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Resumo 

Atualmente há um esforço global para integrar mais recursos energéticos distribuídos nas 

redes elétricas, impulsionado por fatores técnico-económicos e ambientais, particularmente 

ao nível da rede de distribuição. Estes recursos incluem tipicamente tecnologias facilitadoras 

das redes elétricas inteligentes, tais como geração distribuída, sistemas de armazenamento 

de energia, e gestão ativa da procura.  

A integração de fontes de geração distribuída (energias renováveis, principalmente) está a 

aumentar progressivamente em muitas redes de distribuição, e é provável que esta tendência 

continue nos próximos anos devido ao avanço de soluções emergentes, esperando-se assim 

que as limitações técnicas existentes sejam ultrapassadas e que facilitem a integração 

progressiva das fontes de geração distribuída. Espera-se também que os acordos feitos pelos 

países para limitar as emissões de gases de efeito de estufa e para mitigar as alterações 

climáticas acelerem a integração de fontes de energia renováveis.  

No entanto, a natureza intermitente e volátil da maioria das fontes de energia renováveis (em 

particular, eólica e solar) faz com que a sua integração nas redes de distribuição seja uma 

tarefa complexa. Isto porque tais recursos introduzem variabilidade operacional e incerteza 

no sistema. Assim, é essencial o desenvolvimento de novas metodologias e ferramentas 

computacionais inovadoras para beneficiar uma integração óptima da geração distribuída 

renovável e minimizar os possíveis efeitos colaterais.  

Nesta tese são desenvolvidas novas metodologias e ferramentas computacionais inovadoras 

que consideram a variabilidade operacional e a incerteza associadas à geração a partir de 

fontes de energia renováveis, juntamente com a integração de tecnologias facilitadoras das 

redes elétricas inteligentes. As metodologias e ferramentas computacionais desenvolvidas são 

testadas em casos de estudo reais, bem como em casos de estudo clássicos, demonstrando a 

sua proficiência computacional comparativamente ao atual estado-da-arte. Devido à inerente 

incerteza e variabilidade das fontes de energia renováveis, nesta tese utiliza-se programação 

estocástica. Ainda, para assegurar a convergência para soluções ótimas, o problema é 

formulado utilizando programação linear inteira-mista. 

 

Palavras Chave 

Fontes de energia renováveis; Geração distribuída; Planeamento de investimentos; 

Programação linear inteira-mista estocástica; Redes elétricas inteligentes; Reforço da rede; 

Sistemas de armazenamento de energia; Variabilidade e incerteza.  
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Abstract 

Driven by techno-economic and environmental factors, there is a global drive to integrate 

more distributed energy resources in power systems, particularly at the distribution level. 

These typically include smart-grid enabling technologies, such as distributed generation (DG), 

energy storage systems and demand-side management.  

Especially, the scale of DG sources (mainly renewables) integrated in many distribution 

networks is steadily increasing. This trend is more likely to continue in the years to come due 

to the advent of emerging solutions, which are expected to alleviate existing technical 

limitations and facilitate smooth integration of DGs. The favorable agreements of countries to 

limit greenhouse gas (GHG) emissions and mitigate climate change are also expected to 

accelerate the integration of renewable energy sources (RESs).  

However, the intermittent and volatile nature of most of these RESs (particularly, wind and 

solar) makes their integration in distribution networks a more challenging task. This is 

because such resources introduce significant operational variability and uncertainty to the 

system. Hence, the development of novel methodologies and innovative computational tools 

is crucial to realize an optimal and cost-efficient integration of such DGs, minimizing also 

their side effects.  

Novel methodologies and innovative computational tools are developed in this thesis that 

take into account the operational variability and uncertainty associated with the RES power 

generation, along with the integration of smart-grid enabling technologies. The developed 

methodologies and computational tools are tested in real-life power systems, as well as in 

standard test systems, demonstrating their computational proficiency when compared with 

the current state-of-the-art. Due to the inherent uncertainty and variability of RESs, 

stochastic programming is used in this thesis. Moreover, to ensure convergence and to use 

efficient off-the-shelf solvers, the problems addressed in this thesis are formulated using a 

mixed integer linear programming (MILP) approach. 

 

Keywords 

Distributed Generation (DG); Energy Storage Systems (ESSs); Investment planning; Network 

reinforcement; Renewable Energy Sources (RES); Smart grids; Stochastic mixed integer linear 

programming; Variability and uncertainty. 
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List of Symbols  

The main notations used in Chapters 3, 4 and 5 are listed below. Other symbols are defined 

where they first appear. 

 

Chapter3 
 

Sets and Indices 

𝑘/Ω𝑘 Index/Set of DG alternatives of the same type 

𝑚, 𝑛/Ω𝑛 Indices/Set of nodes 

𝑝/Ω𝑝 Index/Set of DG types 

𝑠/Ω𝑠,𝑤/Ω𝑤 Indices/Sets of scenarios and snapshots, respectively 

𝑠𝑠/Ω𝑠𝑠 Index/Set of substations  

𝑡/𝛺𝑡 Index/Set of planning stages (t = 1, 2… T) 

E  Index for existing DGs  

N  Index for new DGs  

SS  Substation  

T  Planning horizon 

 
Parameters 

𝑏𝑛𝑚 Susceptance of line 𝑛 −𝑚 (p.u.) 

𝑑𝑛,𝑠,𝑤,𝑡 Electricity demand at each node (MW) 

𝐸𝑅𝑝,𝑘
𝑁 , 𝐸𝑅𝑝,𝑘

𝐸   Emission rate of a new or existing generator (tons of CO2/MWh) 

𝑓𝑛𝑚
𝑚𝑎𝑥 Flow limit of line 𝑛 −𝑚 (MW) 

𝑔𝑛𝑚 Conductance of line 𝑛 −𝑚 (p.u.) 

𝑖 Interest rate 

𝐼𝐶𝑝,𝑘
𝑁  Installation cost of DG (€) 

𝐼𝑛𝑣𝐿𝑖𝑚𝑡    Available annual budget for investment (€) 

𝑀𝐶𝑝,𝑘
𝑁 , 𝑀𝐶𝑝,𝑘

𝐸   Maintenance cost of new and existing DGs (€), respectively 

𝑀𝑛𝑚 Big-M parameter corresponding to line 𝑛 − 𝑚 

𝑁𝑛 Number of nodes  

𝑁𝑆𝑆 Number of substations 

𝑂𝐶𝑝,𝑘
𝑁 , 𝑂𝐶𝑝,𝑘

𝐸   Operation cost of new and existing DGs (€/MWh), respectively 

𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙 Nominal voltage of the system (V) 

𝜂𝑝,𝑘 Lifetime of DGs (years) 

𝜆𝑠,𝑤,𝑡
𝐸𝑀𝐼  Emission price (€/tons) 

𝜆𝑠,𝑤,𝑡 Average cost of electricity (€/MWh) 

𝜋𝑤 Weight associated to representative snapshot w (hours) 

𝜌𝑠 Probability of scenario s 

𝜎𝑠𝑠,𝑠,𝑤,𝑡 Price of purchased electricity (€/MWh) 
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𝜐𝑠,𝑤,𝑡 Penalty for unserved energy (€/MWh) 

𝜑 DG penetration limit factor (%) 

 

Variables and Functions 

 

 𝑓𝑛𝑚,𝑠,𝑤,𝑡 Power flow through feeder 𝑛 − 𝑚 

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝐸 ,𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡

𝑁  Power generated by existing and new DG 

𝑔𝑠𝑠,𝑠,𝑤,𝑡
𝑆𝑆  Power purchased from upstream (grid) 

𝑢𝑝,𝑘,𝑛,𝑡
𝐸  Utilization indicator variable (1 if an existing generator is utilized; 0 

otherwise) 

𝑥𝑝,𝑘,𝑛,𝑡
𝑁  Binary investment variable for DG 

𝑧𝑛𝑚 Binary variable associated to line 𝑛 − 𝑚 (1 if the line is connected; 0 

otherwise) 

𝐸𝐶𝑡
𝐸 , 𝐸𝐶𝑡

𝑁 Expected cost of energy generated by existing and new DGs (€) 

𝐸𝐶𝑡
𝑆𝑆 Expected cost of purchased energy (€) 

𝐸𝑀𝐶𝑡
𝐸, 𝐸𝑀𝐶𝑡

𝑁 Expected cost of emissions for existing and new DGs (€) 

𝐸𝑁𝑆𝐶𝑡 Expected cost of unserved energy (€) 

𝐼𝑛𝑣𝐶𝑡
𝑁 Amortized NPV investment cost of DG (€) 

𝑀𝑛𝑡𝐶𝑡
𝑁, 𝑀𝑛𝑡𝐶𝑡

𝐸 Annual maintenance cost of new and existing DGs, respectively (€) 

𝛿𝑛,𝑠,𝑤,𝑡 Unserved power (MW) 

∆𝑉𝑛,𝑠,𝑤,𝑡 Voltage deviation at each node (kV) 

𝜃𝑛𝑚,𝑠,𝑤,𝑡 Voltage angle difference between nodes 𝑛 −𝑚 (radians) 

 

Chapter 4 
 

Sets and Indices 

𝑘/𝛺𝑘 Index/Set for DG alternatives of the same type 

𝑙/𝛺𝑙 Index/set for generation cost linearization 

𝑛/𝛺𝑛 Index/set of nodes 

𝑝/𝛺𝑝 Index/set for DG types  

𝑠/𝛺𝑠 Index/set for scenarios 

𝑠𝑠/𝛺𝑠𝑠 Index/set for substations  

𝑡/𝛺𝑡 Index/set for planning stages (t = 1, 2… T) 

𝑤/𝛺𝑤 Index/set for snapshots  

N1 DG investment pool in the first period 

N2 DG investment pool in the second period 

𝛺𝑐 Set of all network corridors 

𝜏/𝛺𝑃1;  𝜁/𝛺𝑃2 Indices/Sets of planning stages in periods P1 and P2, respectively 

Parameters 

𝑏𝑛𝑚 Susceptance of line 𝑛 −𝑚 (S) 
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𝑑𝑛,𝑠,𝑤,𝑡 Electricity demand at each node (MW) 

𝑓𝑛𝑚
𝑚𝑎𝑥 Flow limit of line 𝑛 − 𝑚 (MW) 

𝑔𝑛𝑚 Conductance of line 𝑛 − 𝑚 (S) 

𝑖 Discount rate (%) 

𝐸𝑅𝑝,𝑘
𝑁 , 𝐸𝑅𝑝,𝑘

𝐸   Emission rate of new or existing generator (tons/MWh) 

𝐸𝑅𝑠𝑠
𝑆𝑆 Emission rate at substation 𝑠𝑠 

𝐷𝑠,𝑤,𝑡   Total demand in the system for each scenario, snapshot and year (MW) 

𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤
𝐷𝐺   Maximum generation limits of existing or new DGs (MW), where 

𝐷𝐺 ∈ {𝐸, 𝑁} 

𝐺𝑚𝑖𝑛𝑝,𝑘,𝑠,𝑤
𝐷𝐺   Minimum generation limits of existing or new DG (MW), where 𝐷𝐺 ∈

{𝐸, 𝑁} 

𝐼𝐶𝑝,𝑘
𝑁  Investment cost of DG (€) 

𝐼𝑛𝑣𝐿𝑖𝑚𝑡    Maximum available budget for investment (€) 

𝐿 Number of piecewise linear segments 

𝑀𝑛𝑚 Big-M parameter corresponding to line 𝑛 − 𝑚 

𝑁𝑛 Number of nodes  

𝑁𝑆𝑆 Number of substations 

𝑀𝐶𝑝,𝑘
𝑁 , 𝑀𝐶𝑝,𝑘

𝐸   Annual maintenance cost of new or existing DGs (€) 

𝑇 Length of the planning horizon 

𝑇1 Length of the first investment period 

𝑇2 Length of the second investment period 

𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙 Nominal voltage of the system (kV) 

𝛼, 𝛽, 𝛾, 𝜉 Relevance factors of the cost terms 

𝜂𝑝,𝑘 Life-time of DG (years) 

𝜇𝑠,𝑤,𝑡
𝐸𝑀𝐼  Emission price (€/tons) 

𝜋𝑤 Weight associated to snapshot w (in hours) 

𝜌𝑠           Probability of scenario s 

𝜎𝑠𝑠,𝑠,𝑤,𝑡 Price of purchased electricity (€/MWh) 

𝜑 DG penetration limit (%) 

𝜐𝑠,𝑤,𝑡 Penalty for unserved energy (€/MWh) 

𝜅𝑠,𝑤,𝑡 Cost of losses (€/MWh) 

