

UNIVERSIDADE DA BEIRA INTERIOR

Ciências

Estudo da Qualidade da Água de Consumo Humano Validação de Métodos à Pequena Escala

Maria Margarida Miranda Gomes

Dissertação para obtenção do Grau de Mestre em **Química Industrial** (2° ciclo de estudos)

Orientadora: Prof^a Doutora Albertina Maria Mendes Marques Bento Amaro Co-orientadora: Dr.^a Maria Paula Lourenço

Covilhã, Junho de 2015

Estudo da Qualidade da Água de Consum	mo Humano - Validação de Métodos à Pequena Esca	la

Um cientista no seu laboratório não é só um técnico, ele também é uma criança colocada diante de fenómenos naturais que o impressionam como um conto de fadas.

Marie Curie

tudo da Qualidade da Água de Consumo Humano - Validação de Métodos à Peque	na Escala

Agradecimentos

Depois de muito tempo dedicado à elaboração desta dissertação, é com muita satisfação que agradeço a todos os que contribuíram para que a sua realização fosse possível.

Em primeiro lugar gostaria de agradecer à Professora Doutora Albertina Marques, por todo o apoio, paciência, orientação e conhecimento transmitido para que a realização deste trabalho fosse possível.

À Dr.ª Paula Lourenço e Engª Manuela Estevão por me terem recebido no Laboratório de Saúde Pública da Guarda, fazendo com que a realização deste estágio se concretizasse.

À Doutora Paula Lourenço pela ajuda na integração no laboratório, pelo apoio e conhecimento prestados.

A todas as técnicas e funcionárias do Laboratório de Saúde Pública da Guarda, pela preciosa ajuda de trabalho proporcionado e bom ambiente.

A todos os meus amigos, pela amizade e por todo o apoio.

À minha família, principalmente aos meus país por todo o esforço que fizeram por mim e por sempre me apoiarem. Sem eles não teria chegado até aqui.

Muito obrigada a todos!

Estudo da Qualidade da Água de Consumo Humano - Validação de Métodos à Pequena Escala	

Estudo da Qualidade da Água de Consumo Humano - Validação de Métodos à Pequena Escala

Resumo

Neste trabalho consideram-se dois aspectos principais, sendo eles, a validação de métodos em análise química e o estudo da qualidade da água nos distritos da Guarda, Viseu e Castelo Branco.

A validação consiste na análise de determinados parâmetros para verificar se um método consegue fornecer resultados fiáveis e com qualidade. O método em estudo designa-se por método à pequena escala, utilizando espectrofotometria de absorção molecular na zona do visível, em que é possível conhecer a concentração de nitratos, nitritos, amónio, ferro, alumínio e manganês presentes em águas de consumo humano, calculando-se também a incerteza associada à respectiva concentração.

Por outro lado, o estudo efectuado nos distritos referidos anteriormente, teve como objectivo verificar a qualidade da água que chega até ao consumidor.

Os resultados referentes à validação de métodos cumpriram todos os requisitos definidos, pelo que se pode concluir que os métodos se encontram validados, sendo possível a sua implementação. No caso do estudo referente à qualidade da água, de um modo geral, a água analisada é de boa qualidade tendo uma concentração reduzida dos parâmetros referidos.

Palavras-chave

Validação, método à pequena escala, incerteza, qualidade da água

vii

Estudo da Qualidade da Água de Consumo Humano - Validação de Métodos à Pequena Escala	

Abstract

In this work two main aspects are considered, namely, the validation methods in chemical analysis and the study of water quality in the districts of Guarda, Viseu and Castelo Branco.

The validation consists in the analysis of certain parameters to verify that a method can provide reliable and quality results. The study method is called a method on a small scale, using molecular absorption spectrophotometry in the visible range, it is possible to know the concentration of nitrates, nitrites, ammonium, iron, aluminum and manganese present in drinking water, calculating also the uncertainty associated with the respective concentration.

On the other hand, the study carried out in the districts mentioned above, aimed to check the quality of water that reaches the consumer.

The results of the validation methods met all the requirements set, so it can be concluded that the methods are validated and its practical implementation is possible. In the case of the study relating to water quality, in general, the water analyzed is of good quality having a reduced concentration of said parameters.

Keywords

Validation, small scale method, uncertainty, water quality

Estudo da Qualidade da Água de Consumo Humano - Validação de Métodos à Pequena Escala	

Índice

1	Int	ıtrodução1				
	1.1 Objectivos					
	1.2 Estrutura da dissertação			1		
	1.3	.3 Recepção de Amostras				
	1.4	. ,				
2	Mé	todo	à pequena escala	5		
	2.1	Nitr	ratos e Nitritos	10		
	2.2	Amo	ónio	10		
	2.3	Feri	ro	11		
	2.4	Aluı	mínio	11		
	2.5	Man	nganês	11		
	2.6	Det	erminação de Parâmetros em Águas de Consumo Humano	12		
	2.6	5.1	Nitratos	12		
	2.6	5.2	Nitritos	13		
	2.6	5.3	Amónio	13		
	2.6	5.4	Ferro	14		
	2.6	5.5	Alumínio	15		
	2.6	5.6	Manganês	16		
3	Va	lidaçã	io de Métodos - Métodos à Pequena Escala	17		
	3.1	Cur	vas de calibração	17		
	(Gama	de trabalho	18		
		Tes	te de homogeneidade de variâncias	18		
	L	inear	idade	19		
	L	_imiar	es Analíticos	20		
	Lin	nite d	le Quantificação (L.Q.)	20		
	Lin	nite d	le Detecção (L.D.)	20		
	3.2	Pre	cisão	21		
	Repetibilidade2					
		Rep	rodutibilidade	23		
		Pre	cisão Intermédia	23		
	3.3	Exa	ctidão	24		
	F	Robus	tez	25		
	9	Sensib	ilidade	25		
	3.4	Esp	ecificidade/Selectividade	26		
	3.5	Vali	dação de "Software"	27		
4	Inc	ertez	as	29		
	I	ncert	eza associada à precisão/fidelidade	29		
			eza associada à exactidão/justeza/veracidade	20		

	4.1	Ince	rtezas estimadas com base nos dados de ensaios interlaboratoriais	. 31
	4.1.	1	Cálculo da incerteza associada ao valor de referência interlaboratorial	. 31
	4.1.2 Inc		Incerteza através de um material de referência certificado (MRC)	. 32
4.1.3 Incerteza através de amos		3	Incerteza através de amostras fortificadas	. 32
		Matr	iz sem analito	. 32
		Matr	iz com analito	. 33
	4.2	Aval	iação da exactidão do método (Teste t)	. 34
	ln	certe	za combinada	. 35
	In	certe	za expandida associada ao resultado	. 35
	Ex	(pres	são dos resultados	. 35
5	Mat	eriais	e Métodos	. 37
	5.1	Labo	oratório de Saúde Pública da Guarda	. 37
	5.2	Colh	eita de Amostras	. 38
	5.3	Teor	de Nitratos	. 40
	5.4	Teor	de Nitritos	. 42
	5.5	Teor	de Amónio	. 44
	5.6	Teor	de Ferro	. 46
	5.7	Teor	de Alumínio	. 48
	5.8	Teor	de Manganês	. 50
6	Resi	ultad	os e Discussão	. 53
	6.1	Valid	dação de Métodos	. 53
	6.1.	1	Curvas de calibração	. 53
	6.1.	2	Validação do "Software"	. 53
	6.1.	3	Gama de trabalho	. 54
	6.1.	4	Linearidade	. 55
	6.1.	5	Limiares Analíticos	. 57
	6.1.	6	Exactidão e Precisão	. 58
	6.1.	7	Precisão	. 60
	6.1.	8	Exactidão	. 64
	6.1.	9	Sensibilidade	. 65
	6.1.	10	Especificidade/Selectividade	. 66
	6.2	Ince	rtezas	. 67
	6.2.	1	Incerteza associada à Precisão Intermédia/Fidelidade	. 67
	6.2.	2	Incerteza associada à Exactidão	. 68
	6.2.	3	Incerteza combinada	. 68
	6.2.	4	Incerteza expandida	. 68
	6.3	Com	paração de Resultados Obtidos nos Diferentes Distritos	. 70
	6.3.	1	Teor de Nitratos	. 70
	6.3.	2	Teor de Nitritos	. 74
	6.3.	3	Teor de Amónio	. 77
	6.3.	4	Teor de Ferro	. 81

Estudo da Qualidade da Água de Consumo Humano - Validação de Métodos à Pequena Escala

	6.3.5	Teor de Alumínio	85
	6.3.6	Teor de Manganês	89
7	Conclus	ões	93
Refe	Referências Bibliográficas		95
Α	nexos		99
Α	Anexo I - Boletim de recepção de amostras		
Α	nexo II -	Folha de registo de amostragem	100
Α	nexo III -	Preparação de Soluções	101
Α	nexo IV -	Curvas de calibração obtidas pelo "Excel" e pelo "Software"	104

Estudo da Qualidade da Água de Consumo Humano - Validação de Métodos à Pequena Escala

Lista de Figuras

Figura 2.1 - Espectrofotómetro DR39005
Figura 2.2 - Compartimentos de células6
Figura 2.3 - Célula esférica6
Figura 2.4 - Célula de plástico
Figura 2.5 - Célula de vidro7
Figura 2.6 - Barreira luminosa8
Figura 2.7 - Caminho do feixe de luz8
Figura 2.8 - Rotação efectuada pela cuvete9
Figura 4.1 - Incerteza associada ao valor verdadeiro29
Figura 5.1 - Procedimento para a determinação de nitratos em águas de consumo humano. 41
Figura 5.2 - Procedimento para a determinação de nitritos em águas de consumo humano 43
Figura 5.3 - Procedimento para a determinação de amónio em águas de consumo humano 45
Figura 5.4 - Procedimento para a determinação de ferro em águas de consumo humano 47
Figura 5.5 - Procedimento para a determinação de alumínio em águas de consumo humano.49
Figura 5.6 - Procedimento para a determinação de manganês em águas de consumo humano.
Figura 6.1 - Representação gráfica da linearidade dos nitratos
Figura 6.2 - Carta de duplicados de Nitratos com base em critério de aceitação de 10 % 62
Figura 6.3 - Carta de duplicados de Nitratos com base em 20 determinações62
Figura 6.4 - Carta de duplicados de Nitratos com base em 40 determinações63
Figura 6.5 - Representação gráfica da concentração de nitratos no distrito da Guarda 70
Figura 6.6 - Representação gráfica da concentração de nitratos no distrito de Viseu 71

Figura 6.7 - Representação gráfica da concentração de nitratos no distrito de Castelo Branco
Figura 6.8 - Concentração média de nitratos
Figura 6.9 - Representação gráfica da concentração de nitritos no distrito da Guarda 74
Figura 6.10 - Representação gráfica da concentração de nitritos no distrito de Castelo Branco
Figura 6.11 - Concentração média de nitritos
Figura 6.12 - Representação gráfica da concentração de amónio no distrito da Guarda 78
Figura 6.13 - Representação gráfica da concentração de amónio no distrito de Viseu 79
Figura 6.14 - Representação gráfica da concentração de amónio no distrito de Castelo Branco
Figura 6.15 - Concentração média de amónio
Figura 6.16 - Representação gráfica da concentração de ferro no distrito da Guarda 82
Figura 6.17 - Representação gráfica da concentração de ferro no distrito de Castelo Branco.
Figura 6.18 - Concentração média de ferro
Figura 6.19 - Representação gráfica da concentração de alumínio no distrito da Guarda 85
Figura 6.20 - Representação gráfica da concentração de alumínio no distrito de Viseu 86
Figura 6.21 - Representação gráfica da concentração de alumínio no distrito de Castelo Branco
Figura 6.22 - Concentração média de alumínio
Figura 6.23 - Representação gráfica da concentração de manganês no distrito da Guarda 89
Figura 6.24 - Representação gráfica da concentração de manganês no distrito de Viseu 90
Figura 6.25 - Representação gráfica da concentração de manganês no distrito de Castelo Branco
Figura 6.26 - Concentração média de manganês92

Lista de Tabelas

Tabela 1.1 - Tipo e tempo de preservação de amostras
Tabela 2.1 - Legenda da figura do caminho do feixe de luz
Tabela 2.2 - Valores paramétricos dos diferentes compostos
Tabela 2.3 - Concentração máxima de iões sem interferência no doseamento de nitratos 12
Tabela 2.4 - Concentração máxima de iões sem interferência no doseamento de nitritos 13
Tabela 2.5 - Concentração máxima de iões sem interferência no doseamento do amónio 14
Tabela 2.6 - Concentração máxima de iões sem interferência no doseamento do ferro 14
Tabela 2.7 - Concentração máxima de iões sem interferência no doseamento de alumínio 15
Tabela 2.8 - Concentração máxima de iões sem interferência no doseamento de manganês. 16
Tabela 5.1 - Frascos de colheita
Tabela 5.2 - Soluções utilizadas
Tabela 5.3 - Constituição das soluções
Tabela 5.4 - Constituintes dos reagentes utilizados
Tabela 5.5 - Constituintes das soluções utilizadas. 47
Tabela 5.6 - Constituintes das soluções utilizadas
Tabela 5.7 -Constituintes das soluções utilizadas. 52
Tabela 6.1 - Histórico de curvas de calibração. 53
Tabela 6.2 - Concentração da amostra aleatória obtida pelos dois métodos de cálculo 54
Tabela 6.3 - Valores de absorvância dos 2 padrões. 54
Tabela 6.4 - Dados obtidos através da ANOVA
Tabela 6.5 - Limites de confiança para 99 %
Tabela 6.6 - Limites de confianca dos parâmetros da curva de calibração

Tabela 6.7 - Valores de concentração obtidos para o padrão de validação de 2 mg·L ⁻¹ 57
Tabela 6.8 - Valores de concentração obtidos para os 3 padrões considerados. 58
Tabela 6.9 - Valores de concentração correspondentes à amostra aleatória. 60
Tabela 6.10 - Valores de amplitude relativa de 20 amostras. 61
Tabela 6.11 - Valores de limites obtidos
Tabela 6.12 - Valores de amplitude relativa das restantes 20 amostras. 63
Tabela 6.13 - Valores de referência e resultado laboratorial. 64
Tabela 6.14 - Valores de declives obtidos referentes às 20 curvas de calibração
Tabela 6.15 - Percentagem de recuperação obtida de diferentes amostras. 66
Tabela 6.16 - Amplitude média relativa das diferentes amostras e respectivos duplicados 67
Tabela 6.17 - Dados dos ensaios interlaboratoriais
Tabela 6.18 - Resultados do RSD obtidos nos dois ensaios
Tabela 6.19 - Apresentação de Resultados. 69
Tabela 6.20 - Concentração média de nitratos no distrito da Guarda
Tabela 6.21 - Concentração média de nitratos no distrito de Viseu. 71
Tabela 6.22 - Concentração média de nitratos no distrito de Castelo Branco. 72
Tabela 6.23 - Concentração média de nitratos
Tabela 6.24 - Concentração média de nitritos no distrito da Guarda
Tabela 6.25 - Concentração média de nitritos no distrito de Viseu
Tabela 6.26 - Concentração média de nitritos no distrito de Castelo Branco
Tabela 6.27 - Concentração média de nitritos
Tabela 6.28 - Concentração média de amónio no distrito da Guarda
Tabela 6.29 - Concentração média de amónio no distrito de Viseu

Estudo da Qualidade da Água de Consumo Humano - Validação de Métodos à Pequena Escala

Fabela 6.30 - Concentração média de amónio no distrito de Castelo Branco	9
Fabela 6.31 - Concentração média de amónio	0
Fabela 6.32 - Concentração média de ferro no distrito da Guarda. 8	ն 1
Fabela 6.33 - Concentração média de ferro no distrito de Viseu. 8	2
Fabela 6.34 - Concentração média de ferro no distrito de Castelo Branco. 8	13
Fabela 6.35 - Concentração média de ferro. 8	4
Fabela 6.36 - Concentração média de alumínio no distrito da Guarda	5
Fabela 6.37 - Concentração média de alumínio no distrito de Viseu. 8	6
Fabela 6.38 - Concentração média de alumínio no distrito de Castelo Branco. 8	57
Fabela 6.39 - Concentração média de alumínio. 8	8
Fabela 6.40 - Concentração média de manganês no distrito da Guarda. 8	9
Fabela 6.41 - Concentração média de manganês no distrito de Viseu. 9	0
Fabela 6.42 - Concentração média de manganês no distrito de Castelo Branco. 9	1 (
Fabela 6.43 - Concentração média de manganês. 9)2

Estudo da Qualidade da Água de Consumo Humano - Validação de Métodos	à Pequena Escala

1 Introdução

Actualmente existe uma preocupação crescente acerca da qualidade da água destinada ao consumo humano, devido à existência de diferentes poluentes, com consequências negativas para a saúde da população. Neste sentido é necessária a existência de técnicas laboratoriais que permitam aos consumidores ter confiança nos resultados obtidos.

Deste modo, as técnicas utilizadas devem ser alvo de um processo de validação, permitindo assim avaliar se os resultados obtidos são credíveis e adequados à qualidade pretendida. Este processo requer o estudo e análise de diferentes parâmetros, entre os quais, precisão e exactidão, linearidade, limiares analíticos e selectividade. Por outro lado, é necessário conhecer-se a incerteza associada aos valores obtidos de modo a conhecer a qualidade dos mesmos.

1.1 Objectivos

O presente trabalho é dividido em duas partes principais, o processo de validação e a avaliação da qualidade da água.

O processo de validação é aplicado a métodos à pequena escala. Neste método é utilizado um espectrofotómetro de radiação visível, em que é possível determinar a concentração de nitratos, nitritos, amónio, ferro, alumínio e manganês, sendo utilizado um menor volume de amostra e consequentemente menores quantidades de reagentes.

A qualidade da água foi avaliada através de um estudo efectuado aos concelhos de cada distrito a que o laboratório presta serviço, sendo eles, Guarda, Castelo Branco e Viseu. Fez-se também uma comparação entre os resultados obtidos.

1.2 Estrutura da dissertação

O trabalho realizado encontra-se dividido em 7 partes:

- Introdução teórica, abordando-se o tema da dissertação, bem como os objectivos e a sua estrutura;
- Método à pequena escala, dando-se a conhecer os fundamentos teóricos deste método bem como dos parâmetros analisados (nitratos, nitritos, amónio, ferro, alumínio e manganês);
- Validação de métodos, onde se refere o processo de validação do método à pequena escala;

- <u>Incertezas</u>, onde se descreve todo o processo recorrendo ao guia para quantificação de incertezas em ensaios químicos;
- <u>Materiais e Métodos</u>, onde é descrito o LSP, o processo de colheita de amostras e também os procedimentos para a determinação dos parâmetros referidos anteriormente;
- Resultados e discussão, onde se expõe os resultados obtidos através dos ensaios efectuados;
- <u>Conclusões</u>, onde se mencionam as conclusões referentes aos diferentes pontos abordados.

1.3 Recepção de Amostras

A recepção das amostras é realizada pelos técnicos de laboratório sendo responsáveis pelo processo de verificação e registo.

Assim, quando as amostras chegam ao laboratório é necessário verificar se se encontram em boas condições e verificar a temperatura final das mesmas. Por outro lado, a folha de registo de recepção de amostras (Anexo I) deve ser preenchida pelo técnico de laboratório, e posteriormente rubricada pelo técnico que efectuou a colheita.

Os pontos mais importantes a verificar aquando da entrega das amostras são:

Controlo da amostra que acompanha o formulário

- Verificar se foi colhida a amostra correcta;
- Verificar se o formulário foi preenchido correctamente;
- Confirmar o nome do técnico de colheitas.

Controlo das condições da amostra

- Verificar se a amostra vem refrigerada;
- Verificar se a folha de trabalho está legível;
- Verificar se foi usado o frasco correcto para a colheita;
- Verificar se o frasco está fechado correctamente;
- Verificar se o volume de amostra é correcto.

Findo o processo de verificação, as amostras são registadas na aplicação informática, onde são listados os parâmetros a analisar. Depois de registadas são geradas etiquetas para identificação sequencial e inequívoca das mesmas.

Por fim, são geradas as listas de trabalho e as amostras são encaminhadas para os respectivos laboratórios de ensaio [1].

