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Resumo 

Todos os anos, milhões de pessoas em todo o mundo são vítimas de queimaduras, feridas crónicas 

ou feridas agudas que comprometem a integridade da pele. Tendo em vista a recuperação da pele 

lesada, uma das abordagens terapêuticas mais utilizadas consiste no uso de autoenxertos. Estes, 

no entanto, apresentam algumas limitações tais como a escassa disponibilidade de tecido dador e 

longos períodos de internamento hospitalar. Neste contexto, a engenharia de tecidos tem-se 

focado no desenvolvimento de matrizes sintéticas capazes de reproduzir a estrutura nativa da 

pele e promover a sua regeneração. Esta tese de mestrado apresenta o trabalho realizado ao 

longo dos últimos 9 meses onde foi produzida uma membrana com duas camadas através da 

técnica de eletrofiação que se pretende usar como substituto de pele. A camada superior da 

membrana era composta por ácido hialurónico e policaprolactona e foi concebida com o objetivo 

de atuar como barreira física contra agentes externos e ainda proporcionar o suporte mecânico 

necessário. Por outro lado, a camada inferior da membrana foi produzida com quitosano e zeína e 

posteriormente funcionalizada com ácido salicílico com o intuito de lhe conferir propriedades 

anti-inflamatórias e antimicrobianas. Os resultados obtidos revelaram que a membrana produzida 

possui porosidade, propriedades mecânicas e biocompatibilidade adequadas. Por outro lado, 

verificou-se a ausência de formação de biofilme durante, pelo menos, 5 dias. Os resultados 

obtidos revelam que a membrana possui as propriedades adequadas para ser usada na 

regeneração de feridas cutâneas.  

Palavras-Chave 

Ácido salicílico; electrofiação; engenharia de tecidos; membrana em bicamada. 
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Resumo alargado 

A pele é o maior órgão do corpo humano, constituindo cerca de 8% da sua massa total. As 

principais funções da pele incluem proteção contra agentes externos, regulação da temperatura 

corporal e manutenção da homeostasia de líquidos. No entanto, a integridade deste órgão é 

frequentemente afetada por doenças ou trauma (ex. queimaduras). Geralmente, as lesões 

cutâneas têm uma elevada morbilidade associada e, em último caso, podem causar a morte do 

paciente. 

Consoante o tipo e a duração do processo de cicatrização de feridas, as lesões cutâneas podem 

ser classificadas como agudas ou crónicas. A cicatrização de feridas é realizada através de uma 

cascata de eventos complexos e dinâmicos, que incluem a coagulação, inflamação, síntese e 

deposição de matriz extracelular, angiogénese, fibroplasia, epitelização, contração e 

remodelação. Tendo em vista a recuperação do tecido lesado, uma das abordagens clinicas mais 

recorrentes consiste na utilização de autoenxertos. No entanto, este tipo de terapia é limitado 

pela parca disponibilidade de tecido dador, particularmente em casos de pacientes com elevada 

percentagem do corpo queimada ou comprometida. Alternativamente, alguns cirurgiões recorrem 

ao uso de aloenxertos e xenoenxertos para o tratamento de lesões cutâneas. Porém, estas têm 

associado o risco de infeções e rejeições imunológicas. Para colmatar estas limitações, nas 

últimas décadas, a engenharia de tecidos tem desenvolvido vários substitutos de pele com o 

objetivo de acelerar o processo de cicatrização de feridas e restabelecer as funções da pele. 

De acordo com a camada da pele que se tem que substituir, os substitutos de pele podem ser 

classificados como epidérmicos, dérmicos e dermo-epidérmicos. Os substitutos de pele podem ser 

produzidos com polímeros naturais e/ou sintéticos, sendo que alguns têm células incorporadas. 

Contudo, nenhum dos substitutos de pele produzidos até agora é capaz de reestabelecer, na 

íntegra, as propriedades funcionais e anatómicas da pele. 

Entre uma diversidade de sistemas usados na promoção da cicatrização de feridas cutâneas, as 

membranas produzidas pelo processo de eletrofiação têm sido objetivo de intensa investigação 

nos últimos anos. A técnica de eletrofiação utiliza forças eletrostáticas para produzir malhas 

nanofibrosas com diâmetros entre 50-500 nm, que são semelhantes às dimensões das fibras de 

colagénio presentes na matriz extracelular. Esta semelhança estrutural torna as membranas 

produzidas por eletrofiação excelentes substratos para a adesão celular. Adicionalmente, a 

elevada porosidade e o baixo tamanho de poro permitem as trocas gasosas e conferem ainda 

proteção contra infeção bacteriana no local da ferida, respetivamente. Os exsudados das feridas 

são também eficazmente absorvidos pelas membranas devido ao seu elevado rácio área/volume, 

ajudando a manter um ambiente húmido no local da ferida. Por outro lado, estas estruturas 

nanofibrosas são conformáveis e adaptáveis a feridas com arquitetura irregular e podem ser 

facilmente funcionalizadas com moléculas que promovem o processo de cicatrização. 
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Desta forma, o presente estudo teve como objetivo a produção de uma membrana com duas 

camadas pelo processo de electrofiação para aplicação na regeneração de pele lesada. A camada 

superior da membrana era composta por ácido hialurónico e policaprolactona e foi desenvolvida 

com o intuito de proporcionar integridade estrutural ao sistema e simultaneamente constituir 

uma barreira física contra agentes externos. Por outro lado, a camada inferior foi concebida de 

forma a estimular o processo de cicatrização e ainda possuir propriedades antimicrobianas e anti-

inflamatórias. Para tal, foi produzida uma membrana nanofibrosa composta por quitosano e zeína 

com ácido salicílico incorporado.  

Após otimizado o processo produção, procedeu-se à caracterização físico-química e biológica da 

membrana. Os resultados obtidos revelaram que a membrana produzida possui porosidade, 

propriedades mecânicas e biocompatibilidade adequadas. Por outro lado, verificou-se a ausência 

de formação de biofilme na superfície da membrana durante pelo menos 5 dias. Os resultados 

obtidos revelam que a membrana possui as propriedades adequadas para ser usada na 

regeneração de feridas cutâneas. 
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Abstract 

Every year, millions of patients suffer burns, chronic or surgical-related wounds. Autografts are 

still the gold standard used for the treatment of these injuries, although they have several 

drawbacks like limited availability of donor sites, patient morbidity, and long periods of 

hospitalization. To surpass such drawbacks, several studies have been focused on the 

development of polymeric matrices that are able to reproduce the skin native structure and also 

improve its regeneration. Herein, a bilayer membrane was produced by electrospinning and its 

properties have been characterized through in vitro assays. The upper layer of the membrane was 

comprised of hyaluronic acid and polycaprolactone in order to provide mechanical support and 

also to act as a physical barrier against external threats. Chitosan and zein were used to produce 

the bottom layer. Furthermore, salicylic acid was also incorporated in this layer for conferring 

anti-inflammatory and antimicrobial properties to the membrane. The obtained results showed 

that the produced electrospun meshes display an ideal porosity, appropriate mechanical 

properties, controlled evaporative water loss and an initial burst release of SA. Moreover, the 

membranes did not exhibit any toxic effects for human fibroblast cells and promoted their 

adhesion, spread, and proliferation. In addition, no biofilm formation was noticed on their 

surface along the experiments. The obtained data reveal that this electrospun membrane 

possesses the required properties to be used in wound healing. 

Keywords 

Bilayer membrane; electrospinning; salicylic acid; skin tissue engineering. 
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1. Introduction 

1.1. Skin 

1.1.1. Functions and structure 

Skin is the largest and heaviest organ of the human body, with an area of 1.5–2.0 m2 and a weight 

of 3.5–10 kg [1]. This complex organ is the outermost barrier of the body that protects inner 

organs from microbial pathogens, mechanical and chemical insults, regulates the body 

temperature, gives support to blood vessels and nerves, and prevents dehydration. Furthermore, 

it is also involved in the immune surveillance and sensory detection process [2]. 

Anatomically and functionally, the skin is formed by three connected layers, the epidermis, the 

dermis and the hypodermis (figure 1). The basement membrane separates physically epidermis 

from the dermis, acting as a consistent and dynamic interface [3]. Associated with the skin layers 

are various appendages such as hair follicles, nails, sweat and sebaceous glands that play 

different functions [4]. A more detailed description of the structure of the human skin is given in 

the following sections. 

 

Figure  1. Schematic representation of the structure of normal skin tissue. 
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1.1.1.1. Epidermis 

Epidermis is the most superficial layer of the skin and it is composed of stratified squamous 

epithelium. Epidermis thickness varies according to body location [4]. The main function of the 

epidermis is to protect the skin from potential threats and also to act as an efficient barrier at 

the top of the skin [5]. As can be observed in figure 2A, the epidermis is composed of five distinct 

cell layers, according to the different stages of keratinocyte maturation. From the deepest to the 

most superficial, these layers are known as strata basale, spinosum, granulosum, lucidum, and 

corneum [6]. 

The stratum basale consists in several layers containing cuboidal nucleated epithelial cells, also 

known as skin stem cells. These stem cells have a high self-renewal capacity and move upwards 

while they differentiate [3]. Initially, they are in the stratum basale and then they migrate to the 

stratum spinosum where the keratinization process begins. At this stage, cells start to lose their 

cytoplasm, suffer shape variation and start to synthesize keratin [7]. In the stratum granulosum, 

differentiated keratinocytes are highly active and accumulate lipid granules that are critical for 

the maintenance of a water barrier due to its hydrophobic nature. In fact, while delivering the 

content of the secretory lamellar granules to the intercellular spaces, the keratinocytes present 

in this layer become flat and spread. In strata lucida and corneum, cells enter into the 

programmed cell death process and all of the cytoplasmic organelles are degraded [4]. The 

stratum corneum is the most external layer of the epidermis and represents the final stage of 

keratinocyte differentiation [8]. It is composed of 10-20 layers of completely differentiated dead 

keratinocytes, known as corneocytes, that are interspersed with intercellular lipids, mainly 

ceramides and sphingolipids [5]. The keratinized stratum corneum is in direct contact with the 

environment and provides the main barrier to prevent water loss and penetration of hazard 

agents. Keratinocytes migration from the stratum basale to the outer stratum corneum takes 

approximately 28 days [9]. 

In addition to keratinocytes, which account for about 80% of epidermal cells, the epidermis is also 

composed by melanocytes, responsible for the pigmentation, Langerhans cells, which play a 

sensory role, and Merkel cells that are involved in the skin immune defense system [6, 7]. 
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Figure  2. Representation of the structure of the skin. The outermost layer of the epidermis, the stratum 

corneum, is fundamental for avoiding microorganisms penetration and also protect the skin from 

environmental insults. The other strata (lucidum, granulosum, spinosum and basale) are fundamental for the 

remodeling of the stratum corneum. The epidermis also contains Langerhans cells and melanocytes (A). The 

dermis has as mainly cellular components the fibroblasts but also contains cells of the immune system 

(neutrophils and macrophages), blood vessels, and nerve fibers (B). 

1.1.1.2. Basement Membrane 

In the basal surface of the epithelium, it is found the basement membrane that is responsible for 

establishing a functional link between the epidermis and the dermis. Skin basement membrane 

has a thickness of 50-100 nm and it is composed of two main regions: a) lamina lucida, the layer 

closer to the epidermis, composed of laminin, entactins, and dystroglycans and b) lamina densa 

that is located above the papillary dermis and is mostly formed by collagen type IV [10,11]. This 

junction regulates the permeability to substances that migrate from the dermis to epidermis and 

vice versa [12]. Epidermis attachment to the basement membrane is ensured by hemidesmosomes 

that bind to the keratin filaments of keratinocytes. In turn, the basement membrane is bound to 

the dermal layer through fibrils of collagen VII that are interspersed into the papillary dermis 

[13].  
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1.1.1.3. Dermis 

The dermis is located below the basement membrane and is the major component of human skin, 

with 3-5 mm thick. This layer supplies energy and nutrition to the overlying epidermis and also 

provides mechanical integrity to the skin due to the arrangement of collagen fibers that are 

deposited by local fibroblasts [7]. 

The dermis is composed of two distinct layers: the upper papillary dermis and the deeper 

reticular dermis [3]. The papillary dermis is essentially composed of loose connective tissue, 

namely elastin fibers interspersed with collagen fibers. It also holds numerous blood vessels that 

assure nutrients delivery, remove waste products and also allow the regulation of the body 

temperature. In turn, the reticular dermis is denser and composed by larger collagen fibers that 

confer flexibility to the skin [14]. Fibroblasts are the main cell type found in the dermis and they 

are responsible for the production and deposition of extracellular matrix (ECM) components. The 

dermal layer also contains cells of the immune system (neutrophils and macrophages), lymphatic 

vessels, nerve fibers, sweat and sebaceous glands, the deep portion of hair follicles and 

endothelial cells (figure 2B) [4]. 

 1.1.1.4. Hypodermis 

Hypodermis is the deepest skin layer and it is mainly composed of adipose tissue. This layer 

insulates the body and provides mechanical protection against physical shock [15]. Structurally, 

hypodermis is divided into lobules containing adipose cells separated by fibro-vascular septa. The 

septa are composed of collagen and reticulin fibers, blood and lymphatic vessels. In addition to 

adipose cells, hypodermis also contains fibroblasts and macrophages, that have an important role 

in the stimulation of thermogenesis during cold exposure or exercise [3]. 

1.1.1.5. Skin appendages 

Skin has a variety of appendages, such as hair, nails, sebaceous and sweat glands, which maintain 

and protect the skin and their functions as explained in the following topics.  

 Hair 

Hair, a unique mammalian trait, has important functions in thermoregulation, physical 

protection, sensory activity, and social interactions. Each hair arises through a tubular 

invagination of the epidermis into the dermis [6]. Histologically, hair is arranged in three 

concentric layers - the inner layer or medulla, the middle layer or the cortex and the outer layer 

or cuticle – that are composed of keratin [4, 16]. Hair follicles are distributed over the entire 

surface of the body, although there are specific regions of the body where they are absent (soles 

of the feet, palms of the hands, glans penis, clitoris, labia minora, and mucocutaneous 

junctions). At the proximal end of the hair follicle is the hair bulb that contains a population of 

hair stem cells [6]. 
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 Nail 

 

The nail is a highly keratinized structure that grows on the dorsal tip of the fingers [17]. Nail 

functions include physical protection of the end of the fingers and toes, assistance in 

manipulation and scratching [18]. The nail unit is composed of the proximal nail fold, the nail 

matrix, the nail bed and hyponychium, which together form and support the nail plate, which is a 

keratinized structure that continuously grows throughout life [18, 19]. The nail is also composed 

of water, lipids and trace elements like iron, zinc, and calcium [16]. 

 Sebaceous Glands 

 

Sebaceous glands are holocrine glands that are widely distributed throughout the skin but are 

mainly associated with hair and, therefore, concentrated on the face and scalp. Furthermore, 

they are absent from the palms, soles, and dorsum of feet [20]. Sebaceous glands often open 

directly into the hair follicle and produce sebum, an oily complex of triglycerides, fatty acids and 

their breakdown products (wax esters, squalene and cholesterol esters). Due to its lipid-

hydrophobic composition, sebum acts as a natural lubricant that protects the skin against friction 

and avoids its dehydration [6]. 