 

Variables and Functions 

𝑓𝑛𝑚,𝑠,𝑤,𝑡 Power flow through feeder 𝑛 − 𝑚 

𝑔𝑠𝑠,𝑠,𝑤,𝑡
𝑆𝑆  Power purchased from upstream (grid) 

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝐸 ,𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡

𝑁      Power generated by existing or new generator 

𝐸𝐶𝑡
𝑆𝑆 Expected NPV cost of purchased energy (€) 

𝐸𝐶𝑡
𝑁 , 𝐸𝐶𝑡

𝐸 Expected NPV cost of energy production using new and existing DGs (€) 

𝐸𝑀𝐶𝑡
𝐸, 𝐸𝑀𝐶𝑡

𝑁 Expected NPV emission cost of existing or new DGs (€) 
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𝐸𝑁𝑆𝐶𝑡 Expected NPV cost of unserved power (€) 

𝐼𝑛𝑣𝐶𝑡
𝑁 NPV investment cost of DGs (€) 

𝐿𝑜𝑠𝑠𝑡 Expected cost of network losses (€) 

𝑀𝑛𝑡𝐶𝑡
𝑁, 𝑀𝑛𝑡𝐶𝑡

𝐸 Expected NPV annual maintenance cost of new and existing DGs, 

respectively (€) 

𝑂𝐶𝑝,𝑘,𝑠,𝑛𝑤,𝑡
𝑁 , 𝑂𝐶𝑝,𝑘,𝑠,𝑛,𝑤,𝑡

𝐸  Cost of production using new or existing DGs (€/MWh) 

𝑢1𝑝,𝑘,𝑛,𝜏
𝐸  Binary variable for indicating the utilization of an existing generator in 

the 1st period 

𝑢2𝑝,𝑘,𝑛,𝑠,𝜁
𝐸  Binary variable for indicating the utilization of an existing generator in 

the 2nd period 

𝑥𝑝,𝑘,𝑛,𝑡
𝑁1  “Here and now” investment variable of DG (in the 1st period), 0 if not 

installed; otherwise, non-zero  

𝑥𝑥𝑝,𝑘,𝑛,𝑠,𝑡
𝑁1  “Wait and see” (Recourse) investment variable of DG (in the 2nd 

period), 0 if not installed; otherwise, non-zero  

𝑦𝑝,𝑘,𝑛,𝑠,𝑡
𝑁2  Investment variable of DG in the 2nd period, 0 if not installed; 

otherwise, non-zero 

𝑧𝑛𝑚 Binary utilization variable associated to line 𝑛 − 𝑚 

𝛿𝑛,𝑠,𝑤,𝑡 Unserved power (MW) 

𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝑡,𝑙
𝐸  SOS2 variable in generation cost curve linearization of existing DGs 

𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝑡,𝑙
𝑁1  SOS2 variable for piecewise linearization of generation cost curve of 

new DGs in the first pool 

𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝜁,𝑙
𝑁2  SOS2 variable for piecewise linearization of generation cost curve of 

new DGs in the second pool 

∆𝑉𝑛,𝑠,𝑤,𝑡 Voltage deviation at each node (kV) 

𝜃𝑛𝑚,𝑠,𝑤,𝑡 Voltage angle difference between nodes 𝑛 − 𝑚 (radians) 

 

Chapter 5 
 

Sets/Indices 

 

𝑔/𝛺𝑔/ 𝛺𝐷𝐺 Index/set of generators/DGs 

𝑘/𝛺𝑘 Index/set of branches 

𝑠/𝛺𝑠 Index/set of scenarios 

𝑡/𝛺𝑡 Index/set of time stages 

𝑤/𝛺𝑤 Index/set of snapshots 

𝜍/𝛺𝜍 Index/set of substations 

 

Parameters 

 𝐸𝑅𝑔
𝐸 , 𝐸𝑅𝑔

𝑁 , 𝐸𝑅𝜍
𝑆𝑆 Emission rates of existing and new DGs, and energy purchased, 

respectively (tCO2e/MWh) 
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𝐼𝐶𝑔,𝑖, 𝐼𝐶𝑘,   𝐼𝐶𝑡𝑟 ,  𝐼𝐶𝑒𝑠,𝑖 Investment cost of DG, line, transformer and energy storage, respectively 

(M€)  

𝐿𝑇𝑒𝑠 , 𝐿𝑇𝑔 , 𝐿𝑇𝑘 , 𝐿𝑇𝑡𝑟 Lifetimes of energy storage, DG, distribution line, and transformer 

system, respectively (years) 

𝑀𝐶𝑒𝑠
𝐸 , 𝑀𝐶𝑒𝑠

𝑁  Maintenance cost of existing / new storage per year (M€) 

𝑀𝐶𝑔
𝐸 , 𝑀𝐶𝑔

𝑁 Maintenance costs of existing and new DGs (M€/yr) 

𝑀𝐶𝑘
𝑁, 𝑀𝐶𝑘

𝐸 Maintenance cost of new and existing line (M€/yr) 

𝑀𝐶𝑡𝑟
𝑁 , 𝑀𝐶𝑡𝑟

𝐸  Maintenance cost of new/existing transformer per year (M€) 

 𝑂𝐶𝑔,𝑖,𝑠,𝑤,𝑡
𝐸 , 𝑂𝐶𝑔,𝑖,𝑠,𝑤,𝑡

𝑁  Operation cost of unit energy production by existing and new DGs 

(€/MWh) 

𝜂𝑐ℎ,𝑒𝑠, 𝜂𝑑𝑐ℎ,𝑒𝑠 Charging/discharging efficiency 

𝜆𝑠,𝑤,𝑡
𝐶𝑂2𝑒 Price of emissions (€/tons of CO2 equivalent) 

𝜆𝑠,𝑤,𝑡
𝑒𝑠  Variable cost of energy storage (€/MWh) 

𝜆𝑠,𝑤,𝑡
𝜍

 Price of electricity purchased (€/MWh)  

𝜇𝑒𝑠 Scaling factor 

𝜌𝑠, 𝜋𝑤 Probability of scenario s and weight (in hours) of snapshot group w 

𝜐𝑠,𝑤,𝑡 Penalty for unserved power (€/MW) 

 

Variables 

 

𝐷𝑠,𝑤,𝑡
𝑖  Active power demand at node i (MW) 

𝐸𝑒𝑠,𝑖,𝑠,𝑤,𝑡  Reservoir level of ESS (MWh) 

𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ , 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ  Charging/discharging indicator variables 

𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ , 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ  Charged/discharged power (MW) 

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸 , 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝑁  Active power produced by existing and new DGs (MW) 

𝑃𝑘,𝑠,𝑤,𝑡 Power flow through branch k (MW) 

𝑃𝜍,𝑠,𝑤,𝑡
𝑆𝑆  Active power imported from grid (MW) 

𝑢𝑔,𝑖,𝑡, 𝑢𝑘,𝑡 Utilization variables of existing DG and lines 

𝑥𝑔,𝑖,𝑡 , 𝑥𝑒𝑠,𝑖,𝑡 , 𝑥𝑘,𝑡 , 𝑥𝑡𝑟,𝑠𝑠,𝑡 Investment variables for DG, storage systems, transformer and 

distribution lines, respectively 

𝛿𝑖,𝑠,𝑤,𝑡 Unserved power at node i (MW) 

𝜑𝑘,𝑠,𝑤,𝑡 Losses associated to each feeder (MW) 

 

Functions 

 

𝐸𝐶𝑡
𝐷𝐺 Expected cost of energy from DGs (M€) 

𝐸𝐶𝑡
𝐸𝑆 Expected cost of energy from energy storage (M€) 

𝐸𝐶𝑡
𝑆𝑆 Expected cost of energy purchased from upstream (M€) 

𝐸𝑚𝑖𝐶𝑡
𝐷𝐺 Expected emission cost of DG power production (M€) 
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𝐸𝑚𝑖𝐶𝑡
𝑁 , 𝐸𝑚𝑖𝐶𝑡

𝐸 Expected emission cost of power production using new and existing DGs, 

respectively (M€) 

𝐸𝑚𝑖𝐶𝑡
𝑆𝑆 Expected emission cost of purchased power (M€) 

𝐸𝑁𝑆𝐶𝑡 Expected cost of unserved power (M€) 

𝐼𝑛𝑣𝐶𝑡
𝐷𝑁𝑆, 𝑀𝑛𝑡𝐶𝑡

𝐷𝑁𝑆 NPV investment/maintenance cost of DNS components (M€) 

 

Chapter 6 
 

Sets/Indices 

𝑐/Ω𝑐 Index/set of capacitor banks 

𝑒𝑠/Ω𝑒𝑠 Index/set of energy storages 

𝑖/Ω𝑖 Index/set of buses 

𝑔/Ω𝑔/ Ω𝐷𝐺 Index/set of DGs 

𝑘/Ω𝑘 Index/set of branches 

𝑠/Ω𝑠 Index/set of scenarios 

𝑡/Ω𝑡 Index/set of time stages 

𝑤/Ω𝑤 Index/set of snapshots 

𝜍/Ω𝜍 Index/set of substations 
 

Parameters 

𝐶𝑖𝑗 Cost of branch i-j  (€) 

𝐸𝑒𝑠,𝑖
𝑚𝑖𝑛 , 𝐸𝑒𝑠,𝑖

𝑚𝑎𝑥 Energy storage limits (MWh) 

𝐸𝑅𝑔
𝑁 , 𝐸𝑅𝑔

𝐸 , 𝐸𝑅𝜍
𝑆𝑆 Emission rates of new and existing DGs, and energy purchased at sub-

stations, respectively (tons of CO2 equivalent—tCO2e/MWh) 

𝑔𝑘, 𝑏𝑘, 𝑆𝑘
𝑚𝑎𝑥 Conductance, susceptance and flow limit of branch k (Ω, Ω, MVA) 

𝐼𝐶𝑔,𝑖, 𝐼𝐶𝑘, 𝐼𝐶𝑒𝑠,𝑖 , 𝐼𝐶𝑐,𝑖 Investment cost of DG, line, energy storage system and capacitor banks, 

respectively  (€)  

𝐿 Total number of linear segments (€) 

𝐿𝑇𝑔, 𝐿𝑇𝑘 , 𝐿𝑇𝑒𝑠,𝐿𝑇𝑐 Lifetimes of DG, line, energy storage system and capacitor banks, 

respectively (years) 

𝑀𝐶𝑐, 𝑀𝐶𝑒𝑠 Maintenance cost of capacitor bank and energy storage system per year 

(€) 

𝑀𝐶𝑔
𝑁, 𝑀𝐶𝑔

𝐸 Maintenance costs of new and existing DGs per year (€) 

𝑀𝐶𝑘
𝑁, 𝑀𝐶𝑘

𝐸 Maintenance costs of new and existing branch k per year (€) 

𝑀𝑃𝑘 , 𝑀𝑄𝑘 Big-M parameters associated to active and reactive power flows through 

branch k, respectively (€) 

𝑁𝑖 , 𝑁𝜍 Number of buses and substations, respectively 

𝑂𝐶𝑔,𝑖,𝑠,𝑤,𝑡
𝑁 , 𝑂𝐶𝑔,𝑖,𝑠,𝑤,𝑡

𝐸  Operation cost of unit energy production by new and existing DGs 

(€/MWh) 

𝑃𝑒𝑠,𝑖
𝑐ℎ,𝑚𝑎𝑥 , 𝑃𝑒𝑠,𝑖

𝑑𝑐ℎ,𝑚𝑎𝑥 Charging and discharging power limits of a storage system (MW) 
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𝑃𝑠𝑜𝑙,ℎ Hourly solar PV output (MW) 

𝑃𝑟 Rated power of a DG unit (MW) 

𝑃𝑤𝑛𝑑,ℎ Hourly wind power output (MW) 

𝑄𝑐
0 Rating of minimum capacitor bank  

𝑅𝑐 A certain radiation point (often taken to be 150 W/m2) 

𝑅ℎ Hourly solar radiation (W/m2) 

𝑟𝑘, 𝑥𝑘 Resistance and reactance of branch k, respectively 

𝑅𝑠𝑡𝑑 Solar radiation in standard condition (usually set to 1000 W/m2) 

𝑣𝑐𝑖 Cut-in wind speed (m/s) 

𝑣𝑐𝑜 Cut-out wind speed (m/s) 
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Chapter 1 

Introduction 
 

1.1 Background 

Electrical energy is one of the most important factors in today's modern societies, specifically 

the relationship with a complex energy system that eases transportation, allows the 

manufacture of consumer products and facilitates the dissemination of information and 

knowledge through the media. The energy in modern societies provides comfort, well-being, 

security and leisure to the society. 

