. HUVEC cultures 
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were prepared for experiments by counting the number of viable cells by trypan blue-

excluding cells and plating the cells on polystyrene tissue culture dishes at a density of 2x105 

cells/well in 6 well culture plates for 24 hours. 

  

2.4.2. Immortalized rat mesencephalic dopaminergic cell culture 

(N27 Dopaminergic Cells) 

The immortalized rat mesencephalic dopaminergic cell (N27 dopaminergic cells) were grown 

in RPMI 1640 Medium (Sigma-Aldrich) containing 10% foetal bovine serum, 100 units penicillin 

and 50 μg/ml streptomycin (Invitrogen, Barcelona, Spain), in a humidified atmosphere of 5 % 

CO2 at 37°C. N27 cultures were prepared for experiments by counting the number of viable 

cells by trypan blue-excluding cells and plating the cells on polystyrene tissue culture dishes 

at a density of 0.5x104 cells/well in 96 well culture plates and 3x105 cells/well in 6 well 

culture plates for 24 hours.  

 

2.4.3. Co-Culture 

A co-culture can be defined as the growth of more than one distinct cell type in a combined 

culture. Such in vitro models can provide a more physiologically relevant way of 

demonstrating in vivo-like tissue morphology and function. Co-cultures can be employed to 

monitor intercellular communication between distinct brain cell types. In order to understand 

the intracellular communication between injured dopaminergic cells (N27 cells) and 

endothelial cells (HUVECs) both cells were growth in a co-culture system. The HUVECs and 

N27 cells were plated separately, both in 6 well plate, at 2x105 per well. N27 cells were then 

growth in glass coverslip supported in solid paraffin droplets, and 24 hours after transferred 

to the 6 well plate containing HUVECs, resulting in co-culture. The co-cultures were then 

treated with 100 μM of 6-OHDA and kept for additional 24 hours (Figure 10). The cells were 

maintained in a humidified atmosphere of 5 % CO2 at 37°C. 
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Figure 10 – Schematic representation of co-culture with N27 cells and HUVECs treatment. 

 

 

2.4.4. N27 Cell Toxins Treatments 

To estimate the response of the N27 cells to MPP+, PQ and 6-OHDA (Sigma-Aldrich), these 

cells were grown at a density of 3x105 cells/well in 6 well culture plates and then treated for 

3 hours with 30 μM of MPP+, 500 μM of PQ and 10, 25 and 50 μM of 6-OHDA. The treatments 

were prepared in RPMI 1640. Three hours after starting the treatment, all media containing 

toxins was removed, cells were quickly washed with sterile phosphate buffered saline (PBS) 

and fresh medium was added to the wells. Afterward, cells were incubated for further 21 

hours (Figure 11). After this time, the cells were used to perform the cytotoxic studies using 

the MTT reduction assay or were collected to prepare cell lysates for western blot. 

 

 

Figure 11- Toxin treatments applied to N27 Cells for a total of 2 days experiment 
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2.5. MTT Reduction Assay 

 

To assess N27 cells viability after exposure to toxins, the levels of MTT reduction were 

measured. N27 cells were plated at a density of 0.5x104 cells/well in 96 well culture plates. 

After exposure to MPP+ 30 µM, PQ 500 µM or 6-OHDA 10, 25 and 50 µM for 3 hours the medium 

was replaced by new cell culture medium. The cells was incubated until preamble 24 hours. 

For the assay using MTT reduction cells were incubated with 0.5 mg/ml of MTT for 4 hours at 

37ºC. MTT is converted by viable cells to a water-insoluble precipitate (formazan, presumably 

directly proportional to the number of viable cells) that is dissolved in 10% sodium dodecyl 

sulfate-hydrochloric acid (Across Organics) and colorimetrically quantified (O.D. 570-690 nm) 

using a microplate spectrophotometer (Xmark microplate spectrophotometer, Bio-rad) after 

overnight incubation at 37ºC with 5 % CO2.. When cells die, they lose the ability to convert 

MTT into formazan, thus color formation serves as a useful marker for viable cells only. 

 

2.6. Statistical Analysis 

 

Statistical analysis was carried out with GraphPad Prism v.5 (GraphPad Software Inc., San 

Diego, CA). Data are expressed as mean ± standard error of mean (SEM) of at least three 

animals (in vivo studies) or at least three experiments in independent cell cultures. Statistical 

significance was determined by using one-way ANOVA or Student’s t-test followed by 

Bonferroni’s post hoc test for comparison with control. P<0.05 were considered to represent 

statistical significance.  
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Chapter 3- Results  

 

In vivo assays 

3.1. Chronic exposure to PQ induced the key features of PD in 

a novel animal model 

 

Extensive efforts have been made to establish experimental animal models that recapitulate 

key pathologic hallmarks of PD, in order to obtain greater insight into the pathogenesis of 

disease as well as to test new therapeutic strategies. Here, we characterized important 

features of a novel animal model of PD. Specifically, we evaluated dopaminergic cell death by 

counting TH+ neurons in SN and the distribution of these TH+ neurons in sequential regions of 

SNpc.  

The deposition of alpha-synuclein into Lewy bodies (LBs) is a major pathological feature of PD 

[94] and only a few rodent PD models recapitulate this pathological characteristic [43, 46, 

95]. In order to evaluate if our new model developed LB-like alpha-synuclein aggregation, we 

also investigated the phosphorylated form of alpha-synuclein (pS129) expression and 

aggregation in the SN that was never achieved in any model before. 

