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Resumo

Resumo:

Num espago de Banach, dada uma equacao diferencial v'(t) = A(t)v(t), sujeita
a uma condic¢do inicial v(s) = vs e que admite uma tricotomia generalizada, es-
tudamos o tipo de condigoes a impor as perturbacoes lineares B de modo que a
equagao v'(t) = [A(t) + B(t)] v(t) ainda admita uma tricotomia generalizada, ou
seja, estudamos a robustez das tricotomias generalizadas. Da mesma forma, foi
também objecto deste trabalho, o estudo de uma equacao diferencial com outro
tipo de perturbagoes nao lineares, v'(t) = A(t)v(t) + f(t,v). Procurdmos condigoes
necessarias a impor a funcao f por forma a que a nova equacao perturbada admitisse
uma variedade invariante Lipschitz global, bem como as condi¢oes necessarias para

a existéncia de variedades invariantes Lipschitz locais.

Palavras-Chave:
Equacgoes diferenciais ordindrias nao-autonomoas, tricotomias generalizadas, robus-

tez, variedades invariantes, perturbacoes Lipschitz







Resumo Alargado

Este trabalho foi realizado no ambito do doutoramento em Matematica e Apli-
cagoes e resulta essencialmente do estudo de varios artigos na area de sistemas
dinamicos resultantes de equacoes diferenciais ordinarias. A maior inspiracao foi
obtida pela andlise cuidada de artigos de Barreira e Valls [11] B 3], bem como de
Bento e Silva [17, [16] 20} [19], entre outros.

Sejam X um espago de Banach, B(X) a élgebra de Banach dos operadores
lineares limitados que actuam em X e A: R — B(X) uma aplicagao continua. Con-

sideremos a equacao diferencial ordinaria nao auténoma

V'(t) = A(t)o(t), (*)

sujeita a uma condigao inicial v(s) = vy e suponhamos que esta equa¢ao tem uma

solucao global. Nestas condicoes, pretendemos estudar as equacoes perturbadas

V(t) = [A(t) + B(1)] v(t)

v'(t) = A () + f(t,v)
onde B: R — B(X) e f: Rx X — X sao fungdes continuas. E claro que a resposta
vai depender do tipo de perturbagoes e das condigoes impostas a essas perturbacoes
e das hipdteses que assumimos sobre a equacao linear ().
A hipdtese usada recentemente pelos autores referidos, bem como por outros,

passa por assumir que a equagao (®) admite dicotomias ou tricotomias. Neste tra-
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balho s6 consideramos tricotomias definidas de forma o mais geral possivel. Assim,
na secc¢ao inicial do primeiro capitulo explicamos este conceito — tricotomias gene-
ralizadas — de uma forma muito abrangente. Considerando o operador de evolucao
T: s associado a equagao diferencial (&), i.e., T} ;v(s) = v(t) para quaisquer ¢, s € R,
dizemos que esta admite uma decomposicao invariante se, para todo t € R, existem
projecgoes Py, Qf, Q; € B(X) tais que

(S1) P, + Qf + Q; =1d para todo t € R;
(S2) PQ; = 0 para todo t € R;
(S3) PT;s = 1T;sP; para todo t,s € R;

(S4) Q/ T, =T, ,QF para todo t,s € R.
Definindo os subespacos lineares E; = Pi(X), F;t = Q (X) e F, = Q; (X) e

dadas funcoes a: R* — R*, g7: RZ — Rt e f7: RZ — R", onde
Ri:{(t,s)E]R2:t<s} e ]R;:{(t,s)E]R2:t23},

denotanto a(t,s), B7(t,s) e f7(t,s) por aus, By e Br,, dizemos que a equagao
diferencial v'(t) = A(t)v(t) admite uma tricotomia generalizada com majorantes
a = (atvs>(t,s)€]R27 Bt = (ﬂ;rs)(t’s)eki e f7 = (Bt_,s)(t,s)elRi’ ou simplesmente com

majorantes oy s, B;; e B, se admite uma decomposigao invariante tal que

(D1) ||T,sPs|| € aus para todo (t,s) € R
(D2) ||T,.,QF || < B, para todo (t,s) € RZ;

(D3) ||T3,:Q; || < Br, para todo (¢, s) € RZ.

Ainda no primeiro capitulo construimos, em R* um exemplo de uma equacao
diferencial ordinaria que admite uma tricotomia generalizada que denominamos de
tricotomia—(a, b, ¢,0) nao uniforme, tricotomia essa que explordmos em todos os
capitulos seguintes. Apresentamos ainda varios casos particulares deste tipo de trico-
tomias. As tricotomias p—exponenciais nao uniformes e exponenciais nao uniformes

sao casos particulares do anterior e vao ao encontro dos exemplos apresentados por
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outros autores, nomeadamente, por Barreira e Valls em [I1], [12] e [2]. Além disso,
apresentamos mais exemplos que segundo julgamos saber, sao inovadores, nomeada-
mente as tricotomias as quais demos o nome de tricotomias p—polinomiais nao
uniformes e polinomiais nao uniformes.

No Capitulo 2, estudamos perturbagoes lineares da equagao diferencial (&) da
forma

v'(t) = [A(t) + B()]u(t),

onde B: R — B(X) é uma aplicacdo continua. Este problema designa-se usual-
mente por problema da robustez. Supondo que a equacao diferencial (&) admite
uma tricotomia generalizada que verifica algumas hipdteses adicionais, provamos
que a equacao perturbada ird também admitir um comportamento tricotémico ge-
neralizado, desde que os operadores B(t) tenham norma suficientemente pequena.

Denotando B(t) por B, e definindo as constantes, A, AT e A~ & custa de oy, 5,

B, e de || B da seguinte maneira:

+ —

t,s t,s — s
Ai= sup —2, AT := sup e A = sup —=,
(t,s)€R2 Ctt,s (t,8) e]R Bt s (t,s)ERZ Bt s

com )\, s dado por

—+00

t
/ at,r||Br||ar,s d?" + BtTrHBrHOér,s d’f’
s

t —+o00
[ sbiBlandr+ [ anlBs

Ama/owwmmW+

oo

t

A, definido por

“+oo
A, = / 5B, ||amdr+/6 1B.15 dr+/ au, | B |65 dr
t

+oo

I X Ly R R A

e A\, por

+oo

t
A;,s—/ aMHBHBMdH/@ABH@SdH 5

s

| B, || v, s dr

—+00

Ry A A
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podemos enunciar o teorema que se segue.

Teorema 2.1.9] Seja X um espaco de Banach. Suponhamos que a equacdo diferen-

cial v'(t) = A(t)v(t) admite uma tricotomia generalizada com majorantes oy, fBi €

B s tal que

Qs

sup —2 < 400 para todo (£,s) € R?
teR Oty
+

sup t,s
+
t=0 Btj

< 400 para todo ({,s) € R;,

sup BL_S < 400 para todo ({,s) € R2.
t<t By -
Seja B: R — B(X) uma funcao continua. Se
max{)\, )\+,>\_} <1
onde X\, X\ and A\~ estao definidos anteriormente, entdo a equacgdo perturbada

V(1) = [A(t) + B(1)]v(?)

admite uma tricotomia generalizada com majorantes ooy s, UB;FS e g, e ondeod é

dado por

1
o

T T —max{\ AT, A

Consideramos este resultado, o Teorema .11l o resultado principal deste capitulo,
sendo enunciado no inicio do capitulo, mas sendo somente demonstrado na tultima
seccao deste. De seguida apresentamos casos particulares do teorema principal do
capitulo. Comecamos por mostrar no Teorema 2.2.1] que se a tricotomia exibida
pela equagao diferencial inicial for uma tricotomia— (a, b, ¢,0) nao uniforme com
algumas condigoes adicionais impostas, e se a perturbacao B também obedecer a
certos requisitos, entao todas as condicoes do Teorema 2,11l sao verificadas. Os dois
exemplos seguintes, para tricotomias p—exponencial nao uniforme e exponencial nao

uniforme, sao apresentados como casos particulares do anterior, e ¢ mostrado que os
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resultados obtidos no caso da tricotomia exponencial sao menos exigentes do que os
obtidos por Barreira e Valls em [10]. Os dois tltimos teoremas deste capitulo exibem
as condigOes que as tricotomias p—polinomias nao uniformes e polinomiais nao uni-
formes devem obedecer bem como as condi¢oes que devemos impor as perturbacoes
por forma a serem verificadas todas as condi¢oes do Teorema 2.1.11 Terminamos
este capitulo com a demonstracao do referido teorema.

No terceiro capitulo estudamos outro tipo de problema. A equacao diferencial

inicial é sujeita agora a uma perturbacao da forma
v'(t) = A)o(t) + f(t,v)

onde f: R x X — X é uma funcdo continua tal que f(¢,0) = 0e f;: X — X,
definida por f;(x) = f(t,z), é uma funcao Lipschitz para todo o ¢ € R. Para
podermos enunciar o principal resultado deste capitulo temos de introduzir alguma

notagao. Para cada T € R, o fluxo da equacao perturbada é definido por
Ue(s,v5) = (s +T,2(s +7T,5,05),y" (s +T,8,05),y (s +7T,5,0)),
coms€R,vs=({,nT,n") € E; x Ff x F, ¢ onde
(z(t, s,vs),y" (E, s, vs), 4™ (t,8,05)) € By x F}F x F,
denota a solucao da equacao perturbada. Considerando o conjunto

G == U {t} X Eta
teR

e uma constante positiva N, denotamos por Ay o espaco das fungoes continuas

p: G — X tais que

©(t,0) =0 para todo t € R;
o(t,€) € F," ® F, para todo (t,¢) € G;

sup { ”w(t’ﬁg - g}“)“ (L. (LD € G, E 4 5} <
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e por V,, o gréfico de ¢, ou seja, o conjunto

Vo ={(s5,6,0(s,8)) : (5,§) € G} SR x X,

Definimos ainda as quantidades ¢ e w por

/t at,r Llp (fr) ar,s d’f"

O s

)

o= sup
(t,5)ER?

S 400
= sup { [ atmadrs [ s (), dr} .

seR

Teorema B.1.3] Seja X um espago de Banach. Suponhamos que v'(t) = A(t)v(t)
admite uma tricotomia generalizada com majorantes o g, B;rs e B eseja fr R x

X — X uma funcdo continua nas condi¢oes descritas. Se

lim B,,a,.,= lim B a,., =0 paratodoseR
r—+oo 7’ ’ r——oo °’ ’

20 + 2w < 1,

entao existe N € |0, 1[ e uma dnica fun¢ao ¢ € Ay tal que
U.(V,) CV,
para todo T € R onde W, e V,, foram anteriormente definidos. Além disso,

) ) N )
Hlet—S(Sa Sa ()0(37 6)) - ‘I]t—s(‘S? Sa (,0(3, 6))“ < Z Qs HS - SH
para todo (t,s) € R? e todo &, € € E.

O resultado global que se obteve, o Teorema [B.1.3] é feito para tricotomias gene-
ralizadas e, como tal, podemos aplica-lo a todos os exemplos de tricotomias apresen-
tados no primeiro capitulo: tricotomias—(a, b, ¢, 0) nao uniformes, tricotomias p—ex-
ponenciais nao uniformes e exponenciais nao uniformes (que sao casos particulares
do anterior) e tricotomias g—polinomias nao uniformes e polinomiais nao uniformes.

A demonstracao deste resultado também é apresentada no fim do capitulo.
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XV

Terminamos este trabalho com a apresentacao, no Capitulo 4, de um resultado

semelhante ao anterior mas em que as variedades invariantes sao locais. Aqui as

perturbagoes f: Rx X — X sao fungoes continuas tais que f(¢,0) = 0, fi(-) := f(¢,-)

é Lipschitz na bola

B(R() = {z € X: [lz]| < R@)},

para todo o t € R e onde R: R —]0, +00[. Denotanto a constante de Lipschitz de

fi na bola B(R(t)) por Lip (ft|%(3(t))) , definindo & e w, por

0= sup

/t Qg Llp (fr|‘B(R(r))) Qs dr
(t,s)ER2 |Js

O s

)

—+o00

& = sup U B Lip (frlw(ror)) s dr +

seR — s

e denotanto o grafico de ¢ nas bolas B(R(t)) por

Vor =1(s,6,0(5,8)) € Voo [I€]] < R(s)}

estamos em condigoes de enunciar o referido resultado.

Teorema [4.1.2] Seja X um espaco de Banach. Suponhamos que v'(t)

Bar Lip (frlw(rery)) ars dr}

A(t)o(t)

admite uma tricotomia generalizada com majorantes o s, B;FS e Bis e seja fr R x

X — X uma funcdo continua com as condi¢oes locais descritas. Se

lim B, .= lim Bf a,,=0 paratodo s € R,
’ r——00 ’

r—-+00

do+4dw < 1

«
sup —2% < 400  para todo s € R,

ter R(t)

entao existe N €10, 1] e uma funcao ¢ € Ay tal que para todo T € R se tem

U (V?

%E) g V;,R>
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onde R denota a funcio R: R — R* dada por

= W

R(s) = N sup ey o/ R(t)]

teR

Além disso, tem-se

H“Dt—s(&f;@p(s;f)) - “Dt—s(s>ga (P(S,g))H g %O‘t,s Hf - gH

para todo (t,s) € R? e todo &, € € B(R(s)) N E.

Nas duas secgoes seguintes trabalhamos com dois tipos de perturbagoes f. Uma

familia de fungoes que verificava para todoot € R e u,v € X, com g > 0

1F(t,w) = F (& )| < K@) lu = ol (lull + [0l

onde k: R —]0, 4+00], e outra familia que obedecia a
1t w) = f(E )| < Kl —of ([[ul] + [[v]])?

com k constante positiva. Para cada tipo de funcoes foram apresentados em sub-
secgoes, teoremas e corolarios para as diversas tricotomias consideradas neste tra-
balho e, em alguns casos, foi possivel exibir o raio R, invocado no teorema local atras
apresentado, de uma forma bastante simplificada. Por fim, é feita a demonstracao

deste teorema local recorrendo ao teorema global, o Teorema [3.1.3]




Abstract

Abstract:
In a Banach space, given a differential equation v'(t) = A(t)v(t), with an ini-
tial condition v(s) = vy and that admits a generalized trichotomy, we studied

which type of conditions we need to impose to the linear perturbations B so that
V'(t) = [A(t) + B(t)] v(t) continues to admit a generalized trichotomy, that is, we
studied the robustness of generalized trichotomies. In the same way, it was also the
aim of our work the study of a differential equation with another type of nonlin-
ear perturbations, v'(t) = A(t)v(t) + f(t,v). We sought conditions to impose on
the function f so that the new perturbed equation would admit a global Lipschitz
invariant manifold as well as the necessary conditions for the existence of local Lip-

schitz invariant manifolds.

Keywords:
Nonautonomous ordinary differential equations, generalized trichotomies, robust-

ness, invariant manifolds, Lipschitz perturbations
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Introduction

A major problem in the study of dynamical systems is to understand which
properties are preserved when a dynamical system is perturbed. In particular, given
a Banach space X and a continuous function A, defined in R and with values in
the Banach algebra B(X) of the bounded linear operators acting on X, what are
the hypotheses that we have to assume about the solutions of the linear ordinary

differential equation

and about a perturbation f: R x X — X, in order to be able to study the solutions

of the perturbed differential equation
V(1) = A()o(t) + f(t,v) ?

In this context, the concept of exponential dichotomy is a very fruitful tool.

The concept of uniform exponential dichotomy goes back to 1929/30 with the
work of Perron [48] [49]. Since then, many authors have studied the role played by
uniform exponential dichotomies in dynamical systems, namely in linear ordinary
differential equations and in particularly in the study of the existence of stable and
unstable manifolds. However, the concept of uniform exponential dichotomy is very
demanding and it was convenient to consider weaker definitions.

Thus, a notion of nonuniform exponential dichotomy was used by Preda and

Megan [56] in 1983 and by Megan, Sasu and Sasu [43] in 2002 to study evolution
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operators. In 2006, inspired by the notion of nonuniform hyperbolic trajectories of
Pesin [50], which allowed him to obtain invariant stable manifolds for diffeomorfisms
defined on finite dimensional manifolds, Barreira and Valls [4] introduced the notion
of nonuniform exponential dichotomy for linear ordinary differential equations in
Banach spaces (see also [7]).

On the other hand, in 1994, appeared uniform dichotomies with nonexponential
growth rates presented by Pinto [5I]. In the same year, Naulin and Pinto in [45] in-
troduced the concept of (h, k)—dichotomies for nonlinear differential systems. Subse-
quently, in 2010, P&tzsche introduced in [55], for nonautonomous discrete equations,
nonexponential growth rates but expressed by general exponential functions.

Hence, it is natural to consider dichotomies that are simultaneous nonuniform
and nonexponential. Bento and Silva [I5], in 2009, obtained stable manifolds for dif-
ference equations that admit nonuniform polynomial dichotomies where the growth
rates are more restrictive in the nonuniform part, but the uniform part obeys a
polynomial law instead of an exponential (more restrictive) law. Also in 2009 and
independently, Barreira and Valls introduced in [8] another type of nonuniform poly-
nomial dichotomy.

In 2012 and in 2013, to allow the notion of nonexponential growth and nonuni-
form behavior simultaneously and with different growth rates in the uniform and
nonuniform parts, a new nonuniform dichotomy, the nonuniform (u,v)—dichotomy,
was proposed by Bento and Silva in [I6] for difference equations and in [I8] for dif-
ferential equation. This notion includes the traditional uniform exponential dichoto-
mies, the nonuniform exponential dichotomies, the uniform polynomial dichotomies
and the nonuniform polynomial dichotomies which greatly enlarged the range of ap-
plications of uniform and nonuniform dichotomies. In these papers, Bento and Silva
also established the existence of stable local manifolds.

In 2014 and 2016, Bento and Silva considered more general growth rates for
dichotomies with nonuniform behavior for the continuous case in [20] and for the

discrete case in [21].
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In the theory of linear perturbations it is also important to study the so-called
problem of robustness for these dichotomies, that is, the problem of finding the
necessary conditions that an additive linear perturbation, say B, so that the new

differential equation

v = [A(t) + B(t)]v

admits the same type of dichotomy of equation

The problem of robustness has a long history. In 1958 Massera and Schéffer [42]
addressed this theme based on Perron’s work [49], as did Copel [30] in 1974 and
Palmer [47] in 1984 in a finite dimension. Other authors that studied the problem of
robustness are Daleckii and Krein [31], Naulin and Pinto [46], Chow and Leiva [25],
Pliss and Sell [53] and Popescu [54]. It should be pointed out that all these papers
consider only uniform exponential behaviors.

In 2008, Barreira and Valls [6] obtained a robustness result for nonuniform expo-
nential dichotomies and in 2009 did the same for p—nonuniform exponential dichot-
omies in [9]. Robustness has also been studied, among others, by Chang, Zhang and
Qin for nonuniform (u,v)—dichotomies in Banach spaces in [23] in the continuous
case. Bento and Silva [19] also discussed this problem of robustness for difference
equations.

Another important concept associated with the concept of dichotomy is the no-
tion of trichotomy. Trichotomies play an important role in the study of the asymp-
totic behavior of dynamical systems, namely, when a dynamic linear system has
no unstable directions, the stability of the system is completely determined by the
behavior in the center manifold! Center manifolds are also useful in the study of
bifurcations because it might allow the reduction of the dimension of the state space;
for more details we recommend the books by Carr [22], Henry [36], Guckenheimer
and Holmes [33], Hale and Kocak [34] and Haragus and looss [35].

The study of center manifolds started with Pliss [52] and Kelley [39, [38] in the
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60’s. After that, many authors studied the problem and proved results about cen-
ter manifolds. A good expository paper for the case of autonomous differential
equations in finite dimension was written by Vanderbauwhede [59] (see also Vander-
bauwhede and Gils [61]) and for the case of autonomous differential equations in
infinite dimension see Vanderbauwhede and Iooss [60]. For more details in the finite
dimensional case see Chow, Liu and Yi [27, 26] and for the infinite dimensional case
see Sijbrand [58], Mielke [44], Chow and Lu [28, 29] and Chicone and Latushkin [24].

For nonautonomous differential equations the concept of exponential trichotomy
is an important tool to obtain center manifolds theorems. This notion goes back
to Sacker and Sell [57], Aulbach [I] and Elaydi and Hajek [32] and is inspired by
the notion of exponential dichotomy that can be traced back to the work of Perron
in [48 49]. However, as in the case of exponential dichotomies, the notion of ex-
ponential trichotomy is very demanding and several generalizations have appeared
in the literature. Essentially we can find two ways of generalization: on one hand
replace the exponential growth rates by nonexponential growth rates and on the
other hand consider exponential trichotomies that also depend on the initial time
and hence are nonuniform. Trichotomies with nonexponential growth rates have
been introduced by Fenner and Pinto in [40] where the authors study the so called
(h, k)—trichotomies and the nonuniform exponential trichotomies have been consider
by Barreira and Valls in [2] 3].

