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Resumo 

 

Cerca de 15% dos cancros em humanos são causados por vírus. Por exemplo, o Vírus do 

Papiloma Humano encontra-se associado a mais de 99% dos casos de cancro do colo do útero. 

As vacinas preventivas contra o Vírus do Papiloma Humano existentes no mercado apenas 

induzem imunidade mediada por anticorpos e são completamente ineficazes na presença de 

infeção. Deste modo, os problemas associados a infecções pelo Vírus do Papiloma Humano e 

progressões tumorais continuam a aumentar. A necessidade de atenuar as lesões associadas 

ao Vírus do Papiloma Humano levou ao desenvolvimento de vacinas de DNA. 

As vacinas de DNA surgiram como uma estratégia versátil para induzir respostas imunes, quer 

celulares, quer humorais. Para além disso, o DNA plasmídico (pDNA) surge como um 

transportador promissor para entrega de genes, uma vez que é produzido de forma simples, 

com elevado grau de pureza e baixo custo, e apresenta capacidade de transfectar células 

eucarióticas com níveis de expressão satisfatórios. 

Assim sendo, nos últimos anos, os níveis de plasmídeo necessário para aplicações 

farmacêuticas levaram ao desenvolvimento de novos suportes cromatográficos, com elevada 

capacidade de ligação e seletividade pela isoforma superenrolada do plasmídeo. As matrizes 

monolíticas são consideradas ideais para purificar biomoléculas como o pDNA. Estes suportes 

apresentam estruturas tridimensionais de poros interconectados que permitem a 

transferência de massa por convecção e fornecem elevadas capacidades de ligação, o que 

torna estas matrizes inovadoras. Por outro lado, a cromatografia de afinidade com 

aminoácidos revelou-se uma abordagem promissora devido ao bioreconhecimento seletivo da 

isoforma superenrolada do pDNA, uma vez que esta estratégia se baseia na ocorrência natural 

de várias interações entre proteínas e ácidos nucleicos, em organismos biológicos, que 

maioritariamente envolvem aminoácidos básicos como a L-histidina. 

As interações entre aminoácidos imobilizados e as diferentes isoformas de plasmideos podem 

ser estudadas por ressonância de plasma de superfície (RPS). O conhecimento prévio da 

afinidade aminoácido/pDNA pode posteriormente ser explorado na purificação através da 

cromatografia de afinidade. 

Desta forma, um dos objetivos deste trabalho é utilizar a técnica de RPS para selecionar o 

aminoácido L-histidina ou um dos seus derivados, benzil-L-histidina e metil-L-histidina, que 

tem maior afinidade com o pDNA, para posteriormente imobilizar o ligando mais promissor 

numa matriz monolítica. 

Inicialmente foram realizadas várias experiências de RPS utilizando três plasmídeos de 

tamanhos diferentes (6,05, 8,70 e 14 quilo pares de bases) e com as isoformas previamente 

separadas (circular aberta, superenrolada e linear). Os resultados revelaram que, no geral, a 

afinidade dos plasmídeos para o ligando de L-histidina e seus derivados, era elevada (KD >10-8 

M)  e a afinidade mais elevada ocorreu com a isoforma linear do HPV-16 E6/E7/L-histidina, 
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3,34 x 10-10 ± 0,0209 M. Desta forma, a L-histidina foi o aminoácido selecionado para ser 

imobilizado na matriz monolítica. 

Após preparação do suporte monolítico de L-histidina, foram realizados vários estudos 

cromatográficos com amostras mencionadas anteriormente. No geral, a isoforma 

superenrolada promoveu interações fortes com o monolito de L-histidina e a separação das 

isoformas foi conseguida. A separação das isoformas dos plasmídeos não se alterou com 

variação da taxa de fluxo. Estudos de capacidade de ligação dinâmica do monolito L-histidina 

revelaram que a sua capacidade de ligação máxima foi 11,03 mg/mL, com uma taxa de fluxo 

de 0,5 mL/min e uma solução de plasmídeo de 0,05 mg/mL. Estes resultados foram 

comparados com os valores de capacidade do suporte convencional de L-histidina-agarose, de 

um monolito não modificado e um monolito modificado com outro aminoácido, a aginina. A 

maior diferença nos resultados foi verificada com a matriz convencional de L-histidina-

agarose, em que a capacidade do monolito de L-histidina foi cerca de vinte e nove vezes 

maior do que a capacidade da matriz convencional, usando as mesmas condições de 

saturação. Em relação ao monolito não modificado e à matriz monolítica modificada com o 

aminoácido arginina, os valores de capacidade do monolito de L-histidina revelaram ser 

ligeiramente superiores, em ambos os casos.  

De um modo geral, a cromatografia de afinidade pode beneficiar das análises de afinidade 

exploradas por RPS. A combinação do ligando de L-histidina com o suporte monolítico 

permitiu a separação da isoforma superenrolada do plasmídeo HPV-16 E6/E7. 
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Abstract 
 

About 15% of human cancers are caused by viruses. For instance, the particular case of the 

high-risk human papillomavirus (HPV) is associated with more than 99% of cervical 

carcinomas. The preventive vaccines for HPV infection available in the market only induce 

the antibody immunity and are completely ineffective when the infection is already present. 

Therefore, the problematic associated to HPV infections and tumor progressions continue to 

be unsolved. Thus, the urge to attenuate the HPV associated lesions led to the development 

of DNA vaccines. 

DNA vaccines emerged as a versatile strategy to induce both humoural and cellular immune 

immune responses. In addition, plasmid DNA (pDNA) arose as a promising vehicle for gene 

delivery, due to its simple manufacturing process with high purity degree and low cost, as 

well as its ability to transfect eukaryotic cells with satisfactory expression levels. 

Therefore, in the last years, the growing demand of pharmaceutical-grade pDNA fostered the 

development of new chromatographic supports, allowing high capacity and selectivity by the 

supercoiled (sc) pDNA. The innovative monolithic matrices are considered advantageous 

supports to purify large biomolecules, such as pDNA, due to their tridimensional 

characteristics of interconnected pores, which allows good mass transfer properties and 

binding capacity. Amino acid-affinity chromatography has revealed to be a promise approach 

that selectively recognizes the sc pDNA, since this strategy is based on natural occurrence of 

multiple interactions between proteins and nucleic acids in biological organisms, which 

mainly involve basic amino acids such as L-histidine.  

Surface Plasmon Resonance (SPR) Biosensor can be used to exploit the interactions between 

immobilized amino acids and different plasmid topologies to provide further structural 

information for affinity chromatography purification. 

Thus, the aim of this work was to perform a screening of L-histidine amino acid and their 

derivatives, Im-benzyl-L-histidine and L-methyl-L-histidine, employing the SPR technique in 

order to modify a monolithic support with the selected ligand, to purify pDNA. Several 

experiments were performed with three plasmids of different sizes (6.05, 8.70 and 14 kilo 

base pairs) and different isoforms (open circular, sc and linear), separately. The results 

revealed that the overall affinity of plasmids to L-histidine ligand and their derivatives was 

high (KD >10-8 M) and the highest affinity was found for HPV-16 E6/E7/L-histidine interaction, 

3.34 x 10-10 ± 0.0209 M. Therefore, L-histidine was selected for immobilization on a 

monolithic matrix. 

After preparation of the histidine monolithic support, chromatographic studies were also 

accomplished with the aforementioned samples. In general, the sc isoform developed strong 

interactions with the support and the separation of plasmid isoforms was achieved by 

decreasing ammonium sulfate concentration. The separation of plasmid isoforms remained 
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unchanged by flow rate variations. The breakthrough experiments of L-histidine monolith 

revealed satisfactory dynamic binding capacity when compared to other matrices. 

Overall, affinity chromatography can benefit from affinity analysis experiments provided by 

SPR biosensor, and the combination of L-histidine ligand with the monolithic support can be a 

promising strategy to purify the sc pDNA with the desirable purity degree for pharmaceutical 

applications, such as the DNA vaccines directed against the HPVs. 

 

 

 

Keywords 

 

Affinity ligands, Dynamic binding capacity, Human papillomavirus, L-Histidine monolith, 

Supercoiled plasmid DNA, Surface Plasmon Resonance. 
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1. Gene therapy and DNA vaccines 
 

Gene therapy may be defined as the cure, treatment or prevention of human diseases using 

nucleic acids. This can be achieved by gene addition, gene correction and gene knockdown, 

depending on the type of disease, being the gene addition the most attempted strategy, since 

the other aforementioned strategies are technically more difficult (Kauffman et al., 2013). 

Gene therapy can be categorized into germ line and somatic gene therapy. In the somatic 

gene therapy approach, the changes resulting from insertion of genetic material in some 

target cells will not pass along to the next generation, whereas in germ line gene therapy 

approach, the therapeutic or modified gene will be passed onto the next generation, but 

regulatory agencies do not allow such approach due to technical and ethical reasons (Haritha 

et al, 2012). 

Somatic gene therapy can be performed using two different strategies to vector 

administration, in vivo and ex vivo (Kauffman et al., 2013; Haritha et al, 2012). The in vitro 

strategy involves the direct vector delivery into the target cells of the patient, as shown in 

figure 1. The therapy achievement relies on efficient uptake of the therapeutic gene by the 

target cells, and its prior uptake by nucleus, intracellular degradation and its expression 

capability. The ex vivo strategy involves the target cells isolation from the patient, genetic 

modification outside the body and autologous transplant of the modified cells into the patient 

(figure1), being less likely to trigger immune responses (Naldini, 2011).  

(A) 

(B) 

Figure 1. Gene transfer strategies. (A) in vivo strategy: Direct vector delivery to patient cells. (B) 
ex vivo strategy: Isolation, genetic modification and transplantation of modified cells into the 
patient (Kauffman et al., 2013). 
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On the other hand, DNA vaccines are based on the conventional vaccines principle, since they 

are used to produce immunological responses against infectious agents. Nevertheless, 

conventional protein based vaccines only induce an humoral response from the immune 

system and vaccines derived from live attenuated organisms induce cellular immune 

response, while DNA vaccines are able to stimulate both antibodies and cell-mediated 

components (Liu, 2011). 

DNA vaccines take advantage of genetic information that is delivered by a system able to 

induce an immune response against a given antigen. Upon inoculation, the individual shall 

produce a strong and enduring immune response against the encoded protein antigen, 

associated to the pathology (Liu, 2010). Therefore, DNA vaccines may be advantageous in 

terms of safety when compared with conventional vaccines, such as conventional live virus 

vaccines, since can reverse to a pathogenic form. Besides, DNA vaccines can be manufactured 

in a relatively cost-effective manner and easily stored. Other advantages are the versatility 

and rapid design of DNA vaccines, since multiple antigenic genes can be given in one 

formulation (Liu, 2010; Saade et al., 2012). 

 

1.1.  Delivery systems 

 

Several delivery systems have been developed over the years to transport the therapeutic 

gene to the target cells. Therapeutic genes can be categorized into gene inhibitors or gene 

inductors.  

The gene inhibitors category include: oligonucleotides, ribozymes, DNAzymes, aptamers and 

small interfering RNAs (siRNAs). Oligonucleotides are short single-stranded segments of DNA 

able to selectively inhibit the expression of a single protein; ribozymes interact at the mRNA 

level, the RNA molecules are capable of sequence specific cleaving of mRNA; DNAzymes 

present strong catalytic activity and have high potential as gene suppression agents; aptamers 

are small single-stranded or double-stranded nucleic acid segments that can directly interact 

with proteins; siRNAs are short double-stranded RNA segments which nucleotide bases are 

complementary to the mRNA sequence of the protein whose transcription is blocked. Gene 

inductors, such as plasmids containing transgenes, are high molecular weight, double-

stranded DNA constructs, with transgenes that encode specific proteins (Patil et al., 2005). 

 

Although some limitations and problems have been solved or minimized, some barriers to 

deliver the naked therapeutic nucleic acids still remain unsolved (Kay, 2011). Those barriers 

are the vector uptake, transport and uncoating, vector genome persistence, sustained 

transcriptional expression and the host immune response, as it is represented in figure 2.  
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After vector administration, several parameters influence successful transgene expression of 

therapeutic levels, namely the vascular supply, endothelial barriers, vector size and 

interactions between host cell receptors and the vector ligand. The cell membrane, 

endosomal escape and the nuclear membrane are the three barriers that non-viral delivery 

systems have to overcome until to reach the nucleus, while virus have efficient mechanisms 

to enter the cell and localize the nucleus (Thomas et al., 2003; Kay, 2011).  

The vector genome persistence depends whether it integrates into host cellular chromatin or 

predominantly persists in the cell nucleus as extrachromosomal episomes. Non-integrating 

vectors can mediate persistent transgene expression in non-proliferating cells, but integrating 

vectors are more widely used when the genetic alteration should remain stable in dividing 

cells (Thomas et al., 2003), although they present the risk of insertional mutagenesis (Biasco 

et al., 2012).   

Sustained transcriptional expression refers to the fact that the transgene expression may be 

desired during lifetime or limited periods, depending on the specific target disease (Thomas 

et al., 2003; Kay, 2011). 

The transgene product or the vector may be recognized by the host immune system as 

foreigner and therefore, an immune response can be triggered, limiting the transgene product 

expression (Thomas et al., 2003; Kay, 2011). 

These aforementioned limitations illustrate the importance of correct selection of a suitable 

delivery system to carry the therapeutic nucleic acid for a specific purpose. Nevertheless, the 

delivery systems can be categorized under viral delivery systems and non-viral delivery 

systems and each category present advantages and limitations. 

Figure 2. Barriers to delivery systems:  a) vector uptake, transport and uncoating, vectors are internalized by 
various processes and they must reach escape the endosome to reach the nucleus without being degraded. b) 
Vector genome persistence, the DNA can exist as an episomal molecule or be integrated into the host 
chromosome. c) Sustained transcriptional expression that should match the time required to treat the target 
disease. d) The host immune response can limit the gene therapy success (Kay, 2011). 
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1.1.1. Viral and non-viral delivery systems: advantages and limitations 

 

The most widely used vectors are the viral delivery systems, adenovirus and retrovirus, 

followed by the non-viral delivery system, plasmid DNA (figure 3) that has received significant 

attention over the last years, becoming increasingly common (Ginn et al., 2013). 

 

  

  

 

  

 

 

 

 

The plasmid DNA (pDNA) emerges as a promising vehicle for gene delivery because it is a 

double-stranded biomolecule with high molecular weight, easily constructed with any 

trangenes of interest, obtained in large scale under satisfactory purity degree by a simple 

manufacturing process with low cost, and able to transfect eukaryotic cells with satisfactory 

expression levels. A more detailed description of pDNA technology is presented in section 3. 

The obstacle of naked pDNA clinical application is the efficiency to cross the extra- and 

intracellular barriers, but this problem is being addressed with delivery techniques, addition 

of adjuvants, and various prime-boost strategies (Saade and Petrovsky, 2012; Coban et al., 

2008). 

 

1.1.1.1. Viral delivery systems 

  

The virus mediated gene transfer is highly efficient because gain easily access to host cells 

and make use of their machinery to facilitate the replication. Viral delivery systems such as 

retrovirus, lentivirus, adenovirus, adeno-associated virus, and herpes simplex virus have been 

widely used in clinical trials (Walter and Stein, 2000) and their main advantages and 

limitations are summarized in table 1. 

 

 

 

 

 

Figure 3.  Distribution of delivery systems used in clinical trials (Ginn et al., 2013). 
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Table 1. Main limitations and advantages of the most widely used viral delivery systems (adapted from 
Thomas et al., 2003). 

 

Other limitations associated with viral delivery systems include hampered production, 

repeated administrations due to host inflammatory responses and potential insertional 

mutagenesis of some viral delivery systems (Haritha et al., 2012). 

 

1.1.1.2. Non-viral delivery systems 

 

The use of non-viral delivery systems became popular to overcome the bottlenecks associated 

with the use of viral delivery. Non-viral delivery consists on synthetic or natural compounds or 

physical forces to deliver the therapeutic nucleic acid into the cell. They are considered less 

toxic and immunogenic, since they do not contain viral contaminants. The non-viral gene 

delivery offers other advantages, once there is no size limit on the amount of genes that they 

can deliver. They are also easily produced and allow repeated administration, without 

triggering inflammatory responses (Al-Dosari and Gao, 2009). 

The major drawbacks associated with non-viral delivery systems, such as the low efficacy of 

cell invasion when compared with viral vectors and the short-lived gene expression, are being 

addressed with constant developments in the field (Kamimura et al., 2011).  

 

 

Viral vector Main limitations Main advantages 

Retrovirus 

Only transduces dividing cells; 
integration might induce 

oncogenesis in some applications; 
Small packaging capacity 

Persistent gene transfer in 
dividing cells 

Lentivirus 
Integration might induce 

oncogenesis in some applications; 
Small packaging capacity 

Persistent gene transfer in 
most tissues 

Herpes simplex virus 
Transient transgene expression in 

cells other than neurons; high 
inflammatory potential 

Large packaging capacity 

Adeno-associated 
virus 

Small packaging capacity; 
Require a helper virus for 

replication and completion of their 
life cycle 

Non-inflammatory ; non-
pathogenic 

Adenovirus 
Capsid mediates a potent 

inflammatory response; Small 
packaging capacity 

Extremely efficient 
transduction of most tissues 
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The non-viral gene delivery methods can be divided into physical and chemical-based non-

viral delivery methods.  

