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Resumo 

 

Na atualidade, o cancro é uma das principais causas de morte da população mundial e para a 

qual os tratamentos disponíveis demonstram uma ineficácia relativa. Devido a este cenário 

alarmante, a aplicação da Nanotecnologia na área do cancro tem vindo a crescer a fim de 

melhorar o diagnóstico e as taxas de sobrevivência associados a esta patologia. Nesta área, as 

nanopartículas constituem uma abordagem promissora, uma vez que são capazes de prevenir a 

interação dos fármacos quimioterapêuticos com os tecidos saudáveis. Por outro lado, as 

nanopartículas previnem ainda a degradação prematura dos fármacos quimioterapêuticos. De 

entre os vários materiais estudados, as nanopartículas de ouro revestidas com sílica mesoporosa 

têm mostrado ser estruturas promissoras para a aplicação na terapia do cancro. Contudo, o 

estudo da influência da morfologia da partícula no desempenho biológico das nanopartículas de 

ouro revestidas com sílica mesoporosa ainda foi pouco explorado até ao momento. 

Na presente tese foram produzidas nanopartículas de ouro com um revestimento de sílica 

mesoporosa (Au-MSSs), com forma esférica ou de bastonete, com o objetivo de estudar o efeito 

da morfologia na encapsulação e perfil de libertação de um determinado fármaco, 

biocompatibilidade, internalização celular e citotoxicidade das nanopartículas. Os resultados 

obtidos demonstraram que ambos os tipos de nanopartículas possuem tamanhos ideais (<200 

nm) para a sua possível acumulação passiva no tecido tumoral. Para além disto, as propriedades 

óticas das Au-MSS em forma de bastonete permitem a sua aplicação na terapia fototermal. Por 

outro lado, as nanopartículas esféricas apresentaram uma melhor eficiência de encapsulação 

da doxorrubicina (80%), quando comparadas com as nanopartículas em forma de bastonete 

(52%). Apesar da menor quantidade de doxorrubicina encapsulada pelas Au-MSS em forma de 

bastonete, estas têm a capacidade de entregar uma maior quantidade de fármaco às células 

cancerígenas, devido à sua maior internalização pelas células cancerígenas. Por outro lado, os 

resultados obtidos in vitro revelaram que ambos os tipos de nanopartículas possuem um efeito 

citotóxico superior ao da doxorrubicina na sua forma livre. Adicionalmente, as nanopartículas 

em forma de bastonete quando irradiadas com luz de comprimento de onda próximo do 

infravermelho produziram um maior efeito citotóxico, o que resulta da sua capacidade de 

combinar a abordagem de quimioterapia (entrega de doxorrubicina) e de terapia fototermal 

(produção de calor após irradiação com luz de comprimento de onda próximo do 

infravermelho). 

Em suma, neste trabalho foi feito o primeiro estudo comparativo entre Au-MSS com diferentes 

morfologias, tendo-se verificado que este parâmetro influencia as propriedades terapêuticas 

apresentadas pelas partículas. A versatilidade apresentada por estes sistemas permite postular 

a sua futura aplicação no tratamento de diferentes doenças que afetam o ser humano. 
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Resumo Alargado 

 

Na atualidade, o cancro é uma das doenças com maior impacto na saúde pública a nível 

mundial. As elevadas taxas de incidência e de mortalidade associadas a esta doença devem-se, 

em grande parte, à falta de eficácia dos tratamentos atualmente usados em meio clínico, como 

a radioterapia, cirurgia e quimioterapia. A quimioterapia é a abordagem terapêutica mais 

utilizada na clínica, no entanto esta apresenta diversas desvantagens relacionadas com a falta 

de especificidade e rápida degradação dos fármacos quimioterapêuticos, o que leva a que estes 

agentes tenham uma baixa biodisponibilidade. Devido a este facto, são administradas doses 

elevadas de fármacos aos pacientes, o que na maioria dos casos, tem efeitos secundários. Este 

cenário evidência a necessidade de desenvolver novas abordagens terapêuticas para o cancro.  

Neste contexto, os avanços na área da Nanotecnologia têm permitido a construção de sistemas 

à escala nanométrica (nanopartículas), que superam algumas das limitações dos tratamentos 

atualmente disponíveis na clínica. De um modo geral, uma das principais vantagens dos 

nanotransportadores está associada à sua capacidade de se acumularem preferencialmente no 

tumor. Além disto, durante a circulação na corrente sanguínea, os nanotransportadores são 

capazes de proteger, transportar e controlar a libertação dos fármacos, diminuindo a sua 

interação com os tecidos saudáveis e, por outro lado, incrementar o seu efeito terapêutico. 

Dentro do vasto leque de nanopartículas em desenvolvimento, as nanopartículas de ouro 

revestidas com sílica mesoporosa têm sido intensamente estudadas para aplicação na área do 

cancro. De uma forma geral, esta combinação de materiais permite a construção de 

nanopartículas multifuncionais, em que o revestimento de sílica mesoporosa permite a 

encapsulação e transporte de fármacos, conferindo proteção aos agentes quimioterapêuticos e 

possibilitando a sua entrega no local alvo. Por sua vez, o núcleo de ouro pode ser usado como 

agente fototermal, isto é, estas nanopartículas têm a capacidade de converter a radiação 

proveniente de uma fonte de luz em calor, o qual pode exercer um efeito citotóxico nas células 

cancerígenas. Para além disto, este aumento local de temperatura pode sensibilizar as células 

cancerígenas para a ação dos fármacos (termosensibilização), potenciando o seu efeito 

terapêutico. Adicionalmente, as nanopartículas de ouro podem ainda atuar como agentes de 

imagiologia, possibilitando a deteção de massas tumorais ou a monitorização da eficácia 

terapêutica através de tomografia computorizada ou ressonância magnética. 

Para além da escolha do tipo de nanopartícula a aplicar na terapia do cancro, o design destas 

é igualmente um fator preponderante para a sua eficácia. O tamanho, a carga, a composição 

de superfície e a morfologia são parâmetros que devem ser investigados, pois influenciam a 

forma como as partículas interagem com o corpo humano durante a sua circulação na corrente 

sanguínea, bem como com as células (biocompatibilidade e internalização). Em particular, a 
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influência da morfologia da nanopartícula é um parâmetro ainda pouco estudado e sobre o qual 

os resultados obtidos são contraditórios, existindo assim a necessidade de aprofundar o 

conhecimento do efeito da morfologia das nanopartículas na sua aplicação para fins 

terapêuticos. 

Na presente tese foi efetuado um estudo comparativo entre dois tipos de nanopartículas 

compostas por um núcleo de ouro e um revestimento de sílica mesoporosa (Au-MSS), com forma 

de esferas ou bastonetes, com o intuito de discutir o efeito da morfologia na encapsulação e 

perfil de libertação de um determinado fármaco, biocompatibilidade, internalização celular e 

citotoxicidade das nanopartículas. As nanopartículas Au-MSS esféricas produzidas apresentaram 

um tamanho de 109 nm e os bastonetes 70 x 47 nm (comprimento x largura). Estes valores 

encontram-se dentro do intervalo de valores considerado ideal para a aplicação intravenosa das 

partículas e, posteriormente, permitir a sua acumulação passiva no tumor. Por outro lado, 

verificou-se que estes nanotransportadores são capazes de armazenar um fármaco 

quimioterapêutico (doxorrubicina) no seu interior. As Au-MSS esféricas mostraram uma maior 

capacidade para encapsular a doxorrubicina, apresentando uma eficiência de encapsulação 

para este fármaco na ordem dos 80%, enquanto os bastonetes apenas encapsularam 52% da 

doxorrubicina. Este resultado é explicado pelo maior volume de poro exibido pelas Au-MSS 

esféricas. Adicionalmente, devido às diferenças na forma do núcleo de ouro, os bastonetes 

apresentaram dois picos de absorção distintos no espectro de ultravioleta-visível, a 500 e 770 

nm, enquanto as nanopartículas esféricas apenas apresentam um pico a 550 nm. Esta 

particularidade das Au-MSS com forma de bastonetes permite que estas sejam aplicadas na 

terapia fototermal, uma vez que quando expostas a radiação eletromagnética com 

comprimento de onda próximo do infravermelho estes libertam energia sobre a forma de calor, 

o que leva a um aumento de temperatura (efeito fototermal). 

Os testes in vitro realizado com células cancerígenas demonstraram que ambos os nanosistemas 

são internalizados com eficiência. Contudo, verificou-se que os bastonetes conseguiram 

entregar uma maior quantidade de doxorrubicina às células cancerígenas, o que indica que 

estes apresentam uma maior eficácia de internalização nas células cancerígenas do que as 

partículas esféricas. Nos estudos de citotoxicidade, verificou-se que ambas as Au-MSS contendo 

doxorrubicina apresentaram um efeito terapêutico superior ao resultante da ação da 

doxorrubicina na sua forma livre. Além disso, quando irradiados com uma radiação próxima do 

infravermelho (808 nm, 1.7 W/cm2, 5 min), os bastonetes contendo doxorrubicina apresentaram 

um maior efeito citotóxico do que as Au-MSS esféricas. Este resultado indica que os bastonetes 

são capazes de conjugar a ação terapêutica do fármaco com a ação fototermal, o que permite 

incrementar o seu efeito terapêutico. 

Em suma, a morfologia das Au-MSS revelou-se ter importância sobre as propriedades físico-

químicas e biológicas apresentadas pelas partículas. Além disso, a versatilidade que estes 
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sistemas apresentam permite que, dependendo da aplicação desejada, os sistemas possam ser 

produzidos com diferentes formas, de acordo com o tipo de patologia que se pretende tratar. 
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Abstract 

 

Nowadays, cancer is a leading cause of mortality among the worldwide population, for which 

the currently available treatments display a limited efficacy. Chemotherapy, the main 

therapeutic approach used for the treatment of this disease, has a sub-optimal effect due to 

the weak selectivity for cancer cells and rapid degradation of chemotherapeutic agents. 

Motivated by this alarming scenario, Nanotechnology applied to cancer-related topics has been 

growing for improving cancer diagnosis and survival rates. In this field, the design of 

nanoparticles is a promising approach, since these platforms can provide protection to drugs 

and decrease their interaction with healthy tissues. Among the several materials studied, gold 

nanoparticles with a mesoporous silica shell are promising hybrid nanostructures for cancer 

therapy.  

In this thesis, nanoparticles composed of a gold core and a silica shell (Au-MSSs) with spherical 

or rod-like shape were produced, in order to disclose the effect of nanomaterials shape on the 

nanoparticle properties, such as their drug loading capacity and release profile, 

biocompatibility, cellular uptake and cytotoxic effect towards cancer cells. Both Au-MSS 

nanoparticles showed adequate sizes for a possible passive accumulation in tumor tissues. 

Moreover, the optical properties displayed by Au-MSS rods allowed their application in 

photothermal therapy. Furthermore, the spherical nanoparticles presented an improved Dox 

drug encapsulation efficiency (80%) when compared to that of rod-shaped (52%). However, 

despite the lower Dox loaded in the Au-MSS rods, these particles delivered a higher quantity of 

drug to cancer cells, which indicates that Au-MSS rods are more uptaken by cancer cells. In 

addition, the in vitro experiments also revealed that both Au-MSSs demonstrated a higher 

cytotoxic effect against cancer cells than free Dox, which is crucial for cancer therapy. 

Moreover, the Dox loaded rod-shaped nanoparticles irradiated with near-infrared light 

produced an increased therapeutic effect on cancer cells, when compared to the spherical 

particles, which results from the rods capacity to combine chemo- and photothermal 

therapeutic actions.  

In summary, the results presented in this thesis confirm the effect of nanoparticle shape on its 

performance on cancer therapy. Further, depending on the desired application, the shape and 

the type of nanoparticle should be taken into account towards the development of a more 

personalized and effective therapy. 
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1. Introduction 

 

1.1. Cancer 

1.1.1. Cancer prevalence and statistics 

Cancer is one of the leading causes of human death in the world. Only in 2012, it was estimated 

that fourteen million new cancer cases were diagnosed and eight million cancer deaths 

occurred worldwide (Torre et al., 2015). In the current year, recent studies report above two 

million of new cancer cases and about of six hundred thousand cancer-related deaths occurred 

only in the United States of America (Siegel et al., 2015). In Portugal, accordingly to the reports 

from Direção Geral de Saúde (2015), in 2020 almost fifty thousand new cases will be diagnosed. 

Further, this number has tendency to increase and it is expected that the new cancer cases will 

be superior to sixty-two thousand in the year of 2035 (Miranda et al., 2015). Furthermore, 

depending on the gender, there are some types of cancers that have higher incidence and 

mortality rates. In men, the most common types are prostate, lung/bronchus and colorectal 

cancers, whereas for the women the breast, lung/bronchus and colorectal cancers arise as the 

most prevalent ones (Siegel et al., 2015). 

These alarming numbers of cancer incidence and mortality are exacerbated by the aging and 

growth of the global population (Torre et al., 2015). Further, there are several risk factors such 

as hormones secretion, genetic predisposition, exposure to environmental (e.g. radiation and 

chemical compounds), infectious agents, and individual behaviors (e.g. tobacco, food and 

alcohol consumption) that may increase the probability to develop cancer (Jemal et al., 2011). 