Hence, it is natural to consider trichotomies that are both nonuniform and non-
exponential. This was done by Barreira and Valls in [11, 12] where have been intro-
duced the so-called p—nonuniform exponential trichotomies, but these trichotomies
do not include as a particular case the (h, k)—trichotomies of Fenner and Pinto.

The robustness problem was also studied for trichotomies in 2009 by Barreira and
Valls [I0] who proved the robustness of nonuniform exponential trichotomies, and
by Jiang [37] in 2012, who obtained robustness for nonuniform (u, v)—trichotomies.

The aim of this work is to define more general types of trichotomies in order

to study, for linear and nonlinear perturbations, the solutions of an equation of the
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type

supposing that

admits this type of general trichotomy.

Thus, we studied the robustness of trichotomies with a general situation, included
a wide range of examples of nonuniform behavior and improved some of the existing
results.

It is also our goal the study of the differential problem
v'(t) = Ao + f(tv), v(s) =,

where nonlinear perturbations f are continuous functions with certain properties,
namely being Lipschitz functions in the second variable. Note that for dichotomies
this has already been done by Bento and Silva in [20] and in [21] for differential and
for difference equations, respectively. Here we present results both in a global and in
a local form. Initially we obtained a result on the existence of global center Lipschitz
invariant manifolds and, from this, we obtained a similar result in the existence of

local Lipschitz invariant manifolds.

Now we present the structure of this thesis. In the first chapter, we give the
basic notions and the necessary preliminaries of the generalized trichotomies for
the forward work. We also include, in a subsection, some examples of generalized
trichotomies.

In the second chapter we study the robustness problem for generalized trichot-
omies, i.e, we find necessary conditions that the linear perturbation should exhibit
in order that the trichotomy is preserved. That is the main result of the chapter.
Then we present a section with several particular cases that generalize some results
already existing in the literature. The proof of the main robustness result is given

in the last section of the chapter.




6 Introduction

In the following chapter we are going to consider another type of perturbation
of the differential equations v = A(t)v. Here, our main goal is to establish the
existence of global Lipschitz invariant manifolds when the linear differential equation
admits a generalized trichotomy and is submitted to a nonlinear perturbation f,
V'(t) = A(t)v + f(t,v), satisfying some conditions. We present in the first section
the main result, in the second section particular cases of the main result and in the
last section the proof of the main result.

In the last chapter we prove, for the differential problem v'(t) = A(t)v + f(¢,v),
the existence of local Lipschitz invariant manifolds. This result is stated in the first
section and proved in the last one. In the middle sections, we have considered two
types of nonlinear perturbations f and for each type of perturbation we present the

usual particular cases.




Chapter 1

Generalized Trichotomies

In this chapter we consider, on a Banach space, the notion of generalized trichot-
omy for linear ordinary differential equations which include as particular cases some
notions of tricotomies that already exist in the literature, namely in Barreira and

Valls [2], 11], 12].

81.1 Notation and Preliminaries

Let X be a Banach space, let B(X) be the space of bounded linear operators
in X and let A: R — B(X) be a continuous map. Consider the linear differential

equation

v = A(t)v, v(s) = v, (1.1)

with s € R, vy € X. We are going to assume that (II]) has a global solution and

denote by T} ¢ the linear evolution operator associated to equation (L), i.e.,
v(t) =Ty 5v(s)

for every t, s € R.
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Definition 1.1.1. We say that (L)) admits an invariant splitting if, for every
t € R, there exist bounded projections Pr, Qf, Q; € B(X) such that

(S1) P+ Qf + Qy =1d for every t € R;
(S2) PQ; =0 for every t € R;
(S3) PT,s=1T,:Ps for every t,s € R;

(S4) Qi Tis =T,:QF for every t,s € R.

From and we have
(S5) PQ; =Q/P,=Q; P,=Qif Qi =Q;Qf =0 for every t € R

and from [(S1)] [(S3)| and [(S4)| it follows immediately that

(S6) Q, T;s =T; ,Q; for every t,s € R.

For each t € R, we define the linear subspaces F; = P,(X), F," = Q} (X) and
F7 = Q; (X), and, as usual, we identify B, x F;" x F, and B, ® F," @ F, = X as
the same vector space.

Now we give the definition of generalized trichotomy that is fundamental for our

work.

Definition 1.1.2. Let a: R? = R", f7: R2 — R* and f~: RZ — R", where
RZ = {(t,s) e R*: t < s} and RZ ={(t,s) e R*: t > s},

and denote ot,s), B*(t,s) and B~ (t,s) by cus, By and B, respectively.
We say that equation (1)) admits a generalized trichotomy with bounds

a = (ts)gperes B = (5;;)@,8)611%% and B~ = (@Ts)(t’s)em, or simply with bounds

O s, 5;,; and By, if it admits an invariant splitting such that
(D1) ||T,sPs|| < cus for every (t,s) € R?;
(D2) | T,:QF || < B, for every (t.s) € RL;

(D3) ||T3,:Q5 || < Biy for every (t,s) € RZ.
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§1.2 Examples of generalized trichotomies

§1.2.1 Nonuniform (a, b, ¢,0)—trichotomies

Now we present, in R*, an example of a differential equation that under certain
conditions admits a generalized trichotomy with some bounds of a special type.
This is a new and more general definition when compared to what has been done
until now and is inspired in the notions of (h, k)— dichotomy and (h, k)—trichotomy

introduced by Pinto [51], Naulin and Pinto [45] and Fenner and Pinto [40].

Example 1.2.1. Let
a,b,¢,0: R — ]0,4+00]

be C! functions and let

€4y Ep, Ec, €0 R — [1, +00]

be C! functions in R\ {0} and with derivatives from the left and from the right at

t=0. In R*, equipped with the maximum norm, consider the differential equation

= [20]
o[

(1.2)

where
el(t) cost — 1 sint
: —In(ei(t) —— it #0,
eX(t) = e;(t) 2 2
0 if t =0,

ut)  a(t)
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we have
Eq (t) (cost—1)/2

u(t) = a0

In a similar way we get

o (t>(cos t—1)/2
o(t)

The evolution operator of this equation is given by

’U(t) = c(t)gc(t)(cost—l)/Q7 ’w(t) = and Z(t) — b(t)é‘b(t)(COSt_l)/Q,

ﬂ,s(uu v, w, Z) = (Ut78(u7 U)’ ‘/tj.;w7 ‘/t,_sz)

where Uy o: R? — R? is defined by

U (u U): a(8> ga(t)(cost—l)ﬂu C(t) 5c(t)(COSt_1)/2U
t,s Uy a(t) 8a(s)(coss—l)/Q 7C($) gc(s)(coss—l)/Q

and V5, Vit R = R are defined by

0(8) o (t)(cos t—1)/2

b(t) 6b(t)(cost—l)/2
D(t) 60(8)(coss—1)/2 w

b(S) gh(s)(coss—l)/2 z-

+o, —
‘/t,sw -

and Vi z=
Using the projections Py, QF, Q7 : R* — R* given by

P(u,v,w, z) = (u,v,0,0),
Q:(u, U? w7 Z) - (07 07 w7 0)7
QS_ (U, v,w, Z) = (Oa 07 Oa Z);

we will have, for every (t,s) € R?,

(5) 2 a(s)
(t) 50(8)(COSS—1)/2 < (1) &a(s)

0
|70t = vzl =

and ( y
3 3 b(t) c (t) cost—1)/2 b(t)
HE’SQS H = “‘/1573“ - b(S) 6:(3)(coss—1)/2 S b(S) 6[](8),

because €4(s) = 1 and ey(s) = 1. Morover, assuming that

(cost—1)/2 (coss—1)/2
aEg) (2:8) > 1 for every (t,s) € R2,  (1.3)

a

Va)
S~—

a
~—~

(V)
N—
RS

[}

™
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which is equivalent to
a(s) 5a(t)((ﬁost—1)/2) C(t) gc(t)(cost—l)ﬂ
a(t) €a($)(0058_1)/2 = C(S) gc(s)(coss—l)/2

for every (t,s) € R2

and
Cl(S) 5a(t)((COSt—1)/2) o C(t) €c(t)(COSt_1)/2
a(t) ga(s)(coss—l)/2 = C(S) gc(s)(coss—l)/2

for every (t,s) € RZ,

we have
t)(cos t—1)/2

s)(cos s—1)/2

(cost—1)/2

\
a
—~
V2)
~—
Q!
k=1
—~

for all (t,s) € RZ,

a
—~

~+
~—

™
a
—~

T4 Psl| =
for all (t,s) € RZ,

(coss—1)/2

oo
~—~ —~
(V)

s)  forall (t,s) € RZ,

N

<«®) ec(s)  forall (t,s) € R2.

Therefore, if ([L3) is satisfied, equation (L2)) has a generalized trichotomy with

bounds

a(t) €a(s) for all (t,s) € R2 with t # s,

Qps = S min {g4(5),e(s)}  for all (t,s) € R* with t = s,

c(_t)) ee(s) for all (t,s) € Ri with t # s,
L ¢(s

+ = %50(3) for all (t,s) € RZ,
B = o(t) £o(s) for all (t,s) € RZ.

(1.4)
We are going to call the trichotomies with this type of bounds by monuniform

(a,b,¢,0)—trichotomies.

81.2.2 p—nonuniform exponential trichotomies

In this subsection we present particular cases of the nonuniform (a, b, ¢,?) —tri-

cotomies.
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Example 1.2.2. Let p: R — R an odd increasing differentiable function such that

lim p(t) = 4o0.

t—+o00
In ([L4), making

a(t) = e~ ®) c(t) = e PO p(t) =e PO d(t) = e O

and
ea(t) = ep(t) = ec(t) = eo(t) = D PO,
with
a,b,c,d,D,e € R such that D > 1 and € > 0,
we get

D eale®)—p(s)l+elp(s)| for all (t, s
Qs =

)

(t,s) €
D ecle)—pttele)  for all (L, s) € IR2<,
(1.5)
Bt = D eMle=pl)ltelp)l for all (t,s) €
By, = D elels)=rl+elo(s)] for all (t,s)
This kind of bounds for the trichotomy, called the p—nonuniform exponential
trichotomy, were considered by Barreira and Valls [12, [I1]. Note that in this case
condition (L3)) is equivalent to a + ¢ > 0.
When p(t) = t we obtain the trichotomies considered by Barreira and Valls in [2],

the nonuniform exponential trichotomies, with the bounds of the form

D e?t=s)Felsl for all (t,s) €
D ec=t+elsl - for all (t,s) €
By, = D edt=s)+elsl  for all (t,s) €
B, = Debs—telsl  for all (t,s) € R2

Another ezample of p—nonuniform exponential trichotomies that we are going to

consider is when the function p is given by
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p(t) = sgn(t)In (1 +|t) = In ([1 + \tusg“(”) . (1.6)
It is clear that ([IL6)) is an odd differentiable function with

1
1+ |t

pt) =
always positive. For this choice of p in (LX) we have

m} (L4]s)e for (t.s) € RE,

[l

T+ 1)

(1 + Js]=”
)

Qs = c
[m} (1+s))e for (t5) € RS,
d
1+ [t])n0
+ D (— 1 € 2
Btvs |:(1 + ‘S‘)sgn(s) ( + ‘8‘) fOT’ (t7 S) S R>>
b
_ [ .
Bis=D {W (1+ |s]) for (t,s) € R2.

81.2.3 p—nonuniform polynomial trichotomies

Here we present another type of bounds for the trichotomy.

Example 1.2.3. Let p: R — R be an odd, differentiable function with positive
derivative such that tliin wu(t) = 4+o00. Obviously u(0) = 0. Consider a,b,c,d, D, e
—r 00

real constants with D > 1 and € > 0. Suppose that (L1)) admits bounds such as

DUt = )+ ()| + 17 for al (1,s) € R,
" DOu) — ) + () + 1) Sor all (45) € B,
B, = D(u(t) — u(s) + D(|u(s)| +1)°  Jorall (t.s) € RE,
B = D(uls) — u(t) + 1)°(lu(s)| +1)°  Jorall (t.s) € RZ.
These trichotomies are called p—nonuniform polynomsial trichotomy.

When u(t) =t we name the trichotomy by nonuniform polynomial trichot-
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D(t—s+1)"(]s|+1)°  forall (t,s) € RZ,
e D(s—t+1)%(|s|+ 1) for all (t,s) € RZ,
Bf =Dt —s+1)%s|+1)F  Jorall(t;s) € R,
(,s)

Bro=D(s—t+1)"(|s| +1)° for all (t,s) € R2.




Chapter 2

Robustness

The purpose of this chapter is the study of the robustness problem for
equation (LLI), where A: R — B(X) is a continuous map. Supposing that (LI
admits a generalized trichotomy with bounds o, 6;; and (3, ;, we are going to

prove that equation

V'(t) = [A(t) + B(1)]v(?) (2.1)

also admits a generalized trichotomy when B: R — B(X) is a continuous function
such that B(t) has sufficiently small norm.

In Section 2.1] we state the main result of this chapter, in Section we present
several particular cases of the main theorem and in the last section we prove the
main result. Our main goal in this chapter is to unify the several settings in the
literature considering a general situation that includes a wide range of nonuniform
behaviors. Moreover, it was also our goal to improve some existing results in the
literature, namely the ones achieved by Barreira and Valls in [10].

It should be pointed out that the proof of Theorem 2.1.1] that we give in this
work is different from the proofs given by Barreira and Valls [10] for nonuniform ex-
ponential trichotomies and by Jiang [37] for nonuniform (u, v)—trichotomies. In [10]

and [37] the proof of robustness is made in terms of the robustness of the correspond-
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ing dichotomies. In our work we give a direct proof without using the corresponding
robustness for the dichotomies. As far as we are aware, this proof is a new one for
trichotomies.

The results of this chapter are from Bento and Costa [14].

§2.1 Main Theorem

First we need to introduce some notation. Denoting the perturbation function

B(t) by By, we define the constants A, AT and A~ by

A S AJ’_S >\_8
A= sup 22 Ati= sup 2 and A\ = sup = (2.2)
(t,s)eR2 Qs (t,s) GIE{ 51& s (t,s) G]R Bt s

where )\, 5 is given by

t “+o00
/ corlBillavsdr| + [ BBy loms dr
° ! (2.3)

—+o0
/ 551IB, Hamdr—l—/ oo, | BoIB dr,

)\t,s :/ atTHB ||/87:8d/r+

AL, is defined by

+o0
M, = / 55118, r|amdr+/5 1B.II57, dr+/ oo, | BB, dr
t

oo (2.4)
T / BB dr+ [ Bo\BG,dr
—00 t
and A, is given by
t S “+o0
AL = / o, | B l| 6, dr + / BB B dr+ [ BByl dr
- ¢ . s (2.5)

N A A A

Now we state the main theorem of this chapter which says that, under certain
conditions, we can guarantee that the perturbed equation (Z1I]) admits a generalized

trichotomy, when (II]) admits the same type of trichotomy.
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Theorem 2.1.1. Suppose that equation (L)) admits a generalized trichotomy with

bounds s, B, and B;rs such that

sup M — oo for every (£,s) € R?, (2.6)
teR Oy

Bt—t_s 2
sup —— < 400 for every (£, s) € RZ, (2.7)
=L Bt,é -
sup —* < 400 for every (£,s) € R2. (2.8)
1<t Biy b

Let B: R — B(X) continuous. If
max {\, A7, A7} < 1 (2.9)

where X\, AT and A\~ are defined by (22), then equation (210) admits a generalized

trichotomy with bounds ooy s, O’Bt—t_s and o3, ; with o given by

1
.

T 1 max {\, AT, A"}

The proof of this theorem will be given in the last section of the chapter.

§2.2 Examples

In this section we apply Theorem 211l to nonuniform (a, b, ¢, ) —trichotomies,
p—nonuniform exponential trichotomies and g—nonuniform polynomial trichoto-

mies.
§2.2.1 Nonuniform (a, b, ¢,0)—trichotomies

We begin with the nonuniform (a, b, ¢, 9) —trichotomies.

Theorem 2.2.1. Suppose that equation (L)) admits a nonuniform (a,b, ¢, 0)—tri-
chotomy. Let B: R — B(X) be a perturbation function such that

(1)
max {e4(t),p(t), (), (1)}

1Bl <6
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where 6 > 0 and v: R — R is a function such that /Jroov(r) dr < +oo. If

a(r) 9(s) ea(s) )
a(s) 0(r) eq(s) SM- for(r,s) € RS, (2.10)
¢(s) b(r) ev(s) 2
¢(r) b(s)e(s) M- for(r,s) € Re, (2.11)
¢(s) 3(s) £c(r) €a(s) : 2

c(r)o(r) < M min {e.(r) e5(s),ec(s) ea(r)}  for (r,s) € R>, (2.12)
a(r) b(r) eq(r) ep(s)

< M min {eq(r) eo(s), ea(s) es(r)}  for (r,s) € RZ (2.13)

for some M > 1 such that

S(M? + M + 1)/+O° V() dr < 1, (2.14)

then equation (1)) admits a nonuniform trichotomy with bounds of the form ooy,

o, and of,.

Proof: For this type of bounds it is clear that (Z6]), (Z7) and (2) are verified.
Clearly, conditions (ZI0), (Z1I1)), (Z12) and (2I3]) are equivalent to

Bl < Moy, for

B
—_
Ot

Brs < Ma, s for

b
=
=

—— /N /N
S
i
~

— N N~

awﬁ:s < Mmin{e(r)es(s),e0(r) ec(s)}  for (r,s) € ]R;,
EplS

By < Mmin {e,(r) g4(5),€a(s) €u(r)}  for (r,s) € Ri,

B
—_
0]

respectively. We must prove that the integrals present in the formulas (Z3)), ([2.4)
and (ZX) are finite and that (23] is verified. By definition we have

arseq(r) ift>r>s

Ot r Qs = ’ (219)
arse(r) if s>r>t,

BBl = Blea(r)if t > r > s, (2.20)

BiBrs = Brsco(r) if s 21 >t (2.21)
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Therefore, using (2.17), 2I7), (2I8), (ZI6) and the last three equalities we have

,
Oét,sas,rﬂ;«i:s/gc(s>

Moy ya

\ Oét,rﬁj:tﬁt—t_s/gb (t)

Oét,T/B::s g

”
Oét,sas,rﬂgs/gu(s)

Urfrs < § May

\ Oét,rﬁ;tﬁt_,s/gb ()
4

B oy s /e(t)
Bt—t_rar,s < MOét’,«OéT,s

\ 5:35;:7"@7“78/60 (S)

ﬁt_,sﬂgrar,s/gb (S)

ﬁt_,rar,s < Bt_,rar,tat,s/ga(t)

Moy yo,

\

+ - _
Bt,r r,s_<

N

N

;

ifr>s>t Moy s&o(r)
ift>r>s5 S Magea(r)
ifr>t>s Mg ec(r)

\

)
ift>s>r Moy se6(r)
ifs>r>t< Mat,85C(r)
ifs>t>r Mﬁt_,sﬁ?a(r)

\

4
ifs>t>r Moy se5(r)
ift>r>s < Moysear)
ift>s>r Mﬂ;_S&(T)

\

4
ifr>s>t MpB; eq(r)
ifr>t>s5 < Moyeo(r)
ifs>r>t May sec(r)

( 3+ A+ 2—
Bt,s s,ri-r,s

ft=>s>r
+€a(_8) B
Bt,rﬁr,tﬁt,s lf S > t > r
( + B+ o
Bt,s 8,7 T,S ft>8>7’
NON
at,rﬂr,tﬂt,s ifs>t>r
\ ep(t)

(
M?Ble(r) ft=s>r

if s>

~+

>r

| M267u(r)

ifr>s>t
ift>r>s
fr>t>s
ft>=s>r
ifs>r>t
ifs>t>r
ifs>t>r
ft>r>s
ift>s>r
fr>s>t
fr>t>s
fs>r>t

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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and finally

p
Bt_,sﬂs_,rﬁ;t_s/gb(s) if r 2 S > t

B Biibis/ea(t) ifr>t>s
\ b 9 b

— Q2+
51&,7" rs

(
Mﬁ;sﬁgram/eb(s) fr>s>t

N

\Mat,rﬁ;ftﬁt—t_s/&fa(t) 1f’f’>t>s

)
M26t_,35u(7") ifr>s>t

N

~

\M2B;fsgc(r) ifr>t>s.

(2.27)

We are now in conditions of prove that A\, AT and A\~ are finite. So for every

(t,s) € R2 using ([23) and inequalities (219), [2:22), 223), 224) and 228) we

have

—+o00

S t
Mes = / o, | BB dr + / cur| Bollowadr + [ Brl|B o drt
s t

t +oo
+/ B:THBTHozmdr—i-/ ozt,r||BT||6:8dr

“+oo

< (M2 +M+1) at,s/ max {€q(r), &(r), £c(r), €(r)} || By dr

—0o0

+oo

<6 (M?+M+1) am/ y(r) dr.