The use of physical forces to improve the gene transfer can be performed by jet injection, 

hydrodynamic gene transfer, gene gun, electroporation and sonoporation. Jet injection is 

accomplished through a high-speed stream of therapeutic nucleic acid solution driven by a 

pressurized gas to penetrate the skin and the underlying tissues. This injection methodology 

does not induce tissue damage or significant inflammatory reactions at jet-injection sites 

(Ren et al., 2002). The hydrodynamic gene transfer is based on the injection of a large 

therapeutic nucleic acid volume in short period of time, which leads to a reversible 

permeability change in the endothelial lining and the generation of transient pores. This 

invasive procedure has been modified in order to achieve its clinical applicability (Fabre et 

al., 2008). The gene gun delivery method depends on the impact of heavy metal particles 

coated with the therapeutic nucleic acid on target tissues (Uchida et al., 2002). These 

particles are accelerated by highly pressurized inert gas and can easily cross the cell and 

nuclear membranes, releasing the nucleic acid adsorbed on their surface into the nucleus. 

Electroporation uses an electric field to alter the cell permeability. The therapeutic nucleic 

acid is injected to the target tissues and then electric pulses are applied (Marti et al., 2004). 

On the other hand, sonoporation uses ultrasound waves to create plasma membrane defects 

by acoustic cavitation (Nomikou et al., 2013).  

Examples of chemical-based delivery systems are cationic lipids and cationic polymers. These 

vectors form condensed complexes with therapeutic nucleic acids, negatively charged, 

through electrostatic interactions. The complexes facilitate cell uptake and intracellular 

delivery and protect the therapeutic nucleic acid (Morille et al., 2008).  

Overall, an ideal carrier has low toxicity and immunogenicity and higher efficiency. However 

it has not yet been achieved; despite several efforts continue to be made to develop hybrid 

carriers. The large array of novel carriers is in continuous investigation to improve safety and 

enhanced therapeutic efficacy. In these carriers, new abilities are added or certain 

undesirable elements are replaced (Thomas et al., 2003; Huang and Kamihira, 2013). 

 

 

 

 

 

 



 9 

2. Therapeutic applications 

  

From the beginning, gene therapy substantial progresses have been made in this field. 

Important milestones were achieved, as for example, China became the first country to 

approve a gene therapy based product for clinical use, Gendicine, an adenoviral vector for 

the treatment of head- and neck squamous cell carcinoma (Zhaohui, 2005). In Europe, gene 

therapy has also taken the next step with approval of Glybera, an adeno-associated viral 

vector for the treatment of familial lipoprotein lipase deficiency (Wirth and Yla-Herttuala, 

2013). These achievements open perspectives of more gene-based therapies in near future. 

Cancer, cardiovascular disease and inherited monogenic diseases lead the ranking of diseases 

addressed in clinical trials by gene therapy (Ginn et al., 2013), as can be seen in figure 4.  

 

 

 

 

   

 

 

 

However, due to the enormous therapeutic potential of gene therapy, several other 

conditions can be addressed.  

A broad range of viral and non viral diseases are being addressed in DNA vaccine clinical 

trials. The majority of clinical trials are focused in human immunodeficiency virus (HIV) and 

cancers. Influenza, hepatitis B, hepatitis C, malaria and human papillomavirus (HPV) are also 

being exploited in clinical trials (Ferraro et al., 2011). 

The preventive HPV vaccines in the market, Gardasil and Cervarix do not induce appreciable 

levels of cellular immune responses, and thus, the burden of HPV infections or HPV-associated 

lesions proceeds to increase (Ferraro et al., 2011). Therefore, strong cellular responses are 

required and DNA vaccines appear promising candidates to induce the desired immune 

response.  

 

 

 

Figure 4. Indications addressed by gene therapy clinical trials (Ginn et al., 2013). 
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2.1. Human papillomavirus 

About 15% of all human cancers are caused by viruses. Human papillomaviruses are 

responsible for at least 5% of tumors worldwide, although not sufficient cause of cervical 

cancer, the HPV infection represents the major etiologic factor in the neoplasia development 

(Tota et al., 2011). Other cancer subsets like oropharyngeal, penile, vaginal, vulvar and anal 

cancer are also attributed to HPV (Trottier and Burchell, 2009), which is currently one of the 

most common sexually transmitted infections worldwide (Dunne et al., 2007). 

Human papillomavirus are small, circular and double-stranded DNA virus, members of the 

Papillomaviridae family. All HPV show a pronounced tropism for epithelial cells, and 

infections by these viruses are associated with hyperproliferative lesions of mucosa and skin 

(Howley and Lowry, 2007). These mucosal HPVs can be classified as low- or high-risk, 

according to the outcome of associated lesions. Low-risk HPVs, such as HPV6 or HPV11, cause 

genital warts, benign lesions, whereas high-risk HPVs, like HPV16 or HPV18, cause 

intraephitelial lesions with the propensity for malignant progression (Schlecht et al., 2001). 

High-risk HPVs are associated with greater than 99% of cervical carcinomas (Schiffman et al., 

2007).  

All HPV viruses share a common genome organization of about 7.9 kbp. The circular DNA can 

be divided into three functional regions: a non-coding regulatory region, known as the 

upstream regulatory region (URR), which modulates viral DNA replication and gene 

transcription; a region composed by HPV early genes (E1,E2, E3, E4, E5, E6,E7), which code 

for proteins related with viral genome transcription, replication, persistence and  regulation 

of cell proliferation. And finally, a region that codes for HPV late genes (L1 and L2) and 

structural genes, which is responsible for the major and minor capsid proteins codification (as 

shown in figure 5) (Doorslaer and Burk, 2010). 

 

 

 

 

 

 

 

 

 

 
Figure 5. HPV genome: structure and organization. The gray box represents the upstream regulatory 
region; the dashed arrows represent early genes and solid arrows the late genes (Doorslaer and Burk, 
2010). 
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HPV life cycle is associated with epithelial differentiation. The basal epithelial cells are 

initially infected by HPVs, where the viral episome is maintained extrachromosomally at low 

copy number (viral genome is maintained at about 100 copies per cell). A productive infection 

with genome amplification, capsid protein expression and virion mounting occurs in cells from 

the suprabasal layers. On one hand, cells above the basal layer are terminally differentiated, 

on the other HPV does not code for its own set of replication proteins. Thus, the HPV has to 

induce host cells re-entry in S-phase to take advantage of host replication machinery 

(Doorslaer and Burk, 2010).  

The products of E6 and E7 early genes are essential in the process of HPV induced cellular 

immortalization and transformation (DeFilippis et al., 2003). The E7 expression, the major 

HPV oncoprotein, is sufficient to immortalize primary human epithelial cells at low 

frequency. E7 interacts with cellular regulatory protein complexes and alters or neutralizes 

their normal functions, leading to impaired cell cycle arrest responses and deregulation of 

cellular differentiation and apoptosis mechanisms. E7 interacts with retinoblastoma protein 

and mediates its degradation, affecting its growth-suppressive function. As consequence, 

transcriptional genes necessary for S-phase entry and progression are activated. The E6 

oncoprotein targets the tumor suppressor p53, leading to its proteosomal degradation (Howie 

et al, 2009; McLaughlin-Drubin and Münger, 2009).  
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3. Plasmid DNA technology 

 

3.1. Plasmid DNA biosynthesis 

 

The demand for clinical grade pDNA application has led to technology development in the 

pDNA manufacturing. Efforts to achieve high upstream plasmid yields have been made in 

vector design (Huang and Kamihira, 2013), host strain (Carnes et al., 2006) and fermentation 

processes (Williams et al., 2009a). 

The origin of replication and selection marker are the most important prokaryotic vector 

elements that are functionally necessary for host production and directly influence the 

outcome of manufacturing process. The origin of replication is essential to propagate the 

plasmid as an extrachromosomal DNA element in the host cells, and the selection marker is 

essential to select bacterial clones carrying the plasmid, through the plasmids antibiotic-

resistance gene (Williams et al., 2009b; Tolmachov, 2009). 

Plasmids, encoding the gene of interest, are generally biosynthesized by autonomous 

replication in Escherichia coli (E. coli) hosts, a bacterium widely used in recombinant proteins 

safe production. The fermentation process key parameters are cell density, plasmid copy 

number, homogeneity and yield that are strongly influenced by medium-composition and 

harvesting point (Carnes et al., 2011). Plasmid yield is maximized by the increase of cell 

density measured by optical density units (dry or wet cell mass per unit culture volume). The 

optimum harvesting time point is critical in order to obtain high sc isoform homogeneity at 

the end of the fermentation process, since other plasmid topologies can arise by the action of 

nucleases and they are difficult to separate from the sc isoform (Williams, 2013). 

3.2. Downstream processing 

The downstream process is intended to remove host impurities, such as RNA, gDNA and 

endotoxins to acceptable levels (table 2 summarizes impurity levels acceptable by regulatory 

agencies).  

 

Table 2. Regulatory agencies specifications (Stadler et al., 2004; Ferreira et al., 2000).  

Impurity FDA specifications 
Appearance 

Plasmid homogeneity 
Proteins 

RNA 
gDNA 

Endotoxins 

Clear, colorless solution 
<97% supercoiled 

Not detectable (by micro-BCA method) 
Not detectable (by 0.8% agarose gel) 

<2 µg/mg plasmid ( by PCR) 
<0.1 EU/ng plasmid (by LAL assay) 
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The main challenge of this step remains in common characteristics shared by pDNA and host 

impurities, namely the negative charge (RNA, gDNA and endotoxins), molecular mass (gDNA 

and endotoxins) and hydrophobicity (endotoxins) (Stadler et al., 2004; Ferreira, 2005). 

The presence of impurities may detrimentally affect the vaccine performance. For instance, 

impurities like endotoxins may reduce the transfection efficiency, produce cytotoxic effects 

on mammalian cells and, if present in large amounts in vivo, can produce symptoms of toxic 

shock syndrome (Davis et al., 1996). 

3.2.1. Primary isolation 

Following fermentation, the host cells are disintegrated and the plasmids are released for the 

extracellular medium. Several processes have been developed to disrupt the bacterial cells 

and release their content but the method of choice and more widely used is alkaline lysis, 

firstly described by Birnboim and Doly (Birnboim and Doly, 1979), or its variations (Holmes 

and Quigley, 1981). 

In alkaline lysis, the cell disruption is achieved at high pH (pH 12) with sodium hydroxide 

(NaOH) and sodium dodecylsulfate (SDS) to disintegrate the cell walls. In this process the pH 

value and the residence time have to be accurately controlled to avoid plasmid degradation, 

since these alkaline conditions also promote sc pDNA unwind. If the lysis process is carried out 

above pH 12.5 or if in pH extremes, the anchor base pairs, that prevented the complete 

separation of complementary strains, may be lost, resulting in denatured pDNA. Potassium 

acetate is subsequent applied to neutralization, which precipitates SDS together with 

denatured gDNA and cellular debris. Thus, precipitated impurities can be removed by 

filtration or centrifugation and the majority of pDNA remains in the supernatant. During these 

steps, mixing procedures have to be done with care since shear forces can induce damages in 

the supercoiled plasmid isoform (Prather, 2003). 

3.3. Plasmid DNA purification 

The recovery and purification of pDNA from a clarified cell lysate may involve several 

techniques. The techniques most widely used in this process are precipitation and pDNA 

extraction by organic solvents, ultrafiltration and predominately different chromatographic 

processes (Prather, 2003; Prazeres and Ferreira, 2004). In general, the lysate sample can be 

first concentrated by an alcohol precipitation and then clarified by a chaotropic salt 

precipitation.    
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Chromatography techniques have been used, singly or combined, to achieve a final pDNA 

product that respects the regulatory agencies recommendations to be used as a 

biotherapeutic agent (Prazeres and Ferreira, 2004). Analytical chromatography is also a very 

useful tool to monitor the pDNA quality through the production process (Diogo et al., 2003).  

3.3.1. Chromatographic techniques 

In separation and purification of pDNA by chromatography, the analytes are distributed 

between the stationary and mobile phase. This technique exploits different types of 

interactions that the analyte can develop with the stationary or mobile phases. The analyte 

with relative affinity for both phases determines the interaction magnitude. The analyte that 

strongly interact with stationary phase will be retained longer in the chromatographic system.  

The successful chromatographic separation depends upon the selection of the most 

appropriate chromatographic process followed by the optimization of the binding and elution 

conditions associated with the separation (Urthaler et al., 2005).  

3.3.1.1. Size exclusion chromatography 

The principle of the size exclusion chromatography involves separation of molecules based on 

their molecular size and shape. The analytes are passed through the column particles with a 

narrow range of pore sizes. Larger analytes will be excluded from the pores and will pass 

through the interstitial spaces between the particles, being the firsts to appear in the eluate. 

Smaller analytes will be distributed between the mobile phase, inside and outside the 

particles, and will therefore pass the column at slower rate, being eluted in last. Size 

exclusion chromatography can be used to separate pDNA on basis of size and can be used 

separately or sequentially with other chromatographic methods. Since this method shows 

some drawbacks, such as limited capacity and selectivity for pDNA (Prazeres and Ferreira, 

2004; Horn et al., 1995), it is not preferred as an initial purification step but as an ideal 

polishing step, enabling residual contaminants removal with simultaneous buffer exchange 

into an appropriate buffer for storage or formulation.  

3.3.1.2. Ion exchange chromatography 

Ion exchange chromatography is frequently chosen for the separation and purification of 

charged molecules (proteins, peptides, nucleic acids, polynucleotides), based on the 

attraction between oppositely charged ion exchanger, the stationary phase and analyte. 

There are two types of ion exchangers, cation and anion exchangers. The negatively charged 

groups will attract positively charged cations and the positively charged groups will attract 

negatively charged anions, respectively. Anion exchange chromatography can be applied for 

pDNA separation, the negatively charged phosphate groups on the pDNA backbone will 

interact with the positively charged groups on the stationary phase. By an increasing salt 
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gradient, the different nucleic acids should elute according of the increase charge density, 

depending on their chain length and conformation (Quaak et al., 2009). The main challenge 

to achieve pDNA purification with a single anion exchange chromatography step is the lack of 

selectivity, owing to similar binding affinities between the pDNA and impurities (Lyddiat and 

O’Sullivan, 1998; Ongkudon and Dankuah, 2011).   

3.3.1.3. Hydrophobic interaction chromatography 

This technique takes advantage of the higher hydrophobicity of single stranded nucleic acids 

and endotoxins. The pDNA have the hydrophobic bases packed inside the double helix, and 

thus, the hydrophobic interaction of pDNA with the stationary phase is minimal, whereas 

single stranded nucleic acid impurities show a higher exposure of the hydrophobic groups 

(Ferreira, 2005; Urthaler et al., 2005). The major drawback of hydrophobic interaction 

chromatography is associated with high salt concentration used in the binding and elution 

strategies (Iuliano et al., 2002). 

3.3.1.4. Affinity chromatography 

Affinity chromatography is the most specific separation technique. As a classical definition, 

this technique is based on a selective association between the solute and a complementary 

molecule, the ligand. The association is reversible and therefore the solute can recovered in 

the active conformation. 

The ligands, with affinity to target molecules on the solute, are covalently attached on a 

chromatographic matrix. The target molecules elution can be promoted by competitive agent 

addition or pH, ionic strength or polarity conditions change (Roque and Lowe, 2008). 

The natural biological processes, such as molecular recognition, are exploited by several 

affinity chromatographic modalities employed in pDNA purification. Immobilized metal-ion, 

triple-helix, protein-DNA and amino acid-DNA affinity chromatography have been employed 

with a specific ligand to separate pDNA on the basis of its biological function or chemical 

structure (Ghanem et al., 2013). Table 3 summarizes the principle, disadvantages and 

advantages of these four affinity chromatography methodologies.  
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Table 3. Affinity chromatography methodologies for nucleic acids purification (adapted from Sousa et 
al., 2008a). 

Affinity 
type 

Principle 
Specific 
binding 

Advantages Limitations 

Immobilized 
metal-ion 

Chelating ligands 
charged with divalent 

metal ions 
specifically interact 

with aromatic 
nitrogen atoms 

Single-
stranded 
nucleic 
acids 

Efficient resolution of RNA 
from gDNA  and pDNA; 

high endotoxin removal; 
separation of denatured 

pDNA 

pDNA in the 
flowthrough; 

incomplete RNA 
capture in complex 

mixtures; co-
elution of all DNA 

forms 

Triple-helix 

Specific sequences 
present on DNA are 
recognized by an 

immobilized 
oligonucleotide, 

forming a triple-helix 

Double-
stranded 

DNA 

Discrimination of different 
plasmids based on their 

sequence; sc pDNa 
isolation in one 

chromatographic step: 
reduction of RNA, gDNA 
and endotoxin levels; 
possibility for scale-up 

Loss of pDNA during 
wash step; low 

yields; slow 
kinetics of triple-
helix formation; 

long 
chromatographic 

run times 

Protein-
DNA 

A protein or protein 
complex immobilized 

on the matrix 
specifically 

recognizes a DNA 
motif 

pDNA 

Discrimination of different 
plasmids based on their 

sequence; pDNA isolation 
from clarified lysates; 

Elimination of proteins and 
RNA from preparation 

Relatively low 
yields; 

contamination with 
gDNA 

Amino acid-
DNA 

Multiple interactions 
occur between 

immobilized amino 
acids and nucleic 

acids 

sc pDNA 

Sc pDNA purification in a 
single chromatographic 

step; efficient elimination 
of RNA, gDNA, proteins 

and endotoxins 

Elution with high 
salt concentration 
and relatively low 

yields 

 

These methodologies have the power to eliminate additional steps while increasing yields and 

improving process economics.  