 

3.1.1. Chronic exposure to PQ by osmotic minipumps induced 

dopaminergic neurotoxicity 

To investigate the extent of dopaminergic neuronal loss in our new PD rat model induced by 

slow infusion of a low dose of PQ, the number of tyrosine hydroxylase (TH)-positive 

dopaminergic neurons in the SNpc were counted using unbiased stereological method. 

As shown in (Figure 12 a and b), a significant decrease of 39 ±3.3% in dopaminergic neurons 

was observed in rats exposed to PQ, when compared with the ones exposed to vehicle. To 

evaluate if a specific region of the SNpc was preferentially affected by chronic exposure to 

PQ, we sequentially counted dopaminergic neurons in the representative sections of the 

entire SN from anterior to posterior (Figure 12 d). Even though significant a DA neuronal loss 

was observed over the entire SNpc, the most prominent loss (~2 fold reduction) was found in 

the middle sections of the SNpc (Figure 12 c) when compared with the same sections in 

vehicle animals.  
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Figure 12- Dopaminergic neuronal degeneration induced by chronic exposure to PQ. (a) Representative 
photomicrographs of TH-immunostaining and quantitative analysis (b) of the number of TH-positive 
dopaminergic neurons in the SN of rats after 5 weeks exposure to PQ. TH-positive neurons were 
stereologically counted.  (c) Quantitative analysis of TH-positive neurons, along the SN in section from 

anterior to posterior, collected with 240 µm apart. Scale bars = 500 m. Data are shown as the mean ± 
SEM. (d) Sagittal representation of the rat brain depicting, among others, the SNpc. Adapted from [96]. 
Statistical analysis was performed using the Student t test. *P<0.05; **P<0.01 and ***P<0.001. 
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3.1.2. Chronic exposure to paraquat by osmotic minipumps 

induced alpha-synuclein phosphorylation 

To investigate the expression of the phosphorylated form of alpha-synuclein in our new PD rat 

model, we then quantified the expression levels of pS129 alpha-synuclein by western blot. In 

parallel we obtained representative photomicrographs of pS129 alpha-synuclein 

immunoreactivity in the SN.  

Western blot analysis of the SN tissues obtained by macroscopic dissection showed that PQ 

significantly increased the level of pS129 alpha-synuclein protein (296.7 ± 43.62%; n=4; 

P<0.01), when compared with vehicle (100.0 ± 18.49%) as shown in (Figure 13 a). The increase 

in pS129 alpha-synuclein protein was further confirmed in the SNpc region of the coronal 

tissue sections by immunohistochemistry (Figure 13 b). Taken together, these results show 

that a low-dose PQ induced dopaminergic neuronal loss in the SNpc and cytoplasmic inclusions 

of pS129 alpha-synuclein aggregates. 

 

 

Figure 13- Levels of alpha-synuclein phosphorylated at serine 129 in the SN of rats exposed to chronic 

dose of PQ are increased. (a) Representative immunoblot and quantitative analysis of pS129 alpha-
synuclein protein levels. pS129 alpha-synuclein protein was determined in total lysates of the rats SN 
tissues by immunoblot analysis. (b) Representative photomicrographs of pS129 alpha-synuclein 
immunoreactivity showing increased levels in the SN. Scale bars are: in the left column 20 µm, in the 

upper panel of the right column 10 mm and in the lower panel 5 m. The results are expressed as 
percentage of vehicle (n=4). Data are shown as the mean ± SEM. Statistical analysis was performed using 
the Student t test. **P<0.01. 
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3.2. Expression of HMGB1 and RAGE in PD Animal Models  

 

The dopaminergic cell death observed in PD lead the activation and development of 

neuroinflammatory reactions. In the inflammatory environment, there is an increased release 

of pro-inflammatory cytokines that activate immune cell proliferation and migration to the 

brain. This is a cycling mechanism that easily culminates in the activation of more 

inflammatory cascades increasing the susceptibility of neuronal cells to further degeneration. 

In spite of clear evidences regarding the importance of HMGB1 expression in inflammatory 

processes and the role of RAGE in neurodegenerative diseases, there is no consistent 

information concerning the expression of this receptor and its ligands in PD. Here we present 

the results of the protein expression levels of HMGB1 and RAGE in three different PD models: 

the novel model of PQ develop in this project, the classic MPTP model and the 6-OHDA model. 

To our knowledge, this is the first time that animal models of PD are evaluated to the 

expression of this ligand and receptor. This characterization will be helpful to understand the 

role of HMGB1 and RAGE in the neuroinflammation observed in PD. 

 

3.2.1. In vivo chronic exposure to PQ induced significant changes 

in the expression levels of HMGB1 in ST and RAGE in both SN 

and ST 

In order to characterize the behaviour of HMGB1 and RAGE protein expression levels in our 

new PD rat model induced by PQ, we tested the effect of a low dose of PQ infused at 

concentration of 2.5 mg/kg/day during 4 weeks, on the expression of these molecules in the 

SN and ST.  