1.1.2. Cancer development and hallmarks 

Cancer development is a highly complex process that involves the interaction of different 

players (Joyce and Pollard, 2009, Quail and Joyce, 2013). This disease is characterized by the 

transformation of normal cells into cancer cells, involving the accumulation of several changes 

in the gene expression patterns (Floor et al., 2012). Initially, the cancer was presented as a 

single mass of cancer cells displaying a continuous and uncontrolled proliferation that could 

invade and colonize the surrounding tissues or even other sites of the human body (Hanahan 

and Weinberg, 2000). However, the concept of cancer evolved and nowadays it is considered a 

much more complex tissue that is also comprised by the surrounding tumor microenvironment 

(Figure 1) (Joyce and Pollard, 2009). 
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Figure 1 – Evolution of the cancer concept. (A) Reductionist view of the cancer, in which the tumor is 
only composed by cancer cells. (B) Current view of tumor microenvironment is composed by several types 
of cells, such as malignant cells, endothelial cells, pericytes, fibroblasts, immune system cells and 
extracellular matrix. The cross-talk between these elements contribute to cancer progression and 
maintenance (Adapted from (Joyce and Pollard, 2009)). 

Presently, the tumor microenvironment is seen as being comprised of endothelial cells, 

pericytes, fibroblasts, some types of immune system cells, extracellular matrix (ECM) and other 

cells (Figure 2) (Pietras and Ostman, 2010, Hanahan and Coussens, 2012). The establishment of 

the cross-talk interactions between the cancer cells and the other elements of the tumor 

microenvironment can trigger pro-survival, proliferation and invasion pathways in cancer cells, 

which are of critical importance for the cancer establishment and development (Quail and 

Joyce, 2013). Additionally, these interactions between the tumor microenvironment elements 

allow the cancer cells to evolve, acquire and maintain certain key characteristics designated 

as “cancer hallmarks” (Hanahan and Weinberg, 2000, Hanahan and Weinberg, 2011). 

One important characteristic of cancer cells is their capacity to maintain proliferative signaling, 

since they are able to produce their own growth signals and, thus become independent of 

normal stimulus provided by the surrounding tissues (Hanahan and Weinberg, 2000, Witsch et 

al., 2010). Moreover, the cancer cells are capable of evading the anti-proliferative signals 

responsible for the maintenance of the tissue homeostasis. The tumor suppressors, such as 

retinoblastoma-associated proteins, operate as regulators and they determine if cell 

proliferates or enter into apoptosis. In cancer cells, this pathway is usually defective and the 

continuous cell proliferation is allowed (Hanahan and Weinberg, 2000, Hanahan and Weinberg, 

2011). 

Furthermore, these cells have the capacity to avoid the programmed cell death mechanisms 

(e.g. apoptosis) through the enhanced expression of anti-apoptotic proteins, such as those of 

B-cell lymphoma 2 (Bcl-2) family (Kelly and Strasser, 2011, Giampazolias and Tait, 2016). 

Moreover, the mutation of p53 tumor suppressor gene and the consequent loss of p53 protein 

function (apoptosis promoter) allows cancer cells proliferation (Hanahan and Weinberg, 2000). 
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Figure 2 – Representation of the different cell types that are found on tumor microenvironment and their 
respective roles in cancer maintenance and progression. Helper type 2 lymphocyte (Th2), cluster of 
differentiation 4-positive lymphocyte (CD4 T), regulatory T cell (Treg), cytotoxic T lymphocyte (CTL), 
natural killer and natural killer T cell (NK/T), myeloid-derived suppressor cells (MDSCs), alpha smooth 

muscle actin (αSMA), mesenchymal stem cells (MSCs) (Adapted from (Hanahan and Coussens, 2012)). 

Additionally, cancer cells have the capacity of unlimited replication. In normal cells, with the 

successive cycles of replication, the ability to conserve the chromosomal ends (telomeres) is 

impaired, which can lead to cell death due to deoxyribonucleic acid (DNA) damage (i.e. cell 

senescence). However, in cancer cells, through the overexpression of telomerase, the 

telomeric integrity of the DNA is maintained, which avoids the cell senescence or apoptosis 

(Artandi and DePinho, 2010, Hanahan and Weinberg, 2011). Moreover, the uninterrupted supply 

of oxygen and nutrients is pivotal for tumor growth and survival. In order to allow the correct 

nutrient supply/waste exchange equilibrium, the cancer cells are able to activate the 

angiogenic machinery, with the adjustment of the expression of angiogenesis inducers or 

inhibitors. For example, the vascular endothelial growth factor (VEGF), fibroblast growth factor 

(FGF), platelet-derived growth factors (PDGF) and angiopoietins are often found overexpressed 

in tumors and they contribute for stimulating the formation of new blood vessels (Hanahan and 

Weinberg, 2000, Goel and Mercurio, 2013). Another important hallmark that is found in cancer 

cells is their capacity to invade other tissues and initiate the metastasizing process due to the 

altered expression of several proteins that are involved in cell-to-cell adhesion processes. The 

integrin and cadherin families are transmembrane proteins that are responsible for cell-ECM 
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and cell-cell adhesion. In tumors, the E-cadherin protein is down-regulated, which can lead to 

the loss of cell-cell adhesion, thus facilitating the colonization of other tissues by the cancer 

cells (Hanahan and Weinberg, 2000, Pickup et al., 2014). 

Recently, additional cancer hallmarks have been proposed (Figure 3). The cancer cells also 

demonstrate the capacity to reprogram its metabolism in order to enhance the cancer cells 

proliferation and tumor progression. Further, the cancer cells have also the capacity to avoid 

the recognition by the immune system and their subsequent destruction (Hanahan and 

Weinberg, 2011). However, it is important to notice that before the cancer cells be able to 

acquire these important hallmarks there are essential pre-required factors, such as the cell 

genomic instability (i.e. allows gene expression variations) and an inflammatory state (i.e. the 

presence of inflammatory cells in tumor tissue leads to the release of mutagenic chemical 

compounds) that promote the acquisition of a malignancy phenotype by cancer cells (Hanahan 

and Weinberg, 2011). 

  

Figure 3 - Hallmarks of cancer and the respective possible therapeutic targets. Poly ADP ribose polymerase 

(PARP), Cytotoxic T-lymphocyte-associated antigen monoclonal antibody (CTLA4 mAb), epidermal growth 

factor receptor (EGFR), hepatocyte growth factor/hepatocyte growth factor receptor (HGF/c-Met), BCL-
2 Homology domain 3 (BH3) (Adapted from (Hanahan and Weinberg, 2011). 
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1.1.3. Conventional therapies 

The cancer treatments used in the clinic include chemotherapy, surgery, radiotherapy, 

hormone therapy and stem cell transplantation (DeSantis et al., 2014). Moreover, these 

treatments can also be combined to increase their therapeutic effectiveness. In fact, the 

combination of surgery with radiotherapy or/and chemotherapy has been the most common 

method employed to fight cancer (DeSantis et al., 2014). 

The chemotherapy, the first-line treatment used for cancer therapy, uses highly cytotoxic 

agents such as anthracyclines and taxanes (Dong and Mumper, 2010). However, the 

administration of these compounds has several implications due to their low water solubility, 

rapid degradation, low selectivity and weak bioavailability (Holohan et al., 2013, Hu et al., 

2016, Moreira et al., 2016). Chemotherapeutics induce harsh side effects, which usually leads 

to the reduction of bone density, cardiotoxicity, fatigue, infertility, pain, pulmonary and sexual 

dysfunctions, that are a consequence of the administered dose and number of treatment 

procedures (Rebucci and Michiels, 2013, Siegel et al., 2015, Moreira et al., 2016). 

Moreover, the cancer cells can also acquire multidrug resistance (MDR) phenotype, which 

further decreases the therapeutic effectiveness. The MDR mechanisms commonly observed in 

cancer cells involve an increased drug efflux (membrane transporters), drug target mutations, 

DNA damage repair, modulation of cell death mechanisms (apoptotic progression) and 

activation of alternative signaling pathways (Breier et al., 2013, Holohan et al., 2013, Rebucci 

and Michiels, 2013). Further, the acquisition of these MDR mechanisms in response to one 

cytotoxic therapeutic agent can also lead to the development of resistance to other 

chemotherapeutic agents, even those with unrelated structure (i.e. cross-resistance 

phenomenon) (Dong and Mumper, 2010, Holohan et al., 2013). 

The membrane transporters that act as drug efflux pumps are one of the most investigated MDR 

mechanisms. For example, the glycoprotein-P (P-gp) is a member of the ATP (adenosine 

triphosphate )-binding cassette (ABC) transporters family, a group of transmembrane proteins, 

that transport molecules to the exterior of the cell by the ATP hydrolysis. Generally, the P-gp 

is overexpressed on the membrane of cancer cells and their expression can also be further 

enhanced in response to the action of chemotherapeutics. The action of this efflux pump avoids 

the intracellular accumulation of anticancer drugs impairing the drug action and decreasing 

their therapeutic effect (Breier et al., 2013, Hu et al., 2016). The presented therapeutic 

limitations and the cancer specificities demand the development of new therapies. 

1.2. Nanotechnology: Nanoparticles aimed for cancer therapies 

The Nanotechnology is a multidisciplinary area that comprises the life sciences, material 

engineering and medicine, and provide novel solutions for improving not only the cancer 

therapy but also its diagnosis (Wang et al., 2012a, Tong and Kohane, 2016). In cancer-related 
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applications, the inherent properties that these nano-sized platforms (1 to 1000 nm) present 

prompted their application in cancer therapy diagnosis, monitoring or in the theranostic 

applications (Xu et al., 2015). 

1.2.1. Nanoparticles benefits for cancer treatments 

The application of nanotechnology in cancer therapy, in particular on chemotherapy, is aimed 

to overcome the limitations of free drug delivery and simultaneously enhance the treatment 

efficacy (Xu et al., 2015, Kemp et al., 2016). 

Nanoparticles have the ability to improve the solubility and the chemical stability of poorly 

water-soluble anticancer drugs. Moreover, the nanoparticles are also capable of protecting the 

drugs during the circulation in the human body, which prevents their rapid degradation or 

excretion. Moreover, the nanoparticles can also avoid the premature interaction of therapeutic 

molecules with biological constituents, that can affect their pharmacokinetic profile and 

decrease their therapeutic potential (Wicki et al., 2015).  

Furthermore, nanoparticles can take advantage of the tumor tissue architecture, which displays 

an abnormal and leaky tumor vasculature and also an impaired lymphatic drainage, to be 

preferentially accumulated in tumor, the well-known enhanced permeability and retention 

(EPR) effect (see Figure 4 for further details) (Maeda, 2015). The blood vessels of tumors 

vasculature display fenestrae with 400 to 600 nm that allow nanoparticles escape from blood 

circulation into the tumor tissue. Moreover, due to the impaired lymphatic vasculature, the 

nanoparticles removal through the lymphatic drainage do not occur, thus favoring the 

nanoparticles accumulation in the tumor tissues. However, the dense ECM and high interstitial 

pressure present at the tumor site prevent the nanovehicle penetration into deeper regions of 

the tumors (Blanco et al., 2015). 

 

Figure 4 – Schematic representation of nanoparticles extravasation through the tumor vasculature, i.e. 
the EPR effect (Adapted from (Peer et al., 2007)). 
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Further, the nanoparticles are also capable of carrying large amounts of drugs or even transport 

simultaneously two or more therapeutic agents (i.e. combinatorial therapy), in order to 

produce a synergic therapeutic effect (Kemp et al., 2016). Another important characteristic of 

the nanoparticles is their potential to entrap the therapeutic agents within its structure and 

release them in response to specific stimuli that are present at the tumor site (Wicki et al., 

2015, Kemp et al., 2016). Such behavior decreases the premature interaction of the therapeutic 

agents with the biological tissues and consequent side-effects. Additionally, the nanoparticles 

can also be engineered to take advantage of ligand-receptor, antigen–antibody and other forms 

of molecular recognition for enhancing its accumulation in one specific tissue or cells 

(Farokhzad and Langer, 2009). In these approaches, the targeting component present on the 

nanoparticle surface is chosen to bind specifically to unique molecules overexpressed on tumor 

cells and that are absent in normal cells. This targeted delivery of the therapeutic agents 

improves their specificity towards the therapeutic target and decreases the non-specific 

biodistribution. 

These nanoparticle features can potentiate the therapeutic effect of the conventional 

therapies by promoting the drug accumulation in the tumor, while, simultaneously, decrease 

the systemic toxicity and side effects associated with these therapies. Therefore, a wide 

number of different nanoparticles have been developed for co-delivering multiple payloads, 

enhancing transport properties, improving biodistribution, increasing drug accumulation and 

for optimizing the drug release profiles (Farokhzad and Langer, 2009, Wicki et al., 2015). 

1.2.2. Classes of nanocarriers 

The controlled drug delivery mediated by nanoparticles has progressed over the years, as well 

as the nanoparticle requirements to be applied in the clinic. The first generation of drug 

delivery systems was produced by using simple materials and with the objective to promote a 

sustained drug release along time (i.e. the drug was released by dissolution, diffusion, osmose 

or ionic trades). Subsequently, the second generation of the nanocarriers was aimed to perform 

a stimuli-sensitive drug delivery, as well as to promote a preferential accumulation of the drug 

in the tumor tissue. The third and fourth (current) generations are based on the production of 

drug delivery systems with smart materials that are able to perform long term delivery (i.e. 

over six months), fast response kinetics to in vivo stimulus and that are able to surpass the 

biological barriers, in order to perform drug delivery (e.g. blood-brain barrier) (Albanese et al., 

2012). Furthermore, these systems besides allowing drug delivery, can also be used in imaging 

and diagnostic, or even act as photothermal mediators, biosensors and others (Huang et al., 

2011, Pekkanen et al., 2014, Rocha-Santos, 2014).  

