
UNIVERSIDADE DA BEIRA INTERIOR
Engenharia

Elliptic Curve Cryptography Services for Mobile
Operating Systems

Ana Raquel Correia Figueira

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

(2º ciclo de estudos)

Orientador: Prof. Doutor Pedro Ricardo Morais Inácio

Covilhã, Outubro de 2015

ii

To my loving family, who guided me to where I am today.

iii

iv

Acknowledgments

First and foremost, I must thank my family, who have always been extremely supportive of all

my decisions. To my parents, Ana Maria and António, for everything they have done to be able

to provide me with an education, and for everything that they have taught me. To my sister

Sónia and to Francisco for their support and to their new addition to the family, my adorable

nephew Kiko.

I want to thank my friends, old and new, for their help throughout this phase of my life, which

was filled with huge changes and they certainly gave me the strength to accept new challenges

and conciliate work with studying. Thanks to you all, in particular to Ana Costa, whose help and

support was immeasurable.

I would like to thank my uncle Jorge Correia, my aunt Anabela Correia and to my cousin Ricardo

Correia for all the support they gave me and for temporarily welcoming me in their home. Thank

you all for teaching me so much about life.

Last, but not least, I want to thank my supervisor, Professor Dr. Pedro Inácio, for his guidance

in this dissertation and for always being available especially when I was living far and could not

always come to meet him in person. His commitment to his students is something out of the

ordinary and I truly appreciate it.

v

vi

Resumo

Dispositivos móveis como computadores portáteis, smartphones ou tablets, são, nos dias de

hoje, considerados objectos indispensáveis pela grande maioria das pessoas residentes em países

desenvolvidos. Por serem utilizados como assistentes pessoais ou de trabalho, alguns destes

dispositivos guardam, processam e transmitem dados sensíveis ou privados. Naturalmente,

o número de aplicações móveis com mecanismos criptográficos integrados ou que oferecem

serviços de segurança, tem vindo a aumentar de forma significativa nos últimos anos. Infeliz-

mente, nem todas as aplicações são seguras por construção, e outras podem não implementar

as primitivas criptográficas corretamente. Mesmo aquelas que as implementam corretamente

podem sofrer de problemas de longevidade, já que primitivas criptográficas que são hoje em dia

consideradas seguras podem tornar-se obsoletas nos próximos anos. O Rivest, Shamir and Adle-

man (RSA) constitui um exemplo de um sistema criptográfico muito popular que se pode tornar

obsoleto a curto prazo. Enquanto que os problemas de segurança em ambientes de computação

móvel podem ser de média severidade para utilizadores casuais, estes são normalmente críticos

para várias classes profissionais, nomeadamente advogados, jornalistas e oficiais da justiça. É,

por isso, importante, abordar estes problemas de uma forma estruturada.

Este programa de mestrado foca-se na engenharia e implementação de uma aplicação móvel

que oferece uma série de serviços de segurança. A aplicação foi desenhada para ser segura por

construção para o sistema operativo Windows Phone 8.1 que, altura em que esta dissertação foi

escrita, era a plataforma com a oferta mais discreta em termos de aplicações deste tipo. A apli-

cação fornece funcionalidades como trocar um segredo criptográfico entre duas entidades de

forma segura, cifra, decifra e assinatura digital de mensagens e ficheiros, gestão de contactos

e chaves de cifra, e geração e armazenamento seguro de palavras-passe. Parte das primitivas

criptográficas utilizadas neste trabalho fazem parte da teoria da criptografia em curvas elípti-

cas, para a qual se acredita que o problema do logaritmo discreto é de mais difícil resolução

e para o qual a manipulação de chaves é mais simples. A biblioteca que define uma série de

curvas, e contendo os procedimentos e operações que suportam as primitivas criptográficas, foi

totalmente implementada no âmbito deste trabalho, dado ainda não existir nenhuma disponível

no seu início, compreendendo assim uma das suas contribuições. O trabalho evoluiu da análise

do estado da arte para o levantamento dos requisitos e para a fase de engenharia de software,

aqui descrita detalhadamente, culminando no desenvolvimento de um protótipo. A engenharia

da aplicação incluiu a definição de um sistema de confiança para troca de chaves públicas e

também modelação da base de dados de suporte.

Os resultados mais visíveis deste programa de mestrado são o protótipo da aplicação móvel, com-

pletamente funcional e disponibilizando as funcionalidades de segurança acima mencionadas,

a implementação de uma biblioteca Elliptic Curve Cryptography (ECC) para framework .NET,

vii

e esta dissertação. O código fonte com a implementação da biblioteca foi publicada online.

O seu desenvolvimento e melhoramento foi sobretudo dominado por testes unitários. A bib-

lioteca e a aplicação móvel foram desenvolvidas em C♯. O nível de segurança oferecido pela

aplicação é garantido através da orquestração e combinação de algoritmos da criptografia de

chave simétrica atuais, como o Advanced Encryption Standard (AES) e o Secure Hash Algorithm

256 (SHA256), com as primitivas ECC. A geração de palavras-passe é feita recorrendo utilizando

vários sensores e dispoitivos de entrada como fontes de entropia, que posteriormente são ali-

mentadas a uma função de hash criptográfica. As palavras-passe são guardadas numa base de

dados cifrada, cuja chave de cifra muda sempre que a base de dados é aberta, sendo obtida

através da aplicação de um Password-Based Key Derivation Function 2 (PBKDF2) a uma palavra-

passe mestre. O modelo de confiança para chaves públicas desenhado no âmbito deste trabalho

é inspirado no Pretty Good Privacy (PGP), mas a granularidade dos níveis de confiança é superior.

Palavras-chave

Aplicação Móvel, Assinatura Digital, Criptografia de Chave Pública, Criptografia de Chave Simétrica,

Criptografia em Curvas Elípticas, Gestão de Palavras-Passe, Windows Phone, Segurança,

viii

Extended Abstract in Portuguese

Introdução

Este capítulo, escrito em língua Portuguesa, pretende resumir o corpo desta dissertação, de

uma forma mais alargada do que no resumo. Começa por enquadrar a dissertação, analisando

as diferentes aplicações actualmente disponíveis, as tecnologias usadas e falando sobre alguns

pressupostos actuais da criptografia. Depois segue para a análise de requisitos e dos diagramas

de engenharia de software. São depois explicados quais os serviços criptográficos que a apli-

cação deverá suportar. Os detalhes de implementação da aplicação são abordados adiante. Por

último, são apresentadas as principais conclusões relativas ao trabalho aqui apresentado, assim

como algumas direcções para trabalho futuro.

Nos capítulos escritos em língua Portuguesa, os acrónimos que são utilizados aparecem nas suas

formas longas, apesar das suas formas curtas serem mantidas com o respectivo acrónimo em

língua Inglesa para efeitos de consistência. Os acrónimos cuja tradução não seja directamente

possível, devido a se referirem a serviços ou aplicações, aparecem em itálico como estrangeiris-

mos.

Enquadramento, Descrição do Problema e Objetivos

A evolução dos telefones tem sido exponencial, e enquanto que inicialmente eram apenas uti-

lizados para efectuar chamadas ou enviar mensagens, hoje em dia têm funcionalidades muito

mais avançadas. Actualmente, e inerente às suas funcionalidades, os smartphones contêm in-

formação sobre os utilizadores considerada privada e sensível. Esta informação inclui dados

sobre o utilizador, os seus contactos, mensagens, emails, fotografias, vídeos e muitos outros

tipos de ficheiros. Isto leva a que hajam sérios problemas de segurança, privacidade e confi-

dencialidade, pois normalmente a informação não é guardada de forma segura e está vulnerável

a possíveis ataques.

Existe uma clara necessidade de aplicações criptográficas que permitam tratar informação con-

fidencial de forma a prevenir possíveis fugas. Estas aplicações são particularmente importantes

para algumas classes profissionais como as de jornalistas, forças de segurança e outras pessoas

que lidem com questões de justiça ou governamentais. Na realidade, qualquer organização,

instituição ou pessoa que manipule informação privada e confidencial precisaria de um sistema

assim.

Alguns especialistas acreditam que o algoritmo Rivest, Shamir and Adleman (RSA) poderá ser

quebrado nos próximos anos [Tom13]. É aconselhável que o tamanho das chaves seja aumentado,

embora actualmente já seja bastante grande. É sugerido que o RSA seja substituído por outros

sistemas criptográficos e isto levou a um novo interesse na criptografia sobre curvas eliptícas,

ix

cujos tamanhos de chave são muito inferiores e é considerada criptograficamente mais forte.

O objectivo deste programa de mestrado foi o de criar uma aplicação de segurança para dispos-

itivos móveis, mais concretamente para o sistema operativo Windows Phone 8.1. Na altura em

que esta dissertação foi escrita não foi encontrada nenhuma aplicação para o sistema operativo

escolhido com as funcionalidades desejadas. As funcionalidades identificadas como importantes

e necessárias incluem a criação de um sistema de troca de chaves de confiança, cifragem e

decifragem de mensagens e ficheiros. Por último, o típico utilizador tem várias passwords e

torna-se dificil memorizá-las todas, portanto existe a necessidade de armazenar passwords de

forma segura. Para atingir os objectivos aqui propostos, as seguintes fases foram estabelecidas:

1. A primeira fase consiste em contextualizar o problema e estudar os standards actuais de

sistemas e esquemas criptográficos que são usados, bem como a teoria sobre criptografia

em curvas elípticas. Nesta fase é também necessário efectuar uma pesquisa nas lojas de

aplicações dos diferentes sistemas operativos por aplicações com funcionalidades semel-

hantes às implementadas neste programa de mestrado;

2. A segunda fase implica o estudo e a identificação dos mecanismos criptográficos ade-

quados para este trabalho, bem como a definição detalhada das funcionalidades a serem

implementadas;

3. A terceira fase inclui todo o processo de engenharia de software da aplicação. Começa

pela identificação dos requisitos e casos de uso e termina com os diferentes diagramas que

representam os casos de uso, actividades e componentes.

4. A quarta fase consiste na implementação da aplicação e das bibliotecas necessárias para

a inclusão das primitivas de criptografia sobre curvas elípticas. Inclui também detalhes

sobre os testes da aplicação em emuladores e dispositivos físicos.

5. A última fase inclui melhorias na aplicação, voltando à fase de engenharia de software,

caso seja necessário.

Principais Contribuições

Esta secção descreve brevemente as principais contribuições que resultaram do trabalho de

investigação aqui apresentado.

Este programa de mestrado é motivado principalmente pela falta de serviços de segurança em

smartphones. A principal contribuição é a construção de um protótipo de uma aplicação de

segurança para o sistema operativo Windows Phone 8.1. À data de entrega desta dissertação,

x

esta é a aplicação de segurança mais completa para este sistema operativo.

Outra contribuição é o desenvolvimento de um esquema de gestão de chaves que associa contac-

tos e chaves públicas, e que define a estrutura de troca de chaves e da confiança nas chaves.

A estrutura de confiança é inspirada nos esquemas Public Key Infrastructure (PKI) e Pretty

Good Privacy (PGP). A engenharia de software e os detalhes de implementação da aplicação

são vistos como sendo secundários, mas importantes contribuições deste trabalho, pois podem

ajudar futuros programadores no processo de criar aplicações seguras. Além da aplicação de-

senvolvida, também foi criada uma biblioteca com as funções criptográficas. A mesma está

disponível de forma gratuita para que possa ser utillizada por outros programadores, sob a li-

cença Massachusetts Institute of Technology (MIT) [Ope15].

Este trabalho foi também submitido no concurso Open Mind ESEGUR 2014 onde foi apresentado

e ficou entre os semi-finalistas.

Aplicações Relacionadas, Tecnologias e Preliminares em Criptografia

Nesta secção é discutido o sistema operativo para que esta aplicação foi criada e é feita uma

comparação com os restantes sistemas operativos para dispositivos móveis. Os preliminares que

fazem parte da base deste trabalho também são aqui discutidos.

Foram feitas pesquisas nas diferentes lojas de aplicações dos principais sistemas operativos

para dispositivos móveis: Windows Phone, iOS e Android. Os resultados obtidos vão ser agora

explicados.

Android é um sistema operativo open-source com base no kernel Linux, desenvolvido pela

Google. Actualmente está instalado em mais de 78% dos dispositivos móveis e é o lider de mer-

cado neste segmento. Após a pesquisa efectuada na loja oficial de aplicações Android (Google

Play Store [Goo15]), a conclusão foi que não existem muitas aplicações que usam Elliptic Curve

Cryptography (ECC) em Android. Existem muitas aplicações que permitem troca de mensagens

de forma segura, mas as mesmas utilizam RSA. As poucas aplicações encontradas que usam real-

mente ECC têm funcionalidades muito limitadas e apenas permitem a cifragem e decifragem de

texto.

O iOS é um sistema operativo proprietário desenvolvido pela Apple Inc. e que é usado em

disposítivos como iPhone, iPad e iPod e Apple TV. O iOS tem a segunda maior fatia do mercado,

após o Android, actualmente com 18% do mercado. Foi efectuada uma pesquisa também na loja

de aplicações oficial da Apple [App15], segundo o critério de encontrar aplicações que ofereçam

funcionalidades semelhantes às desejadas para aplicação a ser criada para esta dissertação. Não

foram encontradas aplicações de segurança que utilizam ECC na sua implementação.

xi

Windows Phone 8.1 é um sistema operativo desenvolvido para smartphones pela Microsoft. Este

foi o sistema operativo escolhido para desenvolver a aplicação desta dissertação. A pesquisa

efectuada na loja oficial do Windows não teve qualquer resultado, o que aumentou a motivação

para a criação de uma aplicação com estas funcionalidades para esta plataforma.

Engenharia de Software

Foi feita uma análise dos requisitos do ponto de vista de funcionalidades. Os requisitos funcionais

identificam tarefas, acções e actividades tais como: geração de palavras-passe e segredos crip-

tográficos baseados em verdadeira aleatoriedade, geração de pares de chaves sobre curvas

elípticas, troca de chaves secretas entre dois utilizadores, cifragem de mensagens com possi-

biliade de exportação para criptograma via email ou Short Message Service (SMS), decifragem

de mensagens, assinatura digital de ficheiros através de Elliptic Curve Diffie-Hellman (ECDH),

importação, exportação e manuseamento de chaves públicas, autenticação através de crip-

tografia de chaves públicas, codificação e descodificação de mensagens, armazenamento se-

guro de ficheiros no dispositivo e gestão de palavras-passe. Como requisitos não funcionais, a

aplicação deve ser intuitiva e de fácil compreensão; a aplicação deve ter um layout simples e

categorizado, o tempo de resposta não deve ser superior a 1 segundo para funções normais e

2.5 para funções criptográficas.

Foram apresentados casos de uso para as funcionalidades previstas para a aplicação. No di-

agrama da figura 3.1 é ilustrado o caso de uso geral da aplicação. Na figura 3.2 ilustra-se

o subsistema de gestão de palavras-passe, onde é possível adicionar, editar ou apagar uma

palavra-passe, sendo que, para adicionar ou editar o utilizador pode escolher fazê-lo através

do gerador de palavras-passe providenciado pela aplicação ou introduzindo-a manualmente. No

diagrama de gestão de chaves, representado na figura 3.3, o utilizador pode gerar, editar ou

apagar chaves previamente armazenadas. A figura 3.4 ilustra os casos de uso na gestão de con-

tactos, onde é possível adicionar novos contactos, importar as suas chaves e editar ou apagar

contactos já existentes. No subsistema de gestão de mensagens é possível cifrar, decifrar e apa-

gar mensagens armazenadas. Na gestão de ficheiros é possível fazer a cifragem e decifragem

dos mesmos.

Para a concretização desta aplicação, foi desenhada uma base de dados para armazenar a infor-

mação necessária. Na figura 3.7 está representado o modelo de entidade-relacionamento desta

base de dados. O modelo relacional desta base de dados, representado na figura 3.8, ilustra

mais detalhadamente as tabelas criadas e os atributos de cada entidade.

Os diagramas de actividade são representações gráficas do fluxo de acções e actividades e são

usados para mostrar o fluxo de controlo geral. Na figura B.2 é ilustrado o processo de cifragem de

um ficheiro; no diagrama da figura B.1 está representado o processo de adicionar uma palavra-

xii

passe; o processo de partilha de chaves é apresentado na figura B.3; no diagrama da figura B.4

está ilustrado como se importa uma chave.

A figura 3.9 representa esquematicamente como os três componentes se interligam por forma

a permitir o bom funcionamento da aplicação. Estes três componentes são: a aplicação móvel,

a biblioteca partilhada para a lógica da aplicação e a biblioteca ECCryptoLib (onde se encontra

a lógica criptográfica da aplicação).

Segurança e Serviços Criptográficos

Os serviços criptográficos identificados para implementar na aplicação foram os seguintes: ger-

ação de palavras-passe e segredos criptográficos baseados em fontes de verdadeira aleato-

riedade, disponíveis nos dispositivos móveis; geração de pares de chaves sobre curvas elípticas;

criação de chaves secretas entre dois ou mais utilizadores; cifragem e decifragem de mensagens

de texto; assinatura digital de ficheiros através do algoritmo de assinatura digital sobre curvas

elípticas; importação, exportação e gestão de chaves públicas; autenticação através de crip-

tografia de chaves públicas; codificação e descodificação de mensagens; armazenamento seguro

de ficheiros no dispositivo; e gestão de palavras-passe.

De modo a ter as funções criptográficas necessárias, foi criada uma biblioteca onde foi imple-

mentada toda a lógica de criptografia necessária. Esta biblioteca pode facilmente ser importada

pela aplicação ECCrypto, bem como por outras aplicações que necessitem destes serviços. Entre

as funções implementadas estão: geração e validação de palavras-passe; geração de pares de

chaves sobre curvas elípticas, de acordo com a curva escolhida, baseados em fontes de aleato-

riedade do smartphone; funções de ECDH necessárias para troca de chaves de forma segura;

cifragem e decifragem de mensagens e ficheiros; algoritmo de assinatura digital sobre curvas

elípticas; e os algoritmos de hash necessários.

Foi criado um sistema de gestão de confiança para garantir a confiança das chaves dos contactos.

O nível de confiança é uma percentagem que depende do número de contactos que confirmam

essa mesma chave. Por defeito, são necessárias três confirmações de modo a ter uma chave

completamente confiável, mas este número pode ser configurado nas definições da aplicação.

O sistema operativo Windows Phone 8.1 utiliza componentes de hardware baseados nos mais

recentes standards de segurança, que servem para proteger tanto os dispositivos como a infor-

mação neles contida. Partindo do princípio que a segurança destes componentes é garantida,

é possível afirmar que a aplicação é segura. Algumas das restrições do sistema operativo, que

surgiram inicialmente como constragimentos no desenvolvimento da aplicação, acabaram por

aumentar a segurança desta. De modo a reforçar ainda mais a segurança da própria aplicação,

é aconselhado ao utilizador definir uma palavra-passe de bloqueio.

xiii

Implementação e Testes

A biblioteca ECCryptoLib foi implementada por não existir nenhuma disponível simultanea-

mente para ambas as plataformas pretendidas. Foram adicionadas à biblioteca as funções de

hash Secure Hash Algorithm (SHA)-1, SHA-256, SHA-384, SHA-512 e Message-Digest 5 (MD5).

Foram também incluídas funções Hash-based Message Authentication Code (HMAC)-SHA-1, HMAC-

SHA-256, HMAC- SHA-384, HMAC- SHA-512 e HMAC- MD5. Foram adicionadas as funções de

cifragem e decifragem utilizadas pelo algoritmo Advanced Encryption Standard (AES). A bib-

lioteca contém um gerador de palavras-passe e métodos que avaliam a força destas. Foi também

incluída uma classe onde se encontram as curvas implementadas.

Para testar o protótipo da aplicação foram utilizados os diferentes emuladores disponíveis no

Visual Studio e três smartphones de diferentes gamas. Durante a implementação da biblioteca,

dada a necessidade de ir testando os métodos nela implementados, criou-se um projecto

ECCryptoLibTest. Foram feitos testes unitários à biblioteca.

Quando terminada a aplicação, foi submetida para a Loja do Windows Phone através do dash-

board disponibilizado para o efeito. A aplicação pode ser descarregada da Loja do Windows

Phone, em todo o mundo, de forma gratuita. A biblioteca foi também disponibilizada no GitHub

como repositório público, onde pode ser melhorada por outros utilizadores que queiram con-

tribuir.

Conclusões e Trabalho Futuro

Os objectivos inicialmente propostos neste trabalho foram alcançados e resultaram na imple-

mentação do ECCrypto, que é uma aplicação desenvolvida para Windows Phone, que procura

garantir a segurança e confidencialidade na comunicação entre dois ou mais utilizadores. Esta

aplicação utiliza funções criptográficas mais fortes do que as tipicamente usadas, e agrega di-

versas funcionalidades como armazenamento, geração e gestão de palavras-passe, cifragem e

decifragem de mensagens e ficheiros, envio de SMS e emails cifrados, geração e gestão de

chaves, gestão de contactos e chaves públicas, troca de chaves através de códigos Quick Re-

sponse (QR), sistema de gestão de confiança e assinatura digital de mensagens e ficheiros.