1.4 Preservação de Amostras

As amostras, no transporte até ao laboratório, devem ser mantidas refrigeradas, mas sem congelação, para minimizar a volatilização ou a biodegradação de compostos entre a recolha até ao momento da análise. É necessário evitar o uso de gelo seco, pois este pode provocar mudanças no pH das amostras. Deve evitar-se também o uso de formaldeído como conservante nas amostras para análise química, pois este afecta muito os analitos alvo.

Por outro lado, quando se torna impossível a análise das amostras imediatamente após a chegada ao laboratório, é necessário que estas sejam conservadas e dependendo da análise a efectuar, a conservação também vai variar [2].

No que se refere aos metais, ferro, alumínio e manganês, estes podem ser perdidos por interacções entre os seus iões e as paredes dos recipientes, deste modo, para evitar a precipitação e a adsorção dos mesmos é necessário acidificar as amostras com ácido nítrico a um pH inferior a dois.

Existem alguns parâmetros, tais como pH, condutividade e turvação em que é necessário que a análise seja feita logo após a chegada ao laboratório, ou então num curto espaço de tempo, pois estas propriedades podem alterar-se com muita facilidade.

Em suma, os métodos de conservação são relativamente limitados, destinando-se apenas a retardar a acção biológica, a hidrólise de compostos químicos e complexos e a volatilidade dos mesmos. Na Tabela 1.1 são indicados o tipo de conservantes e o tempo de conservação, dependendo do parâmetro a analisar [2].

Tabela 1.1 - Tipo e tempo de preservação de amostras.

Determinação	Preservação	Armazenamento máximo recomendável
pH e condutividade	Refrigeradas entre 1 °C e 5 °C	24 h
Turvação	Refrigeradas entre 1 °C e 5 °C, mantidas no escuro	24 h
Cor	Refrigeradas entre 1 °C e 5 °C	5 dias
Metais (ferro, alumínio e manganês)	Acidificados entre pH 1 a 2 com HNO ₃	1 mês
Nitritos	Refrigeradas entre 1 °C e 5 °C	48 h
	Refrigeradas entre 1 °C e 5 °C	48 h
Nitratos	Acidificar com pH 1 a 2 com HCl	7 dias
Micracos	Congelar -20 °C	1 mês
Oxidabilidade	Refrigeradas entre 1 °C e 5 °C, mantidas no escuro	2 dias
	Congelar -20 °C	1 mês
Amónio	Acidificar a pH 2 com H₂SO₄ e refrigerar	7 dias
AIIIOIIIO	Congelar -20 °C	1 mês

2 Método à pequena escala

Neste capítulo apresentam-se os parâmetros analisados no LSP (Laboratório de Saúde Pública) através do método à pequena escala, sendo eles, nitratos, nitritos, amónio, ferro, alumínio e manganês.

O método à pequena escala utilizado pelo LSP consiste na utilização de um espectrofotómetro visível da marca: Hach Lange, modelo: DR3900 (Fig. 2.1). Nestes métodos utilizam-se menores quantidades de amostra e consequentemente menores quantidades de reagentes. Este espectrofotómetro permite a determinação de vários parâmetros que possam estar presentes em águas de consumo humano, águas residuais e bebidas. Apresenta uma gama de comprimento de onda de 320 a 1100 nm. A leitura pode ser feita em unidades de concentração, absorvância e percentagem de transmitância. A sua calibração é efectuada determinando os valores de absorvância de várias soluções padrão de concentração conhecida [3].

Figura 2.1 - Espectrofotómetro DR3900.

O aparelho possui dois compartimentos de células (Fig. 2.2), podendo apenas ser utilizado um de cada vez para se efectuar uma leitura.

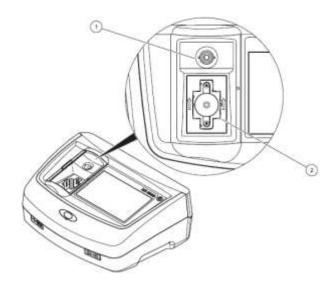


Figura 2.2 - Compartimentos de células.

No compartimento 1 utilizam-se células esféricas de 13 mm e 16 mm. Na Fig. 2.3 é possível observar uma dessas células.

Figura 2.3 - Célula esférica.

No compartimento 2 podem ser utilizadas células de 50 mm (Fig. 2.4), células rectangulares de 25,4 mm e células de fluxo de 25,4 mm.

Figura 2.4 - Célula de plástico.

No LSP são utilizadas células esféricas, células de 50 mm e células rectangulares de vidro de 25,4 mm com capacidade para 10 mL (Fig. 2.5).

Figura 2.5 - Célula de vidro.

Antes de se iniciar a leitura de amostras com células de 13 ou 16 mm é necessário o uso de uma barreira luminosa (Fig. 2.6) no compartimento 2, pois esta impede a exposição negativa à luz. A primeira leitura que se deve efectuar é a do branco da amostra, devido a reduzir ou eliminar a influência da turbidez e da cor que falsificam os resultados da análise fotométrica. Estes factores são provenientes da amostra ou criados pelas reacções com os reagentes [3].

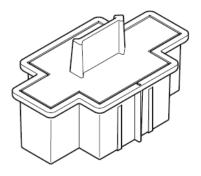


Figura 2.6 - Barreira luminosa.

O caminho do feixe de luz é mostrado na Fig. 2.7.

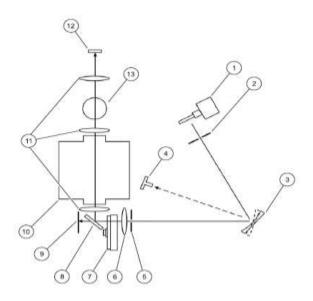


Figura 2.7 - Caminho do feixe de luz.

Na Tabela 2.1 é possível verificar os compartimentos referentes ao feixe de luz.

Tabela 2.1 - Legenda da figura do caminho do feixe de luz.

1. Lâmpada halógena	8. Espelho divisor
2. Fenda de entrada	9. Elemento de Referência
3. Alinhamento	10. Compartimento de célula (2) para células rectangulares
4. Indicador de ângulo de alinhamento	11. Lentes
5. Fenda de saída	12. Detector
6. Lentes	13. Compartimento de células (1) para células
7. Roda do filtro	redondas

Os testes realizados em cuvete definem-se como [4]:

- Simples, utilizando reagentes pré-doseados, com medição automática;
- Seguros, utilizando um sistema fechado de cuvete e o fácil manuseamento permitindo uma segurança operacional e resultados de máxima confiança;
- Rápidos, em que os resultados ficam imediatamente disponíveis, sem necessidade de efectuar cálculos morosos;
- Amigos do ambiente, as cuvetes multifunções reduzem o consumo de reagentes, sendo assegurada a eliminação das cuvetes pela Hach Lange de acordo com os requisitos legais;
- Versáteis, são determinados 50 parâmetros e mais de 90 gamas de medição disponíveis para todas as aplicações de análise da água, desde água industrial extremamente poluída à análise de vestígios;
- Precisos, são legalmente aprovados para monitorização interna e oficial.

Na Fig. 2.8, é possível observar a rotação efectuada pela cuvete quando se efectua a leitura da amostra. Assim, à medida que a cuvete roda, os riscos, sujidade ou defeitos no vidro da cuvete são detectados e as medições efectuadas nesses pontos são rejeitadas [4].

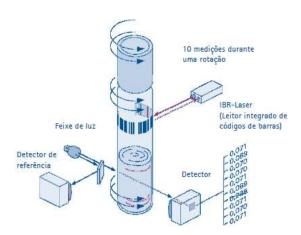


Figura 2.8 - Rotação efectuada pela cuvete.

2.1 Nitratos e Nitritos

Os nitratos e nitritos fazem parte do ciclo do azoto. O ião nitrato (NO_3^-) trata-se da forma estável do azoto, enquanto que, o ião nitrito (NO_2^-) contém azoto num estado de oxidação relativamente instável [5].

O nitrato quando encontrado em baixas concentrações nas águas e alimentos, torna-se um elemento inofensivo para a saúde da população, normalmente não excede 10 mg·L⁻¹. Este composto encontra-se naturalmente em algumas águas, mas por vezes os teores são bastante elevados, o que é resultado de algumas actividades humanas, tais como: fertilizantes e estrume, confinamento de animais, águas urbanas residuais e lamas, entre outros [5].

Águas com elevados teores de nitratos, podem causar uma doença chamada metahemoglobinemia, ocorrendo especialmente em crianças. Esta doença ocorre pois a metahemoglobina não efectua o transporte do sangue de uma forma eficiente, resultando assim num fornecimento reduzido de oxigénio para os tecidos vitais, tais como o cérebro [6].

No caso dos nitritos, estes são um potencial agente de poluição nas águas naturais, pois encontram-se presentes devido à decomposição da matéria orgânica azotada. A concentração deste composto em águas de consumo normalmente não excede 0,1 mg·L·1. Através de processos químicos e biológicos, o nitrito pode ser reduzido a diferentes compostos ou então oxidado a nitrato. Deste modo, o ião nitrito encontra-se presente em sistemas onde o ião nitrato actue como oxidante [7].

As principais fontes de contaminação por nitratos são dejectos de animais, nitrato de amónio não absorvido dos fertilizantes e também a cloroaminação que pode dar origem à formação de nitrito nos sistemas de distribuição de água, aumentando a concentração dos mesmos à medida que a água se desloca para as extremidades do sistema, chegando assim até ao consumidor. Também a nitrificação pode aumentar a quantidade de nitritos nos sistemas de distribuição de água desde 0,2 até 1,5 mg·L⁻¹ [7].

2.2 Amónio

Este composto é normalmente encontrado em pequenas quantidades nas águas, devido ao facto de ser absorvido facilmente por partículas do solo e também devido a ser oxidado a nitrato e nitrito. Assim, a quantidade produzida pela natureza é idêntica à produzida pelo homem e caso isso não se verifique, é porque existem fontes de poluição próximas.

As tubagens por onde circula a água são feitas de argamassa, estas podem libertar quantidades de amónio consideráveis para a água de consumo e assim a desinfecção pelo

cloro fica comprometida pois formam-se cloroaminas que possuem um baixo poder bactericida. Quando uma água possui mais do que 0,2 mg·L⁻¹ de amónio é de esperar que possua cheiro e sabor desagradáveis bem como uma diminuição do poder desinfectante [8].

2.3 Ferro

Este é um dos elementos mais abundantes na crosta terrestre, com 4,7 % em peso. Raramente é encontrado no seu estado elementar, mas os seus iões Fe²⁺ e Fe³⁺ combinam-se com o oxigénio para formar outros compostos contendo enxofre, óxidos, hidróxidos, carbonatos e sulfuretos [9]. Os iões de ferro que sejam encontrados em águas de consumo humano, podem levar ao aparecimento de incrustações, de bactérias ferruginosas nocivas, de gosto e odor e manchas nas roupas e instalações sanitárias, para além de também poderem interferir nos processos industriais. Apresenta grande importância no organismo, visto que efectua o transporte de oxigénio e participa na formação de enzimas [9].

2.4 Alumínio

O alumínio constitui 8 % da crosta terrestre, sendo o metal mais abundante. Ocorre na natureza sob a forma de silicatos, óxidos e hidróxidos e pode combinar-se com outros elementos como sódio e flúor e também forma complexos com a matéria orgânica. Na água, pode formar espécies monoméricas, poliméricas, precipitados, géis, entre outros. A sua concentração depende de factores físico-químicos e mineralógicos.

Quando se tem uma água com um pH próximo de 7, a concentração deste elemento varia entre 0,001 a 0,05 mg·L⁻¹, por outro lado quando se trata de águas com teores de acidez elevado ou ricas em matéria orgânica, a concentração torna-se mais elevada variando entre 0,5 a 1 mg·L⁻¹. Na água potável, os níveis de alumínio variam de acordo com o local onde é feita a colheita e se são utilizados coagulantes de alumínio no tratamento da água [10].

2.5 Manganês

Tal como o ferro e o alumínio, este também é um metal muito abundante na crosta terrestre e ocorre normalmente na presença de ferro. Não ocorre na sua forma pura e por isso é constituinte de mais de cem minerais. Existe na natureza em onze estados de oxidação, sendo os mais importantes em termos ambientais e biológicos, o Mn²+,Mn⁴+ e Mn7+. Este elemento é essencial para os humanos e animais, visto que é indispensável para o funcionamento de diversas enzimas celulares, servindo também para activar muitas outras [11].

Na Tabela 2.2, encontram-se os valores paramétricos (VP) a que todos os elementos e compostos, referidos anteriormente, devem obedecer segundo o decreto-lei nº 306/2007 de 27 de Agosto [12].

Tabela 2.2 - Valores paramétricos dos diferentes compostos.

Parâmetro	Valor Paramétrico/mg·L ⁻¹
Nitratos	50
Nitritos e Amónio	0,5
Ferro e Alumínio	0,2
Manganês	0,05

2.6 Determinação de Parâmetros em Águas de Consumo Humano

2.6.1 Nitratos

Princípio

Numa solução com ácido fosfórico e ácido sulfúrico, os iões NO-3 existentes na amostra, reagem com o 2,6 dimetilfenol presente no reagente e dão origem ao composto 4-nitro-2,6 dimetilfenol [13].

Interferências

Teores de nitritos superiores a 2 mg·L⁻¹ podem interferir na determinação dos nitratos, havendo outros iões que também interferem nesta determinação.

Na Tabela 2.3 apresenta-se a concentração máxima permitida para que os iões referidos nesta tabela não interfiram no doseamento de nitratos [14].

Tabela 2.3 - Concentração máxima de iões sem interferência no doseamento de nitratos.

lões	Concentração/mg·L ⁻¹
K⁺, Na⁺, Cl⁻	500
$Ag^{\scriptscriptstyle{+}}$	100
Pb ²⁺ , Zn ²⁺ , Ni ²⁺ , Fe ³⁺ , Cd ²⁺ , Sn ²⁺ , Ca ²⁺ , Cu ²⁺	50
Co ²⁺ , Fe ²⁺	10
Cr ⁶⁺	5

2.6.2 Nitritos

• Princípio

Os iões NO₂ reagem em solução ácida com as aminas primárias e aromáticas para dar origem a sais diazónio. Estes sais, por sua vez, formam com os compostos aromáticos (contendo um grupo amino ou um grupo hidroxilo) um corante azoico de cor intensa [15].

Interferências

Os iões Crómio e Cobre podem interferir na determinação dos nitritos, além disso outros iões de acordo com a sua concentração, na amostra a analisar, também interferem no doseamento dos nitritos como indicado na Tabela 2.4.

Na Tabela 2.4 apresenta-se o limite máximo da concentração de iões que não interferem no doseamento dos nitritos [16].

Tabela 2.4 - Concentração máxima de iões sem interferência no doseamento de nitritos.

lões	Concentração/mg·L ⁻¹
Cl ⁻ , SO ₄ ²⁻	2000
K^+ , NO_3^- , Ca^{2+}	1000
PO ₄ ³⁻	500
NH_4^+	250
Mg ²⁺	100
Hg ²⁺	50
Zn^{2+}, Cd^{2+}	25
Fe ³⁺ , Ni ²⁺ , Cr ³⁺	12
Fe ²⁺ , Co ²⁺	10
$Ag^{\scriptscriptstyle +}$	5
Sn ²⁺ , Cu ²⁺	1

2.6.3 Amónio

Princípio

Os iões amónio reagem, a um pH de 12,6, com os iões hipoclorito e os iões salicilato numa reacção catalisada pelo nitroprussiato de sódio, formando azul de indofenol [17].

• Interferências

Na Tabela 2.5 apresenta-se o valor máximo de concentração de iões a partir da qual já há interferência no doseamento do ião amónio [18].

Tabela 2.5 - Concentração máxima de iões sem interferência no doseamento do amónio.

lões	Concentração/mg·L ⁻¹
Cl ⁻ , SO ₄ ²⁻	1000
K⁺, Na⁺, Ca²⁺	500
CO_3^{2-} , NO_3^{-} , Fe^{3+} , Cr^{3+} , Cr^{6+} , Zn^{2+} , Cu^{2+} , Co^{2+} , Ni^{2+} , Hg^{2+}	50
Fe ²⁺	25
Sn ²⁺	10
Pb ²⁺	5
$Ag^{^{+}}$	2

2.6.4 Ferro

Princípio

O reagente "FerroVer" converte todas as formas solúveis e insolúveis de ferro, na forma solúvel de ferro ferroso (Fe^{2+}).

O ferro ferroso reage com 1-10 fenantrolina, o indicador presente no reagente, para formar uma coloração alaranjada equivalente à concentração de ferro [19].

Interferências

Tal como nos casos anteriores, na Tabela 2.6 apresenta-se o valor de concentração máximo de iões que possam estar presentes na amostra sem interferirem no doseamento do ferro [20].

Tabela 2.6 - Concentração máxima de iões sem interferência no doseamento do ferro.

lões	Concentração/mg·L ⁻¹
Ca ²⁺	10 000 de CaCO ₃
Cl ⁻	185 000
Magnésio	100 000 de CaCO₃
Molibdénio	50

2.6.5 Alumínio

Princípio

O alumínio forma com o cromazurol S, o indicador presente no reagente, em solução fracamente ácida, tamponizada com acetato, um composto verde-azulado cuja absorvância se lê a um comprimento de onda de 620 nm (λ_{max} =620 nm).

A formação e a estabilidade da cor dependem do valor do pH. Um pH alto causa precipitação e formação de complexos de alumínio, levando a resultados pouco precisos, se for necessário o pH da amostra deve ser ajustado adicionando uma pequena quantidade de ácido nítrico [21].

Interferências

Concentrações altas de metais pesados, assim como de fluoretos, fosfatos e alguns elementos raros (berílio, tório, titânio, zircónio e o vanádio) interferem com a determinação de alumínio, havendo também outros iões que interferem no doseamento do alumínio.

Na Tabela 2.7 apresenta-se a concentração máxima permitida para que os iões não interfiram no doseamento do alumínio [22].

Tabela 2.7 - Concentração máxima de iões sem interferência no doseamento de alumínio.

lões	Concentração/mg·L ⁻¹
Mg^{2+} , K^+ , Na^+ , NH_4^+ , Cl^- , NO_3^- , SO_4^{2-} , Ca^{2+}	500
Ag ⁺ , Mn ²⁺	100
Cd^{2+} , Co^{2+} , Ni_{2}^{2+} , Sn_{3}^{2+} , Pb^{2+} , PO_{4}^{3-}	50
Cu ²⁺ , Hg ²⁺	10
Fe^{2+} , Fe^{3+} , Zn^{2+} , Si^{4+}	5
Cr ³⁺ , Cr ⁶⁺	0,5
F	0,1

2.6.6 Manganês

Princípio

O método utilizado é o 1- (2-Pyridylazo) -2-Naftol "PAN Method".

Inicialmente, é adicionado à amostra, um reagente contendo ácido ascórbico, que vai reduzir todas as formas oxidadas de manganês a Mn^{2+} . Depois um reagente contendo cianeto alcalino para mascarar potenciais interferentes. Por fim adiciona-se o reagente PAN, que se vai combinar com os iões Mn^{2+} em solução, formando um complexo corado laranja, cujo λ_{max} = 560 nm [23].

Interferências

Tal como nas situações anteriores, na Tabela 2.8 apresentam-se os iões que interferem no doseamento do manganês em função da respectiva concentração limite [24].

Tabela 2.8 - Concentração máxima de iões sem interferência no doseamento de manganês.

Composto	Concentração/mg·L ^{·1}
Alumínio	20
Cádmio	10
Cálcio	1000 de CaCO₃
Cobalto	20
Ferro	25
Chumbo	0,5
Magnésio	300 de CaCO ₃
Níquel	40
Zinco	15

3 Validação de Métodos - Métodos à Pequena Escala

Um método de ensaio está sempre sujeito à acumulação de erros aleatórios e sistemáticos, o que pode alterar significativamente o valor do resultado final. Assim, é necessária a existência de meios e critérios que demonstrem através da validação que os resultados obtidos pelo laboratório são credíveis e adequados à qualidade pretendida.