Nowadays, nanoparticles are classified into two major classes taking into account the raw 

material used for their synthesis, organic or inorganic particles (Figure 5) (Jia et al., 2013a, 

Sagnella et al., 2014, Wicki et al., 2015). Within the organic nanostructures, there are two 
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main classes, lipid-based and polymer-based nanoparticles. The lipid-based nanoparticles are 

usually formed as liposomes or lipidic micelles. The liposomes are composed by one or more 

phospholipid bilayers, that display a spherical organization and an aqueous core. This liposomal 

organization allows the transport of both water soluble drugs (in the aqueous core) as well as 

the hydrophobic ones (within the phospholipid bilayer). The Doxil® was the first liposome 

approved by Food and Drug Administration (FDA), in 1995, for cancer therapy. This liposomal 

nanocarrier loaded with Dox was coated with polyethylene glycol (PEG) to improve its blood 

circulation time in the human body (Wicki et al., 2015). Lipidic micelles are generally composed 

by a monolayer of phospholipids organized in a micellar structure. This type of nanoparticles is 

particularly valuable for the encapsulation of hydrophobic molecules, which are entrapped in 

their hydrophobic core. However, lipid-based systems display some disadvantages that hinder 

their in vivo application, like limited stability, opsonization and low capacity to control the 

drug release (Akbarzadeh et al., 2013). 

 

Figure 5 - Representation of the organic and inorganic based nanovehicles (Adapted from (Jia et al., 
2013a, Sagnella et al., 2014, Wicki et al., 2015)). 

Among the polymer-based nanoparticles, polymeric micelles arise as one of the most used 

structures. They are prepared using amphiphilic polymers and their organization allows the 

encapsulation of poorly water-soluble drugs on the micelle core, which is formed by the 

hydrophobic segment of the polymer. The polymer hydrophilic shell is exposed to the solvent 

and it prevents the adsorption of plasma proteins and it increases nanoparticle blood circulation 

time (Elsabahy and Wooley, 2012, Wicki et al., 2015). Nanoplatin® is a micellar structure 

composed of a copolymer (PEG-polyglycolic acid (PGA)) and it was conceived for Cisplatin 

delivery, being currently in phase 3 of clinical trials. This system demonstrated a 
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pharmacokinetic profile more advantageous than that displayed by free Cisplatin, leading to a 

reduction of cisplatin-related toxicity (Plummer et al., 2011). Polymeric nanoparticles are 

usually produced by using hydrophobic polymers functionalized at their surface with hydrophilic 

polymers. The chemotherapeutics can be entrapped between the polymer chains or at the 

particle’s surface in order to allow the encapsulation and transport of a wide range of 

therapeutics including drugs, proteins and nucleic acids. However, the polymeric-based 

nanoparticles have some disadvantages, such as their weak physicochemical stability that can 

induce changes in the morphology of the carriers (i.e. assembly and disassembly of 

nanoparticles during storage or blood circulation), which will affect the bioavailability of the 

loaded compounds. Further, the particle disassembly can also promote a premature release of 

the loaded cargo, which results in a decrease of therapeutic potential (Elsabahy and Wooley, 

2012, Wicki et al., 2015). 

Inorganic nanostructures comprise quantum dots, magnetic nanoparticles, carbon nanotubes, 

silica nanoparticles and gold nanostructures (Figure 5) (Jia et al., 2013a, Wicki et al., 2015). 

Quantum dots are semiconductor nanocrystals, with a size up to 10 nm. They are mostly applied 

for bio-imaging, due to their broad absorption and emission peaks in the visible (400 - 700 nm) 

and near-infrared (NIR) region (700 – 1100 nm) (Nazir et al., 2014). However, the hydrophobic 

surface of quantum dots requires their functionalization with biocompatible materials before 

their use in biological applications. 

Magnetic nanoparticles such as superparamagnetic iron oxide nanoparticles can serve as 

contrast agents for imaging purposes. Moreover, these particles also have the capacity to 

generate heat in response to a magnetic field, allowing their application in magnetic 

hyperthermia. NanoTherm® is an example of the commercial available inorganic nanoparticles 

used for cancer therapy. These nanoparticles demonstrated to be effective in the treatment of 

glioblastoma (Maier-Hauff et al., 2011, Wicki et al., 2015). However, the possible long-term 

toxicity of this type of nanoparticles is not yet fully characterized. 

Carbon nanotubes are multifunctional platforms that can be used for imaging, drug delivery 

and thermal ablation of cancer (Madani et al., 2011). The hydrophobic character of this type 

of carrier also requires their functionalization with hydrophilic molecules to improve their 

stability and biocompatibility. Additionality, the in vivo long-term toxicity of these materials 

is still a matter of debate (Kumari et al., 2016). 

Silica nanoparticles, namely those with a mesoporous structure, can be used to deliver both 

hydrophilic and hydrophobic molecules. These type of nanoparticles have a high stability and 

are biocompatible (Moreira et al., 2016). On the other hand, gold-based nanoparticles can be 

used for imaging and thermal ablation of tumors. However, gold structures have some toxicity, 

which requires their further functionalization (Akhter et al., 2012). Similar to the other 

inorganic systems, the main drawbacks associated with silica- and gold-based nanoparticles are 
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associated with their non-biodegradable profile. These materials are discussed in more detail 

in section 1.3. 

So far, there are no inorganic-based nanoparticles approved by FDA to be used in the clinic. 

However, there are several undergoing clinical trials for cancer therapy or imaging where gold 

and/or silica-based nanoparticles are currently being assayed (Wicki et al., 2015). 

1.2.3. Nanoparticles biodistribution and design 

Nanovehicles administration in the human body can occur by different routes, such as oral, 

nasal, vaginal, transdermal, pulmonary, intramuscular and intravenous, being the latter the 

most commonly used (Mitragotri et al., 2014, Park, 2014). 

The application of nanoparticles in a biological environment involves different phases and the 

contact with several body components (Petros and DeSimone, 2010, Albanese et al., 2012, 

Ernsting et al., 2013). Considering an intravenous administration, the first phase of the 

nanoparticle journey is the systemic circulation (Figure 6). Once inside the blood stream 

nanoparticles must remain stable, in order to avoid their aggregation or degradation (e.g. 

oxidation or hydrolysis) (Mitragotri et al., 2014). During their circulation in the blood stream, 

nanoparticles have to evade the clearance by renal filtration and the uptake by the 

reticuloendothelial system (RES) organs, namely liver and spleen, that can entrap and degrade 

nanoparticles (Ernsting et al., 2013). Moreover, during systemic circulation, nanoparticles must 

avoid the adsorption of plasma proteins (serum albumin, complement components and 

immunoglobulins) to their surface. The adsorbed proteins will be recognized by phagocytic 

cells, leading to nanoparticles clearance (Blanco et al., 2015, Hoshyar et al., 2016). 

 

Figure 6 – Main barriers found by nanoparticles during their circulation in the blood. The nanoparticles 
must be able to avoid renal, liver and spleen clearance to increase their half-time in blood circulation. At 
the target site, particles have to extravasate through the leaky tumor vasculature and ultimately interact 
with the target cells to exert its therapeutic effect (Adapted from (Mitragotri et al., 2014)). 
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After avoiding the possible barriers encountered during systemic circulation, nanovehicles must 

be able to reach the tumor zone and extravasate from the tumor vessels into the tumor tissue. 

Moreover, nanoparticle must also extravasate and penetrate in tumor tissue in a high 

concentration, that assures a therapeutic effect. Nanoparticles extravasation is largely 

influenced by abnormal and leaky tumor vasculature and also by impaired lymphatic drainage 

(EPR effect) (Maeda, 2015). Subsequently, in order for nanoparticles to reach the tumor cells, 

they must penetrate through the tumor mass. This process is impaired by the ECM and by the 

high interstitial fluid pressure that is found in tumors, thus preventing the penetration of 

nanovehicles into deeper regions of the tumor and, also causing a heterogeneous nanoparticle 

distribution (Blanco et al., 2015). Lastly, the nanosystems should be internalized by cancer 

cells and release their content in the intracellular compartment (Ernsting et al., 2013). 

The successful fulfillment of these phases is influenced by several nanoparticles parameters, 

namely their size, charge, surface composition and shape (Figure 7) (Petros and DeSimone, 

2010, Albanese et al., 2012). 

 

Figure 7 – Physicochemical properties displayed by nanoparticles that influence their behavior in 
biological environments (adapted from (Sun et al., 2014, Wicki et al., 2015)). 

2.2.3.1. Nanoparticles size 

There are various ‘size thresholds’ that should be taken into account during the nanoparticle 

design (Figure 8). Particles with a size lower than 5 nm are rapidly eliminated by renal 

filtration. Moreover, the size also regulates the nanoparticles filtration and uptake by RES 

organs. Nanoparticle with sizes lower than 50 nm can interact with hepatocytes since these 

nanoparticles can extravasate through the liver fenestrations (50 – 100 nm). On the other side, 

nanoparticles larger than 200 nm accumulate in the spleen, since these may not extravasate 

through splenic slits (200 – 500 nm). Moreover, larger nanoparticles are also sequestered by the 

macrophages residing in liver (Kupffer cells) and spleen (Arami et al., 2015). Considering these 
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size limits and those imposed by the EPR effect, the ideal nanoparticle size is considered to be 

comprehended between 50 and 200 nm (Hoshyar et al., 2016). 

Nanoparticles size also influences their tumor penetration. In general, bigger nanoparticles 

have a low tumor penetration capacity, whereas the smaller ones are more prone to penetrate 

deeper and faster in the tumor mass (Ernsting et al., 2013, Hoshyar et al., 2016). Finally, 

nanoparticles cellular internalization is also affected by their size. Small nanoparticles (4-10 

nm) can become internalized in cancer cells by direct transposition of the lipid bilayer 

membrane (Mao et al., 2013). 

On the other hand, bigger nanoparticles are internalized by pinocytosis, in a process comprising 

clathrin-dependent endocytosis (~120 nm, destined to lysosomes) or clathrin-independent 

endocytosis. The latter pathway encompasses the caveolin-dependent endocytosis (~60 nm), 

clathrin- and caveolin-independent endocytosis (~120 nm) and micropinocytosis (> 1 μm) (Sahay 

et al., 2010, Yameen et al., 2014). In this way, size affects the fate of internalized 

nanoparticles since some uptake routes direct the nanoparticles to the lysosomes, which can 

lead to the degradation of the loaded cargo by hydrolytic mechanisms (Ernsting et al., 2013). 

2.2.3.2. Nanoparticles charge 

Nanoparticles charge is an important parameter that affects the particle circulation time in the 

bloodstream (Figure 8). Nanoparticles that are highly positive (zeta potential > +10 mV) will 

interact with blood proteins, leading to their opsonization and clearance. The negatively 

charged nanovehicles (zeta potential < -10 mV) will be uptaken by RES. Thereby, a neutral 

charge (±10 mV) is considered ideal for nanoparticles being less prone to suffer opsonization 

and RES uptake (Ernsting et al., 2013). 

Additionality, nanoparticles charge may impair their tumor penetration by interacting with the 

charged components of the tumor ECM. Positively charged particles tend to interact with 

hyaluronic acid, while those with a negatively charged surface interact with collagen. Thus, 

neutrally charged nanoparticles are also the most appropriated for penetrating into the tumor 

mass (Ernsting et al., 2013, Blanco et al., 2015). 

2.2.3.3. Nanoparticles surface composition 

The components that form the nanoparticles surface are important players on nanovehicles 

biodistribution (Figure 8). Nanoparticles surface can be functionalized with hydrophilic 

polymers in order to improve their solubility and stability. The most commonly adopted polymer 

to achieve such properties is PEG. PEG coatings can also reduce nanoparticles opsonization, 

protect them from degradation and reduce their uptake by macrophages (Petros and DeSimone, 

2010, Ernsting et al., 2013). 
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However, the properties conferred by this type of coating depend on some factors, such as PEG 

density and molecular weight. Recently, some research groups have demonstrated that anti-

PEG antibodies are produced after injection of PEGylated nanomaterials, which leads to the 

rapid elimination of nanoparticles in the subsequent administrations – a phenomenon termed 

Accelerated Blood Clearance. Due to that, other types of coatings are being investigated , such 

as Polyoxazolines (Peoz) and Poly(glycerol) (Amoozgar and Yeo, 2012, Lila et al., 2013). 

Nanomaterials surface can also be coated with inorganic materials, such as silica. These 

inorganic materials can increase the nanoparticles solubility, protect their internal structure 

from degradation and confer thermal and chemical stability. The inorganic materials can also 

be easily functionalized, which can further improve their potential for application in the clinic 

(Liu et al., 2015b). Moreover, nanoparticles surface can also be grafted with targeting ligands, 

e.g., transferrin, folic acid and antibodies, in order to improve their selectivity towards cancer 

cells (Ernsting et al., 2013, Bertrand et al., 2014). 

2.2.3.4. Nanoparticles shape 

The shape is also an important parameter that will affect the nanoparticles interaction with 

the human body. During blood circulation, the nanoparticle shape will affect their interaction 

with the macrophages and consequently impact on the nanoparticle circulation time. For 

instance, worm-like and rod-shaped nanocarriers are less phagocytized than the spherical-

shaped ones (Champion and Mitragotri, 2009, Janát-Amsbury et al., 2011). 