 Sweat Glands 

 

Sweat glands are located within the dermis. They are composed of coiled tubes and found all over 

the skin, but in abundance on palms, soles, axillae and forehead [6, 16, 17]. These glands secrete 

sweat, which is fundamental for the thermoregulation and excretion of metabolites [17]. There 

are two types of sweat glands – eccrine and apocrine – according to their secretory mechanism. 

The eccrine sweat glands secrete high amounts of an aqueous liquid following a merocrine 

mechanism. In turn, the apocrine glands secrete low amounts of a lipid-rich liquid and join up 

into the hair canal instead of the skin surface [21]. 

1.2. Wounds 

Due to its exposition to environmental conditions, the skin suffers different types of lesions and 

diseases that compromise its structure and functions. According to the US Wound Healing Society, 

wounds are defined as the result of disruption of normal anatomic structure and functions of the 

skin [22].  

Wounds - particularly surgical incisions, thermal injuries and chronic ulcers - are a major medical 

issue, since they lead to physical incapacity and ultimately to the death of the patient [23,24]. In 

fact, every year, more than 70 million surgical procedures are performed just in the United States 

of America with more than one-third resulting in hypertrophic scarring or keloid formation [25]. It 

is also estimated that burn injuries affect more than 11 million people worldwide annually [25, 

26]. On the other hand, the number of patients suffering from chronic wounds, mainly pressure 
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ulcers, and diabetic foot ulcers, is increasing and affects nowadays more than 1% of the 

worldwide population [27]. 

According to the number of skin layers that are damaged, wounds can be divided into superficial, 

superficial partial-thickness, deep partial thickness, and full thickness, as depicted in figure 3 

[28, 29]. 

 Superficial injuries, typically caused by sunburns, light scalds and grazing. They are 

usually able to self-renewal within few days, due to the presence of epidermal stem cells. 

Such injuries do not require specific surgical treatment since only the epidermis is 

affected. Moreover, this type of lesions regenerates rapidly without scarring, since no 

ECM deposition occurs. 

 Superficial partial-thickness injuries affect the epidermis and the upper part of the 

dermis. This type of injury is followed by epidermal blistering and severe pain to the 

patient. They usually heal rapidly (≈2 weeks) in a healing process that involves the 

epithelialization from the margins of the wound through basal keratinocytes that migrate 

from the wound edge, hair follicles or sweat glands. In fact, the rate of skin regeneration 

depends on the density of these skin appendages. For example, thin hairless skin (e.g. 

inner arm, eyelids) heals more slowly than hairy skin (e.g. back, scalp). 

 Deep partial-thickness injuries involve a dermal damage, where the skin appendages are 

destroyed and they are characterized by a slow healing. Scarring is pronounced in this 

type of injuries since fibroplasia is more intensive when compared with superficial 

partial-thickness wounds. 

 Full-thickness injuries involve the complete destruction of the epidermis and dermis. 

Sometimes, this type of injury can also affect the hypodermis, muscle, and even bone.  

Skin appendages are destroyed and, therefore, there is no potential source to trigger 

epithelial regeneration. Full-thickness skin wounds lead to extensive scarring, cause 

mobility restrictions and cosmetic issues to the patients. If not properly treated, the full 

thickness damaged tissue will start to break down providing a perfect nutrient source and 

environment for invading microorganisms. 

 

Figure  3. Representation of the different types of wounds that affect skin integrity. 
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1.2.1. Wound Healing 

Wound healing is a complex biological process that allows the restoration of skin integrity. Based 

on the nature of the healing process, wounds can be divided in acute and chronic. Acute wounds 

(figure 4A) occurs as a consequence of mechanical injuries (abrasions, superficial, surgical or 

traumatic wounds) [27]. In this type of injury, the normal wound healing process occurs (see 

section 1.2.1.1. for further details) [30]. In turn, chronic wounds (figure 4B) are usually 

associated with comorbidity conditions, such as diabetes, obesity, tumor or microbial infection. In 

this type of wound, the healing process is not effective and a state of pathologic inflammation 

occurs (see section 1.2.1.2.) [30, 31]. 

 

Figure 4. Representation of the healing process that occurs in acute and chronic wounds. Acute wound 

healing (A) is characterized by cell migration, proliferation and also by the secretion of high levels of growth 

factors that are involved in the stimulation of the synthesis of new ECM; Chronic wound healing (B) is 

characterized by an exuberant inflammation, increased MMPs production that impairs cell proliferation and 

hence delays the formation of the new skin tissue.  
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1.2.1.1. Normal Wound Healing  

The normal wound healing process involves a series of coordinated events including bleeding and 

coagulation, acute inflammation, cell migration, proliferation, differentiation, angiogenesis, re-

epithelialization, synthesis and remodeling of ECM [24]. These complex events can be divided into 

five overlapping steps: wounding (A), hemostasis (B), inflammation (C), proliferation (D) and 

remodeling (E) (see figure 4 for further details). 

 Wounding 

The wounding phase (figure 5A) is the first stage of the wound healing process. After the skin 

damage occurs, the wound site is filled with fluids from injured blood and lymphatic vessels. At 

this point, bacteria start to invade the open and unprotected wound [32]. 

 Hemostasis 

Hemostasis begins immediately after the injury occurs in order to prevent bleeding. This process 

involves the formation of a provisional matrix at the wound site (figure 5B). The extrinsic and 

intrinsic coagulation cascades are activated, leading to platelet aggregation. Such event promotes 

the vasoconstriction of the injured vessels, reducing blood loss and simultaneously filling the 

tissue gap with a blood clot comprised of fibrin, fibronectin, vitronectin, and thrombospondin. 

The clot also acts as a provisional matrix for the migration of leukocytes, keratinocytes, 

fibroblasts, endothelial cells and growth factors during the wound healing process [32, 33].  

 Inflammation 

The inflammatory phase of the wound healing is represented on figure 5C. It occurs hemostasis 

and can last up for 6 days. This phase is characterized by the sequential influx of immune cells. 

Specifically, monocytes that migrate to the wound site, where they differentiate into 

macrophages and remove bacteria and foreign material through phagocytosis. Monocytes are 

attracted to the wound site by several chemoattractive agents, such as clotting factors, platelet-

derived growth factor (PDGF), transforming growth factor-β (TGF-β), elastin and collagen 

breakdown products. In the wound, macrophages produce numerous growth factors, such as TGF-

β, tumor necrosis factor-α (TNF-α), heparin-binding epidermal growth factor (HB-EGF), and 

fibroblast growth factor (FGF) that are involved in the activation of keratinocytes, fibroblasts, 

and endothelial cells. Mast cells are also active in this phase and release granules filled with 

enzymes, histamine, and other active amines. These mediators are responsible for the 

characteristic symptoms associated with inflammation, i.e. rubor (redness), calor (warmth), 

tumor (swelling), dolor (pain) and functio laesa (loss of function). Lymphocytes, particularly 

CD4+, CD8+, and dendritic γδ epidermal T cells (DETCs), arrive approximately 6 days after the 

injury occur and participate in the following stages of the wound healing [32, 34, 35]. 
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 Proliferation 

The proliferative phase starts on the 6th day after the injury occurs and lasts for about 3 weeks 

(figure 5D). It is characterized by the re-epithelization of epidermis, repair of the dermal layer 

and neovascularization. At this stage, keratinocytes migrate from the surrounding tissue to the 

wound, where they became organized in stratified layers. This migration is stimulated by 

connexins and by the contact established between the keratinocytes and fibrin molecules. It is 

noteworthy that the migration, proliferation, and differentiation of the keratinocyte cells lead to 

the closure of the epithelial gap and to the restoration of the epithelium. On the other hand, the 

dermis is restored by fibroblasts that synthesize and secrete new ECM. The migration of 

fibroblasts into the wound is facilitated by ECM-cleaving matrix metalloproteinases (MMPs) that 

are produced by these cells. Furthermore, fibroblasts attach to the fibrin matrix and produce 

collagen (predominantly type I). As the collagen matures, intramolecular and intermolecular 

cross-links are created, increasing the strength of the new skin tissue. Simultaneously, the wound 

microenvironment, which is characterized by low pH, reduced oxygen content, and high 

concentration of lactate contribute for triggering the angiogenic process. This process is also 

stimulated by vascular endothelial cell growth factor (VEGF), basic fibroblast growth factor 

(bFGF), and TGF-β [21, 34, 36]. 

 Remodeling 

The remodeling of the wound is the final phase of the normal wound healing process and may last 

for 1–2 years or even longer (figure 5E). In this phase, all the processes that were activated after 

injury occurrence cease. Specifically, it is verified the degradation and replacement of immature 

ECM, the return to a normal vascular density and the apoptosis of inflammatory cells at the 

wound site. All of these changes lead to the contraction of the wound and to the formation of 

acellular scar tissue. Although the remodeling process continues for a long period of time, the 

scar tissue does not achieve the strength of the native skin [32, 34, 36]. 

 

Figure  5. Schematic representation of the five stages that characterize the normal wound healing process. 

During wounding damaged skin is vulnerable to bacteria invasion (A). The hemostasis is characterized by the 
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formation of a clot that becomes a provisional ECM (B). Inflammatory phase is characterized by 

inflammatory cells infiltration (C). In the proliferative phase, new fibroblasts and keratinocytes migrate into 

the wound, in order to perform the re-establishment of the dermal layer and the re-epithelization of the 

epidermis, respectively (D).  In remodeling, the wound contracts and an acellular scar tissue is formed. The 

chronologic duration of each phase of the wound healing is also represented in the figure. 

1.2.1.2. Non-healing Wounds 

Non-healing wounds occur in situations where the normal healing process is delayed, incomplete, 

and does not follow the proper order [30]. A chronic wound is continuously subjected to 

inflammation that is caused by an excessive infiltration of neutrophils and, therefore, is unable to 

progress through the normal stages of the wound healing [34]. This up-regulation of the 

inflammatory cascade can be caused by pressure, bacterial overgrowth, leukocyte trapping or 

ischemic injury. Neutrophils release the enzyme elastase, which is capable of destroying 

important healing factors, such as PDGF and TGF-β that promote proliferation and ECM 

deposition. Moreover, the mitogenic activity of cells is suppressed in chronic wounds and they 

cannot enter into the proliferative phase, unlike what happens in normal wound healing process. 

It is noteworthy that the time required for chronic wound healing is increased and, in some cases, 

the wound size increases over time [31]. 

1.2.2. Wound Healing Therapies 

1.2.2.1. Autografts, allografts, and xenografts 

Autologous skin grafts are still the gold standard used in the clinic for the treatment of full-

thickness skin wounds [37]. Before the autografting process, an early excision of the damaged 

skin tissue is performed [38]. Subsequently, the autograft procedure is performed with a 

dermatome that cuts thin slices of the epidermis and initial part of the dermis of the patient 

uninjured skin, which are subsequently transplanted to the wound site [39]. Such grafting 

procedure provides sufficient coverage without risk of rejection but presents serious drawbacks 

like limited availability of donor sites, induction of scar formation, patient morbidity, and long 

periods of hospitalization [2].  

Alternatively, allograft and xenograft procedures have also been used for the treatment of severe 

wounds. In this case, implantable skin is collected from human and non-human cadavers, 

respectively. However, these procedures cannot be seen as efficient therapeutic alternatives to 

autografts since they present risks of viral transmission (e.g., hepatitis B and C or HIV), immune 

rejection and their use are dependent on tissue availability on skin banks [2, 39]. 

Hence, in the last few years, researchers from Tissue Engineering field attained significant 

progress in the development and clinical use of improved skin substitutes that are able to surpass 

some of the limitations associated with auto-, allo-, and xenografts. 
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1.2.2.2. Skin Tissue Engineering  

Tissue engineering is an interdisciplinary field that combines the principles and methods of 

engineering and life sciences toward the development of biologic substitutes that are able to 

restore, maintain, or improve the functions of native tissues. The main strategy used in the area 

of tissue engineering involves cell seeding in contact with biomaterials, which serve as temporary 

scaffolds, in order to restore the structure and functions of a tissue (see figure 6) [40]. 

 

Figure 6. Representation of a tissue engineering strategy used to regenerate a functional tissue. Such 

therapeutic approach involves cell seeding in a porous scaffold. Cells are isolated from the patient (1) and 

expanded in vitro (2). Subsequently, cells are seeded in a scaffold (3). Ultimately, the construct is 

transplanted to the damaged tissue in order to restore its structure and function. 

Skin tissue engineering revolutionized the therapy of extensive acute or chronic wounds. An ideal 

skin substitute has to fill certain requirements, such as biocompatibility, biodegradability,  non-

toxicity, and non-immunogenicity. It may also protect against bacterial infection, be nonadherent 

to the wound site, allow gaseous and fluid exchanges, absorb the excess exudates, and support 

the handling during application and regeneration of the new tissue. Furthermore, it should also 

be capable of improving the healing process, mimic the native skin environment, be comfortable 

and cost effective [2, 41]. 

Today, as a result of intense research, a myriad of skin substitutes exists and some of them are 

already available to be used in the clinic. Depending on wound severity, skin substitutes can be 

classified as epidermal, dermal and bilayered/dermo-epidermal substitutes (see table 1) [29]: 
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● Epidermal Skin Substitutes 

Epidermal skin substitutes aim to restore the epidermis by promoting the reepithelialization of 

the wound. The majority of the epidermal skin substitutes are created by isolation of 

keratinocytes from the patient, followed by its subsequent in vitro cultivation on biocompatible 

substrates (e.g. bovine collagen, hyaluronic acid, etc.). When a suitable cell mass has grown, it is 

transferred to the wound bed for restoring the barrier function and enhancing the wound healing 

[42, 43]. In general, the available epidermal substitutes are expensive, difficult to handle due to 

their thin and fragile nature, cannot be used to treat full-thickness skin wounds and their 

production is time-consuming [44]. 

MySkin® is an example of an epidermal skin substitute that uses subconfluent autologous 

keratinocytes grown on a silicon support layer [29]. Contrariwise, Cryoskin® and Celaderm® are 

epidermal replacements containing allogeneic keratinocytes [45]. Suprathel® represents a reliable 

acellular epidermal skin substitute, based on polylactide, trimethylene carbonate and ε-

caprolactone [45, 46]. 

 

● Dermal Skin Substitutes 

Dermal skin substitutes are able to restore the injured dermis and are usually acellular. They 

display great structural integrity, prevent the wound from contracting and are able to mimic the 

basic properties of ECM [11]. However, they cannot efficiently replace the epidermal layer of the 

skin. 

Alloderm®, Integra®, MatriDerm®, and Oasis® are examples of acellular dermal replacements. 

Integra® consists of a porous scaffold made of bovine collagen type I and shark chondroitin-6-

sulphate glycosaminoglycan bonded to a silicone membrane. MatriDerm® is made up of bovine 

collagen and elastin hydrolysate. Cellular dermal substitutes, such as TransCyte® or Dermagraft®, 

use autologous dermal fibroblasts or neonatal human foreskin fibroblasts [42, 45]. 