Para a validação de métodos internos é necessária a compreensão de alguns parâmetros, sendo eles, gama de trabalho/linearidade, limite de detecção e limite de quantificação, sensibilidade, precisão e exactidão.

No que se refere às análises qualitativas, o limite de detecção, a selectividade/especificidade e a robustez são os parâmetros mais importantes na validação. No caso das análises quantitativas e se o método for aplicado a gamas vestigiais todos os parâmetros de validação são importantes. Por outro lado, se o método for aplicado a gamas de concentrações elevadas, não faz sentido o estudo dos limiares analíticos. Para métodos inovadores, a robustez poderá ser um factor determinante na validação do mesmo [25].

3.1 Curvas de calibração

A curva de calibração relaciona o sinal instrumental com a concentração ou quantidade de substância conhecida.

Em termos práticos, a calibração inicia-se com a preparação de uma série de soluções padrão de concentração conhecida (no mínimo 5 padrões de verificação de modo a abranger toda a gama de trabalho), que vão ser medidas no mesmo equipamento das amostras a analisar.

Posteriormente, estabelece-se um gráfico de calibração, onde por interpolação se determina a concentração do parâmetro nas amostras. É recomendável o uso da norma ISO 8466-1 [26] como referência para calibrações analíticas. Em análise química, os valores de coeficiente de correlação devem ser superiores a 0,995.

O laboratório deverá ter um histórico de 5 curvas de calibração. Posteriormente, deve efectuar-se uma curva de calibração no início de cada ano, na mudança de lote ou quando os padrões começarem a sair fora dos limites de aceitação [25].

Gama de trabalho

A gama de trabalho pode ser avaliada através do teste de homogeneidade de variâncias. Para modelos lineares é recomendada a norma ISO 8466-1 [26] e para modelos polinomiais de 2° grau recomenda-se a norma ISO 8466-2 [27].

Por outro lado, caso o método não seja efectuado segundo uma curva de calibração, a gama de trabalho deve ser definida previamente, tendo em conta alguns factores, tais como, a quantidade de amostra disponível, a boa visualização dos pontos de viragem e os volumes gastos no caso de volumetrias [25].

Teste de homogeneidade de variâncias

São determinadas as variâncias relativas ao primeiro e último padrão $(S_1^2 \in S_{10}^2)$ segundo as Eqs. 3.1 e 3.2.

$$S_{i}^{2} = \frac{\sum_{j=1}^{10} \left(y_{i,j} - \overline{y}_{i} \right)^{2}}{n_{i} - 1} \quad (3.1)$$

sendo:

$$\bar{y}_i = \frac{\sum_{j=1}^{10} y_{i,j}}{n_i}$$
 (3.2)

para i=1 e i=10

sendo:

- i número do padrão (neste caso i vai de 1 a 10)
- j número de repetição efectuada para cada padrão

De seguida, efectua-se o cálculo do valor do teste PG, para verificar se existem diferenças significativas entre as variâncias nos limites da gama de trabalho, através das Eqs. 3.3 e 3.4.

a)
$$PG = \frac{S_{10}^2}{S_1^2}$$
 (3.3)

b) PG =
$$\frac{S_1^2}{S_{10}^2}$$
 (3.4)

sendo:

- a) Quando $S_{10}^2 > S_1^2$
- b) Quando $S_1^2 > S_{10}^2$

Compara-se o valor obtido do teste de PG com o valor tabelado da distribuição F de Snedecor/Fisher, para n-1 graus de liberdade:

- Se PG ≤ F: diferenças de variâncias não são significativas e a gama de trabalho está bem ajustada.
- Se PG > F: diferenças de variâncias são significativas e a gama de trabalho deve ser reduzida [25].

Linearidade

A linearidade pode ser analisada recorrendo à visualização da curva de calibração em que o coeficiente de correlação deverá ter um valor igual ou superior a 0,995 [25]. Porém, deve terse em atenção a sua interpretação pois os coeficientes de correlação são bons indicadores de correlação, mas não necessariamente de linearidade.

Outro modo de avaliar a linearidade é através de um conjunto de pares ordenados, para os quais se calcula a função de calibração linear através da norma ISO 8466-1 [26] e a função de calibração não linear através da norma ISO 8466-2 [27], bem como os respectivos desviospadrão residuais $S_{\nu/x}$ e $S_{\nu/x}$ [25].

Na prática, é calculada a diferença de variâncias (DS^2) através da Eq. 3.5.

$$DS^{2} = (N-2).S_{y/x}^{2} - (N-3).S_{y2}^{2} (3.5)$$

Em que N é o número de padrões de calibração.

Calcula-se novamente o valor do teste de PG, tal como no teste de homogeneidade de variâncias, mas desta vez através da Eq. 3.6.

$$PG = \frac{DS^2}{S_{v2}^2} (3.6)$$

Compara-se o valor obtido do teste de PG com o valor tabelado da distribuição F de Snedecor/Fisher:

- Se PG ≤ F: a função de calibração é linear.
- Se PG > F: a função de calibração é não linear [25].

Limiares Analíticos

Limite de Quantificação (L.Q.)

O limite de quantificação é definido como a menor concentração a partir da qual é possível quantificar o analito, com uma determinada precisão e exactidão. Este limite normalmente corresponde ao padrão de calibração de menor concentração.

Em termos práticos, são analisadas 10 ou 15 calibrações diferentes. Inicialmente, registam-se as concentrações e procede-se ao cálculo da média e do desvio padrão [28].

Para a análise do L.Q. avalia-se a precisão através do coeficiente de variação (CV) e a exactidão através do erro relativo (ER). Caso o CV e ER tenham uma percentagem inferior a 10% pode considerar-se o primeiro padrão como o limite de quantificação [25].

Outro método para a determinação do L.Q. é através da Eq. 3.7:

$$L.Q.=X_0+10\delta_0$$
 (3.7)

em que:

- X_0 é a média aritmética do teor medido de uma série de brancos (entre 10 e 20 ensaios), preparados de forma independente e lidos ao longo de vários dias de trabalho, isto é, reproduzindo a situação de rotina;
- δ_0 representa o desvio padrão associado a X_0

Limite de Detecção (L.D.)

O limite de detecção corresponde à menor quantidade de analito que se pode detectar mas não quantificar com valor exacto. Em termos quantitativos corresponde à concentração mínima que é possível distinguir do branco.

Para uma melhor definição do limite de detecção é necessária a introdução de dois conceitos de estatística, sendo eles, erro do tipo I e erro do tipo II.

- O erro do tipo I (risco α) é a probabilidade de concluir pela presença do componente em análise quando de facto não existe esse componente na amostra;
- O erro do tipo II (risco β) é a probabilidade de concluir pela ausência do componente em análise, quando ele de facto existe.

Para uma correcta análise dos limiares analíticos, estes dois tipos de erros devem ser minimizados, optando-se por usar as recomendações da IUPAC ($\alpha = \beta = 5\%$) [25].

De um modo geral, o L.D. é avaliado através da Eq.3.8.

L.D. =
$$X_0 + K.\delta_0$$
 (3.8)

em que:

- X₀ é a média aritmética do teor medido de uma série de brancos (entre 10 e 20 ensaios), preparados de forma independente e lidos ao longo de vários dias de trabalho, isto é, reproduzindo a situação de rotina;
- δ_0 representa o desvio padrão associado a X_0

Se a lei de probabilidade de X_0 é suficientemente conhecida e partindo do princípio que é gausseana (distribuição normal de erros) então toma-se o valor de $K \cong 3,3$ para um nível de confiança de cerca de 99,7 % [25].

Assim, temos o cálculo do L.D. através da Eq. 3.9.

L.D. =
$$X_0 + 3, 3.\delta_0$$
 (3.9)

Por outro lado, a forma como normalmente se calcula na prática é através da Eq. 3.10.

L.D. =
$$\frac{LQ}{3.3}$$
 (3.10)

3.2 Precisão

A precisão permite avaliar a dispersão de resultados entre ensaios independentes, repetidos sobre a mesma amostra, amostras semelhantes ou padrões.

Para avaliar a precisão existem duas medidas extremas, a repetibilidade e a reprodutibilidade. Entre estas duas medidas existe uma intermédia designada por precisão intermédia ou variabilidade intralaboratorial [25].

Quando se pretende avaliar na prática a precisão, é necessário fazer o registo de 15 a 20 valores de concentração do primeiro padrão, padrão intermédio (controlo) e último padrão da curva de calibração [28].

Para cada padrão determina-se a média e o desvio padrão (S), avaliando-se a precisão através do cálculo do CV como se mostra na Eq. 3.11.

$$CV = \frac{S}{M\acute{e}dia} \times 100 \ (3.11)$$

Se o valor do coeficiente de variação for \leq 10 %, o método está validado quanto à precisão ao longo da gama de trabalho.

Repetibilidade

A repetibilidade está associada à precisão de um método de ensaio. Deste modo, são efectuados vários ensaios (normalmente 10 ou mais) sobre a mesma amostra, em condições bastante estáveis, tais como:

- Mesmo laboratório;
- Mesmo analista;
- Mesmo equipamento;
- Mesmo tipo de reagente;
- Curtos intervalos de tempo

Na prática, calcula-se a média, o desvio padrão e o coeficiente de variação de repetibilidade (CV_r) para os valores de concentração da amostra em análise através da Eq. 3.12.

$$CV_r = \frac{S}{M\acute{e}dia} \times 100 \quad (3.12)$$

O CV_r deverá ter um valor inferior a 10 %.

Calcula-se também o limite de repetibilidade (r) para um nível de confiança de 95 % através da Eq. 3.13.

$$r = t.\sqrt{2}.S_{ri} = 1,96.\sqrt{2}.S_{ri} = 2,8.\int S_{ri}^{2}$$
 (3.13)

O limite de repetibilidade deverá ter um valor inferior a 5 % para assim o método estar validado quanto à repetibilidade [25].

Reprodutibilidade

A reprodutibilidade, do mesmo modo que a repetibilidade está associada à precisão. Neste caso, utiliza-se a mesma amostra, fazendo-se variar as condições de medição:

- Diferentes laboratórios:
- Diferentes operadores;
- Diferentes equipamentos;
- > E/ou épocas diferentes

A reprodutibilidade é obtida a partir de ensaios interlaboratoriais [25].

Precisão Intermédia

A precisão intermédia é avaliada sobre a mesma amostra, amostras idênticas ou padrões, com o mesmo método e no mesmo laboratório ou em laboratórios diferentes, devendo variar-se algumas das seguintes condições:

- Diferentes analistas;
- Diferentes equipamentos;
- Diferentes épocas;
- Com ou sem verificação da calibração

Na prática, este parâmetro é avaliado através de cartas de controlo de amplitudes, que se destinam a ser aplicadas a réplicas, duplicados de amostra e a padrões estáveis ao longo do tempo [25].

De início é calculada a média entre a amostra e o seu duplicado. De seguida calcula-se a amplitude através da Eq.3.14.

Por fim, calcula-se a amplitude relativa em percentagem, sendo esta amplitude a utilizada nas cartas de controlo, através da Eq. 3.15.

Amplitude Relativa (%) =
$$\frac{Amplitude}{M\acute{e}dia} \times 100 (3.15)$$

Para o uso das cartas de controlo de amplitudes, utilizam-se de início 20 pontos experimentais, com um critério de aceitação de 10 %. A partir destes valores, faz-se uma nova carta em que se calcula a média e os respectivos limites superiores de controlo e de aviso. De seguida, desenvolve-se uma nova carta para 40 pontos experimentais, com base nos

valores anteriores, sendo estes os valores definitivos. Os limites superiores de controlo (LSC) e de aviso (LSA) foram calculados através das Eqs. 3.16 e 3.17 [29]:

LSC =
$$D_4 \times M\acute{e}dia$$
 (3.16)

$$LSA = D_4 \times Média (3.17)$$

em que:

 $D_4 = 3,267$

 $D_4 = 2,512$

3.3 Exactidão

A exactidão exprime-se como a concordância entre o resultado de um ensaio e o valor de referência aceite como verdadeiro. Este termo tem associado uma componente de erros aleatórios e uma componente de erros sistemáticos [25].

Para a avaliação da exactidão, é utilizado o cálculo do erro relativo (ER), em que são avaliados 15 a 20 valores de concentração do primeiro padrão, padrão intermédio (controlo) e último padrão [28].

Calcula-se a média e o ER é dado pela Eq. 3.18.

$$ER = \frac{\text{M\'edia - Valor Te\'orico}}{\text{Valor Te\'orico}} \times 100 \quad (3.18)$$

O valor do erro relativo deve ser $\leq 10~\%$ para o método estar validado quanto à exactidão ao longo da gama de trabalho.

Outro método para avaliar a exactidão é através de ensaios interlaboratoriais de aptidão, que se destina a avaliar o desempenho dos laboratórios participantes, o que é efectuado através da Eq. 3.19 relativa ao "z-score":

$$Z = \frac{X_{lab} - X_{v}}{S}$$
 (3.19)

em que:

X_{lab} - valor obtido pelo laboratório;

 X_v - valor aceite como verdadeiro, isto é, o estabelecido no ensaio interlaboratorial;

S - unidade de desvio, que pode ser o desvio padrão da média dos laboratórios no ensaio interlaboratorial, ou outro desvio que assente em critérios de exigência da entidade organizadora.

A avaliação do desempenho é feita segundo a seguinte escala de pontuação:

|Z|<2 - Satisfatório

2 < |Z |≤ 3 - Questionável

|Z| > 3 - Incorrecto

Deste modo, os laboratórios participantes deverão ter ("z-scores") inferiores a 2, embora na prática seja difícil de se obter tais resultados. Assim, é necessário que seja elaborado um plano de acções correctivas para melhorar o desempenho dos participantes [25].

Robustez

A robustez mede a sensibilidade de um método quando sujeito a pequenas variações na sua realização.

Este parâmetro pode ser determinado através do teste de YOUDEN [25]. Trata-se de um teste simples que permite avaliar a robustez do método e a influência das variações nos resultados finais. Quanto maior a robustez de um método, maior a sua confiança relativamente à precisão [25].

Sensibilidade

A sensibilidade pode ser definida como o quociente entre o acréscimo do valor lido (ΔL) e a variação da concentração (ΔC) correspondente aquele acréscimo, como se verifica pela Eq. 3.20.

Sensibilidade =
$$\frac{\Delta L}{\Delta C}$$
 (3.20)

A sensibilidade permite avaliar a capacidade que um método (ou equipamento) tem para distinguir pequenas diferenças de concentração de um analito, sendo definida como a derivada de primeira ordem da curva de calibração nessa zona de concentração. Assim, se a curva de calibração for definida por um modelo linear (mais usual), a sensibilidade será igual ao declive da curva de calibração.

Normalmente, a sensibilidade tem interesse em alguns aspectos, sendo eles:

- Averiguar a sua evolução ao longo do tempo;
- Comparar a sensibilidade de diferentes métodos analíticos, baseados em modelos lineares, para o mesmo analito;
- Comparar a sensibilidade para vários analitos [25].

Para avaliar na prática a sensibilidade, são registados 20 declives de 20 curvas de calibração, determinando-se a média e o desvio padrão, assim como, os resultados da $M\acute{e}dia - 2S$ e $M\acute{e}dia + 2S$. Deste modo, a sensibilidade é dada pelo declive médio através da Eq. 3.22 [28]:

Declive Médio =
$$\frac{\text{(Média - 2S)} + \text{(Média + 2S)}}{2}$$
 (3.22)

Para a aceitação dos declives das rectas de calibração, estes devem estar contidos no intervalo dos valores de $M\acute{e}dia-2S$ e $M\acute{e}dia+2S$. Para a sensibilidade, também é considerado o erro relativo (Er), através da Eq. 3.23.

$$Er = \frac{\text{(M\'edia + 2S) - Declive M\'edio}}{\text{Declive M\'edio}} \times 100 \quad (3.23)$$

3.4 Especificidade/Selectividade

A especificidade/selectividade permite identificar e distinguir um analito numa mistura complexa sem que haja a interferência de outros componentes possivelmente presentes. Assim, para avaliar as interferências realizam-se ensaios de recuperação em amostras com a mesma matriz, em que apenas se varia a concentração do analito em proporções conhecidas e ao longo da gama de trabalho. Pode dizer-se que um método é específico e selectivo quando as taxas de recuperação se encontram próximas de 100 %. De qualquer modo, cada laboratório deve ter critérios específicos para a aceitação do intervalo de recuperação [25].

Na prática, para calcular a taxa de recuperação, tem-se como caso geral a Eq. 3.24.

% Recuperação =
$$\frac{\left(C_{amostra+padrão}\right) - \left(C_{amostra}\right)}{C_{padrão}} \times 100 (3.24)$$

Por outro lado, quando são utilizadas diluições, utiliza-se a Eq. 3.25.

$$\% \; Recuperação = \frac{C_{amostra+padrão} \times ((\; 1 \; - \; factor \; de \; diluição) \; - \; C_{amostra}))}{C_{padrão}} \times 100 \; (3.25)$$

3.5 Validação de "Software"

A validação de "software" permite verificar se os resultados obtidos através de programas informáticos específicos são equivalentes aos obtidos através de outro método de cálculo.

Assim, na prática, a validação é feita do seguinte modo:

- Introduzem-se no Excel, os dados relativos à curva de calibração (concentração/sinal instrumental) obtida pelo equipamento e calcula-se o coeficiente de correlação e a equação da recta;
- De seguida, através do sinal instrumental de uma amostra aleatória, utiliza-se a equação da recta e determina-se a concentração;
- Comparam-se estes valores com os valores obtidos pela folha de cálculo, devendo estes ser equivalentes para assim, o método estar validado quanto ao "software" [28].

Estudo da Qualidade da Água de Consumo Humano - Validação de Métodos à Pequena Escala

4 Incertezas

A incerteza de medição é definida segundo o guia relacre 3 como "Parâmetro associado ao resultado de uma medição que caracteriza a dispersão de valores que se pode razoavelmente atribuir à grandeza medida".

A incerteza é muitas vezes confundida com o erro, sendo este a medida da exactidão e definido como "Diferença entre o valor obtido e o valor convencionalmente aceite como verdadeiro".

Para o cálculo da incerteza deve ser considerada a precisão e a exactidão dos resultados obtidos. Deste modo, o valor verdadeiro deve estar compreendido dentro do intervalo de incerteza atribuído ao valor obtido, como se pode observar na Fig. 4.1.

Quando a incerteza for correctamente estimada, ela pode ser considerada como uma medida da qualidade do resultado, isto é, quanto menor a incerteza, maior a qualidade [30].

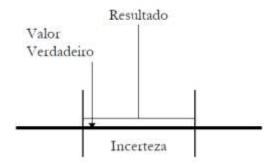


Figura 4.1 - Incerteza associada ao valor verdadeiro.

Incerteza associada à precisão/fidelidade

Em ensaios químicos, a precisão é a componente maioritária da incerteza global, devendo ser avaliada em todo o âmbito de aplicação do método. Para se obterem resultados mais realistas, esta deve ser avaliada em termos de precisão intermédia, devido a conseguir reflectir variações do desempenho do método. A precisão de um método pode ser quantificada de algumas formas, entre as quais [31]:

- Desvio padrão de resultados replicados de uma amostra ou padrão de controlo, obtidos em condições de precisão intermédia;
- Amplitude média relativa ou absoluta de resultados replicados de diversas amostras;
- Desvio padrão estimado a partir dos limites de controlo de uma carta de controlo de valores individuais baseados em resultados replicados obtidos em condições de precisão intermédia.

Quando se tem uma gama de concentrações elevada estima-se a incerteza padrão relativa associada à precisão, $\mu'_{\text{precisão}}$, através da seguinte Eq. 4.1 [32]:

$$\mu'_{\text{precisão}} = \frac{S_{\text{precisão}}}{y}$$
 (4.1)

em que:

 $\frac{S_{precisão}}{v}$ - representa o desvio padrão relativo que quantifica a precisão do método.

Por outro lado, quando são efectuados ensaios em duplicado, utiliza-se a seguinte Eq. 4.2.

$$S'_{precisão} = \frac{\overline{A}'}{1,128}$$
 (4.2)

em que:

A' - representa a amplitude média relativa dos duplicados

A incerteza da precisão é igual ao desvio padrão da precisão, como se verifica pela Eq. 4.3.

$$u'_{precisão} = S'_{precisão}$$
 (4.3)

• Incerteza associada à exactidão/justeza/veracidade

À exactidão, associa-se o erro aleatório e o erro sistemático. O erro sistemático, mede a diferença entre os resultados produzidos pelo método em estudo e o valor de referência, aceite como verdadeiro, sendo minimizado o erro aleatório da medição, que varia de ensaio para ensaio [32].