Furthermore, the shape also affects the capacity of nanomaterials to reach the tumor zone. In 

this topic, there is some controversy in the literature. Janát-Amsbury et al. verified that 

PEGylated gold nanorods (NRs) achieve a higher tumor accumulation than gold nanospheres, 

most likely due to their longer blood circulation time and lower uptake by the liver and spleen 

(Janát-Amsbury et al., 2011). In another work, Black and co-workers reported that PEGylated 

gold nanospheres presented the highest tumor accumulation, followed by nanocages, nanodisks 

and NRs. In this report, the spherical nanoparticles also displayed a higher blood circulation 

time and a lower RES organ uptake than the other structures, leading to their higher tumor 

accumulation (Black et al., 2014). Moreover, it was also observed that elongate-shaped 

materials are more difficult to remove from the tumor site than those spherically shaped 

(Ernsting et al., 2013, Hoshyar et al., 2016). In addition, the nanoparticles shape also affects 

the particles penetration and distribution within the tumor tissue. Black and colleagues 

observed that gold NRs and nanocages presented a wider tumor distribution, whereas the 

nanospheres and nanodisks were mainly confined to the tumor periphery (Black et al., 2014). 

Moreover, the effect of the nanoparticle shape on the cellular uptake appear to be material 

dependent, i.e., silica and iron oxide non-spherical nanocarriers present an enhanced cellular 

internalization, while for polymers and gold, the spherical shaped particles are the ones that 

present the better cellular internalization (Ernsting et al., 2013). 
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The contribution of nanoparticles shape on the different processes above described has not yet 

fully characterized and it is also a subject of strong debate since the data available in the 

literature is often contradictory. Therefore, the fundamental research in this topic is strongly 

encouraged. 

 

Figure 8 – Representation of physicochemical characteristics of nanoparticles that influence their 
biological performance. The correlation between the particle design, such as size, zeta potential 
(represented as surface charge) and solubility with the particle biocompatibility, route of uptake and 
clearance (shown in green), cytotoxicity (red), and RES recognition (blue) is presented in this scheme 
(Adapted from (McNeil, 2009)). 

1.3. Gold nanoparticles  

In recent years, inorganic nanoparticles have received a huge attention owing to their unique 

physicochemical properties. The inorganic nanoparticles inertness, stability, optical and 

magnetic properties (properties that are difficult to observe in organic particles) makes them 

an interesting approach for biomedical applications (Huang et al., 2011). 

1.3.1. Methods used for gold nanoparticles synthesis 

Gold nanoparticles can be synthesized by two different approaches, namely top-down and 

bottom up. As the name suggests, the top-down starts from gold in a bulk state that is broken 

down to create gold nanoparticles with the desired dimensions, resorting to a specific pattern 

or matrix (Zhao et al., 2013). The bottom-up approach is based on chemical (chemical 

reduction) or biological (use of plants or micro-organisms) methods to produce gold 

nanoparticles (Ahmed et al., 2016). The bottom-up approach is usually divided into two phases, 

the nucleation and growth, when these two stages occur simultaneously in the same procedure 

the synthesis is denominated by in situ method, while in another way, the process is called 

seed-growth method (Zhao et al., 2013). 
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The normal oxidation stages of gold are +1 (aurous compound or Au [I]) and +3 (auric compound 

or Au [III]). Usually, all synthesis methods involve the reduction of Au [III] derivatives, such as 

chloroauric acid, to Au (0) or Au atoms (non-oxidized state), which act as the center of 

nucleation for other reduced gold ions (Jain et al., 2012). 

So far, several methods have been used for the synthesis of gold nanoparticles, for allowing the 

production of nanoparticles with different sizes and shapes. The in situ Turkevich method, later 

improved by Frens, was the first technique used to produce gold nanoparticles (Turkevich et 

al., 1951, Frens, 1973). The main principle in this approach is the reduction of chloroauric acid 

by trisodium citrate, which also acts as stabilizing capping agent by electrostatic interactions. 

Depending on the gold source and on the trisodium citrate ratio it is possible to produce 

spherical gold particles with sizes between 15 and 100 nm. When a great amount of citrate salt 

is used, small and stable gold nanoparticles are formed. On the other side, a low concentration 

of trisodium citrate leads to bigger and aggregated particles. However, the synthesis is 

considered unreliable for particles larger than 35 nm and the trisodium citrate is not capable 

of stabilizing the particles when they circulate in the blood stream (Turkevich et al., 1951, 

Frens, 1973, Jain et al., 2012, Nicol et al., 2015). Moreover, other commonly used in situ 

method is the Brust-Schiffrin method. This technique involves the use of two solvent phases 

(i.e. water and toluene) and the addition of the desired amount of a thiolate-compound. With 

this approach, it is possible to obtain thiolate-stabilized gold nanoparticles that possess less 

than 5 nm of size. Herein, the sodium borohydride is used as a reducing agent, since it has a 

stronger redox potential than trisodium citrate, the produced nanoparticles are smaller (< 5 

nm) than those obtained by Turhevich method (10 – 15 nm). Unlike Turhevich method, these 

nanoparticles need an additional capping agent to confer them a higher stability (such as 

benzyldimethyltetradecylammonium chloride) (Jain et al., 2012, Perala and Kumar, 2013, Zhao 

et al., 2013). 

On the other hand, the seed-growth approach allows the formation of particles in a step-by-

step method, thereby achieving an easier control over the particle size and shape (Zhao et al., 

2013). In general, two main steps are required for particle production. In the first stage, occurs 

the formation of a gold seed solution (small-size particles) by nucleation. Then, this solution is 

added to a solution denominated of “growth solution”, which is composed of a gold salt (e.g. 

chloroauric acid), stabilizing and reduction agents. Herein, the new reduced compound grows 

on the surface of the seed particles. This second step is more slow and can be repeated in order 

to modulate nanoparticles’ size (Alkilany et al., 2013, Zhao et al., 2013). The final shape and 

size are controlled by the amount of reducing agent and stabilizer (e.g. surfactants such as 

cetyltrimethylammonium bromide - CTAB) and their ratio to the gold precursor. The pH, 

temperature and growth time are also factors that influence the final shape and size of gold 

particles (Zhao et al., 2013, Bao et al., 2014). Therefore, anisotropic structures (i.e. non-
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spherical) with different shapes, such as NRs, nanocubes and nanostars can be prepared by 

using the seed-growth approach (Alkilany et al., 2013). 

1.3.2. Gold nanoparticles properties and their applications in cancer 

Gold nanoparticles possess unique properties that make them promising platforms for 

application in the biomedical field. In general, the tunable surface chemistry, morphology and 

physicochemical properties of gold nanostructures make them ideal for cancer therapy and also 

for diagnosis applications.  

The surface chemistry of gold nanostructures is non-reactive and almost bio-inert, which allow 

them to be good candidates for both in vitro and in vivo applications (Cobley et al., 2011). The 

easily tuning of the surface chemistry, namely through the formation of stable gold–thiolate 

bonds with molecules presenting thiol (–SH) or disulfide (S–S) groups, allows their conjugation 

with a wide variety of functional moieties (Cobley et al., 2011, Dreaden et al., 2012). 

Furthermore, due to the high density of the gold, they can be used as contrast agents to 

enhance the contrast between tissues, that have similar or low x-ray attenuation, without 

increasing the dose of radiation that is administrated to the patient (Xi et al., 2012, Cole et 

al., 2015). In this way, gold nanoparticles can be used as contrast agents in computer 

tomography (CT), since they have a high x-ray absorption coefficient. For example, the 

absorption coefficients of gold and iodine (i.e. the most common contrast agent) when exposed 

to a x-ray beam with 100 keV are 5.16 and 1.94, respectively (Xi et al., 2012). Moreover, due 

to the high molecular weight, gold nanoparticles display a longer vascular retention time (i.e. 

when compared to common contrast agents) that allow the acquisition of images for longer 

periods (Cole et al., 2015). Furthermore, these particles can take advantage of the tumor tissue 

architecture, namely of the EPR effect, or be functionalized with target molecules in order to 

provide a selective and sensitive detection of possible metastasis by using CT images (Reuveni 

et al., 2011). 

Moreover, another important feature of gold nanostructures is their exceptional optical 

properties, since when these structures are exposed to electromagnetic radiation with specific 

wavelengths, a collective oscillation of electrons in resonance with the incoming light 

frequency occurs (Cobley et al., 2011, Versiani et al., 2016). The absorption of electromagnetic 

radiation energy can lead to the heat generation by the collective oscillation of electrons 

(Huang and El-Sayed, 2010, Cobley et al., 2011). These electrons oscillations are also known as 

localized surface plasmon resonance (LSPR). The LSPR response of gold nanostructures can be 

influenced by size, shape and morphology of the nanoparticle, which results in strong 

absorption bands at certain wavelengths of the electromagnetic spectrum (Akhter et al., 2012).  

The typical spherical gold-based nanoparticles possess an absorption peak from 500 to 550 nm 

and with the increasing particle size a red shifting occurs (for values rightmost in the spectrum, 
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i.e., higher wavelengths) (Figure 9A). For example, gold nanoparticles with a size of 20 and 80 

nm display different absorption peaks, namely at 520 and 550 nm (Alex and Tiwari, 2015).  

In anisotropic structures, especially rod-shaped nanoparticles, the electron oscillations exist in 

two directions/orientations (short and long axis of the structure), creating two distinct bands 

in the spectrum with different intensities. The band resulting from oscillation along the short 

axis is similar to the one observed in gold nanospheres (it can be observed between the 500 to 

550 nm). On the other hand, the oscillation along the long axis induces a stronger absorption 

band, called longitudinal band (Figure 9B) in the NIR region (700 to 1100 nm) of the 

electromagnetic spectrum (Cobley et al., 2011, Alex and Tiwari, 2015). Through the control of 

the aspect ratio (length/width) of gold NR, it is possible to tune the longitudinal absorption 

band to a specific value (Huang et al., 2008). 

 

Figure 9 - Schematic representation of LSPR of gold nanoparticle through the coherent oscillation of 
electrons across the surface of the nanoparticle and the correspondent LSPR bands. (A) Spherical-shaped 
gold nanoparticle that displays one LSPR band. (B) Rod-shaped gold nanoparticle that displays two LSPR 
bands, namely a strong longitudinal band (green) and weak transverse band (blue) (Adapted from (Alex 
and Tiwari, 2015)). 

The increase of the gold NRs aspect ratio is accompanied by an increase in the distance between 

two plasmon resonance bands, resulting in a shift of the longitudinal peak from the visible to 

the NIR region (Abadeer and Murphy, 2016). For instance, an aspect ratio of 3.1 corresponds to 
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a longitudinal absorption band at 700 nm, while gold NR with an aspect ratio of 4.8 display a 

peak around the 880 nm (Huang et al., 2006). 

Some gold-based nanoparticles have been applied for cancer photothermal therapy (PTT). In 

this therapeutic approach, nanoparticles are irradiated with light, and convert the absorbed 

radiation into heat, which can cause cellular damage (Wang et al., 2013, Zou et al., 2016). The 

exposition of cells to temperatures between 41 – 45 ˚C can impair DNA repair mechanisms, 

promote alterations in cellular metabolism, increase the production of reactive oxygen species 

(ROS) and sensitize cancer cells to therapeutic agents. Moreover, treatments at 50 ˚C can 

produce immediate cell death (necrosis) by promoting cell membrane collapse, protein 

denaturation, and mitochondrial and enzymatic dysfunctions (Chatterjee et al., 2011, Chu and 

Dupuy, 2014). 

In cancer PTT the utilization of NIR light is imperative (Abadeer and Murphy, 2016), due to the 

fact that major components of the body (water, hemoglobin, proteins and melanin) have 

minimal or none absorption in the 700–1100 wavelength range. In this way, the utilization of 

NIR light avoids the undesired interactions between the radiation and biological components as 

well as a good penetration depth. Such is fundamental to avoid non-specific heating on healthy 

tissues and guarantees that the radiation reaches the nanoparticles accumulated in tumors 

(Vogel and Venugopalan, 2003, Versiani et al., 2016). For these reasons, the NIR absorption 

displayed by gold NRs has instigated their use in cancer PTT (Wang et al., 2012b). 

1.3.3. Limitations of gold nanostructures 

Despite the wide scope of applications of gold nanostructures, there are some issues and 

limitations that impair their application in cancer therapy and diagnosis. The utilization of a 

cationic surfactant, such as CTAB, in the synthesis of gold-based nanosystems is crucial in the 

seed-growth method to develop particles with tunable shapes and sizes. However, CTAB has a 

negative impact on the nanoparticles biocompatibility, due to its toxicity, and impairs gold 

nanoparticles application in biological environments (Dreaden et al., 2012, Bao et al., 2014). 