The vast majority of the energy consumed today in the societies comes from non-sustainable 

energy sources, also called conventional energy sources. Conventional energy sources 

constitute fossil fuels such as coal, natural gas and refined petroleum products and nuclear 

power. Only a small part of the energy produced in the world comes from renewables, often 

called unconventional energy sources.  

Renewable energy sources (RESs) include solar, hydro, wind, biomass, geothermal power or 

tidal energy. The fact that most of the energy used nowadays comes from conventional 

sources raises several concerns, especially in relation to energy dependence, security, 

affordability and sustainability. Such concerns are leading to the current perspective of  

large-scale RES integration, which is one of the most important trends in the electrical 

systems around the world. 

RESs have enormous potential because, in principle, they can meet several times the world’s 

energy demand [1]. They can provide sustainable energy services because of the vast 

availability of such resources, wide-spread across the globe. Thus, it is now widely recognized 

that the integration of RESs brings a lot of benefits to all electric system stakeholders from 

economic, environmental, social and/or technical perspectives.  

RES integration can increase the electricity markets diversification, contributing to the 

realization of a long-term sustainable energy strategy, and the much needed reduction of 

GHG emissions locally and globally by reducing the carbon footprint of power generation using 

conventional means. 

Generally, there is a global consensus on climate change mitigation and limiting GHG 

emissions that along with energy dependence, security and other structural issues are forcing 

states to create new market policies and introduce new energy policies (policies related to 

RES, in particular) that support the development and utilization of RESs. 
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The integration of RESs in electrical systems (particularly, at distribution levels) is expected 

to accelerate as a result of the agreements of several countries [2] to limit the emissions and 

mitigate climate change. The level of distributed generation (DG) introduced in distribution 

systems follows an upward trend, and it is generally acknowledged that DGs will contribute 

immensely to the effort of resolving most of the aforementioned concerns both globally and 

locally, including the realization of RES integration goals set forth by different entities [3]. 

The availability of several mature DG technologies and their decreasing trend of costs, along 

with the complicated nature of building new transmission lines, the increasing demand for 

greater reliability of supply, among others, has encouraged significant investment in DGs 

(particularly in the renewable type, such as wind and solar). 

As already mentioned, the integration of RESs in power systems has been growing since 2005 

in a gradual and sustainable manner [4]. So far, the renewable energy investment targets, 

including climate change policies and improved cost-competitiveness, have been sufficient to 

allow the steady growth of global electricity production share of RESs at the expense of 

polluting power sources. A very high renewable investment was recorded in 2011 buoyed by 

the different initiatives such as "green stimulus" in Germany and Italians’ solar roofs [3]. 

However, in 2015, RES investment showed a 5% increase compared to 2014 as shown in 

Figure 1.1. It can be seen in Figure 1.1 that the total investment in 2015 was six times the 

value recorded in 2004. For the first time in 2015, the amount of investment increased and 

overall RES generation capacity added in developing countries exceeded that of the 

developed economies [1]. The developing countries that contributed most to such a 

significant increase were China, India and Brazil, whose combined investment surged by 19% 

compared to 2014. In particular, China contributed most (approximately 17%) to this 

achievement, by aggressively investing in renewables. In India and Brazil, the net increases in 

RES investment in 2015 with reference to 2014 are over 22% and 10%, respectively. 

 

 

Figure 1.1 - Global overview of new investments in renewable energy [1]. 
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The developing countries that contributed most to such a significant increase were China, 

India and Brazil, whose combined investment surged by 19% compared to 2014. In particular, 

China contributed most (approximately 17%) to this achievement, by aggressively investing in 

renewables. In India and Brazil, the net increases in RES investment in 2015 with reference to 

2014 are over 22% and 10%, respectively. Other countries that also made significant 

investments in 2015 were South Africa (329% compared to 2014) as well as Mexico and Chile 

whose investments in 2015 increased by 105% and 151% compared to 2014, respectively.  

All together, they are the top 10 countries that have invested more in renewable energy in 

2015 along with Morocco, Uruguay, the Philippines, Pakistan and Honduras. Investments can 

be clearly seen in Figure 1.2, which shows the renewable investment trajectories by country 

and/or region. In comparison, RES investments in Europe fell by 21%, despite the wind energy 

financing record of 17 billion US dollars, an increase of 11%. In the United States, investments 

increased by 19%, two thirds of which were in solar energy. 

Among the several renewable energy types, the one that saw significant growth was the 

large-scale hydro. However, excluding this one, it can be seen that from all renewable energy 

sources, wind and solar were the ones that attracted the highest investments in 2015 

(constituting 62 and 56 GW of new installed capacity, respectively), well above the 2014 

values. In Figure 1.3, one can see the new investments in renewable energy by sector, and it 

appears that, for the first time, investment in solar energy was higher than that of any other 

renewable type (excluding large-scale hydro). 

In 2015, although there was a new record, the generation capacity (Figure 1.4) added is far 

from what would be desired to address the current global challenges, mentioned earlier.  

The United Nations conference in Paris on climate change, known as COP21, generated an 

unprecedented agreement among 195 countries to achieve zero emissions in the second half 

of the century [2]. Thus, the large-scale integration of renewable energy sources (especially, 

in distribution systems) will require significant investments in infrastructures. 

Figure 1.2 – Global overview of investments in renewables by region [1]. 
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Figure 1.3 – New investments in renewable energy by sector (in billions of US dollars) [5]. 

 

 

Figure 1.4 – Renewable power generation capacity as a share of global power [1]. 
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Hence, such a high-level integration effort is likely to be supported by certain smart-grid 

technologies and concepts that have the capability to enhance the flexibility of the entire 

distribution systems. Energy Storage Systems (ESSs) can play a vital role in integrating 

variable energy sources. In addition, a dynamic Reconfiguration of Distribution Systems (RDS) 

can be very important because it can considerably enhance the flexibility of the system and 

voltage profiles, thereby increasing chances of accommodating large-scale RES power. 

 

1.2 Research Motivation and Problem Definition 

As demonstrated in the background, RESs make a crucial part of the solution for 

environmental sustainability; hence, they will play an important role in power systems. The 

integration of RESs should, in principle, reduce the risk of fuel price volatility and geopolitical 

pressures and ensure that these do not pose a significant impact on the overall public 

welfare. However, large-scale penetration of RESs will necessarily involve a process of 

adapting and changing the existing infrastructure because of their intrinsic characteristics, 

such as intermittency and variability.  

The growing need for intermittent RESs, in conjunction with the electrical mix changes in the 

long-term, will probably affect the distribution and transmission systems. In this context, a 

change in power generation options, resulting from a high contribution of RESs, may require 

network grid updates. Regulatory agencies are heavily committed to increasing RES 

integration, not only due to environmental but also technical and economic reasons, as 

explained in the previous section.  

The main challenge with most RESs is their inherent variability and uncertainty, making 

operation, control and planning very complicated. DG penetration increases the variation of 

voltage and current in the network. Hence, increasing DG penetration may have a negative or 

a positive impact depending on various factors such as the size of the system and the loads 

type, requiring comprehensive modeling and simulations to assess its impact. If not properly 

planned, this may lead to an uncertain increase in the feeders’ power flows, resulting in 

network congestion and increased losses in the network. It is in this context that the first two 

problems, addressed in this thesis, appear.  

The integration of smart-grid enabling technologies has the capability to alleviate the 

negative consequences of large-scale integration of DGs. In other words, in order to facilitate 

(speed up) the much-needed transformation of conventional (passive) Distribution Network 

Systems (DNSs) and support large-scale RES integration, different smart-grid enabling 

technologies such as reactive power sources, advanced switching and storage devices are 

expected to be massively deployed in the short-term. 
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The integration of Energy Storage Systems (ESSs) along with RESs has become one of the most 

viable solutions to facilitate the increased penetration of DG resources. Energy storage 

systems “level” the mismatch between renewable power generation and demand. This is 

because these devices store energy during periods of low electricity demand (price) or high 

RES power production, and then release it during periods of peak demand and low RES 

production. Therefore, in addition to their technical support to the system, ESSs bring 

substantial benefits for end-users and DG owners through reliability and power quality 

improvement as well as cost reduction. Besides, ESSs are being developed and applied in 

power grids to cope with a number of issues such as smoothing the energy output from RESs 

and improving the stability of the electrical system. ESSs also increase savings during peak 

hours and minimize the impact of intermittent generation sources, leading to a more efficient 

management of the integrated system. Despite the high capital costs of many ESS 

technologies, their deployment in distribution systems is in the upward trend. Cost-cutting 

and the strong need of integrating RES-based DGs is expected to push the demand for the 

simultaneous deployment of ESSs in distribution network systems. In other words, distributed 

ESSs will increase dramatically in the years to come. Hence, proper planning of such systems 

is crucial for a healthy operation of the system as a whole.  

Electrical distribution systems are interconnected by switches but predominantly operated 

radially. These switches are often used for emergency purposes such as to evade load 

curtailment during fault cases. However, the system can be reconfigured to find the best 

topology that minimizes power losses in the system and improve operational performance. 

This in turn improves the flexibility in the system, which may help to accommodate (absorb) 

more variable power. Investigating the capability of network switching and/or expansion 

along with ESS deployment in RES integration level is another problem addressed in this 

thesis. Generally, this thesis develops strategies, methods and tools that are very crucial to 

guide such a complex decision-making process, i.e. maximizing the penetration level of RESs 

in DNSs without jeopardizing the power quality, system stability and integrity. 

 

1.3 Research Questions, Objectives and Contributions of the 
Thesis 

This thesis presents a comprehensive analysis of DG investment planning decisions 

(renewables in particular). New analysis tools and methods are developed in this thesis that 

take into account the operational variability and uncertainty associated with the RES power 

generation along with the integration of smart-grid enabling technologies. The ultimate aim 

of all this is to enable existing systems to accommodate large-scale variable energy sources 

(wind and solar type DGs in particular) while maintaining the power quality and system 

stability at the required/standard levels at a minimum possible cost.  
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In particular, the following research questions are addressed: 

 What is the current status of RES penetration across the world (with a special focus 

at distribution levels)? What are the main impeding factors for RES integration?  

How can the potential benefits of RESs be reaped without significant negative 

consequences? 

 What are the parameters of uncertainty and/or variability that most influence the 

decision-making process in terms of investment solutions in DGs (especially, 

renewables)? 

 How should different sources of uncertainty be modeled in the complex decision-

making problem concerning DG investment planning?  

 From a quantitative and qualitative point of view, what are the impacts of network 

switching and/or reinforcement, as well as deployment of ESSs on the level of 

renewable power integrated in the system? 

 How can the penetration of renewable energy sources in the power distribution 

system be maximized with currently available technologies? 

o What is the effect of reactive power support capability on the RES-based DG 

integration level? 

o What are the implications of integrating smart-grid enabling technologies in 

the distribution systems with respect to maximizing RES integration, 

reducing energy losses, costs and improving voltage profiles? 

 

The main objectives of this thesis are: 

 To carry out a state-of-the-art review on the current status of RES penetration across 

the world (with a particular focus at distribution levels), their economic aspects, 

current integration challenges and future prospects, and other related issues.  

 To develop appropriate optimization models and methods for planning distribution 

systems under uncertainty and large-scale penetration of variable energy sources.  

 To perform a comprehensive analysis with the aim of identifying the stochastic 

parameters that most influence the decision-making process in terms of investment 

solutions in DGs (especially, renewables). 

 To develop methods for handling the most significant sources of uncertainty in the 

complex decision-making problem concerning DG investment planning. 
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 To investigate the impacts of network switching and/or reinforcement, as well as 

deployment of ESSs on the level of renewable power integrated in the system. 

 To develop mechanisms for maximizing the penetration level of variable energy 

sources in the power distribution systems with the help of currently available 

technologies. 

 To optimally deploy smart-grid enabling technologies in the distribution systems, and 

investigate the implications in terms of RES-based integration level and overall 

system performance. 

 

The contributions of this thesis (all already published in prestigious venues) are summarized 

as follows: 

 An overview on RESs and the underlying issues related to the RES theme such as 

climate change and its mitigation, RES characteristics and technological aspects, the 

most important economic aspects as well as the challenges and opportunities of 

integrating RESs in power systems. This contribution is published in the form of a 

Book Chapter in ELSEVIER [6]. 

 The development of an improved multi-stage and multi-scenario DG investment 

planning mathematical formulation that investigates the effect of uncertainty and 

operational variability on DG investment solutions. This contribution is published in 

the IEEE Transactions on Sustainable Energy [7]. 