O erro sistemático pode ser avaliado em termos de recuperação, ou seja, a razão entre o valor estimado e o valor esperado, que deve ser próxima de 1, para que deste modo, o erro sistemático do método seja menor [32].

Para avaliar a exactidão/recuperação do método podem ser utilizados materiais de referência certificados, amostras fortificadas ou amostras analisadas por um método de referência [31].

4.1 Incertezas estimadas com base nos dados de ensaios interlaboratoriais

4.1.1 Cálculo da incerteza associada ao valor de referência interlaboratorial

A incerteza do método de ensaio pode ser calculada quando são conhecidos os resultados dos vários laboratórios participantes (preferencialmente dos que utilizam o mesmo método), devendo excluir-se os laboratórios com resultados insatisfatórios (resultados aberrantes) [32].

Deve-se trabalhar de preferência em termos relativos, ou seja, com desvios padrão relativos (RSD ou CV).

Deste modo, o desvio padrão relativo ponderado (RSD pond) é calculado através da Eq. 4.4.

$$RSD_{pond} = \sqrt{\left(\frac{(n_1-1) \times RSD_1^2 + (n_2-1) \times RSD_2^2 + ...}{(n_1-1) + (n_2-1) + ...}\right)}$$
 (4.4)

em que:

S - desvio padrão de todos os participantes, retirando aberrantes

x - valor médio de todos os participantes, retirando aberrantes

n - número de participantes por participação (sem aberrantes)

E o RSD é dado pela Eq. 4.5.

$$RSD = \frac{S}{\bar{x}} (4.5)$$

Deste modo, a incerteza combinada é dada pela Eq. 4.6.

$$U_c = \sqrt{\left(RSD_{pond}\right)^2} (=) U_c = RSD_{pond}(4.6)$$

4.1.2 Incerteza através de um material de referência certificado (MRC)

A incerteza medida através de um material de referência certificado, trata-se do quociente entre o valor médio observado e o valor esperado, obtido através da Eq. 4.7 [32]:

$$\overline{R}_{m} = \frac{\overline{C}_{obs}}{C_{MRC}}$$
 (4.7)

em que:

 $ar{\mathcal{C}}_{obs}$ - concentração média de uma série de análises

 C_{MRC} - valor certificado do MRC

• Incerteza associada $\mu(\bar{R}m)$, é dada através da Eq. 4.8.

$$\mu(\overline{R}m) = \overline{R}m \times \sqrt{\left(\frac{s_{obs}^2}{n \times \overline{C}_{obs}^2}\right) + \left(\frac{\mu(C_{MRC})}{C_{MRC}}\right)^2}$$
 (4.8)

onde:

s_{obs} - desvio padrão de uma série de análises do MRC

n - número de análises

 $\mu(C_{MRC})$ - incerteza padrão referenciada no certificado do MRC

4.1.3 Incerteza através de amostras fortificadas

Matriz sem analito

Esta incerteza mede o quociente entre o valor médio observado de amostras fortificadas e o valor das amostras fortificadas, o que é dado através da Eq. 4.9 [32]:

$$\overline{R}_{m} = \frac{\overline{C}_{obs}}{C_{fortificac\tilde{a}0}}$$
 (4.9)

em que:

 $\overline{\mathsf{C}}_{\mathsf{obs}}$ - concentração média de uma série de análises de amostras fortificadas

 $C_{fortificação}$ - concentração da amostra fortificada

• Incerteza associada $\mu(\overline{R}m)$, é dada através da Eq. 4.10.

$$\mu(\overline{R}m) = \overline{R}m \times \sqrt{\left(\frac{s_{obs}^2}{n \times \overline{C}_{obs}^2}\right) + \left(\frac{\mu(C_{fortificada})}{C_{fortificada}}\right)^2}$$
 (4.10)

onde:

s_{obs} - desvio padrão de uma série de análises de amostras fortificadas

n - número de análises

 $\mu(C_{fortificada})$ - incerteza padrão da concentração das amostras fortificadas

Matriz com analito

Através da análise da incerteza de amostras fortificadas com analito, é possível analisar o quociente entre o valor médio observado de amostras fortificadas menos o valor médio de amostras não fortificadas e o valor da amostra fortificada, através da Eq. 4.11 [32]:

$$\overline{R}_{m} = \frac{\overline{C}_{obs} - \overline{C}_{nativa}}{C_{fortificac\tilde{a}o}} (4.11)$$

em que:

 \overline{C}_{nativa} - concentração média de analito na amostra não fortificada (concentração inicial da amostra)

• Incerteza associada $\mu(\overline{R}m)$, é dada pela Eq. 4.12.

$$\mu(\overline{R}_{m}) = \overline{R}_{m} \times \sqrt{\left(s_{obs}^{2} / n + s_{nativa}^{2}\right) + \left(\frac{\mu(C_{fortificada})}{C_{fortificada}}\right)^{2}}$$
 (4.12)

onde:

s_{nativo} - desvio padrão de uma série de análises de amostras não fortificadas

n - número de análises

4.2 Avaliação da exactidão do método (Teste t)

Uma vez avaliada a incerteza associada à exactidão do método, é necessário avaliar se a recuperação do método é significativamente diferente de 1. Esta avaliação é feita através do cálculo de um parâmetro t, através da Eq. 4.13 [32]:

$$t = \frac{\left|1 - \overline{R}_{m}\right|}{\mu(\overline{R}_{m})} \quad (4.13)$$

O valor do parâmetro t é comparado com o valor t crítico, retirado da tabela de t-student para (n-1) graus de liberdade e para um nível de confiança de cerca de 95 %.

quando:

 $\frac{|1\cdot\overline{R}_m|}{\mu(\overline{R}_m)}$ < t crítico, a recuperação do método \overline{R}_m , não é significativamente diferente de 1;

 $\frac{|1\cdot\overline{R}_m|}{\mu(\overline{R}_m)}>t \text{ crítico, a recuperação do método }\overline{R}_m, \text{ é significativamente diferente de 1.}$

- Se a recuperação não é significativamente diferente de 1, não é necessário proceder à correcção dos resultados dos ensaios;
- Se a recuperação for significativamente diferente de 1, deve realizar-se a correcção dos resultados dos ensaios;
- Se a recuperação for significativamente diferente de 1 e não se efectuar a correcção dos resultados, a incerteza da recuperação, μ(R̄_m), deve ser aumentada.

A incerteza padrão da recuperação/exactidão é combinada com as restantes fontes de incerteza como incerteza padrão relativa, através da Eq. 4.14 [32]:

$$\mu'(\overline{R}_m) = \frac{\mu(\overline{R}_m)}{\overline{R}_m}$$
 (4.14)

Incerteza combinada

No cálculo da incerteza combinada, associa-se à incerteza de precisão a incerteza da exactidão, através da Eq. 4.15 [32]:

$$\mu_c = \sqrt{\left(\mu_{exactid\tilde{a}o}\right)^2 + \left(\mu_{precis\tilde{a}o}\right)^2}$$
 (4.15)

• Incerteza expandida associada ao resultado

A incerteza expandida U_{exp} é dada através da Eq. 4.16.

$$U_{exp} = k \times u_c$$
 (4.16)

Para um nível de confiança de 95 %, temos k=2, então a U_{exp} é dada pela Eq. 4.17.

$$U_{exp} = 2 \times u_c$$
 (4.17)

Expressão dos resultados

O resultado deve ser expresso em unidades de concentração, como mostra a Eq. 4.18.

$$C \pm U_{exp}$$
 (4.18)

A incerteza associada ao resultado deve ser apresentada com tantas casas decimais como as determinadas na validação do método [32].

Exemplo de aplicação:

Valor determinado: 2,321

Valor calculado (arredondado às décimas): 2,32

Incerteza calculada: 0,021344

Apresentação de resultados: $2,32 \pm 0,02$

5 Materiais e Métodos

5.1 Laboratório de Saúde Pública da Guarda

O Laboratório de Saúde Pública (LSP) da Guarda está integrado na Unidade de Saúde Pública da Unidade Local de Saúde da Guarda, que se encontra integrado na estrutura do Ministério da Saúde, cujas instalações se encontram na Avenida Rainha D. Amélia, s/n - Guarda. Encontra-se acreditado desde 2011 segundo a norma NP EN ISO/IEC 17025 de 2005, cumprindo os requisitos de gestão e os requisitos técnicos.

O laboratório distingue-se pelo rigor, idoneidade e cumprimento dos requisitos dos clientes, legais e normativos, querendo sempre melhorar os serviços prestados implementando um sistema de gestão de qualidade simples e eficiente.

Os seus principais objectivos assentam nos seguintes pontos:

- Manutenção de um sistema de gestão da qualidade implementado de acordo com o referencial normativo NP EN ISO 17025:2005, de forma a manter a acreditação do Laboratório;
- Garantir uma política de comunicação interna e divulgação do sistema da qualidade implementado e garantir que todos os colaboradores o conhecem, entendem e o respeitam, criteriosamente, na execução das suas actividades e garantem a melhoria contínua do mesmo;
- Garantir a satisfação máxima dos nossos clientes;
- Garantir bom ambiente de trabalho e máxima motivação, proporcionando o total envolvimento e participação de todos os colaboradores afectos à organização;
- Fomentar a formação contínua e actualização profissional da equipa de que dispomos;
- Garantir a melhoria contínua do sistema da qualidade e dos serviços prestados pelo Laboratório;
- Aumentar o número de clientes do laboratório.

No que respeita às actividades desenvolvidas pelo laboratório estas visam a avaliação da qualidade da água tanto a nível físico-químico como a nível microbiológico, sendo as análises efectuadas de acordo com as exigências da legislação nacional e comunitária e com as recomendações da Organização Mundial de Saúde, numa abordagem de problemas ambientais que representam risco para a saúde humana, nomeadamente:

- Prestação de serviço analítico, dando prioridade a planos de vigilância e monitorização de factores de risco, em articulação com Serviços de Saúde e outros com âmbito alargado de utilização pública;
- Prestação de serviço de controlo da qualidade, efectuado a amostras de água de consumo humano, águas de piscinas e balneares, águas minerais naturais e de nascente (termais e engarrafadas) e processo. Sendo este serviço prestado ao distrito onde se insere o laboratório e aos distritos vizinhos, Castelo Branco e Viseu.
- Participação em projectos de pesquisa e investigação propostos pela DGS e ARS Centro e de iniciativa da ULS e/ou em articulação com a UBI, IPG e outras entidades publicas ou privadas.

E ainda realização de análises para a execução dos seguintes programas:

- Pão.come e Sopa.come, desenvolvidos pela ARS Centro tendo como objectivo dosear o teor de sal existente tanto no pão como nas sopas;
- Vigilância de cantinas escolares e refeitórios públicos;
- Toxinfecção alimentar.

A garantia da qualidade dos resultados é efectuada segundo um controlo interno da qualidade e por uma avaliação externa da qualidade que é realizada através da participação regular em ensaios interlaboratoriais [33].

5.2 Colheita de Amostras

O processo de amostragem é bastante importante no processo do controlo da água, pois o resultado da análise não corresponderá ao valor real, se a quantidade de amostra não for representativa da água a analisar, mesmo quando são utilizados métodos analíticos rigorosos. Assim, o procedimento de colheita de amostras deve evidenciar a qualidade da água tratada que chega até ao consumidor.

Para se iniciar o processo de colheita de amostras, é necessário que o técnico de saúde ambiental, responsável pelas colheitas, tenha uma folha de registo de amostragem, na qual deve constar a identificação da entidade gestora, descrição do ponto de amostragem, data e hora da colheita, data e hora da entrega das amostras no laboratório, registo dos resultados dos parâmetros analisados no local, nomeadamente do teor de desinfectante residual disponível, que deve ser efectuado no momento da colheita da amostra, indicação dos parâmetros ou grupo de parâmetros a analisar na amostra, identificação do técnico responsável pela colheita da amostra e por fim, outros aspectos relevantes, tais como, a conservação das amostras, ou outras condições ambientais, os acessórios adaptados à torneira e não retirados ou o estado de higiene no local, como se pode verificar no Anexo II.

De seguida, devem ser verificadas as características dos frascos de colheitas, pois existem diferentes tipos de frascos, dependendo da análise que se pretende efectuar, como se pode verificar pela Tabela 5.1. Deve igualmente verificar-se as etiquetas para que haja uma correcta identificação dos frascos. Por outro lado, devem ser seleccionados os pontos onde a colheita vai ser efectuada, tendo em conta que devem ser torneiras, normalmente utilizadas pelo consumidor. Por fim, devem ser verificadas as condições de transporte e os prazos de entrega no laboratório [34].

Tabela 5.1 - Frascos de colheita.

	Microbiologia	Química	
Análise	(volume de água até 2 dedos abaixo do gargalo)	Parcial (frasco cheio)	Completa (frasco cheio)
Água de consumo humano	Frasco estéril de 500 mL (tiossulfato 10 - 12 mg·L ⁻¹)	Frasco de plástico 250 mL	Frasco de plástico de 1 L
Água de piscina	Frasco estéril de 500 mL (embalado individualmente) (tiossulfato 120 mg·L ⁻¹) (1 para profundidade e 1 para superfície)		Frasco de plástico de 1 L
Água Mineral Natural e Nascente Água Termal Água de Diálise	Frasco estéril de 1 L (tiossulfato 10 - 12 mg·L ⁻¹)		Frasco plástico de 1 L
Balnear	Frasco estéril de 500 mL	Frasco plástico de 250 mL	
Pesquisa de Salmonella em água balnear	Frasco estéril de 1 L		
Cianobactérias	São necessários 2 frascos: - Captação - Saída da ETA		Frasco Plástico de 1 L

Depois de verificadas todas as condições de processamento, pode iniciar-se então a colheita de amostras. A colheita deve ser iniciada com a observação da torneira, sendo esta preferencialmente a de água fria, para verificar se se encontra em condições normais de conservação e higiene, ou seja, para que não haja dúvidas acerca da sua utilização. De seguida, se a torneira tiver algum acessório, nomeadamente mangueiras, filtros, ou outros acessórios, estes devem ser retirados para que não haja interferência posteriormente na análise das amostras. Deve ter-se em conta que os frascos utilizados na recolha de amostras para análise físico-química podem ser de polietileno ou vidro.

A primeira amostra de água a retirar é para a análise dos metais, chumbo, níquel e cobre. Deve retirar-se um litro sem escoamento prévio, deste modo analisa-se a água estagnada nas torneiras do consumidor.

Caso não seja necessário analisar estes metais, procede-se à recolha das amostras para a análise microbiológica, sendo necessário muitos cuidados com a maneira como se recolhe para não contaminar a amostra e o valor da análise não corresponder ao verdadeiro. É necessário de início desinfectar-se a torneira, de preferência por flamejamento, ou em caso de impossibilidade, através de outro método adequado, como hipoclorito ou álcool etílico. Depois de desinfectada a torneira, deve deixar-se correr a água por alguns segundos, e só depois proceder à recolha da amostra, também com as mãos desinfectadas com álcool. O frasco utilizado só deve estar aberto o tempo necessário para a recolha da amostra, e este deve conter tiossulfato de sódio para neutralizar o desinfectante residual.

O próximo passo trata-se da recolha das amostras para a análise dos parâmetros físicoquímicos.

No local da colheita deve efectuar-se a determinação do desinfectante residual, que na maioria dos casos é o cloro residual. O valor registado no local da colheita é o valor que se considera nos dados da qualidade da água.

Por fim, as amostras são colocadas em malas térmicas com acumuladores de frio para garantir a correcta refrigeração e são levadas ao laboratório. A quantidade de acumuladores de frio depende da duração do percurso até ao laboratório e da temperatura ambiente [34].

5.3 Teor de Nitratos

Equipamento

- Material de laboratório de uso corrente e material volumétrico;
- Espectrofotómetro VIS DR3900 (Hach Lange)
- Células esféricas

Reagentes

- Água destilada, ou equivalente, do tipo I, isenta de nitratos;
- Kit de doseamento de nitratos da Marca Hach Lange e Modelo LCK 339;
- Solução-padrão comercial de nitratos a 1000 mg·L⁻¹ da Marca Merck

Condições de utilização da amostra

O pH da amostra deve situar-se entre 3 e 10 e deve estar a uma temperatura entre 20 e 24 $^{\circ}$ C.

Gama de trabalho

A gama de trabalho situa-se entre 2 e 50 mg·L⁻¹ de NO₃.

A Fig. 5.1 mostra o procedimento para a determinação de nitratos em águas de consumo humano.

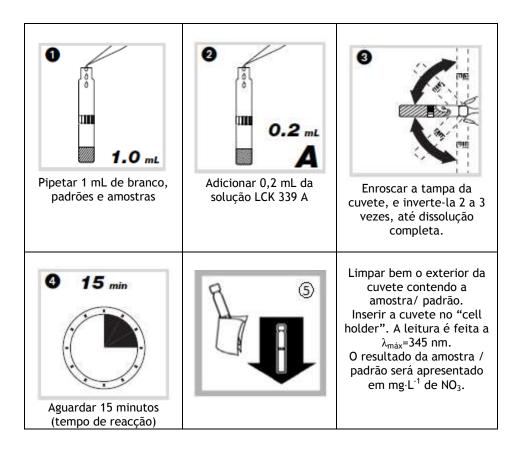
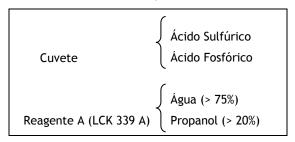



Figura 5.1 - Procedimento para a determinação de nitratos em águas de consumo humano.

Na Tabela 5.2 estão registados os constituintes da cuvete e do reagente, utilizados na determinação dos nitratos.

Tabela 5.2 - Soluções utilizadas.

5.4 Teor de Nitritos

Equipamento

- Material de laboratório de uso corrente e material volumétrico;
- Espectrofotómetro VIS DR3900 (HachLange)
- Células de plástico de 50 mm

Reagentes

- Água destilada, ou equivalente, do tipo I, isenta de nitritos;
- Kit de doseamento de nitritos da Marca Hach Lange e Modelo LCK 541
- Solução-padrão comercial de nitritos a 1000 mg·L⁻¹ da Marca Merck

Condições de utilização da amostra

O pH da amostra deve-se situar entre 3 e 10 e deve estar a uma temperatura entre 15 e 25 $^{\circ}$ C.

Gama de trabalho

A gama de trabalho situa-se entre 0,01 a 0,1 mg·L⁻¹ de NO_2 .

A Fig. 5.2 mostra o procedimento para a determinação de nitritos em águas de consumo humano.

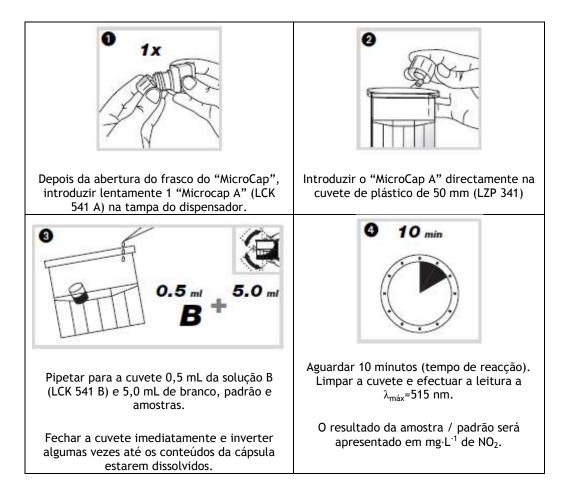
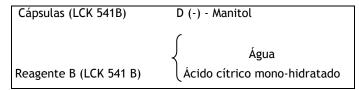



Figura 5.2 - Procedimento para a determinação de nitritos em águas de consumo humano.

Na Tabela 5.3 encontram-se os constituintes das cápsulas e do reagente, utilizados na determinação dos nitritos.

Tabela 5.3 - Constituição das soluções.