On the other hand, for every (¢,s) € RZ

“+oo

Mo < (M2 + M+ 1) o / max {eq(r), £6(r), e(r), 0(r) } | B, dr

—00
“+oo

<(5(M2+M—|—1)at78/ y(r) dr

—00
and therefore
“+o00

At,s
A= sup - <6(M2+M+1)/ y(r)dr <1

(t,s)€R2 Ot,s —0o0

which implies that A < +oo.

In a similar way we can prove that AT is finite. By (24) and the inequalities
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above (224, [220), [222), (220) and 227) we have for every (¢,s) € R2

s t 400
Mo= [ SBlansdr+ [ 81BN+ [ o B85 dr
—00 s t

“+00

[ LB ars [ g B ar
—oo t

“+o00

s t
< [ MaemBldr s [ BLa@B e+ [ MO B drt
— o s t

“+o00

+ [ aesie@Bldr [ 3P se) B dr
oo t
+o00o

<5(M2+M)B;;/ ~(r) dr.

—00

Finally, using (2.3) and the inequalities (2.23), [2.21)), ([2:25)), (226) and (2:27)

we get, for every (t,s) € R2

t S “+o00
AL = / o | Bl dr + / BolBBmdr+ [ BB lans dr
[e'e) t

s

“+oo

t
T / BB B dr+ [ BLlIBGY dr

—+00

t s
< [ Mo aBldr+ [ )| Blldr [ MBe)| Bl dr
o) t s

—+00

t
—l—/ MQBgsga(r)||BT||dr+ MQB;Sgu(r)HBTHdr

S

+0o0
<54 )5, [
which implies that A~ < 4-00.
Hence, for
1
0 < T
(M2+M+1)/ y(r) dr

the condition (2.9), max {\, A", A"} < 1, is verified and so all the conditions required
by the theorem are satisfied. This completes the proof. O

82.2.2 p—nonuniform exponential trichotomies

Now, we are going to apply the last result to p—nonuniform exponential trichot-

omies.
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Theorem 2.2.2.  Suppose that (LI) admits a p—nonuniform exponential trichot-

omy. Let B: R — B(X) be a continuous perturbation function such that

Delb® D

or some 0,y > 0 such that 6 < T
J g 5

1B < P (t) e~ O+l

b<e, d<a, ¢+d<0, a+b<0 and €—v <0,

then equation (210) admits a p—nonuniform exponential trichotomy with bounds of

the form ooy s, o, and 0.

Proof: The bounds of the form (L5]) are a particular case of the bounds of the

previous example if we consider
a(t) = e—ap(t)7 c(t) = e—cp(t)7 b(t) = e—bp(t)7 2t) = o—do(t)

and

(1) = 24(t) = =) = 2(t) = D,
where D > 1, ¢ > 0 and a,b,¢,d € R. Then the conditions required ([2.16), [2.15),
[(2I7) and (2I8) become, respectively,

b<e, d < a, c+d<0 and a+b<0,

with M = 1. Moreover, since (t) = p/(t) e="?®! and ~ > ¢ then

400 2
/ y(r)dr = S < 400

[e.e]

and so (2I4]) becomes 0 < % O

Corollary 2.2.3. Suppose that (1)) admits a nonuniform exponential trichotomy

and B: R — B(X) a continuous perturbation function such that

6 —(&
HBtH < Be ( Jrv)\ltl7

with v € R and for some 0 < § < % It is obvious that then equation ([2I) admits a

nonuniform exponential trichotomy with bounds of the form ooy s, UB;; and o3, ; if

b<c, d<a, c+d<0, a+b<0 and e—v<0.
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Here we accomplished a better result than Barreira and Valls had previously

achieved in [I0]. Note that in [10] is used, in our notation, the condition

< min —d—c —b—a
c 2 ' 9

which is more restricted than our hypotheses.

82.2.3 p—nonuniform polynomial trichotomies

Now we will consider pg—nonuniform polynomial trichotomies.

Theorem 2.2.4. Suppose that equation (L)) admits a p—nonuniform polynomial

trichotomy. Let B: R — B(X) be a continuous perturbation function such that

1Bell < op' (&) (lu(@)] +1)77,

le — v+ 1|
6D

b<c<0, d<a<0 and e—v+1<0,

for someyeR. If 0<d<

then equation (210) admits a p—nonuniform polynomial trichotomy with bounds of

the form ooy s, o, and 0.

Proof: To prove that the conditions of Theorem 2T Tlare verified we need to compute

the integrals in formulas (2.3]), (24]) and (Z.5).

It follows,

for every t < r < s,

a5, s < Doy s(Jp(r)] + 1)° because b < ¢ <0,

Brrs < o poys < Doy o(|p(r)| + 1)° because b < ¢ < 0,

5 ) ) )

for every r <t < s,

By < Days(|pu(r)] + 1) because b < ¢ < 0 and a <0,

Bifars < Boans < Doy o(|p(r)| + 1)° because ¢ < 0 and d < 0,
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for every t < s < r,
By < Doy o(|pu(r)] +1)° because ¢ < 0 and d <
B s < DB (Ju(s)] +1)° < Days(|p(r)| +1)° because a < 0 and b < ¢ < 0.

We can also write,

for every r < s < t,

Bivars < aprars < Doy o(|p(r)| + 1)° because ¢ < 0and d <

By < Days(|p(r)] + 1)° because a < 0 and b < 0,
for every s < r < t,

a0 s < Doy o(|p(r)| + 1)° because a < 0,

N

Bivars < aprars < Doy o(|p(r)| + 1)° because d < a <0,
atmﬂ,ffs < o0y < Doy g(p(r)| +1)° because d < a <0,
and for every s <t < r,
By < appays < Doy (|u(r)| + 1)° because d < a and ¢ < 0,
Birrs < Bipass < Dags(|p(r)] + 1)° because a < 0 and b < 0.

Therefore, the integrals we need to compute \; ; become,

for every (t,s) e R, if b<c¢<0,a<0andd<0

/ " a IBI65, dr < Dia, / () + 1 dr, (2.28)
/ i IB, 1B, dr < Do / ) ()] + 1 dr, (2.29)
/ts || Byllog,s dr < Déats/ts W (r)(|p(r)| + 1) dr, (2.30)
/ " BB v dr < Déan,, / ) ()] + 1 dr, (2.31)

+o0 +o0
/ Bl Brllows dr < Déam/ p (r)(|u(r) + 1) dr, (2.32)

/ B4 1B, s dr < D(Sozts/ ) ()] + 1) dr, (2.33)

—0o0

+oo
/ ae, | BIB dr < Déay, / W)+ D dr (2.34)
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At last, for every (¢,s) € R2, if we consider d < a <0, b < 0 and ¢ < 0 then

[ B < v, [ W)+ v a 35)
e L
/ aur|| Byl dr < D, / W) ()] + 1) dr, (2.36)

+00 +oo
/ Biel| Brllans dr < D5ats/ W (r)(u(r)] + 1) 7 dr, (2.37)
t t

[ sBdasdr < Dios. [ w0 @
/ B5B, oy dr < Déa / L)) + 17 dr, (2.39)
/ au, | BolIY, dr < Déa,, / L)) + 17 dr (2.40)
s+oo s .

/ au, | BolI, dr < Déa,, / L) £ 1 T dr (241

Now if we consider

for every r < s <t we have

Bivars < DBF(Ipn(r)| 4 1)7 because ¢ < 0 and d <
for every s < r < t,

BB < DB (Ju(r)] + 1)° because d < 0
for every s <t <,
B < B, < DBFL(Jn(r)| 4 1)7 because ¢ < 0 and d < 0,

for every r < s < t,

BB < DBF(Ju(r)| + 1) because b < 0 and d < 0,
and for every s <t < r,

51& rﬂrs ~N trﬁts ~N Dﬂt—t_s(‘:u(r)‘ + 1) because C 0 and d
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Therefore if b < < 0 and d < 0 we get for every (t,s) € R2

/ 8L\ Bolavedr < D35S, [ () (1) + 17

oo

[ piBs dr < Das, [ e ute) + 0 a

+00
l Qs,rl| By 18 dr < DB, / 1 (r)(|p(r)| + 1)=7 dr,

/ Bl BrllB, s dr < D(WS/ p (r)(|u(r)[ + 1) dr

o .
| BB ar < Dass, [ )]+ 15

Finally,

for every r <t < s,

a”ﬂrs Qi Tﬁts X Dﬁt_,s(|ﬂ(7“)| +1)°ifa<0and b <

BB < BB < DB (Ju(r)| + 1)%if b < 0 and d < 0,

for every t < r < s,

BiBrs < DB (|u(r)|+1)7if b <0,

and for every t < s < r,

Birours < By s < DB (Ju(r)| +1)7if a <0 and b <0,
Bt,r T8 < Dﬂts(|lj’(r>| + 1) if b 0 and d 0.

Therefore if a,b, d < 0 we get for every (t,s) € RZ

/ OztrHB Hﬁrs d?” D(sﬁts/ M/(T)(|M(T)| + 1)‘5_7 d’r7

—00 — 0

/ BB 185, dr < DB, / W) ()| + D)= dr,
t t

too +o00
| BlBdacdr < D35, [ W)t + 07

s

[ simsar < 0o [ i)+ 1 ar

o0

+00
[ bl ar < pss, [ ) uto)] + 17

s

(2.42)
(2.43)

(2.44)

(2.45)

(2.46)

(2.47)
(2.48)
(2.49)
(2.50)

(2.51)
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Now we are in conditions to estimate A, At and \~.

So for every (t,s) € RZ by (23), (235), 2.30), 237), [237), 239), (240) and
(241]) we can put
“+00

s t
)\t,sz/ at,rHBTHB;SdT_‘_/ at,rHBrHO‘r,sdr_‘_ BtTrHBTHO‘r,sdT

50 t

t “+o00
T / BBy o dr + / o, || B 152, dr

[e.e]

< D6 ar, ( / ()| - 1 dr / W () ()] + 1) dr

i / T W)+ 1) dr / W () ()] + 15 dre

—00

[ )+ 1 )
<oba (2 [ w0 [ ) ()] + 1 o)

+0o0o
<6D6 an, / W) ()] + 15 dr
0

and if we require that e — v+ 1 <0, d < a <0 and b, ¢ < 0 we can write

1
le—v+ 1

On the other hand, for every (¢,s) € RZ and by (2.28), (229), (2.30), (231), [2.32),
(Z33) and (234) we have

Mo < D6 ay,s ( / ()| -1 dr / )l + 1) dr

oo

Ats < 6Dy for every (t,s) € Ri.

t

N / Tl + ) dr / W () ()] + 15 dre

—0o0

i+ /S+°° 1 (r)(|p(r)] + 1) dr)
< D6 oy <2 /_+OO () (|p(r) ]+ 1)7 7 dr + /ts w (r)(|p(r)] + 1) dr)

“+oo
< 6D6 ozt,s/ w(r)(|p(r)| + 1) dr
0
and therefore if we require that e — v+ 1 <0, b < ¢ < 0 and a,d < 0 we can write

Ats < 6DJ s , for every (t,s) € R2

1
le — v+ 1]
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and so

Ais < 6DJ s , for every (t,s) € R?,

le — v+ 1|
which implies that by (Z2) , A < +oc0. In a similar way we can prove that A* is finite.

Since by (242), 243), (244), (245) and (246) we can say, for every (¢,s) € R2

that

s t 400
Mo= [ SiBlasdr+ [ 8BS dr+ [ o B8 dr
—00 s t

—+00

[ LB [ A B ar

t

< DBy, (/ u’(r)(lu(r)|+1)g‘”dr+/ p(r)(|u(r)] + 1) dr

— o0
S

+/t oou’(r)(lu(r)|+1)5‘”dr+/ 1 () (Jp(r)] 4+ 1)57 dr

—00

[+ 1 )
- oo, [ O+ 0 [ )

s u'<:<|u<r>| F1Far) h

+oo

<2058/, / () ()] + 1) dr

—00

where, considering ¢ —y+1 < 0 and b,¢,d < 0 we get

A, <4ADSB, , for every (t,s) € R2

1
le — v+ 1]

which implies that, by [2.2), AT < +oo.

Finally we must prove that A~ is finite.
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By (247), 248)), 249), 250) and (251 we get
“+o0

t S
AL = / o, | Bl B dr + / BB B dr+ | BBl dr
t

s
“+o00

t
[ st [ g B ar

s

<o oo ([ w0+ 07 [+ 17 dr

—0o0
t

[T+ e [ )+ 1

—0o0

o G o)
=g [ wuon+ v [ e+ 0

[e.e] — o0

s [+ 1 dr}
<20 o5, [ ) () + 17 dr,

—00

and if we suppose € — v+ 1 < 0 and a,b,d < 0 it follows

Ao 4D 053, , for every (t,s) € RZ

le —~v+1]

— 1
which implies that, by (Z2), A~ < +oco. Hence, if § < |6677D+‘ then condi-

tion (29), max {\ AT, A7} < 1, is verified and so all the conditions required by the

theorem are satisfied. This completes the proof. O

In the next corollary we will consider nonuniform polynomial trichotomies, i.e.,

we make u(t) =t in the last theorem and the result follows immediately.

Corollary 2.2.5. Suppose that equation (L) admits a nonuniform polynomial

trichotomy. Let B: R — B(X) be a continuous perturbation function such that
[B:ll < o(ft] +1)77,

le —v+1|

R. If 6 <
for some ~y € f D

b<c<0, d<a<0 and e—v+1<0,
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then equation (ZI)) admits a nonuniform polynomial trichotomy with bounds of the

form ooy, 0B, and of,.

§2.3 Proof of Theorem [2.1.1]

Before proving this theorem we need to introduce more notation and state several

lemmas that are indispensable to accomplish the proof.
82.3.1 Auxiliary Lemmas
For every s € R, let

Us
QY = {U = (Uts)yer : Urs € B(X), t = Uy, is continuous, sup (| < +oo} :

tcR O s

Vi
Qf = {V+ — (Vt;)t% : Vt*;, € B(X), t— Vt*; is continuous, sup | t+ | < +oo} ,

t=s t,s

i<s t,s

N N . . Vsl
Q =4V = (Vt,s)t<s 1 Vi, € B(X), t =V, is continuous, sup —=— < +00 ¢ .
. ) are Banach spaces, where
U] Vsl - Vil
U|? := sup —22=, V! :=sup— and \%4 = sup ——.
U= sup EEL V= VI = s

For each s € R, let €, be the Banach space Q, = Q% x QF x Q7 equipped with

The pairs (5, ]| - [12), (2, || - 1) and (27, |- [I7

the norm

IO VYVl = max {|UJIS, VLIV

Letting, for every t,s € R
Cis = Ti s Ps B, D;FS =T,,QFBs and D;, =T, .Q; B (2.52)

from [[D1)] [[D2)] and [[D3)| we have
[Cesll < NI TesPsll || Bsll < cursl|Bsll - for every (t,5) € R?,
1D < N Tes QN I1Bsll < BLIIBs|l - for every (t,s) € RE, (2.53)
Dol < N Ts@5 || 1Bsll < Bl Bsll - for every (¢, ) € RZ.

NN

N
| <
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Lemma 2.3.1. Let s € R. For every (U, Vt V™) € Q, define
LUV V) = (LU, VH V7)), cn (2.54)
where
s t +o0o
Ji(U VT V) =— / CiV, o dr +/ CirU,sdr — / D; U, s dr
- S ! (2.55)
+ / D:TUM dr + C’t,TK; dr.
Then J is a bounded linear operator from €, into Q° and
[Js] < A (2.56)

where A is given by ([2.2]).

Proof: From ([2.2)), (Z.3)), (2355)) and the definitions (Z52), [252)) and ([Z.52) we obtain

|65 (U, VE V)

S t “+o00
</HQAWMW+/W%MMMW+/ 1D Url dr
—00 S t

t +o0
[ DG Wl [ G 1V ar

s t
< [ aulBlg Vol ar+ | [ alB andulds

o0

—+00

t
+ Bl Brll Oér,sIIUIISdTJr/ BB arsllU1S dr

t

+oo
[ Bl s IV ar

+oo
+ 5;r||BrHO‘T,8 dr

t

t
/ at,r||Br||ar,s dT
s

g (/ at,rHBrH5;5 dT+

— 00

t +o0
v [ B e+ [ lBaL ) 10V,

= As 1TV V)]s
<A aws (U, VE V)]s

Therefore, J; s is a bounded linear operator from €, into B(X) and

| Jes]| < Ay forallt € R.
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This proves that J; is a linear bounded operator from €2, into Q2 and verifies condi-
tion (2.56]). O

Lemma 2.3.2. Let s € R. For every (U,VT, V™) €, define

LU VY Vo) = (LL WUV V), (2.57)
where
+o00o
IRUAGRS / DU, dr + / DAV dr / Coa Vit dr
. ‘ (2.58)
D;_r‘/rsdr_ Dtr‘/r—;dr

Then LY is a bounded linear operator from Qg into QF and

LS < AT (2.59)

where AT is given by [2.2).

Proof: Let s € R. From (2.58), (Z53) and (2.2)) we have

1L (U VE VOl

+o0o
< [ g iar+ (i [ icu v e
— t
[ g [ v ar
+o0
< ([ adaedr+ [ spimissar+ [ ansls, o
t

“+oo

= [ sslsdsars [
oo t

B,15, dr) |, v+ Vs

= A0V VI
SATBLIOVE VI -

Thus, L;, is a bounded linear operator from €, into B(X) such that
1L < ATBf,  forall t>s.

Therefore L is a linear operator from ), into QF and verifies the condition (Z5Y).

O
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Lemma 2.3.3. Let s € R. For every (U, VT, V™) €y, define

L (UVT V)= (L;S(U, V+,V_))t<s, (2.60)
where
LtSUVJr - / C’tTV dr — / Dy, Tsdr—l— D;TUr7sd7’
(2.61)
+/ D;mdw Dt_,TVTj; dr.
Then L is a bounded linear operator from Qg into Q2 and
IL <A™ (2.62)

where A~ is given by (2.2])
Proof: From (261]), (253) and ([22) we have
PRCARNS]
< [ icwtwnar+ [pn waldrs [ ID5I 10 ar
t
o A Py A A A

—00

+oo

t
<(/CMWW%W+/@MWMAH- S| Bl dr

+oo

/ Bl BrllBy s dr + Broll Brll B dr) U,V V)l

= A IO VE VI
<A B IOV VIs

Therefore, L; is a bounded linear operator from €2, into B(X) and

[ Les|l < A7 By,
and this proves that L is a linear operator from  into Q2 that verifies (2.62). O
Lemma 2.3.4. Let s € R. For all (U, VT, V7)€ Qy, let

T,(U, VT, V7)) = (JS(U, vVt Vo), LHU, vt v, L (U, V*,V‘))
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where Jy, LY and L are defined by ([2.54), (251) and (260) respectively. Then T

is a linear operator from g into €2, such that
75|} < max {\, AT, A7} < 1.
Proof: Tt is obvious considering Lemmas 2.3.1], 2.3.2] and 2.3.3] O

Lemma 2.3.5. Let s € R. Then there exists a unique (U, VT V™) € Qg such that

Ups =T} Ps + Jos(U, VT V) forall (t,s) € R?, (2.63)
Vi = T0,QF + L, (U V, V™) for all (t,s) € R2, (2.64)
Vie = T.sQ; + L (U V*, V™) forall (t,s) € RZ. (2.65)
Moreover,
|Uisll €0 v for every (t,s) € R?,
Vil <o Bf,  for every (t,s) € R2
and
IVisll <o B, for every (t,s) € RZ,
1
where o =

1 —max {\, A7, At}
Proof: Let s € R and define I'y by

Fs == ((Tt,sPs)te% (Tt,SQ:)t>87 (irt,st_)tSS) .

Then, considering [(D1)], [[D2)] and [[D3)], we can say that I', € Q, and ||T|, < 1.
Let T4: Q, — Qg be the operator defined by

Ts=Ts + T

Since T is a linear contraction with Lipschitz constant max {\, AT, A7}, Ty is also

a contraction with the same Lipschitz constant. Therefore, since €2, is a Banach
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space, by the Banach fixed point Theorem, T, has a unique fixe point, that we will

call (U,V*+, V™) and obviously verifies (Z.63), (2:64)) and (Z.65).

Also from the proof of the Banach fixed point Theorem, we have
(U, VF, V™) = (0,0,0)[|s < o[ T5(0,0,0) — (0,0,0)[[s = || Ts]ls < o

Considering the definition of || - ||5, we have ||U;]| < oy for every (t,s) € R?,

VISl < o, for every (t,s) € RZ and ||V < of;, for every (t,s) € RZ. O

Lemma 2.3.6. Let s € R. The point (U,VT, V™) € Qg is a solution of the
equation (21]).

Proof: From (2.63)) and (Z58), for all (¢,s) € R?, we have

—+00

t
s =T, Ps / C’”V dr—l—/ Ci U, sdr — D;TUmdr
t

/ DfUnsdr+ | C, Vi dr.