Another limitation of gold nanoparticles is their instability and propensity to aggregate when 

in contact with biological fluids (Dreaden et al., 2012). Such phenomenon can produce 

alterations in nanoparticles size and have a negative impact on their bioavailability (Gupta et 

al., 2016). In addition, gold-based nanomaterials structure and chemical features do not allow 

their application for drug delivery without post-synthesis modifications (Sasidharan and 

Monteiro-Riviere, 2015). Furthermore, gold nanostructures can suffer photodegradation. When 

bare gold nanoparticles are exposed to light for photothermal purposes, their physical integrity 

can be compromised and as a consequence, their photothermal heating capacity decreases 

(Chen et al., 2010, Jalani and Cerruti, 2015). Thus, post-synthesis modifications of gold-based 

nanoparticles can be a promising approach for surpassing these limitations and potentiate gold-

based nanosystems application in cancer therapy. 
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1.3.4. Coating or functionalization approaches used to improve gold 

nanostructures properties 

The modification of gold nanomaterials surface is necessary to improve their optical properties, 

thermostability or to potentiate their therapeutic outcome.  

Thiols have a natural affinity for gold nanoparticles surface and the covalent bond of thiolated 

molecules to gold nanoparticles’ surface (via Au-S bond) has been widely described in literature 

(Gao et al., 2012). However, the stability of thiol-gold chemical linkages can be impaired by 

reductive environments or by exchange with other thiolated molecules (Woehrle et al., 2005, 

Ruff et al., 2016). 

Alternatively, gold nanoparticles surface can also be functionalized by passivation, using 

amphiphilic molecules (Heo et al., 2015). The poly(vinyl pyrrolidone) (PVP) coating of gold 

nanostructures is an example of this strategy, and it is usually employed for improving the 

particles biocompatibility. The PVP binds to the surface of the gold nanoparticles through their 

hydrophobic polycarbonated chain. In this way, the PVP coating can also improve the stability 

of gold nanoparticles (Dhumale et al., 2012). However, the application of PVP coatings in gold 

NRs did not protect their physical integrity under laser irradiation, leading to loss of the NIR 

absorption peak, which may hinder their potential application in PTT (Wang et al., 2013). 

Furthermore, PEG is one of the most commonly applied molecules to coat gold nanoparticles 

(Muddineti et al., 2015). Functionalization of gold nanoparticles with PEG, a hydrophilic and 

biocompatible polymer, prevents their aggregation and avoids the adsorption of serum proteins 

on their surface (Niidome et al., 2006). Gold nanostructures are usually PEGylated using thiol-

terminated PEG (Ding et al., 2013). However, a recent study described that gold nanospheres 

and NRs stabilized with PEG-SH suffer alterations in their stability over time. Ruff and 

collaborators observed that nanoparticles aggregated when incubated in saline solution or in 

the culture medium, which was attributed to the possible loss of PEG-SH coating (Ruff et al., 

2016). 

Moreover, electrostatic interactions established between negatively charged molecules and the 

positively charged surface of gold nanoparticles can be explored to functionalize these 

materials (Versiani et al., 2016). The main drawback of this type of functionalization is 

correlated with its easy disruption, which becomes more evident with variations in the pH and 

ionic composition of the medium where the nanoparticles are dispersed. 

1.3.4.1. Silica Coating 

Gold-based nanosystems coated with a mesoporous silica shell (termed as Au-MSS) has attracted 

the scientific attention due to their advantageous properties for cancer therapy (Ghosh 

Chaudhuri and Paria, 2012). Mesoporous silica is a chemically inert material with large surface 

area, low cytotoxicity and also with a good colloidal stability. Moreover, silica surface can be 
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easily modified with different functional groups that would allow the tumor targeting or 

environmental responsiveness (Tarn et al., 2013). Additionally, the inclusion of mesoporous 

silica shell (MSS) on gold nanoparticles can improve their colloidal stability and also their 

biocompatibility by replacing the CTAB, which is known by its intrinsic cytotoxicity (Wu and 

Tracy, 2015). 

In addition, apart from imaging capacity of gold nanostructures (e.g. CT imaging), the MSS pores 

can act as reservoirs for pharmaceutical agents, which is not feasible on bare gold 

nanostructures. In addition, fluorescent probes can also be loaded on the inner silica walls and 

enhance the imaging capacity of the particle (Figure 10) (Zhang et al., 2013, Chen et al., 2015, 

Song et al., 2015). In this way, these material associations are great platforms to build 

theranostic nanocarriers, which combine in a single nanostructure both therapeutic and 

diagnostic functions (Figure 10) (Gautier et al., 2013). 

The silica coating also enhances the thermal stability of gold nanoparticles, allowing the 

maintenance of the nanomaterials shape during the NIR light exposure and subsequent heating. 

This property allows gold nanostructures, such as gold NR, to maintain their NIR absorption and 

photothermal capacity after various NIR laser irradiation cycles (Figure 10) (Kanehara et al., 

2009, Chen et al., 2013). Importantly, mesoporous silica is optically transparent to the NIR 

light, meaning that it does not compromise the therapeutic capacity of gold-based as 

photothermal agents (Ghosh Chaudhuri and Paria, 2012, Song et al., 2015). Therefore, the Au-

MSSs allow the combination of chemo- and thermo- therapies to improve the therapeutic 

outcome, by attacking simultaneously different cancer pathways.  

Furthermore, the thermotherapy can enhance the chemotherapeutics effect since this localized 

increase in temperature can induce cancer cell sensitization to chemotherapeutics action 

(thermosensitization) or even cause cellular damage and subsequent death if the temperature 

rises to values up to 45 ˚C. Moreover, the heat generated by the nanoparticles accumulated in 

the tumor can improve the blood flow in this local, which can further improve the nanoparticles 

accumulation in the tumor tissue (Issels, 2008, Sasidharan and Monteiro-Riviere, 2015). 
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Figure 10 - Representation of silica coated gold nanoparticles structures. 

Therefore, taking into account the Au-MSSs potential for cancer therapy and the fact that gold 

and silica are two of the few inorganic materials that have nanosystems with FDA approval for 

clinical trials in cancer therapy or imaging, is fundamental to further characterize their 

properties. 
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Aims 

 

The main goal of this thesis was to compare the shape effect on the biological performance of 

gold core-mesoporous silica shell nanoparticles (Au-MSSs), particularly on the particle 

biocompatibility, cellular uptake and drug delivery capacity to cancer cells.  

Therefore, the particular objectives include: 

→ Synthesis, purification and characterization of Au-MSS spheres and rods; 

→ Evaluation of drug loading capacity and release profile of the nanovehicles; 

→ Evaluation of photothermal capacity; 

→ Evaluation of nanoparticles biocompatibility;  

→ Assessment of nanoparticles uptake by cancer cells; 

→ Evaluation of nanoparticles cytotoxic activity (chemo and chemo-photothermal 

therapies).  
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2. Materials and Methods 

 

2.1. Materials 

Hydrogen tetrachloroaurate (III) hydrate (HAuCl4) was purchased from Alfa Aesar (Karlsruhe, 

Germany). Tetraethylorthosilicate (TEOS) and dimethyl sulfoxide (DMSO) were purchased from 

Acros Organics (Geel, Belgium). Hexadecyltrimethylammonium bromide (CTAB) was obtained 

from Tokyo Chemical Industry (Tokyo, Japan). Hydrochloric acid (HCl) was acquired from 

Panreac (Barcelona, Spain). Methanol was obtained from VWR International (Carnaxide, 

Portugal). L-ascorbic acid, silver nitrate (AgNO3), Dulbecco’s Modified Eagle Medium: nutrient 

mixture F-12 (DMEM-F12), Dulbecco’s Modified Eagle medium-high glucose (DMEM-HG), 

resazurin, phosphate-buffered saline (PBS) solution, ethanol (EtOH), formaldehyde, 

paraformaldehyde, sodium borohydride (NaBH4) and trypsin were purchased from Sigma–Aldrich 

(Sintra, Portugal). Primary normal human dermal fibroblast (FibH) cells were obtained from 

Promocell (Heidelberg, Germany) and human negroid cervix epithelioid carcinoma (HeLa) cells 

(ATCC® CCL-2™) were acquired from ATCC (Middlesex, United Kingdom). Hoechst 33342® and 

wheat germ agglutinin conjugate Alexa 594® (WGA-Alexa Fluor® 594) were purchased from 

Invitrogen (Carlsbad, California). Doxorubicin hydrochloride (Dox) was obtained from 

Carbosynth (Berkshire, United Kingdom). Fetal bovine serum (FBS) was acquired to Biochrom 

AG (Berlin, Germany). Cell imaging plates were acquired from Ibidi GmbH (Ibidi, Munich, 

Germany). Cell culture t-flasks were obtained from Orange Scientific (Braine-l’Alleud, 

Belgium). 

2.2. Methods 

2.2.1. Synthesis of Au-MSS spheres and rods 

Au-MSS spheres were synthesized by adapting a method previously described in the literature 

(Chen et al., 2013). Briefly, 0.05 g of CTAB and 0.60 mL of NaOH (0.50 M) were added to 

ultrapure water and left under stirring for 15 min. Afterward, 1.00 mL of formaldehyde (3.70 

wt.%) and 0.80 mL of HAuCl4 (0.05 M) were added to the previous solution. Subsequently, 0.91 

mL of a solution of TEOS (33% v/v in ethanol) were added dropwise and left for 1 h under reflux 

conditions. The synthesized Au-MSS spheres were then recovered by centrifugation at 11,000 g 

and washed several times with ultrapure water. 

Au-MSS rods were synthesized through a procedure that comprised three main steps 

(Nikoobakht and El-Sayed, 2003, Gorelikov and Matsuura, 2008). Initially, a seed solution was 

prepared by adding under stirring 0.60 mL of NaBH4 (0.01 M) to an aqueous solution containing 

5.00 mL of CTAB (0.20 M) and 5.00 mL of HAuCl4 (0.50 mM). Subsequently, the grow solution 

was prepared by adding under stirring 0.21 mL of ascorbic acid (0.08 M) to an aqueous solution 

containing 15.00 mL of CTAB (0.20 M), 0.03 mL of AgNO3 (0.10 M) and 0.30 mL of HAuCl4 (0.05 
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M). Lastly, to produce the AuNRs, the seed solution (0.04 mL) was added to the growth solution 

and left at 30 ˚C for 16 h. The synthesis of the MSS was carried out by adapting the method 

described by Gorelikov and colleagues (Gorelikov and Matsuura, 2008). Initially, AuNRs were 

centrifuged (12,000 g for 20 min) to remove the excess of CTAB and resuspended in ultrapure 

water. Subsequently, 0.70 mL of CTAB (0.01 M) were added and left under stirring overnight. 

Afterwards, 0.07 mL of NaOH (0.10 M) were added to the solution and mixed for 30 min. Then, 

0.03 mL of a solution of TEOS (20% v/v) in methanol were injected. This step was repeated 

three times with 30 min intervals and the solution was left under stirring for 24 h. The final 

solution was centrifuged at 18,000 g for 20 min and washed several times with ultrapure water 

to recover the Au-MSS rods. 

2.2.2. Removal of surfactant template 

The removal of the CTAB surfactant template was performed similarly for both nanoparticles 

by adapting a solvent based approach previously described by Moreira and co-workers (Moreira 

et al., 2014). Briefly, the surfactant removal from Au-MSS rods and spheres was achieved by 

the sonication of the nanoparticles with a HCl solution (7.5% v/v in ethanol) for 10 min. 

Afterward, several washing steps with ethanol (100% v/v) were performed, in order to 

completely eliminate the CTAB residues. The final product was recovered by centrifugation 

(18,000 g for 15 min) and freeze-dried. 

2.2.3. Characterization of nanocarriers physicochemical properties 

2.2.3.1 Morphological characterization and size analysis 

The morphology of both nanoparticles was analyzed through Transmission Electron Microscopy 

(TEM – Hitachi-HT7700, Japan). The nanoparticles samples were placed on formvar-coated 

copper grids and allowed to dry at room temperature. The images were acquired at an 

accelerating voltage of 100 kV. After image acquisition, the nanoparticles total size, silica shell 

thickness and gold core size were measured by using a specific software (Schneider et al., 2012) 

(Image J 2.0.0, NIH Image, United States of America). 

2.2.3.2. Zeta Potential analysis 

The measurement of zeta potential of Au-MSS rods and spheres was determined by using a 

Zetasizer Nano ZS equipment (Malvern Instruments, Worcestershire, UK). In all the 

measurements, the nanoparticles were resuspended in ultrapure water. The data was collect 

at 25 ˚C in a disposable capillary cell at a detection angle of 173°. Zeta potential of MSNs was 

calculated by using the Smoluchowski model (f(ka)=1.50) included in the Zetasizer software (v 

7.03). 

ζ =  
UE 3 η

2 ϵ f(ka)
    (1) 
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Where ζ corresponds to zeta potential, UE is the electrophoretic mobility, η corresponds to 

dynamic viscosity, є represents the dielectric constant and f(ka) is the Henry’s equation. 

2.2.3.3. Ultraviolet-visible spectroscopy analysis 

The success of Au-MSSs synthesis and the particle NIR absorption capacity was evaluated by UV-

vis spectroscopy, using a Thermo Scientific Evolution™ 201 Bio UV-vis Spectrophotometer 

(Thermo Fisher Scientific Inc., Massachusetts, United States of America). The UV-vis spectra of 

Au-MSS spheres and rods were recorded at 300 nm/min scanning rate, with a wavelength range 

from 200 to 1100 nm. 

2.2.3.4. Fourier transform infrared spectroscopy analysis 

Fourier transform infrared (FTIR) spectroscopy was used to evaluate the compounds present in 

the samples. This data is important in order to confirm the successful formation of the MSS 

coating and also for verifying the purification step efficacy. The interferograms were recorded 

in a Nicolet iS10 spectrometer (Thermo Scientific Inc., Massachusetts, United States of America) 

acquiring 256 scans with a spectral resolution of 4 cm-1 ranging from 4000 cm-1
 to 600 cm-1. 