The selection of the amino acids as affinity ligands was based on natural occurrence of many 

different interactions between proteins and nucleic acids in biological organisms, which 

mainly involve basic amino acids such as L-histidine or L-arginine (Sousa et al., 2010).  

Due to the common characteristics shared by pDNA and host impurities, several 

chromatographic steps had to be applied in order to obtain the purified sc pDNA isoform. 

Therefore, amino acid-DNA affinity chromatography has revealed to be a promissory 

approach, since allows a specific binding with sc pDNA isoform in a single chromatographic 

step, through specific amino acids bound to the agarose matrix, such as L-histidine (Sousa et 

al., 2006), L-arginine (Soares et al., 2008b) and L-lysine (Sousa et al., 2009), eliminating the 

remaining pDNA isoforms and all the impurities present on sc pDNA-containing extract. 

3.3.2. Ligands selection 

Selectivity and specificity are the key characteristics of a suitable ligand for pDNA 

purification (Sousa et al., 2010). Therefore, understanding the physicochemical 
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characteristics of pDNA becomes relevant in order to select suitable ligands for purification 

strategies. 

Briefly, plasmids are DNA molecules double stranded and covalently closed, forming a closed 

loop. Each strand of a pDNA molecule consists of a linear polymer of deoxyribonucleotides 

linked by phosphodiester bonds. When pH<4, the phosphate groups are negatively charged. 

The two anti-parallel strands are connected to each other by hydrogen bounds between 

complementary nucleotides in each strand and the two strands wind around a common axis 

originating the right handed double helix structure. This structure has highly hydrophobic 

grooves, due to the close packing of the aromatic bases, with accessible aromatic electrons 

and available sites for hydrogen bounding, which can be reached by solvent and ligand 

molecules. These structural and physicochemical characteristics can be exploited in 

purification strategies, namely to select appropriate ligands to interact with pDNA (Ferreira, 

2005). 

Synthetic and natural compounds such as dyes (Clonis et al., 2000), metal chelates (Yuchi et 

al., 2000) and amino acids can be used as affinity ligands. In addition, several atomic studies 

have described preferential interactions occurring between particular positively charged 

amino acids and nucleic acid bases (Hoffman et al., 2004). Although L-histidine, L-arginine 

and L-lysine belong to the positively charged amino acids group, the agarose matrices with 

these immobilized ligands applied on pDNA chromatography have showed different elution 

behavior. 

3.3.2.1. L-histidine and derivatives 

The use of L-histidine as an affinity ligand was first reported in a variety of peptides and 

proteins purification (Amourache and Vijayalakshmi, 1984) and more recently, as above 

mentioned, in pDNA purification using an agarose conventional matrix (Sousa et al., 2006). 

The versatility of L-histidine in molecular interactions arises from its unique structure, which 

distinguishes it among the twenty natural amino acids. The imidazole group in L-histidine side 

chain plays a major role in interactions. The molecular interactions of L-histidine can be 

classified into cation- π interactions (the imidazole motif is an aromatic ring that can interact 

with metallic cations or organic cations), π-π stacking interactions and hydrogen-π 

interactions (since the structure of L-histidine aromatic ring allow π-π stacking interactions 

and the polar hydrogen atom of L-histidine can form hydrogen-π bonds with other aromatic 

structures), coordinate bond interactions (due to the lone electron pair in the nitrogen atom 

of imidazole ring) and hydrogen bond interactions (since imidazole system is a hydrogen bond 

donor and acceptor) (Caramelo-Nunes et al., 2014; Liao et al., 2013).  

These L-histidine features derived from the imidazole ring characteristics, which highlighted 

the potential of this amino acid as a suitable ligand for chromatographic purposes. The use of 
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L-histidine derivatives, such as Im-benzyl-L-histidine and L-methyl-L-histidine, composed by 

benzyl and methyl groups in position 1 of imidazole ring appear as promising ligands as well.  

3.3.2.2. Surface plasmon resonance  

 The reversible biomolecular interactions between amino acids and pDNA molecules can be 

assessed by a label-free method, surface plasmon resonance (SPR). Thus, this method can be 

used to perform a screening of suitable ligands for affinity chromatography. 

The SPR main components are the optical light source, a sensor chip and a detection system. 

The sensor chip, the biorecognition transducer, has a thin gold layer coupled to a glass layer; 

the glass layer has higher refractive index than gold. When a light beam propagates in a 

medium of high refractive index (glass) and encounters an interface at a medium of low 

refractive index (gold) is totally reflected at a specific angle, this physical phenomenon is 

called total internal reflection. Despite the light being fully reflected, the electromagnetic 

field component penetrates over a short distance into the medium that has the lower 

refractive index (gold). The leaked electromagnetic field component is referred as the 

evanescent field, and the wave amplitude attenuates exponentially from the interface. The 

evanescent wave excites electrons within the gold layer, yielding surface plasmons that 

propagate parallel to the interface. The ligands are immobilized on the sensor chip gold 

surface (coated chemically to enhance surface immobilization) and the analytes are injected 

into a continuous flow of running buffer. Once the analyte interacts non-covalently with the 

immobilized ligand, a change in molecular weight occurs and therefore the resonance angle 

shifts (Grupta and Verma, 2009; Ritzefeld and Sewald, 2011). A change in the SPR angle of 0.1 

degrees corresponds to a change of 1000 RU (resonance units) in SPR signal 

(Thillaivinayagalingam et al., 2010). 

Biacore (GE Healthcare) is the main supplier in the SPR market (Rich and Myszka, 2010) and 

every standard device is equipped with an integrated microfluidic cartridge that forms four 

flow cells on the sensor chip. Usually the first flow cell is used as blank, to subtract the 

responses obtained in the other three flow cells, which can be used to immobilize three 

different ligands (Majka and Speck, 2007).  

There are several sensor chips available in market, all with the common gold surface but 

coated chemically different. The sensor chip CM5, from Biacore, is the most versatile chip 

with a matrix carboxymethylated dextran, covalently attached to the gold surface, in order 

to promote a hydrophilic environment for interaction with biomolecules, without interfering 

with the SPR signal. Advantageous for interactions involving small molecules with high surface 

stability, providing accuracy and precision and allowing repeated analysis on the same 

surface, accordingly to manufacturer’s instructions. 

 

Therefore, small molecules like L-histidine and their derivatives can be immobilized on the 
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sensor chip CM5 surface, using amine coupling (Fischer, 2010), and the pDNA can be injected 

on the surface, in order to evaluate the affinity of interactions, label-free and with low 

sample consumption. SPR becomes a valuable tool to select suitable ligands for 

chromatographic experiments. 

 

3.3.3. Stationary phase 

 

A ligand with high selectivity will aid in the pDNA chromatography, however conventional 

matrices exhibit some limitations that will only be surpassed with a suitable chromatographic 

matrix. 

Over the last years, several efforts have been made to overcome the chromatography 

bottlenecks associated with the stationary phases. An ideal matrix would be inexpensive, able 

to preserve the sensitive three-dimensional structure of large biomolecules but rigid enough, 

in order to avoid swelling or shrinking due to higher flow rates. More rigid stationary phases 

would resist to higher pressures and consequently higher linear velocities, enabling faster 

separations. At this point, the main barrier to fast chromatographic procedures would be the 

mass transfer between the mobile and stationary phases (Mihelic et al, 2000; Sousa et al., 

2012). Thus, functionally distinct from porous particle-based columns, the monolithic columns 

appeared as attractive supports for chromatographic purification procedures, especially of 

large biomolecules (Endres et al., 2003).  

3.3.3.1. Monoliths 

The monolithic support is a rigid macroporous polymer column, made by in-situ 

polymerization within the confines of a chromatographic column, requiring no packing 

operations. The polymerization procedure allows optimization of porous properties of the 

monolith in terms of amount and pore size, depending on the polymerization temperature, 

which enable a plethora of applications (Merhar et al., 2003; Vlakh and Tennikova, 2007). 

Moreover, monoliths are highly porous (Svec, 2010) and the pores are interconnected, forming 

a network of channels with large binding area (Endres et al., 2003). The entire mobile phase 

is forced to flow through the monolith and convection becomes the dominant transport 

mechanism. Mass transport based on convection by laminar flow is an important feature on 

the separation of large biomolecules, such as pDNA. This results in flow-unaffected resolution 

and dynamic binding capacity that enables fast chromatographic procedures with low back 

pressure (Yamamoto and Kita, 2005). Time is a crucial factor in plasmid purification due to 

the possible pDNA degradation that may affect its structure and conformation. Besides the 

crucial role of these parameters on interaction, the desired conformation for clinical proposes 

(sc isoform) may be affected by longer chromatographic procedures. 
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Overall, the combination of the versatility and capacity of monolithic supports with the 

selectivity and specificity of amino acid ligands becomes a promising strategy to find the ideal 

chromatographic support, to recognize and purify the sc pDNA isoform from the non-effective 

pDNA topologies and host components, with high purity degree and productivity. 

 

4. Aims 

 

Given the importance of DNA vaccines and the use of pDNA vectors previously mentioned, the 

main goals of the present work are: the use of the SPR technique to perform a screening of 

binding affinity between three suitable ligands (L-Histidine, Im-benzyl-L-histidine and L-

methyl-L-histidine) and  pDNA samples; the immobilization of the selected ligand on a CIMTM 

epoxy monolithic disk; Isoforms separation of three plasmids with different sizes; evaluation 

of the flow rate effect on isoforms separation; assessment of the dynamic binding capacity of 

the modified monolith. Figure 6 represents graphically the general aims of this work. 

 

 

 

 

 

 

 

  

Figure 6.  Graphical representation of the main goals in the present work. 
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Chapter II - Materials and methods 
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2.1. Materials 

 

2.1.1. Reagents 

The Hind III restriction enzyme, the GreenSafe Premium and the NZYTech Plasmid Maxi 

Columns were purchased from NZYTech (Lisbon, Portugal). Hyper Ladder I (Bioline, London, 

UK) was used as a DNA molecular weight marker.  

Sodium chloride and ammonium sulfate were purchased from Panreac (Barcelona, Spain), 

tris(hydroxymethyl) aminomethane (Tris) from Merck (Darmstadt, Germany), 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid  (HEPES) and borate buffer were from Sigma 

Aldrich (St.Louis, MO, USA). 

 

2.1.2. Plasmids 

 

The 6.05 kbp pVAX1-LacZ plasmid was provided by Invitrogen (Carlsband, CA, USA), the 8.702 

kbp HPV-16 E6/E7 plasmid, Addgene plasmid 8641 (Münger et al., 1989), and the 14 kbp 

pcDNA3-myc-FLNa S2152A plasmid, Addgene plasmid 8983, (pcDNA3-based plasmid) (Woo et 

al., 2004) were provided by Addgene (Cambrige, USA). 

 

2.1.3. Instrumentation 

 

Ultrospec 3000 UV/Visible Spectrophotometer (Pharmacia Biotech, Cambridge, England) was 

used to determine samples concentration of nucleic acids. 

Agarose gels were revealed under UV light in a transilluminator system (ILC Lda, Lisbon, 

Portugal).  

All SPR experiments were performed using a BIAcore T200 system and the BIAevaluation 

software was used for data analysis.  

The 1H NMR spectra were recorded on a Bruker Avance III 600 MHz spectrometer equipped 

with a four-channel Quadruple (QCI) resonance probe and all spectra were processed with the 

software topspin 3.1 (Bruker). 

Chromatographic experiments were performed by using the AKTA Purifier system (GE 

Healthcare Biosciences Uppsala, Sweden) and the control system software was Unicorn 

version 5.11.  
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2.1.4. Specifications  

All solutions, used in SPR and chromatographic experiments, were freshly prepared using 

deionized ultra-pure grade water, purified with a Mili-Q system from Millipore (Billerica, MA, 

USA) and analytical grade reagents were used. Elution buffers were filtered through a 0.20 

µm pore size membrane (Schleicher Schuell, Dassel, Germany) and degassed ultrasonically.  

Chromatographic experiments were carried out with monolithic disks of 0.34 mL bed volume 

(average pore size of 1500 nm in diameter) modified with L-histidine amino acid and kindly 

provided by BIA Separations (Ajdovščina, Slovenia). 

All experiments were conducted at room temperature unless otherwise stated.  

 

2.2. Methods 

 

2.2.1. Plasmids amplification by bacterial production 

 

The pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-based plasmid amplification were performed by 

autonomous replication in Escherichia coli (E. coli) DH5α, after transformation. To ensure the 

exclusive growth of transformed cells, antibiotics were applied as selection markers. The 

medium was supplemented with 30 µg kanamycin/mL for cells transformed with pVAX1-LacZ, 

100 µg ampicillin/mL for cells transformed with HPV-16 E6/E7 and 100 µg ampicillin/mL and 

50 µg Neomycin/mL for cells transformed with pcDNA3-based plasmid.  

The transformed cells harboring each plasmid were separately grown in plates at 37 ºC and 

the medium used was Luria-Broth (LB) agar, supplemented with the aforementioned 

antibiotics in accordance with the plasmid of transformed cells. In pre-fermentation, strides 

from plates of each plasmid were inoculated into 250 mL shake flasks with 62.5 mL of Terrific 

Broth (TB) medium (20 g/L tryptone, 24 g/L yeast extract, 4 mL/L glycerol, 0.017 M KH2PO4 

and 0.072 M K2HPO4), with the respective selection marker for each plasmid. The pre-

fermentation was carried out at 37 ºC under 250 rpm shaking.  

The optical density of the culture medium at a wavelength of 600 nm (OD600) was used to 

evaluate the transformed cells growth. When OD600 reached approximately a value of 2.6, the 

appropriate amount of pre-fermentation was inoculated in fresh TB medium, in order to start 

the fermentation with an OD600 of approximately 0.2. Growth was carried out under the same 

conditions but in 1L shake flasks with 250 mL of fermentation medium in order to maintain 

the same oxygenation conditions of pre-fermentation. Growth was suspended at the mid-log 

phase (OD600~7) in order to achieve cells enriched with sc pDNA isoform. 

Cells were recovered by centrifugation at 4500 g and 4 ºC. Supernatants were discarded and 

bacterial pellets were stored at -20 ºC. 
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2.2.2. Alkaline lysis and pre-purification of pDNA samples with 

NZYTech Kit 

 

The alkaline lysis of pelleted bacteria was performed by a modified alkaline method and the 

plasmid samples were pre-purified according to NZYTech Plasmid Maxi kit manufacturer’s 

instructions. The kit was designed for the rapid and large-scale preparation of highly pure 

pDNA from recombinant E.coli strains. 

 Briefly, after the alkaline lysis, the precipitated cell debris were eliminated by 

centrifugation, and then, the impurities are removed by a medium-salt wash after plasmid 

DNA binding to the NZYTech silica-based anion-exchange resin. All contaminants are washed 

from the column. Then, the pDNA elution occurs when a high-salt buffer is added. In last, the 

pDNA is concentrated by isopropanol precipitation.  

The pDNA pellet was dissolved in appropriate buffer to future use. 

 

2.2.3. Plasmid isoforms preparation 

 

Three plasmid conformations, namely sc, linear (ln) and open circular (oc) isoforms of each 

plasmid, were prepared to be used in SPR and chromatographic experiments.  

 

2.2.3.1. Supercoiled isoform 

The sc samples of pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-based plasmid were directly 

obtained by alkaline lysis, as described above, according to manufacturer’s instructions. The 

bacterial growth was suspended with OD600~7 to obtain sc-enriched samples. The plasmid 

yield was assessed by UV spectrophotometry and the sc isoform integrity was confirmed by 

agarose gel electrophoresis. 

 

2.2.3.2. Linear isoform  

The sc samples of pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-based plasmid were also used to 

prepare ln pure samples of each plasmid. For this propose, an enzymatic digestion with Hind 

III, 1 h at 37 ºC was accomplished according to the manufacturer´s protocol. The sample 

conversion was confirmed by agarose gel electrophoresis. 

 

2.2.3.3. Open circular isoform 

PVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-based plasmid samples, obtained by alkaline lysis, 

were also used to prepare oc pure samples. In order to convert sc into oc isoform, the 

plasmids were incubated at room temperature, and monitored over the time by agarose 

electrophoresis, until total sample conversion (about 3 days).  
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2.2.4. Agarose gel electrophoresis  

 

The conformation and the relative purity of different isoforms of three plasmids were 

analyzed by horizontal electrophoresis using 15-cm-long 0.8% agarose gels (Hoefer, San 

Francisco, CA, USA), stained with GreenSafe Premium (1µg/mL). The GreenSafe Premium was 

incorporated in agarose gel during its preparation and appears as a safer alternative to the 

traditional ethidium bromide stain to detect nucleic acids.  