Noting that the right-hand of (2.63) is differentiable in ¢, then

s

W o
Cr ()P, v(t)/

—00

¢
P,B,V, dr + v'(t) / P.B,U, sdr

—+00

+ PtBtUt7s — Ul(t) Q;BTUT,S d?" + Qt_BtUt,s

t

t +o0
' t)/ QF BU,sdr + Qf BlUy s + v’(t)/ P.B,V,{ dr

S

t
= AtTt”gPS — At/ Otﬂ"‘/r:s dr + At/ Ct,TUT,S dr

“+oo
+ PtBtUt,s - At D;rUT,S dT’ + Qt_BtUt,S
t
“+oo

t
A, / DfUpdr +Qf Blyo+ A, [ Co,Vikdr

s

=AU s+ PBU s+ Q; BU, s + Q:—BtUt,s
= AU s+ BUy
- (At + Bt) Ut,S'
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In a similar way, from (2.64) and (ZE8) we have for all (¢,s) € R,

+00
V= T.QF / D} Usydr + / pividr— [ cLVidr
t
/ Dt—’_r‘/rsdr_ Dtr‘/r—i_sdr
and
6th; + / T4 / ' + +
5 = AT, QF — () Qr B.U, dr +'(t) | QFB,V, dr

—+o0
CQFBYE — () / BB,V dr + P.BV,"
t

S +0o0
) [ QEBVLdr =) [ Q BV dr+ QB
—00 t
= (A + By) Vt?
Finally, from (2.65) and (Z61)) we have that

t +o0
Vt;:TtsQ_—i—/ Ci,V, o dr — /D” mdr—l— D, U, sdr

tr'rs

/ Dy, 74sal7’+ D Vdr

for all (t,s) € R and so

oV, _ ! _ _
at == AtE,SQS + v (t) / PTBT‘/7“73 dr + PtBt‘/t,s
s = +o00
) [ QB+ QB+ [ QB dr
tt ° —+o00
H0) [ QB QiBVL W) [ QB VL
= At‘/t,_s + Btvt;
and this completes the proof. O

Lemma 2.3.7. Let (t,5) € R%. Then we have

(

Uss = UpUp s for every  ({,t) € R?,

VZ;UM =0 for every  ({,t) € Ri,

ViiUis =0 for every  ((,t) € RZ.
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Proof: Let (t,s) € R?* and define

(

Woi =UpUps —Uss,  (0,1) € R?

N Ziy = ViiUss, (¢,t) € R2

Zyy = ViU (¢,t) € RZ.
\

We must prove that

W=We)er €%, Z7=(24),, €9 and Z~=(Z;),, €.

From

«
IWell < NUeell|Ussll + [Uesll < 0 aniUssll + 0 ans < o oy (HUt,sH + Of’s)
it

and using (2.6)) it follows that W € Qf. On the other hand, for every (¢,t) € R2 we

have
1Z5N < VAN Ul < 0 BENUs |-
Clearly we have Z* € Q;. Finally, since for every (¢,1) € R2
1Zoll < Vil Ul < 0 B 10|l

then Z— € Q. Hence (W, Z",Z7) € ;. Now we have to prove that (W, Z% Z7)
is a fixed point of T;. From (Z63)), for every (¢,t) € R?, we have

Wer = UpiUps — Ups = Ty PUy s + Jit(U, VT, V) Us — Uss

and since

s

t o0
T0:PU s = Ty 5 Ps —/ C’MVT; dT’—l—/ Og,rUns dT’+/ C’MVJ; dr

o0 S
we have

400 ¢
D, Uy dr — / DU, dr

0 —00

¢
TZ,tPtUt,s - UE,S = _/ CE,rUr,s dr +
t
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and this implies

W&t — J&t(VV, Z+, Z_)

On the other hand, from (2.64)

and because

we have

Finally, using (2.65])

Zz,_t = ‘/g—;Ut,s = TZ,tQ;_Ut,S + LZt(Ua V+> V_)Ut,s

t
TQF U, — / D}, Uy o dr,

Zz,_t = LZt(VV? Z+> Z_)

Zg_’t = ‘/thUt,s = Té,tQt_ Ut,s + LZt(Ua V+> V_)Ut,s

and because

we obtain

Therefore (W, Z*,Z7) is a fixed point of the linear contraction T, =

“+00

TE,tQt_Ut,s = - DZTUT,S d’f’,

Z;, = Li,(W.2*,.2°).

(Jtv Lz—fi_v Lt_)

and since T; has a unique fixed point, it must be the zero of €2;. So, we must have

(

UpUps = Ups  for every (£,t) € R?,
ViiUis =0 for every (£,t) € RZ,
ViiUis =0 for every (¢,t) € RZ.

Lemma 2.3.8. Let (t,s) € RZ. Then we have

¢

UpiViy =0 for every (¢,t) € R?,

ViV, =0 for every (¢,t) € R,

Vio=ViVia  for every (L,t) € RZ.
\ ’ ’ ) X
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Proof: Let (t,s) € RZ and define

(

Wi = UiV, for every (¢,t) € R?,

Z5 = ViV, for every (¢,t) € RZ,

\ZK_,t =V, Vi = Vi, forevery ((,t) € R2.
Since
Weall < Ul Viall < oaeelIViS]l
we can say that W € Q2. From
1Z < VNIV < o B IVisl
it follows ZT € Q. At last,
/BE_,S

1 Z ol S WVl Vsl + Vel < 0B IVisll + 08, < 08, (HVJSH + B—‘>
0.t

and from (Z8) it follows that Z~ € ;.
Therefore (W, Z%,Z7) € Q4. From (2.63]) we have

Wiee = UiV, =T PV, + Joa(U, VT, VIV
and since
t
Té,tPt‘/t,_s = / Og,r‘/r; dr
we have
Wor = Jo(W, Z7,Z7).
On the other hand, we have

But

t

Qi Vi = / D}V dr

—00
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and so we can write

2t = Li (W, 24,27

Finally, for (¢,t) € RZ we have

Ze,t = Ve,tvt,s - Vf,s

= Tf,tQt_‘/t,_s + Lé_,t(Ua V+> V_)‘/t,_s - ‘/E,_s

and because

TQr Vi = Qs — / DV dr +
t

we have

T04Qr Vi — Vi

and this implies

¢
- / Oé,r‘/r:g

“+o00 “+00

D, Uy dr + D, VL dr,
t 4
dr + / DV, dr — / D}V, dr
¢ —00

Z;, = Ly, (W, 2%, 2°).

Once more, (W, Z", Z7) is a fixed point of the linear contraction and since T; has a

unique fixed point, it must be the zero of ;. So, it follows that

(

UpVis =0

< VZ;V;SZ()

Vi = ViaViz

for every (¢,t) € R?,
for every ((,t) € R2,

for every (¢,t) € RZ.

Lemma 2.3.9. Let (t,s) € R2. Then we have

¢

Ui Vi, =0

,S

+_ it
Vs = VeV

VeVer =0
\ ’ )

for every (¢,t) € R?,
for every (¢,t) € R,

for every (¢,t) € R%.
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Proof: Let (t,s) € R and define

;

Wy = U&tVt; for every (¢,t) € R?,

ZZt — V;;Vt*; — V;; for every (¢,t) € Ri,

Zyy = Vi Vis for every (¢,t) € RZ.
\

Since
[Weall < NUell VAN < o0 [V

it follows that W € QY. From

IZ 0 < IVl VAR + IVELD < o BLNVEEN + 0B8], < 0y, (HVJ;H + gﬁj{)
and (27) it follows that ZT € Q). At last,
1Zeall < IVl VSN < 0B, IViE]
we have Z~ € Q. Therefore (W, Z+,Z7) € ;. From (Z63]) we have
Wiy = UpVit = Ty PVt + Joy(U, V', VOV
and since
+oo

Té,th‘/t:; = Cé,r‘/r—; dr

t

we have
W= Jou(W,Z7,27).
On the other hand, for (¢,t) € R2
Z)5, = ViVik = Vi =T Qf Vi + L (U VH VI)VL = V.
But

S t S
T Qf Vit = T,.QF — / D} Uy edr + / DV dr — / D}V dr,
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therefore
14 +00 +o0

1+ +_ + 1+ + —
Te,tQt ‘/t,s - ‘/é,s - / Dﬂ,r‘/r,s dr — Ceﬂ“‘/r,s dr — Dé,r‘/r,s d?",
t l J4

and so we can write
Zz,_t = LZt(VV? Z+> Z_)
Finally, from (2.65]) we get
Zyy =V Vs = TQ Vi + Ly, (U VT V)V

and because
—+o00o

T Qy Vil = — D, VL dr,
we have
Zyy=Ly,(W, 2%, 27).
Then (W, Z",Z7) is a fixed point of the linear contraction Ty = (J;, L;, L; ) and it
follows that Uy, V,; = 0 for every ({,t) € R?, V,, = V,}V,{ for every (¢,1) € RZ and
V.V, = 0 for every (£,t) € RZ. O

Now we denote by ﬁ,s the linear evolution operator associated to equation (2.1]),
t
Tis =T s +/ 1,,B, T, dr for every (t,s) € R2 (2.66)
Lemma 2.3.10. Let ((,s) € R%. Then

Uuﬂ/:g,sv_ =0 for every (t,f) € R?,

s,8

m@sm =0 for every (t,¢) € RZ,
_ T..Vi, if s<t

VLoV, = ’ for every (t,0) € RZ.
Vis if t<s

N\

Proof: Let (¢,s) € R and define the operators
Wie = Ut,g@@vs; for every (t,£) € R?,

Zt+,£ = ‘/t—;@g‘/;_s for every(t, 0) € Ri’
Vol Vo —T.Vo, ifs<t

Ly = ’ ’ ’ for every (¢,¢) € Ri‘
VieTesVes = Vis ift <s
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It is clear that (W, Z+,Z7) € Q. For every (t,£) € R?* we can write from (2.63)
Wie = ToePTo Vi, + T UV VTV
But from the definition of 7, (260), (Z60) and ([Z52) we have

l
Ty PT0 Vo, = ToPTo Vo, + TooF / Ty, B, 7. drV.,

0
= Crt,sps‘/s,_s + / irt,rpr BrTr,s‘/sTs dr

s y (2.67)
= TmPS/ CS,,J/T; dr + / Ct,,nTmV;, dr
s o 4 i
= / Otﬂ"v;“,_s dr + / Ot,TTT’,S‘/S; dr.
Since, from (Z55) we have, for every (¢,¢) € R?
¢ ¢
UV V== [ GV BV [ CLU BV ar
—00 l
+o0 R t R +o0o .
— Dy Uy /Ty, sV, dr + / DU Ty V, dr + Ci VTV, dr,
t —00 4
(2.68)

then, from ([2.68)) and (267) we get

Wie = UpiTi sV

¢ ¢ ¢
= —/ Ct,r(‘/?:éTé,sVs,_s - T,n’SVsjs) dr — / CioTr sV, o dr +/ CiTrsV  dr

—00 s
t

DU, TV, dr + / DU, T V., dr

t —00

“+oo

t
+/ Ot,TUT,ZTZ,S‘/S;dT_
¢

400 -
+ —
+ Cor VTV dr
l
“+o00

l t
_ / Cy 2y dr + / CooWoedr — | Dy Wydr
l

5o t

“+o00

t
+ / D W, e dr + CinZf dr
—00 L
— Jue(VV, Z+, Z_>
For every (t,() € R2, using (2.64) we can write

Z, = ViV, = TQf TV, + L, (U VY VT, Vi,
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and by (2.60))

¢
T10Qy T, Vey = T10Qy T Viy + T1eQy / Ty, B, T, sV, s dr
¢
=T Qv / T,,Q) B, T, sV, dr

=T,.Q1 V.. /D+T V., dr

- / Djr‘/rsdr_}_/ D:rfr,s‘/&_s dr.
From (Z.58) we get

LUV VLY== | DDLU Vidr+ DEVET, Ve dr
t,l »$ YV s,s t,r trVrd
“+oo
_/ Otr‘/TgTEsV dr — / DMVMTMV dr
t

+00
—/ DMVMTgsV dr
t
and so

Z}, = TQf T Vi, + L (U VT v—)@sv—

tr'rs

s 0
:/ D V™. d7’+/ D;FTTTSV dr — DtTUT,Zﬂ,S‘/sTsdT

o0

/ D VT,V dr — / Co VATV, dr
t
“+oo

/ D”VMTZSV dr — DtTVMTgSV dr

t

t +oo
——/ D:TWMdr—l—/ D:TZ:gdr—/ C’MZ:Edr
¢

l +00
—/ D;FTZMdr—/ D+T V Ldr — Dt_’TZ;fédr

t

/ Dy, rsdr—l—/ D}, TV, dr
— L, (W,2%,27)
For every (t,¢) € RZ, considering that t < s and from (265) we have

Zte—VteTésV_ _Vts —TMQZ Tésv +Lt€(U v V™ )TE,SVS_ Vt_sa
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from (ZG0) it follows that
¢
T 0Qy Tes o = 110Q, Ty sV +TMQZ/ Ty, B, T, sV, s dr
=T,,Q; V., / DMTT $Vsdr
and by (261)) we have
Lo (U VY V)TV, =
t +0o0 -
:/ C’”VMTg $Vigdr —/ D”VMTE Voo dr+ Dy U dTysVeodr o (2.69)
—00 l
+o0o
/ DtTVMTgSV dr + DtTVMTgSV dr.
¢
From (2.66) and the definition (2.65)) for every s € R we can write
E,ZQZ@,S s ‘/t_s
t
=T,:Q; V., / Dy, TTTSV dr =T, sQ —/ Ci,V, dr
/ D; V, dr — D U s dr — / DV, dr — DtrVﬁSdr
1.0+ [ QU+ [ 100D, Vi
/ D;, T,V dr — T,,Q; —/ CirVis dr+/ D, V. dr (2.70)

— D i Uns dr — / DZFTVT5 dr — ”Vrt, dr
+o0 +o; t
— D; U dr + D, , V. Tdr + / D”T,A,SVSTS dr — / C’MVT; dr
S J’_—O(:)O
/ D; V, dr — D U s dr — / DV, dr — D; V.t dr

t t
:/ D;TTT781{QTSdr—/ C’”V dr+/ D”der—/ D;VTSdr

t,r'rs
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Therefore from ([2.69) and (Z70) we have, for every t < s <,
Ziy
=V ToVeu = Vi
t R ¢ R
— / Cop (ViTusVi = TV ) dr = / Dy, (ViTusVie = Vi) dr
t

t
Dy, U0V dr+/ Dy, (VMT“V_ —Vgs) dr

—00

+oo

/DM T sV dr +
¢

¢
+ DMVMTKSV d7’+/ DT,V dr
14 s

t

t +oo
t ¢

—0o0 —00

+00
+/ D;TZ:E dr
J4

=L, (W, Z",Z).
Now for every (¢,¢) € IR2<, considering s < t we have

Ziy = Vi Vi, = TV, = ToQr o Vi + LUV VO TV, = TV

S,87
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from (2.66) and (2.659)) it follows that, for every s € R,
Ti0Q, Tes i TtsV_ =
¢ ¢

= <Tt,éQg_T€,s + Tt,éQg_ / TZ,TBTTT,S dr — Tt,s - / irt,rBrirr,s d’f’) ‘/3:9

¢ R ’ ¢ R ’
- <E,SQS_ +/ D;TTT‘,S dr — ﬂ,s _/ T;f,rBrTr,s d’f’) ‘/37_3

’ t
( T, P~ T,.QF + DtrTrsdr —/ T,.B, der) Ve
t A~

= _Tt,sPsVs,_s — Tt,sQ: Dt 74TT SV dr — / T, B, TrsVe,_s dr
_ / Ty P.Cy, Vi dr — / T,.QF DIV dr + / DT, Ve, dr

[ee] —0o0

t
/ T,+ BT, sV, s dr

l
/ Ctrv dr — / Dt—i_r‘/rsdr_}_/ ‘Dt_ﬂ“TT’s‘/&_Sdr

t
_/ T;f,rBrTr,s‘/sTsd'r

and by (2.6I) we also have (2.69). Therefore from ([2.69) and (270) we have, for
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every s <t </,
thz = ‘/t,_ETe,S‘/s,_s - Ttsvs_s

t t
- / Cor (ViaTosVin = TV ) dr + / Co T Vi dr

—00

£ t
_ / Dy, (W}T&SVS;—TT,SVS;) dr + / D, T,V dr
t s
t

+oo N N
+ / D, Uy Ty Vi, dr + / D, (ViTusVie = Vi) dr
L

—00
—+00 s

t
+ DTV dr + D, VTV dr — / Cy,V,ydr

l —00

t
—/ D;frVT;,dr—/ T,+ BT, sV dr

s
+oo

t 0 t
= / CirZyydr — / Dy, Z  dr + Dy W, edr + / D;Zgédr
—00 t l —00
+00

t s

+ Dy, Z7,dr + / Cy, T sV dr — / Cy, Vi, dr

—00 —00

[e.e] —0o0

V4
t S t
+ / D; T,V dr — / thrlf,;dwr / thrTT,SVS,‘Sdr
t

- / Ty, (P + QF + Q2 )B,Th. Ve, dr

s

= L, (W, Zt, 7).

Therefore, (W, Z*,Z7) is a fixed point of T, = (Jy, L, L; ), a linear operator. It
follows Wy, = 0 for every (t,£) € R?, Z,;, = 0 for every (t,£) € RZ and Z;, = 0 for
every (t,0) € R, O

Lemma 2.3.11. Let ((,s) € RZ. Then
Ut,gj;gﬁ‘/s—; =0 for every (t,0) € R?,
Vt—eﬁsvjs =0 for every (t,0) € RZ,
ﬁsv;; ift<s

%Z@SVSZ = for every (t,0) € R;
Vi ift>s
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Proof: Let (¢,s) € RZ and define the operators

Wi = U T,V

$,8

for every (¢,0) € R?,

Zyy = VJ@SVSJ; for every (t,0) € RZ,

VATV — TVt ift<s
Z = for every (t,¢) € R2.

VATV — Vit ift>s
Obviously (W, Z*,Z7) € Q. For every (t,£) € R?* we can write from (2.63))
Wie= Tt,épé@,s‘/s—; + Jio(U, VT, V_)@,sv;,rs-
But from the definition of 7', (Z66), (2:64) and (Z52) we have
T, PV = T PTy. Vo + TooF / 0BT drV

14
= Crt,sPs‘/s—j_s + / E,TPT BrTr,s‘/s—:; dr
o . (2.71)
= _irt,sps / Os rv+ dr + / Ct,TTTvs‘/S—; dr

“+oo

= — CtTV dr‘i‘/ CtrTrsV dr.

s

Since, from (Z55) we have, for every (¢, /) € R?