● Bilayered/ Dermo-Epidermal Skin Substitutes 

Bilayered/ Dermo-epidermal skin substitutes are the most advanced skin substitutes, which are 

conceived to mimic the histological structure of normal skin with both epidermal and dermal 

layers [29]. These bilayers provide biological stimulus for skin regeneration and at the same time 

act as temporary wound coverage. Keratinocytes and fibroblasts, either autologous or allogenic, 

are commonly used to prepare these bilayered structures [44]. Nevertheless, the bilayered skin 

substitutes that are available in the market are very expensive, present risk of infection to the 

patient and have low mechanical properties.  

Apligraf® consists of viable allogeneic neonatal fibroblasts grown in a bovine collagen type I gel 

matrix combined with a layer of viable allogeneic neonatal keratinocytes [47]. OrCell® is a tissue 

http://www.sigmaaldrich.com/catalog/product/aldrich/704067
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engineered skin construct that includes fibroblasts seeded into a bovine type I collagen sponge, 

on top of which keratinocytes are seeded to form a confluent layer [42]. Additionally, Mediskin® is 

an example of an acellular dermo-epidermal skin substitute that is based on porcine xenografts 

[48]. 

Although some of the different skin substitutes are very complex and effective, they are not able 

to completely mimic the skin’s natural environment. Therefore, further studies are needed to 

improve these products. 

Table 1. Skin substitutes available in the market. 
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Celaderm
®

 
Advanced BioHealing, 
Inc., Connecticut, USA 

Chronic wounds 
Frozen cultured 

allogeneic 
keratinocytes 

- 

Cryoskin
®

 
Cryo Diffusion, Lery, 

France 
Chronic wounds 

Allogenic 
keratinocytes from 
newborn foreskin 

Silicon backing matrix 

Myskin
®

 
CellTran Ltd, 
Sheffield, UK 

Diabetic foot; 
venous leg ulcers; 

burns 

Cultured autologous 
human keratinocytes 

Polyacrylic acid 
membrane 

Suprathel
®

 
Stapleline GmbH, 
Bochum, Germany 

Acute superficial 
partial-thickness 

injuries 
- 

Copolymer of 
polylactide and  ε-

caprolactone 
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Alloderm
®

 
LifeCell Corporation, 

New Jersey, USA 
Full- and partial-
thickness wounds 

- 
Human acellular 

lyophilized dermis 

Integra
®

 
Integra Life Sciences, 
Inc., New Jersey, USA 

Full- and partial-
thickness wounds 

- 
Bovine collagen I; 
glycosaminoglycan 

matrix 

Matriderm
®

 
Medskin Solutions, 

Billerbeck, Germany  
Full- and partial-
thickness wounds 

- 

Bovine non-
crosslinked 

lyophilized dermis, 
coated with α-elastin 

hydrolysate 

Oasis
®

 
Cook Biotech Inc., 

Indiana, USA 
Full- and partial-
thickness wounds 

- 
Acellular porcine 
small intestine 

submucosa matrix 

Transcyte
®

 
Advanced BioHealing, 
Inc., Connecticut, USA 

Full-thickness burns 
Neonatal foreskin 

allogeneic fibroblasts 
Nylon mesh covered 

with silicone 

Dermagraft
®

 
Advanced BioHealing, 
Inc., Connecticut, USA 

Full-thickness burns 
Neonatal foreskin 

allogeneic fibroblasts 
Polyglactin scaffold 
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Apligraf
®

 
Organogenesis,  Inc., 

California, USA 
Chronic wounds 

Allogenic 
keratinocytes; 

fibroblasts 
Bovine collagen 

OrCel
®

 
Ortec Internation, 

Inc., New York, USA 
Chronic wounds 

Allogenic 
keratinocytes; 

fibroblasts 
Bovine Collagen 

Mediskin
®

 
Brennen Medical, 
Minnesota, USA 

Acute and chronic 
wounds 

- 
Frozen porcine 

xenograft chemically 
crosslinked 
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1.3. Nanofibrous membranes produced by electrospinning 

Electrospinning is a technology that uses electrostatic forces to produce polymeric nanofibrous 

meshes with diameters ranging from 2 nm to several micrometers [49]. Electrospinning was for 

the first time described in literature more than a century ago, in 1902, when Cooley and Morton 

separately patented methods and apparatuses for electrically dispersing fluids. However, only 

recently electrospun polymeric nanofibers became a topic of huge research [50]. 

A conventional electrospinning setup (figure 7) is composed of a syringe pump, a capillary needle 

connected to a syringe, a high-voltage power supply, and a metal collector. In this technique two 

electrodes are used - one is connected to the needle and the other is fixed to the collector - in order 

to complete a circuit that produces an electric field. The syringe pump is used to force the 

solution to pass through the needle with a controlled flow rate. When a high voltage is applied at 

the tip of the capillary needle, the polymeric solution remains at the tip of the needle due to 

surface tension. With the increasing of the intensity of the electrical field, the charge causes the 

elongation of the droplet into a cone, known as the Taylor Cone. An additional increase in the 

electric field will generate a critical value with which the repulsive electrostatic forces overcome 

the surface tension and a polymer jet is ejected from the tip of the Taylor Cone. Before reaching 

the collector, the jet undergoes a series of electrically driven instabilities and gradually thins in 

the air due to solvent evaporation [50, 51]. If the jet is collected in a stationary collect, as shown 

in figure 8, non-woven meshes composed of randomly oriented nanofibers are obtained. However, 

aligned nanofibers can also be produced by this technique using rotary collectors [52]. 

The production of electrospun meshes is dependent on specific parameters such as the precursor 

solution (e.g. conductivity, surface tension, viscosity and solvent selection), processing variables, 

and environmental conditions. The control of these particular features has a direct impact on the 

mean diameter and arrangement of the accumulated fibers. Particularly, solutions with high 

viscosity lead to the production of fibers with a high diameter, while an increase in the surface 

tension or conductivity of the polymer solution results in a decrease in nanofiber diameter. 

Furthermore, an increase in voltage or a decrease in feed rate results in a reduction of the fiber 

diameter. However, a high electrical potential is not desired since it may lead to the formation of 

beads or to the formation of defective nanofibers. Moreover, the distance between the needle 

and the collector needs to be sufficient to allow solvent evaporation but close enough to allow 

production of fibers with the required morphology. Regarding the environmental parameters, an 

increase in temperature is responsible for decreasing the average fiber diameter, due to a 

decrease in solution viscosity, while an increase in humidity increases the average fiber diameter 

due to polymer swelling [32, 50]. 
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Figure 7. Representation of a conventional electrospinning apparatus that is used to produce non-woven 

meshes composed of randomly oriented nanofibers. Bioactive molecules that may enhance the wound 

healing process have been incorporated in electrospun meshes. 

In the last years, electrospun nanofibrous membranes become one of the most studied platforms 

for skin tissue engineering applications. According to Augustine and Abrigo, the main advantages 

of the electrospun membranes to be used as skin substitutes are [52, 53]. 

 Mimic the ECM 

The nanofibers produced by electrospinning have diameters ranging from 50-500 nm, which is 

within the diameter range presented by the collagen fibrils found in the natural ECM. The 

structural similarity is very important in cell adhesion, proliferation, migration, and 

differentiation. 

 Exudate uptake capacity 

The high surface area presented by electrospun nanofibrous meshes allows them to absorb the 

wound exudates. The great absorptive properties of this type of skin substitute help in the 

maintenance of a moist environment at the wound site.  

 Semi-permeable 

The porous structure of electrospun meshes allows gas exchange and confers protection against 

bacteria invasion. 

 Conformability 

Conformability of the material is a crucial issue when materials are aimed for skin tissue 

engineering. Electrospun nanofibrous membranes are easy to fit in a wound with irregular 

architecture, thus providing a great conformability. 
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 Functionality 

The nanofibers produced by electrospinning can be easily functionalized with bioactive 

compounds in order to improve skin regeneration. Depending on the stage of treatment and the 

intended functionality, drug molecules (e.g. antiseptics, antifungal, and vasodilators), genes, 

antimicrobial agents, growth factors (e.g. FGF, EGF, and TGF) and even cells (e.g. fibroblasts and 

keratinocytes) can be delivered to the wound, in a controlled manner, for improving the wound 

healing process. Blend, coaxial and emulsion electrospinning are strategies employed to fabricate 

biofunctional nanofibrous scaffolds (figure 7). To produce blended electrospun meshes, active 

agents are mixed with the polymeric solution before performing the electrospinning process [54]. 

In coaxial electrospinning, a syringe containing a core and an outer compartment is used. Through 

this technique, the active agents are incorporated in the core and the polymeric solution in the 

outer compartment. Subsequently, both polymer and active agent are coaxially and 

simultaneously electrospun to produce fibers with a core-shell structure [32]. Another route to 

obtain core-shell nanofibers is by performing emulsion electrospinning, which is a technique that 

does not require a particular needle setup. In this type of electrospinning, an aqueous solution, 

with active agents is emulsified into an organic phase containing a polymer that forms the shell 

[55].  

1.3.1. Electrospun nanofibrous membranes produced with natural polymers 

Natural polymers are usually biocompatible and present low immunogenicity. Moreover, natural 

polymers have an inherent capacity to promote cell adhesion since they have specific aminoacids 

sequences, such as RGD (arginine/glycine/aspartic acid). Cellulose acetate, chitosan, collagen, 

elastin, gelatin, hyaluronic acid, silk fibroin, and zein are examples of natural polymers 

successfully electrospun and applied for skin regenerative purposes. The main drawback of 

natural polymers is associated to its poor mechanical properties [54]. In the following sections, 

some of the natural polymers are described in further detail. 

 

 

Figure 8. Chemical structure of some examples of natural and synthetic polymers used in skin tissue 

engineering. 
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1.3.1.1. Chitosan 

Chitosan (CS) is obtained from chitin, which is the second most abundant polysaccharide found in 

nature. This polymer is usually obtained from the shells of crustaceans, the exoskeleton of insects 

and cell walls of fungi [54]. CS polysaccharide is composed of glucosamine and N-acetyl-

glucosamine [56]. CS has many advantages like biocompatibility, biodegradability, antimicrobial 

and hemostatic activity. Moreover, CS can stimulate collagen synthesis, a feature that is 

fundamental for enhancing the wound healing [2].  

CS is easily incorporated into films, gels, or sponges, but very hard to electrospun in its pure form 

since it forms highly viscous solutions. Hence, this polymer is usually modified or combined with 

other polymers in order to be electrospun. Zhou et al produced the first CS-based electrospun 

membranes aimed for skin regeneration. Their electrospun membranes were produced with water 

soluble CS and poly(vinyl alcohol) that promoted the adhesion and proliferation of mouse 

fibroblast cells [57]. The antimicrobial properties of CS are also reported in the literature by 

several authors. Cai et al produced CS/silk fibroin electrospun membranes that inhibit the growth 

of the Gram-negative bacteria Escherichia Coli (E.Coli) [58]. Antunes and collaborators produced 

a deacetylated/arginine-modified chitosan electrospun membrane with enhanced bactericidal 

activity against both gram-positive Staphylococcus Aureus (S. Aureus) and gram-negative E.Coli 

[59]. 

1.3.1.2. Hyaluronic Acid 

Hyaluronic acid (HA), also known as hyaluronan or hyaluronate, is a linear polysaccharide 

composed of repeating units of glucuronic acid and N-acetylglucosamine that is found in the ECM 

of connective tissues [60]. It can be obtained from bacteria or from the enzymatic digestion of 

connective tissues [56]. HA has excellent biocompatibility and biodegradability. Furthermore, as a 

natural polysaccharide present in the skin ECM, HA presents a high water retention capacity, and 

as a component of granulation tissue, it facilitates the migration of inflammatory cells and 

fibroblasts into the healing wounds through the interaction with CD44 receptors present in the 

plasma membrane [54]. 

The application of HA electrospun meshes in the wound healing process has been limited by its 

high viscosity and surface tension [61].  Hsu and colleagues produced HA/collagen electrospun 

membranes cultured with foreskin fibroblast cells. In their study, they verified that HA promotes 

a scarless wound healing since it decreases the ratio of tissue inhibitor of metallopeptidase 1 

(TIMP1) to matrix metalloproteinase-1 (MMP1) characteristic of scarless wounds [62]. Later on, 

HA/ Polycaprolactone (PCL) /Silk fibroin electrospun membranes were produced to be used in 

skin tissue engineering. The addition of HA gave hydrophilic properties to the membranes, which 

caused the suppression of non-specific protein adsorption, leading to a reduction of fibrosis 

thickness and macrophages adhesion in vivo. Further, this study showed that HA-based 

membranes present a significant increase in fibroblasts proliferation and adhesion. These findings 

suggested that HA-based electrospun membranes are excellent candidates to be used as wound 
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dressings [63]. Recently, HA electrospun meshes were used as growth factors delivery systems in 

order to promote wound healing [64, 65]. A recent study reported the efficient encapsulation of 

EGF in HA/PCL electrospun membranes [64]. Moreover, Lai and collaborators developed an 

HA/collagen electrospun membrane capable of performing a controlled release of several 

angiogenic growth factors, such as PDGF, VEGF, bFGF, and EGF, either directly embedded in the 

nanofibers or encapsulate in gelatin nanoparticles according to the wound healing stage required. 

Moreover, this study also showed that the produced membranes possess mechanical properties 

similar to those of human native skin [65]. 

1.3.1.3. Zein 

Zein (ZN) is a protein found in corn or maize. It is mainly composed of nonessential amino acids 

such as glutamic acid (21–26%), leucine (20%), alanine (10%) and proline (10%). ZN is 

biodegradable, biocompatible, moderately hydrophobic, highly elastic and easily electrospinable 

[66, 67]. 

The study of ZN nanofibers for biomedical applications began in 2009. Yao and co-workers 

reported the production of electrospun blends composed of ZN/silk fibroin with improved 

mechanical properties and biocompatibility [68]. In 2013, ZN nanofibers were used as drug 

delivery system for wound healing applications. Huang et al. produced ZN nanofibers loaded with 

Ibuprofen through coaxial electrospinning technique. The in vitro release experiments showed 

that the drug-loaded fibers provided sustained drug release for 10 hours [69]. Another study 

reported the production of ZN/polyurethane/cellulose acetate electrospun membranes blended 

with an antimicrobial agent, streptomycin sulfate. These electrospun membranes presented 

features, such as hydrophilicity, excellent cell adhesion capacity, and blood clotting activity [70]. 

Moreover, ZN/silver nanoparticles electrospun membranes were also produced for being applied 

as wound dressings by Dashdorj and collaborators. The results obtained demonstrated that 

membranes had a good cytocompatibility and fibroblasts were able to adhere on the composite 

nanofibers and also displayed bactericidal activity against S.aureus and E.coli [71]. 

1.3.2. Electrospun nanofibrous membranes produced with synthetic polymers 

Synthetic polymers are often characterized by having improved mechanical properties 

(viscoelasticity and strength), and slow degradation rates. Typical synthetic polymers used in 

biomedical applications are hydrophobic biodegradable polyesters, such as polyglycolide, 

polylactide, polyurethane, and PCL, which were already used as nanofibrous scaffolds [54]. In the 

following section, the use of PCL to produce electrospun mats for wound healing purposes is 

reviewed in further detail. 
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1.3.2.1. Polycaprolactone 

PCL is an aliphatic linear polyester, synthesized through ring-opening polymerization of ε-

caprolactone. It is characterized by being biocompatible, bioresorbable, inexpensive and 

degrades through the hydrolysis of its ester linkages under physiological conditions. Therefore, it 

has been used as a valuable material for tissue engineering applications. However, the use of PCL 

in tissue engineering is compromised by its hydrophobic nature that limits cell adhesion and leads 

to uncontrolled biological interaction [72]. 