As funções de ECC foram implementadas de raíz, pois aquando do desenvolvimento deste tra-

balho não existiam bibliotecas com as funções necessárias. Assim, estas funções, bem como as

operações, foram implementadas. O mecanismo de geração de pares de chaves assimétricas,

métodos para assinatura digital, funções de cifragem e decifragem de mensagens e ficheiros uti-

lizando AES, um gerador de palavras-passe aleatório e vários algoritmos de hash foram também

incluídos.

xiv

Dada a enorme importância e valor da informação nos dias de hoje, a aplicação ECCrypto

aparece como uma alternativa de confiança para o utilizador que pretende manter a sua infor-

mação e comunicação seguras. Como trabalho futuro, a aplicação deveria ser testada quanto à

usabilidade devido à sua dimensão e complexidade. É também necessário garantir a retenção de

utilizadores através das ferramentas apropriadas. Seria interessante incluir outro tipo de curvas

elípticas standard, para que os utilizadores não ficassem limitados a curvas National Institute

of Standards and Technology (NIST). A implementação noutros sistemas operativos é também

um ponto muito importante, uma vez que permitirá a comunicação entre pessoas que utilizam

diferentes plataformas. O upgrade para o Windows 10 será igualmente importante, pois permi-

tirá a utilização da aplicação nos vários dispositivos Windows. Outra funcionalidade que poderá

vir a ser implementada é a sincronização entre os vários dispositivos de um mesmo utilizador.

xv

xvi

Abstract

 Mobile devices as smartphones, tablets and laptops, are nowadays considered indispensable ob-

jects by most people in developed countries. A s personal and work assistant s , some of th e s e

devices store , process and transmit sensitive and private data. Naturally , the number of mobile

applications with integrated cryptographic mechanisms or offering security services has been

significantly increasing in the last few years. Unfortunately, not all of those applications are se-

cure by design, while other may not implement the cryptographic primitives correctly. Even the

ones that implement them correctly may suffer from longevity problems, since cryptographic

primitives that are considered secure nowadays may become obsolete in the next few years.

Rivest, Shamir and Adleman (RSA) is an example of an widely used cryptosystem that may be-

come depleted shorty . While the security issues in the mobile computing environment may be of

median severity for casual users, they may be critical for several professional classes, namely

lawyers, journalists and law enforcement agents. As such, it is important to approach these

problems in a structured manner.

 This master’s program is focused on the engineering and implementation of a mobile application

offering a series of security services. The application was engineered to be secure by design

for the Windows Phone 8.1 Operating System (OS) which, at the time of writing this disserta-

tion, was the platform with the most discreet offer in terms of applications of this type. The

application provides services such as secure exchange of a cryptographic secret, encryption and

digital signature of messages and files, management of contacts and encryption keys and se-

cure password generation and storage. Part of the cryptographic primitives used in this work

 are from the Elliptic Curve Cryptography (ECC) theory, for which the discrete logarithm prob-

lem is believed to be harder and key handling is easier. The library defining a series of curves

and containing the procedures and operations supporting the ECC primitives was implemented

from scratch, since there was none available, comprising one of the contributions of this work.

The work evolved from the analysis of the state-of-the-art to the requirements analysis and

software engineering phase, thoroughly described herein, ending up with the development of a

prototype. The engineering of the application included the definition of a trust model for the

exchange of public keys and the modeling of the supporting database.

The most visible outcomes of this master’s program are the fully working prototype of a mo-

bile application offering the aforementioned security services, the implementation of an ECC

library for the .NET framework, and this dissertation. The source code for the ECC library was

made available online on GitHub with the name ECCryptoLib [Ana15]. Its development and

improvement was mostly dominated by unit testing. The library and the mobile application

were developed in C♯. The level of security offered by the application is guaranteed via the

orchestration and combination of state-of-the-art symmetric key cryptography algorithms, as

xvii

the Advanced Encryption Standard (AES) and Secure Hash Algorithm 256 (SHA256) with the ECC

primitives. The generation of passwords is done by using several sensors and inputs as entropy

sources, which are fed to a cryptographically secure hash function. The passwords are stored in

an encrypted database, whose encryption key changes every time it is opened, obtained using

a Password-Based Key Derivation Function 2 (PBKDF2) from a master password. The trust model

for the public keys designed in the scope of this work is inspired in Pretty Good Privacy (PGP),

but granularity of the trust levels is larger.

Keywords

Digital Signature, Elliptic Curve Cryptography, Microsoft Windows Mobile, Mobile Application,

Password Management, Public Key Cryptography, Trust Model, Security, Symmetric Key Cryptog-

raphy

xviii

Contents

1 Introduction 1

1.1 Scope and Motivation . 1

1.2 Problem Statement and Objectives . 3

1.3 Adopted Approach for Solving the Problem . 4

1.4 Main Contributions . 4

1.5 Dissertation Overview . 5

2 Related Applications, Technologies and Cryptography Preliminaries 7

2.1 Introduction . 7

2.2 Crypto Related Applications for Mobile Operating Systems 7

2.2.1 Android Security Applications . 7

2.2.2 iOS Security Applications . 9

2.2.3 Windows Phone Security Applications 10

2.2.4 Research Conclusions . 14

2.3 Technology used in the Scope of this Masters 15

2.3.1 Windows Phone 8.1 . 15

2.3.2 Microsoft Visual Studio . 16

2.3.3 Microsoft Visio 2013 . 17

2.3.4 SQLite for Windows Phone 8.1 . 17

2.4 Preliminaries . 17

2.4.1 RSA . 17

2.4.2 RSA Security . 19

2.4.3 Advanced Encryption Standard . 21

2.4.4 Elliptic Curve Cryptography . 22

2.4.5 Elliptic Curve Diffie-Hellman . 31

2.4.6 Elliptic Curve Integrated Encryption Scheme and Digital Signature 32

2.5 Conclusion . 34

3 Software Engineering 35

3.1 Introduction . 35

3.2 Requirements Analysis . 35

3.2.1 Functional Requirements . 35

3.2.2 Non-functional Requirements . 36

3.3 Use Cases . 36

3.3.1 General Use Case . 37

3.3.2 Detailed Use Cases . 37

3.4 Database Design . 40

xix

3.4.1 Entity-Relationship . 40

3.4.2 Relational Model . 41

3.5 Activity, Components and Class Diagrams . 42

3.5.1 Activity Diagrams . 43

3.5.2 Components Diagram . 43

3.5.3 Class Diagram . 44

3.6 Conclusion . 46

4 Security and Cryptographic Services 49

4.1 Introduction . 49

4.2 Cryptographic Services in ECCrypto . 49

4.2.1 Password and Cryptographic Secrets Generation with Basis on Sources of

True Randomness Available in Mobile Devices 49

4.2.2 Generation of elliptic curve key pairs 50

4.2.3 Establishment of secret keys between two or more smartphones users . . 50

4.2.4 Encryption and Decryption of Written Messages 50

4.2.5 Digital Signature of Files with the Elliptic Curve Digital Signature Algorithm 50

4.2.6 Importing, Exporting and Handling of Public Keys 50

4.2.7 Authentication via Public-key Cryptography 50

4.2.8 Encoding and Decoding of Messages and Secure Storage of Files on the Device 51

4.2.9 Management of Passwords . 51

4.3 Cryptographic Services in ECCryptoLib . 51

4.3.1 Password Generation . 51

4.3.2 Key Pair Generation . 52

4.3.3 Elliptic Curve Diffie Hellman . 52

4.3.4 Encryption and Decryption . 52

4.3.5 Elliptic Curve Digital Signature Algorithm and Hash Algorithms 52

4.4 Trust Management . 52

4.5 Discussion on Security . 53

4.5.1 Windows Phone 8.1 Security Overview 53

4.6 Conclusion . 55

5 Implementation and Testing 57

5.1 Introduction . 57

5.2 ECCryptoLib Implementation . 57

5.2.1 Hash Functions . 58

5.2.2 AES . 58

5.2.3 Password Generator . 58

5.2.4 ECC methods . 60

5.3 ECCrypto Implementation . 62

xx

5.3.1 Using Sensors for Creating Randomness 62

5.3.2 Unlock ECCrypto App . 63

5.3.3 Trust Management System . 64

5.3.4 Application Overview . 64

5.4 Testing of the Prototype . 70

5.4.1 ECCrypto . 70

5.4.2 ECCryptoLib . 71

5.5 ECCrypto Submission . 73

5.6 Conclusion . 74

6 Conclusions and Future Work 75

6.1 Conclusions . 75

6.2 Future Work . 76

Bibliografia 79

A EC Domain Parameters 83

A.1 Recommended Parameters for secp192r1 . 83

A.2 Recommended Parameters for secp224r1 . 83

A.3 Recommended Parameters for secp256r1 . 84

A.4 Recommended Parameters for secp384r1 . 85

A.5 Recommended Parameters for secp521r1 . 85

B Activity Diagrams 87

xxi

xxii

List of Figures

2.1 Screenshot of the main screen of the Windows Phone application Secure Text Pro. 11

2.2 Screenshot of the encryption page of the Windows Phone application Secure Text

Pro. 11

2.3 Screenshot of the main screen of the Windows Phone application Password Jinni. 12

2.4 Screenshot of the credit card details screen of the Windows Phone application

Password Jinni. 12

2.5 Screenshot of the encryption screen of the Windows Phone application TXTCrypt. 12

2.6 Screenshot of the decryption screen of the Windows Phone application TXTCrypt. 12

2.7 Screenshot of the encryption screen of the Windows Phone application Text En-

cryption Pro. 13

2.8 Screenshot of the key manager screen of the Windows Phone application Text

Encryption Pro. 13

2.9 Screenshot of the encryption screen of the Windows Phone application EnkrypTo. 13

2.10 Screenshot of the decryption screen of the Windows Phone application EnkrypTo. 13

2.11 Screenshot of the encryption/ decryption screen of the Windows Phone application

Crypter. 14

2.12 Screenshot of the settings screen of the Windows Phone application Crypter. . . . 14

2.13 The representation of two elliptic curves on R2. The curve on the left represents

the equation y2 = x3 − 3x + 3. As for the curve on the right, it represents the

equation y2 = x3 − 2x+ 1. 22

2.14 Representation of the elliptic curve y2 = x3 + 2x+ 2 mod 17. 25

2.15 Addition of point A and point B according to the definition of sum in elliptic curves. 25

2.16 Addition of point C with itself. 26

2.17 Multiplication of point C by 2 and 3. 27

2.18 Addition of point D with O in cryptographic elliptic curves. 28

2.19 Elliptic Curve Diffie-Hellman Key agreement protocol. 32

3.1 General ECCrypto use case diagram. 37

3.2 Use case diagram for the Manage Passwords subsystem. 38

3.3 Use case diagram for the Manage Keys subsystem. 38

3.4 Use case diagram for the Manage Contacts subsystem. 39

3.5 Use case diagram for the Manage Messages subsystem. 39

3.6 Use case diagram for the Manage Files subsystem. 40

3.7 Entity-Relationship diagram of the ECCrypto database. 41

3.8 Relational Model diagram of the ECCrypto database. 42

3.9 Diagram that shows all the different components of the ECCrypto application. . . 44

3.10 Class Diagram of the ECCryptoLib library. 46

xxiii

5.1 Screenshot of the home page showing the list of the user keys. 65

5.2 Screenshot of the screen where the user can add new keys. 65

5.3 Screenshot of the home page showing the list of the contacts of the user. 66

5.4 Screenshot of the page where a contact can be edited. 66

5.5 Screenshot of the home page showing the list of the messages that have been

encrypted and decrypted by the user. 66

5.6 Screenshot showing the application bar that gives access to the settings of the

application. 66

5.7 Screenshot of the message page after the user selects a message from the list. . 67

5.8 Screenshot of the page in which the user can send a new message. 67

5.9 Screenshot of the home page showing the list of the passwords of the user. . . . 67

5.10 Screenshot of the detailed view of a password. 67

5.11 Screenshot of the home page where the user can encrypt/decrypt files. 68

5.12 Screenshot of ECCrypto settings for the password generator. 68

5.13 Screenshot of the Unlock page with randomized keyboard. 69

5.14 Screenshot of the Unlock page with alternate randomized keyboard. 69

5.15 Screenshot of the page in which a Quick Response (QR) code is scanned. 70

5.16 Screenshot of the page in which a QR code is displayed. 70

B.1 Diagram for the password activity which depicts the process of adding a new pass-

word to ECCrypto. 87

B.2 Diagram for the file encryption activity in which the user chooses a file to be en-

crypted from the phone and afterwards chooses the location where the encrypted

file is to be stored. 88

B.3 Diagram for the share key activity that shows the process of sharing a key with a

contact via QR code. 89

B.4 Import key activity diagram that shows the process of importing the key of a

contact via QR code. 90

xxiv

List of Tables

2.1 Comparison between high-quality symmetric-key encryption schemes, ECC and

RSA in terms of key strength. 24

2.2 Comparison between the National Institute of Standards and Technology (NIST)

recommended curves, ECC and RSA in terms of key strength. 30

2.3 NIST curves performance for Elliptic Curve Digital Signature Algorithm (ECDSA). . 30

2.4 Brainpool curves performance for ECDSA. 30

2.5 NIST curves performance for Elliptic Curve Diffie-Hellman (ECDH). 31

2.6 Brainpool curves performance for ECDH. 31

5.1 Password generator strength metric table. 60

5.2 Representation of the implemented curves part of the ECCryptoLib. 60

5.3 Specifications for the phones used during the testing of the application. 71

5.4 Results of the unit tests performed on the ECCryptoLib. 72

5.5 Description of the unit tests performed on the ECCryptoLib. 73

xxv

xxvi

Acronyms

3DES Triple Data Encryption Standard

ACM Association for Computing Machinery

AES Advanced Encryption Standard

ANSI American National Standards Institute

AOSP Android Open Source Project

ASLR Address Space Layout Randomization

BIOS Basic Input/Output System

CCA Chosen Ciphertext Attack

CLI Common Language Infrastructure

CPA Chosen Plaintext Attack

CSS Cascading Style Sheets

DAP Discrete Logarithm Problem

DEP Data Execution Prevention

DES Data Encryption Standard

DH Diffie-Hellman

DSA Digital Signature Algorithm

EC Elliptic Curve

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ECES Elliptic Curve Encryption Scheme

xxvii

ECIEDS Elliptic Curve Integrated Encryption Scheme

ECIES Elliptic Curve Integrated Encryption Scheme

FIPS Federal Information Processing Standards

GPS Global Positioning System

HMAC Hash-based Message Authentication Code

HTML HyperText Markup Language

ID Identifier

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IM Instant Messaging

IPsec Internet Protocol Security

KDF Key Derivation Function

LINQ Language Integrated Query

LTE Long-Term Evolution

MAC Message Authentication Code

MD5 Message-Digest 5

MIT Massachusetts Institute of Technology

MMS Multimedia Messaging Service

NIST National Institute of Standards and Technology

NSA National Security Agency

OS Operating System

OTP One Time Password

xxviii

PBKDF2 Password-Based Key Derivation Function 2

PGP Pretty Good Privacy

PKI Public Key Infrastructure

QR Quick Response

RC Rivest Cipher

RFC Request for Comments

RSA Rivest, Shamir and Adleman

SD Secure Digital

SDK Software Development Kit

SDL Security Development Lifecycle

SEC Standards for Efficient Cryptography

SECG Standards for Efficient Cryptography Group

SHA Secure Hash Algorithm

SHA256 Secure Hash Algorithm 256

SIP Session Initiation Protocol

SLAT Second Level Address Translation

SMS Short Message Service

SQL Structured Query Language

SSH Secure Shell

SRTP Secure Real-time Transport Protocol

TLS Transport Layer Security

TPM Trusted Platform Module

xxix

UBI Universidade da Beira Interior

UEFI Unified Extensible Firmware Interface

UI User Interface

UML Unified Modeling Language

VPN Virtual Private Network

XAML Extensible Application Markup Language

XAML eXtensible Application Markup Language

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language for Transformation

xxx

Chapter 1

Introduction

This dissertation describes the work on the design and implementation of an application for mo-

bile devices offering several cryptographic related functions/services. The scope and motivation

of the dissertation are described in the following sections, along with the problem statement

and objectives, the adopted approach for solving the problem, the main contributions, and the

dissertation overview.

1.1 Scope and Motivation
Phones have seen an exponential evolution since they first appeared in the nineteen nineties.

Back then, their usage was limited to making calls and sending text messages. With the evolution

of technology, the capabilities of phones have grown and we now live in the era of smartphones

with advanced computing and connectivity functionalities. Smartphones are part of the life of

nearly everyone in developed countries, carrying information that is both personal and confi-

dential. They are used to store private information about the users and their contacts, such as

messages, e-mails, pictures, videos and multiple other types of files.

Even with all the evolution of technology and of smartphones, serious security issues exist. E.g.,

text messages can be intercepted and the content can be obtained by third parties and the same

problem applies to e-mails. While users expect for their messages and e-mails to be private and

only seen by the recipient of the message, the policies of the companies hosting the service may

disregard the need for privacy and confidentiality. Insecurity applies to both communications

and storage of information on mobile devices or computers, where files are, most of the times,

kept unencrypted or without any other security assurances beyond the basic ones provided by

the Operating Systems (OSs) or hardware.

On the other hand, most applications and implementations for the different mobile platforms

and OSs are not reliable from a security perspective [J.M15], and some applications offering

security services have begun to arise in the software markets, so as to fight this tendency.

However there are not many applications that incorporate a large set of security functionalities

in a single application.

Security awareness has never been so present in our day-to-day lives, emphasizing the impor-

tance of this subject nowadays. It has been on the news for the best part of the last couple of

1

years, evidenced by the whistle-blower Edward Snowden. This brought the problem of lack of

privacy and confidentiality to the public opinion.

All these factors corroborate the belief that security must be thought of from the stage of

software engineering in order to guarantee it (security by design). Everything, from the way

people communicate, manage secrets needs to be reconsidered and improved in order to be

truly useful to the user without becoming a hassle.

Security applications for mobile devices are needed for various social classes such as journalists

and security forces, as well as people who deal with issues of justice or government. In fact, any

organization or institution who handles any private and confidential information would require

such a system, in order to prevent possible leaks of information.

These are revolutionary times for cryptography since it is believed, by many experts, through a

series of breakthroughs, that the Rivest, Shamir and Adleman (RSA) algorithm might be broken

in the next few years [Tom13]. It is suggested that RSA cryptography mechanisms should be

replaced by other public-key cryptosystems and that the key sizes should be increased, which

is not desirable, given the already large size of the RSA keys. This led to a renewed interest

in elliptic curve cryptography, both in the industry and academia. This cryptography theory is

seen as a good candidate for replacing RSA, due to its cryptographic strength and smaller key

sizes [Cho] [GPW+04] [Ror] [Sta]. As emphasized below, during the development of this master’s

program, it was noticed that there was no readily available library implementing elliptic curve

cryptography for Windows Phone 8.1, which was then prepared during one of the stages of this

work.

The motivation behind this master’s program was to create a security application for mobile

devices taking the previously mentioned topics into account, regarding the engineering and

implementation considering several functionalities and security requisites. The design of the

application requires a detailed analysis of the security requirements, including a way to manage

a public key infrastructure.

At the time of writing this dissertation, there was no other similar application for the specific

OS for which it was implemented, which further stresses out the urge to address this absence

from the Windows Phone Store.

Under the 2012 version of the Association for Computing Machinery (ACM) Computing Classifi-

cation System, a de facto standard for computer science, the scope of the master’s program

reflected in this dissertation, falls within the categories named:

• Security and privacy∼Key management

2

• Security and privacy∼Public key (asymmetric) techniques

• Security and privacy∼Symmetric cryptography and hash functions

• Security and privacy∼Privacy-preserving protocols

• Security and privacy∼Software security engineering

• Security and privacy∼Mobile and wireless security

• Security and privacy∼Security protocols.

1.2 Problem Statement and Objectives
The problem addressed in this dissertation concerns the issues partially discussed above. It

tackles mostly the privacy and security issues found in the communication and file storage in

mobile devices. The security applications found in the Windows Phone store have very limited

functionalities and most of them still use the RSA, algorithm which is believed to be broken in the

next few years, hence the need to create reliable applications based on different cryptographic

theories. Given the advantages of elliptic curve cryptography and the small size of the keys, it

seems to be the appropriate candidate for mobile applications.

Within the scope of the aforementioned main problem, it is possible to further identify smaller

problems that need to be tackled too. For example, the public-key trust management system is

also an issue, since it is necessary to ensure the validity of the exchanged keys. The encryption

and decryption of files in a mobile device and assuring security of the communications comprise

two different subsets of problems also. Lastly, since common users nowadays are required to

remember dozens of passwords for all their accounts, and such ability can become a burden,

given the complexity of such passwords, there is also a need to create a secure storage of

passwords, so as to help the users keep track of their accounts and login information in a secure

manner.

Given the aforementioned problem statement, the main objective of this master’s program is

to design and implement an easy to use and secure application for mobile devices that offers

several cryptographic related functions and services. Additional objectives include:

• Identification of a range of cryptographic services that a user might need from an appli-

cation like this and to deliver them in a simple and consistent manner;

• Usage of Elliptic Curve Cryptography (ECC) primitives in the implementation of the iden-

tified services, such as ECC Diffie Hellman and ECC digital signature algorithm.