Jt,f(Uv v+7 V_>j:£,s‘/5—; -
—+00

0 t
= —/ Ot,nVMTgSV dT+/ Ct,rUr,éTZ,sV:_sdr_ DtrUréTésv dr (272)
4

t

/ DU, eTesV d7“+/ CtrVrszsVJr dr,
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then, from ([272) and (Z71) we get

T 1+
Wie = Ui sV

4 t N 400 N
= — / C T‘/r eTg SV dr + / Ot,rUr,ZTE,sV:g dr — D;TUT7ZTZ,SK; dr

—00 t

+o0 .
/ D”UMTZSV dr + C’”(VMTZSVJr TmVj,;)dr
¢

¢ ¢
—/ Ot,r‘/r—; d?‘—i—/ Ct,TTr,s‘/s—:rs dr

“+o00

£ t
_ / CyorZyydr + / CooWyedr — D; W, dr
+o00

¢
+ / D W, pdr + Cio 2, dr
—00 l

— Jt,g(VV, Z+, Z_)
For every (t,/) € R% and from (265) we have

Zté—vtéTésV TtngTesV —l—LM(UV V- )TgsV

S,87

from (2.66]) and (2.52)) it follows that
A~ e A~
E,EQZ_TZ,SVS—; = Tt,ZQg_TE s + + Tt ZQ; / TE,TBTTT,SVS—:; dr

:Ttsts_‘/s /DtrTrsv d’f’ (273)

—+00

== tr rsdr+/ DtrTr,s‘/s—j_sd'r

and by (2.61)) we have

L (UVH V)TV =
t +oo
:/ Cor Vo Tus Vi d?“—/ D, Vi Ty Vi dr + D, U, Ty, Vi dr (2.74)
—00 Y/
+oo
/ Dtr‘/rgTEsV d’f’+ Dtr‘/r—szsv-i_ d’f’
l
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Therefore, from ([273)) and ([2774) we have, for every ¢ < ¢,
Zyy = Vi T1aV,

“+oo t
= — v+dr+/ Co Vi Tu sV, dr—/ Dy, Vi T Vi dr

tr ]
+oo . t
—+ D;TUT,ZTZ,S‘/S—; dr + / D:_r‘/r eTg SV dr
0 —00
+00 N +o0 N
+ D, T(VT ETZ SVJr TMV;,;) dr + D;TTT781/SJ; dr
0 l
é ~
+ / Dt_,rTmV;; dr

—+00

tr ]

400 t 1
-0 t )4

s
+oo —+00

/ DfZ ,dr + D, Z7, dr + DMTmV dr
¢ ¢

/ D, T,V dr
=L, ,(W,Z%,Z7).
At last, for every (t,£) € R2, supposing ¢ > s and using (Z64) we can write
2y = Vi To Vi = Vil = T QT Vi + LU VY VO T,V = Vi
and by (2.66) and (2.64) we have
TuQi Tos Vil = TouQ Tos Vil + T / e 0B, T,V dr
Qi [ nQB AL

4
= E,SQ:‘/;_S +/ D::TTT,S‘/;—; dr

_TtSQ+ / D;FTUTsdr—/ Dtr Hdr—i—/ D 743\/+d7"
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Therefore we can put
TQr T,V — Vi =

=T,.QF — / D}, U, dr—/ Dtrmsdw/D*T Vihdr - T,,QF

t,r'rs

+/ thrUr,sdr—/ DV dr + Ct,,andr—l—/ D}V _.dr
—00 s t —00

+00
D7V dr

tr'rs

4 N +o00 +o00
- / D;FTTT,SV;5 dr — / D; TVTJ; dr + Ct,,J/T: dr + D V1 dr.

t,r'rs
t

From (Z58) we get

LA (U VH VTV =
l —+o00
— —/ DU TV, dr +/ D VT Vi dr — Co VT Vi dr
—00 t
+00
/ DV T Vi dr — D, VT,V dr

t

and therefore

YA “+00
Z = / D/, T, V. dr — / D;Vﬁgdw Cp, V.5 dr

+oo
+ Dtr‘/r—i:sdr_/ DtrUréTst+ dT+/ Dtr‘/;—;TZSV—i_ dr
t —o0
+00
- [ vt dr—/ DiVEL Vi dr
t
+00

- D, VT, Vi dr

/ DtTWrgdr—l—/ D (VHT, WV — T V) dr+/ D} T, Vi dr
+00

- C'”ngdr—/ D;Zrédr Dt_’TZ;fédr

t t

YA
n / DTV dr

= LZK(I/V, Zt, 7).
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Finally, for every (t, () € R2, supposing ¢ < s and using ([2.64) we can write
Z = Vi To Vil = T Vil = TuQE TV + LE (U VE VI TV = TV

and by (2.606]) and (2.64) we have

+7 v+ ot
T;S,ZQKE,SV _ﬂﬁ‘/s,s:

$,8

¢ t
= Tt,éQz_Tf,Sx/s—:’:g + Tt,ZQZ_ / TZ,TBTTT,SX/;; dr — Tt,S‘/g—:; - / E,TBTTT,SX/;; dr

s

14 t
- E,SQ:‘/S—; + / T;S,TQ:_BTTT,S‘/S—; dr — Crt,s‘/s—; - / E,TBTTT‘,SVS-; dr

S S

0 t
- (_T;S,sPs - E,SQS_)‘/S—; + / D:rTr,s‘/s:: d?" - / E,TBTTT,SVS—; d?"

s

“+o00 +00 ¢ N
_ / T, P.Co Vi dr + / T,.Q: D5, Vit dr + / DET, Vo dr

s

t
- / T, 1d B,T, V., dr

“+o00 +o00 l N
_ / CoVidr+ [ DovVidrt / DET.VE dr

s

t t t
- / E,TPTBTTT‘,SVS—; d’f’ - / E,TQ;‘!_BTTT‘,S‘/S-; d’f’ - / E,TQ;BTTT,S‘/S—; d?"

s s
—+00

“+o00 ¢ N
_ / CoVidr+ [ DVAdr+ / DAT. Vi dr
t

s

t t
_ / Cou T Vit dr — / D, TV, dr.

s

From (258) we get

L (UVH VTV =
¥ R t N +o00 N

_ / DU Do Vit dr + / DIV Vi dr— [ CL VATV dr
—00 ? t
¥ R +00 R

_ / DV T Vihdr— [ DLVATLVEdr

t
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and therefore

+00 +00
Z:E = C'MV:; dr + Dy, Tsdr—i—/ DJr Tr,sVsJ,; dr

/ Cy, T sVt dr — / D;, T,V dr — / DU, /Ty Vi, dr
/ D;}V{;Tg 5V+ dr — / Ct TVT ng 5V+ dr
t
—+00
/ DtTVMTg Vil dr — D”VT*ZTMVJr dr
/ DtrUTfo SV dr + / D V,:;Tés TT8V+)d

+o0o
- / Ct r(‘/r gTZ 5V+ Tr,s‘/stq) dr — / Ot,rTr,s‘/s:: dr
t t

+oo .
/ Dt rVreTf SV dr — Dt7 (VMTg 5V+ TMVQ;) dr
t
+o0o . +00 —+00
— Dt_,ﬂTmV;fS dr + / Ct,,nV:; dr + Dy, TVT*; dr

t
/ CtrTr,s‘/s—; dr —/ Dt_’,ﬂTmV;'S dr
(W, 2+, 727).
Hence, (W, Z*,Z7) is a fixed point of the linear operator T, = (Jg, L, L[). It

follows W, , = 0 for every (t,£) € R?, Z, = 0 for every (t,£) € RZ and Z;, = 0 for
every (t,0) € RZ. O

Now we are going to define, for each s € R, the linear subspaces Es = U, +(X),
Ff = V.E(X) and Fr= V+(X) and state the following lemma.

Lemma 2.3.12. For every (t,s) € R? we have

Proof: Let x € ES. Then z = Uy for some y € X. Since U, Uy s = Us s then
x = U, rv. By Lemmas 2.3.6] and 223.7]

ﬂ,sx - Crt,s(]s,s'r - Ut,sx - (]t,t(]t,s'r
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and so YA} sT € Et. To prove the second inclusion, let z € ﬁ . In a similar way, we

have x = V{x. Using Lemmas 0l and 239 it follows that
Tt ST = Tt8V+:17 =Viz =ViVix

and so fusx € I*A?. At last, let x € ]38_. Then x = V. By Lemmas 236 and 2.3.8

we have
Lisv =TV, oe =V, o=V, Vo

and so YA’t’sx € ﬁt_. O
§2.3.2 Proof of Theorem 2.1.1]

we can now prove Theorem 2.T.1].

887

Setting ﬁs = U, s, @\j =V, and Q‘
First of all we need to prove that P57 Qj and Qs_ are projections. Attending to (2.63),

(2:64) and (2Z263) we have
P,+Q7 +0Q;
=P+ J(U,VH, V) +QF + LZS(U, VPV +Q, + L, (U, VvtV

“+o00

:g—/ Cyp Vi dr — Dy%m+/ DU, dr

S

+00 s +0o0
[T eLviarsQr - / DiUndr— [ CoVitdr
/ D:TVTS dr — ; TVT*; dr +Q, + / Cs,V, o dr
+oo e
+ DS 74Ursdr+/ D:Tvmdr%— D TVT*; dr
=1Id

and by Lemmas 3.7, P23.8 and B30 we can say PP, = P, @\j@j = @\j and
@8_ @8_ = @8_. Therefore ]38, @j and @8_ are projections and by Lemma [2.3.9 setting
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t = = s we have P,QF = 0. By Lemmas 2310 and 2311 we have, for every
t,seR

In a similar way we can say

T,.Qf =Q/ T, and T,,Q, =Q; T, forevery t s€R,

i.e.,|(S1),[(S2)}|(S3)| and |(S4)| are verified which means that (21]) has an invariant
splitting. At last, from Lemmas and we can write

Hﬁ,sﬁsn - HUt,SH
IT:.:Q | = V5]
1T:,5Q5 | = 1| Vis|

< ooy for every (t,s) € R?,
| <off,  forevery(t,s) e R2,
| <of, forevery(t,s) e RZ.
Therefore equation (ZI)) admits a generalized trichotomy with bounds (oay ), (05;)

and (0f;,) and this completes the proof.




Chapter 3

Global Lipschitz invariant

manifolds

This chapter is dedicated to the study of the existence of global Lipschitz invari-
ant manifolds when equation (ILT]) admits a generalized trichotomy and is submitted
to a nonlinear perturbation f satisfying some conditions, namely a Lipschitz condi-
tion. Here, in section B.I], we formulate a theorem concerning the existence of center
invariant manifolds considering bounds of a more general form and to prove it we
need to establish some lemmas. We also include, in section [3.2] the exhibition of
some examples of invariant center manifolds. The first example is a new general
case that includes some already existent in the literature, namely the ones done by
Barreira and Valls in [I1] 3]. In the last section of this chapter we give the proof of
the theorem stated before in the first section.

The proof of the main theorem of this chapter is based in the so-called classical
Lyapunov-Perron method (see [41} [49]) that consists in the following:

— the variation of constants formula that allows to relate the solutions of the linear

equation with the solutions of the perturbed equation;

— the construction of a suitable space of functions that is a complete metric space;
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— the construction of a suitable contraction on the complete metric space mentioned

above;

— the application of Banach’s fixed point theorem to the mentioned contraction
gives a function that is the only fixed point of the contraction whose graph is the
invariant manifold.

This method was used by many authors, namely by [3, [T, 20, 21]. However we
have introduced a novelty in the application of the method. In [3], 11 20, 21] uses
two applications of the Banach’s fixed point theorem, the first one to obtain the
solutions of the perturbed equation along the stable/center direction and the other
to obtain the solutions of the perturbed equation in the other directions. Here, with
only one application of the Banach’s fixed point theorem, we obtain the solutions of
the perturbed equation in all the directions.

The results of this chapter are from the preprint Bento and Costa [13].

§3.1 Existence of global Lipschitz invariant manifolds

Suppose that equation (LT]) admits a generalized trichotomy. Consider the initial
value problem

v =A(t)v + f(t,v), v(s) = vs (3.1)

where f: R x X — X is a continuous function such that
f(t,0) =0 for every t € R (3.2)

and, for every t € R,

{n ) =Sl y} <400, (33)
|z -y

i.e., the function f;: X — X given by f;(z) = f(¢,z) is a Lipschitz function (in z).
Clearly
1f(t, z) = f(t )]l < Lip (f) = = yll (3.4)
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for every x,y € X and every t € R and taking y = 0 in the last inequality and

by [B2), we have
1/ (¢, @)l < Lip (f) [ ]] (3.5)

for every x € X and every t € R.
When (1) admits a generalized trichotomy, we can write the only solution

of (3)) in the form
(z(t, s,v5),y" (E, s, vs), 4y~ (t,8,05)) € By x Fi x F,

where vy = (§,n",n7) € Es x F;' x F, then solving problem (B.I]) is equivalent to

solve the following problem

2(t) = TPt + / Ty, Pof(r, 2(r), g+ (r), y~(r)) dr (3.6)
yH (1) = T.Qn" + / T, Q£ (ra(r), gt (), (1)) dr (3.7)
(1) = TQn + / T, Qs f(ra(r), gt (), y~(r)) dr (3.8)

for every t € R.

Definition 3.1.1. We define the flow of differential equation [B1) as
Ua(s,v5) = (s +T,2(s +T,8,0),y (s + T, 5,05),y (s+7T,5,0,)) (3.9)

for each T € R.

We are going to study the existence of invariant center manifolds for equa-
tion (BI]) when (LI]) admits a generalized trichotomy. The invariant center mani-
folds that we are going to obtain are given by the graph of a function belonging to
a certain function space that we define now.

For

G={(s,§):seR, (€ E}CRxX
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and N € |0, +oo[, we denote by Ay the space of continuous functions ¢: G — X

such that
©(t,0) =0 forallt € R; (3.10)
o(t, &) € FF @ F for all (t,€) € G; (3.11)
o { et =2l 9.0 <o e 5} <N (1)

Note that from (3.12) it follows immediately that
[o(t,€) = o(t, )| < N[|€ = ]| for all (,€), (t,€) € G, (3.13)
and making £ = 0 in ([3.13), we have
lp(t Ol < N[[€]| for every (1,€) € G. (3.14)

By BI1), and identifying F;" & F,” and F;" x F,” as the same space, we can

write o = (¢*, ), where p*(t,§) = Q/ ¢(t,€) and ¢~ (t,£) = Q; ¢(t,§).

We also define the graph, for all the functions ¢ € Ay, as follows.

Definition 3.1.2. Let ¢ € Ay. We define the graph of ¢ as

Vo ={(5,§,0(5,8)) : (s,§) € G}
={(5,6,0%(5,),907(5,9) : (s.) € G} (3.15)
CR x X.

Before state the main theorem we need to define the following quantities:

/t ar Lip (fy) s dr‘ (3.16)

at,s

o= sup
(t,s)€R2

and

w = sup {/8 BZT Lip (f;) a5 dr + +OO B, Lip (fr) aurs dr] ) (3.17)

seR 00 s
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Theorem 3.1.3. Let X be a Banach space. Suppose that (1)) admits a generalized
trichotomy with bounds oy s, B;rs and B and let f: R x X — X be a continuous

function such that B2) and B3)) are satisfied. If

lim B, ,a,s= lim B a.s=0 foreveryseR (3.18)
’ r——00 ’

r—-+00

and

20 4+ 2w < 1,

where o and w are given by BI16) and [BI7), respectively, then there is N € ]0,1]

and a unique p € Ay such that
U.(V,) CVy

for every T € R, where V. is given by B3) and V,, is given by ([B10). Moreover,

W s(5, €, 0(5,€)) — Tr_s(s, &, 0(5, )| < %%s 1€ —£]|

for all (t,s) € R? and all £, € E,.

The proof of last theorem will be given in Section 3.3l

§3.2 Examples of invariant center manifolds
In this section we will give particular cases of Theorem B.T.3l
§3.2.1 Nonuniform (a, b, ¢, 0)—trichotomies

In this subsection, we will apply this last result to trichotomies with bounds of
the form (L4).

Theorem 3.2.1. Let X be a Banach space. Suppose that equation (1)) admits a

nonuniform (a, b, ¢,0)—trichotomy and let f: R x X — X be a continuous function
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such that B2) and B3) are satisfied and

1 {c(r)a(r)] ' a(r)o(r) 1

R | el | e {‘a@n)b(meu(m] ’W)}
(3.19)

Lip(f,) < 0 min {

for every r € R\ {0}, where § <1/6 and v: R — 10, 4+00| is a function such that

max{/_ Ooga(r)w(r) dr,/_ ooec(r)v(r) dr} < 1. (3.20)
If
i c(ro(rzs(r) = Jim = (321

then equation [B1]) admits an invariant center manifold, i.e., there is N € 10, 1] and

a unique ¢ € Ay such that
U.(V,) CV, foreveryteR,

where Yy is given by B9) and V,, is given by (B10). Furthermore,

Seam le-dl s
H\I’t—s(ps,f) - \Dt—s(ps,f)H < N C(t) _
N fe-al wess

for all (s,€),(s,€) € G and where ps¢ = (s,&,0(s,€)) and p,g = (5, 9(s,£)).

Proof: 1t is obvious that for this type of bounds (8.I8) is equivalent to (3:2I]). More-

over, since

a(r)/a(t) ea(r) a(s)/a(r) £a(s)
Qs _ a(s)/a(t) ea(s)
Qs c(t)/c(r)edr) e(r)/c(s)es)
c(t)/c(s) e,

—~
V)
~—
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from (B19) and (B.20) we have
t .
T L T 7,8
(t,5)ER2 Qg s

— max { sup /t eq(r) Lip(f,) dr, sup /S e.(r) Lip(f,) dr}
(t,s)€RZ Js (t,s)eRZ Jt
— e { [ e iptan [ ey ints) ar

[e.e]

<oma{ [atntan [ atn)ar]
< 6.
From (BI9) and (32T it follows that
w = sup U B4, Lip (fr) s dr + :OO By, Lip (fr) s dr}
[ S
<o [ [ () ar—etorom) [ amaomm) ]
= 20.

Hence, since § < 1/6 we have 20 + 2w < 1 and all hypothesis of Theorem B.1.3 are
satisfied and this finishes the proof. O

Remark 3.2.2. Note that the function v can be chosen such that

min{ e(s) {c(t)b(t)}/ a(s)b(s)eq(s) {_ 1 }/}

(1) = 2¢(s)0(s) | elt) | 2 a(t)b(t)eq(t)
max {e,4(t),ec(t)}

fort # 0 and where s is a fized real number. In fact, by [B.2I) we have

/ :o o(P)1(r) dr
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and
+o0

ec(r)y(r)dr

i

—0o0

o(ryy(r) dr + / " el (r) dr
)

</ e {C(gc)(ar(;)}/ i S L<r>be>gu<r>] dr
—1.

83.2.2 p—nonuniform exponential trichotomies

Now we are going to apply last theorem of this chapter to the p—nonuniform

exponential trichotomies.

Theorem 3.2.3. Let X be a Banach space and assume that equation (ILI]) admits a
p—nonuniform exponential trichotomy. Suppose that f: Rx X — X is a continuous

function that satisfies (32) and B3) and

i VG Dy (e=mlotr)
Lip () < D2 2elpm] MY T d —esgn(r), —a — b+ esgn(r), o © :
(3.22)

where 6 < 1/6 and
2
vy=¢ if e>0 and O<7<5min{—c—d,—a—b} if e=0. (3.23)

If
a+b+e<0 and c+d+e<0, (3.24)

then BI) admits an invariant center manifold, i.e., there is N € |0, 1] and a unique
w € Ay such that
U.(V,) CV, foreveryTeR,

where Ve is given by B.9) and V,, is given by (3.15)). Furthermore,

Qﬁemmw@wm@WK_gH if t>s,
1Pes(poe) = Veslp )] <4 °
QﬁQW@wW%WW‘K_SH if t<s,
w
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for all (s,€),(s,€) € G and where Dse = (5,&,¢(s,§)) and Pei= (8,5,@(8,5)).

Proof: For this bounds condition (B.21)) is equivalent to ([3:24]) since

lim ¢(r)o(r)ey(r) =0 lim Del-e P+l — 0 o lim Dele7479) =

r——00 r——00 r——00

and

lim () 0< lim Deletr+elel — g o lim Del@tttee) =
r—-+00 a(’r)b(’r) r—-+00 r—+00

Moreover, since for r # 0 we have

1 c(r)o(r)]’ B 1 (r)  O(r) edlr)
c(r)o(r)es(r) { ge(r) }  adlr)ea(r) <C(7’) T e ))
1 (—cp’(r) e—cp(r) N —dp (1) e~ 5sgn( )p (7’|) eclo(r)] ) (3.25)

= D2 o2elp()] o—cp(r) o—dp(r) oelo(r)
_ (=c—d—esgn(r))p'(r)
- D2 o2lo(n)]

and in a similar way

are) [ 1] 1 () ) )
07 [T~ 2 L) 5 20) 5.26)
_ (—a—b+esgn(r)) p'(r)
D2 e2elp(r)]
Making
1(r) = g (r) e ) (3.27)

with ~ given by ([B.23)), and observing that

400 400 ~y 400 y
/ D esle)] v (r) dr = / 5/)/( rye” e gy = 2/ §p’(r) e~ P dp = 1,
oo oo 0

since p/(t) is an even function, condition (B.19) becomes (3:22)) and the result follows.
OJ

Note that this improves the result by Barreira and Valls in [I1] because we have
a better asymptotic behavior for the solutions with initial conditions in the invariant
manifold. In fact, in the exponent we have a where Barreira and Valls have a+20D.

Taking p(t) =t in last theorem we have the following result.
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Corollary 3.2.4. Let X be a Banach space and assume that equation (1)) admits
a nonuniform exponential trichotomy. Suppose that f: R x X — X is a continuous

function that satisfies (32) and B3) and

: 0 s DY e
Lip (f,) < Wmm{—c—d—asgn(r),—a— b+6sgn(r),76 7 )

where v is given by B.23) and 6 < 1/6. If [B.24) is satisfied then [B1) admits an

invariant center manifold, i.e., there is N € |0, 1[ and a unique ¢ € Ay such that
U.(V,) CV, foreveryteR,

where U+ is given by B9) and V, is given by BI5). Furthermore,
DN -
_ ea(t—s)—i—a|s| Hg _ gH Zf t>s,
w

[Ors(Psg) = Tims(p 8| <
‘DM_N ec(s—t)-l—e\s\ H€ _g—H Zf t< s,

for all (s,€),(s,€) € G and where py ¢ = (5,&,¢(s,€)) and Peg = (5,€,¢(s,9)).

Again, as in the last theorem, we improve the asymptotic behavior of the result

obtained by Barreira and Valls in [3].
83.2.3 p—nonuniform polynomial trichotomies

In what follows, we are going to assume that equation (IL1) admits a g—nonuni-

form polynomial trichotomy.