In order to overcome such drawbacks, PCL has been blended with other polymers such as chitosan 

or gelatin. Duan et al investigated the feasibility of using gelatin/PCL electrospun membranes to 

produce an epidermal skin substitute. These membranes showed good mechanical and biological 

properties that are compatible with their use in epidermis regeneration [73]. Bonvallet and co-

workers synthesized PCL/collagen electrospun membranes with micropores to be used as dermal 

skin substitutes. These nanofibers accelerated the wound closure and stimulated the regeneration 

of healthy dermal tissue [74]. Another study, performed by Augustine and colleagues, reports the 

development of a PCL electrospun membrane loaded with zinc oxide (ZnO) nanoparticles. This 

was the first study that evaluated the ability of biomaterials containing ZnO nanoparticles to 

enhance the mammalian cell proliferation. The authors noticed that fibroblasts adhered and 

proliferated when seeded on top of these membranes, a process that is crucial for enhancing the 

wound healing process [53]. 

1.4. Antimicrobial Agents 

Bacterial infections are regarded as the most severe and devastating complications associated 

with the implantation of biomaterials in the human body [75]. Nowadays, it is estimated that 65-

80% of bacterial infections are caused by organisms that form biofilms on implants surface, 

compromising their successful application [76]. In this context, the development of biomaterials 

with antimicrobial activity is fundamental to avoid infections related to materials implantation. 

So far, different approaches have already been used to confer antimicrobial properties to tissue 

engineering constructs. Some authors reported the prevention of bacterial adhesion via through 

modification of surface charges or incorporation of adhesion-resistant coatings (e.g. polymer 

brushes or diamond-like carbon coatings) [59, 77-80]. Other antimicrobial strategies include the 

release of antimicrobial agents (e.g. antibiotics, drugs, metallic nanoparticles, nitric oxide or 

quaternary ammonium compounds) to the surrounding areas in order to avoid contaminations by 

bacteria [81-84]. 

However, the commonly used antimicrobial agents display cytotoxicity and induce microbial 

resistance [85]. Therefore, there is a huge demand to develop of new and effective antibacterial 

tissue engineering constructs that do not trigger any adverse effect on the host. 
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1.4.1. Salicylic Acid 

Salicylic Acid (SA) is a phenolic compound produced by plants (e.g. Nicotiana tabacum, Cucumis 

sativus, and Arabidopsis thaliana) that plays an important role in several physiological processes, 

such as the induction of plant defense responses against pathogen attacks. Furthermore, it is also 

an antiseptic agent of Aloe vera as well as the active component of aspirin [86-88]. SA owns anti-

inflammatory, analgesic, antipyretic, and antimicrobial properties that are crucial for the 

promotion the wound healing process [89]. Moreover, SA is biocompatible and do not exhibit any 

microbial resistance. Despite these interesting properties, it has found limited application in the 

area of tissue engineering. Griffin and collaborators developed one of the few studies where SA 

was used for tissue engineering applications. These authors have produced SA-derived 

poly(anhydride-ester) electrospun fibers for the regeneration of the peripheral nervous system. 

These authors verified that SA-based poly anhydride fibers can promote not only nerve 

regeneration but also the regeneration of other tissues [90].  

1.5. Aims 

The overall aim of the present thesis was to design, develop and characterize a new electrospun 

bilayer membrane (EBM) to be used as a skin substitute. The upper layer of the EBM was 

conceived to provide structural integrity to the final construct and the bottom layer was designed 

to stimulate the healing process and also display antibacterial and anti-inflammatory activity. 

The specific aims of this study were: 

 Optimize and produce the EBM; 

 Evaluate and characterize the physicochemical properties of the EBM; 

 Evaluate and characterize the biological properties of the produced EBM; 

 Evaluate and characterize the antimicrobial properties of the produced EBM. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  Chapter II – Materials and Methods 
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2. Materials and Methods 

 

2.1. Materials 

3,3,3 Trifluoroethanol (TFE), HA 95% (MW=1.5 to 2.2 million Da), SA and ZN were purchased from 

Acros Organics (New Jersey, USA). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) was purchased from Alfa Aesar (Ward Hill, USA). Fetal bovine serum (FBS) (free from any 

antibiotic) was acquired from Biochrom AG (Berlin, Germany). Glacial acetic acid was obtained 

from LabChem (New York, USA). Paraformaldehyde (PFA) was obtained from Merck, SA (Algés, 

Portugal). Normal Human Dermal Fibroblasts (NHDF) cells were purchased from PromoCell 

(Labclinics, S.A., Barcelona, Spain). Amphotericin B, CS (low molecular weight (LMW), 

Dimethylformamide (DMF), Dulbecco’s modified Eagle’s medium (DMEM-F12), 

Ethylenediaminetetraacetic acid (EDTA), Gentamicin, Kanamycin, LB Broth, Phosphate-buffered 

saline solution (PBS), PCL, Sodium hydroxide (NaOH) and Trypsin were purchased from Sigma-

Aldrich (Sintra, Portugal). Dimethyl sulfoxide (DMSO) was obtained from Thermo Fisher Scientific 

(Rockford, IL,USA). 

2.2. Methods 

2.2.1. Deacetylation of Chitosan 

CS was purified and deacetylated through a method previously described by Miguel and colleagues 

[91]. Briefly, 500 mg of CS LMW were dispersed in 10mL of NaOH (1M) solution, under magnetic 

stirring for 4 h, at 50 oC. Then, the mixture was filtered using a Whatman® quantitative filter 

grade 541:0.22 μm (Sigma-Aldrich) and a Buchner funnel to recover the deacetylated CS. The 

remaining material was washed extensively until the sample pH reached 7.4. Subsequently, the 

samples were dried at 40 oC overnight. The degree of deacetylation (DD) was determined by using 

the first derivative UV-spectroscopy (1DUVS) method [92]. UV–vis chitosan spectra were obtained 

using a Thermo Scientific Evolution 201 UV–vis spectrophotometer.  

2.2.2. Production of the electrospun bilayer membrane 

To produce the EBM, two distinct polymeric solutions were electrospun using a conventional 

electrospinning apparatus. The system setup was comprised of a high voltage source (Spellman 

CZE1000R, 0–30 kV), a precision syringe pump (KDS-100), a plastic syringe with a stainless steel 

needle (21 Gauge) and an aluminum disk connected to a copper collector. In order to produce the 

bottom layer of the electrospun mesh, 40% ZN (w/v) and 7% CS (w/v) were dissolved in 80% 

ethanol (EtOH) (w/v) and 70% AA (w/v), respectively. The final mixture (9:1 w/w ratio) was then 

homogenized with an X10/25 Ultra-turrax®, during 15 min. Finally, SA 8% (w/v) was added to the 
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mixture. To produce the top layer of the electrospun mesh, 7% PCL (w/v) was dissolved under 

stirring in 80% TFE (w/v) at 60ºC and 1% HA (w/v) was dissolved in 4:1 NaOH (5M)/DMF (w/v). 

After the complete dissolution of both polymers, a 1:9 HA/PCL (w/w) final ratio was prepared for 

the following step. 

Then, 10 mL of the CS_ZN_SA solution were placed in the syringe and electrospun using a 

constant flow rate of 3.0 mL/h, a working distance of 15 cm and an applied voltage of 28 kV (see 

figure 9A for further details). After the first layer be produced, 10 mL of the HA_PCL polymeric 

solution were electrospun on CS_ZN_SA surface at a constant flow rate of 2.5 mL/h, using a 

working distance of 15 cm and an applied voltage of 25 kV (figure 9B). The produced EBM was 

used to perform different in vitro assays in order to evaluate its applicability as a wound dressing 

(figure 9C).  

 

Figure  9. Schematic representation of the experimental setup used to produce the EBM. The bottom layer 

was produced by loading a syringe with a CS_ZN_SA solution and then electrospun (A); After the HA_PCL 

polymeric solution was electrospun towards the CS_ZN_SA mesh to produce the EBM (B). Finally, the 

properties of the produced EBM were studied in order to evaluate its suitability to be used as a wound 

dressing (C).  
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2.2.3. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy 

analysis 

To characterize the composition of the produced EBM, ATR-FTIR analysis was performed. The 

spectra were acquired for the different samples using an average of 128 scans, between 400 and 

4000 cm-1, with a spectral resolution of 4 cm-1. All the samples were mounted on a diamond 

window, and the spectra were recorded using a Nicolet iS10 FTIR spectrophotometer (Thermo 

Scientific, Waltham, MA, USA). In order to compare the spectra of individual components with 

those of the produced membranes, all the raw components used for nanofibrous mesh production 

were analyzed. 

2.2.4. Characterization of the mechanical properties of EBM 

The tensile properties of EBM were determined using a Shimadzu AG-X Tensile Testing Machine 

(Tokyo, Japan) at room temperature (RT), as described elsewhere [93]. This assay was performed 

accordingly to the guidelines established by ASTM standard D3039/ D3039 M (Standard Test 

Method For Tensile Properties of Polymer Matrix Composite Materials). The samples (n=5) had a 

width of 2 cm, a length of 6 cm and a thickness ranging from 0.41 to 0.52 mm. The length 

between the clamps was set to 2 cm and the speed of testing set to 2 mm/min.  Load-extension 

data were recorded and the stress–strain curve of the EBM was constructed by applying the 

equations (1) and (2), respectively: 

         
 

 
    (1) 

         
  

 
  (2) 

Where F is the applied force; A is the cross-sectional area; Δl is the change in length, and L is the 

length between the clamps. 

2.2.5. Evaluation of the porosity of EBM 

The microporosity of the EBM was determined by using a liquid displacement method adapted 

from Antunes and collaborators [59]. Briefly, 3 specimens were weighed and then, immersed in 

absolute EtOH for 1 h and then reweighed. Finally, the membrane porosity was calculated by 

determining the amount of EtOH absorbed, through equation (3): 

 

             
     

                  
     (3) 

Where Ww and Wd are the wet and dry weights of the membrane, respectively. Dethanol represents 

the density of EtOH at RT and Vmembrane is the volume of the wet membrane.  
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2.2.6. Determination of contact angle at the surface of EBM 

The contact angles at the surface of EBM were determined using a Data Physics Contact Angle 

System OCAH 200 apparatus, operating in static mode, at RT. For each sample, water drops were 

placed on the top and bottom layers of the EBM. The reported contact angles are the average of 

at least three independent measurements.  

2.2.7 Water vapor transmission rate (WVTR) 

The water vapor diffusion through the EBM was evaluated as described elsewhere [59]. Briefly, 

the EBM samples were used to seal the opening of a glass test tube (1.77 cm2) containing 10 mL of 

ultrapure water, parafilm tape was used to attach the membrane and avoid water losses. 

Afterward, the membranes were incubated at 37 °C. Non-sealed tubes were used as a control. At 

specific time points, water evaporation was obtained by determining the weight loss. The water 

vapor transmission rate (WVTR) was calculated through equation (4):  

                         
     

 
  (4) 

Where Wloss is the daily weight loss of water and A is the area of the tube opening. 

2.2.8. Characterization of EBM biodegradation profile 

The in vitro degradation of EBM and of their individual layers (CS_ZN_SA and HA_PCL) was 

monitored by immersing the samples in PBS (pH 5.50), under stirring (40 rpm), at 37 °C. The 

samples were then removed from the solutions and weighed at 1, 3 and 7 days after being 

completely dried. The degradation percentage at each time point was calculated according to 

equation (5): 

                
     

  
     (5) 

Where Wi corresponds to the initial weight of the sample and Wt to the weight of the sample at 

time t.  

2.2.9. Characterization of the release profile of SA 

SA release from EBM was evaluated as formerly reported by Ouimet and collaborators [94]. EBM 

samples were immersed in 20 mL glass scintillation vials containing 10 mL of PBS, at pH 5.50. The 

vials were then stored at 37 °C with agitation (40 rpm) in an incubator shaker, in order to mimic 

the physiological conditions. A 5 mL aliquot of the media was removed and replaced by an equal 

volume of fresh PBS, every 24 h, to ensure sink conditions. The amount of SA released was 

determined at 303 nm using a Thermo Scientific Evolution 201 UV–vis spectrophotometer. A 

calibration curve of the standard SA solutions in PBS was performed to determine the exact 

amount of SA released from EBM. All sets of experiments were performed in triplicate. 
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2.2.10. Characterization of the biological properties of EBM 

2.2.10.1. Evaluation of cell viability and proliferation in the presence of EBM 

NHDF were cultured in DMEM-F12, supplemented with 10% heat-inactivated FBS, amphotericin B 

(100 µg/mL) and gentamicin (100 µg/mL) in 75 cm2 culture T-flasks. Cells were maintained in a 

humidified atmosphere at 37 °C, with 5% CO2, until confluence was attained. Subsequently, cells 

were trypsinized with 0.18% trypsin (1:250) and 5 mM EDTA and then centrifuged during 5 min. 

Prior to cell seeding, membranes were placed into 96-well plates and then sterilized by UV 

irradiation for 1 h. Following, cells were seeded at a density of 10x103 cells per well, in order to 

evaluate cell adhesion and proliferation in the presence of EBM. The culture medium was changed 

every two days until the end of the assay. 

The cytotoxic profile of HA_PCL, CS_ZN_SA individual membranes and EBM was characterized 

using an MTT assay that was performed according to the guidelines set for ISO10993-5 standard. 

Briefly, the culture medium was removed and 50 µL of MTT (5 mg/mL PBS) were added to each 

sample, followed by their incubation for 4 h, at 37 °C, in a 5% CO2 atmosphere. Then, cells were 

treated with 200 µL of DMSO (0.04 N) for 30 min. A microplate reader (Biorad xMark microplate 

spectrophotometer) was used to read the absorbance at 570 nm for each well. Five replicates of 

each sample were used. Cells cultured without materials were used as a negative control (K–), 

whereas cells cultured with EtOH (90%) were used as positive control (K+). 

2.2.10.2. Confocal microscopic analysis 

Confocal laser scanning microscopy (CLSM) was used to characterize the cell distribution on both 

layers of the EBM. Cells (10x103 cells/mL) were seeded in µ-Slide 8 well Ibidi imaging plates (Ibidi 

GmbH, Germany) on the bottom and top layers of EBM.  Cells seeded on the surface of the Ibidi 

imaging plate were used as a control group. After 24h, cells were fixed with 4% PFA in PBS for 20 

min and then stained with the WGA-Alexa 594® conjugate. Cells were then rinsed several times 

with PBS and labeled with Hoechst 33342® nuclear probe (2 μM). The 3D reconstruction and 

image analysis were performed using Zeiss Zen 2010 software. 

2.2.10.3. Evaluation of the antimicrobial properties of EBM 

S. Aureus, a gram-positive bacterium obtained from the clinic, was used to study the bactericidal 

activity of the HA_PCL, CS_ZN_SA, and EBM. A modified Kirby-Bauer technique was used to 

perform this antimicrobial assay [95]. Briefly, 200 µl of bacteria medium (with a concentration of 

1 x 108 colony forming units (CFU)/mL of S. Aureus) were dispensed onto an agar plate. Then, 

circular membranes (n=3) were placed on the agar plate and incubated during 24h, at 37 °C. 