 The development of a two-period planning framework that combines both robust 

short-term and strategic medium to long-term decisions in dynamic and stochastic DG 

investment problems. This contribution is published in the IEEE Transactions on 

Sustainable Energy [8]. 

 The development of a multi-stage and stochastic model, which considers 

simultaneous integration of ESSs and RES-based DGs as well as network 

reconfiguration/reinforcement. This contribution is published in Applied Energy – 

ELSEVIER [9]. 

 The presentation of a novel approach which simultaneously considers the optimal 

sizing, time and placement integration of smart-grid enabling technologies to support 

a large-scale RES-based DG integration. A comprehensive analysis of considering RES 

based DGs with and without reactive power support capabilities is also included.  

This contribution is published in the IEEE Transactions on Sustainable Energy,  

Part I [10] and Part II [11]. 
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1.4 Methodology 

The mathematical models developed in this thesis are based on well-established methods, 

namely, mixed-integer linear programming (MILP), multi-objective optimization and  

two-period stochastic programming. In order to achieve the main research objective, beyond 

simulation models, this thesis develops methods and solution strategies to analyze the 

expansion planning of DNSs under uncertainty, and a dramatically changing power generation 

scheme over time.  

The proposed optimization models and the solutions strategies are implemented in GAMS© 

and solved in most cases using the CPLEX™ algorithm, mostly by invoking default parameters. 

The clustering methodology is implemented in the MATLAB© programming environment, and 

Visual Basic™ with Excel© used as an interface for this purpose.  

 

1.5 Notation 

The present thesis uses the notation commonly used in the scientific literature, harmonizing 

the common aspects in all sections, wherever possible. However, whenever necessary, in 

each section, a suitable notation may be used. The mathematical formulas will be identified 

with reference to the subsection in which they appear and not in a sequential manner 

throughout the thesis, restarting them whenever a new section or subsection is created. 

Moreover, figures and tables will be identified with reference to the section in which they are 

inserted and not in a sequential manner throughout the thesis.  

Mathematical formulas are identified by parentheses (x.x.x) and called “Equation (x.x.x)” and 

references are identified by square brackets [xx]. The acronyms used in this thesis are 

structured under synthesis of names and technical information coming from both the 

Portuguese or English languages, as accepted in the technical and scientific community. 

 

1.6 Organization of the Thesis 
 

The thesis comprises seven chapters which are organized as follows: 

Chapter 1 is the introductory chapter of the thesis. First, the background of the thesis is 

presented. Then, the research motivations and the problem definition are provided. 

Subsequently, the research questions and contributions of this thesis are presented. Then, the 

methodology used throughout the thesis is introduced, followed by the adopted notations. 

Finally, the chapter concludes by outlining the structure of the thesis. 
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In Chapter 2, a comprehensive overview of RES is presented. First, RESs are framed in the 

climate change perspective, followed by a renewable energy trend. Then, the green energy 

production options are presented and the individual characterization in recent years of each 

one is made jointly with the respective technologies. Subsequently, the most important 

economic aspects on RESs to be considered when investing in this type of technology are 

presented. Finally, the benefits and RES integration barriers as well the present/future 

perspectives are discussed. 

In Chapter 3, a DG investment planning model is formulated as a novel multi-stage and  

multi-scenario optimization problem, in order to perform a comprehensive sensitivity analysis 

and identify the uncertain parameters which significantly influence the decision-making in 

distributed generation investments and quantify their degree of influence. A real–world 

distribution network system is used to carry out the analysis.  

Taking the findings of the analysis in Chapter 3 as input, a detailed model is developed to 

guide the complex decisions-making process of DG investment planning in distribution system 

in the face of uncertainty. This is presented in Chapter 4. The problem is formulated from a 

coordinated system planning viewpoint, in which the net present value of costs rated to 

losses, emission, operation and maintenance, as well as the cost of unserved energy are 

simultaneously minimized. The formulation is anchored on a two-period planning horizon, 

each having multiple stages. The operational variability and uncertainty introduced by 

intermittent generation sources, electricity demand, emission prices, demand growth and 

others are accounted for via probabilistic and stochastic methods, respectively. Metrics such 

as cost of ignoring uncertainty and value of perfect information are used to clearly 

demonstrate the benefits of the proposed stochastic model. 

Chapter 5 presents a novel mechanism to quantify the impacts of network switching and/or 

reinforcement as well as deployment of ESSs on the level of renewable power integrated in 

the system. To carry out this analysis, a dynamic and multi-objective stochastic mixed integer 

linear programming (S-MILP) model is developed, which jointly takes the optimal deployment 

of RES-based DGs and ESSs into account in coordination with distribution network 

reinforcement and/or reconfiguration.  

A new multi-stage and stochastic mathematical model, developed to support the decision-

making process of planning distribution network systems (DNSs) for integrating large-scale 

“clean” energy sources is presented in Chapter 6. Another aim of this chapter is to examine 

the theoretical aspects and mathematical formulation in a comprehensive manner.  

The proposed model is formulated from the system operator’s viewpoint, and determines the 

optimal sizing, timing and placement of distributed energy technologies (particularly, 

renewables) in coordination with some enabling technologies. Moreover, heuristic strategies 

for reducing the combinatorial solution search space in relation to the optimal placement of 

DGs, ESSs and reactive power sources are investigated. 
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Chapter 7 presents the main conclusions of this work. Guidelines for future works in these 

fields of research are provided. Moreover, this chapter reports the scientific contributions 

that resulted from this research work and that have been published in journals with high 

impact factor (first quartile), as book chapters or in conference proceedings of high standard 

(IEEE). 
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Chapter 2 

Renewable Energy Systems: An Overview 
 

 

This chapter aspires to provide an overview of RESs and the underlying issues related to the 

RESs theme such as climate change and its mitigation. The types of RESs are also briefly 

discussed focusing on their characteristics and technological aspects. This is followed by the 

most important economic aspects as well as the challenges and opportunities of integrating 

RESs in power systems. All this leads to an efficient exploitation of their wide-range benefits 

while sufficiently minimizing their negative impacts. Finally, the chapter is summarized with 

some concluding remarks. 

 

2.1 Introduction 

All societies need energy services to satisfy their needs (such as cooking, lighting, heating, 

communications, etc.) and to support productive services. In order to secure sustainable 

development, the delivery of energy services needs to be safe and cause low environmental 

impacts [12]–[14].  

Social sustainability and economic development require security and easy access to energy 

resources, which are indispensable to promote sustainable energy and essential services.  

This means applying different strategies at different levels to revamp economic development. 

To be environmentally benign, energy services should provoke low environmental impacts, 

including greenhouse gas (GHG) emissions. 

According to the study in [3], fossil fuels are still the main primary energy sources. A major 

revolution is required in how energy is produced and used in order to preserve a sustainable 

economy capable of providing the required public services (both in developed and developing 

countries), and laying effective support mechanisms to climate change mitigation and 

adaptation efforts [15]. 

A major concern in both developed and developing countries, including emerging economies, 

is that without having abundant and accessible energy sources, it is not possible to maintain 

the current paradigm in the medium and long term, from an economic point of view.  

In accordance with the International Energy Agency (IEA) reference scenario, the primary 

global energy consumption will grow between 40% and 50% until 2030, at an annual average 

rate of 1.6%. Without a major paradigm shift in energy policies throughout the world, fossil 

fuels are still expected to cover about 83% of the increase in demand [3]. 
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The reasons for this strong growth are essentially two: the continuous increase in world 

population and the economic convergence between developed and developing countries, 

especially with emerging economies such as India and China that are leading the economic 

recovery from the recent global economic crisis, and becoming the major consumers of  

non-renewable energy sources. This change must be answered with structural measures, such 

as by putting a real monetary value to energy. Some of the promising solutions are 

accelerating renewable energy integration, promoting energy efficiency and supporting 

transport systems modernization. This can be achieved by promoting more transparent 

markets to flourish and creating an enabling environment for competition in all sectors of the 

economy and energy production [16]. 

The sustainability of energy systems is now an important factor for socio-economic 

development. Sustainability depends on three major components (as schematically 

demonstrated in Figure 2.1): i) the security of access to energy, ii) the accessibility of 

services and iii) environmental compatibility. Changing the energy scenario presents itself as 

a huge challenge whose solution ultimately depends on the political will of governing bodies 

to make the necessary investments on a global scale. In the medium and long term horizon, 

investment decisions will affect the cost and the environmental impacts of infrastructures. 

Most likely, the energy supply will be the main factor of possible models for future 

development at global, regional and national levels.  

 

 

Figure 2.1 - Sustainability in the electricity sector [17]. 
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2.2 Clime Change 

GHG emissions associated with energy services are the major causes of climate change.  

The report in [3] indicates that “most of the observed increase in global average temperature 

since the mid-20th century is very likely due to the observed increase in anthropogenic 

greenhouse gas concentrations”.  

The carbon dioxide (CO2) concentrations have grown continuously to about 390 ppm of CO2 in 

2010, a 39% increase since pre-industrial levels [18]. The global average temperature 

increased by 0.76 ºC (from 0.57 °C to 0.95 °C) between 1850 and 1899. And, between 2001 

and 2015, the warming trend has increased significantly. Note that forest abatement, fires, 

and the release of non-CO2 gases from industry, trade and agriculture also contribute to 

global warming [18]. Moreover, all indicators show that there will be a significant increase in 

demand for primary energy during the twenty-first century [18].  

The emission rates are also expected to substantially exceed the natural removal rates, 

causing a continuous increase in GHG concentrations in the atmosphere, and consequently the 

rise in average global temperature. The Cancun agreement [19] appeals to reduce GHG 

emissions and limit the global average temperature rise below 2°C, taking the pre-industrial 

value as a reference. It has recently been agreed on to a target level of 1.5°C in the average 

temperature rise. 

Historically, developed countries are the main contributors to global GHG emissions, and 

continue to have the highest total history of per capita emissions [20]. In recent years, GHG 

emissions in most developing countries have been increasing, currently covering more than 

half of the total emissions. For instance, the total annual emissions in China surpassed that of 

the USA in recent years [20]. 

However, the latest climate conference, COP-21 (UN climate conference) in Paris [21], brings 

hope for the fight against climate change where, for the first time, representatives of almost 

every country in the world convened together in an effort to reduce emissions and counter 

the effects of global warming.  

The Paris Agreement, which will take effect after 2020, underscores the fact that the 

participation of all nations – not just rich countries – is crucial to combat climate change.  

On the whole, 195 member countries of the UN Climate Convention and the European Union 

have ratified the document [21].  

The long-term goal of the agreement is to keep global warming "well below 2°C." This is the 

point in which scientists argue that the planet is doomed to a future of no return, leading to 

devastating effects such as rising sea levels, extreme weather events (droughts, storms and 

floods), and lack of water and food. 
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2.3 Renewable Energy Trend 

An increase in an overall world trend in the awareness of climate change and the need for 

mitigation efforts is bringing forth huge increase in the deployment of renewable energy in 

comparison to fossil fuel energy sources. The landmark that signals the dawning of this 

renewable age goes hand in hand with the degree of advancement in technologies and a 

higher degree of RES penetration, which is being achieved around the world. Furthermore, 

there are several driving factors for these remarkable growths among which are favorable 

government support policy and increasing competitiveness in costs. After several decades of 

efforts in research and continuous development in RES, the yearly growth in the capacity of 

these plants is becoming greater than the total investment capacity added in power plants 

based on coal, natural gas and oil all combined together [22]. Nowadays, RESs have reached a 

significant level of share in energy supply options, becoming one of the prominent global 

alternative power supply sources. This trend will continue increasing at faster rates as long as 

the world’s desire for industrial scale clean energy sources is on the higher side [3].  

The latest global trends in renewable energy investment status reports indicate that, 

renewables represented a 58.5% of net additions to global power capacity in 2014, with 

significant growth in all regions, which represents an estimated 27.7% of the world’s power 

generating capacity, enough to supply an estimated 22.8% of global electricity. Wind, solar 

and biomass power generations reached an estimated 9.1% of the world’s electricity in 2014, 

up from 8.5% in 2013. According to renewables status report [23], the overall cost-cutting 

achieved to date helped to ensure such a strong momentum in 2014, reaching an investment 

boom up to 29% in solar, and 11% in wind technologies, and geothermal managing to raise 

23%. Further cuts in the cost of generation for both solar and wind look to be on the cards in 

2015 [23]. The report on global renewable energy 2015 [23] also indicates the continued 

growth of RES participation in parallel proportion with the energy consumption and the falling 

oil prices. In addition, issues related to the untapped RES potentials indicate that it still 

requires a growing effort in pursuing innovative approaches to increase its participation in 

order to guarantee a clean energy future. Concerning the regional expansion of RES 

utilization, such growth scheme is not limited to the industrialized regions, but also an 

increasing number of developing countries are even becoming important manufacturers and 

installers of this fashionable energy source.  