3

• Conduct research on the topics regarding key distribution and trust, in particularly how

public keys should be safely distributed and their origin proved.

1.3 Adopted Approach for Solving the Problem
After identifying the problem it was necessary to analyze it in detail and decide how to approach

it. The adopted approach for solving the problem mentioned in the previous section can be

summarized and structured into the following stages:

1. The first stage consists in contextualizing the problem at hand and study both the current

and standard cryptographic systems and schemes being used as well as the ECC theory. In

this stage is also necessary to research the different application stores for the different ex-

isting mobile OSs for applications that have similar features as the ones to be implemented

throughout this master’s program.

2. Stage two consists on studying and identifying the cryptographic mechanisms suited for

this work. It includes the detailed definition of the functionalities to be implemented in

the application.

3. Stage three concerns the software engineering of the application. Starting of by identifying

the requirements and use cases and then creating the diagrams that illustrate the different

use cases, activities, and components.

4. Stage four comprises the implementation of the application and of any libraries necessary

that will contain the ECC primitives. It also includes testing of the application in both

emulators and physical devices.

5. The last stage concerns the improvement of the application revisiting the software engi-

neering phase, if necessary, and performing the appropriate changes.

The main body of this dissertation reflects also the adopted approach.

1.4 Main Contributions
This master’s program is mainly motivated by the lack of applications providing security services

in smartphones. Its main contribution is the delivery of a prototype of such an application for the

Windows Phone 8.1 OS. To the best of our knowledge, this is the most complete security applica-

tion for this OS at the time this dissertation was delivered. Another main contribution concerns

the development of a key management scheme that associates contacts and public keys, which

defines the trust and exchange infrastructure. This trust infrastructure is inspired on the Public

Key Infrastructure (PKI) and Pretty Good Privacy (PGP) related schemes, but uses a more fine

4

grained hierarchy, given by more trust levels. The software engineering and implementation

details of the aforementioned application are seen as secondary, but important, contributions

of this work, mostly because they may aid future developers in the process of better devising

secure applications. Aside from the smartphone application, a library was developed and made

available to other developers in order to help in the development of applications that use el-

liptic curve cryptography. The source code of the developed libraries is provided as an open

source project, under the MIT license [Ope15].

This work was submitted to the Open Mind ESEGUR 2014 contest and it was one of the semi-

finalists in the awards ceremony.

1.5 Dissertation Overview
This main body of the dissertation is organized in six main chapters. The contents of such

chapters can be summarized as follows:

• Chapter 1 - Introduction - Contextualizes the subject addressed in this dissertation by

explaining its focus and scope as well as the problem statement and objectives. It includes

the adopted approach to fulfill the objectives and the main contributions of this work. The

structure of this dissertation is also briefly discussed at the end of the chapter.

• Chapter 2 - Related Applications, Technologies and Preliminaries - Analyzes some of the

applications currently available for the different platforms and with a similar purpose of

the application developed throughout this work. It then proceeds to describe the tools and

technologies used in this master’s program. Lastly, crypto related algorithms and schemes,

which were important in the scope of this work, are discussed.

• Chapter 3 - Software Engineering - Analyzes the requirements and proceeds to the identi-

fication of the use cases and discussion of the diagrams that reflect the process of software

development.

• Chapter 4 - Security and Cryptographic Services - Discusses the cryptograpic services

that were integrated in the prototyped application, then moves on to describing the trust

management system that was created, and ends up with a discussion on the security of

the implemented application.

• Chapter 5 - Implementation and Testing - Elaborates on the implementation details of

the library that contains the necessary ECC functions and of the mobile application for

Windows Phone. It also includes details on how it was tested, taking advantage of both

emulators and physical devices.

• Chapter 6 - Conclusions and Future Work - Presents the main conclusions of this disser-

5

tation as well as some directions regarding future work related with this work.

6

Chapter 2

Related Applications, Technologies and
Cryptography Preliminaries

This chapter discusses the mobile OS for which this application was created, while comparing it

with the current main OSs for mobile devices. The crypto-related preliminaries which are the

base of this dissertation are also discussed.

2.1 Introduction
At the time of writing this dissertation, privacy and security were at the top of the concerns

of both the academic and industry communities due disclosure of classified information and

security breaches. This chapter addresses the current state of mobile OSs and the security

applications that each platform has available. It discusses the technology that was used in the

scope of this master’s program. It also includes some preliminaries regarding cryptographic

schemes that are used nowadays.

The structure of this chapter is as follows:

• Section 2.2 discusses the applications with similar functionalities to ECCrypto that were

found for iOS, Android and Windows Phone mobile OSs;

• Section 2.3 discusses the technology that was used throughout this master’s program;

• Section 2.4 gives an overview of the different cryptographic algorithms that were useful

within the context of this work;

• Section 2.5 concludes this chapter with the main conclusions.

2.2 Crypto Related Applications for Mobile Operating Systems
In this section, the main mobile OSs will be discussed and an overview of the security applications

that are available for each platform will be presented.

2.2.1 Android Security Applications

Android is a mobile OS developed by Google and it is based on the Linux kernel. The first version

was released in September 23 of 2008 and at the time of writing this dissertation the latest

7

released version was 5.1.1 ”Lollipop”, which was released in May 28, 2015. The marketing

target of Android includes smartphones, tablets, TVs, cars and wearable devices. Android is

currently the lead mobile OS, being installed in more than 80% [Ram15] of all mobile devices

worldwide. It has the highest number of applications in the official Android Play Store, when

compared with the official application stores for the remaining OSs.

Android has a large and active community of developers and enthusiasts who develop and dis-

tribute their own modified versions of the OS by using the source code of Android Open Source

Project (AOSP).

According to Kaspersky Lab [Kas] most of the mobile malware that is detected, over 95%, is

designed to target the Android platform. This is due to Android being the most widespread OS

for new smartphones. A key factor is also the open nature of the Android OS, the ease with

which apps can be created, and most of all, the wide variety of unofficial application markets

in whose security and privacy control are often disregarded.

The most common threats affecting Android devices include Short Message Service (SMS) Tro-

jan viruses, malware, advertising modules and exploits which are used to gain root access to

smartphones.[Kas12]

Android Play Store has over 1.3 million applications available. When compared with the other

OSs application stores, it has the highest number of applications.

Google Play Store [Goo15] was surveyed in the initial phase of this work so as to identify ap-

plications with similar functionalities to the ones to be implemented in this work. In order to

do so, the search was focused on apps that allow storing and managing passwords, encrypt-

ing/decrypting SMS messages and emails, managing contacts and their keys, as well as file

encryption capabilities. The search was narrowed to the apps that are somehow using ECC to

provide their functionalities.

The highest rated apps that were found will be briefly described and their links to Android Play

Store are also provided.

ECC SMS [woo14] is a paid app that allows the encryption of SMS using ECC. Its features include

SMS Encryption; Uses a PKI for sharing public keys; Uses the Elliptic Curve Integrated

Encryption Scheme (ECIES).

Silent Text - secure messages [Sil13] is an encrypted text messaging app with secure file trans-

fer for mobile devices. It has the ability to send files up to 100 MB, and encrypted map

locations. It uses Peer-to-peer key management, and the keys are stored on the device

of the user and not on their servers. It uses the Elliptic Curve P-284 and Advanced En-

8

cryption Standard (AES) 256. However it does not seem to support SMS or email encryp-

tion/decryption, and it is used as an Internet messaging app.

SMSSecure [SMS15] is an open source app that allows the user to send SMS or Multimedia Mes-

saging Service (MMS). It does not require an Internet connection to be used. It also allows

the user to share multimedia files or attachments.

Secret Space Encryptor (SSE) - Universal Encryption App [Par15] is a password manager, text

encryption and file encryption app. It does not use ECC but is included here because it

is the most complete app and closest in functionalities to what is intended for the app

in this dissertation. Functionalities include: password manager, using a master password;

Text encryption; File Encryption; AES (Rijndael) 256bit, Rivest Cipher (RC)6 256bit, Ser-

pent 256bit, Blowfish 256bit/448bit, Twofish 256bit, GOST 256bit + Threefish 1024bit (for

S.S.E. Pro Version) ciphers are available

The conclusion is that there are not many security applications using ECC for Android. There

are however many apps that allow secure messaging but most rely on RSA and the target is not

SMS, but online messaging. The applications that were found to use ECC, have very limited

functionalities and basically allow the encryption and decryption of text.

2.2.2 iOS Security Applications

iOS is a proprietary mobile OS developed by Apple Inc. that was originally released in 2007 for

the iPhone and that is used on the mobile devices of the company such as the iPhone, iPad,

iPod touch and second-generation Apple TV onward. Major versions of iOS are released annually

and the latest release is iOS 8.4 which was released on June 30 of 2015. iOS currently comes

second in what comes to market share, with over 18% of the market.Apple App Store is where

the users can buy new apps for their devices and it currently has a ballpark of 1.2 million

apps available. An analysis of applications with similar functionalities to the one developed

along this work, and available in the Apple store, was also performed at an earlier stage. In

order to do so, the search was focused on apps that allow storing and managing passwords,

encrypting/decrypting SMS messages and emails, managing contacts and their keys, as well as

file encryption capabilities. The search was narrowed to the apps that are somehow using ECC

to provide their functionalities but that led to no results, however it is still important to analyze

the apps regarding their functionalities so a few are included here.

The highest rated apps that were found will be briefly described and their links to Apple Store [App15]

are also provided.

Pryvate - The Encryption App [Cri15] is a secure voice, email, video calls, messaging and pic-

ture sharing app. It uses RSA 4096, AES 256 and Diffie-Hellman (DH). The app also claims

9

to never establish a direct trust relationship with any server or middle-ware, meaning that

the communications are never stored or saved anywhere.

Secure Texting [App12] is an app that encrypts and decrypts text messages. It does so by using

a plain text key and there is no reference regarding the algorithms being used.

CoverMe Private Texting Messenger [Cov15] is an app that features: Secure and Private Mes-

saging; Encrypted phone Calls, secure SMS; Private vault to save personal contacts, mes-

sages, documents, pictures and videos; Password manager vault. CoverMe does not use

ECC for encryption purposes. It claims to use RSA and AES for securing the comunications.

Seecrypt SC3 [See15] allows the user to make and receive, secure voice calls send and receive

encrypted text messages and attachments between Seecrypt Mobile-enabled devices, any-

where in the world. Seecrypt SC3 uses a unique double-layer AES 256 and RC4 384 end-

to-end crypto scheme, with new ephemeral session keys for each call and message, that

affords all individuals and corporations extremely strong encrypted communication. It is

an application for encrypted voice calls and Internet messaging, but does not support SMS

or email.

CryptTalk Pro [Are15] is a secure call and instant messaging. It claims that the system is im-

plemented in such a way that potential hackers are prevented from listening in, even

if they have access to CryptTalk’s system plans or the App’s source code. It uses the

maximum security through Best Practice cryptography: End-to-end encryption: a cen-

tral server is not involved in the encryption process; Built on the most secure and widely

used and audited algorithms; Media encryption: AES-256; Authentication: One Time Pass-

word (OTP) (Request for Comments (RFC)4226), Session Initiation Protocol (SIP) Digest;

Key exchange: Elliptic Curve Diffie-Hellman (ECDH) with ephemeral keys signed using RSA-

2048, end-to-end key exchange; Secure Real-time Transport Protocol (SRTP); Private key

protection: Patented, proprietary method for top security authentication: Hash-based

Message Authentication Code (HMAC)-Secure Hash Algorithm (SHA)1; Integrity protection:

Signed Voice / Instant Messaging (IM) packets; Man-in-the-Middle (MITM) Protection: Diffie-

Hellman key exchange messages signed using RSA-2048.

No applications were found for iOS to be using ECC, there are, however plenty of applications

that offer some of the functionalities that are offered by the application to be implemented in

this dissertation by often using weaker security algorithms.

2.2.3 Windows Phone Security Applications

Windows Phone is a mobile OS developed by Microsoft for smartphones, and it is the platform for

which the application described in this dissertation was implemented. The OS will be analyzed in

10

greater detail in the next section. For now, the discussion will be focused on related applications

available in the Windows Store.

Since the platform of choice for the implementation of the mobile application was Windows

Phone, it motivated a more detailed investigation regarding the available applications on the

Windows Store. The criteria for searching related applications. The search was focused on apps

that allow storing and managing passwords, encrypting/decrypting SMS messages and Emails,

managing contacts and their keys, as well as file encryption capabilities. At some point, the

search was focused to the applications that were using ECC to provide their functionalities.

Once again that led to no results, as no applications using ECC were found. Nonetheless, it was

still important to review some security applications that were found because they might offer

some insight on how to make ECCrypto a better application.

Secure Text Pro [Lun15] is an app that features the ability to encrypt/decrypt messages and

images and send them via SMS or email using a password. It allows the user to encrypt a

message several times. Screenshots of the application can be seen in figures 2.1 and 2.2.

Figure 2.1: Screenshot of the main screen
of the Windows Phone application

Secure Text Pro.

Figure 2.2: Screenshot of the encryption
page of the Windows Phone application

Secure Text Pro.

Password Jinni [Anc15] is an app used to store private data on the phone. It stores passwords,

bank accounts and credit cards information, membership data, work credentials, private

contacts, web logins. It uses 256 bit AES encryption and it includes a password generator.

Screenshots of the application can be seen in figures 2.3 and 2.4.

11

Figure 2.3: Screenshot of the main
screen of the Windows Phone
application Password Jinni.

Figure 2.4: Screenshot of the credit card
details screen of the Windows Phone

application Password Jinni.

TXTCrypt [LFr15] is an app used to store private data on the phone. It stores passwords, bank

account, credit cards information, membership data, work credentials, private contacts,

web logins. It uses 256 bit AES encryption and it includes a password generator. Screen-

shots of the application can be seen in figures 2.5 and 2.6.

Figure 2.5: Screenshot of the encryption
screen of the Windows Phone

application TXTCrypt.

Figure 2.6: Screenshot of the decryption
screen of the Windows Phone

application TXTCrypt.

Text Encryption Pro [PLR15] is a text encryption application for text, SMS, and emails. It

12

uses passwords to encrypt the messages and provides a storage mechanism to manage the

passwords. Screenshots of the application can be seen in figures 2.7 and 2.8.

Figure 2.7: Screenshot of the encryption
screen of the Windows Phone

application Text Encryption Pro.

Figure 2.8: Screenshot of the key
manager screen of the Windows Phone

application Text Encryption Pro.

EnkrypTo [Ron15] is an encryption application able to send encrypted emails and SMS using a

shared password with the message recipient. There is no information available about the

algorithms being used. Screenshots of the application can be seen in figures 2.7 and 2.8.

Figure 2.9: Screenshot of the encryption
screen of the Windows Phone

application EnkrypTo.

Figure 2.10: Screenshot of the decryption
screen of the Windows Phone

application EnkrypTo.

13

Crypter [Cyb15] is an encryption application with the ability to encrypt emails and SMS with

AES/BlowFish/TwoFish/RC6/Serpent/Cast256 with up to 448bit symmetric keys. Secret

passwords can be hashed with up to BLAKE/SHA 512bit hash. It also supports up to 8192bit

public RSA key for public key exchange. It supports both symmetric and asymmetric keys.

Screenshots of the application can be seen in figures 2.7 and 2.8.

Figure 2.11: Screenshot of the encryption/
decryption screen of the Windows

Phone application Crypter.

Figure 2.12: Screenshot of the settings
screen of the Windows Phone

application Crypter.

No applications using ECC were found for Windows Phone. A few applications offering some of

the cryptographic functionalities were found, but they provide basic encryption and decryption

functions only.

2.2.4 Research Conclusions

After exploring the application stores for the different platforms, it was clear that there is not

much of an offer of applications with the functionalities offered by the application implemented

during this dissertation. While in the Android and iOS application stores one may find applica-

tions with functionalities such as encryption/decryption of SMS and emails, password and key

management, these do not use ECC in their implementation. As for the applications found in the

Windows App Store, most of them simply allowed the encryption and decryption of text using

a plain text password and none of them used ECC in any way. In a lot of the reviews for the

applications that were found, the users often complained that the apps need more features or

that the encryption methods needed to be stronger. The research also provided a better idea

on how to create an app that is both pleasing and easy to use for the user as the design in such

applications often seems to be disregarded.

14

2.3 Technology used in the Scope of this Masters
The current section will discuss the different tools and technologies that were used throughout

this Masters.

2.3.1 Windows Phone 8.1

The target platform for the development of the proposed mechanism was Windows Phone 8.1.

Windows Phone 8 was released on October 29, 2012 and is the third generation of the Windows

Phone mobile OS from Microsoft. Windows Phone 8 was build to replace its predecessor Windows

Phone 7 based in Windows CE, using the new architecture Windows NT which is also used in

Windows 8 for both tablets, laptops and desktops. It is worth mentioning that Windows Phone 7

and Windows 8 architectures are not compatible and applications developed for Windows Phone

8 are not compatible with Windows Phone 7 devices.

Initially the target platform was Windows Phone 8 but on July 15th of 2014, Microsoft released

Windows Phone 8.1 which is an OS update for Windows Phone 8 so it was decided to target

the latest version of Windows Phone. The new version introduced various new features such

as Cortana a personal virtual assistant which is similar to Siri which is the personal assistant

from Apple on the iPhone and Google Now for Android. Some of the features of Cortana include

the ability to recognize natural voice without the user having to input a predefined series of

commands and answer questions using information from Bing search engine (such as weather and

traffic informations, sport scores), the ability to set alarms and reminders, add appointments

to the user’s calendar, start applications and call or text contacts, among many others.

It also introduced changes to the applications framework in order to be possible to use the same

application model for store apps for Windows 8.1 and Windows Phone 8.1. This was done in

order to facilitate the development of applications that can be used in both phones and tablets

and computers. These changes allow the developers to build ”universal apps” that run on both

Windows Phone 8.1 and Windows 8 and share a big portion of the code, except for the code that

is specific to the platform, such as user interface and phone APIs.

Windows Phone 8.1 also included features such as support for Virtual Private Network (VPN),

Bluetooth 4.0 Long-Term Evolution (LTE), allows apps to access the device’s file system which

was not possible in Windows Phone 8, user interface improvements, battery life improvements,

a new Word Flow keyboard which allows users to swipe through letters to type, similarly to the

Swype keyboard option available on Android devices.

The decision to implement the application for this platform was due to the fact that Windows

Phone 8.1 is a relatively new platform and does not have many applications in the Store and

none was found with the features proposed in this work.

15

2.3.2 Microsoft Visual Studio

For the development of the application described in this dissertation the Integrated Develop-

ment Environment (IDE) of choice was Visual Studio 2013 and Visual Studio 2015 from Microsoft.

Visual Studio is a comprehensive collection of tools and services that allows developers to create

a wide variety of applications, from desktop applications to Windows Store applications for both

tablets and Windows Phones. It can also be used to create web sites, web applications, web

services, and many other projects.

Visual Studio includes a code editor that supports IntelliSense, code refactoring and the inte-

grated debugger works has a source-level debugger as well as a machine-level debugger. It

includes designers for both GUI applications, Web applications and websites, for class repre-

sentation and database schema. There is also the ability to install extensions that enhance the

functionalities at many levels.

Built-in languages in Visual Studio include C, C++, C++/ Common Language Infrastructure (CLI)(via

Visual C++), VB.NET (via Visual Basic .NET, C# (via Visual C#), F#, JavaScript. Support for

languages such as Python and Ruby among others is also available. eXtensible Markup Lan-

guage (XML)/eXtensible Stylesheet Language for Transformation (XSLT), HyperText Markup Lan-

guage (HTML)/eXtensible HyperText Markup Language (XHTML), Cascading Style Sheets (CSS)

and JavaScript are also supported.

The programming language used in the development of this application was C# and eXtensible

Application Markup Language (XAML) was used to design the visual appearance of the User In-

terface (UI).

Blend for Visual Studio is a visual tool used to build engaging user interfaces and rich media

experiences for Windows desktop, Web, Windows Phone and Windows Store apps. It comes

with the Visual Studio installation. It allows the developer to make UI changes visually in

design view. Blend stores the work in XAML which can also be edited in Visual Studio. It also

supports HTML5/CSS3/JavaScript for web apps and includes SketchFlow for prototyping in

the Ultimate and Premium editions of Visual Studio. Blend provides a workspace that

can be used to build new UI or manipulate an existing UI more quickly and intuitively.

The tools available in Blend are far more extensive and sophisticated than Visual Studio’s

pallete which allows, for instance, the creation of animations in applications creating

richer and more user-friendly applications. For the application developed in the context

of this dissertation, Blend for Visual Studio 2015 was used in order to design the UI of the

application.

Windows Phone 8.1 emulators are provided and added to an existing installation of Visual Stu-

dio in order to test applications without the need to have a physical device. Windows Phone

16

8.1 Emulators require an installation of Visual Studio with Update 2 or later. A machine

with Windows 8.1 (x64) Professional edition or higher and a processor that supports Client

Hyper-V and Second Level Address Translation (SLAT).