After that, the inhibitory halos around the samples were photographed and their diameter 

measured using ImageJ software.  
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2.2.11. Characterization of the morphology and biological performance of 

the EBM by SEM analysis  

SEM analysis was performed to characterize the EBM morphology, cellular attachment and biofilm 

formation on its surface. Samples that contain cells or bacteria were fixed for 4 h with 2.5% (v/v) 

glutaraldehyde. After, samples were washed three times with PBS and dehydrated with growing 

concentrations of EtOH (50, 60, 70, 80, 90 and 99.9%). Subsequently, scaffolds were frozen using 

liquid nitrogen and freeze-dried for 3h. Finally, all samples were mounted onto aluminum stubs 

with Araldite glue and sputter-coated with gold using a Quorum Q150R ES sputter coater. SEM 

images were then acquired with different magnifications, at an acceleration voltage of 20kV, 

using a Hitachi S-3400N Scanning Electron Microscope. 

2.2.12. Statistical Analysis 

The statistical analysis of the obtained results was performed using one-way analysis of variance 

(ANOVA), with the Newman-Keuls post hoc test. A p value lower than 0.05 (p<0.05) was 

considered statistically significant. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
     Chapter III – Results and Discussion 
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3. Results and discussion  

3.1. Deacetylation of Chitosan 

The deacetylated CS used for EBM production had a DD of 98.36% ± 0.22 (table 2), which indicates 

that almost all of the primary amine groups of the CS polymer chain were positively charged. It is 

known that when CS with a high DD is used to produce 3D constructs, they have improved 

strength, antimicrobial properties and also enhance cellular attachment and proliferation [96, 

97]. 

Table 2. Degree of deacetylation of the different CS samples measured by 1DUVS (mean ± SD, n = 3). 

 

* Provided by the manufacturer 

** Determined by 1DUVS. 

3.2. Morphological characterization of the scaffolds 

The electrospinning technique was used to produce a new bilayered nanofibrous dressing, where 

each layer plays different roles in the promotion of the wound healing process. The top layer 

(HA_PCL) was conceived to endow the system with the suitable physical and mechanical 

properties, whereas the bottom layer (CS_ZN_SA) was designed to assure cell adhesion and 

proliferation as well as antimicrobial and anti-inflammatory properties to the final EBM. Figure 10 

shows the macroscopic images of the top and bottom view of EBM, where both layers present an 

opaque appearance and a uniform structure. Additionally, HA_PCL layer shows a white color 

which is in accordance with previously published studies [98]. On the other hand, the CS_ZN_SA 

electrospun layer presents a light yellow color due to the xanthophyll pigments present in corn 

that bound to ZN protein fraction through hydrophobic interactions [99, 100]. 
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Figure 10. Characterization of the morphology of the two layers of EBM; SEM images of top (HA_PCL) and 

bottom (CS_ZN_SA) electrospun meshes are presented as well as the fiber diameters distribution. 

Furthermore, the morphology of electrospun nanofibers was also analyzed by SEM. Figure 10 

shows that both HA_PCL and CS_ZN_SA layers presented a highly porous 3D nanofiber network 

composed of randomly oriented fibers with diameters of 472 ± 192 nm and 530 ± 180 nm for 

HA_PCL and CS_ZN_SA electrospun layers, respectively. It is noteworthy that the diameters of the 

produced nanofibers are within the range displayed by collagen fibrils found in natural ECM since 

their size varies between 50 and 500 nm [95]. Therefore, these results suggest that the produced 

EBM mimic some of the structural features of the ECM, providing an optimal microenvironment 

for cell recruiting/seeding, adhesion, proliferation, differentiation, and ultimately improve new 

skin tissue formation [101]. 

Moreover, SEM images were also acquired by performing cryofracture of EBM. Through the 

analysis of figure 11, it is possible to observe that both layers form an almost continuous 

arrangement from the bottom to the top of the EBM. Moreover, the connection between the two 

layers can be explained by the presence of polymers with opposite charges in both layers. Indeed, 

HA present in HA_PCL electrospun layer possesses glucuronic acid residues that contain carboxyl 

groups that confer a negative charge to this membrane layer [102]. On the other hand, 

deacetylated CS present in CS_ZN_SA layer contains amine groups positively charged [103]. 

Consequently, an electrostatic interaction between HA and CS may be responsible for the 

interconnection established between the two layers. 
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Figure  11. Macroscopic and SEM cross-section images of the EBM. 

3.3. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy 

analysis 

Figure 12 shows the ATR-FTIR spectra of raw materials and of the EBM. In the HA_PCL spectrum 

(figure 12A), the characteristic peaks of HA at 3200–3600 cm-1 (OH and NH stretching), 1640–1690 

cm-1 (C=O stretching of primary amide) and 1035 cm-1 (C-O-C stretching) can be observed [104]. 

Additionally, in the HA_PCL spectrum, the characteristic peaks of PCL at 2949 cm−1 (asymmetric 

CH2 stretching), 2865 cm−1 (symmetric CH2 stretching), 1727 cm−1 (carbonyl stretching), 1293 cm−1 

(C-O and C-C stretching), 1240 cm−1 (asymmetric C-O-C stretching) and 1170 cm−1 (symmetric C-O-

C stretching) were also observed [98]. 

On the other hand, the spectrum of the CS_ZN_SA electrospun membrane (figure 12B) contains, 

as expected, the typical bands of CS, ZN, and SA. The peak observed at 1374 cm−1 corresponds to 

–C–O stretching of the primary alcohol group of CS [59]. The other characteristic peaks of CS can 

be visualized at 3200–3400 cm−1 (–OH stretch), 2872 cm−1 (aliphatic C–H stretch) and at 1650 cm−1 

(acetylated amine group) [105]. Additionally, the data obtained clearly show the characteristic 

bands of ZN are visualized in the CS_ZN_SA spectrum at 3286 and 3057 cm−1 (N-H stretching band 

of secondary amide), 1645 cm−1 (C=O stretching of primary amide band), and 1515 cm−1  (N-H 

bending of secondary amide band) [106]. The SA peaks in the CS_ZN_SA spectrum have a low 

relative intensity due to the low concentration of SA used and to the merging of the peaks with 

those from ZN. However, in the gathered spectrum it is possible to observe C-H stretching 

vibrations in the range of 3037 and 3019 cm-1, and a band at 1248 cm-1 assigned to O-H vibrations 

that are characteristic of SA. Further, the band between 1830 cm-1 and 1750 cm-1 observed in the 

CS_ZN_SA spectrum can be assigned to the C=O vibration of SA. The C-C-C stretching of SA is 
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attributed to the bands that appear in the CS_SA_ZN FTIR spectrum between 1583 and 1030 cm-1 

[88]. 

 

Figure  12. ATR-FTIR analysis of the EBM electrospun membranes and raw materials. ATR-FTIR analysis of 

HA_PCL electrospun membrane and of their raw materials (A); The ATR-FTIR spectra of the CS_ZN_SA 

electrospun membrane and of their raw materials are presented in (B). 

3.4. Characterization of the mechanical properties of the EBM 

Skin is a viscoelastic tissue whose mechanical strength is provided by the structural organization 

of fibers network (namely dermal collagen, elastin, and fibrillin) [107, 108]. The mechanical 

properties of skin are dependent on age, skin color, previous lesions, and genetic factors [93]. 

Nowadays, the skin substitutes produced are mechanically fragile and are unable to fully re-

establish the native features of skin [109]. To overcome these drawbacks, new skin substitutes 

with improved mechanical properties are currently being developed. These new devices must be 

flexible and strong enough to allow their handling during implantation at the wound site and also 

confer support during new tissue formation. 

https://docs.google.com/document/d/1ZLqStvxde7as4kuAyf88Oe-h9lrq9ZJY0hlFLcsPWyM/edit
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Herein, extension tensile tests were performed to evaluate the mechanical properties of the EBM 

produced. Representative stress–strain curve and macroscopic images of the EBM during the assay 

are presented in figure 13. The Young’s modulus, tensile strength, and elongation at break of EBM 

and native skin are presented in table 3. The Young's modulus obtained for EBM (4.29±1.46 MPa) is 

extremely close to the values displayed by native skin (4.6-20 MPa). However, the tensile strength 

and breaking strain values obtained for the produced EBM are slightly lower than those displayed 

by skin. Nevertheless, the mechanical properties of EBM are compatible with its handling during 

surgery and are similar to that reported for other electrospun membranes produced by other 

authors, that are aimed to be used as skin substitute [110, 111]. 

The mechanical performance displayed EBM can be attributed to PCL, a synthetic polymer well 

known by its mechanical strength [112]. Furthermore, the natural materials used in this study are 

known by their weak mechanical properties [113]. An increase in the percentage of PCL used to 

produce EBM would improve the mechanical behavior of the final membrane. But on the other 

hand, a high percentage of PCL increases the degradation time of the EBM, which could impair 

the healing process.  

 

Figure  13. Representative stress–strain curve and macroscopic images of the EBM during the tensile test. 
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Table 3. Young's modulus, tensile strength, and elongation at break of EBM and native human skin. 

 

3.5. Evaluation of the porosity of EBM 

Porosity is viewed as a crucial feature of 3D constructs aimed for biomedical application. Cells 

are prone to adhere and proliferate within porous 3D constructs. Different reports have 

highlighted the importance of the porosity of skin substitutes for improving fibroblast, 

endothelial, and stem cell infiltration, as well as nutrient transport and neovascularization [114]. 

Electrospun meshes are characterized by a high degree of porosity which is essential for 

promoting homeostasis, exudates absorption, gas permeability and cell proliferation [115]. As 

shown in figure 14, the EBM porosity was greater than 90%. According to Freyman and colleagues 

porosities above 90% are ideal for tissue engineering applications since they allow cell 

penetration and ingrowth [116]. The HA_PCL individual electrospun mesh presented a porosity 

percentage below 90% which compromises the ingrowth of cells, vascularization, and diffusion of 

nutrients. However, the presence of a top layer with a low porosity may avoid bacterial 

contamination since it is described that bacteria adhere preferentially to porous materials than 

on dense materials [117]. Moreover, CS_ZN_SA membrane porosity is extremely high (162.35 ± 

34.68 %) and cells may have difficulties in filling the void spaces existent in the nanofibrous mesh. 

Such feature may also compromise the mechanical properties of the membrane, as previously 

described by Bonvallet and collaborators [74]. As a consequence, the combination of HA_PCL with 

CS_ZN_SA resulted in a wound dressing with optimal porosity (90.40 ± 4.25 %) that provides a 3D 

structure that allows cell accommodation, migration and also enables gasses, nutrients and fluids 

exchange. Such processes are essential for hemostasis, and ultimately to allow a proper wound 

healing to occur [118]. 
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Figure  14. Characterization of the porosity of the EBM and their individual layers. 

3.6. Determination of contact angle at the surfaces of EBM 

In literature, it is described that a surface is considered hydrophilic if the contact angle is lower 

than 90°, whereas surfaces with contact angles higher than 90° are considered moderately 

hydrophobic. Surfaces with a contact angle between 150° and 180° are called superhydrophobic 

[119]. Furthermore, the wettability of the nanofibrous membranes is an important parameter 

since it influences the host response to the implanted material, affecting the initial cellular 

adhesion and also their proliferation [120]. 

Herein, the upper layer of EBM (HA_PCL) presented a contact angle of 120.20 ± 0.85° and thus a 

hydrophobic character (90°<Water Contact Angle<150°). These results were expectable since PCL 

is present in this layer [53]. On the other hand, the bottom layer of EBM (CS_ZN_SA) presented a 

water contact angle of 101.96 ± 5.08° (figure 15). This value shows that this inner layer has a less 

hydrophobic character than the top layer (HA_PCL). Nevertheless, the hydrophobicity of 

CS_ZN_SA layer is related to the high hydrophobicity of ZN protein used to produce the 

electrospun mesh. Specifically, the presence of apolar amino acids (proline and glutamine) in the 

polypeptide chain of ZN may explain its hydrophobic character [121].  However, the hydrophobic 

character displayed by CS_ZN_SA layer is desirable, since it may have an important role in the 

regulation of the release of SA, by preventing the immediate hydration of the matrix, 

solubilization of the drug and diffusion from the fibers [122].  Therefore, the amount of ZN used 

was selected in order to maintain fiber stability and simultaneously allow an appropriate drug 

release. In addition, the effect of EBM surface properties in cellular attachment and proliferation 

is discussed in more detail in section 3.9.  
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Figure 15. Characterization of the water contact angles of the top and bottom layers of EBM. 

3.7. Water vapor transmission rate  

The maintenance of a moist environment at the wound site is crucial for improving the healing 

process. In fact, a moist environment avoids patient dehydration, enhances angiogenesis and 

collagen synthesis. Thereunto, WVTR was determined in order to assess the EBM capacity to 

maintain a moist environment in the wound. The obtained data shows a nearly constant water 

weight loss for control and membrane sealed group (figure 16).  

 

Figure  16. Characterization of the water vapor transmission profile for control and EBM. 

The results showed that EBM had a WVTR of 1762.91 ± 187.50 mL/m2/day, a value that is similar 

to the control (1539.36 ± 50.01 mL/ m2/day) (table 4). These results demonstrate that EBM does 

not limit water vapor exchanges. Furthermore, the recommended WVTR of wound dressings is 

2000-2500 mL/m2/day, which is half of the value presented by granulation tissue (5138 ± 202 
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mL/m2/day) [123]. Therefore, EBM can be used to control the water vapor losses and also prevent 

the accumulation of exudates, which are commonly present in full thickness wounds. The exudate 

retention leads to the buildup of a back pressure that is responsible for the maceration of the 

healthy surrounding tissue, thus inducing pain to patient [124]. 

Table 4. Water vapor transmission profile for control and EBM. 

 

3.8. Characterization of the biodegradation profile of EBM 

Biomaterials applied in tissue regeneration must be biodegradable in order to allow their 

application as temporary ECM. Ideally, the degradation rate of polymeric matrices must be 

compatible with the new tissue formation. Fast degradation rates lead to the loss of tissue 

integrity and functions, whereas slow degradation rates can result in mechanical mismatches such 

as stress shielding, that may lead to the failure of the system. To mimic the environment found in 

skin, degradation studies of the individual HA_PCL, CS_ZN_SA and EBM were performed using PBS, 

at pH 5.50, and 37 oC. 

As can be observed in figure 17, HA_PCL membrane lost approximately 5% of its weight after 7 

days. Such result can be explained by the presence of PCL, which exhibits a slow degradation rate 

[125]. As an aliphatic polyester, PCL degrades through the hydrolysis of the ester bonds but it can 

also be degraded through enzymatic action [126]. Several works evidenced that PCL-based wound 

dressings present a weight loss compatible with skin regeneration [109]. On the other hand, it 

was demonstrated that HA-based polymers present a controlled biodegradability. These polymers 

can be degraded by enzymatic action, specifically through hyaluronidases [127]. 