Electrophoresis was performed at 100 V, for 30 minutes, with TAE buffer (40 mM Tris base, 20 

mM acetic acid and 1 mM EDTA, pH 8.0) and agarose gels were revealed under UV light. 

The fractions recovered from chromatographic experiments were also analyzed by agarose gel 

electrophoresis. 

 

2.2.5. SPR studies 

 

2.2.5.1. Amino acids immobilization 

L-histidine, Im-benzyl-L-histidine and L-methyl-L-histidine, were dissolved in 100 mM borate 

solution, at pH 9, with a final concentration of 340 mM, 21 mM and 350 mM, respectively to 

be immobilized on a carboxymethylated dextran-coated sensor chip (CM5 research grade). 

The sensor chip was docked on the Biacore T200 system after being equilibrated at room 

temperature to prevent condensation on the chip surface. The detector was normalized with 

BIAnormalizing solution (70% glycerol, GE Healthcare).  

The running buffer for ligands immobilization was HBS-EP (10 mM HEPES, 150 mM NaCl, 0.05% 

P20 surfactant, 3 mM EDTA, pH 7.4), purchased from Biacore. The coupling method to 

covalently attach L-histidine, Im-benzyl-L-histidine and L-methyl-L-histidine to the sensor 

chip surface was amine coupling. The –NH2 functional group of ligands was covalently bound 

to the NH esters on the dextran coating the sensor chip surface, with that purpose the sensor 

chip surface was activated with 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide (EDC) and 

N-hydroxysuccinimide (NHS). After ligands injection the sensor surface was blocked with 

ethanolamine and injections with HBS-EP were performed to stabilize the baseline. 

L-methyl-L-histidine was immobilized on flow cell 2 with a final response of 207.6 RU, Im-

benzyl-L-histidine was immobilized on flow cell 3 with a final 229.8 RU as final response and 

in flow cell 4 was immobilized the L-histidine with a final response of 183.5 RU. 

The CM5 chip flow cell 1 was left unmodified to act as reference and samples were tested for 

binding in duplicate. 
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2.2.5.2. Affinity analysis 

 

After immobilization, different running buffers were tested: 10 mM Tris-HCl, pH 8, 500 mM 

ammonium sulfate in 10 mM Tris-HCl, pH 8, 500 mM ammonium sulfate, 100 mM of HEPES, pH 

7.4 and 10 mM of HEPES, pH 7.4. 

The affinity data was collected with HEPES 10 mM pH 7.4. Samples of pVAX1-LacZ, HPV-16 

E6/E7 and pcDNA3-based plasmid isoforms (sc, oc and ln) were injected at concentrations 

ranging from 0.55µM to 4.3×10-6 µM. After each run the plasmid was removed from the surface 

without requiring a regeneration solution. 

A steady state affinity study was performed with the binding data collected, averaging the 

resonance unit values (RU) in the plateau region of the sensorgrams over 350-400 s and the 

data were fit to an 1:1 interaction model using BIAevaluation software. 

 

2.2.6. 1H NMR experiments 

 

The L-histidine 0.34 M was dissolve in solution of HEPES (10 mM and 100 mM) with 10 % D2O at 

pH 7.4. The proton resonances of L-histidine were first assigned. The 1H NMR spectra were 

recorded at a temperature of 298 K on a Bruker Avance III 600 MHz spectrometer operating at 

14.09 Tesla observing 1H at 600.13 MHz. The spectrometer was equipped with a four-channel 

Quadruple (QCI) resonance probe and all spectra were processed with the software topspin 

3.1 (Bruker). 

 

2.2.7. Chromatographic studies 

 

All chromatographic runs were monitored at 260 nm and the fractions pooled were 

concentrated and desalted for further analysis with agarose electrophoresis. 

 

2.2.7.1. Amino acid immobilization  

The ligand, L-histidine, was dissolved in 4 mL of NaOH, in order to be immobilized in a CIMTM 

epoxy disk. The L-histidine and NaOH solution was pumped through the monolithic disk 

followed by 72h thermostating of the column at 60 ºC. 

Finally, the monolithic disk was washed with water and the remaining epoxy groups were 

hydrolyzed in diol groups by soaking with 0.5 M H2SO4 for 30 min.  

 

2.2.7.2. Linear gradients 

Linear gradients were performed by decreasing the ammonium sulfate concentration from 3.5 

to 0 M and increasing the sodium chloride concentration from 0 to 3 M. In these 

chromatographic experiments the L-histidine monolith was equilibrated with the binding 
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buffer at a flow rate of 1 mL/min and the plasmid samples, pre-purified with the NZYTech 

kit, were injected (100 µL) at the same flow rate. 

  

2.2.7.3. Stepwise gradients 

Stepwise gradients of decreasing ammonium sulfate were explored to separate isoforms of 

pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-based plasmid. In these chromatographic 

experiments, the L-histidine monolith was equilibrated with 2.99 M ammonium sulfate for 

pVAX1-LacZ, 2.94 M for HPV-16 E6/E7 and 2.91 M for pcDNA3-based plasmid at a flow rate of 

1 mL/min. Plasmid samples were injected in 100 µL loop at the same flow rate. 

 Different flow rates were applied to study the flow rate effect on plasmid isoforms 

separation. The L-histidine monolith was equilibrated with 2.99 M ammonium sulfate and the 

stepwise gradients were performed at a flow rate of 1mL/min, 2mL/min and 4mL/min with 

the pVAX1-LacZ plasmid. 

 

2.2.7.4. Dynamic binding capacity 

After several alkaline lysis with the NZYTech kit, a solution with 0.05 mg/mL pVAX1-LacZ was 

prepared to perform breakthrough experiments. The experiments were conducted to assess 

the L-histidine monolith dynamic binding capacity for pDNA. Briefly, L-histidine monolith was 

equilibrated with 3.5 M ammonium sulfate in 10 mM Tris-HCl buffer and 10 mM EDTA, pH 8. 

After the column saturation with pDNA prepared in the same equilibrium buffer, the elution 

was obtained by decreasing the ammonium sulfate concentration to 0 M. The L-histidine 

monolith was also overloaded at different flow rates, 1 mL/min and 0.5 mL/min. 

Dynamic binding capacity assessment was carried out, after data normalization, by 

calculating the amount of bound pDNA per mL of support at 10%, 50% and 100% of 

breakthrough curves and subtracting the respective value obtained under non-binding 

conditions. 

 

2.2.7.5. Monolith regeneration 

After some chromatographic experiments, the monolith regeneration was conducted through 

washing with deionized water followed by 5 column volumes of 0.5 M NaOH at flow rate of 0.5 

mL/min. In order to restore the proper pH, L-histidine monolith was again thoroughly washed 

with the deionized water. 
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Chapter III - Results and discussion 
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3. Ligands screening 
 
L-histidine was already successfully used in previous studies with an agarose conventional 

matrix to efficiently purify the sc pDNA from a clarified lysate (Sousa et al., 2006). However, 

low capacity and low diffusivity for pDNA are disadvantages associated with the 

abovementioned conventional matrix (Sousa et al., 2012). These limitations can be surpassed 

by using the innovative monolithic supports. Thus, the L-histidine amino acid and two 

derivatives with the imidazole ring functionalized with methyl and benzyl are considered 

promising affinity ligands to combine with monoliths for pDNA purification.  

Therefore, in this work, the suitability of L-histidine and their derivatives, Im-benzyl-L-

histidine and L-methyl-L-histidine, was assessed by SPR in order to select the ligand for 

immobilization on a modified monolith. 

 

3.1. Amino acids immobilization  

 

In order to perform the SPR experiments, L-histidine, Im-benzyl-L-histidine and L-methyl-L-

histidine were immobilized on Sensor Chip CM5 via amine coupling (McWhirter and Löfas, 

2006). The carboxylic groups on the carboxymethylated (CM)-dextran matrix -coated sensor 

chip surface were activated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and 

N-hydroxysuccinimide (NHS). The ligands were dissolved in 100 mM of borate solution, pH 9.0 

and the running buffer used for ligands immobilization was HBS-EP (10 mM HEPES, 150 mM 

NaCl, 0.05% P20 surfactant, 3 mM EDTA, pH 7.4). After that, the unreacted NHS-esters were 

blocked with solution of 1 M ethanolamine. Throughout the experiments, the flow cell 1 acts 

as a control reference (without amino acid immobilized) and is used to correct the bulk 

refractive index changes and non-specific binding at the sensor surfaces. 

 

3.2. SPR binding experiments 

 

3.2.1. Running buffer selection for affinity experiments 

 

After ligands immobilization on the chip, different running buffers were tested to chose the 

most suitable to perform the affinity assay.   

The first running buffer tested was 10 mM Tris-HCl, pH 8.0, however no signal was detected. 

The same occurred with running buffers ammonium sulfate 500 mM in 10 mM Tris-HCl, pH 8 

and 500 mM of ammonium sulfate.  

 

In figure 7 are showed two sensorgrams were the response was negative, both were obtained 

with Im-benzyl-L-histidine, one with the sc isoform of pVAX1-LacZ in ammonium sulfate as 
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running buffer, figure 7 (A), the second example was accomplished with the sc isoform of 

pcDNA3-based plasmid in Tris-HCl as running buffer, figure 7 (B).  

 

 

Figure 7. Sensorgrams obtained with two different plasmids and two different running buffers, which no 

signal was detected. 

Nonetheless, with each running buffer tested, several isoforms from plasmids of different 

sizes were injected in order to discriminate the lack of signal due to plasmid size or 

conformation.  

The different plasmid isoforms were interacting with the reference and those interactions 

were more significantly than to the amino acid surfaces. Since the final response is the result 

from the plasmid isoforms interaction with the amino acid surfaces minus the plasmid 

isoforms interaction with the reference surface, the signal obtained was negative. 

In order to decrease the non-specific binding with the reference, the running buffer was 

changed to HEPES 10 mM, pH 7.4, since it has been described as a running buffer to reduce 

the non-specific binding with nucleic acids (Fischer, 2010).The responses were detectable and 

reproducible in some ligands/plasmid complexes, not all, due to remaining non-specific 

binding. 

Another strategy to decrease the unspecific binding was to increase the running buffer 

concentration of HEPES (Fischer, 2010) for 100 mM, pH 7.4.  However no binding response was 

detected.  

1H NMR experiments were performed with solutions of 10 mM and 100 mM of HEPES at pH 7.4, 

in order to understand the concentration effect on the binding with L-histidine. The L-

histidine was dissolved in solution of HEPES (10 mM and 100 mM) with 10 % D2O at pH 7.4. The 

1H NMR spectra showed chemical shift variation in imidazole protons only with HEPES 100 mM. 

This can be attributed to the fact that the imidazole ring of L-histidine interacted 

preferentially with HEPES buffer 100 mM indicating that imidazole protons are not free to 

interact with the target biomolecule. This result is in concordance with the described 
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previously (Caramelo-Nunes et al., 2014) where the aromatic side chain of L-histidine is the 

structural feature that mainly interact with plasmid isoforms. 

 

3.2.2. Affinity data analysis 

   

HEPES 10 mM, pH 7.4 was the running buffer selected to collect the affinity data when 

different plasmid isoforms were injected over the surface, since it was the one that promoted 

less unspecific binding with the blank cell. 

The SPR binding profile was identical for all complexes indicating that the plasmid isoforms 

associate and dissociate rapidly from the amino acid surfaces. By this way only steady-state 

studies were performed. The sensorgram examples are given in figure 8.  
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(A) 

 

 

 

 

 

 

 

 

 

(B) 

 

 

 

 

 

 

 

 

(C) 

 

 

 

 

 

 

 

(D) 

 

 

 

 

 

 

 

 

Figure 8. Sensorgrams and equilibrium-binding analysis of immobilized Im-benzyl-L-histidine to (A) sc 

isoform of pcDNA3-based plasmid (B) oc isoform of pVAX1-LacZ and immobilized L-histidine to (C) oc 

isoform of pVAX1-LacZ and (D) sc isoform of pcDNA3-based plasmid in HEPES 10mM pH 7.4. 
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A steady-state study was carried out by averaging the resonance unit values (RU) in the 

plateau region of the sensorgrams over a 350 to 400 s. Nonspecific binding was detected in 

the reference surface, to the NH esters. Therefore, affinity calculations of some plasmid 

isoforms were unfeasible. The equilibrium dissociation constants (KD) are presented in table 4 

and are significantly higher (10-10-10-8 M range) with the highest affinity found for HPV-16 

E6/E7 linear/L-histidine, 3.34 x10-10±0.0209 M, while the supercoiled isoform of the pcDNA3-

based plasmid shows the lowest binding.  

 

Table 4. Equilibrium data analysis of plasmids in 10 mM of HEPES pH 7.4. KD-dissociation constant; SD-

standard deviation. 

 

 

 The linear isoform of pcDNA3-based plasmid have lowest affinity than linear isoform of HPV-

16 E6/E7 plasmid, these results suggest a non-linear tendency between plasmid size and 

binding affinity.  

Overall, the maximum response was found for L-histidine surface, when compared with its 

derivatives indicating that L-histidine might be the most promising ligand for purification of 

pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-based plasmids, for affinity chromatography.  

 

 

 

 

 

 

Plasmid samples 

KD(M) ± SD 

L-methyl-L-histidine Im-benzyl-Lhistidine 

 

L-histidine 

 

pVAX1-LacZ 

Sc 5.05×10-8 ±0.00613 6.03×10-9 ±0.00595 5.79×10-8 ±0.0131 

Oc * 5.62×10-8 ±0.00607 8.18×10-8 ±0.00441 

Ln * * * 

HPV-16 E6/E7 

Sc * * * 

Oc 1.1×10-10 ±0.00573 

* 

* * 

Ln * 3.34×10-10 ±0.0209 

pcDNA3-

based 

plasmid 

Sc * 2.95×10-8 ±0.00734 4.2×10-8 ±0.00629 

Oc * * * 

Ln * 1.68×10-9 ±0.00702 244×10-9 ±0.00848 
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4. Chromatographic experiments 

 

4.1. L-Histidine immobilization 

 

The monolithic matrices present several advantages over the conventional matrices, including 

their tridimensional characteristics of interconnected pores that allow good mass transfer 

properties and binding capacity for large biomolecules, such as pDNA (Endres et al., 2003).  

Considering the analysis of the SPR results obtained previously, the ligand chosen to be 

immobilized on the monolithic support was L-histidine.  

Therefore, combining the innovative monolithic matrices with the specificity and selectivity 

of the L-histidine ligand can be a valuable and promising strategy towards sc pDNA 

purification. 

The L-histidine ligand was immobilized on a CIMTM epoxy disk according to the procedure 

described in chapter 2. The monolith modification was evaluated by comparing the pDNA 

elution behavior in the non-grafted epoxy monolith with the monolith modified with L-

histidine ligands. A decreasing linear gradient of ammonium sulfate, from 3.5 M to 0 M in 10 

mM Tris-HCl and 10 mM EDTA pH 8.0 was performed with both monoliths, loading a pVAX1-

LacZ plasmid sample (100 µL) at flow rate of 1 mL/min. The binding condition promoted the 

pDNA retention to the epoxy groups on the non-grafted monolith (figure 9 (A)) and the pDNA 

retention to the L-histidine ligands on the L-histidine monolith (figure 9 (B)). The pDNA was 

then eluted in both cases during the linear gradient. 

As shown in figure 9, the elution profiles are different, as well as, the pDNA retention time. 

The differences in the elution profile can be due to the presence of L-histidine ligand on the 

modified monolith (figure 9 (B)). All peaks achieved during both chromatographic assays were 

recovered and analyzed by agarose electrophoresis.The results indicated that the pDNA was 

completely retained to the monolithic supports, being eluted during the linear gradients. 

 

Figure 9. Chromatographic profiles of decreasing linear gradients from 3.5 M to 0 M ammonium sulfate 

in 10 mM Tris-HCl and 10 mM EDTA, pH 8.0 with the (A) non-immobilized epoxy monolith and (B) the L-

histidine monolith. The assays were performed at 1 mL/min with pVAX1-LacZ plasmid sample, pre-

purified with NZYTech kit. The labels in the peaks represent the pDNA retention time. 
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4.2. Evaluation of elution conditions on pDNA retention 

 

In order to establish the ideal binding and elution conditions to be used for further 

separations of plasmid isoforms, the influence of buffer composition, ionic strength and pH 

was studied by affinity chromatography. 

 

4.2.1. Elution buffer composition 

 

HEPES 10 mM pH 7.4 was the running buffer more suitable to perform the SPR analysis. 

Therefore the role of this buffer in pDNA retention was also evaluated in chromatographic 

preliminary studies. 

A decreasing linear gradient of ammonium sulfate in 10 mM HEPES and 10 mM EDTA, at pH 

7.4, from 3.5 M to 0 M, was performed, by loading 100 µL of pVAX1-LacZ plasmid sample at 

flow rate of 1 mL/min. As the aim of this study was to observe the influence of the HEPES 

buffer in the pDNA retention, the elution strategy used was similar to the strategy previously 

used with the Tris-HCl (previous section, figure 9 (B)). As it is visible in figure 10, the pDNA 

elution profile obtained with HEPES buffer was the same observed in the Tris-HCl. 