In the presence of PQ, the expression of HMBG1 does not show differences statistical 

significant, being slightly decreased (88.94 ± 10.02%; n=5) when compared to vehicle (100.0 ± 

16.69%; n=4) in SN. In the ST, the expression of this ligand is significantly reduced (68.68 ± 

6.732%; n=5; P<0.01) comparative to vehicle (100.0 ± 2.577%; n=4) as presented in (Figure 14 

a). However, a significant increase of the expression of RAGE in SN was observed (142.0 ± 

14.88%; n=5; P<0.05) relatively to the vehicle (100% ± 12.05%; n=4). The expression levels of 

RAGE in ST (179.0 ± 20.00%; n=5; P<0.01) was also significantly increased when compared to 

vehicle (100.0 ± 9.836%; n=4) as showed in (Figure 14 b).  

These results suggest that in our new PD rat model the expression of HMGB1 decreases in both 

in SN and ST. The same does not happened with RAGE expression that may be influenced by 

the dopaminergic degeneration induced by chronic exposure to PQ.  
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Figure 14- Expression of HMGB1 (a) and RAGE (b) in brain tissues from SN and ST of rat treated with a 
chronic administration of PQ. Graphs depict the percentages relative to control of 25 kDa HMGB1 and 55 
kDa RAGE protein expression normalized to total 37 kDa GAPDH (n=5). Protein expression from vehicle 
treated animals was set to 100%. Data are shown as the mean ± SEM of five rats. Statistical analysis was 
performed using unpaired Student t-test. *P<0.05 and **P<0.01. 

 

 

3.2.2. The in vivo acute MPTP exposure does not induces changes 

in the HMGB1 and RAGE protein expression profile in both 

SN and ST  

Similarly, to understand the effect of MPTP on HMGB1 and RAGE expression levels, we 

evaluated by western blot the protein expression profile of these molecules in the SN and ST 

of mice seven days after being exposed to a total of 60 mg/Kg of MPTP.  

In MPTP treated animals, the expression of HMBG1 does not show statistical significance 

neither in SN (116.0 ± 8.076%; n=4) or ST (100.0 ± 2.513%; n=4), as compared with vehicle 

animals (100.0 ± 12.51%; n=4 and 82.55 ± 11.78%; n=4), respectively (Figure 15 a).  

Likewise, RAGE expression levels were no statistically significant increase in the SN (112.0 ± 

11.14%; n=4) when compared to vehicle (100.0 ± 6.495%; n=4). In the ST, although the 

expression levels of RAGE show a tendency to increase (133.5 ± 14.60%; n=4) when compared 

to vehicle (100.0 ± 21.73%; n=4), these levels did not reach statistical significance (Figure 15 

b). These data shown that at the used end point for the exposure to MPTP (seven days after 

MPTP injections), this toxin seems to have no effect on the expression levels of HMGB1 and 

RAGE in either SN or ST. 
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Figure 15- Expression of HMGB1 (a) and RAGE (b) in brain tissues from SN and ST of mice treated with 
acute administration of MPTP. Graphs depict the percentages relative to control of 25 kDa HMGB1 and 
55 kDa RAGE protein expression normalized to total 37 kDa GAPDH (n=4). Protein expression from 
vehicle treated animals was set to 100%. Data are shown as the mean ± SEM of four mice. Statistical 
analysis was performed using unpaired Student t-test. 

 

3.2.3. Dopaminergic damage induced by the intrastriatal 

injection of 6-OHDA increased both HMGB1 and RAGE 

expression in ST  

The protein expression profile of HMGB1 and RAGE was also characterized in the 6-OHDA 

model. In this model, the toxin was directly injected in mice ST to overcome with the fact 

that 6-OHDA does not cross the BBB. The expression levels of these proteins were evaluated 3 

and 7 days after 6-OHDA injections.  

In animals exposed to 6-OHDA (10 µg) for 3 days there was a slightly non statistical decrease 

in HMBG1 protein levels expression in the SN (98.05 ± 9.937%; n=3) and statistically significant 

increase (129.4 ± 16.68%; n=3) in ST, when compared to untreated (Contralateral), data 

shown in (Figure 16 a).  

Concomitantly, the protein expression levels of RAGE in the SN did not significantly decreased 

(86.26 ± 29.37%; n=3) when compared to the untreated contralateral SN (Contralateral 

considered 100%). In ST, the expression of RAGE significantly increased (267.1 ± 31.11%; n=3; 

P<0.01) relatively to untreated (Figure 16 b).  

Altogether these data reveals that striatal exposure to 6-OHDA influences the protein profile 

of both HMGB1 and RAGE only in ST and not in SN.  

 



Evaluation of dopaminergic degeneration influence on endothelial activity in experimental models of 
Parkinson’s Disease 

 

  27 

 

 

Figure 16 - Expression of HMGB1 (a) and RAGE (b) in tissues from SN and ST of mice brain treated with 
acute administration of 6-OHDA. The expression levels were measured after 3 days of exposure. Graphs 
depict the percentages relative to control of 25 kDa HMGB1 and 55 kDa RAGE protein expression 
normalized to total 37 kDa GAPDH (n=3). Protein expression from vehicle treated animals was set to 
100%. Data are shown as the mean ± SEM of tree mice; **P<0.01. Statistical analysis was performed using 
unpaired t-test. 

 

Seven days after 6-OHDA striatal injection, the expression of both HMGB1 and RAGE shown to 

be restored to basal levels.  There is a slight decrease in HMBG1 protein levels in the SN 

(92.59 ± 8.929%; n=2) as well as in the ST (76.34 ± 11.23%; n=2) relative to respectively 

contralateral hemisphere (100.0 ± 10.04%) and (100.0 ± 17.93%), shown in (Figure 17 a). 