Moreover, in all the acquired data was performed a baseline correction and atmospheric 

suppression to avoid any possible interferences in the FTIR spectra. Data analysis was executed 

in the OMNIC spectra software (Thermo Scientific). 

2.2.3.5. Nanoparticle porosity and surface area analysis 

The porosity and surface area of Au-MSS nanoparticles was analyzed by acquiring the nitrogen 

sorption isotherms at -196.15 ˚C, using a Nova 2200e surface area and pore size analyzer 

(Quantachrome Instruments Corporate, Florida, United StatesUnite of America). Before the 

analysis, the sample were degassed under a flow of dry inert gas, during 24h. The adsorption 

isotherm was obtained by measuring the amount of gas adsorbed across a wide range of relative 

pressures at a constant temperature. On the other side, desorption isotherms are delineated 

by measuring the gas removed with the pressure reduction.  

The nanoparticle surface area was calculated by the Brunauer–Emmett–Teller (BET) method 

using experimental points at a relative pressure of P/P0 = 0.05–0.25. 

1

W((p0/P)−1)
=  

1

WmC
+

C−1

WmC
(

P

p0
)    (2) 

 

St= 
WmN ACS

M
    (3) 

 

Where W is the weight of gas adsorbed, P/P0 the relative pressure, Wm the weight of adsorbate 

monolayer, C the BET constant, St the total surface area, N the Avogadro’s number, M the 

molecular weight of adsorbate and Acs the adsorbate cross-sectional area. 
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Porosity was determined by the Barrett–Joyner–Halenda (BJH) method and the pore volume was 

estimated from the amount of adsorbed nitrogen at the relative pressure of 0.99. 

rk(˚A) =  
4.15

log
P0
P

    (4) 

rp=rk+t    (5) 

Where rk(°A) is the Kelvin radius of the pore, rp the actual radius of the pore and t the thickness 

of the adsorbed film. 

2.2.4. Drug loading 

The Dox loading in Au-MSS rods or spheres was accomplished through the impregnation of the 

particles in a Dox solution. Briefly, Au-MSS rods or spheres were resuspended in 5.00 mL of PBS 

(pH 7.2) containing Dox (10% w/w). The solution was then sonicated for 15 min and stirred for 

48 h at room temperature, in dark conditions. Afterward, the drug-loaded nanoparticles were 

recovered by centrifugation at 18,000 g, for 30 min and freeze-dried. The supernatant was 

stored to quantify the amount of drug loaded within nanocarriers. 

The Dox content in the nanoparticles was calculated by measuring the supernatant absorbance 

at 485 nm, using a UV-vis Spectrophotometer (Thermo Scientific Evolution™ 201 Bio UV-Vis 

Spectrophotometer, Thermo Fisher Scientific Inc., United States of America), and a calibration 

curve (Abs = 19,323 C + 6E-05; r² = 0.9995). The encapsulation efficiency of Au-MSS rods or 

spheres was calculated through equation (6): 

 (%)
efficiency     

Encapsulation
=

(Initial drug weight-Drug weight present in the supernatant) 

Initial drug weight
× 100    (6) 

2.2.5. In vitro drug release 

The characterization of the drug release profile was performed according to a method 

previously described in the literature (de Melo-Diogo et al., 2014). Briefly, the Au-MSS rods or 

spheres were resuspended in PBS and inserted in a Float-A-Lyzer dialysis bag with a molecular 

cut-off of 1000 Da. The dialysis was performed at 37 °C under magnetic stirring in 10 mL of PBS 

solution, at pH 5.6 or 7.4. At different time points, 1 mL of samples were collected and the 

same volume of fresh PBS was added to the dialysis medium, in order to maintain the PBS 

volume. The Dox content was measured by the above-described UV-vis method. 

2.2.6. Evaluation of the in vitro photothermal capacity of the 

nanoparticles 

The in vitro photothermal capacity of Au-MSS rods or spheres was performed as previously 

reported in the literature (Liu et al., 2015c). Briefly, Au-MSS rods or spheres at different 

concentrations were irradiated with a NIR laser (808 nm, 1.7 W/cm2). The temperature 
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variation of the solution was measured at different time points (from 1 up to 10 min) by using 

a thermocouple sensor with an accuracy of 0.1 ˚C. A control group without the particles was 

also irradiated and the temperature changes were monitored. 

2.2.7. Nanoparticles biocompatibility assays 

The Au-MSS spheres and rods biocompatibility was characterized by incubating the 

nanomaterials with HeLa or FibH cells. The 3-(4, 5-dimethylthiazolyl-2)-2,5-

diphenyltetrazolium bromide (MTT) assay was performed to characterize cells viability in the 

presence of nanomaterials. The HeLa and FibH cells were seeded into a 96-well flat bottom 

culture plates at a density of 10,000 cells per well, with 200 μL of medium (DMEM-HG and 

DMEM-F12 medium, respectively). During 24 h, cells were cultured at 37 °C in a humid 

atmosphere containing 5% CO2. After this period, the cells were incubated with different 

concentrations of Au-MSS rods or spheres, from 20 to 100 μg/mL. After 24, 48 and 72 h of 

exposition, the mitochondrial redox activity was assessed through the MTT reduction (Ribeiro 

et al., 2009). Briefly, the medium was removed and 50 μL of MTT solution (5 mg/mL) were 

added to each well. After 4 h of incubation, the solution was removed and 200 μL of DMSO were 

added to dissolve the resulting crystals. The reduction of MTT to its insoluble formazan product 

was then quantified by measuring the sample absorbance at 570 nm using a microwell plate 

reader (Sunrise-Basic TECAN, Männedorf, Switzerland). Cells incubated with EtOH (70% v/v) 

were used as positive control (K+), whereas cells without being incubated with nanomaterials 

were used as negative control (K-). 

2.2.8. Evaluation of the nanoparticle cellular uptake 

The Au-MSSs cellular uptake by HeLa cells was characterized through confocal laser scanning 

microscopy (CLSM), followed the protocol previously described in (Gaspar et al., 2015) and by 

taking advantage of Dox autofluorescence to track the nanoparticles fate. 

For the analysis of the nanoparticles cellular uptake, 20,000 HeLa cells were seeded in µ-Slide 

8 well Ibidi imaging plates (Ibidi GmbH, Germany) and incubated for 24 h, at 37 °C in a 

humidified atmosphere with 5% CO2. Afterward, cells were incubated with Au-MSS rods or 

spheres during 1 or 4 h. Subsequently, the seeded cells were washed with PBS, fixed with 

paraformaldehyde (4%) for 15 min and rinsed with PBS. For cell cytoplasm staining, cells were 

treated with WGA-Alexa Flour® 594 whereas the cell nucleus was labeled with Hoechst 33342®. 

The CLSM images were then acquired with a Zeiss LSM 710 Confocal microscope (Carl Zeiss SMT 

Inc., Germany) equipped with a Plan Apochromat 63x/1.4 Oil Differential Interference Contrast 

(DIC) objective. Successive z-stacks were also acquired and the 3D reconstruction and analysis 

of the confocal images were performed in the Zeiss Zen 2010 software. 
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2.2.9. Characterization of the cytotoxic profile of the nanoparticles  

To evaluate the NIR-induced cytotoxic activity of the Au-MSSs, different particle conditions 

were incubated with HeLa cells in the presence or absence of NIR laser irradiation. Briefly, the 

cells were seeded into a 96-well flat bottom culture plates at a density of 10,000 cells per well 

using the same culture condition that was previously described. After 24 h of culture, the HeLa 

cells were incubated with the different particle formulations (Dox loaded in Au-MSS rods or 

spheres) or free Dox (in a similar concentration to that loaded on particles). After 6 h, some of 

the test conditions were irradiated using a laser (808 nm, 1.7 W/cm2 for 5 min) to evaluate the 

Au-MSSs NIR-induced cytotoxic effect. During the laser irradiation cycles, the temperature of 

the cell culture plates was maintained close to 37 ˚C by using a heating mantle. After 24 h of 

incubation, the cell viability was determined by using the MTT assay as previously described. 

The cell viability in each group was expressed as a percentage in comparison to the negative 

control (K-, i.e. cell without particles incubation), whereas cells incubated with EtOH (70% v/v) 

were used as positive controls (K+). 

2.2.10. Statistical analysis 

All data are presented as mean ± standard deviation (s.d.). One-way analysis of variance 

(ANOVA) with the Student–Newman–Keuls post-test was used to compare the results obtained 

for the different groups. A p value lower than 0.05 was considered statistically significant. 

Statistical analysis was performed using GraphPad Prism v.6.0 software (Trial version, 

GraphPadSoftware, California, United States of America). 
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3. Results and Discussion 

 

3.1. Synthesis of nanoparticles 

Core-shell-based nanoparticles are promising multidisciplinary platforms for cancer therapy and 

diagnosis. The nanoparticles organization in core-shell structures is a simple approach that 

allows the combination of different functions, such as drug delivery, PTT, targeting and 

imaging, in a single system (Ghosh Chaudhuri and Paria, 2012). Moreover, the combination of 

gold and silica materials has attracted the attention of the scientific community due to their 

unique and versatile properties, that are advantageous in cancer-related applications. Gold 

nanoparticles have facile surface functionalization, a great colloidal stability and inertness 

(Sasidharan and Monteiro-Riviere, 2015). Further, gold nanoparticles have been already applied 

as photothermal and imaging agents, radiosensitizers or even as drug delivery systems. On the 

other side, silica-based materials, principally those with mesopores, provide a stable and rigid 

framework resistant to adverse conditions (e.g. enzymes, heat, mechanical stress and pH) that 

can encapsulate both hydrophobic and hydrophilic drugs (Kango et al., 2013). Therefore, the 

addition of a MSS to gold nanoparticles could allow the combination of chemo- and 

photothermal therapies to potentiate nanomaterials therapeutic effect, while simultaneously 

improve the biocompatibility and stability of gold nanoparticles. However, the effect of the 

Au-MSSs shape on the nanoparticles interaction with cells, uptake and cytotoxic ability, is still 

unclear. Huang and colleagues reported that silica mesoporous nanoparticles with a rod-like 

structure are more uptaken than those with spherical shape. In contrast, Arnida and coworkers 

observed that gold-based nanoparticles with spherical shape have a higher uptake by 

macrophage cells than the gold NRs (Huang et al., 2010, Janát-Amsbury et al., 2011). 

The Au-MSS systems produced in this work were synthesized by adapting methods previously 

described in the literature. The Au-MSS spheres were synthesized in an one-pot protocol, 

accordingly to a method proposed by Chen and colleagues (Chen et al., 2013). Initially, an 

alkaline solution containing CTAB molecules was prepared. Then, the gold precursor (HAuCl4) 

is reduced by formaldehyde, in order to originate CTAB-stabilized gold nanosized spheres. 

Subsequently, the silica shell was produced by adding TEOS, which is hydrolyzed and forms a 

mesoporous shell around gold nanoparticles. At this point, CTAB works as a pore template 

surfactant for TEOS condensation around the gold cores and, thus, leads to the formation of 

core-shell based nanostructure. 

In contrast, gold NR were obtained through a seed-mediated growth method. Gold NR nucleus 

was obtained according to the protocol described by Nikoobakht (Nikoobakht and El-Sayed, 

2003), whereas the MSS coating was achieved by a method described by Gorelikov and Matsuura 

(Gorelikov and Matsuura, 2008). Initially, small CTAB-stabilized gold nanoparticles were 

produced through the reduction of HAuCl4 by sodium borohydride, resulting in a so-called seed 
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solution. Subsequently a growth solution was prepared by adding ascorbic acid (a reducing 

agent) to a solution containing silver and gold ions in the presence of CTAB. In this solution, 

the gold source is reduced from Au III to Au I. Then, the seed solution is added to the growth 

solution and the small gold nanoparticles (i.e. seeds) catalyze the complete reduction of gold 

(Au I to Au atom) on their surface by ascorbic acid. Subsequently, the gold atoms will grow on 

the surface of seed nanoparticles leading to the formation of the gold NR. The CTAB during this 

process acts both as stabilizer agent as well as template agent. The silver nitrate present in 

the growth solution allows the tuning of the gold NR aspect ratio, due to the formation of AgBr 

complex (Br- coming from CTAB) on the nanoparticle surface that directs the growth of the NR 

(Pérez-Juste et al., 2005, Scarabelli et al., 2015). After the gold NR core formation, the silica 

shell was formed by promoting the TEOS hydrolysis and consequently its condensation on gold 

NR surface, using the CTAB as a pore structuring template (Gorelikov and Matsuura, 2008). 

Therefore, from a scale up potential, it is important to notice that the observed differences in 

the synthesis procedures can greatly impact on the translation of these technologies to the 

industry. In particular, the rod-shaped particles present a more laborious and time-consuming 

synthesis process, comprised of three individual steps, namely, synthesis of seeds solution, 

followed by gold NR grow and finally, silica shell coating. Thus, it is required more than one 

day to obtain the final product. On the other hand, the Au-MSS spheres are produced through 

a simpler process, based on a one-step synthesis procedure, that only takes about 2 h to occur. 

Such differences between the two methodologies make the Au-MSS spheres a more desirable 

platform when the production scale up is intended. 