 

 

 

 

 

 

 

Figure 10. Chromatographic profile of decreasing linear gradient from 3.5 M to 0 M (NH4)2SO4 in 10 mM 

HEPES and 10 mM EDTA, pH 7.4 with the L-histidine monolith. The assay was performed at 1 mL/min 

with pVAX1-LacZ plasmid sample, pre-purified with NZYTech kit.  
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4.2.2. Ionic strength influence  

 

Another study was conducted to evaluate the influence of ionic strength in the plasmid 

retention to the L-histidine monolith. An increasing linear gradient from 0 to 3 M of sodium 

chloride in 10 mM Tris-HCl and 10 mM EDTA, pH 8.0 was performed at flow rate of 1mL/min. 

After the injection of the pVAX1-LacZ plasmid sample, a first and unique peak was rapidly 

attained in the flow-through due to the elution of unbound species, as can be seen in figure 

11. During the increasing linear gradient of NaCl no specie was eluted.  

 

 

 

 

 

 

 

In fact, this result indicates no pDNA retention was obtained at low salt concentrations, and 

consequently, it is concluded that ionic interactions are not the prevalent forces between 

pDNA and the L-histidine monolith.  

 

4.2.3. pH influence 

  

The pH influence on oligonucleotides retention was reported in a previous study by using the 

L-histidine-agarose support (Sousa et al., 2009). Therefore, to obtain enhanced 

binding/elution conditions, the pH influence on the plasmid retention was also evaluated. 

Figure 11. Chromatographic profile of an increasing linear gradient from 0 M to 3 M NaCl in 10 mM Tris-

HCl and 10 mM EDTA, pH 8.0. The assay was performed at 1 mL/min, using the L-histidine monolith with 

the pVAX1-LacZ plasmid sample, pre-purified with the NZYTech kit.  
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A solution with 3.5 M ammonium sulfate in 10 mM Tris-HCl buffer and 10 mM EDTA, pH 6.0 

was prepared and a decreasing linear gradient was established from 3.5 M to 0 to observe the 

acidic pH influence on pDNA retention. The chromatographic profile obtained is showed in 

figure 12. As it is observed, the pDNA retention time slightly increased to 5.59 when 

compared with the same assay at pH 8.0 (5.21, figure 9 (B)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Due to the high ammonium sulphate concentrations used, the predominance of hydrophobic 

interactions is evidenced. However, this result suggests the presence of other interactions, 

which affect the plasmid retention. Given that the pKa of L-histidine is 6.5, acidic pH 

environment can favor the protonation of imidazole ring, which enables the involvement of π-

π stacking and cation π interactions with plasmid aromatic bases (Caramelo-Nunes et al., 

2014). 

 

4.3. Chromatographic profile of different plasmid isoforms 

 

Similarly to what was evaluated in SPR, several chromatographic experiments were 

accomplished through a screening of different isoforms (oc, sc and ln) of pVAX1-LacZ, HPV-16 

E6/E7 and pcDNA3-based plasmid, separately injected. The elution conditions were chosen 

Figure 12. Decreasing linear gradient from 3.5 M to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 mM 

EDTA, pH 6.0, with the L-histidine monolith. The assay was performed at 1 mL/min with pVAX1-LacZ 

plasmid sample (100 µL), pre-purified with the NZYTech kit. The label in the peak represent the pDNA 

retention time. 
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through the results achieved in previous assays. Thus, a decreasing linear gradient from 3.5 M 

to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 mM EDTA pH 8.0 was applied for each 

pDNA isoform. Their retention behavior was analyzed in order to characterize the L-histidine 

monolith and assess the separation of the sc pDNA isoform when present in a mixture of 

isoforms.  

 

4.3.1. pVAX1-LacZ (6.05 kbp)  

 

4.3.1.1. pVAX1-LacZ linear isoform 

The first pVAX1-LacZ isoform evaluated was the ln isoform. The ln pVAX1-LacZ plasmid sample 

was obtained through enzymatic digestion, as described in chapter 2. A decreasing linear 

gradient from 3.5 M to 0 M (NH4)2SO4 in 10 mM Tris-HCl and 10 mM EDTA pH 8.0 was 

performed at 1 mL/min. As shown in figure 13, after injection step, the sample was eluted in 

a single peak during the flowthrough at 3.5 M of ammonium sulfate, indicating that these 

conditions do not favor the ln isoform retention. 

  

 

 

4.3.1.2. pVAX1-LacZ open circular isoform 

The same conditions were used to evaluate the pVAX1-LacZ open circular isoform. This 

isoform was obtained by incubating the sc pVAX1-LacZ sample at room temperature until total 

sample conversion. The oc pDNA sample was injected under the elution conditions previously 

refereed, and the resultant chromatographic profile is presented in figure 14. The first peak, 

Figure 13. Decreasing linear gradient from 3.5 M to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 mM 

EDTA, pH 8.0, at 1mL/min. The ln pVAX1-LacZ plasmid sample was prepared from a sample pre-purified 

with NZYTech kit by enzymatic digestion. In the agarose gel electrophoresis, the lane A represents the 

ln sample injected (100 µL) and lane 1 corresponds to peak 1. 

 



 45 

eluted at 3.5 M ammonium sulfate, corresponds to unbound species and the second peak, 

eluted during the linear gradient, represents some species that remained bound. The agarose 

gel electrophoresis shows the content of each peak, indicating that in the first peak was 

eluted most part of the oc isoform, but a partial retention of this isoform also occurred. 

Considering this chromatographic behavior and comparing the peaks size, it can be suggested 

that the majority of the oc isoform was eluted in the first peak, and therefore, this isoform 

did not effectively bind to L-histidine monolith under the elution conditions established. 

 

 

 

 

 

 

4.3.1.3. pVAX1-LacZ supercoiled isoform 

A supercoiled pVAX1-LacZ sample was also injected in the L-histidine monolith with a 

decreasing linear gradient from 3.5 M to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 mM 

EDTA pH 8.0 at 1 mL/min. The chromatographic profile obtained with the sc-enriched sample 

(figure 15) differs significantly from the ones previously presented for oc and ln isoforms of 

the pVAX1-LacZ plasmid. The chromatogram reveals a small peak during the flowthrough and 

a larger peak eluted during the linear gradient that corresponds to species retained into the 

L-histidine monolith, under these conditions. 

Figure 14. Decreasing linear gradient from 3.5 M to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 mM 

EDTA, pH 8.0, at 1mL/min. The oc pVAX1-LacZ plasmid sample was prepared from a sample pre-purified 

with NZYTech kit by room temperature incubation. In the agarose gel electrophoresis, the lane A 

represents the oc sample injected (100 µL), lane 1 corresponds to peak 1 and lane 2 to peak 2. 
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The peak content was evaluated by agarose gel electrophoresis but the results indicated that 

the first peak does not present nucleic acids, while the second peak reveals a bright sc pDNA 

band. These results suggest that the sc isoform was completely retained to the L-histidine 

monolith and the same behavior was not extended to the other plasmid topologies. 

 

4.3.2. HPV-16 E6/E7 (8.70 kbp) 

 

4.3.2.1. HPV-16 E6/E7 linear isoform 

A decreasing linear gradient was also performed with an HPV-16 E6/E7 linear sample, using 

the aforementioned conditions. The elution behavior for HPV-16 E6/E7 linear isoform is 

slightly different from the elution behavior previously observed with the ln pVAX1-LacZ 

sample. The HPV-16 E6/E7 chromatographic profile shows two consecutive peaks in the 

flowthrough (figure 16). Nonetheless, the electrophoretic analysis revealed that the ln 

isoform was mostly eluted in the second peak, which seems to be delayed in the column. 

However, no retention of HPV-16 E6/E7 ln pDNA to the L-histidine was observed under these 

elution conditions. 

Figure 15. Decreasing linear gradient from 3.5 M to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 mM 

EDTA, pH 8.0, at 1mL/min. The sc-enriched pVAX1-LacZ plasmid sample was pre-purified with NZYTech 

kit. In the agarose gel electrophoresis, the lane A represents the sc-enriched sample injected (100 µL), 

lane 1 corresponds to peak 1 and lane 2 corresponds to peak 2. 
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4.3.2.2. HPV-16 E6/E7 open circular isoform 

Using the same elution strategy, a HPV-16 E6/E7 oc sample was injected to evaluate the 

chromatographic profile of this isoform. The obtained profile was similar to the elution 

profile of the pVAX1-LacZ oc isoform. Thus, by agarose electrophoresis analysis it was 

observed that the HPV-16 E6/E7 oc isoform is present in both peaks (figure 17). Also in this 

case, the oc isoform retention to the modified monolithic matrix was not effective.  

 

 

Figure 17. Decreasing linear gradient from 3.5 M to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 mM 

EDTA, pH 8.0, at 1mL/min. In the agarose gel electrophoresis, the lane A represents the oc sample 

injected (100 µL), lane 1 content corresponds to peak 1 and lane 2 corresponds to peak 2. 

Figure 16.  Decreasing linear gradient from 3.5 M to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 

mM EDTA, pH 8.0, at 1mL/min. The HPV-16 E6/E7 ln plasmid sample was prepared from a sample pre-

purified with NZYTech kit by enzymatic digestion. In the agarose gel electrophoresis, the lane A 

represents the ln sample injected (100 µL); lane 1:peak 1; lane 2: peak 2. 
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4.3.2.3. HPV-16 E6/E7 supercoiled isoform 

The chromatographic behavior of the HPV-16 E6/E7 supercoiled isoform was also studied 

through the decreasing ammonium sulfate gradient. The elution profile of the HPV-16 E6/E7 

sc isoform revealed to be similar to the pVAX1-LacZ sc isoform, previously shown. The 

similarity can be seen in figure 18 and also the electrophoretic analysis revealed that the sc 

isoform completely bound to the L-histidine monolith, being eluted in the peak 2 during the 

linear gradient (confirmed by lane 2 of the electrophoresis). 

 

 

 

4.3.3. pcDNA3-based plasmid (14 kbp) 

 

4.3.3.1. pcDNA3-based plasmid linear isoform 

The elution conditions previously mentioned were also applied to accomplish the 

chromatographic study of the pcDNA3-based plasmid linear isoform. After the ln sample 

injection, two consecutive peaks were eluted (figure 19). The elution profile presents 

similarities with the HPV-16 E6/E7 linear isoform profile. The peak content was revealed by 

agarose gel electrophoresis in figure 18, and the linear isoform was eluted in the first and 

second peaks. Thus, the pcDNA3-based plasmid linear isoform was partially delayed into the 

L-histidine monolith. This behavior suggests that the time required for the isoform pass 

through the column is influenced by the pDNA molecular size and conformation, being 

observed long time for larger molecules. 

Figure 18. Decreasing linear gradient from 3.5 M to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 mM 

EDTA, pH 8.0, at 1mL/min. The sc-enriched plasmid sample was pre-purified with NZYTech kit. In the 

agarose gel electrophoresis, the lane A represents the sc-enriched sample injected (100 µL), lane 1 

corresponds to peak 1 and lane 2 corresponds to peak 2. 
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4.3.3.2. pcDNA3-based plasmid open circular isoform 

The linear gradient used to assess the open circular isoform behavior of the pcDNA3-based 

plasmid revealed two peaks (figure 20). Comparing the chromatographic profile of this 

plasmid topology with the profiles already shown for the same topology but different 

plasmids, the behavior is slightly modified, since the second peak is increased. However, by 

agarose gel electrophoresis the oc pcDNA3-based plasmid seems to be partially eluted in both 

peaks.  

 

 

 

Figure 20. Decreasing linear gradient from 3.5 M to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 mM 

EDTA, pH 8.0, at 1mL/min. In the agarose gel electrophoresis, the lane A represents the oc sample 

injected (100 µL), lane 1 content corresponds to peak 1 and lane 2 corresponds to peak 2. 

Figure 19.  Decreasing linear gradient from 3.5 M to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 

mM EDTA, pH 8.0, at 1 mL/min. The HPV-16 E6/E7 ln plasmid sample was prepared from a sample pre-

purified with NZYTech kit by enzymatic digestion. In the agarose gel electrophoresis, the lane A 

represents the ln sample injected (100 µL); lane 1: peak 1; lane 2: peak 2. 
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4.3.3.3. pcDNA3-based plasmid supercoiled isoform 

The pcDNA3-based plasmid supercoiled isoform was also evaluated under the elution 

conditions established. The decreasing linear gradient preformed during 25 minutes revealed 

that the unbound species were eluted in the first minutes (figure 21), during the flowthrough, 

at 3.5 M ammonium sulfate. The second peak, eluted during the linear gradient, corresponds 

majorly to the plasmid supercoiled isoform, as revealed in the agarose gel electrophoresis.  

 

 

 

Thus, the results revealed that the L-histidine monolith specifically interacts with the sc 

pDNA isoform of the three plasmids with different sizes, while other plasmid topologies are 

not effectively retained in the modified monolith. This preferential interaction can be 

explained by the different base exposure degree, due to the deformations induced by the 

torsional strain, which are responsible for the supercoiled conformation (Tanigawa and 

Okada, 1998). Therefore, the bases of the sc isoform are more exposed and available to 

interact with the ligand (Strick et al., 1998; Sousa et al., 2005). 

The retention behavior of each pDNA isoform suggests that it can be possible the separation 

of the respective sc pDNA when present in a mixture of isoforms. 

 

 

 

 

 

Figure 21. Decreasing linear gradient from 3.5 M to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 mM 

EDTA, pH 8.0, at 1mL/min. The sc-enriched plasmid sample was pre-purified with NZYTech kit. In the 

agarose gel electrophoresis, lane 1 content corresponds to peak 1 and lane 2 corresponds to peak 2. 
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4.4. Plasmid isoforms separation 

 

Several stepwise gradients of ammonium sulfate were performed in order to optimize the 

separation of sc pDNA from the other topologies, using the three plasmids with different 

sizes. Additional washing steps were also performed between each experiment. 

 

4.4.1. pVAX1-LacZ 

 

In order to isolate the pVAX1-LacZ sc isoform, the L-histidine monolith was equilibrated with 

2.99 M ammonium sulfate in 10 mM Tris-HCl buffer and 10 mM EDTA, pH 8.0, at a flow rate of 

1 mL/min. Then, the pVAX1-LacZ plasmid sample pre-purified with the NZYTech kit was 

injected (100 µL). After injection, a first peak was eluted during the flowthrough, which 

corresponds to unbound species (figure 22 (A)). A second step was established with 0 M of 

ammonium sulfate for elution of bound species in a second peak. The fractions from each 

peak were recovered, desalted with concentrators and analyzed by agarose gel 

electrophoresis (figure 22 (B)). The results revealed that the elution of oc isoform occurred in 

the first peak (figure 22 (B), lane 1) with high ionic strength, and the sc isoform was achieved 

in the second peak with the decrease of ionic strength (figure 22 (B), lane 2). 

 

 

 

 

Figure 22. Separation of pVAX1-LacZ plasmid isoforms with the L-histidine monolith. (A) 

Chromatographic profile with the ammonium sulfate concentration optimized for the isoforms 

separation of pVAX1-LacZ, (stepwise gradient of 2.99 M and 0 M of ammonium sulfate). UV detection at 

260 nm. Injection volume was 100 µL. (B) Agarose gel electrophoresis of each peak resultant from the 

respective chromatogram. Lane M: molecular weight marker; lane A: pVAX1-LacZ injected onto the 

column (oc+sc); lane 1: oc isoform; lane 2: sc isoform. 
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4.4.2. HPV-16 E6/E7 

 

The previous elution strategy was also explored in order to achieve the isolation of the sc 

HPV-16 E6/E7 isoform. Curiously, the initial ammonium sulfate concentration used to 

equilibrate the L-histidine monolith and promote the sc pDNA retention was gently decreased. 

The column was equilibrated with 2.94 M ammonium sulfate in 10 mM Tris-HCl buffer and 10 

mM EDTA, pH 8.0 and after the elution of the unbound species a second step with 0 M 

ammonium sulfate was performed to elute the bound species (figure 23 (A)). The fractions 

pooled from each peak were analyzed by agarose gel electrophoresis, reveling that the 

unbound species eluted in the first peak correspond to oc isoform (figure 23 (B), lane 1), and 

the second peak obtained at 0 M ammonium sulfate corresponds to the sc isoform (figure 23 

(B), lane 2).  

 

 

 

4.4.3. pcDNA3-based plasmid 

 

For the sc pcDNA3-based plasmid isoform separation, the modified monolith was first 

equilibrated with 2.91 M ammonium sulfate in 10 mM Tris-HCl buffer and 10 mM EDTA, pH 

8.0. A first peak was eluted and the buffer was changed to 10 mM Tris-HCl buffer and 10 mM 

EDTA, pH 8.0, in order to decrease the ionic strength, and therefore, to promote the elution 

of bound species (figure 24 (A)). Agarose gel confirmed that the oc isoform was eluted in the 

Figure 23. Separation of HPV-16 E6/E7 plasmid isoforms with the L-histidine monolith. (A) The stepwise 

gradient was optimized for the isoforms separation. The monolith was equilibrated with 2.94 M 

ammonium sulfate and after the elution of the first peak the buffer was changed to 0 M ammonium 

sulfate. UV detection at 260 nm. Injection volume was 100 µL. (B) Agarose gel electrophoresis of each 

peak resultant from the respective chromatogram. Lane M: molecular weight marker; lane A: HPV-16 

E6/E7 injected onto the column (oc+sc); lane 1: oc isoform; lane 2: sc isoform. 
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first peak (figure 24 (B), lane 1) and with the ionic strength decrease to 0 M ammonium 

sulfate, the sc isoform was eluted in the second peak (figure 24 (B), lane 2). 