Moreover, the obtained results show that the CS_ZN_SA monolayer membrane presents the 

highest weight loss (almost 30%) after 7 days [11]. This result is in agreement with the data 

available in the literature: Lin and colleagues, produced ZN-collagen nanofibers that suffered a 

maximum 47% of weight loss after 14 days [121]. However, it was also demonstrated that the 

degradation products of ZN and CS can enhance cell proliferation [128-130]. Sun et al, for 

example, added the ZN degradation products to RPMI 1640 complete culture medium and verified 

that when their concentration was lower than 1 mg/mL, these products were able to stimulate 

the proliferation of human liver cells (HL-770) [128]. The degradation products of ZN are mainly 

composed of amino acid residues (such as cysteine and methionine) that do not affect the pH of 

the culture medium and do not impair cellular behavior [131]. Additionally, Ribeiro and 
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collaborators produced a CS hydrogel and concluded that the CS by-products (N-acetylchito-

oligosaccharides and chitooligosaccharides) do not affect NHDF cells viability [132]. 

EBM lost 5% of its mass in 3 days and almost 10% after 7 days. The controlled degradation process 

observed for EBM further corroborates the entanglement between two layers. Figure 18 shows 

that the top and bottom layers of EBM suffered some changes along 7 days of incubation. After 

this period, the layers displayed a lower fiber density and fibers became more irregular. This may 

have a positive effect on cellular internalization, nutrients diffusion and ultimately on the skin 

healing process. 

 

Figure  17. Evaluation of the weight loss of the different membranes produced along 7 days. 
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Figure  18. SEM images of the top (HA_PCL) and bottom layer (CS_ZN_SA) after 1, 3 and 7 days of being 

incubated with PBS. 

3.8. Determination of SA release from EBM 

As can be observed in figure 19, approximately 16% of SA was released from EBM during 5 days. SA 

release is controlled predominantly by the degradation of the EBM. Thus, as the polymers 

degrade, the drug is released. During the first hour in contact with PBS at 37 oC, the EBM exhibit 

a significant release of SA, known as burst release. Following that, a sustained release of the SA 

entrapped within the polymeric mesh was noticed. The initial burst release of SA is appropriate 

to eliminate bacteria at the wound site, while a subsequent slow release of the drug may avoid 

biofilm formation and infection at the wound site [32]. Similarly, Nguyen and co-workers have 

incorporated SA in poly(ethylene glycol) (PEG) and poly(lactic acid) (PLA) core-shell electrospun 

membranes, in order to improve the wound healing process. In their study, the SA suffered an 

initial burst release due to the high concentration of the drug available on the nanofibers surface 

and a subsequent sustained release during 5 days [133]. The results obtained in our study for SA 

release avoided the formation of at least 5 days, as will be discussed in section 3.10.  

Furthermore, there are several studies which emphasize the important role of SA in the 

treatment of skin disorders, such as acne, bacterial and fungal infections [134]. In cosmetics, SA 
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is applied to reduce wrinkles and sagginess of the skin after wound repair. Moreover, SA is also 

used as antiseptic and disinfectant since its keratolytic activity promotes the removal of dead or 

hyper keratinized skins, while reducing inflammation [135].  
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Figure  19. Release profile of SA from electrospun EBM into PBS at 37 °C and pH 5.50. 

3.9. Evaluation of cell viability and proliferation in the presence of EBM 

To evaluate the cytotoxic character of EBM, NHDF were used as model cells. NHDF were chosen 

due to their important role in wound healing process, specifically, they interact with the 

surrounding cells (keratinocytes, fat cells, and mast cells) and produce ECM proteins, 

glycoproteins, adhesive molecules and various cytokines [136]. 

Optical microscopic images of NHDF cells in contact with the produced membranes at 1, 3 and 7 

days were acquired (figure 20). The images show that NHDF cells in contact with the materials do 

not suffer any morphologic variation and were able to proliferate similarly to cells from K - (cells 

grown without being in contact with biomaterials). As expected, cells presented in K+ display a 

spherical shape, which is characteristic of dead cells. 
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Figure  20. Microscopic images of NHDF in the presence of electrospun membranes after 1, 3 and 7 days 

after seeding; K - (negative control); K + (positive control). 

Additionally, cell viability was also characterized through an MTT assay during 1, 3 and 7 days. 

The metabolic conversion of MTT, a yellow tetrazole salt, to purple formazan crystals occurs in 

living cells and such process is proportional to the number of viable cells present in each well 

[137]. The data obtained from the MTT assay (figure 21) revealed that the individual electrospun 

layers (HA_PCL and CS_ZN_SA) and EBM did not affect the cellular viability for 7 days.  
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Figure  21. Evaluation of NHDF viability when cultured in the presence of the produced electrospun 

membranes after 1, 3 and 7 days. Positive control (K+) and negative control (K−) indicate dead and viable 

cells, respectively. Statistical analysis was performed using one-way ANOVA with Newman–Keuls test. 

On the other hand, EBM may provide a three-dimensional structure for cellular attachment, 

growth, and migration. Therefore, cellular morphology and the interaction between cells and 

nanofibers were also evaluated by SEM (figure 22). After 3 days, the cells already present a 

typical morphology with various filopodia protrusions, suggesting that NHDF cells can adhere and 

proliferate on the surface of EBM.  At day 7, cells were completely attached to the top and 

bottom of EBM. Such fact can be explained by the interaction of cells membrane 

glycosaminoglycans with the amine groups present on the surface of CS_ZN_SA membrane [138]. 

 

Figure 22. SEM micrographs illustrating fibroblasts morphology at the surface of the different electrospun 

membranes produced after 1, 3 and 7 days. 
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Furthermore, CLSM images were also acquired (figure 23), and they corroborate the previous 

results obtained by SEM analysis. The cells maintained a normal phenotype and remained 

biologically active on the surface of both layers of EBM. After 3 days of culture, the cellular 

adhesion and proliferation onto the nanofibrous matrix are higher than in K-. These results 

demonstrate that EBM has excellent potential to support fibroblasts attachment, migration, and 

proliferation, which is crucial for improving the wound healing process. 

All these data clearly shows that EBM enhances the wound healing process by promoting the 

migration, proliferation, and adhesion of fibroblast cells. Once fibroblasts are at the wound site, 

they produce and secrete ECM proteins (predominantly collagen type I) and also activate growth 

factors such as Transforming Growth Factor-β1 (TGF-β1) that are required for restoring the 

structure of the injured tissue [34]. 

 

Figure  23. CLSM images of fibroblasts cultured on µ-Slide 8 well Ibidi imaging plates (Control), HA_PCL and 

CS_ZN_SA membranes after 1 and 3 days. Blue channel: cell nuclei-labeled Hoechst 33342®; Red Channel: 

cytoplasm stained with WGA-Alexa 594® conjugate. 

3.10. Characterization of the antimicrobial properties of the membranes 

Bacterial infections are currently regarded as the most severe and devastating complications 

associated with the implantation of biomaterials in the human body [75]. Nowadays, it is 

estimated that 65-80% of bacterial infections are caused by organisms that form biofilms on 

implants´ surface, compromising their successful application [76]. In this context, the 
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development of biomaterials with bactericidal activity is fundamental to avoid infections related 

to materials implantation. 

S. aureus strain was used, herein, as model bacteria to evaluate the bactericidal activity of the 

EBM. This strain was selected since it is described as the most common pathogen found in skin 

infections when biomaterials are used for wound treatments [91]. 

To determine the antimicrobial activity of the individual layers (HA_PCL and CS_ZN_SA) and EBM, 

membranes were placed on agar plates in contact with S.aureus during 5 days. The diameter of 

the inhibitory halos was measured (figure 24). Furthermore, biofilm formation on membrane 

surface was evaluated by SEM analysis during 5 days. The EBM presented inhibitory halos of 9,84 ± 

3,64 mm (figure 24B) and the absence of biofilm formation on their surface was confirmed for 5 

days by SEM analysis (figure 25B). In comparison with the individual electrospun membranes, EBM 

showed the highest inhibitory halo diameter. This capacity can be attributed to a synergetic 

effect resulting from the assembly of two hydrophobic layers. Besides that, the antimicrobial 

activity of EBM results also from the presence of SA and CS that are already extensively described 

in the literature as holders of antimicrobial properties [135]. 

 

Figure  24. Evaluation of the bactericidal activity of the produced membranes: Macroscopic images of the 

inhibitory halos around the membrane produced in this study (A); Determination of the diameter of 

inhibitory halos obtained for membranes in contact with S. aureus (B). 

SA is a phenolic compound produced by plants that play an important role in several physiological 

processes, such as the induction of plant defense responses against pathogen attacks [139]. 

Furthermore, it is also responsible for the inhibition of cyclooxygenase (COX), known to be a key 

player in body’s inflammatory response [140]. The antimicrobial activity of SA is not yet widely 

described in the literature, but there are some authors that have already demonstrated the 

effect of SA against the formation and growth of biofilms [141]. Lee et al proposed that the free 

phenolic hydroxyl group of SA is able to kill bacteria, through a mechanism where the proton 
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gradient present in bacterial cells is destroyed [142]. Kupferwasser and collaborators showed that 

the treatment of infections caused by S. aureus with aspirin resulted in a significant reduction of 

bacterial densities at the target tissues [143]. Later, the same author reported that SA leads to a 

subexpression of structural genes of S. aureus, namely alpha-hemolysin gene promoter (hla) and 

the fibronectin gene promoter (fnbA). As a consequence, staphylococcal malignancy is decreased 

[144]. On the other hand, CS is a polysaccharide obtained by the deacetylation of chitin. CS 

antimicrobial activity is associated with its positively charged amino groups that are able to 

interact with negatively charged groups available at microbial cell wall, leading to the leakage of 

the intracellular constituents of the microorganisms [145]. For that reason, several studies 

showed that CS has a strong bactericidal activity against gram-positive bacteria, such as S. aureus 

[146, 147]. 

The synergistic effect observed between CS and SA results in a bilayered system with 

antimicrobial activity for at least 5 days. This profile is suitable to provide an aseptic 

environment at the wound site, inhibiting the bacterial proliferation, and hence, facilitating the 

wound healing process. 

 

Figure  25. Evaluation of the bactericidal activity of the produced membranes: Macroscopic images of the 

inhibitory halos (A); SEM images of membranes in contact with S. aureus and the bacterial growth at agar 

plate (negative control) (B). 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Chapter IV - Conclusion 
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4. Conclusion  

Every year millions of people around the world experience both acute and chronic skin injuries. 

Among several types of dressings applied in the treatment of skin damages, the bioactive 

dressings such as electrospun membranes are the most effective.  This type of membranes gained 

special attention in the area of skin tissue engineering since they present a similar morphology 

and structure to that of the ECM. Furthermore, the easy incorporation of drugs into nanofibrous 

structures can also improve the healing process. In this study, an innovative bilayer electrospun 

membrane was produced to cover/protect the wound as well as promote the wound healing 

process. The top and bottom layers were produced using natural (CS, ZN, and HA) and synthetic 

(PCL) materials, respectively. The combination of natural and synthetic materials in a bilayer 

scaffold resulted in a system with suitable physicochemical properties as well as excellent 

biological performance. Furthermore, the encapsulation of the active component of aspirin, SA, 

in EBM avoided the bacterial growth on the surface of the nanofibrous matrix. The in vitro assays 

revealed that the wound dressing is noncytotoxic and provides a 3D polymeric support to allow 

cell adhesion and proliferation.  

The incorporation of growth factors, vitamins, and other biomolecules to enhance the healing 

processes can be hypothesized as a future prospect for improving the performance of these 

membranes. Furthermore, the real-time detection of the wound bed environment parameters, 

including pH or temperature, through biosensors that can be incorporated in the skin substitutes 

can allow the development smart devices capable of monitoring the healing process in real time. 
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• D. R. Figueira1

•

A. G. Mendonça1,2
• I. J. Correia1

Received: 5 August 2015 /Accepted: 27 January 2016

� Springer Science+Business Media New York 2016

Abstract The incidence of bone disorders, whether due

to trauma or pathology, has been trending upward with the

aging of the worldwide population. The currently available

treatments for bone injuries are rather limited, involving

mainly bone grafts and implants. A particularly promising

approach for bone regeneration uses rapid prototyping (RP)

technologies to produce 3D scaffolds with highly con-

trolled structure and orientation, based on computer-aided

design models or medical data. Herein, tricalcium phos-

phate (TCP)/alginate scaffolds were produced using RP

and subsequently their physicochemical, mechanical and

biological properties were characterized. The results

showed that 60/40 of TCP and alginate formulation was

able to match the compression and present a similar Young

modulus to that of trabecular bone while presenting an

adequate biocompatibility. Moreover, the biomineraliza-

tion ability, roughness and macro and microporosity of

scaffolds allowed cell anchoring and proliferation at their

surface, as well as cell migration to its interior, processes

that are fundamental for osteointegration and bone

regeneration.

1 Introduction

Apart from traumatic events, the aging of the worldwide

population has led to an increased prevalence of bone tis-

sue diseases, with up to 2.2 million people needing surgery

every year [1]. The currently available treatments for bone

defects involve the use of bone grafts, particularly auto-

grafts, which present serious restrictions such as limited

availability, induction of chronic pain and the inability to

promote the complete recovery of the patient. To overcome

this healthcare problem, a huge effort has been made on the

topic of bone tissue engineering in order to create new

therapeutic approaches [2]. Artificial bone implants pro-

duced from metals, ceramics, polymers and composites

have been widely used in bone reconstruction and regen-

eration [3–10]. Three dimensional (3D) structures, known

as scaffolds, constitute one example of these artificial

implants and have been produced with materials such as

hydroxyapatite (HA), tricalcium phosphate (TCP),

poly(lactic-co-glycolic acid) (PLGA) or sodium alginate.

Furthermore, scaffolds surfaces can be modified (surface

coating, chemical treatment and polymerization) to

improve bone healing [11], with some types of scaffolds

being used for cell and growth factor delivery to the

damaged tissues, while providing mechanical support

during the tissue regeneration process [12].

Nowadays, the development of a bone substitute involves

the optimization of several parameters, such as biocompat-

ibility, manufacturing simplicity, mechanical requirements,

osteoconductivity, osteoinductivity and, depending on the

type of implant to be produced (permanent or temporary), its

degradation rate, that in some cases must be synchronized

with the rate of tissue regeneration [2, 12–17].

Several techniques have been described in literature as

being suitable for producing bone replacements. Fiber
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bonding [18, 19], freeze drying [20, 21], melting [22, 23],

phase inversion [24, 25] and solvent casting [26, 27] are the

most employed techniques for scaffolds production. How-

ever, some of them present several disadvantages, such as

the use of toxic solvents, inability to create large structures

with appropriate mechanical properties, absence of pore

size control and a limited number of usable materials [28].

The latest advances in the area of computer technology

allowed the development of rapid prototyping (RP) tech-

niques that recently started to be used in the design of new

3D constructs aimed to be applied in the area of tissue

engineering [29, 30]. So far, computer assisted design

(CAD) models supported the manufacturing of highly

reproducible 3D scaffolds [31]. To accomplish that, the 3D

CAD models are replicated in a layer-by-layer routine,

allowing scaffolds to be printed with different conforma-

tions and geometries, that may contribute for a significant

improvement of scaffold’s mechanical properties according

to the demands of the damaged bone [32]. As an alterna-

tive, other researchers adapted a different strategy based on

data collected from routine medical examinations, where

the produced scaffolds were specifically tailored, i.e. pro-

duced with high anatomic accuracy, to fulfil the particular

demands of the injured bone tissue [33–35]. Santos et al.

used a 3D printer (Zprinter 310 Plus) to produce scaffolds

that replicated the computer tomography data of a human

hand [35].