Another essential growth trend currently being observed, which is worth mentioning here, is 

the diversity of applications of the renewable sources. The use of renewables is no more 

limited to the power generation only, but its use is expanding in heat related and 

transpiration applications. In this regard, several supporting technologies like heat supply and 

storage systems are helping flourish the deployment of these important energy resources 

across many countries. Also, a significant contribution to the world transport sector is being 

promoted with an increased share in the use of Ethanol and Biodiesel in combination with 

fossil fuels.   
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In relation to the job creation opportunities, renewable energy employment continues 

expanding, which according to IRENA [24], in 2014 an estimated 7.7 million people are 

working directly or indirectly in this sector. Also, concerning government policies, the number 

of countries, states and provinces which adopted renewable policies and targets tripled since 

2004. Regarding investment mechanisms, innovative approaches have been introduced like in 

the case of Asian investment banks, representing a new investment vehicles for renewable 

energy projects such as green bonds, yield companies, and crowd funding which have 

attached new classes of capital providers and are helping to reduce the cost of capital for 

financing renewable energy projects [23]. As a result, the investment flow in renewables has 

outpaced fossil fuels for five consecutive years in all regions.   

According to the global status report [23], currently, there is no systematic linkage between 

the so called renewable energy twin pillars: the renewable energy sources and energy 

efficiency, in technical as well as policy wise.   

 

2.4 Green Energy Production Options 

A major change in the energy sector between 2014 and 2015 has been the rapid fall of oil 

prices, as well as natural gas and coal but not so drastically. After an extensive period of 

stable high oil price, it has been falling from more than $ 100 until the middle of 2014 to a 

level below 50 dollars at the beginning of 2015 [24]. In 2016, further fall is observed, and as it 

stands now the price of oil oscillates around 50 dollars /barrel. 

Renewable technologies are becoming increasingly competitive in a number of countries but 

government support is still needed to enhance the development of these schemes in many 

other countries. The capacity increase of base renewable generation is estimated to be  

128 GW in 2014 (Table 2.1), out of which 37% is related to wind, nearly a third to solar energy 

and more than one quarter to hydropower [20] (see in Figure. 2.2). The growth in installed 

wind power capacity has been developed mainly onshore, but offshore wind development has 

also shown substantial. China continues to have the largest wind power market with a 20 GW 

installed capacity. Germany stands second by installing more than 5 GW of wind power, while 

the wind capacity added in the US was at a very low level in 2013 and 2014, standing at 

almost 5 GW [25]. The solar photovoltaic (PV) was greatly expanded in Asia, especially in 

China and Japan. In Japan, the expansion is supported by generous feed-in tariffs. The low 

price of oil proves to be a challenge for other forms of renewable energy, including biofuels 

for transport and renewable based heating system, as the latter directly competes with 

natural gas based heating (whose price is still, in many cases, linked to the oil price). 

Although biofuels face challenges stemming from lower oil prices, some other developments 

served to improve their prospects.  
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Table 2.1 - Renewable Electric Power Capacity (Top Regions/Countries in 2013) [20] 

TECHNOLOGY 
WORLD 

EU-
28 

BRICS CHINA 
UNITED 
STATES 

GERMANY SPAIN ITALY INDIA 

(GW) 
Wind Power 318 117 115 91 61 34 23 8.6 20 

Solar Energy PV 139 80 21 19.9 12.1 36 5.6 17.6 2.2 

Solar Energy CSP 3.4 2.3 0.1 ~0 0.9 ~0 2.3 ~0 0.1 

Geothermal 12 1 0.1 ~0 3.4 ~0 0 0.9 0 

Hydropower 1,000 124 437 260 78 5.6 17.1 18.3 44 

Bioenergy 88 35 24 6.2 15.8 8.1 1 4 4.4 

Ocean Power 0.5 0.2 ~0 ~0 ~0 0 ~0 0 0 

Total Renewable 

Power Capacity 
560 235 162 118 93 78 32 31 27 

 

 

 
a) b) 

Figure 2.2 - a) Average Annual Growth Rates of Renewables (2008 – 2013); b) Global Electricity 

Production (2013) [20]. 

 

For instance, to overcome the current dark prospects of biofuels in Brazil, the government 

increased the ethanol rate of mixture from 25% to 27% and from 5% in biodiesel to 7%, and 

increased gasoline taxes, while Argentina and Indonesia have increased their biofuels 

mandates [20]. A long period of low oil prices could result in neglecting the promotion of 

energy efficiency and instead returning to wasteful consumption. However, there is no 

evidence to date that this has occurred [22]. 

 

2.4.1 Wind Energy 

Wind power has been used for thousands of years in a variety of applications. Wind energy 

can be transformed into mechanical energy or electricity. But wind power remained in the 

background in detriment of other fuels for various technical, social and economic reasons. It 

was the oil crisis in the 1970s, which led to a renewed interest in wind power technology 

especially for electricity generation connected to the grid, to pump water and to provide 

power in remote areas. 



18 
 

The technical potential of wind power to serve the energy needs is immense. Although wind 

resource varies around the globe, there is enough potential in most regions to support high 

levels of wind power generation. Wind resources are not a barrier to the global expansion of 

this technology in the coming decades. New wind power technologies have contributed to 

significant advances in wind power penetration. In a general perspective, the global wind 

power capacity has been increasing [26], smoothly from 2000 to 2006, and in a more 

accentuated way from 2007 to 2013 as shown in Figure 2.3. More than 51 GW of wind power 

were added to the power systems, representing a 44% increase compared to 2013, making an 

overall contribution of approximately 370 GW to the energy production mix, as shown in 

Table 2.2. The top 10 countries accounted for 84% of the installed capacity in the world at 

the end of 2013, but there are dynamic and emerging markets in most regions [20]. 

 

Table 2.2 - Wind Power Global Capacity and Additions [20] 

COUNTRY 
TOTAL END 2012  ADDED 2013  TOTAL END 2013 

(GW) (GW)  (GW) 

China 60.8/75.3 14.1/16.1 75.5/91.4 

United States 60.0 1.1 61.1 

Germany 31.3 3.2/3.6 34.3/34.7 

Spain 22.8 0.2 23 

India 18.4 1.7 20.2 

United Kingdom 8.6 1.9 10.5 

Italy 8.1 0.4 8.6 

France 7.6 0.6 8.3 

Canada 6.3 1.6 7.8 

Denmark 4.2 0.7 4.8 

Rest of World 41 7 48 

World Total 283 35 318 

 

 

 

Figure 2.3 - Wind power total world capacity (2000-2013) [26] . 
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In continental terms, Asia is the one that have successively grown in recent years and holds 

half of the new capacity added, followed by the European Union in Europe (23% in 2014, 

compared with about 32% in 2013) and North America, which has grown by 13% in 2014, an 8% 

less compared with 2013. From Table 2.2, it can be seen that only China accommodates 45% 

of the new wind added globally, followed by Germany, United States and India. Other 

countries in the top 10 are Canada, UK, Sweden, France and Denmark. Growth in some of the 

major markets was driven by uncertainty about future policy changes. 

The significant wind power growth is due to the continuous technological advances and 

relative maturity, supporting mechanisms and incentive packages, favorable policy, 

continuously falling capital costs among others. Table 2.3 shows the main wind power 

generation technologies, their technical characteristics and associated costs. The three main 

turbine types are classified by their sizes and deployment site (onshore or offshore). For each 

technology, two types of capital costs are shown in US dollars per kW and the typical costs of 

energy production in US cents per kWh.  

 

2.4.2 Solar Energy 

 

2.4.2.1. Solar PV 

Solar energy is the main and largely inexhaustible source of energy for most countries [15]. In 

recent years, the deployment of PV has been breaking records year after year. After nearly a 

stagnated period, it has steadily grown to be one of the leading technologies in terms of 

installed capacity. More than 39 GW has been added in 2013, bringing the total installed 

capacity to over 139 GW in this technology by 2013.  

 

 

Table 2.3 - Wind Power Generation Technologies [20] 

TECHNOLOGY TYPICAL CHARACTERISTICS 
CAPITAL COSTS 

(USD/kW) 

Wind Onshore 
Turbine size: 1.5-3.5 MW 

Capacity factor: 25-40% 

925-1,470 (China and India) 

1,500-1,950 (elsewhere) 

Wind Offshore 
Turbine size: 1.5-7.5 MW 

Capacity factor: 35-45% 

4,500-5,500 (Global) 

2,250-6,250 (OCDE) 

Wind 

Onshore 

Small-scale 

Turbine size: up to 100 kW 

Average: 

0.85 kW (Global) 

0.5 kW (China) 

1.4 kW (United States) 

4.7 kW (United Kingdom) 

2,300-10,000(United States) 

1,900 (China) 

5,870 (United Kingdom) 
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There has been a geographical shift of the biggest installers, led by China, Japan and the 

United States, and Asia is becoming the largest solar PV market worldwide instead of Europe. 

China have witnessed higher growth than Europe, and other promising markets such as the US 

and others have experienced an extremely slow growth [16].  

In 2013, nine countries added more than 1.0 GW of solar PV to their networks, and new 

facilities continue to appear as can be seen in Table 2.4. At the end of 2013, at least 10 GW 

of total capacity was added in five countries instead of two in 2012. The leaders of solar 

energy per capita were Germany, Italy, Greece, Czech Republic  and  Australia  [20].  

Asia added 22.7 GW at the end of 2013, bringing the total amount of solar PV in operation to 

almost 42 GW. China had almost a one third share of the global installed capacity.  

Apart from Asia, about 16.7 GW were added around the world, mainly in the EU (about  

10.4 GW) and North America (5.4 GW) in which the United States led became the third largest 

market in 2013. 

The Solar PV technologies can be divided into two main types depending on where they are 

placed, rooftop or ground-mounted. Each has a set of characteristics. However, it can be said 

that there are three transverse characteristics of both types of technologies: the peak 

capacity, the capacity factor and the conversion efficiency (as depicted in Table 2.5).  

These technologies are also distinguished based on where/how they are being deployed: 

residential, commercial and industrial consumer in particular with respect to peak capacity. 

Note that the receptivity of each type of technology varies greatly from one geographical 

area to another mainly due to the differences in energy cost of each of these areas, and often 

the incentives/compensation for the adherence to these technologies [15]. 

 

2.4.2.2. Solar CSP 

 

The concentrated solar power (CSP) is a market that is so far small but it is growing mainly 

thanks to the increased efficiency levels in places with direct sunlight and low humidity.  

This technology continues to spread to new markets with significant projects already 

completed in late 2013 in Australia, Italy and the United States and progress in Chile, 

Namibia, Portugal, Saudi Arabia, among others [20].  

The biggest market is China with 50 MW. More than 165 MW were added in systems operating 

in over 20 countries led by China and the United States, as can be seen in Table 2.6.  
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Table 2.4 - Solar PV Global Capacity and Additions [20] 

COUNTRY 
TOTAL END 2012 

 (GW) 

ADDED 2013  

(GW) 

TOTAL END 2013 

(GW) 

Germany 32.6 3.3 35.9 

China 7.0 12.9 19.9 

Italy 16.4 1.5 17.6 

Japan 6.6 6.9 13.6 

United States  7.2 4.8 12.1 

Spain 5.4 0.2 5.6 

France 4.0 0.6 4.6 

United Kingdom 1.8 1.5 3.3 

Australia 2.4 0.8 3.3 

Belgium 2.7 0.2 3.0 

Rest of World 13.8 6.5 20.2 

World Total 100 39 139 

 

 

 

Table 2.5 - Solar Energy Technologies [20] 

TECHNOLOGY 
TYPICAL  

CHARACTERISTICS 

CAPITAL COSTS 

(USD/kW) 

Solar PV 

(rooftop) 

Peak capacity: 

3-5 kW (residential); 

100 kW (commercial); 

500 kW (industrial) 

Capacity factor: 

10-25% (fixed tilt) 

Residential costs:  

2,200 (Germany); 

3,500-7,00 (U.S.A.) 

4,260 (Japan); 

2,150 (China) 

3,380 (Australia); 

2,400-3,000 (Italy) 

Commercial costs: 3,800 (United 

States); 

2,900-3,800 (Japan) 

Solar PV 

(ground-mounted; 

Utility-scale) 

Peak capacity: 2.5-250 MW 

Capacity factor: 10-25% (fixed 

tilt) 

Conversion efficiency: 10-30% 

1,200 -1,950 (typical global); 

As much as 3,800 including Japan. 