 

 

 

 

 

In the pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-based plasmid isoforms, the separation 

behaviour of oc and sc was similar; the oc isoform was eluted in the flowthrough, whereas the 

sc pDNA interacted with the L-histidine support. As previously mentioned, the different bases 

exposition degree, due to the supercoiling phenomenon, explains the preferential interaction 

occurring between the L-histidine monolith and the sc isoform of pVAX1-LacZ, HPV-16 E6/E7 

and pcDNA3-based plasmid (Tanigawa and Okada, 1998; Strick et al., 1998; Sousa et al., 

2005).Thus, pDNA structure and conformation might have a significant role on the interaction 

with the L-histidine monolithic support. 

Hydrophobic interactions, namely π-π stacking/hydrophobic interactions, are predominant, as 

previously mentioned. However, van der Walls forces, bifurcate hydrogen bonds and hydrogen 

π interactions (Sousa et al., 2011) can be involved in the sc pDNA biorecognition. 

The plasmids under study present different molecular sizes, namely 6.05 kbp for pVAX1-LacZ, 

8.70 kbp for HPV-16 E6/E7 and 14 kbp for pcDNA3-based plasmid. However, it is observed 

that the ideal ammonium sulfate concentration to separate the isoforms of each plasmid 

(2.99 M for pVAX1-LacZ, 2.94 M for HPV-16 E6/E7 and 2.91 M for pcDNA3-based plasmid) was 

decreasing while the plasmid molecular mass was increasing. When hydrophobic interactions 

are favored, the global hydrophobic character of the molecules slightly increases with the 

Figure 24. Separation of pcDNA3-based plasmid isoforms with the L-histidine monolith. (A) The stepwise 

gradient was optimized for the isoforms separation. The monolith was equilibrated with 2.91 M 

ammonium sulfate and after elution of unbound species the buffer was changed to 0 M ammonium 

sulfate. UV detection at 260 nm. Injection volume was 100 µL. (B) Agarose gel electrophoresis of each 

peak resultant from the respective chromatogram. Lane M: molecular weight marker; lane A: pcDNA3-

based plasmid injected onto the column (oc+sc); lane 1: oc isoform; lane 2: sc isoform. 
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molecular mass, which is in agreement with previous studies (Sousa et al., 2009). Therefore, 

the larger plasmid is more hydrophobic, interacts more and needs less salt concentration to 

promote the retention in the support. 

 

4.5. Effect of flow rates on plasmid isoforms separation 

 

The use of higher flow rates on conventional matrices was limited due to swelling or shrinking 

of the constituent materials. Nonetheless, monoliths are promising matrices since they are 

rigid enough to avoid such problems. More rigid stationary phases resist to higher pressures 

and consequently higher linear velocities, enabling faster separation (Podgornik et al., 2014). 

Considering the physical and chemical characteristics of monoliths, the separation selectivity 

should be maintained by employing higher flow rates.  

Therefore, to verify the effect of flow rate on separation of plasmid isoforms, decreasing 

stepwise gradients of ammonium sulfate with pVAX1-LacZ were performed. The gradient and 

elution buffer conditions used to study the effect of flow rate was the same previously 

established to perform pVAX1-LacZ isoforms separation. As shown in figure 25 (A), (B) and (C) 

the stepwise gradients were performed at a flow rate of 1 mL/min, 2 mL/min and 4 mL/min. 

The purity of each plasmid isoform at different flow rates was revealed by agarose gel 

electrophoresis (figure 25 (D)) and as expected, lanes 1, 3 and 5 correspond to the oc 

isoform, and lanes 2, 4 and 6 correspond to the sc isoform that is isolated for all experiments. 

All chromatograms were normalized in function of the elution volume, although the 

experiment performed at 4 mL/min only take 2 min reducing substantially the 

chromatographic run time of the experiment.  
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The results reveal that the modified monolith promotes the pDNA isoforms separation with 

significant resolution, which is flow-unaffected in the studied range. Besides, the separation 

procedure can be accomplished much faster (Yamamoto and Kita, 2005), reducing the 

possible pDNA degradation that may result from longer chromatographic procedures.  

 

 

 

 

 

 

 

Figure 25. Flow rate effect on pVAX1-LacZ isoforms separation. Experiments were performed by 

decreasing stepwise gradient from 2.99 M to 0 M ammonium sulfate in 10 mM Tris-HCl and 10 mM EDTA, 

pH 8.0 at different flow rates (A) 1 mL/min, (B) 2 mL/min and (C) 4 mL/min). (D) Agarose gel 

electrophoresis of each peak resultant from the respective chromatogram. Lane M: molecular weight 

marker; lane A: pVAX1-LacZ sample injected onto the column (oc+sc, 100 µL); lanes 1, 3 and 5: oc 

isoform; lanes 2, 4 and 6: sc isoform. 
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4.6. Dynamic binding capacity 

 

In the previous section was demonstrated that with flow rate variations, the plasmid isoforms 

separation remained unchanged. Therefore, in the dynamic binding capacity studies, to 

better characterize the modified monolith, it was also interesting to verify the flow rate 

effect on the monolith binding capacity. The experiments were carried out at 0.5 and 1 

mL/min flow rate. 

To perform the breakthrough experiments it was necessary to prepare a feedstock solution. 

After several alkaline lysis and pre-purification with the NZYTech kit a feedstock solution with 

0.05 mg/mL of pVAX1-LacZ was obtained. The ionic strength of the feedstock solution was 

corrected for a concentration of 3.5 M ammonium sulfate. Then, the L-histidine monolith was 

equilibrated with 3.5 M ammonium sulfate in 10 mM Tris-HCl and 10 mM EDTA, pH 8.0. 

Determination of dynamic binding capacity was carried out by recording breakthrough curves 

at 260 nm, at 0.5 and 1 mL/min flow rate. The data was normalized and the dynamic binding 

capacity values were obtained by subtracting the value obtained under non-binding conditions 

and multiplying by the pDNA concentration. The ratio between the amount of bound pDNA 

and the support volume (0.34 mL) at 10%, 50% and 100% of the breakthrough was then 

calculated and the results are present in table 5, where 100% of the breakthrough 

corresponds to the total column saturation.  

 

Table 5. Dynamic binding capacity results of L-histidine monolith at 0.5 and 1 mL/min. Breakthrough 

experiments were performed with a 0.05 mg/mL pDNA feedstock solution and the capacity was 

estimated at 10, 50 and 100% of breakthroughs. 

 

 

The results revealed that for a lower flow rate (0.5 mL/min), a slightly increased on the 

modified monolith capacity for pDNA binding occurred. It is described that the purification 

and capacity are independent of the flow rate in the monolithic supports (Mihelic et al., 

2000; Podgornik and Krajnc, 2012). Thus, this result is related with the plasmid properties 

instead of monolith characteristics. The hypothesis that the binding capacity is in part 

dependent of the pDNA size and conformation (Haber et al., 2004) is reinforced in this study 

and was previously mentioned in studies using a non-grafted monolith (Sousa et al., 2011; 

Flow rate DBC (mg/mL) 

10% 50% 100% 

1 mL/min 3.88 4.96 6.70 

0.5 mL/min 4.20 6.24 11.03 
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Bicho et al., 2014), and a histidine-agarose matrix (Sousa et al., 2007).The flow rate decrease 

implies slower chromatographic runs, and therefore, the contact time between the matrix 

and the pDNA increases, favoring the attainment of equilibrium and the area occupied by the 

pDNA becomes smaller since it becomes less extended at lower flow rates  (Sousa et al., 

2011; Haber et al., 2004). 

 

The dynamic binding capacity achieved for L-histidine monolith was 3.88 mg/mL of column at 

10% breakthrough, 1 mL/min with 0.05 mg/mL of plasmid feedstock solution. Comparing this 

result with the binding capacity obtained for a non-grafted monolith (2.19 mg/mL of column), 

the L-histidine monolith capacity increased in similar loading conditions (Sousa et al., 2011). 

The increased binding sites of the monolith after ligand immobilization might explain the L-

histidine monolith capacity results, since it is expected an increased capacity after grafting 

the monolith (Luscombe et al., 2001). 

The capacity of L-histidine monolith at 50% breakthrough (6.24 mg/mL) was twenty nine fold 

higher than the conventional histidine-agarose matrix (0.217 mg/mL), using identical loading 

conditions and pDNA concentration at 0.5 mL/min (Sousa et al., 2006). This result is in 

accordance with the expectation, since one of the monolith advantages is to overcome the 

bottlenecks associated with conventional matrices, such as low binding capacity (Podgornik 

and Krajnc, 2012). 

When compared with L-arginine monolith by using the same parameters but different elution 

strategy, the L-histidine monolith presents slightly higher binding capacity (6.70 mg/mL of 

column). The total capacity of L-arginine monolith determined by increasing the sodium 

chloride concentration was 5.18 mg/mL, using flow rate 1 mL/min and 0.05 mg/mL of 

plasmid feedstock solution (Soares et al., 2013). Once the loading strategy developed for the 

L-arginine monolith used low salt concentrations, the capacity differences reported above can 

be related with a reduced intermolecular repulsion between the pDNA molecules, due to the 

high salt concentrations used in the L-histidine monolith, which instigate the pDNA molecules 

to pack more closely on the monolith surface (Bencina et al., 2004). 

The capacity results obtained with the L-histidine monolith are satisfactory when compared 

with other chromatographic supports. Monoliths grafted with suitable ligands are promising 

strategies to efficiently purify the sc pDNA isoform. Flow-unaffected resolution and high 

dynamic binding capacity, that enables fast chromatographic procedures with low back 

pressure (Yamamoto and Kita, 2005), are the monolith properties that can overcome some 

purification bottlenecks. 
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Chapter IV–Conclusions and future 

perspectives 
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The growing demand of DNA vaccines able to induce the appropriate type of immune 

responses led to the development of several strategies at different levels, specially, at pDNA 

purification level. Purification is one important step in order to achieve pDNA suitable for 

therapeutic applications. The innovations in the purification strategy include chromatographic 

matrices, such as the monoliths that overcome the problems associated with conventional 

matrices, and suitable ligands that specifically recognize and interact with the sc pDNA 

isoform, in order develop purification strategies that enable the sc pDNA isoform separation 

in a single step. 

The analytical concept of affinity chromatography–analysis of the interactions of mobile 

molecules flowing over surface-immobilized ligands is mimicked by the SPR biosensor, which 

provides affinity analysis between immobilized amino acids and solution of pDNA. In this 

work, the ligands L-histidine, Im-benzyl-L-histidine and L-methyl-L-histidine, were 

immobilized on a carboxymethyl-dextran matrix and studied as affinity ligands for plasmid 

isoforms separation. The overall affinity with these ligands was significantly higher, KD > 10-8 

M, with HEPES 10 mM at pH 7.4 as running buffer. Several running buffers were tested with 

different plasmid sizes and isoforms. However, no binding response was found using acid 

HEPES 100 mM, Tris-HCl and ammonium sulfate, due to unspecific interactions of pDNA with 

the reference cell. 1H NMR experiments were performed to understand the lack of response 

using HEPES 100 mM, since it was expected to decrease the unspecific interactions. The 1H 

NMR spectra indicated that the imidazole ring of L-histidine is more involved in binding, 

concluding that this running buffer affected the strength to the plasmids. Therefore, the 

ligand selected for immobilization on epoxy monolith was L-histidine, since the maximum 

response of plasmid isoforms was found for this amino acid while the substituents methyl and 

benzyl groups in the imidazole ring prevents interaction with pDNA isoforms. 

L-histidine was immobilized on the monolithic matrix and when compared with a non-grafted 

epoxy monolith, the retention time and the chromatographic profile were altered, indicating 

that the L-histidine ligand was correctly immobilized and interacting with pDNA.  

The L-histidine monolith allowed the successful separation of sc pDNA from the oc isoform, 

with pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-based plasmids, in a single step. The separation 

of plasmid isoforms was achieved with a decreasing stepwise gradient of ammonium sulfate 

concentration in the eluent. The global hydrophobic character of pDNA molecules slightly 

increased with the molecular mass. Thus, sc isoform and plasmids with high molecular weight 

presented strong interactions with the modified support. The efficiency of plasmid isoforms 

separation using the modified monolith was assessed by flow rate variations and the results 

remained unchanged. 

In dynamic binding capacity experiments, the values obtained were satisfactory when 

compared to a histidine-agarose conventional matrix, a non-grafted monolith or a monolith 

modified with another amino acid. The maximum dynamic binding capacity achieved with the 

L-histidine monolith was 11.03 mg/mL of column, at 0.5 mL/min and 0.05 mg/mL of plasmid 

solution.  
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Thus, the modified L-histidine monolith used in this work can be a promising strategy to 

efficiently purify the sc pDNA with a therapeutic gene, such as the HPV16 E6/E7, from a 

lysate sample, with a desirable purity degree. After purification from a complex sample, the 

sc pDNA obtained should be tested in in vitro transfection studies to assess the expression of 

E6 and E7 proteins encoded in the plasmid. Moreover, in vivo studies could also be interesting 

to evaluate the immune responses (prophylactic and therapeutic responses) developed by the 

sc HPV16 E6/E7 pDNA. 
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Abstract 24 

 25 

The growing demand of pharmaceutical grade plasmid DNA suitable for bio 26 

therapeutic applications fostered the development of new purification strategies.  27 

The surface plasmon resonance technique was employed for a fast screening of 28 

histidine and derivatives, Im-benzyl-L-histidine and L-methyl-L-histidine as potential 29 

ligands for the biorecognition of three plasmids with different sizes (6.05, 8.70 and 14 30 

kilo base pairs). The binding analyses were performed with different isoforms of each 31 

plasmid (supercoiled, open circular and linear) separately. The results revealed that the 32 

overall affinity of plasmids to histidine ligand and their derivatives was high (KD > 10
-8

 33 

M
1
) and the highest affinity was found for HPV-16 E6/E7/L-histidine interaction, with a 34 

KD value of 3.34 x 10
-10 

± 0.0209 M.  35 

Therefore, the L-histidine ligand was selected to combine its specificity and 36 

selectivity with the versatility of monolithic supports. Chromatographic studies of the 37 

L-histidine monolith were also performed with the aforementioned samples. In general, 38 

the supercoiled isoform had strong interactions with the support. The separation of 39 

plasmid isoforms was achieved by decreasing the ammonium sulfate concentration in 40 

the eluent. The efficiency of plasmid isoforms separation remained unchanged with 41 

flow rate variations. The binding capacity for plasmid DNA achieved with the L-42 

histidine monolith was twenty nine fold higher than the obtained with conventional L-43 

histidine matrix in previous studies. 44 

 Overall, the combination of L-histidine ligand with the monolithic support can 45 

be a promising strategy to purify the supercoiled isoform from different plasmids with 46 

suitable purity degree for pharmaceutical applications. 47 

 48 

Keywords: Affinity ligands; Dynamic binding capacity; L-histidine monolith; 49 

Supercoiled plasmid DNA; Surface plasmon resonance. 50 

  51 
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1. Introduction  52 

 53 

Over the last years, the demand of clinical-grade plasmid DNA (pDNA), to be 54 

used as a biotherapeutic agent, has increased due to its safety, versatility and low risk of 55 

immunogenic reactions when compared with the viral vectors approach [1]. 56 

Large-scale and cost-effective production of pDNA is a constant challenge to the 57 

biotechnological industry. The pDNA quality has to be maintained in order to meet the 58 

international regulatory agency requirements. Thus, for the successful expression of the 59 

encoded protein, the final plasmid sample should be free from host impurities and 60 

present more than 97 % of the supercoiled (sc) isoform [2].  61 

Several chromatographic techniques have been exploited over the years to 62 

achieve the sc pDNA separation from other non-effective topoisomers and host 63 

impurities. Anion exchange chromatography [3], size exclusion chromatography [4], 64 

hydrophobic interaction chromatography [5] were commonly used with that purpose. 65 

However, these chromatographic strategies did not achieve efficient pDNA isoforms 66 

separation from the lysate sample, due to their structural and chemical similarities. On 67 

the other hand, the application of affinity chromatography allows the reduction of the 68 

purification steps needed to accomplish the final purified product [6] without 69 

compromising its quality, developing a specific biorecognition by the sc pDNA isoform 70 