Recently, our group used a Fab@Home plotter to pro-

duce TCP/alginate scaffolds with high accuracy, that were

previously designed with CAD software [36]. This proce-

dure was adopted taking into account the plotter’s cost,

versatility and capacity to replicate CAD models with

control and reproducibility, in a short period of time [36,

37].

In this study, alginate and TCP were selected to repro-

duce the organic and inorganic components of the native

bone matrix. TCP was used to mimic the mineral phase of

the bone, due to its composition, high biocompatibility,

bioactivity, great compressive strength osteoconductivity,

and also by presenting an in vivo bio-resorption rate that

fulfills bone regeneration demands [14, 38, 39]. However,

as other ceramics, it possesses a brittle behavior. To

overcome this bottleneck, two strategies were selected to

improve the mechanical properties of the scaffolds: various

ratios of TCP/alginate were used and scaffolds with dif-

ferent geometries were designed using CAD software.

Alginate is a natural polysaccharide derived from brown

seaweeds composed of 1,4-linked D-mannuronic acid

(M) and a-L-guluronic acid (G) residues [40–42], and is

known by its ability to form stable hydrogels when ioni-

cally crosslinked with divalent cations (e.g. Ca2?,Sr2?and

Ba2?) [40, 43]. In previous studies it has already been

described the successful application of alginate in bone

regeneration, either alone or in combination with other

polymers and ceramics [36, 43–46].

2 Materials and methods

2.1 Materials

Amphotericin B, bovine serum albumin (BSA), cacodylate

buffer (MW = 214.03 g/mol), calcein, calcium chloride,

Dulbecco’s modified Eagle medium: nutrient mixture F12

(DMEM-F12), ethylenediaminetetraacetic acid (EDTA), gen-

tamicin, glutaraldehyde 25 % (v/v), L-glutamine, sodium

alginate (MW = 120–190 kDa), trypan blue and trypsin were

purchased from Sigma-Aldrich (Sintra, Portugal). Tricalcium

phosphate (TCP)powder (MW = 310.20 g/mol)wasobtained

from Panreac� (Barcelona, Spain). 3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetra-

zolium reagent, inner salt (MTS) was bought from Promega

(Madison, USA). Fetal bovine serum (FBS) was purchased

fromBiochromAG(Berlin,Germany).Human osteoblast cells

(406-05f) were obtained from Cell Applications, Inc. (San

Diego, CA). 24 and 96-well plates were acquired from Orange

Scientific (Braine L’Alleud, Belgium). Tris Base was obtained

from Fischer Scientific (Lisbon, Portugal). Hoechst 33342�

was acquired from Invitrogen (Carlsbad, CA).

2.2 Production of TCP/alginate composite scaffolds

by RP

The 3D scaffolds were produced by RP using a Fab@-

Home plotter, as previously described [36]. TCP/alginate

scaffolds were produced using prepared solutions of each

compound in a proportion of 60/40 % (w/w), 70/30 %

(w/w) and 80/20 % (w/w). Briefly, a 15 % (w/v) alginate

solution was prepared by dissolving the polymer in double

deionized and filtered water (obtained using a Milli-Q

Advantage A10 ultrapure Water Purification System;

resistivity = 18.2 MX/cm at 25 �C), with overnight agi-

tation. The solution was then homogenized using an X10/

25 Ultra-turrax (Ystral, Germany) for 30 min. Finally, TCP

powder was added to the alginate solutions to obtain the

specific ratios described above, and subsequently the

samples were homogenized. Then, a 5 % CaCl2 solution

was added to the composite sample (in a 0.14:1 volume

ratio of CaCl2 to alginate), and alginate polymer chains got

crosslinked leading to an increase of the solution’s vis-

cosity that is fundamental for scaffolds production [36].

The used 3D model was designed using CAD/CAM soft-

ware (OpenSCAD version 2014.3, �2009–2014 Marius

Kintel and Clifford Wolf). The developed 3D model was

composed of several layers angled at 45� with the under-

lying layer (0�–45�–90�–135�), as shown in Fig. 1. Briefly,
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the file containing the scaffold model was converted and

exported to STL format. Following, a syringe (10 cc Luer

Lock) was filled with the composite solution for posterior

extrusion. After the extrusion process, the scaffolds were

maintained in a 5 % CaCl2 bath for 24 h to achieve a

complete crosslinking. Afterwards, the scaffolds were air-

dried at RT and subsequently freeze-dried for 24 h.

2.3 Scanning electron microscopy analysis

Scanning electron microscopy (SEM) analysis of the

scaffolds was performed in order to characterize the mor-

phology, porosity and surface of the scaffolds. Samples

were mounted onto aluminum stubs with Araldite glue and

sputter-coated with gold using a Quorum Q150R ES sputter

coater (Quorum Technologies, UK). The SEM images were

then captured with different magnifications, at an acceler-

ation voltage of 20 kV, using a Hitachi S-3400 N scanning

electron microscope (Hitachi, Japan).

2.4 Attenuated total reflectance—fourier transform

infrared spectroscopy analysis

To characterize the chemical composition of the scaffolds,

Attenuated total reflectance-Fourier transform infrared

spectroscopy (ATR-FTIR) was used. The spectra obtained

for the samples represent the average of 128 scans, between

400 and 4000 cm-1, with a spectral resolution of 4 cm-1.

All the samples were crushed to a powder, mounted on a

diamond window, and the spectra were recorded with a

Nicolet iS10 FTIR spectrophotometer (Thermo Scientific,

Waltham, MA, USA). All the components used for scaffold

production were also analyzed in pure state for a compar-

ison to be made with the prepared samples [47].

2.5 Energy dispersive spectroscopic analysis

Energy dispersive spectroscopy (EDS) was used to perform

the elemental composition analysis of the various scaffolds.

The samples were placed on aluminum stubs, air-dried at

RT and examined in an XFlash Detector 5010 (Bruker

Nano, Germany).

2.6 Mechanical characterization of the scaffolds

In order to mimic the native environment found in vivo, all

specimens of each sample were pre-soaked in culture

medium for 4 h. Scaffold’s dimensions were determined

and then compression assays were performed to charac-

terize the mechanical properties of the scaffolds using a

Zwick� 1435 Material Prüfung (Ulm, Germany). A

crosshead speed of 3 mm/min and a load cell of 5kN were

used for analyzing five specimens of the different formu-

lations in each assay.

The compressive strength (Cs) of each scaffold was

calculated according to Eq. (1) [48].

Cs ¼
F

w � l ð1Þ

where F is the load at the time of fracture, and w and

l represent the width and length of the scaffold,

respectively.

The Young modulus (YM) of each scaffold was calcu-

lated from the stress–strain relation, calculated by applying

Eq. (2).

YM ¼ Cs

Hd

ð2Þ

where Hd stands for the height deformation at maximum

load and Cs is the scaffold compressive strength. Average

Fig. 1 Schematic overview of

the layered structure of the

model
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values and standard deviations (S.D.) were determined for

each sample.

2.7 Swelling studies

The swelling capacity of the scaffolds was determined

through a method adapted from literature [43]. In brief, sam-

ples were immersed in Tris buffer (1 M, Ph 7.4), at 37 �C, for
2 days (n = 3). After absorbing the excess of Tris with filter

paper, scaffolds were removed from the solution at predeter-

mined intervals and weighed. Following this process, the

samples were re-immersed in the swelling solution. The

swelling ratio of the scaffolds was evaluated using Eq. (3).

Swelling ratio %ð Þ ¼ Wt �W0

W0

� 100 ð3Þ

where Wt is the final weight of the scaffolds and W0 their

initial weight.

2.8 Contact angle measurements

Contact angle measurements were performed using a

OCAH 200 Contact Angle System (DataPhysics Instru-

ments, Germany), operated in static mode at RT. This

assay was performed using water as reference fluid [36].

For each sample, water drops were placed at various

locations of the surface of the scaffold. The reported con-

tact angles are the average of at least three measurements.

2.9 Evaluation of the porosity of the scaffolds

To determine the microporosity of the different scaffolds a

liquid displacement method was used, according to the pro-

cedure previously reported [48]. In brief, scaffolds were

weighed, immersed in absolute ethanol (EtOH) for 48 h, and

weighed again. EtOH was chosen for its ability to penetrate

throughout the scaffolds without causing shrinking or swel-

ling of the matrix [49]. The porosity was then calculated by

determining the amount of EtOH absorbed, through Eq. (4):

Porosity %ð Þ ¼ Ww �Wd

Dethanol � VScaffold

� 100 ð4Þ

where Ww and Wd are the wet and dry weights of the

scaffolds, respectively, Dethanol represents the density of

EtOH at RT and Vscaffold the volume of the wet scaffold.

Five replicates of each scaffold were used, and the data

represents the average values obtained.

2.10 Characterization of the degradation profile

of the scaffolds

The degradation profile of the composite scaffolds was

investigated through a method previously published. [50,

51] In brief, scaffolds were placed in 24-well plates, fully

immersed in DMEM-F12 at 37 �C. At predetermined

intervals, samples were removed, completely dried and

weighted. The degradation percentage at each point was

calculated through Eq. (5):

Weight loss %ð Þ ¼ ðWi �Wt

Wi

Þ � 100 ð5Þ

where Wi corresponds to the initial weight of the sample

and Wt to the weight of the sample at time t.

2.11 In vitro biomineralization assay

The in vitro bioactivity of each scaffold was evaluated by

submerging them in standard simulated body fluid (SBF),

followed by incubation at 37 �C for 7, 14, and 21 days,

according to a method previously described in literature

[52]. The SBF solution had a similar ionic concentration to

that found in human blood plasma (142.0 mM Na?, 5 mM

K?, 1.5 mM Mg2?, 2.5 mM Ca2?, 147.8 mM Cl-,

4.2 mM HCO3
-, 1.0 mM HPO4

2-, and 0.5 mM SO4
2-),

and a pH of 7.4 at 37 �C [53]. Three scaffolds of equal

weight and shape were used. After each period of incuba-

tion, the scaffolds were removed and rinsed three times

with deionised water to remove soluble inorganic ions. The

deposition of calcium and phosphate ions on the composite

surface was characterized by EDS.

2.12 Characterization of the biological properties

of the scaffolds

2.12.1 Evaluation of cell viability and proliferation

in the presence of the scaffolds

Human osteoblasts cells (hOB) were cultured in DMEM-

F12, supplemented with 10 % heat inactivated FBS,

amphotericin B (100 lg/mL) and gentamicin (100 lg/mL)

in 75 cm2 T-flasks. Cells were maintained in a humidified

environment at 37 �C, with 5 % CO2, until confluence was

attained. Subsequently, cells were trypsinized with 0.18 %

trypsin (1:250) and 5 mM EDTA, and centrifuged for

5 min. Prior to cell seeding, scaffolds were cut into pieces

with appropriate sizes and placed into 96-well plates to be

sterilized by UV irradiation for 30 min. Following, cells

were seeded at a density of 10 9 103 cells per well, in

order to evaluate cell viability and proliferation. The cul-

ture medium was replaced every 2 days until the end of the

assay.

To evaluate the cytotoxic character of the 3D scaffolds,

an MTS assay was performed at day 4 and 7 [36]. The

metabolic activity of the cells was assessed by quantifying

the metabolic conversion of MTS to formazan. Briefly, the

medium in each well was replaced with a mixture of
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100 lL of fresh culture medium and 20 lL of MTS/phe-

nazine methosulfate (PMS) reagent solution, and then the

plate was incubated for 4 h at 37 �C. Following the incu-

bation period, the supernatant was transferred into a

96-well microplate and the fluorescence intensity measured

at 492 nm, using a microplate reader (Anthos 2020, Bio-

chrom, UK). Five replicates of each sample were used for

each experimental condition. Cells cultured without mate-

rials were used as negative control (K-) and cells cultured

with EtOH (70 %) were used as positive control (K?).

2.12.2 Scanning electron microscopy analysis

In order to evaluate the cellular behavior in the presence of

the scaffolds, SEM analysis was performed according to

the method previously described by Lee and Chow [54].

Briefly, the samples were washed at RT with sodium

cacodylate buffer solution (0.1 M, pH 7.4), and then fixed

for 30 min in a 2.5 % (v/v) glutaraldehyde in 0.1 M

sodium cacodylate solution. Subsequently, samples were

frozen in liquid nitrogen for 2 min and then freeze-dried

for 2 h. SEM analysis was performed as described in

Sect. 2.3.

2.12.3 Confocal laser scanning microscopy analysis

Confocal laser scanning microscopy (CLSM) was used to

characterize the cell distribution within the 60/40 scaffold.

This formulation was selected based on the results obtained

herein. hOB nucleus were labelled with Hoescht 33342

(5 lg/mL) and seeded in the presence of the scaffolds

(10 9 103 cells/scaffold), in l-Slide 8-well Ibidi imaging

plates (Ibidi GmbH, Germany). After 24 h, the scaffold

was labelled with calcein (20 lg/mL) and confocal images

were acquired. Imaging experiments were performed in a

Zeiss LSM 710 laser scanning confocal microscope (Carl

Zeiss AG, Germany), where consecutive z-stacks were

acquired. The 3D reconstruction and image analysis were

performed using Zeiss Zen 2010 software [36].

2.13 Statistical analysis

One-way analysis of variance (ANOVA), with the New-

man–Keuls post hoc test was used for comparison of the

different test groups. A p value lower than 0.05 (p\ 0.05)

was considered statistically significant. Data analysis was

performed in GraphPad Prism v.6.0 software (Trial ver-

sion, GraphPadSoftware, CA, USA).

3 Results and discussion

3.1 Morphological characterization of the produced

scaffolds

Different approaches have been used in the area of

regenerative medicine to answer the limitations of the

currently available therapeutics. Among them, RP tech-

nologies have proven to be a precious tool in every stage of

development, greatly improving the design decision pro-

cess and the scaffold’s mechanical properties.

In this work, composite scaffolds constituted by TCP and

alginate were produced by RP, for mimicking the natural

bone matrix properties (20–30 % organic, 70–80 % inor-

ganic) [14, 17]. To do so, an optimization of the scaffold’s

production parameters was done. Figure 2 presents the CAD

model used, as well as one of the scaffolds printed by RP.

The designed model is a 13 mm 9 13 mm 9 13 mm cube,

with a porous structure. As described, it is composed by

layers rotated 45� in relation to the underlying layer (0�–45�–
90�–135�), in order to increase its mechanical resistance.

Alginate was selected for scaffolds production due to its

capacity to act as temporary extracellular matrix (ECM) for

bone cells. In addition, the possibility of controlling the

degradation rate of this polymer is of great importance for

tailoring the properties of the scaffold [40, 41]. On the

other hand, TCP was chosen due to its resemblance with

the natural ceramic component of bone tissue, increased

biocompatibility, low cost, osteoconductivity and enhanced

mechanical resistance [2, 38, 55]. Furthermore, the com-

bination of these materials has already been shown to

improve cell adhesion and proliferation, with the potential

to allow cell growth and differentiation before implantation

[36, 56]. Macroscopic images of the produced scaffolds are

presented in Fig. 3.