3.2. Size and zeta-potential characterization of nanoparticles 

The analysis of the TEM images confirmed the successful synthesis of Au-MSSs and the 

nanoparticle organization in a single gold core with a uniform silica shell (Figure 11 A and B). 

Moreover, it is also perceptible in the close-up TEM images the porous structure of MSS for both 

nanosystems. The particle size measurements revealed that Au-MSS spheres were slightly larger 

than their counterparts (Table 1). Au-MSS spheres are comprised of a gold core of 20 ± 4 nm 

and a silica shell with 45 ± 4 nm of thickness resulting in a particle with the total size of 109 ± 

8 nm. In contrast, the Au-MSS rods possessed an average length of 70 ± 11 nm and a width of 

47± 7 nm (approximately 70 x 47), being comprised of a gold NR core with an aspect ratio of 

3.4 and a MSS with 18 ± 2 nm in thickness.  

Moreover, the Au-MSSs size distribution by intensity reveals a unique and uniform population of 

nanoparticles (Figure 12 A and C).The displayed particle sizes are in concordance with similar 

reports found in the literature, concerning the formation of uniform MSS on a gold core surface 

(Gorelikov and Matsuura, 2008, Wu and Tracy, 2015). For example, Song and colleagues 

reported the production of highly uniform nanoparticles for imaging purpose comprised by a 20 

nm spherical gold core and 45 nm shell such as Au-MSS spheres (Song et al., 2015). Further, 
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Zhang and colleagues developed an Au-MSS rod-based system with an identical shell thickness 

(16 nm) but with a smaller width size for thermal- and chemotherapy towards HeLa cells (Zhang 

et al., 2015). 

 

Figure 11 - Size and morphology characterization of Au-MSSs. TEM images of the Au-MSSs spheres (A) and 
rods (B). 

The observed differences in Au-MSSs size and shape can affect the performance of the 

nanoparticle. Besides, the displayed sizes allow the nanoparticles to exploit the well-known 

EPR effect that is found in tumor tissue due to the irregular tumor vasculature (blood vessels 

present fenestrae with 400 – 500 nm) and impaired lymphatic drainage (Xu et al., 2015). 

Additionality, the observed differences in the shell thickness can be an important parameter 

that affects the particles capacity to encapsulate bioactive molecules, since silica pores will 

be the drug reservoirs of the particles (Jia et al., 2013b). 

Furthermore, the zeta potential analysis revealed differences in the particle charge (Table 1 

and Figure 12 B and D). The spheres, which have a higher shell thickness, displayed a zeta 

potential of -16 ± 1 mV. In turn, the rods exhibited a zeta potential of -12 ± 1 mV. The obtained 

data indicates that the thickness of the silica shell significantly impacts on the nanoparticle 

charge, which can be justified by the negatively charged silanol groups present on MSS surface. 

Moreover, these values are in accordance with previously reports where similar gold and silica-

based delivery systems were produced (Luo et al., 2014, Mekaru et al., 2015, Sadeghnia et al., 

2015, Zhang et al., 2015). Zeiderman and coworkers reported a similar zeta potential (i.e. -11 

mV) to Au-MSS rods by using a gold NR core with a similar aspect ratio and slightly thicker MSS 

(Zeiderman et al., 2016). Moreover, Zhang and colleagues developed an Au-MSS rod based 

system that comprised a smaller gold core, that leads to a more negative zeta potential (-19 

mV) (Zhang et al., 2015). 
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Table 1 – Size and charge characterization of Au-MSSs. Data are presented as mean ± s.d. (n ≥ 300). 

 
 
As above mentioned, the zeta potential is an important parameter that affects the 

nanoparticles interaction with the biological components. The nanosystems circulation time, 

penetration in tumor and their interactions with cells are highly influenced by zeta potential. 

The neutral charge (zeta potential of ±10 mV) is considered ideal for nanoparticles circulation 

in the human body (Ernsting et al., 2013). Taking this into account, the Au-MSS rods seems to 

possess the most appropriated zeta potential value, since their surface charge is less negative 

than the spherical ones.  

 

 Figure 12 - Size and charge characterization of Au-MSSs. Size distribution by intensity of Au-MSS spheres 
(A) and rods (C). Zeta potential measurements of Au-MSS spheres (B) and rods (D). 
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3.3. Fourier transform infrared spectroscopy analysis 

The FTIR characterization of the nanosystems was carried out for assessing the formation of 

the silica coating and to characterize the efficacy of the purification procedure (Figure 13). 

The presence of the silica shell on Au-MSSs was confirmed by the presence of the three 

characteristic peaks in the 1100 to 750 cm-1 region, that belong to the Si-O, Si-O-Si and Si-OH 

vibrations (Zhang et al., 2015). Moreover, after the nanoparticles formation a purification step 

is required due to the use of the highly toxic CTAB surfactant (CTAB has been shown to be 

capable of damaging biological membranes and cause the release of intracellular enzymes) 

(Sharif, 2012). The FTIR spectrum analysis of Au-MSS rods and spheres with the CTAB template 

(Figure 13) presented the characteristic peaks of the CTAB molecule, two absorption bands 

between 2950 cm–1 and 2850 cm–1 that belong to the C–H stretching vibrations, and a C-H 

deformation around the 1500 cm-1. After the purification procedure, the FTIR spectra of the 

Au-MSSs revealed that the C–H stretching vibration bands and C-H deformation disappear. 

Thereby, this results showed that the CTAB is completely removed from the samples, which 

may contribute to the system biosafety and biocompatibility. 

 

Figure 13 - Physicochemical characterization of Au-MSSs. FTIR spectra of CTAB, Au-MSS spheres (Pure and 
Impure) and rods (Pure and Impure). 

3.4. Porosity and surface area analysis of the nanoparticles 

The Au-MSSs surface area and pore size measurements were performed by analyzing the 

nitrogen adsorption/desorption isotherms. The adsorption isotherm is obtained by measuring 

the amount of gas adsorbed with the increase of the relative pressure at a constant 

temperature, whereas the desorption isotherm refers to the amount of gas that is released as 

the pressure decreases. These experiments provide information about nanoparticle surface 

area and pore volume and diameter. Such data can be used to confirm the CTAB template 

removal and also predict the drug loading capacity of Au-MSSs. 
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An initial analysis of the Au-MSSs adsorption/desorption isotherms shows that both rods and Au-

MSS spheres possess type IV isotherms (Figure 14) (ALOthman, 2012). This indicates that the 

particles possess a mesoporous structure with pore sizes in the range on 1.5 - 100 nm. 

 

Figure 14 – Representation of nitrogen adsorption and desorption isotherms of Au-MSS spheres (A) and 
rods (B). 

Moreover, by applying the BJH analysis to the adsorption/desorption isotherms it is possible to 

determine that both Au-MSSs possess an identical pore diameter, around 3.2 nm (Table 2). 

These results are in agreement with those reported in literature (Moreira et al., 2014). Further, 

the BJH analysis revealed that the Au-MSS spheres possessed a higher pore volume than the 

rods counterparts, 0.8 and 0.5 cm3/g, respectively. This increased pore volume can be justified 

by the Au-MSS spheres higher shell thickness and consequently pores with increased length. 

Such result indicates that the Au-MSS spheres possess a higher capacity to encapsulate 

therapeutic molecules and therefore may be capable of deliver higher drug payloads to cancer 

cells. Furthermore, the Au-MSS spheres also showed an increased specific surface area than the 

rods counterparts (716.7 and 339.8 m2/g). Such difference can be correlated to the higher pore 

length of the spherical nanoparticles, which will greatly increase the overall nanoparticle 

surface area. The porosity analysis is in concordance with similar core-shell silica-based 

nanosystems with a spherical or rod-like shape (Shen et al., 2013, Wang et al., 2014, Zhang et 

al., 2015, Yu and Zhu, 2016). 

Table 2 – Porosity and surface analysis of Au-MSSs after being purified. 
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3.5. UV-vis spectroscopy and photothermal capacity analysis 

The UV-vis absorbance spectrum of Au-MSSs was acquired to confirm the success of the 

synthesis procedure. Gold nanospheres show one absorption band, while NRs have two 

characteristic absorption bands, the transverse and the longitudinal plasmon resonances (Huang 

et al., 2008). 

The UV-vis spectrum of Au-MSS spheres (Figure 15 – gray line) shows a peak at 550 nm, which 

is coherent with the data presented in the literature for gold spheres with similar sizes (Jain et 

al., 2006). On the other hand, the Au-MSS rods displayed two different absorption peaks at 500 

nm and 770 nm (Figure 15 – black line). The first peak is attributed to the transverse plasmon 

resonance of the particles, whereas the peak at 770 nm is assigned to the longitudinal plasmon 

resonance. The presence of these two different peaks in the UV-vis absorbance spectrum is 

consistent with that reported in the literature for other AuNRs coated with a silica shell and 

with a similar aspect ratio (Alkilany et al., 2009, Huang and El-Sayed, 2010, Zhang et al., 2015). 

Moreover, the Au-MSS rods display a strong absorption in the 700-900 nm range, a wavelength 

interval where the biological components present a low or insignificant absorption, thus making 

these systems suitable for PTT or light triggered drug delivery (Liu et al., 2016). 

 

Figure 15 - Physicochemical characterization of Au-MSSs. The UV-vis spectra of Au-MSS spheres and rods 
nanoparticles. 

The successful application of nanomaterials in cancer PTT is dependent on their capacity to 

absorb and convert NIR light into heat, sensitizing cells to the drugs action or promoting cell 

apoptosis (Krishnan et al., 2010, Chatterjee et al., 2011). 

For this purpose, both formulations were exposed to 808 nm NIR light for 1 up to 10 min and 

the temperature variations were recorded (Figure 16 A). Au-MSS spheres at the tested 

concentrations (50 and 100 μg/mL) only promoted an increase in temperature of 2 to 4 ˚C, 
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after 10 min of irradiation. This result is in agreement with the optical properties displayed by 

these particles, since they have almost no absorption in the NIR region. In contrast, the Au-MSS 

rods, which have a high NIR absorption, caused a temperature increase of 20 ˚C (100 μg/mL of 

Au-MSS rods) and 15 ˚C (50 μg/mL of Au-MSS rods) after the same period of irradiation. The 

obtained results are consistent with those available in the literature for similar gold-silica-

based nanosystems (Zhang et al., 2015). Liu and colleagues reported a similar NIR-induced 

heating profile by using silica-coated AuNRs, although they used a lower laser power density (1 

W/cm2) and higher particle concentration (Liu et al., 2015a). Moreover, Au-MSS rods (100 

μg/mL) induced a temperature variation (∆T = 15 ˚C) that can lead to cellular damage (usually 

attained for a temperature above 45-50 ˚C) with 5 min NIR irradiation (Mallick et al., 2013). 

Therefore, this exposition time was selected for subsequent biological studies. 

Additionally, the Au-MSS spheres and rods also demonstrated a good photothermic stability 

since, the Au-MSSs exposition to multiple irradiation cycles did not provoke changes in the 

photothermal capacity of the nanoparticles (Figure 16 B). Such result can be explained by the 

silica coating that stabilizes and protects the gold cores from premature degradation, thus 

allowing these nanomaterials to support multiple irradiation cycles without sacrificing their 

heat conversion capacity (Chen et al., 2010). Moreover, the different Au-MSSs heating profile 

demonstrates how the nanoparticle shape can induce changes in the nanoparticles properties, 

supporting the importance of fully characterize this particle parameter for each nanoparticle-

based system. 

 

Figure 16 - In vitro evaluation of the Au-MSSs photothermal capacity. (A) Temperature variation curves 
when different Au-MSSs concentrations are irradiated with NIR light (808 nm, 1.7 W/cm2, 10 min). (B) 
Temperature variation for Au-MSSs (100 μg/mL) after 1 or 2 cycles of NIR laser irradiation (808 nm, 1.7 
W/cm2, 10 min) after 1 or 2 cycles of irradiation. Data are presented as mean ± s.d., *p<0.05, n= 3. 
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3.6. Drug loading and release profile analysis 

The Au-MSSs potential to encapsulate bioactive molecules was assessed by using Dox as drug 

model, a hydrophilic compound broadly used in first-line chemotherapy. The drug loading was 

achieved by dispersing the Au-MSS rods or spheres in a Dox solution for 48 h (Figure 17 A). 

During this process, the positively charged Dox molecules will diffuse into the MSS pores and 

interact with the negatively charged silanol groups present on the silica shell, being confined 

to the particles interior. The Au-MSSs were then recovered by centrifugation and the amount 

of Dox encapsulated within the particle was quantified by measuring the supernatant 

absorbance at 485 nm by using a Dox calibration curve (Figure 17 B). 

The obtained encapsulation efficiencies for both Au-MSS rods and spheres demonstrate the 

particles capacity to retain the drugs within its pores. The loading results showed that Au-MSS 

spheres can encapsulate a higher content of Dox, around 80 μg of drug per 1 mg of Au-MSSs, 

while Au-MSS rods only retained 52% of the initial drug (i.e. 52 μg Dox per 1 mg of Au-MSSs) 

(Figure 17 C). Such results can be justified by the shell thickness differences displayed by the 

spheres and the rods. The increased shell thickness on Au-MSS spheres originate mesopores with 

increased length and consequently possess a higher volume to incorporate Dox within MSS 

structure. 