Concomitantly, the protein expression levels of RAGE in the SN were very similar of 

contralateral (103.7 ± 2.724%, n=2 and 100.0 ± 1.007%). In the ST, RAGE protein levels 

decreased (79.75 ± 6.42%) relatively to untreated (100.0% ± 18.86%), as shown in (Figure 17 

b).  

Altogether these data shown that after 7 days of 6-OHDA exposure, this neurotoxin seems to 

have no effect on the expression levels of HMGB1 and RAGE in either SN or ST. 
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Figure 17- Expression of HMGB1 (a) and RAGE (b) in tissues from SN and ST of mice after intrastriatal 
injection of 6-OHDA. The expression levels were measured after 7 days of exposure Graphs depict the 
percentages relative to control of 25 kDa HMGB1 and 55 kDa RAGE protein expression normalized to 
total 37 kDa GAPDH (n=2). Protein expression from vehicle treated animals was set to 100%. Data are 
shown as the mean ± SEM of two mice. 

 

In vitro assays 

3.3. Dopaminergic damage induced by 6-OHDA in vitro show a 

tendency to increase the expression levels of RAGE in Co-

Culture 

 

To determine the best condition for our experiments using the co-culture model with HUVECs 

and N27 cells, we then perform a preliminary assay using a high concentration of the 

neurotoxin 6-OHDA (100 µM) and evaluated the effect of this dose on the protein expression 

levels of RAGE on both cell types. The exigent cell requirements only allow us to detect RAGE 

expression levels, since a very low amount of total protein was recovered from the two type 

of cell lysates. The expression levels of RAGE were measured in both HUVEC and N27 cell 

lysates treated for 24h hours with the neurotoxin. The main goal of this experiment was to 

understand the optimizations needed for co-culture procedures and treatments, so the 

sample size of this analysis was only n=1. The results shown an increased tendency in the 

protein expression levels of RAGE in the presence of the neurotoxin (Figure 18). To notice, 

the RAGE expression within HUVECs in non-treated samples was not detected, which made us 

speculate that in endothelial cells 6-OHDA may induce the increase of RAGE expression. In 
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contrast, neuronal cells (N27) seem to express the receptor even in basal conditions. After 6-

OHDA insult RAGE expression levels in N27 cells seem to increase. Of note these results need 

to be further investigated, by increasing the number of independent experiments. 

 

Figure 18- Expression of RAGE on HUVEC (a) and N27 cells (b) treated with 100 µM of 6-OHDA for 24 
hours. The two co-cultured cell lines were then separated and protein was extracted from the 
recovered cells. Protein expression is normalized to GAPDH levels and is represented as a percentage of 
non-treated cells (n = 1).  

 

3.4. Toxins-mediated N27 cell death 

 

These previous assay involving co-culture were helpful to understand that we have a valid 

model to study the communication between endothelial and neuronal cells. Moreover, these 

experiment lead us to reformulate some of the aspects involving the co-culture. First we will 

optimize the treatments concentrations in order to understand the cytotoxicity induced in 

N27 cells by each individual toxin. Second, the future treatments applied would not be 

performed once the cells are in co-culture, but only in N27 cells. In this way, to define the 

cytotoxicity of the treatments applied to N27 cells, the levels of MTT reduction were 

measured in N27 cell culture treated for 3h hours with 30 µM MPP+, 500 µM PQ and 10, 25 and 

50 µM 6-OHDA, to access cell viability. As seen in (Figure 19), we can observe that N27 cells 

response differently to the different toxins added to the medium, which globally lead to ~40-

50% cell death. 

The treatment with 30 µM MPP+ induced significantly lower levels of MTT reduction (52.28 ± 

11.08%; n=3; P<0.05) as compared with their respective control cultures (untreated, 
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considered 100%, Figure 19 a), indicating that cells which were treated with this toxin were 

vulnerable to death. The treatment with 500 M PQ presented similar results with 

significantly lower levels of MTT reduction (50.57 ± 9.347%; n=3; P<0.05), comparatively to 

the respective control cultures (untreated, considered 100%, Figure 19 b). The treatment with 

6-0HDA was performed for three different concentrations, 10, 25 and 50 µM, in order to 

determinate the most adequate concentration to apply in the subsequent experiments. The 

cytotoxic effect of the three concentration of 6-OHDA was very similar. We observed that 

MTT reduction by N27 cell exposed to 10, 25 and 50 µM  of 6-OHDA was respectively 44.44 ± 

10.34%; n=3; P<0.01; 45.90 ± 11.10%; n=3; P<0.01 and 39.86 ± 11.08%; n=3; P<0.01, and 

significantly lower than the control cultures that receive no treatment (considered 100%) as 

shown in (Figure 19 c).  

These results indicate that the concentrations of MPP+, PQ and 6-OHDA selected to perform 

the N27 cells treatments can induce dopaminergic lesion and apoptosis and thus lead to a 

reduction in the number viable cells in culture, nevertheless lower than approximately 40%, 

allowing to perform the following experiments in co-culture with HUVECs.  

 

Figure 19- Toxins-mediated N27 cells death. Cell death was accessed by measuring the levels of MTT 
reduction in N27 cells culture with 24 hours in vitro, incubated with MPP+ 30 µM (a), PQ 500 µM (b) and 
6-OHDA 10, 25 and 50 µM (c) for 3 hours. The results are expressed as percentage of control (n=5). Data 
are shown as the mean ± SEM of three independent experiments. Statistical analysis was performed 
using Student t-test for a) and b) and one-way ANOVA followed by Bonferroni’s Multiple Comparison test 
for c). * P<0.05; **P<0.01 vs. control cultures. 