5.5 Teor de Amónio

Equipamento

- Material de laboratório de uso corrente e material volumétrico;
- Espectrofotómetro VIS DR3900 (HachLange)
- Células esféricas

Reagentes

- Água destilada, ou equivalente, do tipo I, isenta de amónio;
- Kit de doseamento de amónio da Marca Hach Lange e Modelo LCK 304
- Solução-padrão comercial de amónio a 1000 mg·L⁻¹ da Marca Merck

Condições de utilização da amostra

O pH das amostras deve situar-se entre 4 e 9 a 20 $^{\circ}$ C.

Gama de trabalho

A gama de trabalho situa-se entre 0,05 e 0,5 mg·L⁻¹ de NH₄⁺.

A Fig. 5.3 mostra o procedimento para a determinação de amónio em águas de consumo humano.

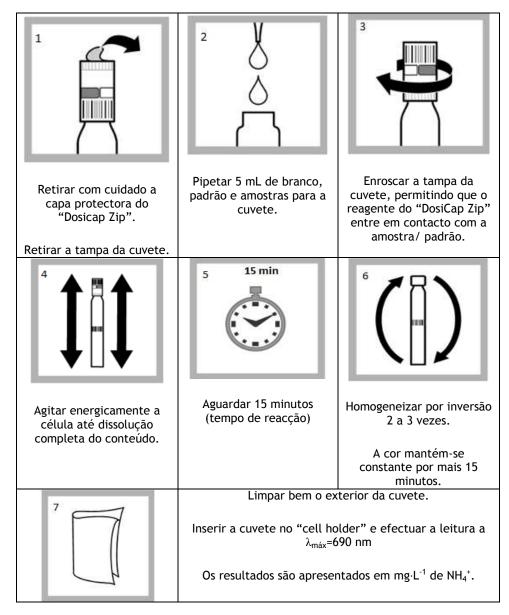
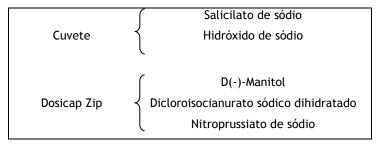



Figura 5.3 - Procedimento para a determinação de amónio em águas de consumo humano.

Na Tabela 5.4 estão indicadas as soluções da cuvete e do "dosicap zip", utilizados na determinação de amónio.

Tabela 5.4 - Constituintes dos reagentes utilizados.

5.6 Teor de Ferro

Equipamento

- Material de laboratório de uso corrente e material volumétrico;
- Espectrofotómetro VIS DR3900 (HachLange)
- Células de vidro de 10 mL

Reagentes

- Água destilada, ou equivalente, do tipo I, isenta de ferro;
- Kit de doseamento do Ferro da Marca Hach Lange
- Solução-padrão comercial de ferro a 1000 mg·L⁻¹ da Marca Merck

Condições de utilização da amostra

O pH das amostras deve situar-se entre 3 e 5 a 20 ° C. Antes da análise deve ajustar-se o pH utilizando uma solução de hidróxido de sódio 5N.

Gama de trabalho

A gama de trabalho situa-se entre 0,05 e 1 mg·L⁻¹ de Fe.

A Fig. 5.4 mostra o procedimento para a determinação do ferro em águas de consumo humano.

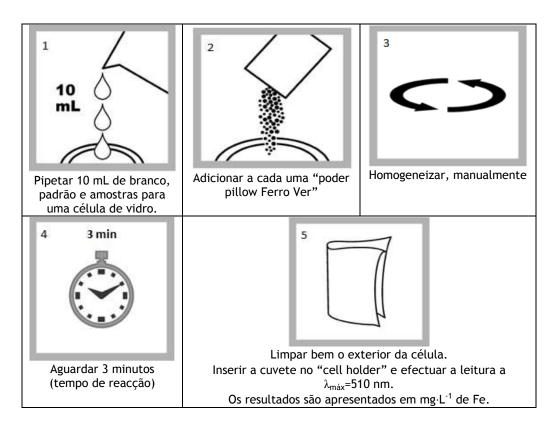
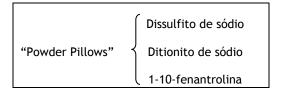



Figura 5.4 - Procedimento para a determinação de ferro em águas de consumo humano.

Na Tabela 5.5 é possível observar os constituintes das "powder pillows FerroVer", utilizados na determinação do ferro.

Tabela 5.5 - Constituintes das soluções utilizadas.

5.7 Teor de Alumínio

Equipamento

- Material de laboratório de uso corrente e material volumétrico;
- Espectrofotómetro VIS DR3900 (Hach Lange)
- Células esféricas

Reagentes

- Água destilada, ou equivalente, do tipo I, isenta de alumínio;
- Kit de doseamento de alumínio da Marca Hach Lange e Modelo LCK 301
- Solução-padrão comercial de alumínio 1000 mg·L⁻¹ da Marca Merck

Condições de utilização da amostra

O pH das amostras deve situar-se entre 2,5 e 3,5 a 20 $^{\circ}$ C. Antes da análise deve ajustar-se o pH utilizando uma solução de hidróxido de sódio 5N.

Gama de trabalho

A gama de trabalho situa-se entre 0,05 e 0,5 mg·L⁻¹ de Al.

A Fig. 5.5 mostra o procedimento para a determinação de alumínio em águas de consumo humano.

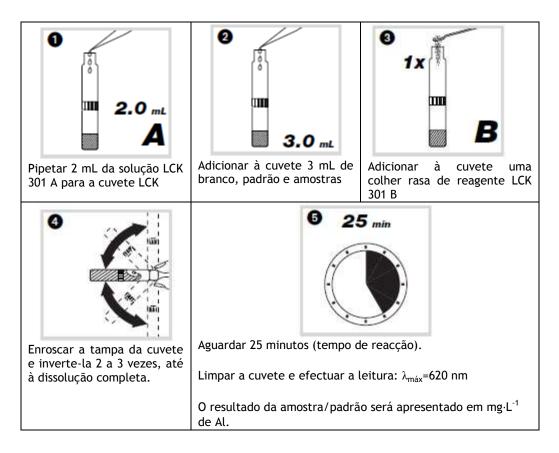
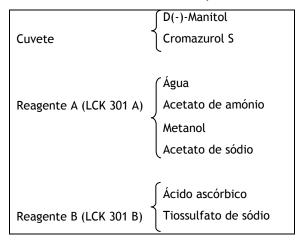



Figura 5.5 - Procedimento para a determinação de alumínio em águas de consumo humano.

Na Tabela 5.6 é possível observar os constituintes da cuvete e dos reagentes, utilizados na determinação do alumínio.

Tabela 5.6 - Constituintes das soluções utilizadas.

5.8 Teor de Manganês

Equipamento

- Material de laboratório de uso corrente e material volumétrico;
- Espectrofotómetro VIS DR3900 (HachLange)
- Células de vidro de 10 mL

Reagentes

- Água destilada, ou equivalente, do tipo I, isenta de manganês;
- Kit de doseamento de manganês da Marca Hach Lange
- Solução-padrão comercial de alumínio a 1000 mg·L⁻¹ da Marca Merck

Condições de utilização da amostra

O pH das amostras deve situar-se entre 4 e 5 a 20 °C. Antes da análise deve ajustar-se o pH utilizando uma solução de hidróxido de sódio 5N.

Gama de trabalho

A gama de trabalho situa-se entre 0,01 e 0,1 mg·L⁻¹ de Mn.

A Fig. 5.6 mostra o procedimento para a determinação de manganês em águas de consumo humano.

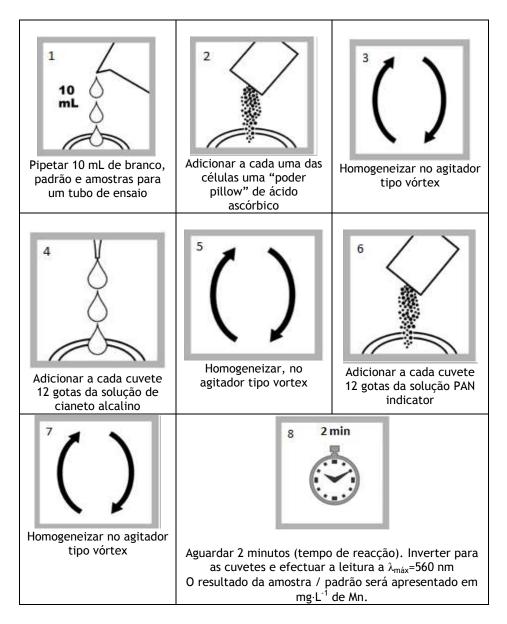


Figura 5.6 - Procedimento para a determinação de manganês em águas de consumo humano.

Na Tabela 5.7 é possível observar os constituintes dos reagentes, utilizados na determinação do alumínio.

Tabela 5.7 - Constituintes das soluções utilizadas.

Reagente 1	Ácido ascórbico (em pó)
Reagente 2	Cianeto alcalino (solução aquosa)
Reagente 3	Indicador PAN (solução aquosa)

6 Resultados e Discussão

6.1 Validação de Métodos

Os cálculos apresentados são relativos ao parâmetro nitrato, sendo que o mesmo foi efectuado para os restantes parâmetros analisados: nitrito, amónio, ferro, alumínio e manganês.

6.1.1 Curvas de calibração

Para se iniciar o estudo da validação do método em causa, foi necessário efectuar um histórico de cinco curvas de calibração em que foram utilizados 5 padrões para cada uma das curvas, entre 2 e 50 mg·L⁻¹, abrangendo assim toda a gama de trabalho, onde se pode verificar a estabilidade das mesmas. Estes dados encontram-se na Tabela 6.1. No anexo IV estão as tabelas e as respectivas curvas de calibração.

Tabela 6.1 - Histórico de curvas de calibração.

Curva	Equação ("Software" utilizada)	R ²	Equação ("Excel")	R ²
1	y = 40,484x - 0,299	1,000	y = 0.025x + 0.007	1,000
2	y = 39,993x - 0,244	0,999	y = 0.025x + 0.006	0,999
3	y = 40,227x - 0,195	0,999	y = 0.024x + 0.004	0,999
4	y = 40,173x + 0,190	1,000	y = 0.025x - 0.005	1,000
5	y = 39,757x - 0,252	1,000	y = 0.025x + 0.006	1,000

6.1.2 Validação do "Software"

Para o estudo da validação do "software", foram utilizadas as curvas de calibração anteriores, comparando-se o valor de concentração obtido pelo "Excel" e pelo "software", utilizando a absorvância de uma amostra aleatória.

Tabela 6.2 - Concentração da amostra aleatória obtida pelos dois métodos de cálculo.

Curva	Absorvância	Concentração "software"	Concentração obtida
	(nm)	utilizada /mg·L ⁻¹	"Excel" / mg·L ⁻¹
1	0,054	1,887	1,887
2	0,052	1,835	1,832
3	0,050	1,816	1,811
4	0,046	2,038	2,036
5	0,058	2,054	2,052

Como é possível verificar pela Tabela 6.2, o "software" apresentou valores semelhantes aos obtidos pelo "Excel", pelo que se considera que o método se encontra validado quanto ao "software".

6.1.3 Gama de trabalho

Para avaliar a gama de trabalho foi realizado o teste da homogeneidade de variâncias em que foram utilizados os padrões de validação, correspondentes ao padrão mais baixo ($2 \text{ mg} \cdot \text{L}^{-1}$) e mais alto ($50 \text{ mg} \cdot \text{L}^{-1}$) da curva de calibração. Na Tabela 6.3 estão registados os valores de absorvância dos 2 padrões utilizados, tendo sido feitas 10 leituras para cada um deles.

6.1.3.1 Homogeneidade de Variâncias

Tabela 6.3 - Valores de absorvância dos 2 padrões.

Leituras	2 mg·L ⁻¹	50 mg·L ⁻¹
1	0,059	1,246
2	0,052	1,264
3	0,055	1,253
4	0,050	1,247
5	0,054	1,265
6	0,046	1,247
7	0,050	1,241
8	0,058	1,265
9	0,052	1,258
10	0,058	1,254
Média	0,053	1,254
Desvio Padrão (S)	4,195E-03	8,756E-03
Variância (S^2)	1,76E-05	7,667E-05

De seguida, efectuou-se o cálculo do teste PG, através da Eq. 3.3 apresentada anteriormente:

$$PG = \frac{7,667 \times 10^{-5}}{1.76 \times 10^{-5}} \Leftrightarrow PG = 4,36$$

De seguida, efectuou-se o teste F: Duas amostras para variâncias, a partir da ferramenta estatística ANOVA, em que se obtiveram os resultados apresentados na Tabela 6.4.

Variável 1Variável 2Média1,2540,0534Variância7,67E-051,76E-05Observações1010gl (graus de liberdade)99

4,356061

5,351129

Tabela 6.4 - Dados obtidos através da ANOVA.

Por fim, comparou-se o valor obtido pelo teste PG com o valor tabelado de Snedecor/Fisher, para n-1 graus de liberdade.

F crítico uni-caudal

Através do teste PG obteve-se um valor de 4,36, enquanto que o valor tabelado foi de 5,35. Como o valor calculado é inferior ao valor tabelado, pode concluir-se que as diferenças de variâncias não são significativas e a gama de trabalho está bem ajustada [25].

6.1.4 Linearidade

Para o estudo da linearidade foram utilizados os padrões da gama de trabalho (2, 5, 10, 20, 50 mg·L⁻¹) e a respectiva concentração obtida pelo método em estudo. Na Tabela 6.5 estão registados esses valores.

Tabela 6.5 - Limites de confiança para 99 %.

DIO (/ 1 1 / 111	500 LOLI (.1-1
[NO₃ teórica] /mg·L ⁻¹	[NO ₃ obtida] /mg·L ⁻¹
2	1,889
5	5,009
10	10,088
20	20,114
50	49,868
	ļ

A linearidade consiste na capacidade de um método demonstrar que os resultados obtidos são directamente proporcionais à concentração do analito. Em primeiro lugar a linearidade pode ser observada através do coeficiente de correlação linear que deverá ter um valor superior a 0,995 e como é possível verificar pela Fig. 6.1 o coeficiente de correlação apresenta um valor de 1.

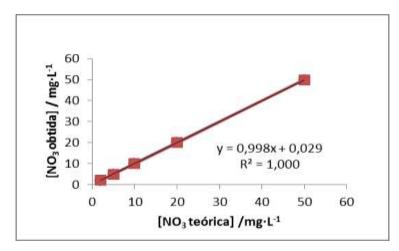


Figura 6.1 - Representação gráfica da linearidade dos nitratos.

Por outro lado, como o coeficiente de correlação por si só não demonstra a linearidade do método é necessário recorre-se à equação de regressão linear. Para o cálculo da regressão linear utilizou-se um nível de confiança de 99 % [25]. Os limites de confiança para 99 % estão indicados na Tabela 6.6.

Tabela 6.6 - Limites de confiança dos parâmetros da curva de calibração.

	Inferior 99,0 %	Superior 99,0 %
Ordenada na origem	-0,4194	0,4769
Declive	0,9797	1,0161

Através dos resultados obtidos pela ferramenta estatística ANOVA, registados na Tabela 6.6, é possível observar que para um nível de confiança de 99 %, o valor do declive se encontra dentro do mesmo. O valor da ordenada na origem também se encontra dentro do intervalo de confiança, concluindo-se assim que não existem diferenças significativas entre os resultados obtidos.

6.1.5 Limiares Analíticos

6.1.5.1 Limite de Quantificação (L.Q.)

Para avaliar o limite de quantificação foram registados 20 valores de concentração do padrão de controlo mais baixo (2 mg·L⁻¹). Na Tabela 6.7 estão registados esses valores.

Tabela 6.7 - Valores d	e concentração obtidos par	ra o padrão de valida	cão de 2 mg·L ⁻¹ .

N° de leituras	Concentração/mg·L ⁻¹
1	1,999
2	1,831
3	2,100
2 3 4 5	2,150
	1,960
6	1,848
7	1,993
8	2,007
9	2,151
10	2,017
11	2,009
12	1,800
13	1,810
14	2,180
15	1,969
16	2,040
17	2,113
18	1,842
19	1,905
20	2,150
Média	1,9937
S	1,9937
CV	6,181
ER	0,315

Para o cálculo do CV e ER utilizaram-se as Eqs. (3.11) e (3.18), respectivamente.

$$CV = \frac{0,1232}{1,9937} \times 100 \iff CV = 6,181 \%$$

$$ER = \frac{|1,9937-2|}{2} \times 100 \Leftrightarrow ER = 0,315 \%$$

Como CV e ER são inferiores a 10% podemos considerar o primeiro padrão ($2 \text{ mg} \cdot \text{L}^{-1}$) como o limite de quantificação [25].

6.1.5.2 Limite de Detecção (L.D.)

Como foi considerado que o padrão 2 mg·L⁻¹ se trata do limite de quantificação, então para o cálculo do limite de detecção foi utilizada a Eq.3.10, apresentada anteriormente.

L.D. =
$$\frac{2}{3,3} \Leftrightarrow$$
 L.D. = 0,6 mg·L⁻¹

6.1.6 Exactidão e Precisão

Para o cálculo da exactidão e precisão foram registados os valores de concentração de 20 leituras efectuadas ao primeiro padrão (2 mg·L⁻¹), padrão intermédio (10 mg·L⁻¹) e último padrão (50 mg·L⁻¹) da curva de calibração. Na Tabela 6.8 estão registados esses valores.

Tabela 6.8 - Valores de concentração obtidos para os 3 padrões considerados.

Leituras	2 mg·L ⁻¹	10 mg·L ⁻¹	50 mg·L ⁻¹
1	1,889	9,831	49,868
2	2,095	10,258	50,134
3	1,840	10,140	50,310
	-		
4	1,960	10,320	49,900
5	2,010	9,630	48,890
6	1,808	10,034	49,986
7	1,974	10,236	50,710
8	2,050	9,878	50,275
9	2,190	9,931	50,032
10	2,049	10,102	50,049
11	2,053	10,152	50,555
12	1,817	9,740	49,768
13	2,021	9,987	49,607
14	1,860	10,163	49,810
15	2,051	9,903	49,031
16	2,008	10,208	48,993
17	2,116	10,373	50,260
18	1,901	9,809	49,283
19	1,972	9,924	50,033
20	2,005	10,444	50,292
Média	1,983	10,053	49,889
S	0,104	0,222	0,507
CV	5,234	2,204	1,016
ER	0,827	0,531	0,221

Para o cálculo do CV e do ER de cada um dos padrões, foram utilizadas as Eq. (3.11) e (3.18) respectivamente.

Padrão 2 mg·L⁻¹

$$CV = \frac{0.104}{1,983} \times 100 \iff CV = 5.234 \%$$

$$ER = \frac{|1,983 - 2|}{2} \times 100 \iff ER = 0,827 \%$$

• Padrão 10 mg·L⁻¹

$$CV = \frac{0,222}{10,053} \times 100 \iff CV = 2,204 \%$$

$$ER = \frac{|10,053 - 10|}{10} \times 100 \iff ER = 0,531 \%$$

• Padrão 50 mg·L⁻¹

$$CV = \frac{0.507}{49.889} \times 100 \iff CV = 1.016 \%$$

$$ER = \frac{|49,889 - 50|}{50} \times 100 \iff ER = 0,221 \%$$

Como o CV e o ER são inferiores a 10 %, o método está validado quanto à precisão e exactidão na gama de trabalho.

6.1.7 Precisão

6.1.7.1 Repetibilidade

Para o estudo da repetibilidade utilizou-se uma amostra aleatória com valor superior ao limite de quantificação e efectuaram-se 10 ensaios sobre ela. Na Tabela 6.9 estão registados os valores obtidos.

Tabela 6.9 - Valores de concentração correspondentes à amostra aleatória.

Amostra	N° de Leituras	Valor/mg·L ⁻¹	
	1	17,96	
	2	18,03	
	3	17,68	
	4	17,88	
	5	17,89	
	6	17,65	
1456	7	17,80	
	8	17,74	
	9	18,03	
	10	17,73	
	Média	17,84	
	S	0,139	
	CV	0,8	
	r	0,389	

Para o cálculo do CV_r foi utilizada a Eq. 3.12.

$$CV_r = \frac{0.139}{17.84} \times 100 \Leftrightarrow CV = 0.8 \%$$

E para o cálculo do limite de repetibilidade, foi utilizada a Eq. 3.13.

$$r = 2.8 \times 0.139 \iff r = 0.389$$

Como o coeficiente de variação é inferior a 10 % e o limite de repetibilidade é inferior a 5 %, o método encontra-se validado quanto à repetibilidade.