Averages: 2,000 (United States); 1,710 

(China); 1,450 (Germany); 1,510 

(India) 

*LCOE- Levelized Cost of Energy 

 

 

Table 2.6 - Concentrating Solar Thermal Power (CSP) [20] 

COUNTRY 
TOTAL END 2012  

(MW) 

ADDED 2013 

(MW) 

TOTAL END 2013 

(MW) 

Spain 1,950 350 2,300 

United States 507 375 882 

United Arab Emirates 0 100 100 

India 0 50 50 

Algeria 25 0 25 

Egypt 20 0 20 

Morocco 20 0 20 

Australia 12 0 12 

China 0 10 10 

Thailand 5 0 5 

World Total 2,540 885 3,425 
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The solar thermal power market continues to grow after the record in 2012. In 2013, the 

overall capacity grew by 36%, more than 3.4 GW, with Spain and the United States being the 

major markets [15].  

A summary of the main CSP technologies can be found in Table 2.7, which shows the main 

characteristics as well as the cost of these technologies by country or area. In the typical 

characteristics, the main types of CSP, the size of the plants and the capacity factor are 

shown. 

 

2.4.3 Geothermal Energy 
 

Geothermal energy can be used efficiently in the development of networks whether they are 

connected or not, and is especially useful in rural electrification schemes and direct 

applications such as district heating, cooking, bathing and industrial processes, etc. [17]. 

Geothermal resources provide energy in electrical form and heating/ direct cooling. Global 

electricity generation from geothermal sources is estimated to be just under half of the total 

geothermal production of 76 TWh, with the remaining 91 TWh accounting for direct use [17].  

From Table 2.8, it can be seen that, in 2013, the estimated generation capacity added was at 

least 530 MW, bringing the total global capacity to 12 GW, with an estimated annual 

generation of 76 TWh [20].  

The countries that added more production capacity in 2013 were New Zealand, Turkey, the 

United States, Kenya, Mexico, Philippines, Germany, Italy and Australia. By the end of 2013, 

the countries with the largest installed generation capacity were the United States with  

3.4 GW, the Philippines with 1.9 GW, Indonesia with 1.3 GW, Mexico with 1.0 GW, Italy with 

0.9 GW, New Zealand with 0.9 GW, Iceland with 0.7 GW and Japan with 0.5 GW. 

 

Table 2.7 - Solar CSP Energy Technologies [20] 

TECHNOLOGY TYPICAL CHARACTERISTICS 
CAPITAL COSTS 

(USD/kW) 

Concentrating solar  

thermal power  

(CSP) 

Types: parabolic, trough, tower, 

dis 

Plant size:  

50-250 MW (trough); 

20-250 MW (tower); 

10-100 MW (Fresnel) 

Capacity factor: 

20-40% (so storage); 

35-75% (with storage) 

Trough, no storage: 

4,000-7,300 (OCDE) 

3,100-4,050 (not OCDE) 

Trough, 6 hours storage:  

7,100-9,800 

Tower: 5,600 (United States without 

storage)  

9,000 (United States with storage) 

*LCOE- Levelized Cost of Energy 

 



23 
 

This resource can be classified into two categories [27]: 

 High temperature (T> 150°C): This resource is usually associated with areas of 

volcanic activity, seismic or magma. At these temperatures, it is possible to use the 

geothermal resource for power generation purpose;  

 Low temperature (T <100°C) generally results from the meteoric rise of water 

circulation in faults and fractures as well as resident water inside porous rocks at 

deep underground. 

 

The geothermal energy conversion process involves energy transfer by convection, 

transforming the heat produced and contained inside the earth into a useful energy in the 

form of electricity or other forms. The energy can also be extracted using the water injection 

technology from the surface in hot rock formations. Table 2.9 summarizes some general 

characteristics of geothermal technologies. 

 

Table 2.8 - Geothermal Power Global Capacity and Additions [20] 

 NET ADDED 2013 TOTAL END 2013 

Top Countries by Total Capacity (MW) (MW) 

United States 507 375 

Philippines 0 100 

Indonesia 0 50 

Mexico 25 0 

New Zealand 20 0 

Top Countries by New Additions MW MW 

New Zealand 196 0.9 

Turkey 112 0.3 

United States 84 3.4 

Kenya 36 0.2 

Philippines 20 1.9 

Mexico 10 1.0 

World Total 465 12 

 

 

Table  2.9 - Geothermal Power Technology [20] 
 

TECHNOLOGY TYPICAL CHARACTERISTICS 
CAPITAL COSTS 

(USD/kW) 

Geothermal Power 

Plant size: 1-100 MW 

Capacity factor: 60-90% 

Condensing flash: 1,900-

3800 

Binary: 2,250 - 2,200 
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2.4.4 Hydro Energy 

The production of hydroelectricity is mainly through hydroelectric plants, which are 

associated with large or medium capacity dams, forming a reservoir of water by interrupting 

the flow of water. Also, this energy has been exploited by applying the so-called small hydro 

plants, which consist of the construction of small reservoirs or dams that divert part of rivers 

for an unleveled location (where the turbines are installed), thereby producing electricity. 

The production of hydroelectricity is the most efficient and one of the least polluting 

processes. Many of the effects are reversible, and nature with the human contribution, 

ultimately find a new balance. 

The capacity of global hydropower production in 2013 increased by 4% (approximately  

40 GW), which varies every year according to the metrological conditions of the places where 

they are located, was estimated at 3,750 TWh in 2013.  

The countries with the highest production capacity are China (260 GW/ 905 TWh), Brazil  

(85.7 GW/ 415 TWh), the US (78.4 GW/ 269 TWh), Canada (76.2 GW/ 388 TWh), Russia  

(46.7 GW/ 174.7 TWh), India and Norway, which together have 62% of global installed 

capacity [3].  

It is estimated that a pumped storage capacity in the order of 2 GW was added in 2013, 

bringing the global hydropower to 135-140 GW. The country that installed more hydropower 

capacity in 2013 was China. Other countries with significant installed hydropower capacity 

were Turkey, Brazil, Vietnam, India and Russia as can be seen in Table 2.10. 

 

Table 2.10 - Hydro Power Global Capacity and Additions [20] 

 NET ADDED 2013 TOTAL END 2013 

Top Countries by Total Capacity (GW) (GW) 

China 28.7 260 

Brazil 1.5 86 

United States 0.2 78 

Canada 0.5 76 

Russia 0.7 47 

India 0.8 44 

Top Countries by New Additions GW GW 

China 28.7 260 

Turkey 2.9 22 

Brazil 1.5 86 

Vietnam 1.3 14 

India 0.8 44 

Russia 0.7 47 

World Total 40 1,000 
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Hydropower is the most developed technology among the renewables, reaching levels of 

optimality when coupled with the wind. The summary of the main technological 

characteristics can be found in Table 2.11, including the typical technology cost for each 

type. It can be emphasized that, among the presented technologies, it is the one that has the 

lowest typical cost. 

 

2.4.5 Bioenergy 

Bioenergy is the designation for the energy obtained from biomass. There are three forms of 

fundamental energy: heat energy, mechanical energy and electricity, all of which can be 

obtained from biomass sources.  

The systems that produce mechanical energy as combustion engines or turbines of direct and 

indirect combustion are coupled to electrical generators, which convert mechanical energy 

into electrical energy. The conversion of mechanical energy to electrical energy generates 

heat approximately two-third to one-third of the generated electricity, which demonstrates 

the increased economic efficiency of cogeneration (simultaneous production of heat and 

electricity) in stationary applications. The biogas from landfills, recycling of agricultural 

wastes and other organic wastes can be used in stationary power plants for energy production 

[28]. 

Bioenergy has shown steady growth rates in the last years and it is expected to keep on this 

path in the future. In EU, the consumption of biomass energy is projected to increase by at 

least 33 Mtoe by 2020, as shown in Figure 2.4. The electricity generation in the EU from solid 

biomass in 2014 was approximately 81.6 TWh. The five top producers were the US followed by 

Germany, Finland, United Kingdom, Sweden and Poland having a total production in Europe of 

63% [29]. 

 

Table 2.11 – Hydro Power Technologies [20] 

 

TECHNOLOGY TYPICAL CHARACTERISTICS 
CAPITAL COSTS 

(USD/kW) 

Hydropower 

(grid-based) 

Plant size: 1 MW -18,000 MW 

Plant type:  

reservoir, run-of-river 

Capacity factor: 30-60% 

Projects > 300 MW: 1,000-

2,250 

Projects 20-300 MW: 750-

2,500 

Projects < 20 MW: 750-

4,000 

Hydropower 

(off-grid/rural) 

Plant size:0.1-1,000 kW 

Plant type: run-of-river, 

hydrokinetic, diurnal storage 

1,175-6,000 
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Figure 2.4 - Final energy consumption for Bioenergy in EU [30]. 

 

 

The estimated growth of bioenergy market in 2014 was 5 GW, bringing the total capacity 

worldwide to approximately 93 GW. Country wise, the bio-generation leaders are the United 

States with 69.1 TWh, Germany with 49.1 TWh, China with 41.6 TWh, Brazil with 32.9 TWh 

and Japan with 30.2 TWh. 

 

2.4.6 Ocean Energy 

Ocean power refers to any energy harnessed from the ocean waves, tidal range (up and 

down), tidal currents, ocean currents, temperature gradients and salinity gradients [31]. The 

development of this emerging sector can contribute to the achievement set targets for 

renewable energy integration, reduction of GHGs and their harmful effects, and 

simultaneously boost economic growth through innovation and new job creation [32]. 

At the end of 2013, the capacity of the ocean energy was about 530 MW, most of this coming 

from the tidal power category [3]. Majority of ocean power projects currently in operation 

generate power from ocean tides. Among these is the Sihwa plant in Korea, completed in 

2011 with a capacity of 254 MW, the central Rance in France with a capacity of 240 MW, the 

central Annapolis Nova Scotia, Canada with a capacity of 3.9 MW and Jiangxia in China with 

the capacity of 3.9 MW. Other projects are smaller, and many of them are pre-commercial 

demonstration projects with a remarkable concentration of wave and tidal development 

facilities (in the order of 11 MW) in the UK [20]. Some of the tidal technology characteristics 

are summarized in Table 2.12.  
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Table 2.12 - Ocean Power Technologies [20] 

 

TECHNOLOGY TYPICAL CHARACTERISTICS 
CAPITAL COSTS 

(USD/kW) 

Ocean Power 

(tidal range) 

Plant size: <1 to >250 MW 

Capacity factor: 23-29% 

5.290-5,870 

 

2.5 Economic Aspect of Renewable Energy Systems 

Installation cost, net annual energy production and value of energy are the three main 

economic factors to make a decision about employing renewable energy systems. The value 

of energy is equal to the electricity price or tariff for renewable energy systems located on 

the supply side; while it can be equal to the retail price for demand side renewable resources 

(the systems that use energy on site). The reason for using retail price in studies of renewable 

energy systems on the demand side is that, the purchased energy from the grid by the 

consumer is displaced by the on-site generation. In order to investigate economic feasibility 

of renewable resources, they have to enter in a competition with other available energy 

resources and technologies. Fossil fuel prices have had considerable variations over the past 

ten years, and there is an uncertainty about these prices in future. Considering carbon 

emission is also another factor that has affected the fossil fuel cost [33]. In order to 

concentrate on the fuel cost and its uncertainty in more details, it should be noted that a 

cost between 0.5 and $1.0/gallon is added to the gasoline cost in the US that is related to the 

military expenditures just to ensure the oil flow from the Middle East [4].  

In order to improve the penetration level of renewable energy resources in the power system, 

the installation costs should be returned during a rational period. This would be obtained by 

producing sufficient power at an appropriate price. In the cases that renewable energy 

systems are installed in places where there is no connection to the power system network, 

the price of electricity would be high, because it would be obtained by a cost competition 

with other available energy careers. On this basis, the electricity price of renewable energy 

systems is associated with the range of prices of the energy careers. There are many factors 

that induce uncertainty in the future cost of energy careers. These factors are mostly related 

to the level of dependency on imported energy careers, policies on emission reduction, as 

well as policies on developing renewable energy resources [34]. 