Theorem 3.2.5. Let X be a Banach space. Suppose that equation (L)) admits

a p—nonuniform polynomial trichotomy and let f: R x X — X be a continuous

function such that [B2)) and [B3)) are satisfied and
Lip(fy) < o4/ (r)(lu(r)|+1)77
with v > 0. If B24) is satisfied, § is sufficiently small and

a,c<0, 26<v and e—~v+1<0,
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then BI) admits an invariant center manifold, i.e., there is N € |0, 1] and a unique
v € Ay such that
U.(V,) CV, foreveryteR,

where Yy is given by B9) and V,, is given by (B10). Furthermore,

DN
w
DN

w

(u(t) = u(s) + () + )7 ||E = €] ift >,
H\Ijt—s(ps,f) - \Dt—s(ps,E)H <
(u(s) = p(t) + 1)(u(s) + 17 ||€ = €[] ift <,

for all (s,€),(s,€) € G and where ps¢ = (5,€,¢(s,€)) and p,g = (s, ¢(s,€)).

To prove this theorem we need the following lemma.

Lemma 3.2.6. Let \, v <0,e>0andp e R. If

Adet+rv+1<0, A+e<0 and v+e<0,

then
L f p>0
7 = U,
+00 . ) . Ntet+v+1| b
| @ e+ 07 (ol 17 dr
0 ¢l 41 F <0
AN+e+v+1] bopsT

Proof: If p>0,sincee >0, v+e<0and A\ +ec+rv+1<0, we have
+00 N “+oo N
/ (T4 Dt +p| + 1) (|p| + 1)° dT:/ (T4 D (T4 p+ 1) (p+ 1) dr
0 0
+o00
<[ ey
0

+o0
</ (T+1)A+V+a dt
0

1
A tvte+1]

If p < 0, then

gl pl—Tt+1 if 0<T<]p|,
T p =

T—|p|+1 if T=|p|,
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and this implies
lpl/2 N , .
| e 0 el = 1y ol + 1 e
0

pl/2 1 \¢
= / (t+ 1)A (Ip| =T+ 1)"™ <L) dt
0

Ip| —Tt+1
Ip|/2 N
<2E/ (T+1)+V+€dT
0 o
< ;
IAN+v+e+1]

|l
/ (T 1 (p] — T+ 1) (jp| + 1) dr

Ipl/2
|p| 1\°
_ / (T+ 1))\+6 (‘p| — T4+ 1)1/ |p‘ + dT
Ipl/2 T+l

Ipl
< 25/ (‘p| — T+ 1))\+I/+E dT
Ipl/2
25
<
At vte+1]

and

/mu+nwvwwmrwwm%h§/mu+wﬂu—m+wa

Ip| Ip|

+o0
</ (t = [pl + 17 dr

p|
1

< .
AN+v+e+1]

Hence, if p < 0 we have

2€+1 + 1

+00
T+ DM+ p| +1)" (Ip] + 1) dt < .
| e el 0 ol 1 <

Proof of TheoremB.2.5. Since for r < s we have

e = D2 ute) = ) + 17 (L UL g+ 1

and for r > s we have

Frvttne = D (u(r) = o) 1) (L IIEL Y (o) 4 1)
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it follows that if c+d+e <0 and a + b+ ¢ <0, then
lim B pOlp s = hm B 205 = 0.

r——00 —4-00

Since for every t > r > s and every t < r < s we have

[a(t) = pu(r) + 1] [p(r) — p(s) + 1] = [p(t) — p(r)] [p(r) — p(s)] + p(t) — p(s) +1

and a,c < 0, it follows that fort > r > s

Oesttne _ ) (a(0) = p(r) £ 1" ) = ) 1" e

s (pu(t) — pu(s) +1)°
(3.28)

and for ¢ < r < s we also have

s (ulr) = pt) + 1) (uls) —p(r) +1)° . ) )
e D POETOED ()] + 1) < D (|a(r)] +1)F

(3.29)
Then, since v > ¢ + 1, it follows that
t L
o= sup / Ay Lip(fr)ars dr'
(t,s)eR2 Qg s
t
<Ds sup / () ()| + 1) dr
(t,5)ER2
+o0o
= D5/ )| +1)7"7 dr

+o0
_ Da/ (| + 1) dr

. 2Ds
Ce—y+1)

Here we made the substitution T = pu(r).

Making the substitution T = pu(s) — u(r) we have
/ B Lip (fy) ardr
< D25/ w(r) (uls) = plr) + 1 () + D77 (|us)| + 1)° dr

= 0% [ ) = )]+ 1) ()] + 1) e
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and with the substitution T = pu(r) — u(s) we obtain

+oo

B, Lip (fr) a5 dr

s

< D% / ) () = ps) + 1 ()] + 17 ()| + 1)F dr
— D% / T 1) () + 17 ()| + 1) de

Using Lemma [3.2.6 it follows that

“+00

W = sup |i/ B Llp fr Qy s dr + 5;7~ Llp (fr) Ay s dr

seR

N 26t 41 1
< D% + — )
lmax {a +b,c+d} +2c—vy+1 |min{a+0b,c+d}+2c—v+1|

Hence, for ¢ sufficiently small we have 20 4+ 2w < 1 and the result follows. O

In the next corollary we will consider nonuniform polynomial trichotomy:.
Corollary 3.2.7. Let X be a Banach space. Suppose that equation (1)) admits
a trichotomy with bounds of the form (L) and let f: R x X — X be a continuous
function such that [B2)) and [B3)) are satisfied and

Lip(fr) <o(r]+1)77

with v > 0. If 24) is satisfied, § is sufficiently small and

a,c<0, 26<v and e—v+1<0,

then B admits an invariant center manifold, i.e., there is N € |0, 1] and a unique
v € Ay such that
U.(V,) CV, foreveryteR,

where Ve is given by B9) and V,, is given by (315)). Furthermore,

DN G (sl e fle—&| if t>s

H\Ilt—s(psé) - \Ijt—S(ps,é)H <
DN s —tr (sl + 1y le— 8| if t<s

for all (s,€),(s,€) € G and where ps¢ = (5,€,¢(s,€)) and p,g = (5, ¢(s,£)).
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83.3 Proof of Theorem [3.1.3

Before doing the proof of the Theorem [3.1.3] we need to state and prove some

lemmas that will be used in the proof of that result.

83.3.1 Auxiliary Lemmas

Lemma 3.3.1. If o and w are positive real numbers such that
20 4+ 2w < 1,

then there exist M € ]1,2[ and N € |0, 1] such that

M—1 N
= d = 3.30
TTMarN) " YT MaE N (8:30)
Proof: Clearly, equalities ([B.30]) are equivalent to
M-1 N
=—=DM(1+N). (3.31)
o w
Hence making
M:1—U+w—\/1—20—2w+(0—w)2 (3.32)
2w
and
Nzl—a—w—\/l—ZU—Qw—i-(U—w)z (3.33)

20
we obtain immediately the first equality in (3.31]). Taking into account that

1-20—2w+(0—w?=(1-0+w)’—4dw=(1-0—w)?—dow,

and ¢ +w < 1 — ¢ — w, we have

1—0c+w)?—[1-20—2w+ (0 —w)?

M=
2w [1—a+w+\/1—20—2w+(0—w)2
B 2
l—0+w+/1—20—2w+ (0 —w)?

2
<
l-oc+w+|o—uw]

<2
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and

1—0—-w)?—=[1-20-2w+ (0 —w)?

N =
20 [(1—a—w)+\/1—20—2w+(0—w)2]
B 2w
l—0—w++/1—20—2w+ (0 —w)?
2w
<
l—o—-—w+|o—uw|
2w
o+w+lo—uwl
< L

Moreover, using the definition of N and M we can put

- 1 l-o+w+/1-20—-2w+ (0 —w)?

1

N 2w

wM

and this proves the second equality in (3.31]). To finish the proof we note it is clear

that N > 0 and since M = 1+ ocN/w we have M > 1.

O

In what follows M and N are those given by ([B.32)) and (3.33)) in the proof of

last lemma. Moreover, the constant N mentioned in Theorem B.1.3] is also given

C(t,8) eq, £# 0} : (3.34)

by (B33).
It is easy to see that Ay is a complete metric space with the metric
ta - t?
o) = s { 10 =910
€]l
for all ¢, € Ay.

Let

G ={(t,s¢&:(t,s) eR*’ (€ B} CR* x X.

Let B,; be the set of all continuous functions x: G’ — X such that

x(t,s,0) =0 for all (t,s) € R?,

w(s,5,6) = ¢ forall s € R and all € € B,
x(t,s,&) € Ey forall (t,5,€) € &,
wm{Hﬂu&Q—x@wfw.

s ||€ €|

(3.35)
(3.36)
(3.37)

H(t5,6), (15,8 €G', £ # 5} <M (3.38)
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where M is given by (3.30).
From (B.38), it follows that

|2(t,5,€) — a(t,s,&)|| < Moy |[€ = €| forall (t,5,),(t,s,£) € G (3.39)
and making ¢ = 0 in (339), from (3.35) we have
2(t,s,€)|| < May||€]| for all (t,s,£) € G’ (3.40)

Defining

Hx(t? S, S) B y(ta S, S)H
s [|€]]

taking into account (3.37), (330) and ([B.38), it is easy to see that (B, d') is a
complete metric space. Writing the only solution of (B1]) in the form

d(z,y) = sup{ D (t,8,8) e G, E# 0} (3.41)

(x(t,s,8),o(t,z(t,s,€)), with t € R,
it is clear that solving (B.1]) is the same as solving the equations
0,5, = TuPE 4 [ TP (200, 5,8),plr,205,€) (3.42)
F02,9,6) = ToQEe (5,6 + [ TQF 205, 5,8),plr,20,5,€))
(3.43)

o (2t 5,€)) = ToaQs o (5,6) + / T Qs £ 2(r, 5,€), o, 2(r, 5,€))) dr.
(3.44)

Let Cpsnv = By < An. The space Cpy v with the metric defined by

d" ((z,), (y,9)) = d'(z,y) + d(p, ), for all (z, ), (y,¥) € Cun
is a complete metric space.

Next we state a lemma about the form of the solutions of ([B.).

Lemma 3.3.2. Let (x,¢) € Cyn such that (342) is satisfied. The following

properties are equivalent:
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a) for every (t,s,€) € G', equations [3.43) and (B3:44) hold;

b) for every (s,§€) € G,

s

¢+Q&€)=u[_fﬂinfﬁzxﬁzaﬁhqﬁﬁsz&fﬂ)dr (3.45)

and

wﬁaﬁz—/o%hgﬁww@&OWQJM&QDW- (3.46)

Proof: First we must prove that the integrals in (B45) and (B46) are convergent.
From (33), (31d) and (B40) we obtain
£ (r, 2(r, 5,), o(r, z(r, s, N < Lip(f,) |z(r, 5, &) + o, z(r, 5,€))]|
< Lip(f) (lz(r, s, 1 + o (r, 2(r, 5, )|
< Lip(fr) (N (r, 5,1 + N |l (r, s, 1)
< M(1+ N)Lip(f,)aws [I€]

for every r, s € R and using B347), (317) and we have
| I10Q; £ratr 5., ot (s, )| dr

(3.47)

</_ | TerQFI1f (ry 2, 5, €), o, a(r, 5,€))| dr

<MUAN) el [ Bl Lin(f)ars dr

< M(1+ N)wl]l

and

/ N HTs,rQr_f(/ra z(r,s,€), o(r, z(r, s,f)))“ dr

+oo
</ [T Q7 [H1F (2, 5,8), o, 2(r, 5, )| dr

—+00

< M(1+ N) il Ber Lip(fr)ans dr

S

S M(1+ N)wl]l

for every (s,&) € G. Thus the integrals (3.40) and (3.40]) are convergent.
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Now we prove that a) = b). Suppose that (3.43) and (3.44) hold for every
(t,5,€) € G'. Then, from (3.43) we have

90+(8a S) = Ts,tgp—i_(t? [E(t, 37 6)) - / Ts,tirt,rQ:_f(r? x(ﬁ 37 6)7 SO(T? Il?(’f’, S, S))) d’l“
~ TQF et a(t5,) — [ TQE f(rn(rs. ). plr.alr.5.) dr
Since by [(D2)] (314) and (3:40) we have

|T5:Q7 o(t, 2(t, 5,€))|| < B lelt, (t, s,€))]|
S NGzt s,
< MN €| B aus

by (B.I8), making ¢ — —oo, we conclude that

thm Ts,tQ:_(,O(t,I'(t, Sv§)> =0
——00

and this implies

ot (s,6) = - / TouQ f(r,2(r,5,€), olr 2(r, 5,€))) dr

_ / T, Q F(r,a(r, 5,€), o(r, 2(r, 5,€))) dr,

i.e., (B843) holds.
Similarly, from (B3.44) we have

90_(87 5) = Ts,t(p_ (t7 Jf(t, S, 5)) - / TS,tT;f,TQr_f(T? x(rr? S, 5)7 (p(T, I‘(T, S, 5))) dr
== s,tQt_(p(t> [E(t, S, 6)) - / Ts,tTt,rQ;f(ra Ilf(’f’, S, S)a 90(7“7 x(ﬁ S, f))) d’f’
and since

| T30Q7 o(t,2(t, 5,6))]| < Bry ll(t, 2(t, 5,6))
S NBg [la(t, s, €l

< MN ||E]| 55 pau s
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from [(D3)], (3.14)) and (B3.40). Letting t — +oo we have, by (B.18)),
lim T5,Qy o(t,2(t,5,£)) =0
t—+o0

and we obtain

+oo
o (5,6) = — / T, Qs f(r.2(r, 5,€), o(r,x(r, 5,€))) dr

for every (s,&) € G. Hence a) = ).
Now we will prove that b) = a). Assuming that for every (s,£) € G identi-
ties (3.45]) and (3.406]) hold, applying T} s to both sides of equation (3.45) we have

T (5.6) = [

S

T @ f(ra(r, 5,6),0(r x(r, ,€))) dr

and this implies
t
Tyuo* (s,6) + / T, QF f(r,2(r, 5,€), olr, x(r, 5,€))) dr

= / T Qf f(rox(r, s, &), o(r,x(r, s,£))) dr

= [ D@01, €0), 020,100, )
— Gt alt, s, €),
for every (t,5,€) € G'. In a similar way we have
Tp (59 == [ TTQ Flralrs,€). 60, a(r,5,.9)) dr
and thus
T (5.6 + [ T30 Q5 (s 2(r, ., (0, 2(r, 5, €))) dr
= [ st ol 5, )
= [ 5.9, (8 (1,5,6)) dr
— o (talt, 5, €),

for every (t,s,&) € G’. Therefore b) = a) and this completes the proof of the

lemma. O
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Now we define in Cj; y an operator J as follows.
Consider in Cpn the operator J such that, to each (z,¢) € Cpn, assigns a

function J(z,): G' — X defined, for every (t,s,&) € G', by
o) 15,8 = TuPe+ [ TP a(r,5,), 0 a(r,5,6)) dr
Lemma 3.3.3. For every (z,¢) € Cyrn, we have
J(x,p) € By

Proof: Tt is obvious that J(z, p)(t,s,0) = 0 and J(x, 9)(s, s,&) = £ for all (¢, s) € R?
and every (z,p) € Cyn and € € E,. Moreover, for all (¢,s) € R? and using [[D1)|

t
1] (2, 0)(L,5,8) = J(x, 0) (¢, 5, )| < [ TesPsllllE — €Il + / [ Ter Pl .2 A

t
/ at7r’yT737§7£_ dr
S

Vrsed = (2 s,€), 0(r,2(r,5,€))) = f(r,2(r,5,), (r,2(r, 5,))||.
for every (t,s,&), (t,s,€) € G'. From [B.4), (3.39) and (B.I3) we have

< onsll§ =€l +

Y

where

Vr,s,ﬁ,ﬁ_
< Lip(fy) (l2(r,5,6) = 2(r, s, )l + lo(r, 2(r, 5,€)) — o(r, 5,2(r, 5,))|])
< Lip(fy) (Monllg — €]l + Nllz(r, 5,€)) — x(r, 5,6))]]) (3.48)

< Lip(fy) (Mays]|§ = €] + MNaw]|€ = €]])
< M(1+ N)JIE = €| Lin(fr) s
and so by (B.16) and using Lemma B3] it follows that

1T (z, @) (t,5,6) = (2, 0)(t; 5, )

< anallé — &l + M(1+ N ¢ — / ey Lip(f, Y dr

< (L+M(L+N)o) aslls = €]l

= Mous||§ —€ll,
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for every (z, ) € Cy v and every (t,s,€), (t,5,€) € G'. Then considering & # & we

have .
||J(l’, (P)(t, 875) - J(_l’, (P)(t, 875)” < M
O‘t,b‘Hf —£||
and we can say J(By x Ax) C Byy. O

In Cys n define the operator L that assigns to every (z,¢) € Cyn a function
L(z,¢): G = X
defined, for every (s,&) € G, by

[L(z,9)] (5.6) = [LT(z,9)] (5,8) + [L™ (2, 0)] (5,€),

where
L (2.¢)] (5.€) = / TonQ f(r,2(r,,€), p(r, 2(r, 5.€))) dr
and

(L (2, 0)] (5,€) = — / T Q f(r a5, €), p(r,(r, 5,€))) dr.

Lemma 3.3.4. For every (z,¢) € Cun, we have
L(I, (,0) e Ay.

Proof: From (3.35)), (310) and ([B3.2)) it follows that [L(x, )] (t,0) = 0. Moreover, by
definition we have [L(z, )] (t,&) € FF @ F,.
From [(D2)], [[D3)| and (348 it follows for every (s,€), (s,€) € G that

s

L@ 9)(6.8) = L @)D < [ 1@ agdr

—00

<MW e8| [ 5 Linthandr

and

—_ +OO
HL_(.Q?, 30)(376) - L_([E, @)(3,6)” g / ||T8,TQ;H’YT,S,S,£ dr

“+oo

<M+ N) e8| [ B Lin(f)amadr
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and so, using ([B.I7) and Lemma B3] we have

H[L(x>30)] (376) o [L([E, 90)] (S,E)H
<L (@ 9)] (5,8 = [L¥(@,9)] (5,8)]| + | L, 2)] (5.) = [L™(2,9)] (5,0
<M1+ N) ¢ ( / " B Lip(f)anedr+ [ 8o Lip () ane dr)

s

<M1+ Nwl|&=¢|
= N|[¢ £,

and the proof is complete. 0

Lemma 3.3.5. For every (z,¢), (y,¥) € Cyn we have

d (J(x,0), J(y,¥)) <o [(1+ N)d'(z,y) + Md(p, )] (3.49)

and

d(L(z,¢), L(y,¥)) S w[(1 + N)d'(z,y) + Md(e, )] (3.50)

Proof: For every (r,s,£) € G', putting

and using we have
1 (z, 0) (L, 5,8) = J(y, ¥)(¢, 8,9 <

<

77“,8,5 = Hf(T, l’(?”, S, 5)7 QO('T’, JI(’T’, S, 5))) - f(?", y(’f’, S5, 5)7 ¢(7’7 y(?", S, 5))) H7
/ ||E,TPTH 77“,8,5 dr

t
/ Qi Vrs e dr
By B4), B13), 341), (334), and (3:40) we obtain

Vrse = 1 (rz(r,5,8), @(r,2(r,s,€))) = f(r,y(r, s,8), ¢ (r, y(r, s, )|
< Lip(fy) [[lz(r, 5,8) = y(r, s, ) + [le(r, x(r, 5,€)) — o (r, y(r, s,8))|]
< Lip(fo)[llz(r, s, 8) —y(r, s, Ol + lle(r, z(r, 5,€)) — @(r,y(r, s,8))
+ [le(r,y(r,s,£)) = v (r,y(r,s, )|l (3.51)
< Lip(fo) [(1 + N) flz(r, 5,€) — y(r, s, Ol + de, ) |y (r, s, )]
< Lip(fi) [d' (2, y)ans 1€l (1 + N) + d(p, ) Mo [1€]]
< Lip(fr)aws € [(1 + N)d'(z, y) + Md(e, )],




80 Chapter 3: Global Lipschitz invariant manifolds

it follows by (3.I6) that

17 (, 0)(t,8,6) = J(y, ) (t, 5, )

< / oy Lip(f) s dr| (€] 11+ N)d () + Md(ip, )]

< agso [[€]1[(1+ N)d'(z, y) + Md(e, )],

for every (¢,s,&) € G'. Thus from ([B.41]) we get (3.49).
On the other hand, using again and (B.51) we have
||L+([E, @)(Sa f) - L+(ya w)(‘S? S)H

< / | TerQF || Fys e dr

—00

<1601+ M) (o) + MG, ) [ 5 Linf)aadr
and also from [(D3)| and (B.51)) it follows that

1L (z,)(s,8) = L™ (s, 9)(1, )l

“+o0
< / 1T Q; || e dr
S “+o00

< €A+ N)d'(z, y) + Md(e, )] Ber Lip(fr)ans dr

s

and thus from (BI7) we obtain
I1L(z, ) (s,8) = Lis, ) (1, Nl < [I€llw [(1 + N)d' (2, y) + Md(e, )]

Therefore, from ([B3.34]) we get (3.50). O

Below we define o new operator in Cy; y and we will prove that it is a contraction
which will be essential in the proof of Theorem B.1.3

Define the operator T': Cps,v — Cayrn by
T(x,¢) = (J(z,9), L(z,9)) = (J(z,9), LT (z,¢), L™ (z,¢)) .