6.1.7.2 Precisão Intermédia

Para o cálculo da precisão intermédia foram utilizadas cartas de controlo de amplitudes, em que apenas foi usado um duplicado por sessão de trabalho, como se pode verificar na Tabela 6.10, onde os valores estão registados.

Tabela 6.10 - Valores de amplitude relativa de 20 amostras.

N° Leituras	Amostra	Duplicado	Média	Amplitude	Amplitude
					Relativa (%)
1	3,900	3,960	3,930	0,060	1,527
2	8,877	9,147	9,012	0,270	2,996
3	59,420	59,278	59,349	0,142	0,239
4	18,055	18,603	18,329	0,548	2,990
5	2,447	2,436	2,442	0,011	0,451
6	2,602	2,547	2,575	0,055	2,136
7	2,073	2,103	2,088	0,030	1,437
8	16,306	16,162	16,234	0,144	0,887
9	3,117	3,231	3,174	0,114	3,592
10	1,991	2,160	2,076	0,169	8,143
11	5,994	6,004	5,999	0,010	0,167
12	3,866	3,813	3,840	0,053	1,380
13	8,467	8,654	8,561	0,187	2,184
14	7,866	7,985	7,926	0,119	1,501
15	6,300	6,447	6,374	0,147	2,306
16	3,644	3,664	3,654	0,020	0,547
17	32,134	31,943	32,039	0,191	0,596
18	2,352	2,403	2,378	0,051	2,145
19	14,583	14,59	14,587	0,007	0,048
20	4,546	4,530	4,538	0,016	0,353
	1	l		Média	1,781
				S	1,826

Os cálculos relativos à amplitude e amplitude relativa foram efectuados através das Eqs. (3.14) e (3.15).

Estabeleceu-se um critério de aceitação de 10 %, com base nisto obteve-se o gráfico da Fig. 6.2.

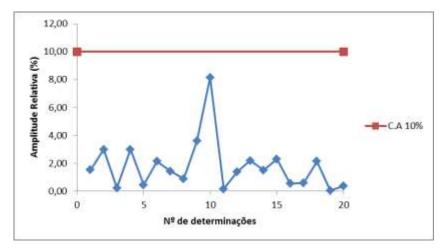


Figura 6.2 - Carta de duplicados de Nitratos com base em critério de aceitação de 10 %.

De seguida efectuou-se um novo cálculo, com base nas 20 determinações em que se calculou o LSC e o LSA através das Eqs. (3.16) e (3.17), apresentadas anteriormente. Os limites obtidos podem observar-se na Tabela 6.11.

Tabela 6.11 - Valores de limites obtidos.

N° de pontos experimentais	20
Valor Médio	1,781
LSC	5,819
LSA	4,475

Com base nos valores calculados obteve-se o gráfico da Fig. 6.3.

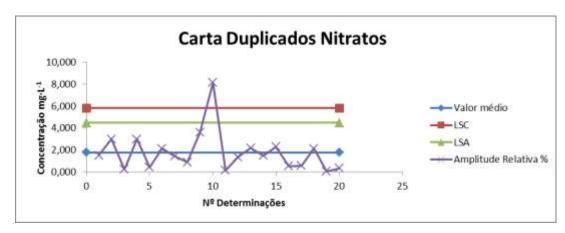


Figura 6.3 - Carta de duplicados de Nitratos com base em 20 determinações.

Efectuou-se uma nova carta de amplitudes com 40 valores de amplitude relativa. Estes valores encontram-se na Tabela 6.10 (20 leituras de amostra e duplicado) e na Tabela 6.12 (outras 20 leituras), tendo-se obtido o gráfico da Fig. 6.4.

Tabela 6.12 - Valores de amplitude relativa das restantes 20 amostras.

N° Leituras	Amostra	Duplicado	Média	Amplitude	Amplitude
					Relativa (%)
21	3,016	2,963	2,990	0,053	1,773
22	23,125	24,064	23,595	0,939	3,980
23	4,748	4,756	4,752	0,008	0,168
24	8,243	8,488	8,366	0,245	2,929
25	1,886	1,880	1,883	0,006	0,319
26	11,209	11,066	11,138	0,143	1,284
27	12,437	12,447	12,442	0,010	0,080
28	3,390	3,510	3,450	0,120	3,478
29	11,619	11,626	11,623	0,007	0,060
30	26,721	26,869	26,795	0,148	0,552
31	10,876	10,949	10,913	0,073	0,669
32	16,139	16,909	16,524	0,770	4,660
33	10,529	10,434	10,482	0,095	0,906
34	28,368	28,794	28,581	0,426	1,491
35	3,008	2,995	3,002	0,013	0,433
36	19,003	18,493	18,748	0,510	2,720
37	18,840	18,467	18,654	0,373	2,000
38	10,406	10,434	10,420	0,028	0,269
39	3,829	3,916	3,873	0,087	2,247
40	21,194	20,850	21,022	0,344	1,636
				Média	1,685
				s	1,598

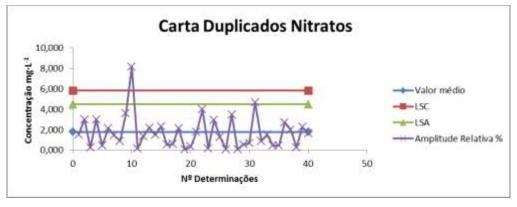


Figura 6.4 - Carta de duplicados de Nitratos com base em 40 determinações.

Os limites resultantes desta carta serão os limites definitivos. Como é possível observar, o processo encontra-se em controlo estatístico, ou seja, os duplicados só estão afectados por erros aleatórios impossíveis de controlar. O valor que se encontra acima do LSC encontra-se aceite devido a estar contido no critério de aceitação de 10 %, calculado inicialmente.

6.1.8 Exactidão

6.1.8.1 Ensaios Interlaboratoriais

Para o cálculo do desempenho laboratorial utilizaram-se os valores que se encontram na Tabela 6.13.

Tabela 6.13 - Valores de referência e resultado laboratorial.

Resultado laboratorial	59,40
Valor de Referência (Média)	60,00
Desvio Padrão de Referência	2,00

Utilizou-se a Eq. 3.19, apresentada anteriormente para o cálculo do "z-score":

$$z = \frac{|59,40 - 60,00|}{2.00} \Leftrightarrow z = 0,3$$

O valor obtido foi de 0,3, pelo que se conclui que o desempenho laboratorial é satisfatório devido a ter sido obtido um valor de "z-score" inferior a 2.

6.1.9 Sensibilidade

Para o estudo da sensibilidade foram utilizados 20 declives de 20 curvas de calibração. Estes valores estão na Tabela 6.14.

Tabela 6.14 - Valores de declives obtidos referentes às 20 curvas de calibração.

N° de leituras	Declive
1	40,498
2	40,021
3	40,244
4	40,160
5	39,778
6	39,788
7	39,925
8	40,764
9	40,296
10	38,794
11	39,468
12	40,503
13	41,097
14	40,557
15	40,102
16	40,439
17	39,452
18	40,410
19	41,035
20	41,015
Média	40,2173
S	0,582077
Média - 2S	39,0531
Média + 2S	41,3815
Declive Médio	40,2173
Erro Relativo (%)	3

Os cálculos do declive médio e do erro relativo foram efectuados através das Eqs. (3.22) e (3.23), respectivamente, apresentadas anteriormente.

Declive Médio =
$$\frac{39,0531+41,3815}{2}$$
 \Leftrightarrow Declive Médio = 40,217

$$Er = \frac{41,3815-40,2173}{40,2173} \times 100 \Leftrightarrow Er = 3\%$$

Por sessão de trabalho é verificado o declive da curva de calibração, em que são utilizados os padrões de calibração mais baixo, intermédio e mais alto, sendo registados os seus valores de absorvância. O declive obtido deve estar contido no intervalo de $M\acute{e}dia - 2S$ e $M\acute{e}dia + 2S$.

6.1.10 Especificidade/Selectividade

Os ensaios de recuperação são efectuados a partir da solução comercial de 1000 mg·L·1, no caso do parâmetro em análise. É efectuado um ensaio de recuperação por sessão de trabalho. Na Tabela 6.15 é possível verificar a % de recuperação obtida pelas diferentes amostras.

LIC (%) Amostra % Recuperação LSC (%) $C_{amostra}$ $C_{amostra+padr\~ao}$ 7719 10,973 0,722 101 7731 1,081 11,478 103 7724 0,677 11,009 102 8001 90 8,467 17,635 8181 1,049 11,377 102 90 110 8532 0,635 11,274 105 8747 1,857 12,294 103 8659 2,352 12,615 101 177 4,546 14,065 94 297 0 10,382 103

Tabela 6.15 - Percentagem de recuperação obtida de diferentes amostras.

Exemplo de cálculo de recuperação, utilizando a Eq. 3.25, apresentada anteriormente.

% Recuperação =
$$\frac{10,973 \times ((1 - {0,1/10}) - 0,722))}{10} \times 100 \iff \text{Recuperação} = 101 \%$$

Como se pode observar pelos resultados obtidos, as percentagens de recuperação são bastante satisfatórias, o que indica que o método é selectivo conseguindo identificar o analito independentemente de outros constituintes que possam estar presentes na amostra.

6.2 Incertezas

6.2.1 Incerteza associada à Precisão Intermédia/Fidelidade

Para avaliar a precisão intermédia foram utilizadas diferentes amostras e os seus respectivos duplicados. Na Tabela 6.16 encontram-se os valores da amplitude média relativa associada a cada amostra, assim como a média das amplitudes relativas que será utilizada para o cálculo da incerteza associada à precisão intermédia.

Tabela 6.16 - Amplit	ıde média relativa	a das diferentes	amostras e res	spectivos duplicados.

Amostra	1ª Leitura	Duplicado	Média	Amplitude	Amplitude Relativa (%)
2627	3,90	3,96	3,93	0,06	1,527
3017	8,88	9,15	9,01	0,27	2,996
3711	59,42	59,28	59,35	0,142	0,239
LCA 703	18,055	18,603	18,33	0,548	2,990
4081	2,45	2,44	2,44	0,011	0,451
5683	2,60	2,55	2,57	0,055	2,136
6361	2,07	2,10	2,09	0,03	1,437
6450	16,31	16,16	16,23	0,144	0,887
6495	3,12	3,23	3,17	0,114	3,592
7516	1,991	2,160	2,08	0,169	8,143
7514	5,994	6,004	6,00	0,01	0,167
7840	3,866	3,813	3,84	0,053	1,380
8001	8,467	8,654	8,56	0,187	2,184
8157	7,866	7,985	7,93	0,119	1,501
8348	6,300	6,447	6,37	0,147	2,306
8469	3,64	3,66	3,65	0,02	0,547
8647	32,13	31,94	32,04	0,191	0,596
8659	2,35	2,40	2,38	0,051	2,145
173	14,58	14,59	14,59	0,007	0,048
177	4,55	4,53	4,54	0,016	0,353
		l		Média	1,781

Utiliza-se a Eq. 4.2, apresentada anteriormente para o cálculo da incerteza associada à precisão intermédia.

$$S'_{precisão} = \frac{1,781}{1,128} \Leftrightarrow S'_{precisão} = 1,579 \%$$

6.2.2 Incerteza associada à Exactidão

Para o cálculo da incerteza associada à exactidão foram utilizados os dados dos ensaios interlaboratoriais, o que se pode verificar na Tabela 6.17.

Tabela 6.17 - Dados dos ensaios interlaboratoriais.

Ensaio	N° de participantes (sem aberrantes)	Média (Participantes)	Desvio Padrão (Participantes)
1	52	59,74	2,33
2	68	1,00	0,38

Com base nestes valores calculou-se o RSD para cada ensaio, utilizando a Eq. 4.5 apresentada anteriormente. Os resultados obtidos encontram-se na Tabela 6.18.

Tabela 6.18 - Resultados do RSD obtidos nos dois ensaios.

Ensaio	RSD
1	3,894
2	37,779

Por fim, calculou-se o RSDpond, utilizando a Eq. 4.4 apresentada anteriormente.

$$RSD_{ponderado} = \sqrt{\frac{52-1) \times 3,900^2 + (68-1) \times 38,000^2}{(52-1) + (68-1)}} \Leftrightarrow$$

$$RSD_{ponderado} = 28,582$$

6.2.3 Incerteza combinada

Incerteza combinada é calculada através da Eq. 4.6 apresentada anteriormente.

$$U_c = \sqrt{(28,582)^2 + (1,579)^2} \Leftrightarrow U_c = 28,626 \%$$

6.2.4 Incerteza expandida

A incerteza expandida calcula-se através da Eq. 4.16 apresentada anteriormente.

$$U_{\text{exp}} = 2 \times 28,625858 \iff U_{\text{exp}} = 57,25 \%$$

Na Tabela 6.19 é possível verificar a apresentação de resultados com a respectiva incerteza expandida associada.

Tabela 6.19 - Apresentação de Resultados.

 Resultado ± Uexp/mg·L ⁻¹	
$0,68 \pm 0,39$	
1,76 ± 1,01	
4,11 ± 2,35	
11,62 ± 6,65	
$14,58 \pm 8,35$	

Exemplo de cálculo da concentração da incerteza expandida associada ao resultado:

$$U_{exp} = \frac{Resultado \times Uexp(\%)}{100} \Longleftrightarrow U_{exp} = \frac{0.68 \times 57.25}{100} \Longleftrightarrow U_{exp} = 0.39 \text{ mg} \cdot L^{-1}$$

6.3 Comparação de Resultados Obtidos nos Diferentes Distritos

Com o objectivo de avaliar a qualidade da água que chega até ao consumidor, efectuou-se um estudo comparativo entre os distritos da Guarda, Castelo Branco e Viseu.

6.3.1 Teor de Nitratos

• Distrito da Guarda

A concentração média de nitratos determinada no distrito da Guarda está representada na Tabela 6.20.

Tabela 6.20 - Concentração média de nitratos no distrito da Guarda.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Guarda / 28	5,466
Gouveia / 4	0,270
Foz Côa / 1	2,352
Almeida / 1	0,976
Pinhel / 2	0,042
Figueira de Castelo Rodrigo / 1	0,902

Na Fig. 6.5, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.20.

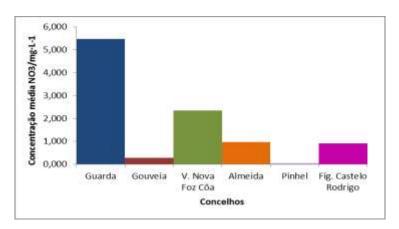


Figura 6.5 - Representação gráfica da concentração de nitratos no distrito da Guarda.

Na Fig. 6.5 é possível observar que a concentração média por concelho não ultrapassa o valor de 50 mg·L⁻¹, estipulado pelo decreto-lei nº 306/2007 de 27 de Agosto para os nitratos em águas de consumo humano. O valor máximo observado é de 5,466 mg·L⁻¹ para o concelho da Guarda.

• Distrito de Viseu

A concentração média de nitratos determinada no distrito de Viseu está representada na Tabela 6.21.

Tabela 6.21 - Concentração média de nitratos no distrito de Viseu.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Viseu / 6	7,168
Satão / 1	0,677
Penalva do Castelo / 3	9,641
Vila Nova de Paiva / 6	8,953
Aguiar da Beira / 2	10,123
Mangualde / 2	25,487

Na Fig. 6.6, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.21.

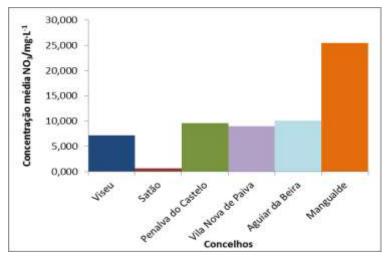


Figura 6.6 - Representação gráfica da concentração de nitratos no distrito de Viseu.

Na Fig. 6.6 é possível observar que a concentração média obtida por concelho não ultrapassa o valor de 50 mg·L⁻¹ estabelecido no decreto-lei para os nitratos em águas de consumo humano. O valor máximo observado é de 25,487 mg·L⁻¹ para o concelho de Mangualde.

• Distrito de Castelo Branco

A concentração média de nitratos determinada no distrito de Castelo Branco está representada na Tabela 6.22.

Tabela 6.22 - Concentração média de nitratos no distrito de Castelo Branco.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Castelo Branco / 3	1,259
Covilhã / 1	1,360
Vila Velha de Rodão / 1	1,755
Oleiros / 2	0,588
Vila de Rei / 3	1,363
Sertã / 3	0,376
Penamacor / 1	0,632
Proença-a-Nova / 2	1,245
Idanha-a-Nova / 1	0,199

Na Fig. 6.7, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.22.

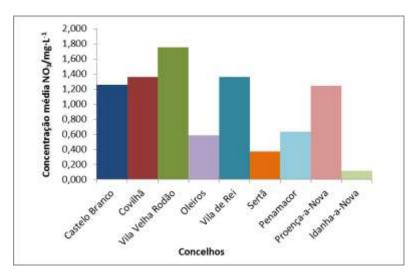


Figura 6.7 - Representação gráfica da concentração de nitratos no distrito de Castelo Branco.

Na Fig. 6.7 é possível observar que a concentração média por concelho não ultrapassa o valor de 50 mg·L⁻¹, estipulado por lei para os nitratos em águas de consumo humano. O valor máximo observado é de 1,755 mg·L⁻¹ para o concelho de Vila Velha de Rodão, sendo o valor mais reduzido em comparação com os restantes distritos.

Comparação entre distritos

Para se efectuar a comparação entre distritos calculou-se a concentração média relativa aos três distritos, como é possível verificar na Tabela 6.23.

Tabela 6.23 - Concentração média de nitratos.

Distrito	Concentração média/mg·L ⁻¹
Guarda	4,282
Viseu	9,878
Castelo Branco	0,972

O gráfico de comparação entre distritos mostra a concentração média de cada distrito.



Figura 6.8 - Concentração média de nitratos.

Na Fig. 6.8, é possível observar que nenhum dos distritos ultrapassa o valor recomendado de concentração de nitratos em águas de consumo humano, tal como se verificou nas figuras anteriores para cada concelho. O distrito de Viseu apresenta uma concentração média de 9,878 mg·L⁻¹, sendo este o valor mais elevado que se verifica, pois tal como nos gráficos de cada distrito era este que apresentava um valor mais elevado no concelho de Mangualde. Contudo, as águas analisadas não constituem perigo para o consumidor. Os valores de concentração mais elevados que se observam podem dever-se principalmente à produção agrícola intensiva, resíduos domésticos e industriais, esgotos e poluição atmosférica por azoto.

6.3.2 Teor de Nitritos

• Distrito da Guarda

A concentração média de nitritos determinada no distrito da Guarda está representada na Tabela 6.24.

Tabela 6.24 - Concentração média de nitritos no distrito da Guarda.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Guarda / 36	0,003
Gouveia / 4	0,001
Pinhel / 2	0,005
Trancoso / 1	0,004

Na Fig. 6.9, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.24.

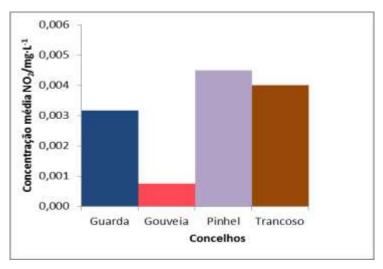


Figura 6.9 - Representação gráfica da concentração de nitritos no distrito da Guarda.

Na Fig. 6.9 é possível observar que a concentração média por concelho não ultrapassa o valor de 0,5 mg·L⁻¹, estipulado por lei para os nitritos em águas de consumo humano. O valor máximo observado é de 0,005 mg·L⁻¹ para o concelho de Pinhel.

• Distrito Viseu

A concentração média de nitritos determinada no distrito de Viseu está representada na Tabela 6.25.