2.3.3 Microsoft Visio 2013

Microsoft Visio 2013 is part of the Microsoft Office suite and is a diagramming and vector graphics

application. It allows the creation of professional diagrams to simplify complex information

with updated shapes, collaboration tools and data-linked diagrams. It was used to create the

necessary diagrams in this dissertation such as: database diagrams, use cases, class diagrams,

and other diagrams.

2.3.4 SQLite for Windows Phone 8.1

SQLite is a library that implements a self-contained. serverless, zero-configuration, transaction

SQL database engine. The library used in particular contains an extension SDK and all other

components needed to use SQLite for Windows Phone 8.1 application development with Visual

Studio 2013.

SQLite supports Language Integrated Query (LINQ) which is a Microsoft .NET Framework compo-

nent that adds native data querying capabilities to .NET languages.

2.4 Preliminaries
In the following subsections, important crypto related algorithms and schemes in the scope of

this work are discussed. The description for the elliptic curve related schemes will be more

detailed in a later chapter but an overview can be found here as they constitute the most

important tools of this work.

2.4.1 RSA

RSA is a scheme for public-key encryption proposed by Ronald Rivest, Adi Shamir and Leonard

Adleman at the Massachusetts Institute of Technology (MIT), in 1977. Since then, RSA has became

the most widely used asymmetric cryptographic scheme. RSA has many applications, but it is

most often used for:

• Encryption of small pieces of data, particularly for key transport;

• Digital signatures and digital certificates on the Internet.

The RSA scheme is a block cipher in which both the plaintext and ciphertext are integers between

0 and n−1 for some n. Typically, n is a number with more than 1024 bits. Given a plaintext block

17

M and ciphertext block C, encryption and decryption are performed in the following manner:

C = Me mod n

M = Cd mod n = (Me)d mod n = Med mod n

The values of n and e must be known by both the sender and the receiver. However, only

the receiver knows the value of d. This is a public-key encryption algorithm with a public key

PU = {e, n} and a private key PR = {d, n}.

Certain requirements must be met in order for this algorithm to be satisfactory, such as:

• It is possible to find values of e, d, n such that Med mod n = M for all M < n.

• It is relatively easy to calculate Me mod n and Cdmod n for all values M < n.

• It is unfeasible to determine d given e and n.

Thr basic form of the RSA cryptosystem is composed of three algorithms: key generation, en-

cryption and decryption. Assuming that two participants, Alice and Bob, wish to communicate

with each other in a secure way using RSA, the three algorithms will now be explained. Key gen-

eration is required before the application of the public-key cryptosystem. The steps to generate

a key are the following:

1. Select large p, q, where p and q are both prime and p ̸= q;

2. Calculate n = p× q;

3. Calculate ϕ(n) = (p− 1)(q − 1);

4. Select integer e, where gcd(ϕ(n), e) = 1 : 1 < e < ϕ(n);

5. Calculate d, where d = e−1(mod ϕ(n)) ;

6. Public key PU = e, n;

7. Private key PR = d, n.

Once the keys are generated, if Bob wants to send a message M < n to Alice, he uses the public

key that belongs to Alice, and the ciphertext would be obtained in the following manner:

Ciphertext C, where C = Me mod n.

18

As for the decryption of the message, once Alice receives the ciphertext C, she can proceed

with the decryption using her private key as seen here:

Ciphertext C,

Plaintext M, where M = Cd mod n

2.4.2 RSA Security

The RSA algorithm can be attacked by using four possible approaches which are the following:

Mathematical Attacks aim to solve the factoring problem, which is key to the security of the

algorithm. Three approaches to attacking RSA are:

1. Factor n into its two prime factors. This enables the calculation of ϕ(n) = (p− 1)×

(q − 1), which in turn enables the determination of d = e−1(mod ϕ(n));

2. Determine ϕ(n) directly, without first determining p and q. Again , this enables the

determinations of d = e−1(mod ϕ(n));

3. Determine d directly, without first determining ϕ(n).

Brute Force Attacks are possible since RSA is as vulnerable as other cryptosystems to this kind

of attack. The defense against this type of attack is to use a large key space, meaning

that the larger the number of bits in d, the safer it is. It is not, however, feasible to keep

increasing the number of bits in d given how complex the calculations for both the key

generation and the encryption/decryption are. Thus, the larger the key size, the slower

the system will run.

Timing Attacks would be the equivalent of a burglar trying the guess the combination of a safe

by observing how long it takes for someone the turn the dial from number to number,

The attack can be explained using the modular exponentiation algorithm used for com-

puting ab mod n. In this algorithm, modular exponentiation is accomplished bit by bit,

with one modular multiplication performed at each iteration and an additional modular

multiplication performed for each 1 bit. Assuming that the target system uses a modular

multiplication function that is very fast in almost all cases but in a few cases takes much

more time than an entire average modular exponentiation. The attack starts with the left-

most bit, bk, and then proceeds bit-by-bit. Suppose that the first j bits are known. For a

given ciphertext, the attacker can complete the first j iterations of the for loop. The sub-

sequent step depends on the unknown exponent bit. If the bit a is set, d← (d× a) mod n

will be executed. For a few values of a and d, the modular multiplication will be slow,

and the attacker knows which these are. Therefore, if the observed time to execute the

decryption algorithm is always slow when this particular iteration is slow, then this bit

19

is assumed to be 1. On the other hand, if a number of execution times for the entire

algorithm are fast, then this bit is assumed to be 0. In reality, implementations of the

modular exponentiation do not have such extreme timing variations, in which the execu-

tion time of a single iteration can exceed the mean execution time of the entire algorithm.

Nonetheless, there is still enough timing variation making it a practical attack [Pau].

There are simple countermeasures against timing attacks, including the following:

• Constant exponentiation time comprises a simple fix, but it degrades performance.

It works by ensuring that all exponentiations take the same amount of time before

returning a result;

• Random delay consists in adding a random delay to the exponentiation algorithm to

confuse the timing attack could improve performance. Nonetheless, Kocher [Pau]

points out that attackers may still succeed by collectiong additional measurements

to compensate for random delays, if the defenders do not add enough noise;

• Blinding can be achieved by multiplying the ciphertext by a random number before

performing exponentiation. It prevents the attacker from knowing what ciphertext

bits are being processed inside the computer, therefore preventing the bit-by-bit

analysis, which is essential too the timing attack.

Chosen Ciphertext Attack (CCA) is an attack in which the attacker chooses a number of ci-

phertexts and the corresponding plaintexts, decrypted with the private key of the target

by the target himself (acting as an oracle). This way, the attacker could select a plain-

text, encrypt it with the public key of the target, and then be able to get the plaintext

back by having it decrypted with the private key. Although this does not provide the at-

tacker with new information, the attacker may exploit properties of the RSA and selects

blocks of data that, when processed using the private key of the target, yield information

needed for cryptanalysis. A simple example of a CCA takes advantage of the following RSA

property:

E(PU,M1)× E(PU,M2) = E(PU, [M1 ×M2])

C = Me mod n can be decrypted via a CCA as follows.

1. Compute X = ((C × 2e) mod n;

2. Submit X as a chosen ciphertext and receive back Y = Xd mod n.

But note that

20

X = (C mod n)× (2e mod n)

= (Me mod n)× (2e mod n)

= (2M)e mod n

Therefore, Y = (2M) mod n. From this, M can be deduced.

This attack can be prevented in pratical RSA-based cryptosystems by randomly padding

the plaintext prior to encryption. There are, however, more sophisticated CCAs for which

a simple padding with a random value have been shown to be insufficient to provide the

desired security.

2.4.3 Advanced Encryption Standard

1999 was the year the United States National Institute of Standards and Technology (NIST) indi-

cated that the Data Encryption Standard (DES) should only be used for legacy systems and that

Triple Data Encryption Standard (3DES) should be used instead. Although 3DES still resists to

brute force attacks nowadays, it has several problems. It is not very efficient and its relatively

short block size of 64 bits can also be a drawback in certain applications, e.g., building a hash

function from a block cipher. Another concern is regarding the possibility of attacks using quan-

tum computers, which in a few decades may become reality and for which the desirable key

lengths are in the order of 256 bit. Considering all the problems of 3DES, it was concluded that

a new block cipher was necessary as a replacement for DES.

In 1997, NIST called for proposals for a new AES. The following requirements for AES candidates

were mandatory:

• Three key lengths were to be supported, namely 128, 192 and 256 bit;

• Block cipher with 128 bit lock size;

• Efficiency in software and hardware;

• Security relative to other submitted algorithms.

In 2001, the block cipher Rijndael was declared as the new AES and was published as a final

standard. AES is expected to be the dominant symmetric-key algorithm for many commercial

applications for the next few decades. In what regards security, to date, there are no attacks

better than brute-force known against AES. AES is the mandatory encryption algorithm for

United States government applications, and is also present in several open standards such as

Internet Protocol Security (IPsec) and Transport Layer Security (TLS), Wi-Fi encryption standard

Institute of Electrical and Electronics Engineers (IEEE) 802.11i, Secure Shell (SSH), and many

others [oSN].

It is also mandatory in several industry standards and it is used in many commercial systems.

21

2.4.4 Elliptic Curve Cryptography

Elliptic Curve Cryptography is an approach to public-key cryptography based on the algebraic

structure of elliptic curves over finite fields. This approach was proposed independently in the

eighties by two separate authors, Neal Koblitz and Victor S. Miller. An article named Elliptic

curve cryptosystems [Kob] was published in 1987 by Koblitz; and Miller published the article Use

of elliptic curves in cryptography in 1985 [Vic]. Despite this, only in 2004 to 2005 did Elliptic

curve cryptography algorithms became mainstream only in 2004 to 2005.

Nowadays, many protocols and security applications use implementations of digital signature

and Diffie Hellman key agreement protocols using elliptic curve cryptography. This approach

presents very interesting advantages over other public-key cryptography mechanisms. This fact,

coupled with advances in factoring composite numbers, over the last few years, make this a

great alternative to the RSA public-key encryption mechanisms.

An elliptic curve over the set of real numbers, is defined by the equation:

y2 = x3 + ax+ b, where a, b ∈ R and −16(4a3 + 27b2) ̸= 0

This definition is not yet the definition used in cryptography, though it serves the purpose of

introducing the subject. The representation in the cartesian space can be observed in fig-

ure 2.13. The equation on the left represents the function y2 = x3− 3x+3 and its determinant

is −16(4×(−3)3+27×32) = −2160 < 0. As for the representation on the right, it represents the

curve given by y2 = x3 − 2x+ 1 and its determinant is −16(4× (−2)3 + 27× 1) = 80 > 0. If the

determinant, which is given by −16(4a3+27b2), is positive, then the curve has two components.

Otherwise, it will only have one.

Figure 2.13: The representation of two elliptic curves on R2. The curve on the left represents the
equation y2 = x3 − 3x+ 3. As for the curve on the right, it represents the equation y2 = x3 − 2x+ 1.

22

Public key mechanisms are typically developed following one of two possible approaches:

1. using one way functions with homomorphic properties;

2. using one way functions with homomorphic properties and with trapdoor.

One way functions mean that there is an efficient algorithm to calculate the result of the func-

tion, but not to invert it. RSA uses a function of the second type. The operation c = mpk mod P

is a one way operation. In order to invert it, the discrete algorithm problem would have to

be solved. As for the DH key exchange protocol or the ElGamal cipher, these are completely

defined using one way functions without a trapdoor. In fact, ECC is based in the same type of

functions and even in the same problem.

2.4.4.1 Discrete Logarithm Problem

The discrete logarithm problem [JOP14] will be explained in order to clarify why it can be used

to construct crypto systems.

Given a finite cyclic group G and a generator g for that group,

G = 1, g, g2, g3, ..., gq−1, q is the order of the group,

the Discrete Logarithm Problem (DAP) is hard if for all the efficient algorithms A defined to

solve the problem, the probability to find x given g and gx is insignificant:

Pg←G,x←Zq [A(G, q, g, gx) = x] <
1

280
.

As can be seen, the more general definition of the problem uses only cyclic groups. Therefore it

can be applied to other groups different from Z∗p, including groups defined over elliptic curves

modulo p.

There are several algorithms that try to solve the DAP [BGJT14] [Wha]. The best algorithm

known to solve the DAP in Z∗p is known as the General Number Field Sieve [num93], which

determines the size these numbers should have in order to ensure the safety of the mechanisms

that produce them. Table 2.1 summarizes and compares the requirements in terms of the size

of the modulus, indicating the associated security:

As observed in the comparative table, the ratio between the safety and the size of the keys on

elliptic curves is much higher than the one displayed by algorithms in Z∗p groups, which include

the classic RSA and Diffie-Hellman. In order to have a security of 80 bits (equivalent to 280

attempts to break the mechanism), RSA keys need to have 1024 bits, while in elliptic curve it

23

Symmetric Scheme ECC-Based Scheme RSA
(key size in bits) (size of n in bits) (modulus size in bits)

56 112 512
80 160 1024
112 224 2048
128 256 3072
192 384 7680
256 512 15360

Table 2.1: Comparison between high-quality symmetric-key encryption schemes, ECC and RSA in terms of
key strength.

would only require keys to have 160 bits. In general, the security offered by ECC keys is half its

size in bits. The management, transmission and storage of ECC keys is therefore simpler than

the management, transmission and storage of RSA keys.

2.4.4.2 Definition of Elliptic Curves

ECC elaborates on the concept of cyclic group but defined for elliptic curves. In Algebra, a

cyclic group is a set of elements that can be generated from one (or more) of its elements,

called generator g, from the application of the group operation repeatedly to that generator.

Each element can then be written as a power of g if the multiplicative notation is used, or as a

multiple of g if the additive notation is used. The group Z∗7, for example, can be generated by

the element 3:

{31, 32, 33, 34, 35, 36} = {3, 2, 6, 4, 5, 1},

where the group operation × is defined by a× b mod 7, in which a, b ∈ Z∗7.

The elliptic curve over Zp, p > 3, is the set of all pairs (x, y) ∈ Zp fulfilling the equation

y2 = x3 + ax+ b mod p,

together with an imaginary point of infinity O, where a, b ∈ Zp and 4a3 + 27b2 ̸= 0 mod p.

According to the definition of an elliptic curve, it is required that the curve is nonsingular. From

a geometrically point of view, the plot must have no self-intersections or vertices. This can be

achieved if the discriminant of the curve −16(4a3 + 27b2) is nonzero.

The presented definition is different than the one that was presented initially. Its graphical

representation is also very different from the one included before, as it is shown in figure 2.14.

24

Figure 2.14: Representation of the elliptic curve y2 = x3 + 2x+ 2 mod 17.

2.4.4.3 Group Operations on Elliptic Curves

In order to obtain a cyclic group with the desired properties, ECC inventors defined also the

addition of points in the curve. Although it is usually represented by +, this operation should

not be confused with the addition of real numbers. The definition of addition in elliptic curves

is done with two points of the curve, A and B, represented by coordinates (x1, y1) and (x2, y2).

As a result of the addition of these two points, a new point in the curve is obtained, with the

coordinates (x3, y3), respecting the condition y2 = x3 + ax+ b mod p.

The representation of points of the curve y2 = x3 + ax + b mod p is not human friendly, but

representations of curves in the cartesian plane can be used for a geometric interpretation of

how points can be summed in elliptic curves. Figure 2.15 shows the sum of points A and B. It

also illustrates where the identity (O) is located. This point does not seem to be on the curve

(although one side of the curve tends to +∞ when x→ +∞).

A
B

A+B

Figure 2.15: Addition of point A and point B according to the definition of sum in elliptic curves.

25

In the image it can be observed that the sum of two points is interpreted as the symmetric

point (xx axis) to the one obtained after the interception of the curve with the line that passes

through A and B. It can be concluded that, given the curve configuration and the definition

of this operation, the resulting point is always another point of the curve. Although calculating

the intersection point for R2 curves is simple, for curves with the modulus operation it is not so

straightforward.

There are some particular cases that need to be addressed. For instance, the addition of a point

with itself, meaning the multiplication of said point by two. The addition of point C with itself

is illustrated in figure 2.16. It is defined that the sum is given by the symmetric point to the

one that is obtained after the curve is intercepted with the tangent line to the point.

2C=C+C C

Figure 2.16: Addition of point C with itself.

Both cases that were discussed cover the possible situations, except for the sum with the iden-

tify. It is possible to resort to the following formulas to calculate point addition and multipli-

cation by 2 in cryptographic elliptic curves. Consider that A = (x1, y1) and B = (x2, y2). The

coordinates of A+B = (x3, y3) are respectively calculated by:

x3 = s2 − x1 − x2 mod p and

y3 = s(x1 − x3)− y1 mod p,

in which

s =

 (y2 − y1)× (x2 − x1)
−1 mod p, if A ̸= B

(3x2
1 + a)× (2y1)

−1 mod p, if A = B
.

It should be noted that the formulas include the multiplication for an inverse modulo p, which

should not be treated as an integer multiplication.

26

The multiplication of a point by a scalar is the most important operation in ECC. It is in this

operation that the discrete logarithm problem is defined for ECC, as it can be observed next.

Considering an elliptic curve E, parameterized in order to be cryptographically secure, a point

P and a point T , the discrete logarithm problem consists in finding the integer number d such

that:

dP = P + P + P + ... = T

For carefully chosen curves, the multiplication of a point P by a scalar appears to produce a

random result in the curve and it is a function that is hard to invert. Thus, it is a one way function

that can be used in a Diffie-Hellman protocol. The fast modular multiplication is a fast and

efficient algorithm for calculating the multiplication of a point for a scalar. The multiplication

of a point C by different scalars is illustrated in figure 2.17.

2C=C+C

C

3C=C+C+C

Figure 2.17: Multiplication of point C by 2 and 3.

Lastly, the sum of a point with the identify is a special case. The choice of this point, as well as

the definition of the addition, was performed in a way that the sum of a point with the identify

is itself. When a point D is summed with O, one must draw a line originating from +∞ and

that passes by D, intersecting the curve in the symmetric point (according to the xx axis) to D.

Since the addition operation uses the symmetric point to this intersection, the resulting point

of is D, D + O = D). Figure 2.18 illustrates the addition of a point in cryptographic elliptic

curves with the identify.

27

D
D+

Figure 2.18: Addition of point D with O in cryptographic elliptic curves.

The generation of the domain parameters is time-consuming and troublesome to implement,

therefore, several standard curves and domain parameters have been established(American Na-

tional Standards Institute (ANSI)1, Federal Information Processing Standards (FIPS),Standards for

Efficient Cryptography (SEC)2, Brainpool[M. 10])

The United States NIST has set some recommended elliptic curves for government use and is

currently the standard being used for federal use. National Security Agency (NSA) Suite B Cryp-

tography [Nat09] is a set of cryptographic algorithms promulgated by the NSA as part of its

Cryptographic Modernization Program and it serves as an interoperable cryptographic base for

both unclassified information and most classified information. The components of Suite B are:

AES, Elliptic Curve Digital Signature Algorithm (ECDSA), ECDH. SHA2 and RSA.

NIST Recommended Curves

According to the SEC by Certicom Corp., certain curves and domain parameters are recom-

mended for ECC [Res]. The Elliptic Curve (EC) domain parameters over Fp are the sextuple,

T = (p, a, b,G, n, h),

where p is an integer specifying the finite field Fp, a, b ∈ Fp are two elements specifying an

elliptic curve E(Fp) defined by the equation:

E : y2 = x3 + ax+ b (mod p).

G(xG, yG) ∈ E(Fp) is termed Base Point, n is a large prime number which is the order of G, and

an integer h which is the cofactor h = #E(Fp)/n.

28

According to the Standards for Efficient Cryptography [Res], elliptic curve domain parameters

over Fp, must fulfill the condition

[log2p] ∈ 112, 128, 160, 192, 224, 256, 384, 521.

Such restriction is implemented in order to encourage interoperability and allow implementers

to supply commonly required security levels. Elliptic curve domain parameters over Fp with

[log2 p] = 2t provide approximately t bits of security. Hence, it is believed that approximately

2t operations are necessary for solving the discrete logarithm problem on the associated elliptic

curve.

Two different types of elliptic curve domain parameters over Fp are mentioned in the Standards

for Efficient Cryptography [Res].

Parameters associated with a Koblitz curve give rise to particularly efficient implementations.

Klobitz curves are binary anomalous curves over Fm
2 which have a, b ∈ 0, 1 [Kob]. The

Klobitz curve recommended parameters were chosen by repeatedly selecting parameters

admitting an efficiently computable endomorphism until a prime order curve was found.

Verifiably random parameters are chosen from a seed using SHA-1. This process ensures that

the parameters cannot be predetermined. Therefore, it is highly unlikely that the param-

eters can be susceptible to future special-purpose attacks, and during their generation no

trapdoors can have been placed in the parameters.

The recommended elliptic curve domain parameters over Fp are represented in the following

manner:

1. Each name begins with sec to denote Standards for Efficient Cryptography;

2. Followed by a p to denote parameters over Fp;

3. Number denoting the length in bits of the field size p;

4. Followed by a k if the parameters are associated with a Koblitz, or an r if the parameters

are verifiably random;

5. Lastly, a sequence number is added.

Table 2.2 summarizes the recommended elliptic curve domain parameters over Fp. The column

labeled Strength gives the approximate number of bits of security that the parameters offer.