Lemma 3.3.6. The operator T': Cyyn — Cu,nv @5 a contraction.
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Proof: Let (x,¢), (y,v¢) € Cyrn. Using last lemma, Lemma B3], and since M < 2

and N < 1 we have

d"(T(x, ), T(y,v)) = d" ((J(z,9), L(z,¢)), (J(y,¥), L(y, 1))
=d' (J(x,0),J(y,¥)) +d (L(z, @), L(y, V)
< (0 +w) (1+ N)d'(z,y) + Md(p, 7))

_ (1 _ %) d(z,y) + (1 - 21;%) d(p,¥)

1-N 2-M
gmax{l - 7,1— 1+N}d//(('r7(p)7(y7w>)v

and so 7' is a contraction in Cy y. O

83.3.2 Proof of Theorem B.1.3l

Now we are going to prove Theorem B.I1.3l Since Cpn is a complete metric
space and by Lemma [3.3.6] the operator T is a contraction, by Banach Fixed Point

Theorem, there is a unique point (x, ¢) € Cp n such that

T(z,0) = (z,¢)

and that verifies (3.42)), (3.45) and (3.40). In Lemma .32l we proved that solve the
last two equations was equivalent to solve another two, ([343)) and (B3.44), if (3.42)
holds. Therefore, by (B6), ([B.7) and (B8], this establishes the existence of the

invariant manifold, that is, the existence of a unique

¢ = (¢, ¢7) € Ay such that T-(V,) CV,
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for every T € R. Moreover, for every s,t € R and every &,£ € E, we have

1We-s(s, € 0(5,8)) = Tios(s, €, (5, )

= [[(t, 2(t,5,6), o(t, 2(t,5,€))) — (t,2(t, 5, €), 0 (t, 2(t, 5, )|
< ot s,€) — 2(t, 5,9l + lle(t, 2(t,5.6)) — o (t,z(t, 5,)) |
<L+ N)a(t,s,€) —a(t, 5,

<M1+ Naw|€ = €|l

N _
= —a5[[§ = £
w

and this completes the proof of the theorem.




Chapter 4

Local Lipschitz invariant manifolds

In this last chapter we prove the existence of local Lipschitz invariant manifolds.
This theorem is stated in Section 4.1l In Sections and we have considered

two types of nonlinear perturbations f in the differential equation
v = A(t)v + f(t,v),

where f is a continuous locally Lipschtiz function. In the last section, we give the

proof of the main result. The proof of the main theorem uses Theorem [3.1.3]

84.1 Existence of local Lipschitz invariant manifolds

Now we are going to assume that equation ([.T]) admits a generalized trichotomy
with bounds o, 6;; and f3,,, that f: R x X — X is a continuous function such

that (B:2]) holds and, for each ¢ € R, the function f; is a Lipschitz function in
B(R(t)) ={zr € X: [[z]| < R(1)},

where R: R — R™, with Lipschitz constant Lip ( ft|%(R(t))). Consider the initial
value problem (B1)), i.e.,

v =At)v + f(t,v), v(s) = v,.
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In these conditions we define the following constants:

/t Ay Lip (frlney) ans o

at,s

0:= sup
(t,s)ER?

and
—+o0

W := sup [/ B Lip (frlsirey) s dr + Ber LD (frls(rir)) s dT’] :

seR s

Definition 4.1.1. Given a function R: R — R and ¢ € Ay, we define the
graph of ¢ in B(R(s)) as

Vor =1(s,6,0(5,6)) € Voo [I€ll < R(s)}, (4.1)

that will give us our local Lipschitz invariant manifolds.

Theorem 4.1.2. Let X be a Banach space. Suppose that (1)) admits a generalized
trichotomy with bounds oy, B;rs and B, Let f: R x X — X be a continuous
function such that [B2) is verified and, for each t € R, the function f; is a Lipschitz
function in B(R(t)), where R: R — R*. If BI8) holds,

4o +4dw <1

and

sup Gts 400  for every s € R, (4.2)

ter R(1)
then there is N €0,1] and ¢ € Ay such that for every T € R we have
V-V, 5) S Vior:

where W, is given by [39), R denotes the function R: R — RT given by

w

B) = N RO (4:3)
teR
and V7 5 and V; p are given by (@1). Furthermore, we have
_ _ N _
H“Dt—s(s>€> 30(376)) - \Dt—s(sa€> 30(376))” < Eat,s HS - SH (44)

for every (t,s) € R? and every &,€ € B(R(s)) N E.

The proof of this theorem will be given in Section [4.4]
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84.2 Examples of local invariant manifolds — first type of per-

turbations

In this section we are going to consider perturbations f: R x X — X such that

1F (&, w) = f (& o)l < K@) [l =l (]l + ol (4.5)

for every t € R and every u,v € X and where k: R — ]0, +oo[ and ¢ > 0. For every
R: R —]0, +00], the function f; is Lipschitz in B(R(t)) and

Lip (fils(rw) < 2'R()R?(1).
§4.2.1 Nonuniform (a, b, ¢,9)—trichotomies

In this subsection, we will apply Theorem .12 to nonuniform (a, b, ¢, 9)—trichot-

omies.

Theorem 4.2.1. Let X be a Banach space. Suppose that equation (1)) admits a

nonuniform (a, b, ¢,0) —trichotomy and that f: Rx X — X is a continuous function

that satisfies B2) and (LH) with

6 - 1 )] a@b) [ 1 '
K0 = Gy {ca)a(t)ea(t) { =0 } o) { a(t)b(t)eaa)} ”(t)}

and where v: R — 10,400 is a function such that B20) is satisfied. If B21) is
fulfilled, 0 < 6 < 1/12 and

M(s) = b e

then there is N €10, 1] and ¢ € Ax such that
U, (VS’;R) CVin
for every T € R, where V. is given by 39), R, R: R —]0, 00| are defined by

— w

R(s)=c¢(s) and R(s)= N max {M(s)eq(s)/c(s), ec(s)/c(s)}
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and V* = and V; p are given by (AI)). Furthermore, we have

[Pes(pse) = ‘I’t—s(Ps,g)H <

for every (s 5),( &) € G and £,€ € B(R

Pog= (5.6 0(5,)).

Proof: With R(t) = ¢(t), from

(s)) and where pse = (s,&,¢(s,€)) and

s a(s) B a(s)e(s) ea(s) a(9)
RO W a0 TP ame®) os) - )

and

sup Qs c(t) _e(s)

W R TP e T (e

we conclude that (A2]) is satisfied. The Lipschitz constants of f; in B(c(t)) satisfy

Lip (filssew) < 2°k(0)e"(¢)
and therefore, using (Z19) and (B:20) we have

/t ag, Lip (frlw(ee)) s

at,s

o< sup
(t,s)€R2

= 27max<{ su ea(r)k(r)c?(r)dr, su Sécrqurdr
{(t,s)e%;l (r)k(r)et(r) p/ (r)k(r)et(r) }

(t,s)eR2 Jt

dr

Moreover, using (8:21)) we have

/ B Lip (frlsewry) )Oér,sdT<2q/_8 Mesa(?")k:(r)cq(r)mec(s) dr

00 0(8)
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and

+oo

[ i (o) avedr <20 [ L)) S ()

we also have w < 20. Hence, from § < 1/12 we have 45 + 4w < 1. Furthermore,
for this type of bounds in the trichotomy condition (3I8]) is equivalent to (B.21)).
Therefore all the hypothesis of Theorem are satisfied and the result follows. [

84.2.2 p—monuniform exponential trichotomies

Now we will consider p—nonuniform exponential trichotomies.

Theorem 4.2.2. Let X be a Banach space. Suppose that equation (ILII) admits

a p—nonuniform exponential trichotomy and that f: R x X — X is a continuous

function that verifies (32) and (A5) with

§pl (t) e_2€|p(t)‘

. Dy e=low)|
k(t) = 0 P omepl)” TR {—c —d—esgn(t), —a — b+ esgn(t), - €

and where 7y is given by B23) and 6 > 0. If B24) is satisfied, a + ¢ < 0 and
0 < 1/12, then there is N €]0,1] and ¢ € Ay such that

e (Vig) € Vin

for every T € R, where W, is given by B3), the function R, R: R —]0,00[ are
defined by

R(s)=e )  and R(s) = ;—N oo (9)=<lo(s)]

and V? 5 and V p are given by (@1). Furthermore, we have

DN caloo-ot+elo ¢ €| for t > s,
w

[9e-spee) = Vs <

—— €

clp(s)=p(t)]+elp(s)] Hg - EH fort <s,
W
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for every (s, ),( £) € G and &,€ € B(R(s)) and where p,e = (s,£,0(5,€)) and

= (5,6¢(5,9)).

Proof: From a + ¢ < 0 it follows immediately that

m |

M(S) = Sup a(S)C(S) = sup e(a+C)(p(t)—p(s)) =1.
t=>s a(t)c(t) t>s

Moreover, from (3:25) and (3:26) and (3:217) we have
)

B i 1 c(t)o(t)]" a(t)b(t) 1 ’
HO = st ™ s | oy | e | swmm) 1)
5p/ (1) ) { (—c—d—esgn(t)) (—a—b+ esgn(t)) l e_(‘fﬂ)'p(t)}
)

el D2 ele(®)] ’ D2 e2eln(?)] 9D
50/ (1) o= 2elo®) .
N 2pq(D)2—cqp min {_C —d—esgn(t), —a—b+esgn(t), 77 eE=Nlp()] }

and the result follows immediately from Theorem [Z.2.11 OJ

Making p(t) = t in the last theorem we have the next result.

Corollary 4.2.3. Let X be a Banach space. Suppose that equation (1)) admits
a nonuniform exponential trichotomy. Assume that f: R x X — X is a continuous

function that verifies (32) and (LX) is satisfied with

§ e 2l D~y
—  mind —c—d-— —a— AN gl
54 D% g—cat D { c—d—esgn(t),—a —b+esgn(t), 5 © = }

and where v is given by B23) and § > 0. If B24) is satisfied, a + ¢ < 0 and
d < 1/12 then there is N €]0,1[ and ¢ € Ax such that

k(t) =

e (Vi5) € Vin
for every T € R, where ¥, is given by [B.9), the function R, R: R —]0,00[ are
defined by

w

R _ a—CS d E _ ¥ L —cstels|
(s)=¢e an (s) DN © ,
and V7 5 and V p are given by (@1). Furthermore, we have

%e (t—s)+els| Hg 5” fOT‘t

DN etxtreelsl ¢ || fort <
w

10— s (pog) — Wis(py2)|| <
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for every (s, ),( £) € G and £,€ € B(R(s)) and where p,e = (s,£,0(5,€)) and

ps,g_( 5 )

m |

84.2.3 p—nonuniform polynomial trichotomies

In this subsection we will apply Theorem [AL.1.2] to pg—nonuniform polynomial

trichotomies.

Theorem 4.2.4. Let X be a Banach space. Suppose that equation (L)) admits
a p—nonuniform polynomial trichotomy and that f: R x X — X s a continuous

function that verifies (32) and that ([@3) is satisfied with

)
2([u(t)] + 1)

and § > 0. Let R: R —]0, 00| be the function defined by

k(t) =

R(s) = /()7 (lu(s) + 1), 4> 0.

If B24) is fulfilled, a,c <0, e+ (=yv+c)g+1<0, 2e+(—y+¢)g <0 and

(p(t) — p(s) + 1) (p(s) — p(t) + 1)°

s o = 2 (Rt 1

then there is N €10, 1] and ¢ € Ax such that

} < 400, (4.6)

U (Vig) CVin

for every T € R, where W, is given by B3), R: R —]0,00[ is defined by E3) and
V. g and Vi p are given by (@1). Furthermore, we have

o P (1) — u(s) + ()] + 1) € —&| irt >
‘Ilt—s Pse) — ‘Ilt—s ps£ <
2 ls) = ) + Dls)| + D¢ e~ € art < s

for every (5,€),(5,8) € G and &,€ € B(R(s)) and where pye = (5,€,9(5,£)) and
p37g = (Sa€7 )
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Proof: 1t is clear that

Lip (filwray) < 0p'(8)(Ju(t)] + 1), (4.7)

Using 3:28), 329), € + (—y + ¢)¢ + 1 < 0 and making the substitution T = pu(r),

we have

/t Qi Llp (fr|%(R(r))) Ay s dr

o= sup
(t,5)ER? Ay s
t
< D8 sup / () ()] + 1) dr
(t,5)ER?
“+o00
= D(S/ |+ 1)8+( 'y-i-chr

= 2D§ / (T4 1) g
0

B 2D§
e+ (v +og+1]

By (47) and making the substitution T = pu(s) — u(r) we have

/_ 5;7_7« Llp (fr|‘B(R(r))) (7 dr
< D% /_ p () (uls) = p(r) + D ()| + D)7 EFY (| u(s)] + 1) dr

— D% / (e ) — ()] + DO u(s)] + 1) de

and using again (A7) combined with the substitution T = u(r) — u(s) it follows that

+oo

53_,7" Llp (fr|‘B(R(r))) Qs dr
+oo
D% / w () (p(r) = p(s) + D)) + DT u(s) + 1)° dr
= 0% [ ) )]+ DR e)] 4 1)
0

Hence, since a+b+¢e < 0, c+d+e <0, e+ (—y+c)g+1 < 0and 2e+(—y+¢)g <0,
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by Lemma [3.2.6] we get

+o0o
w= Sup {/ B Lip (fr|s(rery) ars dr +/ B, Lip (frlo(rey)) s dr

5(26+1+1)
+
|max{a+b c+d}+2e+(c—)g+1]

n D%
lmin{a +b,c+d} +2c+ (¢ —y)g+ 1|

Moreover, since for every s € R, we have

s _ D) = pu(s) + D (|pu(s) 4 1)°
oy RO 1o [ (O[] + 1) }

_ . (n( +
- DU+ s [T

and

Ssu = Su
PR TP { (O Va(p(t)| +1)=
S

B T ls) — () + 1)
= Dllu(s)l 1) sup Lﬂ(t)l (u(t)] + 1>—~}

condition (Z@) implies (£2). Therefore choosing § sufficiently small such that

Qs D(p(s) — p(@) + 1)°(lp(s)| + 1)5]
/

40 + 4w < 1, it follows that all conditions of Theorem [4.1.2] are satisfied. O

Remarks 4.2.5.

a) Note that if

- [ | ettt ]}

then ([£3) becomes

b) Since
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it follows that

s (u(t) — pu(s) +1)°
o s = DA+ 1) s [
B — )]+ 1\ (u(t) — p(s )+1)“
- ()l +1) t>}3{ |N(3‘+1) wt)Y ]
and
s (u(s) —
Stgls) R(t) D(Ju(s)] +1)° Stl<1183 L'(t 1a( \M \+1 ]
_ s () + 1\ (u(s) — p(t) +1)°
= Dilus)l 17 sup Kws )|+ 1) RO ]
<D |+1 a—i—’y Stgg |:(,u(3) l/;l—l ’Y:| .

Therefore, if

(p(t) = pls) + 1)
HORE

s a non-increasing function in the variable t

and

(p(s) = p(t) + 1)
()

s a non-decreasing function in the variable t.

we have

ap [l 1]

and (A0) is satisfied.
Moreover, if i is twice differentiable we have

{(u(t) _Jéjz/j 1)a+y],

= (u(t) — p(s) + 1)1 (@)Y [(a+ ) ()7 = (u(t) — p(s) + 1) (1) /q]

and

[(#(5) _;u/zt(;l)/j 1)6”}'

= (u(s) = p(t) + DT (@) [= (e + ) (8)° = (u(s) — u(t) + D" (1) /q] -
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and this implies that if
gla+7)u'(t)* < p'(t) < —qle+ ) ()

for every t € R, then ([LQ) is true.

The next result is obvious, making p(t) =t in the previous theorem.

Corollary 4.2.6. Let X be a Banach space. Suppose that equation (L)) admits a

nonuniform polynomial trichotomy and that f: R x X — X is a continuous function

that verifies (32) and (X)) with
k(t)

with 6 > 0. Let R: R —]0, +oo[ be the function defined by

B 5
20|t + 1)

R(s)=(]s|+1)", ~>0.

If B24) is fulfilled, § is sufficiently small and
e+(c—7v)g+1<0, 264 (c—v)<0 and max{a,c}+v<0,
then there is N €10, 1] and ¢ € Ax such that
e (Vig) € Vin
for every T € R, where V. is given by B9), R: R —]0, 00| is defined by [&E3) and
V;,Fz and V} g are given by [@1). Furthermore, we have
DN

7(zf —s+1)(|s|+ 1) |[€ =& fort>s,

[e—s(pse) — ‘I’t—s(ps,g)H < Dy
P (st 1esl + 1l — & fore<s,

for every (s,€),(s,€) € G and &,€ € B(R(s)) and where p,e = (5,&,0(s,€)) and
Psg = (375790(375))'

Proof: The result follows immediately by making u(t) = t in Theorem .24l and
taking into account last remark and that a + v < 0 and ¢+ v < 0 imply (£6). O
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84.3 Examples of local invariant manifolds — second type of

perturbations

In this section we are going to use perturbations f: R x X — X such that (3.2)

is satisfied and
1f(tu) = f& ) < Ellu—of (Jul + [Jv]])? (4.9)

for every t € R and every u,v € X and with k,q > 0. In fact, given a function

R: R —]0, +00[ we have
(8 u) = ()] < 29KR(E) [|u — o]
for every u,v € B(R(t)) and this shows that f;|s(r«)) is Lipschitz and
Lip (fils(ray)) < 29kR7(t). (4.10)

In the next examples we are going to consider perturbations of this type.
§4.3.1 Nonuniform (a, b, ¢,0)—trichotomies

Firstly we will apply Theorem [1.2] to nonuniform (a, b, ¢, 9)—trichotomies.

Theorem 4.3.1. Let X be a Banach space. Suppose that equation (L)) admits a

nonuniform (a, b, ¢,0)—trichotomy. Assume that f: R x X — X is a function that

verifies (3:2)) and (£9). Make

a0 1 )\ a()b(t) 1 '
B0 = 5 {c<t>o<t>aa<t> ( =0 ) ) [a<t>b<t>ea<t>} ’7“)}’

with 0 < 6 < 1/12 and where v: R —]0,400[ is a function such that [B20) holds.
If BZ1) is fulfilled,

su 1 < oo and su ﬂ<oo
i a(D)R(?) es R(E) ~

then there is N €10, 1] and ¢ € Ax such that

U (Vig) CVin
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for every T € R, where W, is given by B3), R: R —]0, 00| is given by [@3) and
V. g and Vg are given by (@J). Furthermore, we have

Sl =g ot
qut—s(ps,é) - “I’t—s(ps,f)H < N (t) (4.11)
_—s) Hf SH fort <s

for every (s 5),( &) € G and &,€ € B(R(s)) and where pee = (5,&,¢(s,£)) and
Pog = (5.6, 0(5,8)).

Proof: Since

Qs a(s)ea(s) 1
TR0 TP e ) Rm < T
and
sup Qs c(thec(s)  ec(s) c(t) < 400,

i B(D) e (R0 els) e R()
(£2) is satisfied. As (3:21]) holds and as in the proof of Theorem B2

og<d and w<26

choosing 0 < 1/12 we have

do+4w < 1

and all the hypotheses of the Theorem [M.I1.2] are verified. Furthermore, in this
case (£3) becomes

R(s) = - 1
() c(?)
N max {a(8)5u(3) Sup a(t)R(t) ¢(s) o R(t) }
Y S |
=N {a<s>ea<s> il laRO] 76y it { (1) ] }

and (Z4)) obviously becomes ([EII]) for every &, & € B(R(s)) N E,. O
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84.3.2 p—nonuniform exponential trichotomies

In this subsection we are going to consider p—nonuniform exponential trichoto-

mies and perturbation functions f satisfying (£.9).