Tabela 6.25 - Concentração média de nitritos no distrito de Viseu.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Viseu / 6	0,001
Satão / 1	0,084
Penalva do Castelo / 3	0,005
Vila Nova de Paiva / 6	0,001

Na Tabela 6.25 é possível observar que a concentração média por concelho não ultrapassa o valor de 0,5 mg·L⁻¹, estipulado por lei para os nitritos em águas de consumo humano. O valor máximo observado é de 0,084 mg·L⁻¹ para o concelho de Satão.

• Distrito Castelo Branco

A concentração média de nitritos determinada no distrito de Castelo Branco está representada na Tabela 6.26.

Tabela 6.26 - Concentração média de nitritos no distrito de Castelo Branco.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Castelo Branco / 3	0,001
Vila Velha de Rodão / 1	0,001
Oleiros / 2	0,001
Vila de Rei / 3	0,002
Sertã / 3	0,001
Penamacor / 1	0,005

Na Fig. 6.10, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.26.

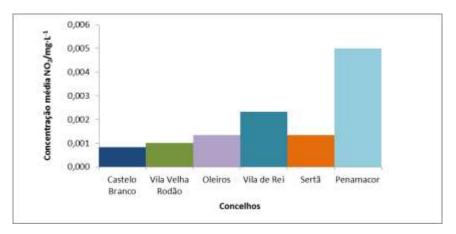


Figura 6.10 - Representação gráfica da concentração de nitritos no distrito de Castelo Branco.

Na Fig. 6.10 é possível observar que a concentração média por concelho não ultrapassa o valor de 0,5 mg·L⁻¹, estipulado por lei para os nitritos em águas de consumo humano. O valor máximo observado é de 0,005 mg·L⁻¹ para o concelho de Penamacor.

Comparação entre distritos

Para se efectuar a comparação entre distritos calculou-se a concentração média relativa aos três distritos, como é possível verificar na Tabela 6.27.

Tabela 6.27 - Concentração média de nitritos.

Distrito	Concentração média/mg·L ⁻¹
Guarda	0,003
Viseu	0,007
Castelo Branco	0,002

O gráfico de comparação entre distritos mostra a concentração média de cada distrito.

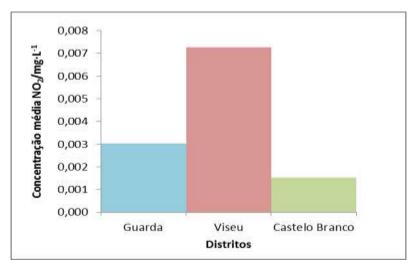


Figura 6.11 - Concentração média de nitritos.

Na Fig. 6.11, é possível observar que as águas analisadas dos três distritos apresentam concentrações médias de nitritos bastante reduzidas. Isto deve-se ao facto de os nitritos serem facilmente convertidos a nitratos através de reacções de oxidação-redução.

6.3.3 Teor de Amónio

• Distrito Guarda

A concentração média de amónio determinada no distrito da Guarda está representada na Tabela 6.28.

Tabela 6.28 - Concentração média de amónio no distrito da Guarda.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Guarda / 37	0,003
Sabugal / 1	0,003
Gouveia / 4	0,001
Almeida / 1	0,004

0,005 0,004 0,000 0,000 0,000 Guarda Sabugal Gouveia Almeida

Na Fig. 6.12 encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.28.

Figura 6.12 - Representação gráfica da concentração de amónio no distrito da Guarda.

Na Fig. 6.12 é possível observar que a concentração média por concelho não ultrapassa o valor de 0,5 mg·L⁻¹, estipulado por lei para o amónio em águas de consumo humano. O valor máximo observado é de 0,004 mg·L⁻¹ para o concelho de Almeida.

• Distrito Viseu

A concentração média de amónio determinada no distrito de Viseu está representada na Tabela 6.29.

Tabela 6.29 - Concentração média de amónio no distrito de Viseu.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Viseu / 6	0,004
Satão / 1	0,025
Penalva do Castelo / 4	0,004
Vila Nova de Paiva / 6	0,002

Na Fig. 6.13, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.29.

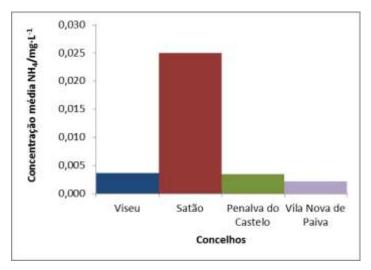


Figura 6.13 - Representação gráfica da concentração de amónio no distrito de Viseu.

Na Fig. 6.13 é possível observar que a concentração média por concelho não ultrapassa o valor de 0,5 mg·L⁻¹, estipulado por lei para o amónio em águas de consumo humano. O valor máximo observado é de 0,025 mg·L⁻¹ para o concelho de Satão.

• Distrito Castelo Branco

A concentração média de amónio determinada no distrito de Castelo Branco está representada na Tabela 6.30.

Tabela 6.30 - Concentração média de amónio no distrito de Castelo Branco.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Vila Velha de Rodão / 1	0,001
Vila de Rei / 3	0,006
Sertã / 3	0,001
Penamacor / 1	0,004
Proença-a-Nova / 2	0,003

Na Fig. 6.14, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.30.

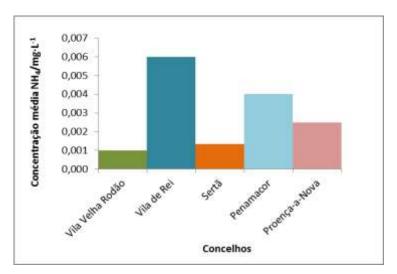


Figura 6.14 - Representação gráfica da concentração de amónio no distrito de Castelo Branco.

Na Fig. 6.14 é possível observar que a concentração média por concelho não ultrapassa o valor de 0,5 mg·L⁻¹, estipulado por lei para o amónio em águas de consumo humano. O valor máximo observado é de 0,006 mg·L⁻¹ para o concelho de Vila de Rei.

Comparação entre distritos

Para se efectuar a comparação entre distritos calculou-se a concentração média relativa aos três distritos, como é possível verificar na Tabela 6.31.

Tabela 6.31 - Concentração média de amónio.

Distrito	Concentração média/mg·L ⁻¹
Guarda	0,003
Viseu	0,004
Castelo Branco	0,003

O gráfico de comparação entre distritos mostra a concentração média de cada distrito.

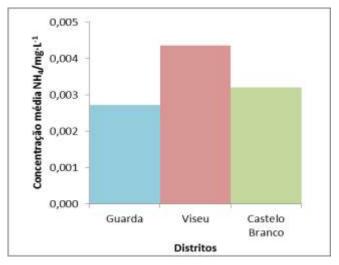
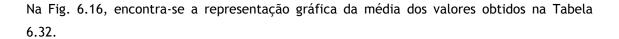


Figura 6.15 - Concentração média de amónio.

Na Fig. 6.15, é possível observar que as concentrações de amónio são bastante reduzidas, tal como a concentração dos nitritos. Este composto é facilmente oxidado a nitritos ou nitratos ou então adsorvido por partículas do solo, devido a estes factores a sua concentração é bastante reduzida em águas de consumo humano.


6.3.4 Teor de Ferro

• Distrito da Guarda

A concentração média de ferro determinada no distrito da Guarda está representada na Tabela 6.32.

Tabela 6.32 - Concentração média de ferro no distrito da Guarda.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Guarda / 37	0,242
Sabugal / 4	0,066
Gouveia / 4	0,074
Foz Côa / 1	0,065
Pinhel / 2	0,079
Figueira de Castelo Rodrigo / 2	0,029
Trancoso / 1	0,257

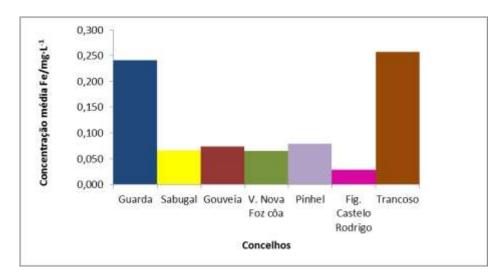


Figura 6.16 - Representação gráfica da concentração de ferro no distrito da Guarda.

Na Fig. 6.16 é possível observar que excepto o concelho da Guarda e Trancoso, os restantes concelhos apresentam valores de concentração média de Ferro abaixo do estabelecido para águas de consumo humano de 0,2 mg·L⁻¹. O concelho da Guarda e Trancoso apresentam respectivamente 0,242 e 0,257 mg·L⁻¹.

Distrito Viseu

A concentração média de ferro determinada no distrito de Viseu está representada na Tabela 6.33.

Tabela 6.33 - Concentração média de ferro no distrito de Viseu.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Viseu / 6	0,080
Satão / 1	5,630
Penalva do Castelo / 6	0,042
Vila Nova de Paiva / 6	0,031
Aguiar da Beira / 2	0,031

A partir dos dados apresentados na Tabela 6.33 é possível observar que excepto o concelho de Satão que apresenta uma concentração de ferro muito superior ao estabelecido no decreto de lei, todos os outros distritos apresentam concentrações de ferro vestigiais. Para a leitura da amostra relativa ao distrito de Satão foi necessário efectuar uma diluição de $\frac{1}{2}$.

• Distrito Castelo Branco

A concentração média de ferro determinada no distrito de Castelo Branco está representada na Tabela 6.34.

Tabela 6.34 - Concentração média de ferro no distrito de Castelo Branco.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Castelo Branco / 5	0,364
Covilhã / 2	0,130
Vila Velha de Rodão / 1	0,137
Oleiros / 3	0,036
Vila de Rei / 3	0,070
Sertã / 3	0,220
Penamacor / 1	0,995
Proença-a-Nova / 2	0,037
Idanha-a-Nova / 1	0,017

Na Fig. 6.17, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.34.

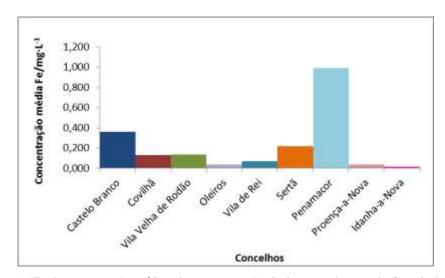


Figura 6.17 - Representação gráfica da concentração de ferro no distrito de Castelo Branco.

Na Fig. 6.17, observa-se que Castelo Branco, Sertã e Penamacor apresentam valores de concentração de ferro superiores a 0,2 mg·L⁻¹. Os restantes concelhos apresentam valores bastante reduzidos.

• Comparação entre distritos

Para se efectuar a comparação entre distritos calculou-se a concentração média relativa aos três distritos, como é possível verificar na Tabela 6.35.

Tabela 6.35 - Concentração média de ferro.

Distrito	Concentração média/mg·L ⁻¹
Guarda	0,197
Viseu	0,315
Castelo Branco	0,204

O gráfico de comparação entre distritos mostra a concentração média de cada distrito.

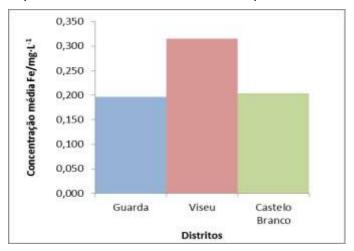


Figura 6.18 - Concentração média de ferro.

Na Fig. 6.18, é possível observar que a concentração média obtida por distrito apenas é inferior a 0,2 mg·L⁻¹ no distrito de Castelo Branco. Os restantes distritos apresentam valores superiores, sendo que Viseu apresenta o valor mais elevado. O facto de existirem algumas águas com quantidades superiores ao estalecido deve-se a que na recolha das águas serem recolhidas também partículas de óxido de ferro, proveniente da descamação da ferrugem das tubagens.

6.3.5 Teor de Alumínio

Distrito Guarda

A concentração média de alumínio determinada no distrito de Guarda está representada na Tabela 6.36.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Guarda / 37	0,074
Sabugal / 4	0,099
Seia / 7	0,072
Gouveia / 4	0,055
Foz Côa /	0,020
Almeida / 1	0,030
Pinhel / 2	0,060
Figueira de Castelo Rodrigo / 2	0,049
Trancoso / 1	0,034

Tabela 6.36 - Concentração média de alumínio no distrito da Guarda.

Na Fig. 6.19, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.36.

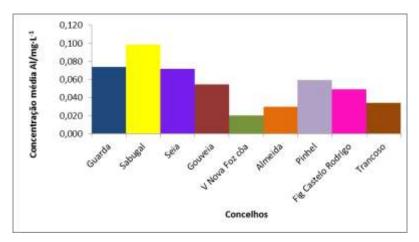


Figura 6.19 - Representação gráfica da concentração de alumínio no distrito da Guarda.

Na Fig. 6.19, é possível observar que todos os concelhos apresentam valores de concentração de alumínio inferiores a 0,2 mg·L⁻¹, sendo este valor o estipulado no decreto de lei de 27 de Agosto. O valor de concentração mais elevado que se observa é de 0,099 mg·L⁻¹ no concelho do Sabugal.

• Distrito Viseu

A concentração média de alumínio determinada no distrito de Viseu está representada na Tabela 6.37.

Tabela 6.37 - Concentração média de alumínio no distrito de Viseu.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Viseu / 6	0,062
Satão / 1	0,594
Penalva do Castelo / 7	0,044
Vila Nova de Paiva / 6	0,095
Aguiar da Beira / 2	0,127
Mangualde / 3	0,297

Na Fig. 6.20, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.37.

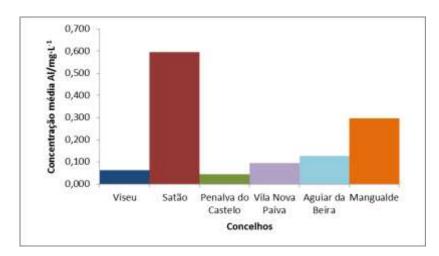


Figura 6.20 - Representação gráfica da concentração de alumínio no distrito de Viseu.

Na Fig. 6.20, é possível observar que o concelho de Satão e de Mangualde apresentam valores de concentração de alumínio superiores ao estabelecido por lei de $0,2~{\rm mg\cdot L^{-1}}$. Todos os outros concelhos apresentam valores reduzidos deste composto. Para a leitura da amostra relativa ao distrito de Satão foi necessário efectuar uma diluição de 1/2.

• Distrito Castelo Branco

A concentração média de alumínio determinada no distrito de Castelo Branco está representada na Tabela 6.38.

Tabela 6.38 - Concentração média de alumínio no distrito de Castelo Branco.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Castelo Branco / 6	0,052
Covilhã / 1	0,047
Vila Velha de Rodão / 1	0,095
Oleiros / 3	0,038
Vila de Rei / 3	0,070
Sertã / 2	0,011
Penamacor / 1	0,047
Proença-a-Nova / 2	0,034
Idanha-a-Nova / 1	0,044

Na Fig. 6.21, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.38.

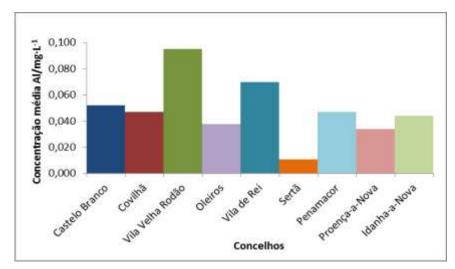


Figura 6.21 - Representação gráfica da concentração de alumínio no distrito de Castelo Branco.

Na Fig. 6.21, é possível observar que todos os concelhos apresentam valores de concentração de alumínio dentro do estipulado por lei de 0,2 mg·L⁻¹, sendo o valor mais elevado observado de 0,095 mg·L⁻¹ pertencente ao concelho de Vila Velha de Rodão.

• Comparação entre distritos

Para se efectuar a comparação entre distritos calculou-se a concentração média relativa aos três distritos, como é possível verificar na Tabela 6.39.

Tabela 6.39 - Concentração média de alumínio.

Distrito	Concentração média/mg·L ⁻¹
Guarda	0,070
Viseu	0,119
Castelo Branco	0,048

O gráfico de comparação entre distritos mostra a concentração média de cada distrito.

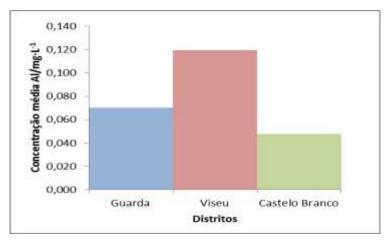


Figura 6.22 - Concentração média de alumínio.

Na Fig. 6.22, é possível observar que todos os distritos apresentam valores de concentração média de alumínio inferior ao estabelecido. As maiores concentrações de alumínio que se observam nos diferentes concelhos podem dever-se ao facto de serem utilizados coagulantes de alumínio no tratamento da água ou devido à degradação dos minerais de argila devido às chuvas ácidas.

6.3.6 Teor de Manganês

Distrito Guarda

A concentração média de manganês determinada no distrito da Guarda está representada na Tabela 6.40.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Guarda / 36	0,015
Sabugal / 1	0,034
Gouveia / 4	0,006
Foz Côa /	0,004
Almeida / 1	0,009
Pinhel / 2	0,007
Figueira de Castelo Rodrigo / 2	0,016
Trancoso / 1	0,093

Tabela 6.40 - Concentração média de manganês no distrito da Guarda.

Na Fig. 6.23, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.40.

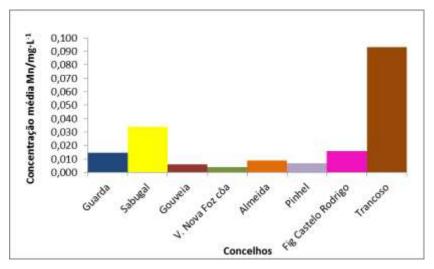


Figura 6.23 - Representação gráfica da concentração de manganês no distrito da Guarda.

Este composto é o que apresenta um valor mais reduzido estabelecido no decreto-lei, sendo ele de 0,05 mg·L⁻¹. Como é possível observar na Fig. 6.23, excepto o concelho de Trancoso, que apresenta uma concentração média de 0,093 mg·L⁻¹, todos os outros apresentam concentrações reduzidas deste composto.

• Distrito Viseu

A concentração média de manganês determinada no distrito de Viseu está representada na Tabela 6.41.

T 1 1 4 4 4	~	/ 11 1	^	11 4 14 1 1 1 1
1350136/11	(oncontracao	modia do	manganoc no	dictrito do Vicou
Tabela 0.41 -	CONCERNIACIO	illedia de	THOUSAILES HO	distrito de Viseu.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Viseu / 6	0,006
Satão / 1	0,150
Penalva do Castelo / 6	0,004
Vila Nova de Paiva / 5	0,012
Aguiar da Beira / 2	0,028
Mangualde / 1	0,053

Na Fig. 6.24, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.41.

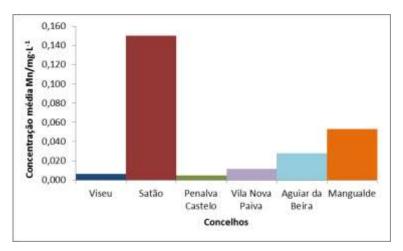


Figura 6.24 - Representação gráfica da concentração de manganês no distrito de Viseu.

Na Fig. 6.24, é possível observar que o concelho de Satão e de Mangualde apresentam valores de concentração superiores ao estabelecido por lei 0,05 mg·L⁻¹, sendo que a concentração obtida no concelho de Satão é bastante superior. Os restantes concelhos apresentam valores relativamente baixos deste composto.

A amostra representativa do concelho de Satão é a mesma relativa à elevada concentração de ferro $(5,630~{\rm mg\cdot L^{-1}})$ e por esse motivo a concentração de manganês para a mesma amostra também é elevada devido a que estes dois compostos se comportam de maneira semelhante, causando depósitos, incrustações e possibilitarem o aparecimento de bactérias ferruginosas nocivas nas redes de abastecimento. Para a leitura dessa amostra foi necessário efectuar uma diluição de 1/2.

• Distrito Castelo Branco

A concentração média de manganês determinada no distrito de Castelo Branco está representada na Tabela 6.42.

Tabela 6.42 - Concentração média de manganês no distrito de Castelo Branco.