The column Size gives the length ()in bits) of the field order. The column labeled RSA/DSA gives

the approximate size of an RSA or Digital Signature Algorithm (DSA) modulus at comparable

29

strength. The last column indicates whether the parameters are associated with a Koblitz curve

(k) or were chosen verifiably at random (r).

Parameters Strength Size RSA/DSA Koblitz or random)

secp112r1 56 112 512 r
secp112r2 56 112 512 r

secp128r1 64 128 704 r
secp128r2 64 128 704 r

secp160k1 80 160 1024 k
secp160r1 80 160 1024 r
secp160r2 80 160 1024 r

secp192k1 96 192 1536 k
secp192r1 96 192 1536 r

secp224k1 112 224 2048 k
secp224r1 112 224 2048 r

secp256k1 128 256 3072 k
secp256r1 128 256 3072 r

secp384r1 192 384 7680 r

secp521r1 256 521 15360 r

Table 2.2: Comparison between the NIST recommended curves, ECC and RSA in terms of key strength.

Another standard used nowadays concerns the so-called Brainpool curves. The reason for which

NIST curves were chosen instead was due to their better performance when compared with

Brainpool Curves [Pau13].

The performance of ECDSA and of ECDH is greatly impacted by the choice of the elliptic curve

being used. The differences in performance will now be illustrated. When comparing the infor-

mation in tables 2.3 and 2.4, the performance of the NIST recommended curves is much better

than the Brainpool curves for ECDSA for both signing and verifying a signature.

NIST Curve Relative Speed

ECDSA-secp521r1 549 sign/s
ECDSA-secp384r1 859 sign/s
ECDSA-secp256r1 1148 sign/s
ECDSA-secp224r1 1707 sign/s
ECDSA-secp192r1 2190 sign/s
ECDSA-secp521r1 151 verify/s
ECDSA-secp384r1 233 verify/s
ECDSA-secp256r1 333 verify/s
ECDSA-secp224r1 491 verify/s
ECDSA-secp192r1 670 verify/s

Table 2.3: NIST curves performance for ECDSA.

Brainpool Curve Relative Speed

ECDSA-brainpoolP512r1 65 sign/s
ECDSA-brainpoolP384r1 126 sign/s
ECDSA-brainpoolP256r1 203 sign/s
ECDSA-brainpoolP512r1 15 verify/s
ECDSA-brainpoolP384r1 28 verify/s
ECDSA-brainpoolP256r1 52 verify/s

Table 2.4: Brainpool curves performance for ECDSA.

As for performance regarding ECDH, NIST recommended curves are once again much better than

the Brainpool curves as seen in tables 2.5 and 2.6.

30

NIST Curve Relative Speed

ECDH-secp521r1 157 handshake/s
ECDH-secp384r1 248 handshake/s
ECDH-secp256r1 334 handshake/s
ECDH-secp224r1 511 handshake/s
ECDH-secp192r1 716 handshake/s

Table 2.5: NIST curves performance for ECDH.

Brainpool Curve Relative Speed

ECDH-brainpoolP512r1 15 handshake/s
ECDH-brainpoolP384r1 28 handshake/s
ECDH-brainpoolP256r1 52 handshake/s

Table 2.6: Brainpool curves performance for ECDH.

2.4.5 Elliptic Curve Diffie-Hellman

The ECDH is a variant of the Diffie-Hellman protocol using elliptic curve cryptography. It is a

key agreement protocol that is anonymous and allows two parties to establish a shared secret

over an insecure channel. The shared secret can be used as a key or used to derive one. Using

a symmetric key cipher, it is then possible to encrypt subsequent communications. The ECDH

protocol works as follows:

1. Alice (A) and Bob (B) agree to use an elliptic curve that is considered secure with known

and public parameters (p, a, b, G, n, h). p is a prime number, a and b define the curve, G

is the generator point in the curve, n is the order of the group and h is the co-factor (the

ratio between the number of points in the curve and n);

2. A: dA ←r 1, ..., n− 1, X = (x1, y1) = dA ∗G;

Alice generates a random number between 1 and n−1 and calculates X = (x1, y1) = dA∗G,

i.e., the sum of G, dA times. dA is a secret value and X is a public value.

3. A → B:X;

Alice sends Bob her public X value.

4. B: dB ←r 1, ..., n− 1, Y = (x2, y2) = dB ∗G;

Bob generates a random number between 1 and n−1 and calculates Y = (x2, y2) = dB ∗G,

i.e., the sum of G, dB times. db is a secret value and Y is a public value.

5. B → A:Y ;

Bob sends Alice his public Y value.

6. A: K = (x3.y3) = dA ∗ Y = dA ∗ (dB ∗G);

Alice calculates the shared key from the public Y value that belongs to Bob and her own

secret value dA.

7. B: K = (x3.y3) = dB ∗ Y = dB ∗ (dA ∗G) = dA ∗ (dB ∗G);

Bob calculates the shared key from the public X value that belongs to Alice and his own

secret value dB.

31

A scheme of the ECDH protocol can be seen in figure 2.19.

Figure 2.19: Elliptic Curve Diffie-Hellman Key agreement protocol.

2.4.6 Elliptic Curve Integrated Encryption Scheme and Digital Signature

The Integrated Encryption Scheme is a hybrid encryption system, that combines both symmet-

ric key and public key cryptography mechanisms. If implemented correctly, it will ensure the

semantic safety in plaintext and chosen cyphertext attack models. When it is applied to elliptic

curves, the scheme is called ECIES.

The scheme assumes the usage of a symmetric encryption algorithm, represented by the algo-

rithms (E,D), and defined over (K,M, C); of a secure Key Derivation Function (KDF), defined

from Zp to K2, and of a Message Authentication Code (MAC), defined for (K, C, T). K denotes

the key space,M denotes the message space, C denotes the cryptogram space and T denotes

the space of all possible MACs. It is also assumed that an elliptic curve with parameters that are

considered safe (p, a, b,G, n, h) is chosen. The three algorithms of ECIES can now be defined.

• The public and private keys generator F is specified in the following manner:

1. Choose a random number dA in 1, ..., n− 1 and calculate X = (x1, y1) = dA ∗G;

2. Return sk = da and pk = (X, (p, a, b,G, n, h)).

32

• The encryption algorithm E(pk, ,m) works in the following way:

1. Choose a random number dB ∈ 1, ..., n− 1 and calculate Y = (x2, y2) = dB ∗G;

2. Calculate K = (x3, y3) = dB ∗X. The secret S between both is now x3;

3. Use the KDF to derive two keys k1 and k2, one to encrypt, and the other to calculate

the MAC;

4. Encrypt the message with k1, i.e., c← E(k1,m);

5. Calculate the MAC of the cryptogram with k2, i.e., t←MAC(k2, c);

6. Concatenate and return Y , the cryptogram and the MAC, i.e., (Y, c, t).

• The decryption algorithm D(sk, (Y, c, t)) is as follows:

1. Derive the common point K = (x3, y3) = dB ∗ Y . The secret S between both is then

x3;

2. Use a KDF function to derive two keys k1 and k2, one to decrypt, and the other one

to verify the MAC;

3. Verify MAC and return failure if t′ ̸= MAC(k2, c);

4. Decrypt m from c using k1, i.e., m = D(k1, c).

5. Return m.

The fact that a cryptographic derivation function of secure keys is used in order to generate

symmetric encryption keys as well as the MAC, together with the discrete logarithm problem,

is enough to prove the safety against Chosen Plaintext Attack (CPA).

This crypto system is often called hybrid because it uses a symmetric-key cipher to encrypt

the data (e.g., AES), and an asymmetric cryptography technique to exchange the key used in

the symmetric cipher. Since an ephemeral symmetric key is generated for each message, it

guarantees security, but there is a cost associated: the size of the cryptogram is always larger

than that of the plaintext because it is necessary to send the cryptogram as well as the public

value Y (which is used in the decryption). The fact that the same plaintext can lead to multiple

cryptograms (depending on the encryption key), makes of this cipher a probabilistic cipher.

The ECDSA was standardized in 1998 in the United States by ANSI due to the advantages it has

over RSA or over other schemes such as Elgamal and DSA. The shorter bit length of ECC keys

33

results in shorter processing times and in shorter signatures.

2.5 Conclusion
This chapter discussed the research regarding the cryptographic applications available for the

different mobile OSs. Any of the three available platforms could have been chosen to develop

the application described herein since all of them lack such a complete application. However,

Windows Phone seemed to be the most appealing one, due the lack of security applications in

its app store and because of how recent it is, when compared with the other two platforms.

It is also clear that the security of current cryptographic algorithms may not last much longer

and that a new, stronger, standard must be implemented, ECC compromises a good candidate for

the job. The small size of its keys, together with the difficulty of solving the Discrete Algorithm

Problem using ECC makes it a fine choice in terms of performance and security.

34

Chapter 3

Software Engineering

3.1 Introduction
This chapter discusses the software engineering of the application developed along this master’s

program. It addresses the requirements analysis that was done prior to the development phase.

Unified Modeling Language (UML) diagrams are used to describe the uses cases, and activities.

Database diagrams can also be found in this chapter.

The structure of this chapter is as follows:

• Section 3.2 enumerates the requirements;

• Section 3.3 describes the most important identified use cases;

• Section 3.4 elaborates on how the database was designed;

• Section 3.5 discusses the activity, class and components diagrams that are part of the

software engineering process;

• Section 3.6 contains the main conclusions of this chapter.

3.2 Requirements Analysis
In this section, the identified requirements will be explained. Requirements can be categorized

in multiple ways and, in this dissertation, the approach will be to focus on the functional and

non-functional requirements, which will be analyzed in the following subsections.

3.2.1 Functional Requirements

Functional requirements identify necessary tasks, actions or activities that must be accom-

plished. The ECCrypto application should allow:

• Generation of password and cryptographic secrets with basis on sources of true randomness

available in mobile devices;

• Generation of elliptic curve key pairs (for encryption, for digital signature, etc.);

35

• Establishment of secret keys between two or more smartphones users using ECDH;

• Encryption of written messages, with the possibility to export the ciphertext via email,

SMS or other available sharing options;

• Decryption of written messages;

• Digital signature of files with the ECDSA;

• Importing, exporting and handling of public keys, as well as all the functions required to

support the trust infrastructure;

• Authentication via public-key cryptography;

• Encoding and decoding of messages;

• Secure storage of files in the device;

• Management of passwords.

3.2.2 Non-functional Requirements

Non-functional requirements specify criteria that can be used to judge the operation of a system,

but not specific behaviors. Given the fact that this application targets a mobile OS, which is

used in smartphones with the usual characteristics of having a small screen, on-board keyboard,

etc., it is fulcrum that it provides a pleasant user experience. System and app performance

is also key, so that the user takes the most advantage of the app and is not frustrated by long

response times. Some of the non-functional requirements that were identified are as follows:

• The application should be intuitive and easy to understand;

• The application layout should be simplified and the different functionalities should be

grouped accordingly;

• The application appearance should be clean and simple;

• The response times should be less than 1 second for normal functions, and 2.5 seconds for

cryptographic functions.

3.3 Use Cases
This section presents the use cases that were identified during the preliminary analysis of the

application to be implemented. Use cases are diagrams that represent the features provided by

36

the app to the actors. As for the identified actors that interact with the ECCrypto, only the User

was considered, since it is the only one that interacts with the application and takes advantage

of all features.

3.3.1 General Use Case

The most general use case shows an overview of the main features that can be found in ECCrypto

as depicted in figure 3.1. These include the management of passwords, user keys, contacts,

messages and files. Notice that all main use cases include logging into the application.

User

Manage Passwords

Manage Keys

Manage Contacts

Manage Messages

Login

<<include>>

<<include>>

<<include>>

<<include>>

Manage Files

<<include>>

Figure 3.1: General ECCrypto use case diagram.

3.3.2 Detailed Use Cases

The use case previously shown in figure 3.1 will now be explained in detail by analyzing the use

cases that are part of the overall use case.

Starting by the use case diagram shown in figure 3.2, one can observe the possible different

actions that a user has when interacting with the application pertaining to the password man-

agement system. As seen in the diagram, the user can add a new password, view or edit a

previously stored one, and can also delete a password. When adding or editing a password, the

user has the choice of either generating a password automatically using the password generator

provided by the application or enter a password manually.

37

User

Manage Passwords

Add Password

Edit Password

See Password

Delete Password

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Generate Password
Automatically

Add Password
Manually

<<extend>>

<<extend>>

Login

<<include>>

<<extend>>

<<extend>>

Figure 3.2: Use case diagram for the Manage Passwords subsystem.

In figure 3.3, the use case diagram shows the different actions that the user can perform when

interacting with the user key management system of the application. As seen in the diagram,

the user can generate a new key, edit and delete a user key that was previously stored.

User

Manage Keys

Generate Key

Edit Key

Delete Key

<<extend>>

<<extend>>

<<extend>>

Login

<<include>>

Figure 3.3: Use case diagram for the Manage Keys subsystem.

The actions that the user has when interacting with the contacts management system can be

seen in the use case depicted in figure 3.4. As seen in the diagram, the user can add a new

contact, import a key for the contact, edit or delete a previously stored contact.

38

User

Manage Contacts

Add Contact

Edit Contact

Delete Contact

<<extend>>

<<extend>>

<<extend>>

Import Key

<<extend>>

Login

<<include>>

Edit Details

Edit Keys

<<extend>>

<<extend>>

Figure 3.4: Use case diagram for the Manage Contacts subsystem.

In figure 3.5, the use case diagram shows the possibilities that the user has when interacting

with the application in regards to the messages management system. As seen in the diagram,

the user can encrypt and decrypt messages, as well as delete messages that were previously

stored.

User

Manage Messages

Encrypt Message

Decrypt Message

Delete Message

<<extend>>

<<extend>>

<<extend>>

Login

<<include>>

Figure 3.5: Use case diagram for the Manage Messages subsystem.

In figure 3.6, the use case diagram shows the actions that the user can perform in regards to

the files management system. As seen in the diagram, the user can encrypt and decrypt files.

39

User

Manage Files

Encrypt File

Decrypt File

<<extend>>

<<extend>>

Login

<<include>>

Figure 3.6: Use case diagram for the Manage Files subsystem.

3.4 Database Design
Given that it was necessary to store information for the application, it was decided that a local

database was the best option. This section includes the diagrams depicting how the database

was designed are explained.

3.4.1 Entity-Relationship

The Entity-Relationship model for the database is depicted in figure 3.7 and shows how the

different entities are related to each other. A Contact may be related with zero or more

ContactKey entities. On the other hand, a ContactKey entity may only be related to one Contact

entity. A ContactInfo entity can be associated with only one Contact, while a Contact can have

zero or more associations with the ContactInfo entity. One message can only be associated with

one ContactInfo, however, a ContactInfo can have zero or more associations with the Message

entity. The Password and UserKey entities are not related to any of the other entities.

40

Contact

Password

Message

UserKey

ContactKey

Has
1 .. 1

0 .. N

ContactInfo

Has

0 .. N

1 .. 1

Has
1 .. 1

0 .. N

Figure 3.7: Entity-Relationship diagram of the ECCrypto database.

3.4.2 Relational Model

The Relational Model can be seen in figure 3.8, which shows in detail the tables that were

created in the database, as well as the fields that every table contains.

The Password table holds the information of the stored passwords. The stored information

includes a username, a password, a name that can be used to describe the password, and the

date in which the password was added. A unique identifier for each password is also included.

The UserKey table holds the keys that belong to the user. It contains a name, which the user

can use to easily identify the key, a longer description if desired, the public and private key of

the user and lastly, the date in which the key was added. It includes the unique identifier for

each UserKey.

The Contact table contains the information of the contacts that were added by the user. It

stores the first and last name of the user in two separate fields and the date that the user was

added. It also includes the unique identifier for each contact.

The ContactKey table contains the keys that belong to the contacts that have been added. It

includes the user public key, a description that the user can add to more easily identify, the

trust level of the key, the number of times the key was validated by other contacts, the date in

which the key was added and the necessary Identifier (ID) to relate the data with the Contact

table.

As for the ContactInfo table, it holds the different contact information of the contacts, meaning

that, it includes the the phones or emails that the user can add to a contact. The field Name is

41

available so that the user can more easily identify the contact info, by giving them names (e.g.,

Work phone, Personal Email). The Info field contains the email address or the phone number.

The IsPhone field is a boolean that is true if the contact info is of the type phone or it is false if

it is of the type email. The date in which the information was added is also stored in the table.

The unique identifier for the contact info is included, as well as the ID that relates this table to

the Contact table.

Lastly, the messages that were exchanged can be found in the Message table, which includes

the ID of the contact info that was used in the exchange of the message, the subject of the

message, and the message content. It also includes the Sent field, which indicates whether the

message was sent or received and the date in which the message was sent or received. The

unique identifier for the message is included, as well as the ID that associates the message with

the ContactInfo table.

Contact

ContactID : intPK

FirstName : string

LastName : string

Message

MessageID : intPK

Content : string

Sent : bool

Date : DateTime

Password

PasswordID : intPK

Username : string

Password : string

Name : string

UserKey

UserKeyID : intPK

PublicKey : string

PrivateKey : string

ContactKey

ContactKeyID : intPK

ContactID : int

TrustLevel : double

PublicKey : string

Description : string

DateAdded : DateTime

DateAdded : DateTime

DateAdded : DateTime

DateAdded : DateTime

Subject : string

Description : string

ContactInfo

ContactInfoID : intPK

Name : string

IsPhone : bool

DateAdded : DateTime

Info : string

ContactInfoID : int

ContactID : int

Name : string

1 .. 1

0 .. N

1 .. 1

0 .. N 1 .. 1

0 .. N

Validations : int

Figure 3.8: Relational Model diagram of the ECCrypto database.

3.5 Activity, Components and Class Diagrams
This section introduces the activity, components and class diagrams. It is divided into three

main subsections, each corresponding to the appropriate diagram.

42

3.5.1 Activity Diagrams

Activity diagrams are used to show the overall flow of control. They are graphical representa-

tions of workflows of actions and activities in a stepwise approach which have support for choice,

iteration and concurrency. In this subsection, some activity diagrams that are considered to be

more representative or complex are going to be presented and briefly discussed.

The Encrypt File activity diagram is illustrated in figure B.2 in Appendix B. This diagram shows

the steps necessary for the user to encrypt a file using the ECCrypto application.

The Add Password activity diagram is represented in figure B.1 in Appendix B. The diagram

shows the steps necessary for the user to add a new password to the ECCrypto application.

The Share Key activity diagram is illustrated in figure B.3. The diagram shows the steps that a

User A must take in order to share one of his personal keys with another User B using the Quick

Response (QR) code generator of the application as well as the smartphone camera.

The Import Key activity diagram is illustrated in figure B.4. The diagram shows the opposite of

the share key activity. It shows the steps necessary so that the User B is able to add the key of

the User A to the contact keys using the QR code generator of the application, as well as the

smartphone camera.

3.5.2 Components Diagram

The components diagram can be observed in figure 3.9. It shows how all the different com-

ponents are wired together in order for ECCrypto to work. As seen in the image, it shows the

three different main elements which are: the phone application project (ECCrypto.exe), the

shared library project for the phone application logic (ECCryptoLib.dll)„ which is where all

the cryptographic logic of the application can be found, the ECCryptoLibTest that was used to

unit test the library. Lastly, it also shows the external dependencies, such as libraries that were

used.

43

Figure 3.9: Diagram that shows all the different components of the ECCrypto application.

3.5.3 Class Diagram

Class diagrams illustrate the structure and relationships between classes used in the implemen-

tation of a system. Given the complexity and the size of the diagrams, only the diagram for

the library project ECCryptoLib will be shown and explained. The diagram can be found in

figure 3.10, and the several classes can be enumerated as follows.

44

1. BigIntegerExtensions includes some methods that were necessary to perform some curves

calculations using the BigInteger class but are not provided by the .NET framework;

2. HashFunctions contains all the SHA and HMAC-SHA algorithms;

3. Base64 has the Base64 conversion methods;

4. EncryptionHelper contains some helper methods to facilitate encryption and decryption;

5. PasswordGenerator is where the methods for generating and validating a password are

found;

6. PasswordGeneratorSettingis where the different settings to generate a password are de-

fined;

7. PasswordStrength stores some enums used in the password generation;

8. ECurve contains the structure the domain parameters of an elliptic curve;

9. ECurves contains the domain parameters of the implemented elliptic curves;

10. Curves stores the enums created to easily identify the elliptic curves;

11. ECPoint is where the definition of a point in an elliptic curve can be found, as well as the

operations necessary;

12. ECAsymmetricKeyPair contains the appropriate methods to generate keypairs;

ECPoint is where the definition of a point in an elliptic curve can be found, as well as the operations

necessary;

13. ECDH contains the methods required to perform the ECDH;

14. ECIES implements the methods required to perform encryption and decryption using ECIES;

15. ECDSA contains the methods required to digitally sign and verify signatures using ECDSA;

16. AES is the class where the encryption and decryption methods using AES can be found.

45

Figure 3.10: Class Diagram of the ECCryptoLib library.

3.6 Conclusion
This chapter focused on analyzing the requirements that were identified in the initial phase of

this master’s program and prior to the development of the application. It included the defini-

46

tion of features such as generation of user keys, encryption and decryption of messages, and

management of passwords amongst others. Different diagrams that illustrate how the software

engineering process took place and what to expect from the final application were presented.