 

Figure 17 - Characterization of Dox encapsulation efficiency of Au-MSSs. (A) Schematics of the drug 
loading. (B) Standard curve (Abs = 19.32 C + 6E-5; r² = 0.9995) of Dox in PBS. (C) Dox encapsulation 
efficiency of Au-MSS spheres and rods. Data are presented as mean ± s.d., n=3. The statistical analysis 
was performed by using t-Student test, with *p<0.05. 

After the Dox loading, the release profile of the Au-MSS rods or spheres was characterized at 

two pH values, 5.6 (to simulate the tumor microenvironment and lysosomal compartments) and 

7.4 (to simulate physiological conditions) (Figure 18 A and B). The obtained results (Figure 18 

C and D) show that the release profile is not significantly affected by the pH variation. 
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Moreover, it was also possible to observe that Au-MSS rods release the Dox more rapidly (about 

60%, for both pHs) than their counterparts. Such results may be correlated with the smaller 

shell thickness of Au-MSS rods and consequent smaller pore lengths. Thus drugs have a smaller 

path to travel and also less electrostatic interactions with pore wall. Moreover, both Au-MSS 

rods and spheres showed a release profile divided into two phases, an initial burst followed by 

a sustained release during the time of the experiment, which is usually observed for mesoporous 

silica nanoparticles (Wang, 2009). Such release profile is attributed to the physical and 

chemical entrapping of the drug within the MSS pores resulting in an initial burst release due 

to a higher concentration gradient between the particle pores and the release medium that 

tends to stabilize along time (Siepmann and Siepmann, 2008, Wang, 2009). 

 

Figure 18 - Characterization of the release profile of Dox loaded Au-MSSs. Schematics of the release 
procedures of Au-MSS (A) rods and (B) spheres. Dox cumulative release at pH 5.6 and 7 of Au-MSS (C) rods 
and (D) spheres. Data are presented as mean ± s.d., *p<0.05, n=3. 

3.7. Characterization of nanoparticles biocompatibility 

The Au-MSSs biocompatibility was evaluated by using two cell lines, HeLa and FibH cells. In 

Figure 19 A and B it is possible to observe that both systems were biocompatible when incubated 

with HeLa cells at 24, 48 and 72 h and also for all the tested material concentrations (20 to 100 

µg/mL). Moreover, Au-MSS rods and spheres did not reveal any toxicity towards non-cancer 

human cells (FibH) (Figure 19 C and D). Such results are in agreement with the different reports 

available in the literature for gold-silica-based nanosystems (Tang et al., 2012, Mallick et al., 

2013, Shen et al., 2013).  
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Additionally, in literature it is described that the length of Au-MSS rods can impact on the 

integrity of the cellular membrane and cytoskeleton leading to the disruption of the cell 

membrane and consequently to its death (Huang et al., 2010). The biocompatibility assays 

performed herein showed that the Au-MSS rods presented a biocompatibility profile similar to 

the spherical Au-MSSs, which indicates that no significant alterations are being promoted on 

the cell membrane or cytoskeleton. Thus, the obtained results demonstrate that for the tested 

concentrations the shape does not influence the particle biocompatibility.  

 

Figure 19 - Evaluation of the biocompatibility of Au-MSS spheres and rods at 24, 48 and 72 h in cancer 
(HeLa) and non-cancer (FibH) cells. (K+): cells treated with ethanol; (K-): cells without nanoparticles 
incubation. Data are presented as mean ± s.d., *p<0.05, n = 5. 

3.8. Evaluation of the nanoparticle cellular uptake  

After assessing the biocompatibility of the Au-MSS nanosystems, the cellular uptake by HeLa 

cells was evaluated by confocal laser microscopy. The tracking of Au-MSS nanoparticles was 

achieved by taking advantage of the autofluorescence of Dox molecules encapsulated within 

the particles. In Figure 20, it is possible to observe the Dox presence inside the HeLa cells, 

particularly, in the cell cytoplasm. Moreover, the Dox content inside the cells increased along 

time, being observed a clear increase in Dox fluorescence from 1 to 4 h of incubation. 
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Altogether, this data indicates that Au-MSSs were internalized by HeLa cells and were also able 

to deliver its content in the cell cytoplasm to exert the desired therapeutic effect, thus avoiding 

the premature drug degradation in the extracellular medium.  

Furthermore, the Dox mean fluorescence intensity (MFI), 4 h after the nanoparticles incubation, 

was measured to compare the drug delivery efficacy of Au-MSS rods or spheres (Figure 21 A and 

B). Interestingly, after 4 h, the cells treated with Au-MSSs presented a superior Dox MFI than 

the free Dox-treated group. This in vitro increase of Dox accumulation in cancer cells by the 

use of nanoparticles is in agreement with other reports (Li et al., 2013, Gaspar et al., 2015). 

Such improved efficacy displayed by nanoparticles in in vitro assays has been attributed to the 

nanoparticles capacity to bypass different cellular drug efflux pathways or even drug 

degradation events that limit the drug dose that reaches cells.  
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Figure 20 - Confocal microscopy images of Dox loaded Au-MSSs uptake by HeLa cells after 1 and 4 h of 
incubation. The white arrows are pointing to the internalized nanoparticles. Blue channel: Hoechst 33342® 
stained cell nucleus; green channel: Dox fluorescence. Scale bar corresponds to 50 μm. 

Moreover, when comparing the Dox MFI of the cells treated with Au-MSS rods or spheres (at a 

concentration of 100 µg/mL) it is possible to observe that Dox MFI is superior for the group 

treated with Au-MSS rods. Such result may indicate that the Au-MSS rods have a higher cellular 

internalization than the sphere-shaped particles, which can be explained by the Au-MSS rods 

higher zeta potential and larger contact area (the longitudinal axis of Au-MSS rods) that favors 

the particle interaction with the cell membrane particles (Frohlich, 2012, Panariti et al., 2012). 

Similar findings were also reported by Huang and colleagues for mesoporous silica nanoparticles 
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with different shapes, where rods with larger aspect ratio presented an increased uptake and 

a higher internalization rate in A375 cells than the spherical particles (Huang et al., 2010). 

Lastly, it is important to notice that the NIR irradiation does not induce the degradation of the 

Dox molecules or affected the Dox delivery to HeLa cells, since when compared to the non-

irradiated groups, no significant differences were observed on Dox MFI. 

 

Figure 21 - Analysis of Dox loaded Au-MSSs uptake in HeLa cells after 4 h of incubation. Representative 
3D confocal images reconstruction of the Au-MSSs uptake by HeLa cells are presented on (A1) and (A2). 
The white arrows are pointing to the internalized nanoparticles. Blue channel: Hoechst 33342® stained 
cell nucleus; Red channel: WGA-Alexa Fluor® 594 conjugate for cell cytoplasm staining; Green channel: 
Dox fluorescence. (B) Analysis of mean fluorescence intensity of Dox at 4 h. Scale bar correspond to 50 
μm. Data are presented as mean ± s.d., *p<0,05, n=20. 
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3.9. Characterization of the cytotoxic profile of the 

nanoparticles 

In order to evaluate the therapeutic potential of Dox-loaded Au-MSS spheres or rods, their 

cytotoxic activity towards HeLa cells was assessed. HeLa cells were incubated with various 

concentrations of nanoparticle formulations, i.e., 20 (with 2.8 μM of loaded Dox), 60 (with 8.3 

μM of loaded Dox) and 100 μg/mL (with 13.8 μM of loaded Dox) with or without NIR laser 

irradiation, or similar free DOX concentrations (Figure 22 A).  

As depicted in Figure 22 (B, C, and D), the different Au-MSS formulations led to a decrease in 

cell viability that is proportional to the tested concentrations of Au-MSSs. Moreover, in general, 

all the Au-MSS formulations induced a higher cytotoxicity than the free drug counterparts, 

which may be the result of the increased capacity of Au-MSSs to deliver Dox to HeLa cells as 

previously observed in uptake studies (section 3.8.). Furthermore, the Au-MSS spheres and rods, 

in the absence of NIR irradiation, presented a similar cytotoxic effect (i.e. ~40, 30 and 15% for 

concentrations of 20, 60 and 100 µg/mL, respectively). However, it is important to notice that 

the Au-MSS rods possess a lower drug encapsulation efficiency and therefore a lower quantity 

of Dox per nanoparticle. This similar cytotoxic effect may be justified by the increased cellular 

internalization observed for Au-MSS rods when compared to the spherical counterparts. On the 

other side, when cells were exposed to NIR irradiation, the Au-MSS rods at concentrations of 60 

and 100 µg/mL presented an enhanced cytotoxic effect (only 24% and 7% of cells remained 

viable, respectively) when compared to the spheres, (26% and 20%). Such clearly demonstrates 

that the NIR irradiation and consequent heat production can improve the carrier cytotoxic 

effect by sensitizing the HeLa cells to Dox action or even by promoting cell death. The Au-MSS 

spheres exposition to the NIR irradiation did not elicit any significant variation on the cytotoxic 

effect, due to their low photothermal properties, which is in accordance with the data reported 

in literature, where similar Au-MSSs approaches were used (Tang et al., 2012, Zhang et al., 

2015). Zhang and colleagues prepared gold-silica-based NRs with Dox grafted (chemical 

linkage/bond) onto the pore of MSS. In their work, the drug delivery without NIR exposition led 

to a decrease in cell viability up to 50%. However, when the particles were incubated and 

irradiated with NIR laser for 5 min, the cell viability decreased to about 30% due to the heat 

generation (Zhang et al., 2015). Relatively to the sphere shaped Au-MSS systems, their 

application for drug delivery to cancer cells has been poorly explored with no significant data 

being found in literature, since this type of Au-MSSs is mainly studied for imaging-related 

applications.  

From a therapeutic point of view, the chemo- and thermo- therapy combination can be a crucial 

factor to improve the cancer treatment by acting simultaneously on different cancer cell 

hallmarks and by modulating the particle effect upon NIR laser irradiation, in order to originate 

a synergistic antitumoral effect capable of eradicating the tumor without eliciting any side 

effects. 
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Figure 22 - Cytotoxic effect of Dox loaded Au-MSS nanoparticles in HeLa cells. (A) Schematic 
representation of Au-MSSs cytotoxic activity upon NIR irradiation (808 nm, 1.7 W/cm2, 5 min). Cytotoxic 
activity of Au-MSSs at concentrations of (B) 20, (C) 60, and (D) 100 µg/mL. K+: cells treated with ethanol. 
(K-): non-treated HeLa cells and (K- NIR): non-treated HeLa cells upon NIR irradiation (808 nm, 1.7 W/cm2, 
5 min). Data are represented as mean ± s.d., *p<0.05, n=5. 
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4. Conclusion and Future Perspectives 

 

The application of Nanotechnology in Medicine has grown in the past years, and a particular 

focus has been given to cancer-related issues. The cancer conventional therapies present 

several limitations such as their weak specificity and their severe side effects. The use of 

nanoparticles in cancer therapy has been regarded as being an advantageous approach capable 

of improving the pharmacokinetic profile of the therapeutic agents. Moreover, the nanocarriers 

design is an important parameter that influences their performance in biological environments. 

Among the different particle parameters, the nanomaterials shape has a high impact on the 

nanoparticles interaction with cells and on the therapeutic efficacy, however, this feature has 

been poorly explored in the literature. 

In this thesis, rod- and sphere-shaped nanoparticles, composed of a gold core coated with 

mesoporous silica, were produced in order to study the effect of nanomaterials shape on their 

biological performance, namely on the biocompatibility, cellular uptake and cytotoxic activity. 

Herein, the obtained results revealed that both Au-MSSs displayed suitable sizes, allowing them 

to take advantage of the EPR effect. Furthermore, the Au-MSS rods presented an UV-vis 

absorption peak at 770 nm (not present in Au-MSS with spherical shape), which make these 

particles adequate for being applied in PTT. On the other side, the spherical Au-MSS were 

capable of encapsulating a higher payload of Dox, displaying an encapsulation efficiency around 

80%, whereas the rod-like particles only encapsulated 52% of the Dox. Further, Au-MSS rods 

were capable of delivering higher quantities of Dox to the cancer cells when compared to the 

spherical counterparts, which indicates that these rod-like particles are more internalized by 

cancer cells. In the cytotoxic studies, both Au-MSSs presented an enhanced cytotoxicity activity 

when compared to the free Dox administration. Moreover, Au-MSS rods without NIR laser 

irradiation were capable of inducing a similar cytotoxic effect to that of spherical particles, 

even carrying a lower Dox amount. Further, the NIR laser irradiation was also capable of 

potentiating the cytotoxic effect of Au-MSS rods, thus indicating that the generated heat 

sensitizes the cells to the Dox action or induces cell death. Moreover, it is important to notice 

that the Au-MSS spheres application in drug delivery for cancer therapy has been poorly 

explored, since no significant data is available in literature. So far, Au-MSS spheres were mainly 

used for imaging-related applications. 

In the future, the versatility of Au-MSSs to encapsulate both hydrophilic and hydrophobic drugs 

and the possibility to combine their delivery with the PTT can be explored to develop 

multifunctional platforms. Furthermore, the heat generation can also be used to promote a 

stimuli responsive drug delivery by functionalizing the particle surface with thermoresponsive 

moieties, such as DNA, Poly(N-isopropylacrylamide) (PNIPAM) and cucurbit[6]uril. Moreover, 

the inclusion of cancer cell targeting biomolecules on MSS surface will be critical for improving 
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cancer treatments selectivity. In addition, both Au-MSSs have the potential to be used as 

imaging agents which further expands their applicability in the biomedical area. 
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