[7]. 71 

Affinity chromatography can be used to specifically isolate pDNA, based on 72 

biological function or individual chemical structure of a specific ligand immobilized on 73 

the chromatographic matrix [8]. However, a suitable ligand has to be chosen to improve 74 

the selectivity for pDNA [9]. Multiple studies have described the successful use of 75 

amino acids as affinity ligands to separate pDNA isoforms with conventional agarose-76 

matrices, namely arginine [10], lysine [11], and histidine [12]. Therefore, 77 

characterization studies of amino acid ligands with plasmid molecules are important 78 

tools to understand the biorecongnition mechanisms and the affinity interactions that 79 

can be developed between the ligand and the target molecule. 80 

Moreover, Surface Plasmon Resonance (SPR) biosensor has been used to yield 81 

information regarding amino acid immobilized on surface and pDNA molecules. 82 

Interaction of nucleotides with several amino acids, such as lysine, arginine [14] and 83 

histidine [15], has already been reported and the binding responses were analyzed in 84 

order to understand the underlying mechanisms of biorecognition. A recent study, 85 
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employing SPR, exploited the interaction between immobilized L-arginine and different 86 

plasmids topologies to provide further knowledge for affinity chromatography 87 

purification [16]. 88 

Nuclear magnetic resonance (NMR) was also used to study structural aspects of 89 

chromatographic supports with the aforementioned amino acids [14]. These techniques 90 

can be employed in fast screening of suitable ligands to be applied in chromatographic 91 

experiments. 92 

Beyond the study and choice of a ligand with high selectivity, also a suitable 93 

chromatographic support should be selected. Low capacity and low diffusivity for 94 

pDNA are disadvantages that remain in the aforementioned conventional matrices [17]. 95 

These problems are overcome by monoliths, which are considered advantageous 96 

supports to purify large biomolecules due to their tridimensional characteristics of 97 

interconnected pores, which allows good mass transfer properties and binding capacity 98 

[18]. 99 

Thus, the aim of this work was to perform a fast screening by SPR technique of 100 

L-histidine, Im-benzyl-L-histidine and L-methyl-L-histidine as possible affinity ligands 101 

for immobilization on a monolithic support. Additionally, the modified monolith was 102 

characterized in terms of functionality, elution strategy (type and salt concentration, 103 

type of buffer and pH effect), recognition of sc pDNA isoform of different plasmids and 104 

dynamic binding capacity. 105 

  106 
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2. Experimental 107 

 108 

2.1 Materials 109 

All solutions, used in SPR and chromatographic experiments, were freshly 110 

prepared using deionized ultra-pure grade water, purified with a Milli-Q system from 111 

Millipore (Billerica, MA, USA) and analytical grade reagents were used. All 112 

experiments were conducted at room temperature unless otherwise stated.  113 

The 6.05 kbp pVAX1-LacZ plasmid was provided by Invitrogen (Carlsband, 114 

CA, USA). The 8.702 kbp HPV-16 E6/E7 plasmid, Addgene plasmid 8641 [19], and the 115 

14 kbp pcDNA3-myc-FLNa S2152A plasmid, Addgene plasmid 8983, (pcDNA3-based 116 

plasmid) [20] were provided by Addgene (Cambrige, USA). The Hind III restriction 117 

enzyme, the GreenSafe Premium and the NZYTech Plasmid Maxi Columns were 118 

purchased from NZYTech (Lisbon, Portugal). Hyper Ladder I (Bioline, London, UK) 119 

was used as a DNA molecular weight marker.  120 

The elution buffers were filtered through a 0.20 µm pore size membrane 121 

(Schleicher Schuell, Dassel, Germany) and degassed ultrasonically. Sodium chloride 122 

and ammonium sulfate were purchased from Panreac (Barcelona, Spain), 123 

tris(hydroxymethyl) aminomethane (Tris) from Merck (Darmstadt, Germany), and 4-(2-124 

hydroxyethyl)-1-piperazineethanesulfonic acid  (HEPES) and borate buffer were from 125 

Sigma Aldrich (St.Louis, MO, USA). Chromatographic experiments were carried out 126 

with monolithic disks of 0.34 mL bed volume (average pore size of 1500 nm in 127 

diameter) modified with histidine amino acid, which were kindly provided by BIA 128 

Separations (Ajdovščina, Slovenia). 129 

 130 

 131 

2.2 Methods 132 

 133 

2.2.1 Plasmids amplification by bacterial production 134 

 The pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-based plasmids amplification 135 

was performed by autonomous replication in Escherichia coli (E. coli) DH5α. The 136 

fermentation was carried out overnight at 37 ºC under 250 rpm shaking. Terrific Broth 137 

medium was used (20 g/L tryptone, 24 g/L yeast extract, 4 mL/L glycerol, 0.017 M 138 

KH2PO4 and 0.072 M K2HPO4) and in order to ensure the exclusive growth of 139 
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transformed cells, antibiotics were applied as selection markers. The culture medium 140 

was supplemented with 30 µg kanamycin/mL for cells transformed with pVAX1-LacZ, 141 

100 µg ampicillin/mL for cells transformed with HPV-16 E6/E7 and 100 µg 142 

ampicillin/mL and 50 µg Neomycin/mL for cells transformed with pcDNA3-based 143 

plasmid. Growth was suspended at the log phase [OD600~7] and cell pellets recovered 144 

by centrifugation were stored at – 20 ºC. 145 

 146 

2.2.2 Alkaline lysis and pre-purification of pDNA samples 147 

 The lysis of pelleted bacteria was performed by a modified alkaline lysis method 148 

and the plasmid samples were pre-purified according to NZYTech Plasmid Maxi kit 149 

manufacturer’s instructions. Briefly, after the alkaline lysis, the lysate is cleared by 150 

centrifugation, and then, the impurities are removed by a medium-salt wash after 151 

plasmid DNA binding to the NZYTech anion-exchange resin. pDNA elution occurs 152 

when a high-salt buffer is added. In last, the pDNA is concentrated by isopropanol 153 

precipitation.  154 

 155 

2.2.3 Plasmid isoforms preparation 156 

Three plasmid conformations, namely sc, linear (ln) and open circular (oc) 157 

isoforms of each plasmid, were prepared to be used in SPR and chromatographic 158 

experiments.  The sc-enriched samples of pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-159 

based plasmid directly obtained by alkaline lysis, as described above, were also used to 160 

prepare ln and oc pure samples. In order to convert sc into oc isoform, the plasmids 161 

were incubated at room temperature, and monitored over the time by agarose 162 

electrophoresis, until total sample conversion (about 3 days). To prepare ln samples of 163 

each plasmid, an enzymatic digestion with Hind III at 37ºC was performed. 164 

 165 

2.2.4 Agarose gel electrophoresis  166 

 The conformation and the purity of different samples used for this study, as well 167 

as the fractions recovered in each chromatographic experiment, were analyzed by 168 

horizontal electrophoresis using 15-cm-long 0.8% agarose gels (Hoefer, San Francisco, 169 

CA, USA), stained with GreenSafe Premium (1µg/mL). Electrophoresis was performed 170 

at 100 V, for 30 minutes, with TAE buffer (40 mM Tris base, 20 mM acetic acid and 1 171 

mM EDTA, pH 8.0). Agarose gels were revealed under UV light in a transilluminator 172 

system (ILC Lda, Lisbon, Portugal). 173 
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2.2.5 SPR measurements 174 

All SPR experiments were performed using a BIAcore T200 system and the 175 

BIAevaluation software was used for data analysis.  176 

L-Histidine, Im-benzyl-L-histidine and L-methyl-L-histidine, were immobilized 177 

on a carboxymethylated dextran-coated sensor chip (CM5 research grade). After 178 

detector normalization with BIAnormalizing solution (70% glycerol, GE Healthcare), 179 

the amino acids were covalently attached to the surface of this sensor chip, using the 180 

amine-coupling method. The running buffer for ligands immobilization was HBS-EP 181 

(10 mM HEPES, 150 mM NaCl, 0.05% P20 surfactant, 3 mM EDTA, pH 7.4), 182 

purchased from Biacore. The sensor chip surface was activated with 1-ethyl-3-(3- 183 

dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). L-184 

histidine, Im-benzyl-L-histidine and L-methyl-L-histidine, were dissolved in 100 mM 185 

borate solution, at pH 9 with a final concentration of 340 mM, 21 mM and 350 mM, 186 

respectively. The sensor surface was blocked with ethanolamine and injections with 187 

HBS-EP were performed to stabilize the baseline. 188 

The CM5 chip flow cell 1 was left unmodified to act as reference and samples 189 

were tested for binding in duplicate. 190 

To collect affinity data, samples of pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-191 

based plasmid isoforms (sc, oc and ln), separately, in HEPES 10 mM pH 7.4 were 192 

injected at concentrations ranging from 0.55µM to 4.3×10
-6 

µM. After each run the 193 

plasmid was removed from the surface without requiring a regeneration solution. 194 

A steady state affinity study was performed with the binding data collected, 195 

averaging the resonance unit values (RU) in the plateau region of the sensograms over 196 

350-400 s and the data were fit to a 1:1 interaction model. 197 

 198 

2.2.6 
1
H NMR experiments 199 

The L-histidine 0.34 M was dissolve in solution of HEPES (10 mM and 100 200 

mM) with 10 % D2O at pH 7.4. The proton resonances of L-histidine were first 201 

assigned. The 
1
H NMR spectra were recorded at a temperature of 298 K on a Bruker 202 

Avance III 600 MHz spectrometer operating at 14.09 Tesla observing 
1
H at 600.13 203 

MHz. The spectrometer was equipped with a four-channel Quadruple (QXI) resonance 204 

probe and all spectra were processed with the software topspin 3.1 (Bruker). 205 

 206 

 207 
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2.2.7 Chromatographic experiments 208 

Chromatographic experiments were performed in a AKTA Purifier system (GE 209 

Healthcare Biosciences Uppsala, Sweden) and the control system software was Unicorn 210 

version 5.11.  211 

L-histidine amino acid was immobilized in a CIM
TM

 epoxy disk by pumping the 212 

ligand solution (1 g L-histidine dissolved in 4 mL of NaOH) through the monolithic 213 

disk followed by 72h thermostating of the column at 60 ºC. Finally, the monolithic disk 214 

was washed with water and the remaining epoxy groups were hydrolyzed in diol groups 215 

by soaking with 0.5 M H2SO4 for 30 min.  216 

 L-histidine monolith was equilibrated, at a flow rate of 1 mL/min, with 217 

appropriate binding buffer, as described below. Plasmid samples pre-purified with the 218 

NZYTech kit were injected (100 µL) at the same flow rate. Linear gradients were 219 

performed by decreasing the ammonium sulfate concentration from 3.5 to 0 M and 220 

increasing the sodium chloride concentration from 0 to 3 M. Afterwards, stepwise 221 

gradient of decreasing ammonium sulfate concentration was also explored to separate 222 

isoforms of pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-based plasmid. All 223 

chromatographic runs were monitored at 260 nm and the pooled fractions were 224 

concentrated and desalted for further analysis by agarose electrophoresis. 225 

The monolith regeneration was conducted after some chromatographic 226 

experiments by washing with deionized water followed by 5 column volumes of 0.5 M 227 

NaOH at a flow rate of 0.5 mL/min. Finally, L-histidine monolith was again thoroughly 228 

washed with the deionized water until the proper pH is restored. 229 

 230 

2.2.8 Dynamic binding capacity 231 

Breakthrough experiments were conducted to assess the L-histidine monolith 232 

dynamic binding capacity for pDNA. A pVAX1-LacZ solution with 0.05 mg/mL was 233 

prepared to perform the monolith overload at the flow rates of 1 mL/min and 0.5 234 

mL/min. Briefly, L-histidine monolith was equilibrated with 3.5 M ammonium sulfate 235 

in 10 mM Tris-HCl buffer and 10 mM EDTA, pH 8. After the column saturation with 236 

the pDNA prepared in the same binding buffer, the elution was obtained by decreasing 237 

the ammonium sulfate concentration to 0 M. Dynamic binding capacity assessment was 238 

carried out by the amount of bound pDNA per mL of support at 10%, 50% and 100% of 239 

breakthrough curves and subtracting the respective value obtained under non-binding 240 

conditions.   241 
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3. Results and discussion 242 

 243 

3.1 SPR binding experiments 244 

 245 

 L-histidine, Im-benzyl-L-histidine and L-methyl-L-histidine were immobilized 246 

on a carboxymethylated dextran-coated sensor chip via amine coupling [21]. After 247 

immobilization, different running buffers were tested such as 10 mM Tris-HCl, pH 8, 248 

500 mM ammonium sulfate in 10 mM Tris-HCl, pH 8, 500 mM ammonium sulfate and 249 

100 mM of HEPES, pH 7.4. However no signal was detected when plasmid isoforms 250 

were injected. 251 

The affinity data was collected with running buffer HEPES 10 mM, pH 7.4 252 

when different plasmid isoforms were injected over the surfaces. The steady-state 253 

results are carried out by averaging the resonance unit values (RU) in the plateau region 254 

of the sensorgrams over a 350 to 400 s. The SPR binding profile was identical for all 255 

complexes indicating rapid association and dissociation for steady-state binding studies 256 

(examples of sensorgrams and binding curves in supplementary information). Even with 257 

running buffer 10 mM of HEPES pH 7.4 non-specific binding was detected between the 258 

reference surface (blocked dextran) with the ligand surfaces specially Im-benzyl-L-259 

histidine and L-methyl-L-histidine indicating that plasmid isoforms have significant 260 

affinity for blocked dextran. This makes affinity calculations of some plasmid isoforms 261 

unfeasible (see Table 1). The equilibrium dissociation constants (KD) presented in Table 262 

1 are significantly high (10
-10

-10
-8 

M range) with the highest affinity found for HPV-16 263 

E6/E7 linear/L-histidine,           ±0.0209 M, while the pcDNA3-based 264 

supercoiled plasmid showed the lowest binding affinity. Also the results suggest a non-265 

linear tendency between plasmid size and binding, since the linear pcDNA3-based 266 

plasmid have lowest affinity than linear HPV-16 E6/E7 plasmid. HEPES acid was the 267 

running buffer used which promoted less unspecific binding with blank cell. However 268 

for some cases like HPV-16 E6/E7 sc especially in L-methyl-L-histidine the profile 269 

obtained shows that the pDNA binds to L-methyl-L-histidine but the dissociation starts 270 

right away at 350s (data not shown). 271 

 Since it has been described that increasing the running buffer concentration 272 

might help decreasing unspecific interactions [22], several injections were performed 273 

with HEPES 100 mM, pH 7.4. No binding responses were also detected. In order to 274 
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understand the concentration effect of HEPES buffer in the interaction with L-histidine, 275 

1
H NMR experiments were performed in solutions of HEPES 10 mM and HEPES 100 276 

mM at pH 7.4. L-histidine was dissolved in solution of HEPES (10 mM and 100 mM) 277 

with 10 % D2O at pH 7.4. The 
1
H NMR spectra shows chemical shift variation in 278 

imidazole protons only in HEPES 100 mM (data not shown). Only the imidazole ring of 279 

L-histidine interacted with HEPES buffer 100 mM meaning that maybe this ring is not 280 

free to interact with other molecules. This might also be the explanation for the results 281 

in Table 1 using running buffer HEPES 10 mM pH 7.4. Also the main interaction 282 

between the plasmid isoforms and the ligands seems to be mostly through the imidazole 283 

ring [23]. This can explain the decrease of the affinity for the L-histidine derivatives 284 

with methyl and benzyl groups replace in position 1 in the imidazole ring. In general, 285 

the maximum response was found for L-histidine surface, when compared with its 286 

derivatives indicating that L-histidine might be a promising ligand for purification of 287 

pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-based plasmids. Moreover, an L-histidine-288 

agarose matrix was already employed in the purification of pVAX1-LacZ sc isoform 289 

[24]. However, due to the bottlenecks associated with conventional matrices, the 290 

conjugation of L-histidine ligand with other chromatographic supports, such as 291 

monoliths, can be a more promising and efficient strategy.  292 

 293 

3.2 Preliminary chromatographic experiments 294 

 295 

 The use of monoliths has increased in the last years, since they overcome many 296 

of the conventional matrices limitations. Thus, the combination of the specificity and 297 

selectivity of the L-histidine ligand with the versatility of monolithic supports can be a 298 

promising strategy to develop a suitable chromatographic support for sc pDNA 299 

purification.   300 

 Several preliminary chromatographic tests were performed in order to verify the 301 

modification of L-histidine monolith and to choose suitable conditions for the plasmid 302 

retention (Fig. 1). First of all, a decreasing linear gradient of ammonium sulfate, from 303 

3.5 M to 0 M in 10 mM Tris-HCl and 10 mM EDTA pH 8.0, was tested with the non-304 

grafted epoxy monolith, loading a pVAX1-LacZ plasmid sample (100 µL) at 1mL/min. 305 

The binding condition allowed the pDNA retention to the epoxy groups, being eluted 306 

during the linear gradient (data not shown). Then, the same strategy was applied to the 307 

L-histidine monolith in order to compare the elution profile with the one achieved with 308 
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the non-grafted monolith. The results showed a different elution profile as well as a 309 

different retention time for pDNA, which indicates that the different elution behavior is 310 

due to the presence of L-histidine ligand on the modified monolith (Fig. 1 (A)).  311 