 

3.5. Dopaminergic degeneration induced by toxins increased 

the expression of HMGB1-RAGE in N27 cells 

 

In order to explore if the dopaminergic lesion applied to N27 cells by the toxins used before, 

(see figure 19), affect the protein expression levels of RAGE and HMGB1 we then evaluated 

the levels of these proteins in treated N27 cells by Western Blot. 
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In general, the increases observed for HMGB1 protein levels induced by the treatments are 

higher than the ones observed for RAGE expression (Figure 20 a, b). In the presence of MPP+ 

30 µM, the HMGB1 protein levels increases was 136.4 ± 12.80%; n=5, relatively to non-treated 

(100%). When compared with controls, the presence of 500 µM PQ and 10 µM 6-OHDA induced 

a significant increase of HMGB1 protein expression levels (138.7 ± 19.89%; n=5; P<0.05) and 

(154.0 ± 11.59%; n=5; P<0.05), respectively.  

The effect of the toxins in the expression of RAGE are shown in (Figure 20 b). MPP+ 30 µM 

treatment induced a slight increase of RAGE expression, with no statistical significance, 

(108.7 ± 7.171%; n=5) as well as in PQ 500 µM treatment (111.3 ± 7.924%; n=5). As for 6-OHDA 

exposure of N27 cells to 10 µM of the toxin, induced a significant increase in RAGE protein 

expression levels (131.3 ± 15.96%; n=5; P<0.05) when compared to control (Non-treated, 

considered 100%). Overall, toxins-mediated dopaminergic degeneration induced an increase 

of both HMGB1 and RAGE protein expression levels in N27 cells. 

 

Figure 20- - Expression of HMGB1 (a) and RAGE (b) in N27 cells culture treated with 30 µM MPP+, 500 µM 
PQ, 10 µM 6-OHDA during three hours and maintained until 24 hours in medium without toxins. Graphs 
depicts the percentages relative to control of 25 kDa HMGB1 (a) and 55 kDa RAGE (b) expression 
normalization to total 37 kDa GAPDH (n=5). Proteins expression controls was set to 100%. Data are 
shown as the mean ± SEM of five independent experiments. Statistical analysis was performed using one-
way ANOVA followed by Bonferroni’s Multiple Comparison Test. *P<0.05, **P<0.01 vs. non-treated. 
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Chapter 4- Discussion 

 

The present work is the first report of a rat PD model induced by the chronic exposure to a 

low dose of PQ using osmotic minipumps that exhibits strong α-synucleinopathy, an important 

hallmark of PD. There are several PD models described in the literature, however none of the 

models fully recapitulate all the key clinical and neuropathologic features of PD. This animal 

model, depict a clear nigrostriatal dopaminergic neurodegeneration and strong α-

synucleinopathy, as shown by decreased number of TH+ cells in the SNpc and the increased 

levels of phosphorylated alpha-synuclein form (pS129), respectively. 

The effect of PQ in dopaminergic neurons was shown in several studies, including in previous 

works from our group [7, 25, 29].  In this model, the chronic low dose of PQ induced a 

significant 39% of dopaminergic cell loss in the SN. This is a great improvement when 

compared with other PQ-based PD models in which nigrostriatal degeneration is usually 

minimal in spite of high doses of PQ [43, 97, 98]. Differential vulnerability of nigrostriatal 

dopaminergic neurons to PQ has been reported [99, 100]. Indeed, the loss of dopaminergic 

neurons is more severe in the intermediates and posterior sections of the SNpc. Our 

topographical distribution of the PQ-induced neurodegeneration within the SN demonstrated 

that depletion of dopaminergic neurons was higher in the intermediate and caudal part of the 

SNpc which is in agreement with what was reported in postmortem human PD brains [99, 

100]. The distinct expression patterns of genes implicated in PD pathogenesis could be 

related to differential vulnerability of dopaminergic neurons [101]. Moreover, one of the most 

important neuropathological features of PD is the accumulation of alpha-synuclein that may 

induce several cellular dysfunctions leading to dopaminergic neurodegeneration [43, 98]. 

However, most animal models of PD have failed to reproduce alpha-synuclein pathology [7, 

48]. Herein, we found signs of increased pS129 alpha-synuclein levels and aggregation in 

individual dopaminergic neurons in the SN. These results raise the possibility that our model 

with strong pS129 alpha-synuclein pathology may lead to progressive degeneration of the 

nigrostriatal pathway through aggregation. Thus, it will be of interest to perform long-term 

studies to investigate whether this model recapitulates chronic and progressive features of 

human PD. In other models, PQ-induced systemic toxicity was reported to have major toxic 

effects on lungs, followed by loss of body weight [102]. We have previously reported [103] 

that animals exposed to PQ showed alterations motor dysfuntion as well as depression and 

anxiety-like behaviour meaning that the low and continuous exposure to PQ is important to 

mimic the motor and emotional behaviour presented in human PD. The previously reported 

results were the first ones describing the possibility to perform behavioural tests in a PD rat 

model induced by PQ. Those results, together with the strong -synucleinopathy found, leads 

us to believe that we are one step closer to achieve the ideal model to further investigate the 
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pathogenesis of this disease. Eventually, the ideal model would exhibit all the clinical and 

pathologic features of PD, but this may be a difficult challenge. Nevertheless, the use of our 

new animal model of PD will clearly lead to a better understanding of the mechanistic 

relationships between PD and associated alpha-synuclein abnormalities.   