Use cases, activity diagrams, and components diagrams were included, as well as the diagrams

that show how the database was designed. This phase provided the building blocks for the

prototyping of the application, whose report is included in the following chapter.

47

48

Chapter 4

Security and Cryptographic Services

4.1 Introduction
In this chapter, the security and cryptographic services implemented in the ECCrypto application

will be discussed. The definition of the Trust Management system will be also analyzed and,

finally, there will be a discussion regarding the security of the application. The chapter is

structured in the following manner:

• Section 4.2 discusses the cryptographic services identified and implemented in the ECCrypto;

• Section 4.3 explains the cryptographic services implemented in the ECCryptoLib;

• Section 4.4 describes the trust management system created in the scope of this work;

• Section 4.5 is a discussion on several security aspects regarding ECCrypto;

• Section 4.6 concludes this chapter with the main conclusions.

4.2 Cryptographic Services in ECCrypto
The cryptographic services that were identified to be implemented in the ECCrypto application

will be discussed in this section.

4.2.1 Password and Cryptographic Secrets Generation with Basis on Sources of

True Randomness Available in Mobile Devices

Mobile devices nowadays contain several sensors that can provide a good source of true random-

ness. These include sensors like accelerometers, gyroscopes, compasses, accelerometers, light

sensors, etc. Using the information that these sensors provide is a great source of true random-

ness since it would be nearly impossible to replicate all the conditions of the phone at the same

time. In order to improve the randomness generator, the different sensors that are available on

the phone will be used when true sources of randomness are required in the application, such

as password generation and key generation.

49

4.2.2 Generation of elliptic curve key pairs

A main feature of ECCrypto is the generation of the elliptic curve asymmetric key pairs. They

are at the core of the application since they are necessary for the ECC functionalities, such as

ECDH, ECDSA, encryption and decryption. The application should allow a user to generate new

keys and manage them.

4.2.3 Establishment of secret keys between two or more smartphones users

The application should allow for the exchange of secrets in a secure way. In order to achieve

this ECDH should be implemented and used to guarantee that the key exchanges are performed

safely.

4.2.4 Encryption and Decryption of Written Messages

One of the main objectives of the application is to allow the user to communicate in a secure

way. In order to do so, all the messages that are exchanged need to be encrypted by the sender

and decrypted by the recipient of the message. The encrypted messages can then be sent as

emails, SMS, or sent through some other channel at the choice of the user by being able to copy

the encrypted text and pasting it wherever desired.

4.2.5 Digital Signature of Files with the Elliptic Curve Digital Signature Algo-

rithm

Digital signatures provide assurance that the message or file was sent by a known sender, and

the sender cannot deny having sent the message or file. Besides guaranteeing the authenticity

of the message or file, it also guarantees the integrity of the message or file, i.e., that it was

not altered in any way in transit. Through the use of ECDSA, ECCrypto should guarantee the

authenticity of files and messages.

4.2.6 Importing, Exporting and Handling of Public Keys

Given that the application uses an asymmetric public key mechanism, it is necessary to manage

the different keys. It includes the management of the keys of the user, as well as of the keys

that belong to the contacts of the user. The application should allow the user to generate key

pairs using elliptic curve cryptography also. The user should have the ability to edit and delete

user keys that were previously stored. It is also required that the contacts that are added by

the user can be managed, edited and deleted if necessary. An import mechanism is necessary

to easily exchange keys between contacts.

4.2.7 Authentication via Public-key Cryptography

It is important to guarantee that the key exchange is performed properly and in a way that the

user can be sure that a key belongs to a certain contact. This led to the definition of a trust

management system that will help the user verify if a key truly belongs to a contact. This will

50

be done resorting to exchanging a key in person using a QR code or through the trust mechanism

in which a key can be verified by contacts that are common to both users.

4.2.8 Encoding and Decoding of Messages and Secure Storage of Files on the

Device

Encoding of a message is the process of putting a sequence of characters (letters, numbers,

punctuation and certain symbols) into a specialized format for efficient transmission or storage.

Decoding is the opposite process, the conversion of an encoded format back into the original

sequence of characters. The messages that are sent and received by ECCrypto should always

be encoded in Base64 format. ECCrypto should permit the encryption and decryption of files

on the device that in part of public folders.

4.2.9 Management of Passwords

One of the main features of ECCrypto is the ability to store the passwords of a user in a way that

is both safe and practical. The reality is that, with all the accounts that a user has nowadays,

it is extremely hard to remember all the passwords, and a common mistake is to have the same

password for multiple accounts, which leads to security concerns if an account is breached,

because then all the others will also be at risk.

4.3 Cryptographic Services in ECCryptoLib
In order to have the necessary cryptographic functions for the app, it made sense to create

a library that would contain all the cryptographic logic that was required. In order to do so,

a portable library was created that can easily be imported by the ECCrypto application or by

other applications that require such cryptographic services. The library includes functions for

the generation of passwords, calculating hash functions, generation of asymmetric key pairs

using ECC, ECDH and ECDSA, among others. The different cryptographic mechanisms that were

implemented will now be discussed.

4.3.1 Password Generation

As part of the Password Management system, when a new password is added or an existing one

is edited, the user has the choice of either entering a password manually or let the application

generate one. The ECCryptoLib contains a class for password generation and validation. The

decision to add this functionality to the library, instead of to the ECCrypto application, was

because this a functionality that might be useful in other scenarios and this way it is available

to any other projects by simply importing the library. It allows for the generation of a random

password with a different set of customizable properties. The number of characters in the

password, whether it should contain numbers, non-alphanumeric characters, upper and lower

case letters are all settings that can be changed in the application settings.

51

4.3.2 Key Pair Generation

The library permits the generation of asymmetric key pairs using elliptic curves. The keys

that are generated should be in accordance with the elliptic curve that is chosen (SecP192r1,

SecP224r1, SecP256r1, SecP384r1 ,SecP521r1). The generation of keys includes true sources of

randomness, such as the sensors in the smartphone.

4.3.3 Elliptic Curve Diffie Hellman

ECDH is required to exchange public keys in a secure way in the ECCrypto application. The

necessary ECDH functions are included in the library so that it can be imported by application

and used.

4.3.4 Encryption and Decryption

Functions that will perform the encryption and decryption of messages and files are included in

the ECCryptoLib, as it will be used throughout the whole application and for the most features

of the application.

4.3.5 Elliptic Curve Digital Signature Algorithm and Hash Algorithms

The ECDSA offers a variant of the DSA which uses elliptic curve cryptography. ECCrypto should

digitally sign files and messages in order to guarantee authenticity, integrity and non-repudiation.

To accomplish this, the ECDSA needs to be included in the suite of algorithms that are part of

the ECCryptoLib to then be used by the application. The necessary hashing and message au-

thentication algorithms should be included in the ECCryptoLib. The algorithms include: SHA-1,

HMAC and others that may be of interest to include in the library.

4.4 Trust Management
A trust management system was created to guarantee the trust in the keys of the contacts. The

level of trust in a key is a percentage value and it varies depending on the number of contacts

that confirm the trust in said key.

If a key is exchanged in person, via QR code exchange, it is considered that the trust in the key

is 100%. However, if a key is added manually by the user, it will be considered untrusted until

other contacts verify the key or if the user verifies the key in person.

The number of confirmations from other contacts required for a key to be fully trusted should

be able to be altered in the settings of the application. By default, the number of required

confirmations by other users is three.

52

4.5 Discussion on Security
Different topics regarding the security of the ECCrypto application as well as of the Windows

Phone 8.1 devices will now be discussed.

4.5.1 Windows Phone 8.1 Security Overview

The Windows Phone OS takes advantage of the latest standards-based security hardware compo-

nents to help protect devices and the information stored within them [Mic]. The main security

technologies, standards and mechanisms supported by the Windows Phone OS are as follows:

Unified Extensible Firmware Interface (UEFI) is a standards-based replacement for the typ-

ical Basic Input/Output System (BIOS) that is found on most devices. It adds security

features and advanced capabilities while providing the same functionalities as BIOS. UEFI

is required for Trusted Boot;

Trusted Platform Module (TPM) is a tamper-resistant security processor that is designed to

help secure data, ensure integrity and enable authentication;

Address Space Layout Randomization (ASLR) protects the system and applications by moving

executable images into random locations within system memory. It makes it difficult for

an attacker to exploit vulnerabilities that may be discovered in the platform or in appli-

cations;

Data Execution Prevention (DEP) is a defensive technology that dramatically narrows the at-

tack surface area for memory related exploits. It prevents the execution of executable

code from memory sections that were allocated for read only data;

Device encryption based on BitLocker Drive Encryption technology for data stored on the de-

vice is supported by all Windows Phone devices;

AppContainer sandbox is a sandoboxing mechanism that offers fine-grained security permis-

sions and inherently blocks unauthorized access to the system, applications, and data.

Applications only have access to capabilities that are declared in the application manifest.

Capabilities that applications use are automatically published to the application details in

the Windows Store. Applications are isolated from each other and can only communicate

using predefined communications channels and data types;

Encryption of applications on removable storage was added as an improvement in Windows

Phone 8.1. Applications can be installed on a Secure Digital (SD) card and stored on a

hidden partition that is specifically designated for this purpose. The partition is encrypted

just like the internal storage;

53

Microsoft Security Development Lifecycle (SDL) is a software development process that is used

by Microsoft to ensure that development teams create software that is secure by design

and can eliminate, or at least mitigate potential security risks. According to the Cisco

2014 Annual Security Report [Cis], Windows Phone environment contains far less malware

than peers such as Apple iOS and Android.

Taking this for granted, it is possible to say that the application is secure. For instance, an

Android developer can in a very simple manner create an application that appears to be working

normally and in the background be sending spam messages either by email or SMS, if such is

allowed in the application manifest. In Windows Phone, such a situation could never happen

because an application cannot send an SMS or email without the knowledge of the user. Sending

an email or a SMS in the Windows Phone OS, is done by calling the Compose Task in which

the message is composed. The fields, such as the phone number, message content can be

prepopulated by the application but the user must always press the send button for the message

to be sent. Although this was initially viewed as a constraint in the development of ECCrypto,

the security reasons behind it are solid and end up enhancing the security of the application

itself. Another issue that arose throughout the development was the inability to copy text to

the system clipboard. Although it can be somewhat of a nuisance to force the user to select and

copy the text if it is to be sent through some channel other than email or SMS, it guarantees

that applications cannot intercept the text that is being copied and pasted by the user. This is

particularly important considering that the user will likely copy the passwords that are stored

in the application thus increasing the security of the application.

The password that is set by the user when the application starts is stored encrypted in isolated

storage using the PasswordVault class, which is part of the Windows.Security namespace. The

contents of the vault are specific to the application. Apps and services do not have access

to credentials associated with other applications or services. The database is stored in the

isolated storage of the application, which can only be accessed by the application and it is

stored encrypted.

Using ECDH to perform key exchanges ensures that two parties, each having an elliptic curve

public–private key pair, can establish a shared secret over an insecure channel. This means that

by using ECDH to exchange the keys, one can ensure that all the communications that follow

are done in a secure way. On the other hand, ECDSA ensures that all the messages that are

exchanged are signed, guaranteeing authenticity.

QR codes were used to facilitate the exchange of keys between users, and to ensure total trust

in the key that was exchanged by the users. When a key is added manually, the trust level

on the key will then depend on the number of users that verify that the key belongs to the

contact. The number of users that are required to ensure full trust in the key can be altered in

54

the application settings.

The first time the application is ran, the user is advised to set a numeric password to lock

the application. The user is prompted to input the password every time the application is

started, in order to guarantee that no one can access the information contained in the ECCrypto

application.

4.6 Conclusion
In this chapter, the cryptographic services to be provided by both the ECCrypto and ECCryptoLib

were discussed. The ECCrypto cryptographic services include the generation of asymmetric

key pairs, encryption and decryption of messages, storage and management of passwords, file

encryption and decryption, among others. The ECCryptoLib is to contain all the cryptographic

functions that are required in the application, maximizing code portability and constituting one

of the main contributions of this work. Having explained the main services offered by the library,

the trust management scheme and discussed some security details, the discussion can now flow

into the presentation of the prototype and some of the tests performed.

55

56

Chapter 5

Implementation and Testing

5.1 Introduction
In Visual studio, related projects can be grouped in a single solution which means that in this

particular case, the following projects are part of the ECCrypto Solution:

• ECCryptoLib;

• ECCryptoLibTest;

• ECCrypto.

In this chapter, the implementation of ECCrypto application and of the ECCryptoLib, which

contains the cryptographic functions necessary for the functioning of the application, will be

discussed. It will also discuss how the application and library were tested. The structure of this

chapter is as follows:

• Section 5.2 describes the implementation of theECCryptoLib;

• Section 5.3 describes the implementation of the ECCrypto application;

• Section 5.4 discusses the testing of the ECCrypto application and of the ECCryptoLib li-

brary;

• Section 5.5 explains the submission process of the application to the Windows Store and

of the library to GitHub;

• Section 5.6 completes this chapter with the main conclusions.

In the following subsections the different projects and their functionalities will be explained.

5.2 ECCryptoLib Implementation
As previously mentioned, a portable library was created to be used in both Windows Phone 8.1

and Windows desktop applications. The library contains the cryptographic functions that are

used by the application.

57

The library contains the implementation of the ECC algorithms. The implementations did not

resort to using external libraries for the elliptic curve functions because, at the time that the

library was implemented, there was no library available targeting both platforms for which the

library was created. This led to the implementation of all the functions that were required

to use ECDH and ECDSA, including the methods for the different operations on elliptic curves.

ECCryptoLib also includes the implementation of hash algorithms, a password generator, a QR

code generator, the AES functions required to provide the encryption/decryption features of the

application, among other helper functions such as base64 conversion methods and extensions

for the BigInteger class.

5.2.1 Hash Functions

A class was created that implements several hash functions taking advantage of methods avail-

able in the Windows.Security.Cryptography namespace. Some of which were not used in the

ECCrypto application, but were added as they may be of use in the future for someone using

the library. The following hash functions were added to the library: SHA-1, SHA-256, SHA-384

SHA-512 and Message-Digest 5 (MD5)

HMAC functions were also necessary in the ECCrypto application so they were also added. HMAC

is a specific construction for calculating a MAC involving a cryptographic hash function in com-

bination with a secret key. It is used to verify the data integrity and the authentication of a

message. In order to calculate an HMAC, a cryptographic hash function is used, such as SHA-1,

SHA-256 or MD5. The cryptographic strength of the underlying hash function, the size of the

hash output as well as the size and quality of the used key all affect the cryptographic strength

of the HMAC. The output size of the HMAC is the same of the one of the hash function that was

used.

Even though not all of the HMAC functions were used after implementation, the following HMAC

functions were included in this class for the same purpose that the other hash functions were

added: HMAC-SHA-1; HMAC-SHA-256; HMAC-SHA-384; HMAC-SHA-512; HMAC-MD5.

5.2.2 AES

Message and file encryption and decryption in ECCrypto use the previously mentioned AES algo-

rithm with a key size of 256 bits. The Windows.Security.Cryptography namespace, contains

the required methods to encrypt and decrypt both messages and files using AES, so the required

functions for encryption and decryption were added to the library in the AES class.

5.2.3 Password Generator

As mentioned in the previous chapter, the library contains a password generator which allows

the generation of passwords according to the specifications of the user. A class was added to

the library in which the methods required to generate passwords were added. It also contains

58

methods that are used to calculate how strong a password is.

As part of the Password Management system, when a new password is added or an existing one

is edited, the user has the choice of either entering a password manually or let the application

generate one. In order to generate a random password, a class was created to provide the

feature and was added to ECCryptoLib.

The user can alter the password generator settings in ECCrypto so that the passwords generated

can be according to the standards of the user. The user has the possibility of personalizing the

following settings:

• The length of the generated password, by specifying the number of characters that the

generated password should have;

• If it should contain lower case letters;

• If it should contain upper case letters;

• If it should contain numbers;

• If it should contain special characters and how many.

By default, the generated passwords contain upper and lower case letters, numbers, special

characters, and the password length is of ten characters.

In order to ascertain how strong a password is and inform the user in an intuitive way, the

following metric was used, which can be observed in table 5.1. The application uses a color

scheme to explain how strong a password is by taking the following factors in consideration:

1. Password length is ten characters long or longer;

2. Password contains lower case letters;

3. Password contains upper case letters;

4. Password contains numbers;

5. Password contains special characters.

59

Color Name Description

Red Very Weak
Password length is less than ten characters or there is no combination
of types of characters (e.g., only letters or only numbers)

Orange Weak
There is the combination of two different factors (e.g., upper and lower
case letters are included)

Yellow Good
There is the combination of three different factors (e.g., upper and
lower case letters and numbers)

LimeGreen Strong
There is the combination of four different factors (e.g., upper and
lower case letters, numbers, and special characters)

Green Very Strong
There is the combination of all the different factors (e.g., password
includes upper and lower case letters, numbers, special characters and
its length is at least ten characters long)

Table 5.1: Password generator strength metric table.

5.2.4 ECC methods

The implemented curves can be found in the Curves class. The Curves class holds the domain

parameters for the NIST curves and can easily be extended to support other curves in the future.

The curves in table 5.2 are implemented in the library, although not all of them were used

throughout the application. In order to try to ensure the best security possible using these

algorithms, it was decided to only use the P-521r1 curve in the application. It was also de-

cided to use only randomly verifiable curves. The EC domain parameters that were used in the

implementation can be found in Appendix A.

Parameters Strength Size RSA/DSA

P-192r1 96 192 1536
P-224r1 112 224 2048
P-256r1 128 256 3072
P-384r1 192 384 7680
P-521r1 256 521 15360

Table 5.2: Representation of the implemented curves part of the ECCryptoLib.

While the Curves class holds the domain parameters for the curves, it is the ECurve class that

handles all the logic of the curves, including the constructors, as well as the functions required

to decode the points that are part of the domain parameters.

The ECPoint class contains all the properties, operations and methods that define a point in an

elliptic curve. An elliptic curve point is defined by two BigIntegers X and Y which define the

coordinates of the point in the curve. It also includes an instance of the curve for which the

point is defined.

Using the formulae presented in 2.4.4.3 for the group operations on elliptic curves, methods to

add two ECPoints, double an ECPoint, and multiply an ECPoint by a scalar were implemented

and added to the class.

60

ECAsymmetricKeyPair is a class that represents an asymmetric key pair. An Asymmetric key pair

in ECC is defined by a Ecurve, on which the private and public key are generated, a private key

(a scalar) which is of the type BigInteger, and a public key which is a point in the curve.

The key pair is generated as follows:

1. Choose an elliptic curve E with modulus p;

(a) Choose a random number dA in 1, ..., n− 1 and calculate X = (x1.y1) = dA ∗G;

(b) Return sk = da and pk = (X, (p, a, b,G, n, h)).

2. The encryption algorithm E(pk, ,m) works in the following way:

(a) Choose a random number dB ∈ 1, ..., n− 1 and calculate Y = (x2, y2) = dB ∗G;

(b) Calculate K = (x3, y3) = dB ∗ X. The symmetric secret S between both entities is

now x3;

(c) Use the KDF (see chapter 2) to derive two keys k1 and k2, one to encrypt, and the

other to calculate the MAC;

(d) Encrypt the message with k1, i.e., c← E(k1,m);

(e) Calculate the MAC of the cryptogram with k2, i.e., t←MAC(k2, c);

(f) Concatenate and return Y , the cryptogram and the MAC, i.e., (Y, c, t).

3. The decryption algorithm D(sk, (Y, c, t)) is as follows:

(a) Derive the common point K = (x3, y3) = dB ∗ Y . The secret S between both parties

is then x3;

(b) Use a KDF (see chapter 2) function to derive two keys k1 and k2, one to decrypt, and

the other one to verify the MAC;

(c) Verify MAC and fail if t′ ̸= MAC(k2, c);

(d) Otherwise decrypt m from c using k1, i.e., m = D(k1, c);

(e) Return m.

The overall process described before results in the following:

61

1. The private key is a randomly generated number with the size of the curve field size.

2. The public key is calculated by multiplying the private key by the ECPoint G of the curve

being used.

All the required logic to perform an ECDH key exchange is included in the ECDH class of the

ECCryptoLib, which contain the source code for all the associated methods 2.4.5.

The ECDSA class contains the methods required to sign and verify signatures using the ECDSA.

The ECIES class contains the methods required to encrypt and decrypt both messages and files

using the ECIES and they were implemented as it was described in 2.4.6.

The library also includes extension methods that were necessary, such as a BigInteger extension

method that calculates the ModInverse of two numbers using the extended euclidean algorithm,

and which is not part of the .NET Framework BigInteger class. Included were Base64 encoding

and decoding methods, among others.

5.3 ECCrypto Implementation
The ECCrypto project contains the WIndows Phone 8.1 application. The details of the project

implementation will now be presented, organized by the different features that are provided

with the application.

5.3.1 Using Sensors for Creating Randomness

Nowadays, smartphones typically include several sensors that are available to developers and

allows them to create applications that take full advantage of their existence. These include

applications that use the Global Positioning System (GPS) system of the phone for tracking the

user location when performing different activities such as driving, running, walking and can

even be used to show places of interest around the user. Gyroscope and accelerometers are

very commonly used in games. When available, the application will try to use the following

sensors for the purpose of generating passwords:

Gyrometer Sensor is a sensor that returns the angular velocity values with respect to the x, y,

and z axes. Not all the phones have a gyrometer, so it is necessary to verify its existence.