Afterwards, the influence of elution buffer composition in the plasmid retention 312 

to the L-histidine monolith was studied in order to select the elution strategy that should 313 

be used for further separation of plasmid isoforms. Since HEPES 10 mM was the most 314 

suitable buffer to perform the SPR experiments, the same elution gradient with 315 

ammonium sulfate in 10 mM HEPES and 10 mM EDTA pH 7.4 was evaluated and the 316 

elution profile was similar to the previous result with the Tris-HCl buffer (data not 317 

shown).     318 

 Previous studies reported the pH influence on oligonucleotides retention to the 319 

histidine-agarose matrix [25]. Therefore, the pH effect in the plasmid retention was also 320 

a parameter evaluated in these preliminary tests. A solution with 3.5 M (NH4)2SO4 in 10 321 

mM Tris-HCl buffer and 10 mM EDTA, pH 6.0 was prepared and a decreasing linear 322 

gradient was established from 3.5 M to 0 M. The obtained result is presented in Fig. 1 323 

(B) and reveals a slight increase on the plasmid retention time (5.59) when compared 324 

with the same assay performed at pH 8.0 (5.21). This behavior suggests that besides the 325 

predominant action of hydrophobic interactions, owing to the salt concentration used, 326 

other interactions can be present, affecting the plasmid retention. Given that the pKa of 327 

L-histidine is 6.5, acidic pH environment can favor the protonation of imidazole ring, 328 

which enables the additional involvement of ring stacking interactions and cation π 329 

interactions with plasmid aromatic bases [23], especially with guanine [25,26]. 330 

Finally, an increasing linear gradient from 0 to 3 M of sodium chloride in 10 331 

mM Tris-HCl and 10 mM EDTA, pH 8.0 was also tested (Fig.1 (C)). After pDNA 332 

injection onto the L-histidine monolith, all species were eluted in a single peak in the 333 

flowthrough, at 0 M of sodium chloride. Therefore, these conditions disfavor the 334 

plasmid retention, indicating that ionic interactions are not established between the 335 

pDNA and the modified monolith. 336 

 337 

3.3 Plasmid isoforms separation 338 

 339 

 Similarly to what was explored in SPR study, also in the characterization of the 340 

chromatographic support, a screening of different isoforms (oc, sc and ln) of pVAX1-341 

LacZ, HPV-16 E6/E7 and pcDNA3-based plasmid, was performed. According to the 342 
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preliminary studies, the decreasing linear gradient from 3.5 M to 0 M (NH4)2SO4 in 10 343 

mM Tris-HCl and 10 mM EDTA pH 8.0 was the elution condition chosen. The results 344 

revealed that only the sc isoform of the three plasmids binds effectively to the histidine 345 

monolith under the conditions established, while the ln and oc isoforms did not show an 346 

effective retention, being mostly eluted in the flowthrough (data not shown). The 347 

retention behavior of each pDNA isoform suggests that it can be possible the separation 348 

of the respective sc pDNA when present in a mixture of isoforms. Therefore, some 349 

experiments were performed to find the best strategy to separate the pDNA isoforms of 350 

different plasmids by using decreasing stepwise gradients of ammonium sulfate. The 351 

chromatographic profile of the sc pDNA purification from plasmid samples pre-purified 352 

with the NZYTech kit is shown in Fig. 2. First, the L-histidine monolith was 353 

equilibrated with 2.99 M, 2.94 M or 2.91 M ammonium sulfate in 10 mM Tris-HCl 354 

buffer and 10 mM EDTA, pH 8.0, to the pVAX1-LacZ (Fig.2 (A)), HPV-16 E6/E7 355 

(Fig.2 (B)) and pcDNA3-based plasmid (Fig.2 (C)) assays, respectively, at a flow rate 356 

of 1 mL/min. After the injection of the respective plasmid (100 µL), a first peak was 357 

obtained, corresponding to unbound species. Then, a second step was established with 0 358 

M of ammonium sulfate for elution of bound species in a second peak. Additional 359 

washing steps were performed between each experiment. The fractions pooled from 360 

each peak were analyzed by agarose gel electrophoresis (Fig.2 (D)). The elution of oc 361 

isoforms occurred in the first peak (Fig.2 (D), lanes 1,3 and 5) with high ionic strength, 362 

and the sc isoform of each plasmid was recovered in the second peak with the decrease 363 

of ionic strength (Fig.2 (D), lanes 2, 4 and 6). 364 

The preferential interaction of the L-histidine monolith with the sc isoform of 365 

each plasmid can be explained by the different bases exposure degree. The supercoiling 366 

phenomenon is a consequence of deformations induced by the torsional strain [27], and 367 

as a consequence, the bases of the sc isoform are more exposed and available to interact 368 

with the ligand than the bases of the oc isoform [12] [28]. As a matter of fact, besides 369 

the predominance of hydrophobic interactions, namely ring stacking/hydrophobic 370 

interactions, other elementary and non-covalent forces can be involved in the sc pDNA 371 

biorecognition, such as van der Waals forces, bifurcate hydrogen bonds and hydrogen π 372 

interactions [17]. 373 

The plasmids under study present different molecular sizes, namely 6.05 kbp for 374 

pVAX1-LacZ, 8.70 kbp for HPV-16 E6/E7 and 14 kbp for pcDNA3-based plasmid. 375 

However, it is observed that the ideal ammonium sulfate concentration to separate the 376 
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isoforms of each plasmid (2.99 M for pVAX1-LacZ, 2.94 M for HPV-16 E6/E7 and 377 

2.91 M for pcDNA3-based plasmid) was decreasing while the plasmid molecular mass 378 

was increasing (Fig. 2). These results are in agreement with previous works, which 379 

describe that when hydrophobic interactions are favored, the global hydrophobic 380 

character of the molecules slightly increases with the molecular mass [25]. Therefore, 381 

the larger plasmid is the most hydrophobic, interacts more and so the salt concentration 382 

needed to promote its retention is the lowest. 383 

 384 

3.4 Effect of flow rate on plasmid isoforms separation 385 

 386 

Monolithic supports are characterized by a single piece with highly 387 

interconnected pores where mass transport is based on convection by laminar flow, 388 

enabling very fast separations [29]. Given that the stability, integrity and pDNA 389 

biological activity are important parameters for the pDNA application and can be 390 

affected by the time of chromatographic run, it can be considered a crucial factor in 391 

purification strategies to be controlled in order to avoid pDNA structural damages. 392 

 To verify the effect of flow rate on separation of plasmid isoforms, decreasing 393 

stepwise gradients of ammonium sulfate with pVAX1-LacZ were studied. The gradient 394 

and elution buffer conditions used to study the effect of flow rate were similar to the 395 

conditions used to separate pVAX1-LacZ isoforms. As shown in Fig. 3 (A), the 396 

stepwise gradients were performed at a flow rate of 1mL/min, 2mL/min and 4mL/min. 397 

The peaks content was revealed by agarose gel electrophoresis (Fig.3 (B)) and as 398 

expected, lanes 1, 3 and 5 correspond to the oc isoform, and lanes 2, 4 and 6 correspond 399 

to the sc isoform that is isolated for all experiments. All chromatograms were 400 

normalized in function of the elution volume, although the experiment performed at 4 401 

mL/min took only 2 min.  402 

These results show that also the modified L-histidine monolith exerts the pDNA 403 

isoforms separation with good resolution, which is maintained at different flow rates, in 404 

the studied range. 405 

 406 

3.5 Dynamic binding capacity 407 

 408 

In order to better characterize the modified L-histidine monolith, dynamic 409 

binding capacity studies were carried out. Since it was demonstrated that at different 410 
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flow rates the plasmid isoforms separation remained unchanged, it was also interesting 411 

to verify the flow rate effect on the monolith binding capacity.  412 

Breakthrough experiments were performed at 0.5 and 1 mL/min using a pDNA 413 

feedstock solution with 0.05 mg/mL, obtained after alkaline lysis and pre-purification 414 

with the NZYTech kit. The L-histidine monolith was equilibrated with 3.5 M 415 

ammonium sulfate in 10 mM Tris-HCl and 10 mM EDTA, pH 8.0 and the same ionic 416 

strength was used to prepare the 0.05 mg/mL plasmid feedstock solution. Determination 417 

of dynamic binding capacity was carried out by recording breakthrough curves at 260 418 

nm. The dynamic binding capacity values were obtained, after data normalization, by 419 

subtracting the value obtained under non-binding conditions and multiplying by the 420 

pDNA concentration. The ratio between the amount of bound pDNA and the support 421 

volume (0.34 mL) at 10%, 50% and 100% of the breakthrough was then calculated and 422 

the results are present in Table 2. 423 

It is generally described for monolithic supports that the purification and 424 

capacity are independent of the flow rate [30, 31]. However, the present work indicates 425 

a smooth increase of capacity for the low flow rate assays. This result cannot be related 426 

with the monolith characteristics but with the plasmid properties. The increasing contact 427 

time between the matrix and pDNA favors the attainment of equilibrium and a smaller 428 

area is occupied by the pDNA, which becomes less extended at lower flow rates [32, 429 

33]. Similar conclusions about how the pDNA conformation and the flow rate affect the 430 

capacity were reported in previous studies using a non-grafted monolith [17], and an 431 

histidine-agarose matrix [32]. Thus, these particular studies reinforce the hypothesis that 432 

the support capacity is in part dependent of the pDNA size and conformation [33, 34].   433 

Overall these results are very satisfactory, since an increased capacity was 434 

achieved for the L-histidine monolith (3.88 mg/mL of column) at 10% breakthrough, 1 435 

mL/min with 0.05 mg/mL of plasmid feedstock solution, when compared to the non-436 

grafted monolith (2.19 mg/mL of column), with identical loading conditions [17]. This 437 

increased capacity might be related with the increased binding sites of the monolith 438 

after ligand immobilization [26], since it is expected an increased capacity after grafting 439 

the monolith. In addition, the capacity of L-histidine monolith (6.24 mg/mL) was 440 

twenty nine fold higher than the conventional histidine-agarose matrix (0.217 mg/mL) 441 

at 50% breakthrough, using identical loading conditions and pDNA concentration at 0.5 442 

mL/min [32]. 443 
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 The results obtained with the L-histidine monolith are also satisfactory when 444 

compared with another monolith immobilized with arginine amino acid. The total 445 

capacity of arginine monolith determined in a sodium chloride-based elution strategy,, 446 

at 1 mL/min of flow rate and 0.05 mg/mL of plasmid feedstock solution was 5.18 447 

mg/mL of column [35]. This value is slightly lower in comparison with the achieved for 448 

the L-histidine monolith with the same parameters (6.70 mg/mL of column). Once the 449 

loading strategy used for the arginine monolith was performed with low salt 450 

concentration, the capacity differences reported above can be related with a reduced 451 

intermolecular repulsion between the DNA molecules. Otherwise, the capacity of the L-452 

histidine monolith increased because DNA molecules pack more closely on the surface 453 

due to the high salt concentrations used [36]. 454 

The capacity results obtained with the L-histidine monolith contradict the 455 

affinity chromatography association with low capacity, indicating that the combination 456 

of a suitable ligand, like L-histidine, with an appropriate chromatographic support, like 457 

monolith, can overcome some purification bottlenecks. 458 

  459 
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4. Conclusions 460 

 461 

 SPR, NMR and affinity chromatography are three distinct research areas, 462 

however, the knowledge of affinity interactions and the functional groups involved in 463 

interactions obtained through SPR and NMR analysis are valuable tools to provide 464 

information regarding the interactions that can be explored in affinity chromatographic 465 

strategies.  466 

In this study, L-histidine, Im-benzyl-L-histidine and L-methyl-L-histidine, were 467 

immobilized on a carboxymethyl-dextran matrix and studied by SPR as affinity ligands 468 

for plasmid isoforms separation. The overall affinity with these ligands was 469 

significantly high, 10
-10

-10
-8 

M range, in presence of running buffer 10 mM HEPES at 470 

pH 7.4. The maximum response for different plasmid samples was found for L-471 

histidine. No binding response was found using acid HEPES 100 mM or other buffers 472 

like Tris-HCl and ammonium sulfate. The 
1
H NMR spectra suggested that the imidazole 473 

ring of L-histidine is more involved in binding and the running buffer affected their 474 

strength to the plasmids. The ligand selected for immobilization on epoxy monolith was 475 

L-histidine.  476 

L-histidine monolith allowed the successful separation of sc pDNA from the oc 477 

isoform, with pVAX1-LacZ, HPV-16 E6/E7 and pcDNA3-based plasmids. The 478 

separation of plasmid isoforms was achieved by decreasing the ammonium sulfate 479 

concentration in the eluent. The three plasmids present different sizes, and the global 480 

hydrophobic character slightly increases with the molecular mass. Thus, plasmids with 481 

high molecular weight and exhibiting the supercoiled isoform develop strong 482 

interactions with the modified support. In addition, the efficiency of plasmid isoforms 483 

separation remained unchanged with flow rate variations. 484 

The maximum dynamic binding capacity achieved with the L-histidine monolith 485 

was 11.03 mg/mL of column, at 0.5 mL/min and 0.05 mg/mL of plasmid solution. The 486 

capacity values were satisfactory when compared to a histidine-agarose conventional 487 

matrix, a non-grafted monolith or a monolith modified with arginine amino acid. 488 

Therefore, the L-histidine monolith solved some drawbacks associated with 489 

conventional matrices where L-histidine ligand has already been used to purify pDNA.  490 

Thus, the monolith modified in this work can be a promising strategy to 491 

efficiently purify the sc plasmid DNA with a therapeutic gene, such as the HPV16 492 

E6/E7, from a lysate sample.   493 
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 555 

Table 1. Equilibrium data analysis of plasmids in 10 mM of HEPES pH 7.4. 556 

KD-dissociation constant; SD-standard deviation 557 

 558 

Table 2. Dynamic binding capacity results of L-histidine monolith at 0.5 and 1 mL/min. 559 

Breakthrough experiments were performed with a 0.05 mg/mL pDNA solution pre-560 

purified and the capacity was estimated at 10, 50 and 100% of breakthroughs. 561 

Flow rate DBC (mg/mL) 

10% 50% 100% 

1 mL/min 3.88 4.96 6.70 

0.5 mL/min 4.20 6.24 11.03 

 562 

  563 

Plasmid samples 

KD(M) ± SD 

L-methyl-L-histidine Im-benzyl-L-histidine 

 

L-histidine 

 

pVAX1-LacZ 

sc          ±0.00613          ±0.00595          ±0.0131 

oc *          ±0.00607          ±0.00441 

ln * * * 

HPV-16 E6/E7 

sc * * * 

oc          ±0.00573 * * 

ln * *           ±0.0209 

pcDNA3-based 

plasmid 

sc *          ±0.00734         ±0.00629 

oc * * * 

ln *          ±0.00702          ±0.00848 
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Figure captions 564 

 565 

Figure 1. Chromatographic profiles of L-histidine monolith with the pVAX1-LacZ 566 

plasmid sample, pre-purified with NZYTech kit, under different elution conditions. (A) 567 

Decreasing linear gradient from 3.5 M to 0 M (NH4)2SO4 in 10 mM Tris-HCl and 10 568 

mM EDTA, pH 8.0; (B) decreasing linear gradient from 3.5 M to 0 M (NH4)2SO4 in 10 569 

mM Tris-HCl and 10 mM EDTA, pH 6.0; (C) increasing linear gradient from 0 M to 3 570 

M NaCl in 10 mM Tris-HCl and 10 mM EDTA, pH 8.0. The assays were performed at 571 

1 mL/min and labels in the peaks represent the pDNA retention time. 572 

 573 

Figure 2. Separation of plasmid isoforms of different sizes with the histidine monolith. 574 

The (NH4)2SO4 concentrations optimized for the isoforms separation of each plasmid 575 

were (A) 2.99 M for pVAX1-LacZ (6.05 kbp), (B) 2.94 M for HPV-16 E6/E7 (8.70 576 

kbp) and (C) 2.91 M for pcDNA3-based plasmid (14 kbp). UV detection at 260 nm. 577 

Injection volume was 100 µL. (D) Agarose gel electrophoresis of each peak resultant 578 

from the respective chromatogram. Lane M: molecular weight marker; lanes A, B and 579 

C: pDNA samples injected onto the column (oc+sc); lanes 1, 3 and 5: oc isoform; lanes 580 

2, 4 and 6: sc isoform. 581 

 582 

Figure 3. (A) Flow rate effect on pVAX1-LacZ isoforms separation. Experiments were 583 

performed by decreasing stepwise gradient from 2.99 M to 0 M (NH4)2SO4 in 10 mM 584 

Tris-HCl and 10 mM EDTA, pH 8.0 at different flow rates (1, 2 and 4 mL/min). (B) 585 

Agarose gel electrophoresis of each peak resultant from the respective chromatogram. 586 

Lane M: molecular weight marker; lane A: pVAX1-LacZ sample injected onto the 587 

column (oc+sc); lanes 1, 3 and 5: oc isoform; lanes 2, 4 and 6: sc isoform. 588 

  589 
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 591 

Fig. 1 592 
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 594 

Fig. 2 595 

 596 

 597 

Fig. 3 598 
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S1. Sensorgrams and equilibrium-binding analysis of immobilized Im-benzyl-L-620 

histidine to A) sc isoform of pcDNA3-based plasmid B) oc isoform of pVAX1-LacZ 621 

and immobilized L-histidine to C) oc isoform of pVAX1-LacZ and D) sc isoform of 622 

pcDNA3-based plasmid in HEPES 10mM pH 7.4. 623 

 624 
 625 