Through the analysis of the images shown in Fig. 3 it

is possible to observe that the TCP content had a direct

effect on the scaffold’s structure, namely on the scaf-

fold’s dimensions, decreasing the shrinking endured. It

was previously described that alginate gels and scaffolds

suffer shrinkage during the drying process [57]. Other

researchers have also reported that the presence of solid

fillers, such as ceramic particles, in an alginate solution

has a direct effect on the volume loss during the drying

process [58]. It was noticed that the compression of the

polymeric matrix leads to the compression of the TCP

particles against each other. Herein, it was verified that

the scaffolds containing the highest percentage of TCP

suffered less shrinkage, since the amount of incom-

pressible ceramic particles limits the shrinking that
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scaffolds can suffer. This is important, since an excess

shrinking can greatly affect the scaffold’s porosity and

its mechanical properties.

Furthermore, the scaffolds surface morphology has a

great effect on cell adhesion and, consequently, on the

successful material implantation. Figure 4 shows SEM

Fig. 2 Images of the CAD model used (left) and of the final printed model (right)

Fig. 3 Representative

macroscopic images of the

different produced scaffolds
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images acquired to characterize the surface morphology of

the produced scaffolds.

Through the analysis of Fig. 4 it is possible to verify that

all the scaffolds presented similar surface characteristics,

with high roughness and irregularities. It has been previ-

ously described that the surface roughness of a scaffold has

a great effect on protein adsorption and cell adhesion, upon

scaffold implantation [59, 60]. On irregular surfaces,

human osteoblasts present increased metabolism and ECM

production, due to an increased contact surface available

for promoting adhesion contact points [6].

3.2 Characterization of the physicochemical

properties of the scaffolds

3.2.1 ATR-FTIR analysis

An ATR-FTIR analysis was performed to evaluate the

chemical composition of the scaffolds. The ATR-FTIR

spectra of the raw materials and of the produced scaffolds

are presented in Fig. 5.

The ATR-FTIR spectrum of TCP presents a peak at

1020 cm-1 (I), that is characteristic of a P=O stretch

vibration, thus revealing the presence of the inorganic

phosphate components of TCP [35]. This peak is also pre-

sent on the spectra of the produced scaffolds, with an

intensity that is proportional to the ceramic content present

in each sample. The ATR-FTIR spectrum of sodium algi-

nate powder presented two peaks at 1400 and 1600 cm-1

(II), corresponding to the C=O stretching of the carboxylate

group [61]. In addition, a stretching vibration correspondent

to the O–H bonds of alginate appeared in the range

3000–3600 cm-1 (III) [62]. These peaks were also present

in the spectra of the different scaffolds, without perceptible

variations among them.

3.2.2 Energy dispersive spectroscopy analysis

The elemental composition of the scaffolds was also

characterized through EDS analysis, to elucidate the

chemical composition of the scaffolds. Table 1 shows that

samples with a higher amount of ceramic component have

a greater percentage of phosphate and calcium. Such results

are in agreement with the expectations, since these are the

Fig. 4 SEM images showing

the morphology of the different

produced scaffolds at different

magnifications

1000 3000 4000

Wavenumber (cm-1)

Alginate

TCP

60/40

70/30

80/20

IIIIII

Fig. 5 ATR-FTIR analysis of the alginate, TCP and TCP/alginate

scaffolds (80/20, 70/30, and 60/40)

J Mater Sci: Mater Med  (2016) 27:69 Page 7 of 14  69 

123



main components of TCP. In addition, the Ca/P ratios of

the produced scaffolds are within the range described for

native trabecular bone (2.33 ± 0.34) [63].

3.2.3 Characterization of the mechanical properties

of the scaffolds

A scaffold to be used in bone tissue regeneration must

present adequate resistance and flexibility. The mechanical

behavior of the produced scaffolds was analyzed by

determining the resistance to compression and the Young’s

modulus (Fig. 6).

Previous studies described that 3D constructs with an

increased ceramic content have an increased brittleness

and, consequently, a lower mechanical resistance [64, 65].

The high TCP content of the 70/30 and 80/20 scaffolds

produced here led to an increased brittleness and fragility,

characteristic of pure ceramic scaffolds [65]. Furthermore,

in a biphasic solution, the polymeric component (alginate

in this case) creates a bone like structure by trapping the

ceramic particles [66].

In this study, to simulate the mechanical performance of

the scaffolds under in vivo conditions, their mechanical

properties were evaluated in wet conditions. Figure 6

shows the results obtained for the different samples in the

compression strength and modulus young assays. The

60/40 sample showed a compressive strength of 20 MPa,

the 70/30 a value of *10 MPa and the 80/20 a value of

2 MPa. Such results are agreement with previous studies

[65], where an increase in ceramic content leads to a lower

compressive strength. Although, all the produced speci-

mens presented a compressive strength similar to that

displayed by trabecular bone (0.5–15 MPa). Based on the

collected data it can be inferred that these type of scaffolds

have the required mechanical properties to be applied in

non-load bearing sites.

Moreover, a large mismatch of the elastic modulus of

the implant and that of the native bone tissue can be

responsible for stress shielding, and consequently, result in

a limited scaffold osteointegration [67]. In this context, the

Young modulus of the three specimens was also investi-

gated in wet conditions, showing that the scaffolds with the

lowest ceramic content (60/40) presented the highest

modulus (70 MPa), while the 70/30 and 80/20 formulations

presented 40 and 9 MPa, respectively. In comparison with

the Young modulus characteristic of cancellous

bone(100–200 MPa [15]), the 60/40 scaffolds had the

closest value.

Therefore, taking into account these results the 60/40

scaffolds are the most promising candidates to be applied

in bone regeneration, since they closely reproduce the

native bone matrix structure, while they are able to present

mechanical properties similar to those of trabecular bone

tissue.

3.2.4 Swelling studies

The swelling capacity of a scaffold can have a deep impact

on its biocompatibility and biologic performance. In fact,

scaffolds with an increased capacity to absorb water pro-

mote protein adsorption and cell adhesion, leading to a

reduced immune response from the host [68]. The swelling

profiles obtained for the produced scaffolds are presented

in Fig. 7a. All scaffolds presented a rapid swelling in the

first minutes and then stabilized after about 10 h of

immersion in Tris buffer (1 M, pH 7.4).

Table 1 EDS analysis of the produced TCP/alginate scaffolds (60/

40, 70/30 and 80/20) and the Ca/P ratios determined for the produced

scaffolds

P Ca Ca/P ratio

60/40 2.89 8.48 2.93

70/30 4.35 9.42 2.17

80/20 4.71 10.28 2.18

Fig. 6 Characterization of the compressive strength (left) and young modulus (right) of the scaffolds. Statistical analysis of the results was

performed using one-way ANOVA with Newman–Keuls post hoc test (****p B 0.0001)
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Valente et al. have already reported that a polymeric

network composed of alginate is capable of absorbing large

quantities of water by filling its void regions [43]. This

effect was also confirmed in this study, where the scaffolds

containing higher amounts of alginate presented a higher

swelling ratio.

3.2.5 Contact angle analysis

In order to evaluate the hydrophilic character of the scaf-

folds, the contact angles were determined, as can be

observed in Fig. 7b. It is possible to perceive that all the

scaffolds presented a hydrophilic character, with contact

angles below 70�. The 60/40 scaffolds showed a moderated

hydrophilic character (&50�) while the 70/30 and 80/20

presented an almost superhydrophilic character (&20�).
Hu et al. previously reported a direct correlation between

the increase in the TCP content of the scaffolds and its

hydrophilic character [69]. Scaffolds with moderate wet-

tability improve cell attachment and growth, since their

surfaces have preferential adsorption of cell-adhesive pro-

teins [69, 70].

3.2.6 Scaffolds porosity evaluation

The microporosity of the scaffolds was determined by a

liquid displacement method, using ethanol as displacement

fluid. Figure 7c shows that the scaffolds with highest TCP

content presented the highest porosity values ([10 %

porosity). During the drying process the scaffolds suffer

shrinking, which is responsible for the compression of the

polymeric matrix. In this stage, the scaffolds with high

ceramic content present more incompressible particles,

thus limiting the amount of shrinkage that they can suffer,

and consequently displaying an increased porosity [35, 36].

These results corroborate the mechanical resistance data

obtained. Porosity and density are inversely proportional,

and are closely related to the mechanical resistance of a

scaffold [71]. Therefore, the most resistant scaffolds are the

denser, as can be observed in Fig. 7c.

The porosity values obtained for the produced scaffolds

are more similar to that of compact bone (3 %), than those

displayed by trabecular bone (80 %) [72]. However, this

lack of microporosity is balanced by a regular and suffi-

cient macroporosity, as can be observed in Fig. 4. This

macroporosity allows tissue ingrowth and osteointegration,

and also facilitates the exchange of nutrients and metabo-

lites from the interior of the scaffolds.

3.2.7 Characterization of the degradation profile

of the scaffolds

The degradation rate of the scaffolds should be compatible

with the time needed to occur new bone formation, in order

for the scaffold be replaced during the regeneration process

without affecting the mechanical stability of the tissue, at
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swelling profile of the scaffolds
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different produced scaffolds (b);
statistical analysis of the results
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degradation profile of the

scaffolds (d)
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the injured site [73]. The degradation profile of the pro-

duced scaffolds is presented in Fig. 7d. The results

obtained showed that the scaffolds present a degradation

profile dependent on its relative alginate content, with

those containing a higher percentage of the polymer

enduring a greater loss of mass. Under in vivo conditions,

alginate depolymerizes by spontaneous alkaline elimina-

tion of its glycosidic linkages. Moreover, this polymer can

also suffer disintegration by gradual exchange of calcium

ions with sodium, reversing the gelling process [40]. On

the other hand, TCP can suffer cell-mediated degradation

when implanted in vivo, being solubilized while new tissue

formation occurs [74].

Nonetheless, none of the scaffolds produced here lost

more than 60 % of its mass, and all of them stabilized after

4 days, which is compatible with their application in bone

tissue regeneration.

3.3 In vitro biomineralization assay

The in vitro mineralization ability of the composite scaf-

folds was studied using an SBF assay (Fig. 8). The

obtained results revealed that calcium and phosphate con-

tent of the scaffolds increased along time. In addition, this

increase was more pronounced for the formulations with

higher TCP content. As previously described, TCP is a

bioactive ceramic capable of inducing mineralization at the

surface of the scaffolds, increasing their biointegration [52,

75], and consequently the bone regeneration process [75].

3.4 Characterization of the biological properties

of the scaffolds

In vitro studies were performed to study the cytotoxic

profile of the scaffolds. Human osteoblast cells were cul-

tured in contact with the scaffolds for up to 7 days, and

their viability assessed at days 4 and 7. The optical images

acquired at the mentioned time points demonstrated that

cells were able to proliferate in the presence of the com-

posite scaffolds (please see Figure S1 for further details)

and in the negative control. In the positive control, dead

cells with their characteristic spherical shape were

observed. To further characterize the cellular adhesion on

the surface of the scaffolds, SEM images were also

acquired (Fig. 9a).

As previously demonstrated, scaffolds showed a surface

with high roughness, irregularities and a hydrophilic

character that allowed cell adhesion. In fact, it is possible

to observe that the cells were able to adhere to the surface

of the material after 24 h of being seeded. Moreover, after

7 days, most cells had spread throughout the entire surface

of the scaffold, and a cell layer was observed, demon-

strating that all the scaffolds presented a suitable surface

for cell adhesion and proliferation.

The biocompatibility of the scaffolds was further eval-

uated through an MTS assay (Fig. 9b). The results obtained

in the MTS assay show that the cells remained viable after

4 and 7 days in the presence of all the produced scaffolds,

indicating that all scaffolds provide an appropriate envi-

ronment for cell adhesion and proliferation. The 60/40

formulation presented the highest cellular viability, which

may be explained by their increased alginate content [43,

45]. Moreover, this formulation is the one that better

reproduce the bone native constitution, further enhancing

cell proliferation. These results can also be attributed to the

osteogenic potential of TCP, which creates a layer that is

similar to apatite on the surface of the material, due to its

interaction with the surrounding medium [76].

CLSM analysis was performed 24 h after osteoblasts

being seeded in contact with the 60/40 scaffold (Fig. 9c).

This formulation was selected based on the previously

achieved results. A 3D reconstruction image is presented in

Fig. 9c1, c2, showing that the osteoblasts were able to

adhere and proliferate in the tested formulation. Such

highlights its biocompatibility and appropriate physico-

chemical properties. Moreover, the analysis of the

orthogonal slices (Fig. 9c3) and colour coded depth anal-

ysis (Fig. 9c4) of 60/40 scaffold showed that osteoblasts

migrate to the interior of the scaffold, with some cells

being observed between 5 and 20 lm within the structure
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of the scaffold. This cellular colonization of the structure

will eventually allow the filling of the bone defect with new

bone matrix, while the scaffold is biodegraded, thus lead-

ing to the restoring of the structure and functions of the

native tissue.

4 Conclusion

The huge demand of new therapeutic approaches for bone

regeneration triggered the development of different studies.

Herein, scaffolds with different ratios of TCP and alginate

were successfully produced using a Fab@Home. Besides

optimizing the ratios of TCP/alginate for scaffolds manu-

facture, authors also used CAD software to further improve

the mechanical characteristics of the 3D constructs. The

compression and young modulus of the different produced

scaffolds were characterized and those with 60/40 of TCP

and alginate were selected as the best formulation. The

results obtained revealed that the properties of these scaf-

folds matched the standard values for compression and

have a similar Young modulus of the trabecular bone. In

addition, the hydrophilic character of the produced scaf-

folds was also investigated. The 60/40 formulation showed

Fig. 9 Characterization of the

biological properties of the

scaffolds. a SEM images of

hOB in the presence of the

scaffolds; b evaluation of hOB

viability when cultured in

contact with the different

scaffolds after 4 and 7 days; live

cells (K-); dead cells (K?).

Each result is the

mean ± standard deviation of

the mean of at least three

independent experiments.

Statistical analysis was

performed using one-way

ANOVA with Newman–Keuls

post hoc test (*p\ 0.05,

**p B 0.01, ***p B 0.001,

****p B 0.0001); c 3D

reconstruction images (c1 and

c2), orthogonal projections (c3),

and colour coded depth analysis

(c4) of cells in contact with the

60/40 TCP/alginate scaffold

(red 0 lm, blue 90 lm). Arrows

show the presence of cells

(Color figure online)
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a moderately hydrophilic character (&50�) while the oth-

ers presented a superhydrophilic character (&20�). The

moderately hydrophilic behaviour displayed by the 60/40

structures allows protein adhesion at the surface of the

materials, which is essential for cell adhesion and prolif-

eration. Moreover, the biomineralization ability, roughness

and macro and microporosity of scaffolds also contributed

for cell anchoring and proliferation at their surface, as well

as cell migration to its interior. These processes are fun-

damental for osteointegration and bone regeneration. Fur-

thermore, the application of RP technologies for the

production of the scaffolds can provide a great contribution

to personalized therapy, since CAD tools can be used to

design 3D structures that fulfil patient requirements and

contribute to decrease the healing time. Encapsulation of

cells and bioactive molecules in the produced scaffolds can

also be hypothesized in a future of work, since no hazard

agent is used during the scaffolds manufacture.
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