The price of all energy careers is strongly associated with the price of oil that has been 

difficult to forecast due to many factors such as political aspects [35]. Fluctuations of oil 

price in the past few years prove this claim that prediction of energy prices has become more 

complex. For example, in some reports, the peak time of oil price was forecasted to occur in 

2007, while other reports forecasted it to happen in 2015 and even 2040 [36]. Note that, 

since the oil price is also related to the demand growth, a wide range of its fluctuations must 

be considered for each time and geographic area [37]. 
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It should be noted that, energy economics is highly dependent on incentive- and penalty-

driven policies. On this basis, it is very difficult to impose life cycle costs without considering 

the impacts of emission and government supports that motivate investors for investing in 

renewable energy systems [38]. According to the aforementioned description, the regulatory 

supports for renewable energy systems have been driving the world market.   

 

2.5.1 Driving Factors 

Many factors affect investments in renewable energies systems. Incentives are a key element 

in choosing the renewable systems, since both type and size of renewable energy systems are 

determined by investors based on the differences between market incentives. Another 

affecting factor is the cost of land that has an important impact on type and number of 

renewable energy systems. In order to have the optimal rate of return, renewable energy 

systems should have the highest amount of availability to ensure they can produce an 

appropriate level of energy. On this basis, they should have the capability to be operated as 

much time as possible. To this end, the reliability of the network and consequently the 

unavailability to transfer generated power due to network failures should be estimated.  

It should be noted that, if the renewable energy system generates when the demand peak 

occurs, the income of the system is augmented due to the increase in energy price. Owners of 

on-site renewable resources can also benefit more when the generated energy by the systems 

is required by the on-site demand. For example, the wind power generator produces 

electricity at nights when the space heating systems are highly required during winter. 

Renewable energy systems are able to generate power to supply the on-site demand, or to 

inject to the grid. The amount of energy that is consumed by on-site demand is replaced with 

the supplied energy by the grid. On this basis, if the amount of generation is less than the on-

site demand, using renewable energy systems can reduce the net load. On the contrary, if the 

on-site consumption is less than the generated energy, the surplus is injected into the grid at 

a price/tariff based on an agreement with the utility.  

Externalities are also an important factor for making a decision about renewable energy 

resources. This is due to the fact that in life-cycle cost analysis emission and carbon dioxide 

costs should be considered [39], [40]. There is a wide range of rates of externalities that 

depends on the rules and regulations in various countries. Since power producers do not like 

paying the cost of externalities, in the US there are litigations by all sides to decrease the 

externality rates based on the reason that there is no reliable evidence to prove carbon 

dioxide emission is harmful to society. In European countries, there are various costs for 

carbon dioxide emission that provide a better base for renewable energy resources by making 

them more cost competitive [40]. 
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2.5.2 Life-Cycle Costs 

The life-cycle cost is a method that analyzes the total cost of the system by considering the 

expenditures during the system life and salvage value [25]. By using a life-cycle cost analysis 

different investment options can be compared. Moreover, the most economic design for the 

system can be achieved. There are some other options that the renewable energy systems 

must compete with such as small-scale diesel generators and electrical energy storage 

systems. In this case, the effective factors are the initial cost, the electricity price, and the 

required infrastructures [41], [42]. It is noteworthy that, the life-cycle cost is also useful to 

compare different plans even if the renewable energy system is the only choice. Furthermore, 

this analysis is employed to determine if a hybrid renewable-based system can be the most 

economic plan. The life-cycle cost analysis enables to investigate impacts of employing 

several components with various reliability and lifetimes.  

Discount rate indicates how much increase or decrease in finance happens over the time. 

Note that, using the inaccurate amount of discount rate for calculating life-cycle cost can 

cause to unrealistic solutions. Although most of the renewable energy systems are 

economical, in order to select the best plan between all available options, the life-cycle cost 

analysis is the best method [41], [42]. The financial assessment can be carried out over an 

annual base to calculate economic indices such as payback period and cash flow.  

It should be mentioned that, annualized cost of energy considered for renewable energy 

systems should be compared with that for other resources. In other words, the annualized 

cost of energy should not be directly compared with the current cost of energy, since it is not 

sensible. The mentioned costs of energy create an appropriate base to compare different 

plans considering alternative resources and to select the best resource of energy. 

There are some calculating tools to analyze renewable energy projects and assess the  

life-cycle cost, and even emission considerations [43]. These calculations prove that the 

current renewable energy systems are economical. 

 

2.5.3 Economic Trend of Renewable Energy Systems 

Renewable energy systems are strongly promoted by policy makers, because they are a key 

element for economic development. The renewable systems are able to compete with current 

thermal power plants [35]. They can also improve the economy by job creation, since more 

than 100 jobs for installing a wind power plant and more than 10 jobs for its operation are 

required for each 100 MW project [4]. There are some attempts to reduce the property tax of 

wind power plants in order to better motivate the investor to invest in the renewable system 

and consequently the economic development [44]. 
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Wind power generation is one of the most economic renewable energy systems, since its cost 

of energy (COE) is about $70/MWh that can compete with thermal units. Trend studies have 

shown that before 2003, COE of wind power plants was higher than fuel fossil units; however, 

in the period of 2003 to 2009, it approximately equaled to the thermal units [4]. In 2009, the 

COE of wind farms dropped to the levels lower than conventional power. 

The studies on various resources indicate that annualized COE of wind power plants can even 

compete with the one of combined cycle gas turbines, although the fuel price of these 

thermal units is low [45]. In some countries, such as the US, conventional power plants 

benefit from that the fuel costs are not taxed, whereas the renewable energy systems do not 

have the cost of fuel at all. On this basis, the main issue of renewable resources is the high 

investment cost, which causes people to prefer paying for the fuels. It should be noted that, 

in the case of on-site renewable energy systems, the small-scale wind power generation 

cannot compete with the retail prices [46].  

In the case of supply side, another barrier to integration of renewable energy systems is the 

capacity of transmission network that may cause the power curtailment in order to ensure the 

system security [47]. Since most of the renewable energies such as wind, solar and 

geothermal resources are far from the load centers, they can impose an extra cost on the 

transmission system [48].    

Although the future of energy is uncertain and ambiguous, and every prediction can be risky, 

as oil price forecast has been a challenge, the trend of renewable energies is almost evident 

[37]. On this basis it can be expected that in future distributed renewable energy systems will 

have more penetration and even some new distributed electricity markets will help these new 

resources [46].  

In addition, with developments of the high-voltage transmission network, large farms of 

renewable energy systems will be installed much far from the load centers [47]. In near 

future, renewable energy resources can better compete with other energy alternatives just 

due to the carbon cost. Even other air emission costs such as NOX and SOX will motivate 

people to invest in systems without fuel and emission costs. This can cause that renewable 

energies, particularly wind power, become the most economic resource of producing 

electricity [41], [42]. 

It should be noted that one part of the installation cost of renewable energy systems has been 

supplied by the income resulted from carbon trading. The future of energy without renewable 

energy system developments would be an unsolvable problem due to the growth of 

environmental concerns. In order to avoid this problem and to provide a sustainable energy, 

policy makers should put more weight on the renewable energy as well as conservation and 

energy efficiency. 
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2.6 Benefits and Barriers of RESs 

 

2.6.1 RES Integration Opportunities 

Most of the electric energy consumed come from non-renewable energy sources (mainly, 

fossil fuels). This has led to a series of questions from energy dependence concerns to climate 

change issues, which are some of the major drivers of RES integrations in many power systems 

across the world.  It is now widely recognized that integrating RESs in power systems brings 

about a lot of economic, environmental, societal and technical benefits to all stakeholders. 

These are some of the reasons behind the rapid growth of RES integrations in many power 

systems across the world, as indicated in a 2015 report by the International Energy Agency 

(IEA). The report further shows that, in 2013, an approximately 19.1% of global electric 

energy consumption came from RESs, most of which was from hydropower [3].  

Among the wide-range benefits of RESs is their significant contribution to the GHGs which are 

leading to not only climate change and its dire consequences but also series environmental 

and health problems. Most RES technologies (wind and solar PV, for instance) have very low 

carbon footprints, making them very suitable to mitigate climate change and reduce its 

consequences. Hence, integrating RESs in power systems partly replaces polluting 

(conventional) power generation sources, resulting in a “cleaner” energy mix i.e. one with 

lower emission levels.  

RES integration also has an undisputable positive impact on the social and economic 

development of nations. It is widely understood that the three socio-economic indicators, per 

capita income, per capita energy use and economic growth, are highly correlated with each 

other. Economic growth can be considered, for instance, as the main driver for energy 

consumption. Therefore, RESs can spur economic growth and create job opportunities. 

Because of their distributed nature, RES integration can also be integrated into a national 

policy (especially, in developing countries) to foster rural development. Currently, the RES 

business currently employs an estimated 7.7 million people throughout the world [3]. RESs 

also play a crucial role in energy access. Currently, more than 1.2 billion people do not have 

access to electricity globally (85% of which are in rural areas where RESs are abundant) [3]. 

Exploiting the potential of RESs should be at the forefront to address this societal problem. 

Energy security concern is also one of the main drivers of RES integration. Current electric 

energy production scheme is dominated by conventional generation sources, which use fossil 

fuels whose prices are subject to significant volatilities. In addition to these volatilities, 

geopolitical availability of fossil fuels is also becoming a concern for many countries. The 

combination of all these can have significant impacts on the energy supply security.  Because 

of this, generation of electricity locally using RESs can significantly contribute to the energy 

security of nations. As a result, this can reduce the heavy dependence on fossil fuels for 

power generation. 
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In addition to the benefits briefly explained above, RESs can bring technical benefits such as 

improved system stability and voltage profiles, reduced losses and electricity prices, etc. The 

combination of conventional generation capacity with the renewable generation capacity will 

be able to address the continuous increase in demand, in opposition to the scenario of 

conventional generation capacity only, which according to forecasts would not be able to 

meet the demand, Figure 2.5. 

 

2.6.2 RES Integration Challenges and Barriers 

Despite the robust growth of integration RES in many power systems, there are still certain 

challenges and barriers that impede the smooth integration of RESs. These challenges and 

barriers can be broadly classified into two categories: technical and non-technical. The non-

technical category includes challenges and barriers related to capital costs, market and 

economic issues, information and public awareness, socio-cultural matters, the conflict 

between stakeholders, regulation and policy.  

The variable cost of energy production by RESs is very small (close to zero); however, they 

are generally capital intensive. Even if the capital costs are declining for most RES 

technologies, their levelized costs of electricity (LCOE) are yet to be competitive with that of 

conventional energy sources. This can make investing in RESs less attractive for potential 

investors. However, this is likely to change as RES costs continue to fall while that of 

conventional energy sources become more expensive amid resource depletion and policies to 

internalize external costs such as environmental pollution costs. 

Market and economic barriers exist when there is a lack of clearly designed economic and 

financial instruments to support RES integration efforts. For instance, whenever there is 

market failure associated with internalizing the cost of environmental pollution, it is very 

difficult to expect a lot of investments coming in from RES developers.  

 

 

Figure 2.5 - Development and future trend of generation capacity, demand and wholesale electricity 

market price in Central Europe from 2010 [49]. 
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Information gap and lack of public awareness on RESs and their benefits can also significantly 

hinder RES integration. Moreover, socio-cultural issues such as conflicting land use 

requirements can sometimes lead to contentious issues regarding RES development, directly 

affecting the level of penetration. The conflict between stakeholders is another barrier, more 

specifically the lack of communication, as shown in Figure 2.6. The challenges and barriers 

related to the regulatory and policy issues emanate from the structure of energy industries 

and existing technical regulations, the level of support for technology transfer and R&D, etc.   

Technical limitations (barriers), on the other hand, are related to the nature of the resources 

and the power systems. Some of the most common RESs depend on primary energy sources 

such as wind speed, solar radiation and wave, which are subject to high level variability and 

unpredictability (the latter also known as uncertainty), resulting in considerable grid 

integration challenges [51]. This is because the uncontrollable variability and uncertainty of 

such sources introduce a lot of technical problems in the system, making the real-time 

operation of the system very challenging. The intermittent nature of power production from 

these resources also dramatically affects the reliability of energy supply.  Moreover, such 

sources are found geographically dispersed across a vast area, and their availability is  

site-specific. Unlike conventional power sources, these energy sources cannot be transported 

to areas close to demand centers. This means harnessing these resources requires the higher 

need for network investments than conventional ones.  

 

 

Figure 2.6 - Main reasons in the EU 27 for issue “Lack of communication” [50]. 



34 
 

In addition, RESs based on the aforementioned primary energy sources are characterized by 

low capacity factors (i.e. low energy production per MW installed) compared to conventional 

power sources. In other words, the spatial energy intensity of RESs based on these sources is 

very low. This means that, for the same amount MW installed, the size of land required for 

such RESs is several times higher than that of the conventional one, which can sometimes be 

problematic during integration efforts because this creates fierce competition with other land 

use claims or requirements [52]. 