If the phone does have the sensor, then the values obtained can be used to increase the

entropy of the password. In the ECCrypto app, if the gyrometer sensor is available, the

values can be fetched when necessary.

Compass Sensor or magnetometer, can be used to determine the angle by which the device is

rotated relative to the magnetic north pole. An application can also use raw magnetometer

readings to detect magnetic forces around the device. If the sensor is available in the

62

smartphone running ECCrypto, then its data will be used in the randomizing process.

Accelerometer Sensor measures the forces applied to the device at a moment in time. The

direction that the user is moving the phone can be determined using these forces. The

acceleration value is expressed as a 3-dimensional vector representing the acceleration

components in the X, Y, and Z axes in gravitational units. The orientation of the accel-

eration is relative to the device such that -1g is applied in the Z-axis when the device

is face up on a leveled table and -1g is applied to the Y-axis when the device is placed

perpendicular to the table top. The Accelerometer sensor detects the force of gravity

along with any forces resulting from the movement of the phone. The combined motion

API, accessed using the Motion class, uses multiple device sensors to separate the gravity

vector from the device acceleration and allows one to easily determine the current atti-

tude (yaw, pitch, and roll) of the device. Given that not all smartphones are required to

have an accelerometer sensor, it is required to check for its presence on the phone. If

the sensor does exist, then the acceleration components in the X, Y and Z axe are used to

increase the entropy in the system.

Inclinometer Sensor is a sensor that returns pitch, roll, and yaw values that correspond to

rotation angles around x, y and z axes, respectively. If the sensor is available in the

smartphone using the ECCrypto application, the values will be also be used.

Light Sensor Smartphones often have ambient-light sensors that are typically used to adapt the

screen brightness according to the ambient light, in order to improve the screen viewing

experience. This sensor is often available to developers and the values are returned as

LUX values. ECCrypto will also use values of this sensor, if available.

Orientation Sensor is a sensor that it is mostly used to adjust the perspective of a user in a

game. It returns a rotation matrix and a Quaternion. Quaternions add a fourth element to

the [x, y, z] values that define a vector, resulting in arbitrary 4-D vectors. If the orientation

sensor is available in the smartphone, then its values can and will be used in the ECCrypto

application.

5.3.2 Unlock ECCrypto App

On the first time that ECCrypto is started, the user is prompted to choose a numeric password

to protect the access to the application. It is an optional setting, but it is advisable that a

password is set in order to guarantee that all the sensitive information contained in the app

remains secure. Once the password has been set, every time the application is started, the user

needs to input the password using the keyboard that is provided.

The unlock keyboard is not the standard keyboard, therefore it is not related to the system

63

keyboard nor is it affected by its events. It was created in order to ensure a more secure

experience. The keys that are pressed on the keyboard are not highlighted in opposite to most

keyboards. This decision may affect the feedback to the user regarding the key that was pressed,

but it is a safer approach because this way, someone from afar will have a harder time trying

to figure out the key that was pressed. The keyboard is also randomly generated every time

a key is pressed meaning that, once again, if someone is close enough to see the positions of

the keys but not their numbers, the person will not be able to infer which numbers were being

pressed. The application does not give any kind of feedback to the user regarding the password

being incorrect. This means that, if the inputed password is correct, then the application will go

straight to the main page, but if it is not, the user will not see any kind of message. Applications

in Windows Phone often display the last entered character of the password as it is being typed

but then hide it after a short amount of time. This feature was not added so that other people

cannot get a glimpse of the password.

It is to be noted that if a password is set, the password cannot be recovered, so the user will

effectively lose access to the application since it is necessary to enter the application. The

password can be enabled, disabled and altered in the settings page of ECCrypto.

5.3.3 Trust Management System

The trust management system is used to ensure that contacts are who they say to be. A contact

key may not be added via QR code exchange, but by simply pasting the key on the appropriate

public key field of the application. When this happens, there is no guarantee that the exchanged

key truly belongs to the contact because the channel through which the key was exchanged may

not be secure. In order to verify a key that was not exchanged via QR code, the user must

ask other contacts that also have the key to verify if it is a trusted key. The number of people

that must confirm a key before it is considered fully trusted can be changed in the settings of

the application. While the trust management system does not directly affect the overall use of

the application, it does give more security to the users in knowing that the exchanged keys are

secure. In an optimal scenario, a user would only be able to exchange messages with contacts

whose keys are fully trusted. However, that limitation would likely lead most users not to use

the application.

5.3.4 Application Overview

The Home page is the main page of the application and it is where the user navigates to when

the application is unlocked. It is from the Home page that the user can access all the features

of the application.

Figure 5.1 shows the list of user keys, in the home page of the application, that were generated

and added to ECCrypto. As for figure 5.2, it is the screen in which the user can add a new user

64

Figure 5.1: Screenshot of the home page
showing the list of the user keys.

Figure 5.2: Screenshot of the screen where
the user can add new keys.

key. This is also the screen where the new keys are generated.

Figure 5.3 shows the home screen which displays a list of the contacts that the user has added.

In figure 5.4 one may see detailed view in which a user can add or edit a contact, including

adding phone numbers, emails or public keys for the contact.

All the messages that were encrypted/decrypted by the application can be seen in figure 5.5.

Figure 5.6 shows the menu that can be seen from the bottom, which is shown in all the tabs of

the home page and gives access to the application settings and the about page.

Figure 5.7 shows the message detail page when a user selects a message from the home page.

From this page, the user can choose to reply to the message, delete the message or go back to

the home page. The page used to send a new message can be seen in figure 5.8.

In figure 5.9 it is possible to see the home page where a user can see a list of all the added

passwords and can add a new one. Figure 5.10 shows the page where a user can edit or delete

a password. In both pages, the user has access to the password generator settings.

Figure 5.11 shows the home page tab where the user can choose to encrypt or decrypt a file.

As for figure 5.12, it displays the settings screen, where the user can change different settings

in the ECCrypto application, such as setting the password to lock the application, or in the

65

Figure 5.3: Screenshot of the home page
showing the list of the contacts of the user.

Figure 5.4: Screenshot of the page where
a contact can be edited.

Figure 5.5: Screenshot of the home page
showing the list of the messages that have
been encrypted and decrypted by the user.

Figure 5.6: Screenshot showing the application
bar that gives access to the settings of the

application.

66

Figure 5.7: Screenshot of the message page
after the user selects a message from the list.

Figure 5.8: Screenshot of the page in which
the user can send a new message.

Figure 5.9: Screenshot of the home page
showing the list of the passwords of the user.

Figure 5.10: Screenshot of the detailed
view of a password.

67

Figure 5.11: Screenshot of the home page
where the user can encrypt/decrypt files.

Figure 5.12: Screenshot of ECCrypto settings
for the password generator.

currently displayed tab, the password generator settings.

Figures 5.13 and 5.14 show the interface where the user can input a password and unlock the

application to then move to the main page of the application. The random keyboard functional-

ity, was previously described in section 5.3.2. The user can add a key for the contact by either

copying and pasting the key (which will automatically be considered an untrusted key) or im-

port the key using the smartphone camera and QR codes. Figures 5.15, 5.16 show the different

screens used during the process of the key exchange via QR code.

The process of a key exchange requires both users to be present in the same place and use their

phones to exchange public keys. One user needs to select the option in the application to share

a user key. The other user needs to add the new key to the keys of the contact by selecting the

import key option. The required steps to share a key with a contact are as follows:

1. User A selects the option Share Key and a QR code is generated and displayed on the

screen;

2. User B selects the option Import Key and the camera on the phone is started. User B scans

the QR code:

3. User B generates a random string, a QR code is generated and shown to User A;

68

Figure 5.13: Screenshot of the Unlock page with
randomized keyboard.

Figure 5.14: Screenshot of the Unlock page with
alternate randomized keyboard.

4. User A scans the QR code, signs it with the exchanged key and shows a new QR code with

the signature;

5. User B scans the QR code containing the signature and verifies it. If the signature is valid,

then the key is added. Otherwise it informs the user that an error has occurred.

69

Figure 5.15: Screenshot of the page in
which a QR code is scanned.

Figure 5.16: Screenshot of the page in which a QR
code is displayed.

5.4 Testing of the Prototype
In this section, the testing of the ECCrypto application and of the ECCryptoLib will be discussed.

5.4.1 ECCrypto

During the development of ECCrypto, it was necessary to test the application as the different

features were added. Visual studio includes various emulators that can run the application

so that it can be tested. However, testing only in an emulator is rarely enough to fully test

an application. Thus, the application was initially tested using the available emulators and

afterwards was tested in physical devices.

Emulator

The Windows Phone Emulator is a desktop application that emulates a Windows Phone device.

It provides a virtualized environment in which a developer can test and debug Windows Phone

apps without having a physical device.

During the initial phase of the implementation, when most of the development was design re-

lated, the Visual Studio emulators were used to test and debug the application. There are sev-

eral emulators available that allow to test the application for different resolution and screen

factors. Throughout the development of the application the following emulators were used:

• Windows Phone Emulator 8.1 WVGA 4 inch;

70

• Windows Phone Emulator 8.1 WVGA 4 inch 512MB;

• Windows Phone Emulator 8.1 WXGA 4.5 inch;

• Windows Phone Emulator 8.1 720p 4.7 inch;

• Windows Phone Emulator 8.1 1080p 5.5 inch;

• Windows Phone Emulator 8.1 1080p 6 inch.

Windows Phone

Even though much of the development can be done using the Windows Phone Emulators, it is

always recommended to test the application in physical devices in order to ensure that every

aspect of the application works well in a real environment where there are other factors that

can impact the application. Even though emulators include the possibility to test some sensors,

it is never as reliable or simple as testing the application in a physical device. Not only that,

but the key exchange feature needs to be tested in two physical devices, because it requires

the use of the camera of the phone in order to scan a QR code that is shown on the screen of

the other phone.

ECCrypto was tested using the three different smartphones: Nokia Lumia 720, Nokia Lumia 930

and Samsung Ativ S i8750. The main specifications of the phones can be found in table 5.3

Phone Model Processor Memory Screen size Year
Nokia Lumia 720 Dual-core 1 GHz 512 4.3” (480 x 800 pixels) 2013

Samsung Ativ S I8750 Dual-core 1.5 GHz Krait 1024 4.8” (720 x 1280 pixels) 2012
Nokia Lumia 930 Quad-core 2.2 GHz Krait 400 2048 5” (1080 x 1920 pixels) 2014

Table 5.3: Specifications for the phones used during the testing of the application.

5.4.2 ECCryptoLib

During the implementation of the ECCryptoLib, it was often necessary to test the implemented

cryptographic methods, regardless of the fact that the Windows Phone application was not yet

finished. This requirement led to the creation of a unit testing project that allows testing the

library without having to have implemented the logic in the application that would use the

methods being tested.

A project named ECCryptoLibTest was added to the solution and tests for the implemented

cryptographic methods were added. The password generation and verification methods were

tested to ensure that the different generator settings produced the correct results. ECC key

generation tests were also added in which, for instance, 100 keys were generated and verified

if they were correctly generated. ECDH and ECDSA methods were also tested, in order to guar-

71

antee that the protocols were working correctly. Table 5.4 lists all the unit tests performed to

the library and table 5.5 describes the tests.

Test ID Test Name Result

1 AES file encryption and decription Passed
2 Base64 encoding and decoding Passed
3 SHA-1 calculation Passed
4 SHA-256 calculation Passed
5 SHA-384 calculation Passed
6 SHA-512 calculation Passed
7 MD5 calculation Passed
8 HMAC-SHA-1 calculation Passed
9 HMAC-SHA-256 calculation Passed
10 HMAC-SHA-384 calculation Passed
11 HMAC-SHA-512 calculation Passed
12 HMAC-MD5 calculation Passed
13 Multiplication of EC Point by a scalar operation test Passed
14 EC key pair generation for NIST P192r1 curve Passed
15 EC key pair generation for NIST P224r1 curve Passed
16 EC key pair generation for NIST P256r1 curve Passed
17 EC key pair generation for NIST P384r1 curve Passed
18 EC key pair generation for NIST P521r1 curve Passed
19 ECDH using keys generated by NIST P192r1 curve Passed
20 ECDH using keys generated by NIST P224r1 curve Passed
21 ECDH using keys generated by NIST P256r1 curve Passed
22 ECDH using keys generated by NIST P384r1 curve Passed
23 ECDH using keys generated by NIST P521r1 curve Passed
24 ECDSA using keys generated by NIST P192r1 curve Passed
25 ECDSA using keys generated by NIST P224r1 curve Passed
26 ECDSA using keys generated by NIST P256r1 curve Passed
27 ECDSA using keys generated by NIST P384r1 curve Passed
28 ECDSA using keys generated by NIST P521r1 curve Passed
29 ECIES using keys generated by NIST P521r1 curve Passed

Table 5.4: Results of the unit tests performed on the ECCryptoLib.

72

Test ID Test Description
1 Decrypted plaintext matches the previously encrypted plaintext
2 Decoded string matches string before being encoded
3 SHA-1 calculation matches expected value for the string
4 SHA-256 calculation matches expected value for the string
5 SHA-384 calculation matches expected value for the string
6 SHA-512 calculation matches expected value for the string
7 MD5 calculation matches expected value for the string
8 HMAC-SHA-1 calculation matches expected value for the message
9 HMAC-SHA-256 calculation matches expected value for the message
10 HMAC-SHA-384 calculation matches expected value for the message
11 HMAC-SHA-512 calculation matches expected value for the message
12 HMAC-MD5 calculation matches expected value for the message
13 Result of the multiplication of EC Point by a scalar n is equal to the sum of the point

with itself n times
14 Generated key is valid if the public key is equal to the multiplication of the private

key for the G point
15 Generated key is valid if the public key is equal to the multiplication of the private

key for the G point
16 Generated key is valid if the public key is equal to the multiplication of the private

key for the G point
17 Generated key is valid if the public key is equal to the multiplication of the private

key for the G point
18 Generated key is valid if the public key is equal to the multiplication of the private

key for the G point
19 Result of the ECDH exchange match
20 Result of the ECDH exchange match
21 Result of the ECDH exchange match
22 Result of the ECDH exchange match
23 Result of the ECDH exchange match
24 Signature using ECDSA is generated for a string and it is successfully verified
25 Signature using ECDSA is generated for a string and it is successfully verified
26 Signature using ECDSA is generated for a string and it is successfully verified
27 Signature using ECDSA is generated for a string and it is successfully verified
28 Signature using ECDSA is generated for a string and it is successfully verified
29 Decrypted plaintext matches plaintext prior to being encrypted

Table 5.5: Description of the unit tests performed on the ECCryptoLib.

5.5 ECCrypto Submission
The ECCrypto application was submitted to the Windows Store through the dashboard available

to developers. The submission process included adding a description, screenshots, keywords, as

well as choosing the rating of the application in different countries. The application was made

available in all markets in the world, free of charge to the users. The application can be down-

loaded from the Windows Store. As for the library, ECCryptoLib is available on GitHub [Ana15],

as a public repository. Fork requests are allowed so that it can be improved by other users that

wish to contribute. The library was released under an MIT license.

73

5.6 Conclusion
This chapter started by discussing the implementation of the ECCryptoLib. The ECCryptoLib

contains all the cryptographic methods used by the application. These methods include hashing

algorithms, password generation, AES encryption and decryption. All of the ECC methods are

also part of the library. The library was made available on GitHub, where other users may

contribute if they wish to.

The ECCrypto application was analyzed and the implementation of the main features of the

application were explained. As a result of this work, the ECCrypto application was submitted

to the Windows Store. The discussion and presentation of features included in this chapter

demonstrate that the objectives set for this master’s program and for the application, during

the engineering phase, were successfully achieved.

74

Chapter 6

Conclusions and Future Work

In this chapter, the main conclusions of this work will be presented. The future work possibilities

regarding ECCrypto will also be discussed.

6.1 Conclusions
It is undeniable that these are times of great insecurity in terms of information security and

privacy. Several incidents that have occurred in the last few years have shone a spotlight in this

issue by people like Edward Snowden, Chelsea Manning and Julian Assange which came out in

public with confidential information.

ECCrypto is an application for Windows Phone that helps ensure that a user can communicate in

a secure way. It contains a set of functionalities that are commonly found in separate applica-

tions, and brings them all together into a single application. It also uses stronger cryptographic

functions than the ones that are typically found in the available applications. ECCrypto features

include the storage and management of passwords of the user and it includes a random password

generator. It supports the encryption and decryption of messages and it easily incorporates the

functionality of sending an encrypted message via SMS or email. It also allows encrypting and

decrypting files stored in the smartphone. User keys can be generated, stored and used by the

user in communications. These are generated using ECC and true randomness sources such as

the sensors present in the smartphone. The user can manage contacts and their public keys.

They key exchange process uses QR codes to facilitate the exchanging process. A trust manage-

ment system was created to help ensure the authenticity of the keys of the contacts, in which

the keys can be verified by other contacts, in order to guarantee that the key belongs to the

user.

All these functionalities use ECC, via the generation of user keys using elliptic curves and by using

protocols like ECDH to perform secure key exchanges and ECDSA for digitally signing messages

and files. Even though ECC is not very commonly used nowadays, it is a viable replacement for

RSA, which may be broken in the next few years and has advantages such as smaller key sizes,

while providing stronger security.

The ECC functions were all implemented from scratch because, at the time of writing this

dissertation, there were no available libraries including the necessary functions. The library,

75

ECCryptoLib, includes the implementation of the elliptic curves and necessary operations, gen-

eration of public-private key pairs, methods for ECDH and ECDSA. Functions for encrypting and

decrypting messages and files using AES were also included. A random password generator was

implemented and several hashing algorithms were also made available to anyone that imports

the library.

Nowadays if a user truly wishes to maintain information private and confidential he has to resort

to applications that provide this type of functionalities because they are not available by default

in the current systems. Information privacy and security should be enabled by design but it is not

and it can have a serious impacts in the life of people when information leaks occur. ECCrypto

was created to help users, in different fields, to communicate in a secure way.

The objectives defined for this master’s program were successfully achieved. The main objective

described in section 1.2 was achieved by the implementation of the application; the security

was assured by designed due to the software engineering process, testing and implementation

of the library (though further tests are needed).

6.2 Future Work
The main functionalities of ECCrypto have been implemented but the application can be im-

proved in several aspects. Even though the ECCryptoLib has several elliptic curves implemen-

tations, only the 512bit curve is being used in the ECCrypto. This decision was due to the

complexity that would be added to the key exchange process and to the key management from

the perspective of the user, as it would become more complex and it needs to be done trans-

parently to the user. As such, it should be thoroughly analyzed in the future.

The application should be tested for usability, mostly because of the number of features provided

due to its complexity and dimension, which may be somewhat confusing for a typical user that

does not grasp the concept of the application. It is also necessary to ensure user retention so

that, when users install the application, they find it easy to work with and actually use it. This

could be achieved for instance by using tools like Mixpanel [Mix15] to find patterns in common

user actions and also areas that can be improved.

It would be interesting to include other standard elliptic curves such as the Brainpool curves, in

the ECCryptoLib, so that users are not limited to using the NIST curves. The library can easily

support the implementation of new curves.

It is important to implement application versions for other mainstream mobile OS, such as An-

droid and iOS so that people using different platforms can all communicate with each other.

An upgrade for Windows 10 is also advisable, since it will allow the application to run in both

Windows Phones, desktops, tablets and other devices of the Windows family.

76

Another feature that would be important to include is the ability to sync information on different

devices. For instance, if a user has a smartphone with ECCrypto all set up with keys and contacts,

it seems important that the user should be able to get the same information on a tablet or laptop.

77

78

Bibliography

[Ana15] Ana Figueira. ECCryptoLib [online]. 2015. Available from: https://github.com/

AnaFigueira/ECCryptoLib [cited October 4 , 2015]. xvii, 73

[Anc15] Ancylo. Password Jinni [online]. 2015. Available from: https://www.

microsoft.com/en-us/store/apps/password-jinni/9nblggh0b2ll [cited Septem-

ber 17, 2015]. 11

[App12] Apps4Life. Secure Texting [online]. 2012. Available from: https://itunes.

apple.com/tr/app/secure-texting-password-protect/id528988546?mt=8 [cited

September 17, 2015]. 10

[App15] Apple Inc. iTunes [online]. 2015. Available from: https://www.apple.com/itunes

[cited September 17, 2015]. xi, 9

[Are15] Arenim Technologies. CryptTalk Pro [online]. 2015. Available from: https://itunes.

apple.com/pt/app/crypttalk-pro/id892554609?mt= [cited September 17, 2015].

10

[BGJT14] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuristic

quasi-polynomial algorithm for discrete logarithm in finite fields of small character-

istic. In PhongQ. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology –

EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 1–16.

Springer Berlin Heidelberg, 2014. Available from: http://dx.doi.org/10.1007/

978-3-642-55220-5_1. 23

[Cho] Wendy Chou. Elliptic curve cryptography and its applications to mobile devices.