In this work, besides the development of an animal model of PD we have also proposed to 

characterize the protein expression profile of HMGB1 and RAGE in different in vivo and in 

vitro models of PD. To the best of our knowledge, we were the first to investigated the 

protein expression levels of these two proteins in the PQ and 6-OHDA experimental models of 

PD, although they behaviour in other pathologies were already reported.  

In this way, we first evaluated HMGB1 and RAGE protein expression profile in three animal 

models of PD: the PQ model recently developed, the MPTP model and the 6-OHDA model. 

These models are different from each other. The PQ and MPTP models are characterized by 

the systemic application of the neurotoxin, by minipumps or intraperitoneal injections, 

respectively. In turn, in 6-OHDA model the neurotoxin was directly injected in ST, due to the 

incapability of this toxin to cross the BBB. Besides that, there are differences according to the 

time that protein levels expression of HMGB1 and RAGE were measured in each model. The 

PQ being a chronic model the levels were measured 5 weeks after continuous exposure to the 

neurotoxin and the MPTP 7 days after the i.p. injection of the toxin. The exposure to 6-OHDA 

was for 3 days, representing an intermediate end-point of the model were most of the 

neuroinflammation features are expected to be present and 7 days after were 

neuroinflammation markers should be less present. The HMGB1 and RAGE expression levels 

were measured both in SN and ST of the different models.  

Overall, we can settle that HMGB1 is expressed in non-treated animals, but is only increased 

in the SN in MPTP model and in the ST in 6-OHDA model. RAGE is expressed in non-treated 

rodents as well, and increased in all PD models, mainly in the ST, with statistical significance 

in PQ and 6-OHDA model. 

The paradigm of PQ exposure to induce a PD model is in accordance with a chronic exposure 

to this herbicide. In this way, the results obtained for HMGB1 and RAGE shown that the 

receptor expression is elevated after 5 weeks of exposure to PQ and for the ligand the 

observed decrease could be justified by an immediate mechanism of action for this type of 

cytokine. A previous study reported the active release of HMGB1 by macrophages and 

monocytes between the 3 and 24 hours after cell injury induced by hydrogen peroxide 

treatment. This report indicate that the release of HMGB1 from cells is a time- and dose-

dependent process [104]. The cell damage through continuous exposure to PQ lead to 

increases on RAGE expression in both SN and ST, which may indicate that a previous release 

of RAGE ligand occurred. Changes in RAGE expression are observed in different disease states. 

Such changes in RAGE expression elicit concurrent increases in the expression of RAGE 

ligands, which themselves are also disease-associated [53]. In this case, HMGB1 is decreased 
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in the brain suggesting that at this time point the changes in the protein expression levels of 

this pro-inflammatory cytokine were back to basal levels. We believe that at earlier time-

point, such as within the first week after minipump implantation it is possible that the 

expression levels of HMGB1 would be increased.  

In the MPTP induced model of PD, no statistical differences were found in the levels of 

HMGB1 and RAGE in both SN and ST. Nevertheless we could see a tendency in increasing 

levels of these protein in the SN and ST, respectively. Different studies have reported that 

nitric oxide is an important mediator of MPTP toxicity in dopaminergic neurons [12, 84] with a 

preferential loss of neurons in the SNpc [12]. A recent study from our group using this model, 

have shown a significant decreased (approximately 50%) of TH protein levels in the SN [91]. 

The increased tendency observed on HMGB1 and RAGE expression profile in the SN and ST of 

the MPTP induced model of PD, may be related to the accentuated cell damaged and 

inflammation in the SN that typically occurs with this toxin. The RAGE expression on ST also 

shown a tendency to increase, although no statistical significance were obtained for this 

increase. The tendency discussed above may allow us to speculate that in the MPTP mouse 

model of PD the inflammation process may happen firstly in ST where the increase of the 

receptor was more accentuated and gradually expand to the SN. The fact that we were not 

able to detect increased levels of HMGB1 in ST may also be a consequence of the loss of 

dopaminergic fibers terminal in the ST as we have shown in a previous study [91] that could 

compromise the release of HMGB1 in the striatal region. 

In the 6-OHDA model of PD, 3 days after neurotoxin exposure, HMGB1 and RAGE expression 

levels increased significantly in ST. These results emerge as a possible effect of the 

deposition of the neurotoxin in this particular location in the brain leading to inflammation in 

this area and are in accordance with others [102, 105] which showed apoptotic dopaminergic 

cells in the SN after intrastriatal injection of 6-OHDA in this location. Also, 6-OHDA 

accumulates in the ST after stereological injection and as a potent oxidant 6-OHDA can lead 

to local ROS that are known to induce cell damage and apoptosis [12, 102] and in increasing 

the expression levels of HMGB1 [56, 87]. Our results suggest that 6-OHDA injected in ST, 

seems to boost the increase expression of HMGB1 and RAGE protein levels only locally. The 

HMGB1 release by cells seems to be fast, in response to cell damage and inflammation. In a 

recent study [106] a significant increase of HMGB1 levels were observed between 6 to 36 

hours in the supernatant of HUVECs cultures exposed to low discontinuous stress. In the same 

model, animals sacrificed 7 days after the neurotoxin exposure, shown no effect on the 

expression levels of HMGB1 and RAGE in either SN or ST revealing that an earlier time-point 

such as 3 days is better to target these molecules. 