Theorem 4.3.2. Let X be a Banach space. Suppose that equation (L)) admits

a p—nonuniform trichotomy. Assume that f: R x X — X is a function that veri-

fies B2) and (Z9). Let

0 L\ 2

with 0 < 0 < 1/12 and

D
T(t) := min {—c —d—esgn(t), —a — b+ esgn(t), 77 e(e_“’)p(t”} ,

where 7y is given by B.23). If B.24) holds and

eaP(t)+(e+7)lp(t)l/q e—cr(t)+(e+)lp(t)/q
max{ } < +00,

(4.13)

e PV ST g

then there is N €10, 1] and ¢ € Ax such that
e (Vig) € Vin

for every T € R, where U, is given by [39), R: R —]0, 00| is given by ([&3) and

V. g and Vi p are given by (@1). Furthermore, we have

DN aipto-stoleioll ¢ €| fort > s,
H\I’t—s(ps,f) - lIjt—s(ps,g)H S N (414)
DN clot-pol+<bo)l ||¢ || fort < s,
w

fO?" every (Sag)a (3,5) € G and fag € %(E(S)) and where Pse = (&fa@(&f)) and
Psg = (3>ga SO(S’E))'
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Proof: For this bounds we have that (3.2])) is equivalent to (3.24]) and

( okl/ap2/a
D ep(t)=p(s))+elp(s)| ift>s
Qg oap (t)1/a e—2ele®l/at(t)1/a ’
- 14 p2/
Rt | 5 ctotor-so)elot) 2k D i<
\ (51/qp/(t)l/q e—2¢lp(t)|/q T(t)l/q ’
(D2l ap(+2¢ ()] /g (4.15)
oD {_} eap(s)telo(s)] €T > s
_ ) o/ (t)ye(t)]
o 21.11/a —cp(t)+2¢|p(t)|/
oD {ﬂ} el S iy
( 0 [/ (t)(t)] "
From (AI3)) the functions
N ear(t)+(e+7)lp()l/q 1 B e—cp(t)+(e+7)lp(t)l/q
= O =

are well defined.
First we consider the case ¢ > 0. Then v = ¢ and it is trivial to see that, when
e > 0, Tis a bounded function with T~ = miﬂgT(t) > 0 and Tt = mzﬁ(’t(t) > 0.
te te

Hence, from ([£I5) we have

27.711/4
5D {%} eSS\ (s)  if LS s,
at,s g T
R(t) ng 1/q
2D |:5,1.—_:| ecp(8)+8|p(8)| X_ (8) ].ft < 8,
and this implies that
s D2k 1/q
sup %, < 2D {—_] ef1P8)l max {ec’)(s) X (s5),e7e) xXT(s)} < 4oo.  (4.16)
ter R(t) 0T

Now we consider the case ¢ = 0. By (8.23) we have

D D
T(t) = min {—c —d,—a—0b, 77 e‘”'p(t)} = TV e P ®I

From (LI5) we have

1/q
2D {—} o= () xF(5s) ift > s,
< » (4.17)
2D {—] eP®) () ift<s
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and thus
Qg g 2Dk 1a _ _
b5 <op | /== cp(s) ap(s) y+ < ) 4.18
sup i <20 228 max {09 (), ()} < o, (419
Therefore, all conditions of Theorem .3 T] are satisfied and it is easy to see that (4.4])
becomes ([@TI4) for every &, € B(R(s)) N E,. O

Remarks 4.3.3.

a) When e >0, from ([AI0) we also have

s 2
5 > 9D ap(s)+elp(s)] y +
PR {W} ’ e
d
" o DY cotorsetoto
,8 > 92D cp(s)+elp(s -
R Lw} ‘ e
and this implies
Qy g D%k Ha elp(s)| ns —ap(s) |+ cp(s) ,,—
ten R(t) > [5?] e??* N min {e™* xF(s), e X7 (s) } .
Hence
_ & (1)
R(s) > 1 w (ot (4.19)
2N D (D2h) e max {910 3 (s), e x~ ()}
and from ([@I8) we also have
B o (5tH)e
R(s) < . w(oth) . (4.20)
2N D (D2k)" eslp(®)l min {e=0(s) x (), er(s) x~(s)}
In the case e =0, from (@I7) and [EIS) we have
~ 1/q
R(s) > T (99) (4.21)
2DN (2Dk)"? max {e=ar(s) x*+(s), e»(®) y=(s)}
and
_ @ (67)H*
R(s) < (4.22)

= 2DN (2Dk)Y? min {e=ee(s) y+(s), e x—(s)}
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b) Note that if p is twice differentiable, we have fort # 0
[0/ (1)~ V4 e O+ e/l —

_ _épl(t>_1/q_1p”(t> e[a—i—sgnt(e—i—v)/q]p(t)

+ 0/ (67 [ap (1) + sgnt—— Z Y ()] elotsentietn/an)

1
— 5Pl(t)_1/q_1 e(a+sgnt(€+”f)/¢])ﬂ(t) [—p”(t) + (aq + sgnt(&? + 7))(pl(t>)2i|
and
[p’(t)_l/q e(—cp(t)+(€+v)/q)|p(t)q’ _

1
_ —5,0/(t)_1/q_1,0”(t) e[—c—i—sgnt(a—i—’y)/q]p(t)

+p ()Y | —cp (t) + sgntS Z T (8)| e-etsam it/

1
_ 5p/(t>—1/q—1 e(—c—i—sgnt(e-‘r“/)/fI)P(t) [_p”(t) + (—cq + sgnt(g —+ ’y))(p,(t))2] ,

and this two last equalities allow to conclude that if p(t)~'/9 e+ EEN/DlPM] s

non-increasing and p’(t)_l/q el=epW+EN/ DO s non-decreasing, that is, if

2

(ag + sgut(e +7)) [0/ (0] < p'(1) < (—cq +sgnt(e + 7)) [P ()] (4.23)

for everyt € R, then

e +(E+Vle®/a  gap(s)+(e+7)lp(s)l/q

A IO
and
e—cPO+(EetNlp)l/a  g=cp(s)+(e+7)lp(s)l/q
R ) T O
Since

elE+VIp(s)l/q

—ap(s) \F(g) = P v~ (5) =
€ X (8) =€ X (S> _ p,(s)l/q

then we have
max{e_“p(s)x+(s), ()~ (s)}

= min{e x*(s), ey (s)}

elEtVIp(s)l/a

o p(s)Ve
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Therefore from ([A20) and ([£I9) we have

Ha 1 1+2
o ()14 ¢~ (42 elo)]

(s) < W [oyTt]
~ 2DN | 2Dk |

R

and

— W [oyT] La
R(s) > ——
()2 3pN |20k |

when € > 0 and from [@22) and [{ZI)) we get

pl(s)l/q e—(1+2/Q)5‘P(3)|

o R o0 ARy
_ ! a o—p(s)l/a
B =3px [QDIJ pls)rte

fore=20.

Making p(t) = t in the last theorem we have the following result.

Corollary 4.3.4. Let X be a Banach space. Suppose that equation (LI) admits a

nonuniform exponential trichotomy. Assume that f: R x X — X is a function that

verifies [B.2) and ([EI). Make

R(t)

A e—2£|t|
= Jpza

with 0 < 0 < 1/12 and
T(t) := min {—c —d —esgn(t), —a — b+ esgn(t), % e(a_”'t} :
where v is given by B23). If B24) holds and
max{a,c} + (¢ +7)/q <0, (4.24)
then there is N €]0, 1] and ¢ € Ay such that
U (Vig) CVin

for every T € R, where W, is given by B3), R: R —]0, 00| is given by [@3) and

V. g and Vi p are given by (@1). Furthermore, we have

D~_N alt—s)+els| HS — EH fort>s,
w

H\Ijt_s(psf) - \Ilt—s(ps,f_)H <
%_N ec(s—t)+6\s| H€ . gH fO?"t < s,
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for every (s, ),( £) € G and £,€ € B(R(s)) and where p,e = (s,£,0(5,€)) and

= (5.6, 9(s.9)).
Proof: 1t follows immediately taking into account that p(t) = t is twice differentiable

and (L23) follows from (A24), since

m |

2 2

(ag +sgnt(e +7)) [p'(O] < p"(t) < (—cq +sgnit(e +7)) [0'(1)]

& aq+sgnt(e +7) <0< —cqg+sgnt(e+ )
and having max {a, c} + (¢ +7)/q < 0, implies
ag+e+v<0 andalso —cqg—(e+7)=0
which obviously implies
aq+sgnt(e +7) <0< —cq +sgnt(e +7)

for every t € R. In this case we have, when ¢ > 0

w [yt Y _(42/)els| — B w [oyT" e _
e e Aan gls < < — | (1+2/q)e|s|
9DN {sz] ¢ B < 3pn 2ok ©

and

S @[]
k) =3pN {QDk] ¢

for e = 0. O

Corollary 4.3.5. Let X be a Banach space. Suppose that equation (L)) admits a

p—mnonuniform trichotomy with p given by

p(t) = sgn(t)In (1 + |¢]) = In ([1 + \tusg“(“) .

Assume that f: R x X — X is a function that verifies (32) and (£9). Make

J

B = 15

()1 +[t) 7=, (4.25)
with 0 < 0 < 1/12 and

T(t) := min {—c —d—esgn(t), —a — b+ esgn(t), %(1 + \t|)5_“’} : (4.26)
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where 7 is given by B23). If B24) holds and
max {a,c} + (e +v+1)/¢ <0,
then there is N €10, 1] and ¢ € Ax such that
e (Vig) S Vin

for every T € R, where U, is given by 39), R: R —]0, 00| is given by ([&3) and
V. g @nd Vg are given by (@1). Furthermore, we have

sgn(t)
DNN[(H\tI)Sgn(S)] (A+1s)) €& if t>
- ] w [(T+]s])
H‘I’t—b‘(ps,f) lIjt—s(ps,ﬁ)H< sgn(s)
DN[“HSD } el ll i ¢ <
& [ (14 [t])sen®

(4.27)
for every (s,€),(s,&) € G and &,& € B(R(s)) and where pse = (5,&,¢(s,£)) and
pg,g_ = ($>€a QO(S,E))

Proof: Tt is clear that (L)) is an odd differentiable function with

1
IETRE |
pt) = = — for all t € R,
—(—1) 1+ |t
, t<0
1—t

always positive. For this choice of p in (LH) we have

sgn(t)
L[l

T s

(

(

( r(1+|3|)e for (t,s) € R2,
(1 + [s[)een)
dic

t,s —

] (1+]s|)s for (t,s) € RZ,

Bie =

Brs =

D |:(1 + |t‘)5gn :| (1 + |S|)E for (t, S) c Ri,
( =
(
(1

T+ sl
?lo

Lt Js|enc)
Suppose that ¢ > 0 and by ([B:23) this implies v = . Then taking into account

+ [t ® } (1 +s])® for (t,s) € RZ.
(AI2) and (L) we have ([£25]), and ([£20) becomes

D
T(t) = min {—c —d—esgn(t),—a — b+ esgn(t), 77} ‘
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This implies that

ott

ot 1)<
= kD224

jprg (LI < A

(L+ e,

where T~ = mint(t) > 0 and T" = maxt(¢) > 0. In this case we have
teR teR

N eart)+(e+MNlp(t) /g asgn(t)+(264+1)/q
) = s e = sl

t>s t>s

and, since a+ (26 +1)/¢ < 0 and —a+ (26 +1)/q > 0 (because a < 0), the function
given by

(14 ¢)o+@HD/aif ¢ > 0

(1 + |t‘)asgn(t)+(26+1)/q _ 1 TE

(1 —¢t)=oF@+D/a if t <0

\

is decreasing and this implies
X+(S> _ (1 + |S|)aSgn(s)+(2€+1)/q.

On the other hand, we have

) e—cP(t)+(+7)|p(t)] /g —csgn(t)+(2e+1)/q
X" (s) = sup PO sap(L+ 1)

t<s t<s

and since ¢+ (2¢ + 1)/¢ < 0 and —c + (2¢ +1)/¢ > 0 (also because ¢ < 0) the

function given by

(

(14 ¢)~c+CHD/a ift >0

(1 + |t‘)—csgn(t)+(26+1)/q _ 1 ft=0

(1 —t)c+CHD/a ift <0
\
is increasing and this implies
X—(S> _ (1 + |S|)_CSgn(s)+(2€+l)/q.

Hence, for ¢ > 0,

max {e” ") x ¥ (s), % x 7 (s)} = (1 + |s) >+,
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Therefore we get

q+2
Qg s <2|i.D k

1/q
— ] (14 |s|)E @D/ < foo,

Su
= 0!

If e =0, by (3:23) we have

D D
T(t) = min {—c —d—esgn(t), —a — b+ esgn(t), 77(1 + \t|)5‘7} = 77(1 + [t
and this implies that
o(L+[t)) " Dy _ (@A)
B = = paar = L HIDT kD27+1
In this case we have
N ear(t)+(e+7)lp(t)|/q ) en(O)4+(v41)/a
— — t asgn
X" (s) = sup FIDRE sup(1+[¢))
e—cP)+(e+)p(b)l/q ) en(®)(141)/q
—_ — t csgn .
X = sy = (I

Because a + (1 +v)/q < 0 we have

1/
Qts {(2D)q+lk} ' (1+ |$|)(1+7)/q X" (s)

sup

s R(t) 0y (1 4+ |s])asen()+1+)/q (128)
(2D)7 1k 1/q '
_ {75 } (14 |s) < 4oo
Y
and because ¢ + (1 +7)/q < 0 we get
1 _
s (2D)7 1k /4 (1 4 |s)0+/a X (s)
= OR A+ [sh @@
(2D)r+1] M 429
= |:(57:| (]_ + |S|)(1+7)/q < +00.
Y
It is easy to see that ([EI4]) becomes [ALZT) for every &, & € B(R(s)) N E,. O

Remark 4.3.6.
Note that, for e > 0, we have

max {e—ap(s) XJF(S)7 acr(s) Y~ (s)} — min {e—ap(s) X+(S), ecr(s) X_(S)}

= (L4 Js|) =+
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and then
D2 ] M +(2e+1)/ Aty D) e +(2e41)/
S| e ot <o [T s et
Therefore for € > 0, from (@3] we have
o [ 6T Ve _ & [ ot Ve .
ﬁ[m] (14 [s)) 7 < R(s) < o {m} (1+[s[)==-C=FD/a,

In the case that e = 0, from ([L28) and ([L29), ([A3) becomes
5} o w 07 v (+7)/a
RO = 5py |apr] 1+

84.3.3 p—nonuniform polynomial trichotomies

At last, we are going to apply the main theorem of this chapter to y—nonuniform

polynomial trichotomies for this type of perturbations f satisfying (4.9).

Theorem 4.3.7. Let X be a Banach space. Suppose that equation (1)) admits a
pu—mnonuniform polynomial trichotomy. Assume that f: R x X — X wverifies (32)
and ([@9). Make

R(t) = op/ (1)1 (|u(®)] + 1)

for § sufficiently small and v > 0. If we assume [B24)), a,c <0, 26 —vy¢+1 <0
and for every s € R, ([@6) holds then there is N €1]0,1[ and ¢ € Ax such that

e (Vig) € Vi

for every T € R, where W, is given by B3), R: R —]0, 00| is given by [@3) and
V. g and Vg are given by (@J). Furthermore, we have

Pty — ts) + (o) + 17 €~ & a7t >
[9stpo0) = sl < §
—(u(s) = () + ()l + 1) e =& ife<s

for every (s S),( &) € G and &,€ € B(R(s)) and where p,e = (5,€,0(s,€)) and
Pog = (5,6 ¢(5,8)).
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Proof: For this R it follows that (Z.I0) becomes
Lip (fils(ray) < k27070 ()(|u(t)] +1)777. (4.30)

In this case (B.I8) becomes (3.24)), and since ([3.:29) and ([3:28)), choosing ¢ < vq — 1,
a,c < 0 and using (£30) we have

o= sup

/t [0 7%% Llp (fr|‘B(R(r))) Ay s dr
(t,s)€ER2 |Js

at,s

< 29DEko? sup

| )ty + 11

(t,s)€eR2
= Dk [ W)t + 1
-
— 21Dk / (7 + 1)= dr
2041 Dt
T le—a+1]

where we made the substitution T = pu(r).

Assuming (£30) and making the substitution T = u(s) — p(r) we have

/_8 5;} Llp (fr|%(R(r))) Ay s dr
< 21D%% / () (p(s) = pulr) + ()| + )77 (|u(s) ] + 1) dr

—00

— 21 D%§1; / T D= )+ D)) + 1) de

and making the substitution T = u(r) — u(s) we have

+oo
5;7~ Llp (fr|‘B(R(r))) (7 dr

<2t [ ) lr) = )+ ) )]+ )]+ 17
= 21D?*§%k /O+OO(T + D) (|t 4 p(s)] + 1D)F9(|u(s)| + 1) dr.

Since c+d+e<0, a+b+e<0, e—v+1<0, 2¢ —~g < 0 and using




§4.3 Examples of local invariant manifolds — second type of perturbations 107

Lemma B.2.6] it follows that

sER

s +oo
@ = sup { / Bor Lip (frlw(rery) ) s dr + / Ber L (frlm(rer))) 0trs dr}

_ 24 D259%(257 + 1) . 24 D254k
= lmax{a+bc+d} +2c—yq+1]  |min{a+bc+d} +2c—yq+1|

Since for every s € R, we have

0. D T () — uls) D)
= S ] e
and
as D . (u(s) — p(t) +1)°
WP Ry = g Ml DT [w@)w(m(tﬂ n 1>—v} U

therefore assuming that (8.24]) holds, the last two supremuns are finite and choosing §
sufficiently small such that 40+4w < 1, it follows that all conditions of Theorem [L.1.2]
are satisfied. m

Remark 4.3.8.  As in Remarks in last theorem we have
— wo
Rls) = —2°0 1)
)= B (M + D%
where ¥(s) is given by [@8). Note that in order to have (L), it is sufficient that

(u(t) = p(s) + 1)
TORE

is a mon-increasing function in the variable t

and
(u(s) — pu(t) + )0
ORE

Moreover, if i is twice differentiable and

1s a non-decreasing function in the variable t.

qla+7)p'(t)* < p'(t) < —qle+)p'(t)?,

for every t € R, then (ALQ) is also satisfied.
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Corollary 4.3.9. Let X be a Banach space. Suppose that equation (1)) admits
a nonuniform polynominal trichotomy. Assume that f: R x X — X is a function

that verifies (32) and ([A9) and make
R(t) = o(Jt[ +1)77
with § sufficiently small and v > 0. If (B24) holds and
2¢e —vqg+1<0, a+~v<0 and c¢c+7v<0
then there is N €10, 1] and ¢ € Ax such that
U (Vig) SVin

for every T € R, where W, is given by B3), R: R —]0, 00| is given by [@3) and

V;,R and V} g are given by [@I)). Furthermore, we have
DN _
—=(t=s+1)*(ls| +1)° e —¢&|| fort=s
H\Ijt_s(psf) - \Ijt—s(ps,ﬁ_)H < DN
7(3 —t+1)(|s| + 1)F||¢ = €| fort<s

for every (s, ),(

= (560

€) € G and &,€ € B(R(s)) and where pse = (5,&,¢(s,€)) and
€))-

Proof: This follows immediately making p(t) = ¢ in Theorem 3.7 and taking into

m |

account the last remark and that a +y < 0 and ¢ + v < 0 imply that (@3] and

(#32)) are finite. 0O

§4.4 Proof of Theorem

In the proof of this theorem we are going to use Theorem B.1.3]
Let f: R x X — X be the function defined by

B f(r,x) if x € B(R(r)),

fr,z) = f(r, |9(37’“‘)x) if © & B(R(r)).
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Clearly f is a continuous function. Making f.(z) = f(r,z), for every r € R,
x € X, and since f,|grey): B(R(r)) — X is a Lipscthitz function for each r € R,

then we can say that f. : X — X is Lipschitz and

Lip (frlwrey)) < Lip(fr) < 2Lip (frlsrey)

for every r € R.
Now we will apply Theorem B.1.3 with f,. replaced by f,. Thus, we have

/t at,r Lip(f_r)ar,s d’f"

at,s

o= sup
(t,5)ER?2

<2 sup
(t,5)ER?

/t Ay Lip (frlrey) ans o

at,s

= 20.

Furthermore, we have

“+o00

w = sup { / B Lip(fr)ar,s dr + B Lip(fr)au.s dr]

seR

+o0o
< 2sup [/ B Lip (frlere))) s dr +/ B, Lip (frlmrery) ) s dT’]

seR

Hence, if
20 +2w < 4o+ 40 < 1

and considering U, the flow given by (B:9) then by Theorem B3, applied to the
problem (B) with f replaced by f we may say that there is only one function

¢ =(p",07) € Ay such U (V,) CV,,
for every T € R and
_ - _ _ N _
|¥e-as6.005.6) = Tiu(s. 6. )| < S analle =€) (433)

for every (t,s) € R? and every &,¢ € E.
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In particular, if ¢ € B (R(s)) N E,, by (&2), {@3) and since we have that & < o

and w < w, it follows that

- N N
9o 605 90)| < S N6l < SanR(s) < o)
for every (t,s) € R? and this implies
U (Vig) S Vi
for every T € R.

Since frlw(re) = frlw(re)) then \Tf\v L= . . from (A34) we get
@, B

e (Vig) S Vi
for every T € R and (£33)) implies that

_ _ N _
H“I’t—s(&gﬁp(‘g?f)) - “Dt—s(s>§a 90(3’6))” < 5 Ot,s HS - SH

(4.34)

for every (t,s) € R? and every &,& € B(R(s)) N E, and this finishes the proof of

Theorem E.1.21
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