Available from: http://honors.cs.umd.edu/reports/ECCpaper.pdf. 2

[Cis] Cisco. Cisco 2014 Annual Security Report. Available from: https://www.cisco.com/

web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf. 54

[Cov15] CoverMe, Inc. CoverMe Private Texting [online]. 2015. Available

from: https://itunes.apple.com/us/app/coverme-private-texting-messenger/

id593652484?mt=8 [cited September 17, 2015]. 10

[Cri15] Criptyque. Pryvate - The Encryption App [online]. 2015. Avail-

able from: https://itunes.apple.com/us/app/pryvate-the-encryption-app/

id914948581?mt=8 [cited September 17, 2015]. 9

79

https://github.com/AnaFigueira/ECCryptoLib
https://github.com/AnaFigueira/ECCryptoLib
https://www.microsoft.com/en-us/store/apps/password-jinni/9nblggh0b2ll
https://www.microsoft.com/en-us/store/apps/password-jinni/9nblggh0b2ll
https://itunes.apple.com/tr/app/secure-texting-password-protect/id528988546?mt=8
https://itunes.apple.com/tr/app/secure-texting-password-protect/id528988546?mt=8
https://www.apple.com/itunes
https://itunes.apple.com/pt/app/crypttalk-pro/id892554609?mt=
https://itunes.apple.com/pt/app/crypttalk-pro/id892554609?mt=
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://honors.cs.umd.edu/reports/ECCpaper.pdf
https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
https://itunes.apple.com/us/app/coverme-private-texting-messenger/id593652484?mt=8
https://itunes.apple.com/us/app/coverme-private-texting-messenger/id593652484?mt=8
https://itunes.apple.com/us/app/pryvate-the-encryption-app/id914948581?mt=8
https://itunes.apple.com/us/app/pryvate-the-encryption-app/id914948581?mt=8

[Cyb15] CyberWorm. Crypter [online]. 2015. Available from: https://www.microsoft.com/

en-us/store/apps/crypter/9nblggh09wvl [cited September 17, 2015]. 14

[Goo15] Google. Android Play Store [online]. 2015. Available from: https://play.google.

com/store/apps [cited September 17, 2015]. xi, 8

[GPW+04] Nils Gura, Arun Patel, Arvinderpal W, Hans Eberle, and Sheueling Chang Shantz. Com-

paring elliptic curve cryptography and rsa on 8-bit cpus. pages 119–132, 2004. 2

[J.M15] J.M. Porup. This New ’Secure’ App for Journalists May Not Be Secure At

All [online]. 2015. Available from: http://motherboard.vice.com/read/

this-new-secure-app-for-journalists-may-not-be-secure-at-all [cited Octo-

ber 2, 2015]. 1

[JOP14] Antoine Joux, Andrew Odlyzko, and Cécile Pierrot. The past, evolving present, and

future of the discrete logarithm. In Çetin Kaya Koç, editor, Open Problems in Math-

ematics and Computational Science, pages 5–36. Springer International Publishing,

2014. Available from: http://dx.doi.org/10.1007/978-3-319-10683-0_2. 23

[Kas] Kaspersky Lab and INTERPOL Joint Report. Mobile Cyber

Threats. Available from: http://media.kaspersky.com/pdf/

Kaspersky-Lab-KSN-Report-mobile-cyberthreats-web.pdf [cited September

21, 2015]. 8

[Kas12] Kaspersky. Android Mobile Security Threats [online]. 2012. Available

from: https://usa.kaspersky.com/internet-security-center/threats/mobile#

.Vavsj_lVgk0 [cited September 17 , 2015]. 8

[Kob] Neal Koblitz. Elliptic Curve Cryptosystems. In Mathmatics of computation, num-

ber 177, pages 203–209. Available from: http://www.ams.org/journals/mcom/

1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf.

22, 29

[LFr15] LFramCompany. TXTCrypt [online]. 2015. Available from: https://www.microsoft.

com/en-us/store/apps/txtcrypt/9nblggh0ft4j [cited September 17, 2015]. 12

[Lun15] LunaPlena. Secure Text Pro [online]. 2015. Available from: https:

//www.microsoft.com/en-us/store/apps/secure-text-pro/9nblggh0gr63 [cited

September 17, 2015]. 11

[M. 10] M. Lochter and J. Merkle. Elliptic Curve Cryptography (ECC) Brainpool Standard

80

https://www.microsoft.com/en-us/store/apps/crypter/9nblggh09wvl
https://www.microsoft.com/en-us/store/apps/crypter/9nblggh09wvl
https://play.google.com/store/apps
https://play.google.com/store/apps
http://motherboard.vice.com/read/this-new-secure-app-for-journalists-may-not-be-secure-at-all
http://motherboard.vice.com/read/this-new-secure-app-for-journalists-may-not-be-secure-at-all
http://dx.doi.org/10.1007/978-3-319-10683-0_2
http://media.kaspersky.com/pdf/Kaspersky-Lab-KSN-Report-mobile-cyberthreats-web.pdf
http://media.kaspersky.com/pdf/Kaspersky-Lab-KSN-Report-mobile-cyberthreats-web.pdf
https://usa.kaspersky.com/internet-security-center/threats/mobile#.Vavsj_lVgk0
https://usa.kaspersky.com/internet-security-center/threats/mobile#.Vavsj_lVgk0
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
https://www.microsoft.com/en-us/store/apps/txtcrypt/9nblggh0ft4j
https://www.microsoft.com/en-us/store/apps/txtcrypt/9nblggh0ft4j
https://www.microsoft.com/en-us/store/apps/secure-text-pro/9nblggh0gr63
https://www.microsoft.com/en-us/store/apps/secure-text-pro/9nblggh0gr63

Curves and Curve Generation [online]. 2010. Available from: https://tools.ietf.

org/html/rfc5639 [cited April 27, 2015]. 28

[Mic] Microsoft. Windows Phone 8.1 Security Overview. Available from: https://www.

microsoft.com/en-us/download/details.aspx?id=42509. 53

[Mix15] Mixpanel. Mixpanel [online]. 2015. Available from: https://mixpanel.com/ [cited

September 29, 2015]. 76

[Nat09] National Security Agency. Cryptography Today [online]. 2009. Available from: https:

//www.nsa.gov/ia/programs/suiteb_cryptography/ [cited April 12, 2015]. 28

[num93] The number field sieve. In ArjenK. Lenstra and Jr. Lenstra, HendrikW., editors, The

development of the number field sieve, volume 1554 of Lecture Notes in Mathemat-

ics. 1993. Available from: http://dx.doi.org/10.1007/BFb0091537. 23

[Ope15] Open Source Initiative. The MIT License (MIT) [online]. 2015. Available from: https:

//opensource.org/licenses/MIT [cited October 1, 2015]. xi, 5

[oSN] National Institute of Standards and Technology (NIST). Announcing the ADVANCED EN-

CRYPTION STANDARD (AES) . Available from: http://csrc.nist.gov/publications/

fips/fips197/fips-197.pdf. 21

[Par15] Paranoia Works. Secret Space Encryptor (SSE) - Universal Encryption App [online].

2015. Available from: https://play.google.com/store/apps/details?id=com.

paranoiaworks.unicus.android.sse [cited September 17, 2015]. 9

[Pau] Paul Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO ’96. 20

[Pau13] Paul Bakker. Elliptic Curve performance: NIST vs Brainpool [on-

line]. 2013. Available from: https://tls.mbed.org/kb/cryptography/

elliptic-curve-performance-nist-vs-brainpool [cited September 14 , 2015].

30

[PLR15] PLRS. Text Encryption Pro [online]. 2015. Available from: https://www.microsoft.

com/en-us/store/apps/text-encryption-pro/9nblggh0fgvw [cited September 17,

2015]. 12

[Ram15] Ramon Llamas, Ryan Reith and Kathy Nagamine. Smartphone OS Market Share,

2015 Q2 [online]. 2015. Available from: http://www.idc.com/prodserv/

smartphone-os-market-share.jsp [cited September 29, 2015]. 8

81

https://tools.ietf.org/html/rfc5639
https://tools.ietf.org/html/rfc5639
https://www.microsoft.com/en-us/download/details.aspx?id=42509
https://www.microsoft.com/en-us/download/details.aspx?id=42509
https://mixpanel.com/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://dx.doi.org/10.1007/BFb0091537
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://play.google.com/store/apps/details?id=com.paranoiaworks.unicus.android.sse
https://play.google.com/store/apps/details?id=com.paranoiaworks.unicus.android.sse
https://tls.mbed.org/kb/cryptography/elliptic-curve-performance-nist-vs-brainpool
https://tls.mbed.org/kb/cryptography/elliptic-curve-performance-nist-vs-brainpool
https://www.microsoft.com/en-us/store/apps/text-encryption-pro/9nblggh0fgvw
https://www.microsoft.com/en-us/store/apps/text-encryption-pro/9nblggh0fgvw
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[Res] Certicom Research. Sec 1: Elliptic curve cryptography. Available from: http://cs.

ucsb.edu/~koc/cren/docs/w03/sec1_final.pdf. 28, 29

[Ron15] Ronca. EnkrypTo [online]. 2015. Available from: https://www.microsoft.com/

en-us/store/apps/enkrypto/9nblggh07t5q [cited September 17, 2015]. 13

[Ror] Rorot. ECC: A Case for Mobile Encryption [online]. Available from: http://

resources.infosecinstitute.com/ecc-case-mobile-encryption/. 2

[See15] Seecrypt. Seecrypt SC3 [online]. 2015. Available from: https://itunes.apple.

com/us/app/seecrypt-sc3/id889036096?mt=8 [cited September 17, 2015]. 10

[Sil13] Silent Circle. Silent Text [online]. 2013. Available from: http://gizmodo.com/

silent-text-for-android-a-secure-text-service-that-sel-1253727782 [cited

September 17, 2015]. 8

[SMS15] SMSSecure. SMSSecure [online]. 2015. Available from: https://play.google.com/

store/apps/details?id=org.smssecure.smssecure [cited September 17, 2015]. 9

[Sta] Williams Stallings. Cryptography and Network Security - Principles and Practice.

Pearson Education (US). 2

[Tom13] Tom Simonite. Math Advances Raise the Prospect of an Internet Security Crisis [on-

line]. 2013. Available from: http://www.technologyreview.com/news/517781/

math-advances-raise-the-prospect-of-an-internet-security-crisis/ [cited

September 23, 2015]. ix, 2

[Vic] Victor S. Miller. Use of Elliptic Curves in Cryptography. In Hugh C. Williams, editor,

Advances in Cryptology — CRYPTO ’85 Proceedings, pages 417–426. 22

[Wha] Ryan Edward Whaley. Algorithms for solving the discrete logarithm problem. Avail-

able from: http://encompass.eku.edu/etd/235/. 23

[woo14] woodkick. ECC SMS [online]. 2014. Available from: https://play.google.com/

store/apps/details?id=com.woodkick.eccsms [cited September 17, 2015]. 8

82

http://cs.ucsb.edu/~koc/cren/docs/w03/sec1_final.pdf
http://cs.ucsb.edu/~koc/cren/docs/w03/sec1_final.pdf
https://www.microsoft.com/en-us/store/apps/enkrypto/9nblggh07t5q
https://www.microsoft.com/en-us/store/apps/enkrypto/9nblggh07t5q
http://resources.infosecinstitute.com/ecc-case-mobile-encryption/
http://resources.infosecinstitute.com/ecc-case-mobile-encryption/
https://itunes.apple.com/us/app/seecrypt-sc3/id889036096?mt=8
https://itunes.apple.com/us/app/seecrypt-sc3/id889036096?mt=8
http://gizmodo.com/silent-text-for-android-a-secure-text-service-that-sel-1253727782
http://gizmodo.com/silent-text-for-android-a-secure-text-service-that-sel-1253727782
https://play.google.com/store/apps/details?id=org.smssecure.smssecure
https://play.google.com/store/apps/details?id=org.smssecure.smssecure
http://www.technologyreview.com/news/517781/math-advances-raise-the-prospect-of-an-internet-security-crisis/
http://www.technologyreview.com/news/517781/math-advances-raise-the-prospect-of-an-internet-security-crisis/
http://encompass.eku.edu/etd/235/
https://play.google.com/store/apps/details?id=com.woodkick.eccsms
https://play.google.com/store/apps/details?id=com.woodkick.eccsms

Appendix A

EC Domain Parameters

This appendix contains EC domain parameters for the curves that were implemented in the

ECCryptoLib, as mentioned in subsection 5.2.4.

A.1 Recommended Parameters for secp192r1
The elliptic curve domain parameters over Fp associated with a Koblitz curve secp192r1 are

specified by the sextuple T = (p, a, b,G, n, h) where the finite field Fp is defined by:

p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFF

= 2192 − 264 − 1

The curve E : y2 = x3 + ax+ b over Fp is defined by:

a = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFC,

b = 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1,

E was chosen verifiably at random from the seed:

S = 3045AE6F C8422F64 ED579528 D38120EA E12196D5,

The base point G in compressed form is:

G = 03 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012,

Finally the order n of G and the cofactor are:

n = FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831,

h = 01.

A.2 Recommended Parameters for secp224r1
The elliptic curve domain parameters over Fp associated with a Koblitz curve secp224r1 are

specified by the sextuple T = (p, a, b,G, n, h) where the finite field Fp is defined by:

p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000000 00000000 00000001

= 2224 − 296 + 1

83

The curve E : y2 = x3 + ax+ b over Fp is defined by:

a = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFE

b = B4050A85 0C04B3AB F5413256 5044B0B7 D7BFD8BA 270B3943 2355FFB4

E was chosen verifiably at random from the seed:

S = BD713447 99D5C7FC DC45B59F A3B9AB8F 6A948BC5

The base point G in compressed form is:

G = 02 B70E0CBD 6BB4BF7F 321390B9 4A03C1D3 56C21122 343280D6 115C1D21

Finally the order n of G and the cofactor are:

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFF16A2 E0B8F03E 13DD2945 5C5C2A3D

h = 01

A.3 Recommended Parameters for secp256r1
The elliptic curve domain parameters over Fp associated with a Koblitz curve secp256r1 are

specified by the sextuple T = (p, a, b,G, n, h) where the finite field Fp is defined by:

p = FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF FFFFFFFF

= 2224(232 − 1)− 2192 + 296 − 1

The curve E : y2 = x3 + ax+ b over Fp is defined by:

a = FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF FFFFFFFC

b = 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 3BCE3C3E 27D2604B

E was chosen verifiably at random from the seed:

S = C49D3608 86E70493 6A6678E1 139D26B7 819F7E90

The base point G in compressed form is:

G = 03 6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0 F4A13945 D898C296

Finally the order n of G and the cofactor are:

n = FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2 FC632551

h = 01

84

A.4 Recommended Parameters for secp384r1
The elliptic curve domain parameters over Fp associated with a Koblitz curve secp384r1 are

specified by the sextuple T = (p, a, b,G, n, h) where the finite field Fp is defined by:

p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFE FFFFFFFF 00000000 00000000 FFFFFFFF

= 2384 − 2128 − 296 + 232 − 1

The curve E : y2 = x3 + ax+ b over Fp is defined by:

a = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFE FFFFFFFF 00000000 00000000 FFFFFFFC

b = B3312FA7 E23EE7E4 988E056B E3F82D19 181D9C6E FE814112

0314088F 5013875A C656398D 8A2ED19D 2A85C8ED D3EC2AEF

E was chosen verifiably at random from the seed:

S = A335926A A319A27A 1D00896A 6773A482 7ACDAC73

The base point G in compressed form is:

G = 03 AA87CA22 BE8B0537 8EB1C71E F320AD74 6E1D3B62 8BA79B98

59F741E0 82542A38 5502F25D BF55296C 3A545E38 72760AB7

Finally the order n of G and the cofactor are:

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

C7634D81 F4372DDF 581A0DB2 48B0A77A ECEC196A CCC52973

h = 01

A.5 Recommended Parameters for secp521r1
The elliptic curve domain parameters over Fp associated with a Koblitz curve secp521r1 are

specified by the sextuple T = (p, a, b,G, n, h) where the finite field Fp is defined by:

p = 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

= 2521 − 1

The curve E : y2 = x3 + ax+ b over Fp is defined by:

85

a = 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFC

b = 0051 953EB961 8E1C9A1F 929A21A0 B68540EE A2DA725B 99B315F3

B8B48991 8EF109E1 56193951 EC7E937B 1652C0BD 3BB1BF07

3573DF88 3D2C34F1 EF451FD4 6B503F00

E was chosen verifiably at random from the seed:

S = D09E8800 291CB853 96CC6717 393284AA A0DA64BA

The base point G in compressed form is:

G = 03 AA87CA22 BE8B0537 8EB1C71E F320AD74 6E1D3B62 8BA79B98

59F741E0 82542A38 5502F25D BF55296C 3A545E38 72760AB7

Finally the order n of G and the cofactor are:

n = 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFA 51868783 BF2F966B 7FCC0148 F709A5D0

3BB5C9B8 899C47AE BB6FB71E 91386409

h = 01

86

Appendix B

Activity Diagrams

The figures presented in this appendix contains the activity diagrams mentioned in section 3.5.1

Add password

User ECCrypto

Choose the option
"Add new password"

Show AddPassword
Page

Fill form fields

Generate PasswordYes

Generate password

Save

No

Save password in
database

Return to ECCrypto
main page

Figure B.1: Diagram for the password activity which depicts the process
of adding a new password to ECCrypto.

87

Encrypt file

User ECCrypto

Choose the option
"Encrypt File"

Show file picker

Select file to be
encrypted

Show file picker

Select location to
store encrypted file

Encrypt and save file

Show success
message

Yes

Operation Successful

No

Show error message

Figure B.2: Diagram for the file encryption activity in which the user
chooses a file to be encrypted from the phone and afterwards chooses the

location where the encrypted file is to be stored.

88

Share user key of User A with User B via QR Code

User A ECCrypto User A

Choose the option
"Share Key"

Show share key page

Generate QR Code
with public key

Show QR Code with
Public Key to User B

Sign Challenge

Scan QR Code
Challenge

Generate QR Code
with signed challenge

Show QR Code to
User B

Figure B.3: Diagram for the share key activity that shows the process
of sharing a key with a contact via QR code.

89

Import contact key of User A via QR Code

User B ECCrypto User B

Scan QR Code that
contains User A

Public Key

Generate QR Code
challenge using User

A public key

Show QR Code to
User A

Scan QR Code Verify signature

Signature is valid

Yes

Add Key to Contact

Choose the option
"Add Contact Key"

NoShow Error Message

Figure B.4: Import key activity diagram that shows the process
of importing the key of a contact via QR code.

90

	Introduction
	Scope and Motivation
	Problem Statement and Objectives
	Adopted Approach for Solving the Problem
	Main Contributions
	Dissertation Overview

	Related Applications, Technologies and Cryptography Preliminaries
	Introduction
	Crypto Related Applications for Mobile Operating Systems
	Android Security Applications
	iOS Security Applications
	Windows Phone Security Applications
	Research Conclusions

	Technology used in the Scope of this Masters
	Windows Phone 8.1
	Microsoft Visual Studio
	Microsoft Visio 2013
	SQLite for Windows Phone 8.1

	Preliminaries
	RSA
	RSA Security
	Advanced Encryption Standard
	Elliptic Curve Cryptography
	Elliptic Curve Diffie-Hellman
	Elliptic Curve Integrated Encryption Scheme and Digital Signature

	Conclusion

	Software Engineering
	Introduction
	Requirements Analysis
	Functional Requirements
	Non-functional Requirements

	Use Cases
	General Use Case
	Detailed Use Cases

	Database Design
	Entity-Relationship
	Relational Model

	Activity, Components and Class Diagrams
	Activity Diagrams
	Components Diagram
	Class Diagram

	Conclusion

	Security and Cryptographic Services
	Introduction
	Cryptographic Services in ECCrypto
	Password and Cryptographic Secrets Generation with Basis on Sources of True Randomness Available in Mobile Devices
	Generation of elliptic curve key pairs
	Establishment of secret keys between two or more smartphones users
	Encryption and Decryption of Written Messages
	Digital Signature of Files with the Elliptic Curve Digital Signature Algorithm
	Importing, Exporting and Handling of Public Keys
	Authentication via Public-key Cryptography
	Encoding and Decoding of Messages and Secure Storage of Files on the Device
	Management of Passwords

	Cryptographic Services in ECCryptoLib
	Password Generation
	Key Pair Generation
	Elliptic Curve Diffie Hellman
	Encryption and Decryption
	Elliptic Curve Digital Signature Algorithm and Hash Algorithms

	Trust Management
	Discussion on Security
	Windows Phone 8.1 Security Overview

	Conclusion

	Implementation and Testing
	Introduction
	ECCryptoLib Implementation
	Hash Functions
	AES
	Password Generator
	ECC methods

	ECCrypto Implementation
	Using Sensors for Creating Randomness
	Unlock ECCrypto App
	Trust Management System
	Application Overview

	Testing of the Prototype
	ECCrypto
	ECCryptoLib

	ECCrypto Submission
	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliografia
	EC Domain Parameters
	Recommended Parameters for secp192r1
	Recommended Parameters for secp224r1
	Recommended Parameters for secp256r1
	Recommended Parameters for secp384r1
	Recommended Parameters for secp521r1

	Activity Diagrams