Taken all together, these results show that HMGB1 is increased in the 6-OHDA model (3 days 

after exposure) of PD and RAGE expression is increased in all in vivo PD animal models with 

the exception of 6-OHDA (7 days after exposure). In this way and exploring our hypothesis, 
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the neuronal damaged induced by the neurotoxins can lead to the release of HMGB1. The 

increase of extracellular HMGB1 may then induces the expression of RAGE mainly by 

endothelial cells. Nevertheless this needs further investigation. 

To try to clarify the interplay between dopaminergic neuronal damage and endothelial cells 

and they role in the protein expression profile of HMGB1 and RAGE in PD, we also studied the 

expression variations of these molecules in vitro. First we developed a co-culture model to 

mimic the BBB environment, including neuronal cells (N27 cells) and endothelial cells 

(HUVECs). Although the results reflect only the analysis of n=1 we can see an increased 

tendency in the protein expression levels of RAGE induced by 6-OHDA. To notice, the RAGE 

expression within HUVECs in non-treated samples was not detected, revealing that the 

increase is due to the treatment applied. In contrast, untreated neuronal cells (N27) express 

the receptor which levels increases in the presence of 6-OHDA. These assay was helpful to 

understand that we have a great model to study the communication between endothelial and 

neuronal cells but there are some adjustments that are required.  The future treatments 

applied would not be performed with the cells already in co-culture, but affecting only 

neuronal cells, to induced dopaminergic damage. In this way, to define the cytotoxicity of the 

treatments applied to N27 cells, the levels of MTT reduction were measured in N27 cell 

culture treated for 3 hours with 30 µM MPP+, 500 µM PQ and 10, 25 and 50 µM of 6-OHDA to 

assess cell viability. The MTT results indicate that all toxins used (30 µM MPP+, 500 µM PQ and 

10, 25, 50 µM 6-OHDA), induced statistical increase of approximately 40-50% N27 cell death. 

In previous works from our research group, the same effect of 500 µM PQ was described with 

(62 ± 1.4%) of cell viability in N27 cells treated for 24 hours [29]. The MPP+ treatment at 

concentration of 30 µM lead to ~48% of cell death. As for 6-OHDA, we tested three 

concentrations (10, 25 and 50 µM) and the results obtained shown a decrease of cell viability 

with increased concentration of the toxin. These data are in accordance with other report 

[107] where 6-OHDA exhibited significant cell damage at 50 µM when compared to 10 µM (that 

already had induced cell damage of about 56%). In this way, 10 µM was chosen for future 

experiments, since there is no benefit of having more than 50% of cell death because we need 

a healthy population to evaluate the evaluate the HMGB1 and RAGE protein expression levels.  

The evaluation of the cytotoxic effect of the selected toxin also allowed us to determine the 

best condition to the future study on the effect of dopaminergic damage in endothelial cells 

using co-culture. After injury, these neuronal cells can release pro-inflammatory cytokines 

like HMGB1 [55] that we hypothesized to have an effect on HUVECs through RAGE [57, 61]  

(experiments in progress). The main goal of the co-culture with HUVECs, is to understand the 

effect of dopaminergic degeneration on endothelial activity, and the role played by HMGB1-

RAGE signalling pathway in this effect. 

Using the defined neurotoxins concentrations we further evaluated in N27 cells the expression 

levels of HMGB1 and RAGE by western blot. The interaction between HMGB1 and its receptor 
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may lead to multiple consequences to the immune system and neurons [59]. Notably, N27 

cells treated with 30 μM MPP+, 500 μM PQ and 10 µM 6-OHDA showed significant increases in 

both HMBG1 and RAGE expression levels revealing their functions as neuroinflammatory 

signals. These results are in accordance with other studies that also reveal an increase of 

these molecules in acute and chronic CNS diseases [52, 54]. As an example, in AD the RAGE-

Aβ interactions induce neuronal toxicity that is mediated by oxidative stress and NF-κB 

activation, via RAGE activation [67]. Also, the treatment of PC12 cell line with Aβ induces 

neuronal toxicity leading to RAGE overexpression as well [108]. In our results, the protein 

levels expression of HMGB1 were more accentuated comparatively to RAGE. This may indicate 

that dopaminergic neurons are mainly responsible for the expression of HMGB1 which then 

will have an impact in HUVEC cells through RAGE signalling pathway, as shown previously 

[109]. RAGE is constitutively expressed at high levels in the lung and epithelial cells and in 

low expression in monocytes/macrophages and neurons [110]. In this way RAGE mediates 

interactions of its ligands with endothelium and other cells types [109]. Damaged 

dopaminergic cells undergoing necrosis release HMGB1 that is tightly bound to chromatin 

[110]. After its release, HMGB1 have the capacity to induce cytokines release, activate 

inflammatory cells and bind to or associate with other molecules such as DNA and RNA 

(signalling through RAGE) [56, 89, 110].  The RAGE binds to several classes of molecules and is 

linked to a variety of signal transduction pathways that include the activation of NF-kB, 

mitogen-activated protein kinases, PI3K/Akt, Rho GTPases, Jak/STAT [110], specially involved 

in inflammation [111]. The completed model, including damaged dopaminergic cells and 

HUVECs is important to evaluate the interaction involving neurons and endothelial cells during 

inflammatory processes and is in already in progress at the lab. 