Concelho / N° de amostras	Concentração média/mg·L ⁻¹
Castelo Branco / 6	0,105
Covilhã / 1	0,005
Vila Velha de Rodão / 1	0,022
Oleiros / 3	0,008
Vila de Rei / 3	0,006
Sertã / 3	0,018
Penamacor / 1	0,041
Proença-a-Nova / 2	0,011
Idanha-a-Nova / 1	0,007

Na Fig. 6.25, encontra-se a representação gráfica da média dos valores obtidos na Tabela 6.42.

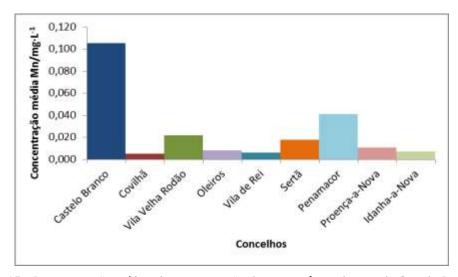


Figura 6.25 - Representação gráfica da concentração de manganês no distrito de Castelo Branco.

Na Fig. 6.25, é possível observar que todos os concelhos apresentam concentrações relativamente baixas de manganês, com excepção do distrito de Castelo Branco que apresenta um valor de 0,105 mg·L⁻¹, muito superior ao estabelecido por lei de 0,05 mg·L⁻¹.

• Comparação entre distritos

Para se efectuar a comparação entre distritos calculou-se a concentração média relativa aos três distritos, como é possível verificar na Tabela 6.43.

Tabela 6.43 - Concentração média de manganês.

Distrito	Concentração média/mg·L ⁻¹
Guarda	0,015
Viseu	0,018
Castelo Branco	0,039

O gráfico de comparação entre distritos mostra a concentração média de cada distrito.

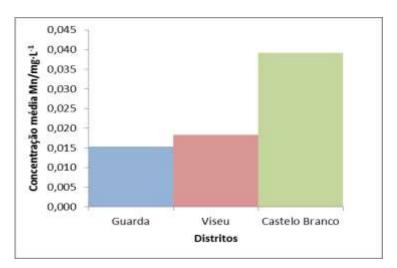


Figura 6.26 - Concentração média de manganês.

Na Fig. 6.26 é possível observar que a concentração média de cada distrito é inferior ao estabelecido por lei de 0,05 mg·L⁻¹. Concentrações mais elevadas de manganês devem-se ao facto de este composto apresentar um comportamento semelhante ao do ferro e causar depósitos e incrustações no interior das canalizações, bem como pelo aparecimento de gosto e odor, manchas em roupas e sanitas e interferirem em processos industriais.

7 Conclusões

O método em estudo produziu resultados fiáveis e de boa qualidade, pois atendendo à validação, cumpriu todos os limites estipulados.

Iniciou-se o estudo da validação recorrendo à análise de cinco curvas de calibração, em que se verificou a sua estabilidade, tendo-se determinado a periodicidade da elaboração de novas curvas, sendo estas determinadas a cada novo ano, na mudança de lote e quando os padrões começam a sair fora dos limites de aceitação.

A validação de "software" neste caso específico é bastante importante de modo a verificar se os resultados obtidos por este são semelhantes a outro método de cálculo, de modo a conhecer o seu bom funcionamento. A gama de trabalho foi avaliada efectuando-se o cálculo do PG, em que se verificou que esta se encontra bem ajustada. No caso da linearidade, também se demonstrou que o método é linear, tendo os valores do declive e da ordenada na origem dentro do intervalo de confiança de 99 %.

Tanto os limiares analíticos como a precisão e exactidão obtiveram valores de coeficiente de variação e de erro relativo inferiores a 10 %, concluindo-se que também se encontram validados.

No que se refere à precisão ainda foi calculada a repetibilidade e a precisão intermédia, tendo-se também verificado resultados satisfatórios.

No caso da exactidão também se calculou o desempenho do laboratorial com o cálculo do "z-score" que se revelou satisfatório.

Os intervalos de média e desvio padrão calculados na sensibilidade servem para verificar o declive por sessão de trabalho de modo a se poder verificar pequenas variações de concentração. No caso da especificidade/selectividade obtiveram-se valores satisfatórios de recuperação estando compreendidos entre 90 e 110 %.

O cálculo das incertezas deu a conhecer a qualidade dos resultados obtidos ao longo da avaliação do método.

Em relação à análise da qualidade da água pode observar-se que relativamente à concentração de nitratos o distrito de Viseu apresentou um valor mais elevado mas nunca ultrapassando o valor paramétrico. A concentração de nitritos e amónio mostrou-se bastante reduzida nos três distritos devido à sua fácil conversão a nitratos.

No caso do ferro, existiram algumas amostras com concentração superior ao valor paramétrico sobretudo devido às canalizações, não se observando diferenças significativas

entre os distritos. Em relação ao alumínio, novamente o distrito de Viseu apresentou uma concentração mais elevada, mas não ultrapassando o valor paramétrico.

Por fim, em relação ao manganês, o distrito de Castelo Branco apresenta uma concentração mais elevada mas não excede o valor paramétrico.

De um modo geral, pode concluir-se que água que chega até ao consumidor é de boa qualidade, cumprindo na maioria das vezes os valores paramétrico do decreto-lei nº 306/2007 de 27 de Agosto.

Referências Bibliográficas

- [1] Laboratório de Saúde Pública, Recepção de Amostras.
- [2] APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 21 ed., A. D. Eaton, L. S. Clesceri, A. E. Greenberg e A. E. Greenberg, Edits., American Pub. Health Association, 2005.
- [3] Hach Lange, Manual do Usuário DR3900, 5ª Edição ed., 2013.
- [4] "Informação do Produto Análise Laboratorial em Cuvete," [Online]. Available: http://www.hach-lange.cz/asset-get.download.jsa?id=25593614538. [Acedido em 16 Janeiro 2015].
- [5] World Health Organization, "Nitrate and nitrite in drinking-water," 2005. [Online]. Available: http://www.who.int/water_sanitation_health/dwq/chemicals/nitratenitrite2ndadd.pdf. [Acedido em 2 Dezembro 2014].
- [6] J. R. Self e R. M. Waskom, "Nitrates in Drinking Water," 2013.
- [7] L. A. Ramos, C. C. S. Cavalheiro e E. T. G. Cavalheiro, "Determinação de Nitritos em Águas utilizando extracto de Flores," vol. 29 (5), pp. 1114-1120, 2006.
- [8] World Health Organization, "Amonia in Drinking Water," [Online]. Available: http://www.who.int/water_sanitation_health/dwq/ammonia.pdf. [Acedido em 27 Novembro 2014].
- [9] World Health Organization, "Iron in Drinking Water," [Online]. Available: http://www.who.int/water_sanitation_health/dwq/chemicals/iron.pdf. [Acedido em 24 Novembro 2014].
- [10] World Health Organization, "Aluminium in Drinking Water," [Online]. Available: http://www.who.int/water_sanitation_health/dwq/chemicals/en/aluminium.pdf. [Acedido em 24 Novembro 2014].

- [11] World Health Organization, "Manganese in Drinking Water," [Online]. Available: http://www.who.int/water_sanitation_health/dwq/chemicals/manganese.pdf. [Acedido em 24 Novembro 2014].
- [12] Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional, Decreto-Lei nº306, 2007.
- [13] Laboratório de Saúde Pública, "Procedimento Interno para a determinação da concentração de Nitratos," 2014.
- [14] Hach Lange, "LCK 339," 2005.
- [15] Laboratório de Saúde Pública, *Procedimento interno para a determinação da concentração de nitritos*, 2014.
- [16] Hach Lange, LCK 541, 2001.
- [17] Laboratório de Saúde Pública, *Procedimento Interno para a determinação da concentração de amónio*, 2014.
- [18] Hach Lange, Nitrogen, Ammonia, 8a ed., 2014.
- [19] Laboratório de Saúde Pública , *Procedimento Interno para a determinação da concentração de ferro*, 2014.
- [20] Hach Lange, Iron, Total, 9a ed., 2014.
- [21] Laboratório de Saúde Pública, *Procedimento para a determinação da concentração de Alumínio*, 2014.
- [22] Hach Lange, LCK 301, 1997.
- [23] Laboratório de Saúde Pública, *Procedimento para a determinação da concentração de Manganês*, 2014.
- [24] Hach Lange, Manganese, LR, 9a ed., 2014.
- [25] Relacre, Guia Relacre 13 Validação de Métodos Internos de Ensaio em Análise Química, 2000.

- [26] International Organozation for Standardization, ISO 8466-1. Water quality Calibration and evaluation of analytical methods and estimation of performance characteristics. Part 1: Statistical evaluation of the linear calibration function, Genève, 1990.
- [27] International Organization for Standardization, ISO 8466-2. Water quality Calibration and evaluation of analytical methods and estimation of performance characteristics. Part 2: Calibration strategy for non-linear second order calibration function, Genève, 1993.
- [28] Laboratório de Saúde Pública, Validação de Métodos de Ensaios Físico-Químicos, 2013.
- [29] Relacre, Guia Relacre 9 Alguns exemplos de Cartas de Controlo em Laboratórios de Análise Química, 1998.
- [30] Relacre, Guia Relacre 3 Validação de Resultados em Laboratórios Químicos, 1996.
- [31] Instituto Português de Acreditação, Guia para a Quantificação de Incertezas em Ensaios Químicos, 2007.
- [32] Laboratório de Saúde Pública, Estimativa de Incertezas, 2010.
- [33] Manual da Qualidade, Guarda, 2015.
- [34] Entidade Reguladora dos Serviços de Águas e Resíduos, *Procedimento para a Colheita de Amostras de Água para Consumo Humano*, 2010.

Estudo da Qualidade da Água de Consumo Humano - Validação de Métodos à Pequena I	Escala
--	--------

Anexos

Anexo I - Boletim de recepção de amostras

LABORATÓRIO DE SAÚDE PÚBLICA DA GUARDA

Controlo na Recepção das amostras

Data	Núcleo de Saúde Pública	Técnico responsável pela colheita	Mala	Hora de colheita da primeira amostra	Hora de colheita da última amostra	Hora de chegada ao laboratório	Temperatura inicial da amostra	Temperatura final da amostra	O LSP	O TSA

Anexo II - Folha de registo de amostragem

•••			Unidade de Saúde Pública										
ULS.			Registo de C	olheita de	Amo	stras de Á	gua						
Código:ULSG.USP.Imp.01.01		Data (de Emissão: .2014		Data de	e Revisão:				N	Påginas: 1		
DATA COLHEITA TÉCNICO DE COLHEITA DE AMOSTRAS OBS:	(Ass.:)			-	HORA	ENTREGA LSP ENTREGA LSI TRAS CONFOI ÇÃO AMOSTR	Ph_ RMES: Sir	m n	Não _				
		Dados	Colheita					Parân	netros	Ensa	ios de Camp	00	LSP Guard
Requisitante/ Cliente		Ponto de A	Amostragem	Nº Colheita	Nº Mala	Tipo Amostra*	Hora colheita	Micro	FQ ••	Cloro (mg Cl ₂ /L)	pH (Sorensen)	(*C)	Nº Amosti
				1			hm						
			Î	2			h m						
7.5	\top												1
	+			3			hm			-			1
<u>, </u>	_			4	_		hm		_				-
				5			hm						
				6			h m						
	\top			7									
	+			-			hm						
	_			8			hm		_				1.
				9			hm						
				10			hm						
					DUPL	ICADOS ENSA	AIOS DE CAM	РО		Acette Sim_ Não_	Acete Sin_ Não_	Acete Sim_ Neo_	Nº Colheit
	Mala	Tº Local	T [®] LSP Guarda	Critér	io Aceit	ação (Tº LSPG	s T*Local)		Tipo de	Fotómetro			
Monitorização Temperatura		°C	°C	A	ceite S	IMNÃO_				VAÇÕES			
Monitorização Temperatura					ceite S								-
	_						_		_				
	Bal, Ciano(ca	°C	°C °C	A A	ceite S ceite S	IMNÃO_ IMNÃO_				rações			
Elaborado				Ve	rificado				Δ	provado			

Anexo III - Preparação de Soluções

Preparação de soluções padrão de nitratos

São utilizadas duas soluções comerciais de nitratos, uma de controlo e uma de validação de 1000 mg·L⁻¹.

2 soluções padrão de controlo	Solução inicial de 100 mg·L ⁻¹	2 soluções padrão de calibração
2 mg·L ⁻¹ 10 mg·L ⁻¹	(balão 10 mL)	2 mg·L ⁻¹ 50 mg·L ⁻¹

O ensaio de recuperação é efectuado com a solução comercial de 1000 mg·L⁻¹, utilizando-se a mesma concentração da solução padrão de controlo de 10 mg·L⁻¹, perfazendo-se com a amostra.

• Preparação de soluções padrão de nitritos

São utilizadas duas soluções comerciais de nitritos, uma de controlo e uma de validação de 1000 mg·L⁻¹.

2 soluções padrão de controlo	Solução inicial de 1 mg·L ⁻¹	2 soluções padrão de calibração
0,01 mg·L ⁻¹ 0,02 mg·L ⁻¹	(balão 10 mL)	0,01 mg·L ⁻¹ 0,1 mg·L ⁻¹

O ensaio de recuperação é efectuado com a solução inicial de 1 mg·L⁻¹, utilizando-se a mesma concentração da solução padrão de controlo de 0,02 mg·L⁻¹, perfazendo-se com a amostra.

• Preparação de soluções padrão de amónio

São utilizadas duas soluções comerciais de amónio, uma de controlo e uma de validação de 1000 mg·L⁻¹.

2 soluções padrão de controlo	Solução inicial de 10 mg·L ⁻¹	2 soluções padrão de calibração
0,05 mg·L ⁻¹ 0, 2 mg·L ⁻¹	(balão 10 mL)	0,05 mg·L ⁻¹ 0,5 mg·L ⁻¹

O ensaio de recuperação é efectuado com a solução inicial de 10 mg·L⁻¹, utilizando-se a mesma concentração da solução padrão de controlo de 0,2 mg·L⁻¹, perfazendo-se com a amostra.

• Preparação de soluções padrão de ferro

São utilizadas duas soluções comerciais de ferro, uma de controlo e uma de validação de 1000 mg·L⁻¹.

2 soluções padrão de controlo	Solução inicial de 10 mg·L ⁻¹	2 soluções padrão de calibração
0,05 mg·L ⁻¹ 0, 2 mg·L ⁻¹	(balão 20 mL)	0,05 mg·L ⁻¹ 1 mg·L ⁻¹

O ensaio de recuperação é efectuado com a solução inicial de 10 mg·L⁻¹, utilizando-se a mesma concentração da solução padrão de controlo de 0,2 mg·L⁻¹, perfazendo-se com a amostra.

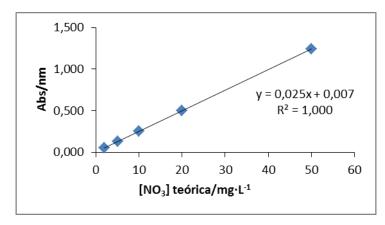
Preparação de soluções padrão de alumínio

São utilizadas duas soluções comerciais de alumínio, uma de controlo e uma de validação de 1000 mg·L⁻¹.

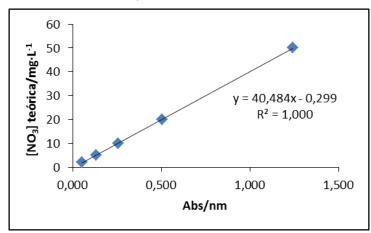
2 soluções padrão de controlo	- Solução inicial de 10 mg·L ^{·1} (balão 10 mL)	2 soluções padrão de calibração
0,05 mg·L ⁻¹ 0, 2 mg·L ⁻¹		0,05 mg·L ⁻¹ 0,5 mg·L ⁻¹

O ensaio de recuperação é efectuado com a solução inicial de 10 mg·L⁻¹, utilizando-se a mesma concentração da solução padrão de controlo de 0,2 mg·L⁻¹, perfazendo-se com a amostra.

• Preparação de soluções padrão de manganês

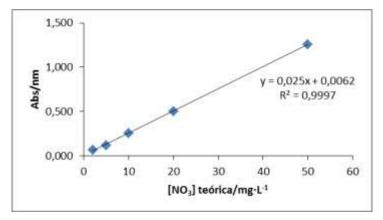

São utilizadas duas soluções comerciais de manganês, uma de controlo e uma de validação de 1000 mg·L⁻¹.

2 soluções padrão de controlo	Solução inicial de 1 mg·L ⁻¹ (balão 20 mL)	2 soluções padrão de calibração
0,01 mg·L ⁻¹ 0,02 mg·L ⁻¹		0,01 mg·L ⁻¹ 0,1 mg·L ⁻¹

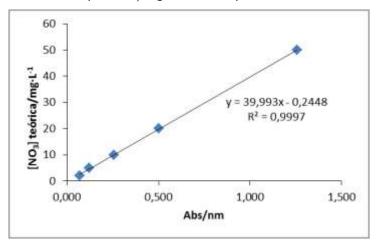

O ensaio de recuperação é efectuado com a solução inicial de 1 mg·L⁻¹, utilizando-se a mesma concentração da solução padrão de controlo de 0,02 mg·L⁻¹, perfazendo-se com a amostra.

Anexo IV - Curvas de calibração obtidas pelo "Excel" e pelo "Software"

		,	
Lot	e	Concentração/mg·L ⁻¹	Abs (nm)
LCK 14024	2	0,054	
	5	0,131	
	10	0,255	
	20	0,505	
	50	1,241	

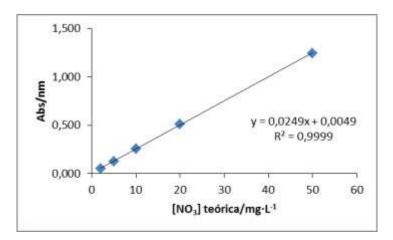


Representação gráfica obtida pelo "Excel"

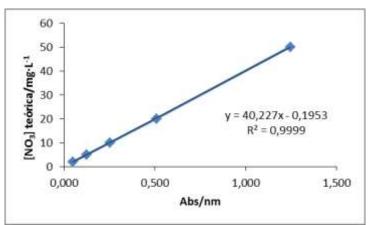


Representação gráfica obtida pelo "software"

Lote	Concentração/mg·L ⁻¹	Abs (nm)
LCK 14024	2 5 10 20 50	0,068 0,121 0,256 0,503 1,258

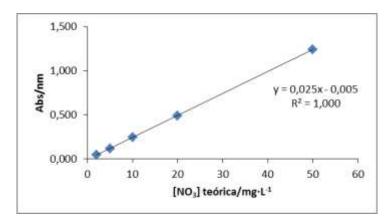


Representação gráfica obtida pelo "Excel"

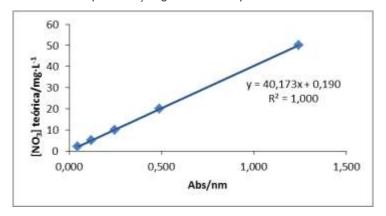


Representação gráfica obtida pelo "sofware"

Lote	Concentração/mg·L ⁻¹	Abs (nm)
	2	0,051
LCK 14024	5	0,127
	10	0,255
	20	0,509
	50	1,245

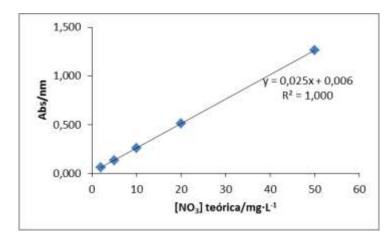


Representação gráfica obtida pelo "Excel"

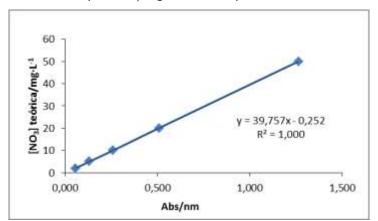


Representação gráfica obtida pelo "software"

Lote	Concentração/mg·L ⁻¹	Abs (nm)
LCK 14024	2	0,046
	5	0,119
	10	0,247
	20	0,489
	50	1,241



Representação gráfica obtida pelo "Excel"



Representação gráfica obtida pelo "software"

Lote	Concentração/mg·L ⁻¹	Abs (nm)
LCK 14092	2	0,057
	5	0,131
	10	0,259
	20	0,509
	50	1,264

Representação gráfica obtida pelo "Excel"

Representação gráfica obtida pelo "software"