As the HMGB1-RAGE pathway has been reported to result in the activation of various 

inflammatory mechanisms, the same seems to be occurring in the PD experimental models 

used in this work. According to the literature, cytokines like HMGB1 are examples of a diverse 

set of endogenous molecules with known danger-signalling capacities that can induce more 

cytokines and activate inflammatory cells when is released from damaged cells [56, 110]. A 

study [112], has previously shown that a variety of nuclear molecules are released from cell 

during apoptotic death. These nuclear molecules may vary with cell type, inducing stimulus 

as well as a stage in the death process showing the difficulty to target the HMGB1 release. 

The role of HMGB1 in PD is not well studied, however some studies reported that ROS 

involved in PD pathogenesis such as hydrogen peroxide may induce HMGB1 expression and 

release in macrophages and monocytes [56, 87].  

There are compelling data supporting that RAGE plays a major role in many inflammatory 

disorders. Several studies described that RAGE is involved in inflammation resolution leading 

to tissue repair or alternatively to its perpetuation leading to chronic inflammation by cell 

proliferation and migration [62]. It is well-known that RAGE mediates HMGB1-induced 

neuroinflammation and necrosis [113]. Moreover, in a study were RAGE was blocked there was 
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a protective effect on nigral dopaminergic neurons in the MPTP mouse model of PD [114]. The 

involvement of RAGE has been reported in several diseases over the last years. For example, 

it has been described that in a diabetic microenvironment, RAGE has a central role in sensory 

neuronal dysfunction by the activation of NF-κB [86]. As demonstrated on literature, one of 

the principal factors linked to the induction of inflammation in PD pathogenesis is the 

activation of this nuclear factor [83-85]. Also in diabetes, the AGE-RAGE–induced cytosolic 

ROS production lead to mitochondrial superoxide production showing the important role of 

this receptor in the development and progression of diabetic nephropathy [82]. There is a 

study that reported elevated RAGE levels in the ischemic hemisphere in stroke patients, 

suggesting a role for RAGE in this pathology as well [59]. The RAGE involvement in AD is well 

described so far. The Aβ peptide influx into the brain is mediated by RAGE receptor. The 

expression of LRP-1 that efflux Aβ of the brain is decreased in AD and at the same time RAGE 

expression is increased [79-81], resulting in accumulation of the Aβ peptide in to the brain. 

Other report showed evidences that Aβ peptide interaction with RAGE at the BBB up-

regulates endothelial cognate ligand chemokine ligand 5 expression and causes circulating T 

cell infiltration in the brain. This study shows a new insight into the understanding of 

inflammation in the progress of AD by revealing the important role of RAGE in this disease 

[64].  

Our present findings suggest that neuroinflammation observed in PD could be related to the 

increase of RAGE similarly to what occurs in other neurodegenerative diseases. Increases in 

HMGB1 expression levels could be related to PD as well, but it seems to be more evident in 

early stages of inflammation. In the assays performed in this work, there were slight increases 

of HMGB1 and RAGE expression with more statistical significance in in vivo models, 

specifically in the PQ and 6-OHDA model. This was the first time that HMGB1 and RAGE 

protein expression levels were evaluated in PD models. Given these results, our in vivo and in 

vitro findings indicate that HMGB1 and RAGE may have a crucial role in PD neuroinflammation 

and may represent a suitable targets for CNS disorders where neuroinflammation occurs as 

well as for neuroprotective treatment in PD by using a pharmacological approach. 
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Chapter 5- Conclusions 

 

This work presents a novel PQ-based chronic PD model that reproduces several key 

characteristics of human PD. Most importantly, this model shows prominent alpha-synuclein 

pathology (including pS129 alpha-synuclein) that is not consistently observed in other toxin-

based rodent PD models. This new rat model of PD may serve as an attractive novel tool for 

unveiling the molecular mechanism of alpha-synucleinopathy as well as for evaluation of new 

pharmacologic strategies for PD. 

The precise ethiology of PD has been under investigation for more than two centuries and 

despite of the important role of RAGE in neurodegenerative disorders like AD, there is no 

consistent information of his involvement in neuroinflammation observed in PD. The same 

occurs to the RAGE ligand HMGB1, were the mediated pathological mechanisms have 

remained largely elusive. Recently, a great research effort has been devoted to understand 

the pathophysiological influence of the BBB in neurological disorders, including its influence 

in the initiation of neurodegenerative process due to changes in its physiologic condition. In 

PD there are evidences that neuroinflammation can compromise the BBB structure and 

function. Knowledge of these mechanisms is likely to lead to therapeutic targets for 

neurological diseases. 

In this work we evaluated for the first time the protein expression levels of HMGB1 and RAGE 

in vivo and in vitro PD models. Our results shown that HMGB1 and RAGE expression levels are 

increased in PD models. These results suggest that both HMGB1 and RAGE may become 

suitable targets to reduce neuroinflammation and develop neuroprotective treatments. 

The present work have open a new window on the possible influence of HMGB1 and RAGE 

signalling in PD. This has also raised several questions that needs to be further investigated in 

order to understand the details of this mechanism. Moreover, the co-culture assays will be 

fundamental to understand the dopaminergic damage influence on endothelial activity and to 

clarify the BBB dysfunction occurring in PD.  
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