 

2.6.3 Alleviating the Challenges and Barriers 

Most of the challenges and barriers explained before have proven solutions that happen to be 

overlooked in many systems [53]. In general, these are summarized as follows: 

 Market and economic barriers are often fixed by streamlining appropriate market and 

economic signals related to carbon taxes, emission trading schemes, finances, and 

incentive mechanisms as well as enhancing public support for R&D, and creating a 

conducive environment for RES development. All this can have a considerable positive 

impact on the level of RES integration. 

 Setting energy standards, continuous information campaigns and technical training 

about RESs and their benefits can enhance public knowledge and awareness, which can 

in the end have supportive roles in RES development.   

 Creating an enabling environment for R&D, improving technical regulations, scaling up 

international support for technology transfer, liberalizing energy industries, providing 

incentive packages to RES developers, designing appropriate policies of RESs and 

conventional energy sources, minimize the regulatory and policy barriers to developing 

RESs. 

 Coordinating investments of RESs based on variable generation resources such as wind 

and solar power with large-scale energy storage systems, demand side management 

participation and grid expansion can significantly increase the level of RES integration. 

 Enhancing operation and the flexibility of conventional power generation sources can 

also be very useful to scale up RES integration. 

 Designing an efficient wholesale market such as dynamic retail pricing and developing 

coordinated operation and planning tools (such as joint network and generation 

investment planning models) can have a positive role in RES integration. 

 For full utilization of RESs, the coordination between distribution system operators 

(DSOs) and transmission system operators (TSOs) is also vital. 

 It is also important to improve prediction tools, monitoring and control protocols that 

can help efficient utilization of the RESs. 
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 Ensuring regional interconnections via regional cooperation and increasing the level of 

participation of all stakeholders (including RES generators) in voltage control, provision 

of reserves, reactive power support, etc. are significantly helpful for the stated 

purpose.  

 

 Using smart-grid technologies and concepts are also expected to facilitate smooth 

integrations of large-scale RESs because these are equipped with advanced control and 

management tools to counterbalance the intermittent nature of most RES energy 

productions. 

 

 

2.7 Current Trend and Future Prospects 

During the past decades, the level of global RES integration has been steadily growing. This 

has been against a number of odds such as the recent global financial crisis, the dramatically 

falling fuel prices and the slowdown of increasing global electricity consumption that have 

been thought to decelerate or stall this trend [23]. In general, there is a general consensus 

globally that RESs will cover a significant amount of electricity consumption in the years to 

come. The high uncertainty of RESs can be partially solved by the introduction of a bigger 

operational flexibility, as shows in Figure 2.7, through coordinated participation of various 

stakeholders.  

 

 

Figure 2.7 - Sources of Operational flexibility in power systems, adapted from [54]. 
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The recent developments in the 2015 Paris climate conference (COP-21), overall trends in 

international policy on RESs, energy dependence concerns, the falling capital costs of several 

matured RES technologies, and other techno-economic factors are all favorably expected to 

further accelerate the level RES integrated into power systems. 

 

2.8 Chapter Conclusions 

The potential of RESs is huge because in principle they can meet several times the world’s 

demand. RESs such as wind, biomass, hydro, biomass and geothermal can provide sustainable 

energy services based on available resources in all parts of the world. The transition to 

renewable energy based power systems tends to increase, while their costs continuously 

decline as gas and oil prices continue to oscillate. In the last half century, the demand for 

wind and solar systems has been continuously increasing, experiencing a reduction in capital 

costs and generated electricity costs. There have been continuous performance improvement 

and R&D undergoing in the sector in the past decades. As a result, the prices of renewable 

energy and fossil fuels, as well as social and environmental costs are to diverge in opposite 

directions. Economic and political mechanisms must support the wide spread of sustainable 

markets for the rapid development of RES. At this point, it is clear that the present and 

future growth will occur mainly in renewable energy and in some natural gas-based systems, 

and not common sources like coal or oil. The progress of RESs can increase diversity in the 

electricity markets, contributing to obtain long-term sustainable energy, helping reduce local 

and global GHG emissions and promote attractive trade options to meet specific energy 

needs, particularly in developing countries and rural areas, helping to create new 

opportunities.  
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Chapter 3 

Impact of Operational Variability and Uncertainty on 

Distributed Generation Investment Planning: A 

Comprehensive Sensitivity Analysis 

 
This chapter presents a DG investment planning model formulated as a novel multi-stage and 

multi-scenario optimization problem, in order to perform a comprehensive sensitivity 

analysis and identify the uncertain parameters which significantly influence the decision-

making in distributed generation investments and quantify their degree of influence.  

 

3.1 Introduction 

Driven by techno-economic and environmental factors, nowadays, there is a global drive to 

integrate more distributed energy resources (DERs) in power systems, particularly at the 

distribution level. These typically include DG, storage technologies, and demand side 

management [55]. Especially, the scale of DG sources (mainly, renewables such as wind and 

solar) integrated in many distribution networks is steadily increasing. This trend is more likely 

to continue in the years to come due to the advent of emerging solutions such as active 

management of distribution networks [56], [57], which are expected to alleviate existing 

technical limitations, and facilitate smooth integration of DGs. The favorable agreement of 

countries in the recent climate change conference in Paris (COP21) is also expected to 

accelerate the integration of RESs. As a result, the level of electricity demand covered by 

energy coming from RESs is expected to dramatically increase, and such energy sources will 

play a significant role in distribution systems.  

As a result, the issue of DG investment planning (DGIP) is becoming critical. This is especially 

more relevant in the case of insular network systems because new regulations are put in 

place to reduce the heavy dependence of such systems on fossil fuels for energy production. 

Tapping available energy resources (wind, solar, hydro, etc.) is inevitable to meet not only 

the increasing demand for electricity, but also environmental constraints and renewable 

energy source (RES) integration targets set forth either globally or locally through 

Government initiatives. 

However, the intermittent nature of most of these RESs (particularly, wind and solar) makes 

their integration in distribution networks a more challenging task. This is because such 

resources introduce significant operational variability and uncertainty to the system. Hence, 

the development of efficient methods and tools is mandatory to realize an optimal or a  

cost-efficient integration of such DGs and minimize their side effects.  
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In addition, the increasing level of DG integration in distribution systems is already leading to 

substantial changes in the traditional role of distribution systems, which has predominantly 

been to carry power unidirectionally from substations to consumers in a radial scheme.  

In other words, distribution network systems are slowly evolving from passive to active 

networks [56]. This paradigm shift will make sure that they are adequately equipped with the 

necessary, flexible and intelligent tools which have the capability to minimize the underlining 

challenges of integrating DERs in such network systems, and, hence, pave the way to high 

level integration of DERs, RES-based DGs in particular. The advent of modern-day 

technological advances (such as smart grid technologies with state-of-the-art control and 

protection mechanisms) combined with conventional power system management systems 

(such as active and reactive power management tools) will make active networks effectively 

materialize [58]. 

Generally, the broad-range transformations in distribution networks are largely expected to 

effectively address current limitations of integrating DERs. As a result, the highly needed 

benefits of DERs, extensively discussed in [55] and [59], will be optimally exploited. In this 

regard, previous works on investment planning of DGs in distribution systems such as [60], 

[61] highlight the multi-faceted  benefits of DGIP. In particular, the work in [61] demonstrate 

that “investment in DG is an attractive distribution planning option for adding flexibility to an 

expansion plan, mainly by deferring network reinforcements”. Other wide-range benefits of 

DGs have been extensively discussed in [62]–[66] . As mentioned earlier, the integration of DG 

in distribution systems comes with certain challenges [67]–[69]. For example, if DGs are not 

properly planned and operated, they can pose considerable technical problems such as 

reduced voltage quality and stability. However, these are expected to be adequately 

mitigated in active distribution networks [61]. 

From a modeling perspective,  DGIP has been carried out in previous works jointly with 

distribution network expansion planning [70]–[76] or independently [60], [61], [77], [78]. 

Either way, the decision variables encompass the type of DG, its capacity and location as well 

as the time of investment when a dynamic planning scheme is adopted as in [60], [70], [71], 

[74]–[78]. In the context of micro-grid or autonomous/insular systems, the prospects of DG 

planning, scheduling and operation have been gaining attention. Authors in [79] present a 

community-based long-term planning tool for RESs in insular systems with an ultimate 

objective of maximizing social welfare perceived by the community. The work in [80] 

proposes a methodology for siting and sizing of DGs from a micro-grid context, and the 

resulting problem is solved using the prospects of particle swarm optimization and genetic 

algorithm methods.  

Due to the inherent uncertainty and variability, stochastic programming has been used in 

operation and planning of distribution systems [81]–[85]. Authors in [81] propose a stochastic 

model for a bidding strategy in the day-ahead market of microgrids in the presence of energy 

storage systems, RES-based and conventional DGs.  
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A stochastic energy management of microgrids, consisting of conventional and RES-based DGs 

as well as price-sensitive loads, is proposed in [82]. Similarly, the work in [83] presents a 

stochastic operation model to coordinate vehicle-to-grid services with energy trading in the 

presence of conventional and wind type DGs. Reference [84] develops a stochastic DGIP 

model based on a mixed integer linear programming (MILP) framework. Uncertainties related 

to energy price, electricity demand, wind and solar PV power outputs are accounted by 

forming and dividing the corresponding duration curves.  

A DG allocation problem in radial distribution networks is solved using genetic algorithm in 

[86]. Here, uncertainty due to forecasting errors in load and generation is modeled using a 

fuzzy approach. A dynamic expansion planning of distribution systems with DGs is proposed in 

[87], and a relatively new meta-heuristic algorithm is employed to solve the resulting 

problem. Uncertainty and operational variability are not accounted for in this work. The use 

of non-exact methods such as the meta-heuristic solution methods used in [80], [86], [87] do 

neither guarantee global optimality nor a measure to the global optimal solution. Since DG 

includes intermittent energy sources, the planning model should adequately take into account 

the uncertainty and variability introduced as a result, including that of electricity demand.  

In this respect, variability in load [60], [61], [70], [71], [74]–[77], [86] and [88], electricity 

prices [60], [61], [70], [71], [77], wind power output [71], [77], [79], [86], solar power output 

[77], [79], [86], fuel prices [77], demand growth [60], [61], and DG failures [72] are among 

several sources of uncertainties which have been given some attention in distribution 

planning works in the literature. The compound effect of all these relevant uncertainty and 

variability issues requires designing new methods and tools in order to have an optimal or a 

cost-efficient integration of DGs. To guide the development of such methods and tools, it is 

necessary to investigate first the impact of variability and/or uncertainty of different model 

parameters on DG investment decisions, which is the main objective of this chapter.  

In this chapter, a comprehensive sensitivity analysis is carried out to meet the 

aforementioned objective is presented. The ultimate goal is to identify those parameters 

which influence the decision-making process and quantify their degree of influence.  

To perform the analyses, a DGIP model, formulated as a multi-stage and multi-scenario 

optimization problem, is used. In addition, to ensure tractability and make use of exact 

solution methods, the entire problem is formulated as a mixed integer linear programming 

(MILP) optimization. The resulting DGIP problem minimizes the net present value of 

investment, operation and maintenance, unserved energy and emission costs taking into 

account a number of technical and economic constraints. Note that the problem here is 

formulated from the distribution system operator’s (DSO) point of view and with a particular 

focus on insular networks. In such networks, where there does not often exist a functional 

market, in addition to managing the network system, the DSO may own and operate some 

utility-based DGs, and/or oversee DG investments to keep reliability, stability and power 

quality in the system at the required levels. 
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The remainder of this chapter is organized as follows: Section 3.2 presents the terminologies; 

and, the approaches for management of uncertainty and operational variability including 

their definitions are also briefly described in this section. Subsequently, in Section 3.3, the 

mathematical formulation and description of the DGIP model are presented. Section 3.4 

discusses the results of case studies. Finally, relevant conclusions are drawn in Section 3.5. 

 

 

3.2 Uncertainty and Variability in DGIP 

3.2.1 Terminology 

The terminologies uncertainty and variability are often incorrectly used interchangeably in 

the literature despite the fact that they are different [89]. Variability, as defined in [90] 

refers to the natural variation in time of a specific uncertain parameter, whereas uncertainty 

refers to “the degree of precision with which the parameter is measured” or predicted. We 

follow these terminologies in the thesis when referring to operational variability and 

uncertainty, which are introduced by model parameters. For example, wind power output is 

characterized by both phenomena; its hourly variation corresponds to the variability while its 

partial unpredictability (i.e. the error introduced in predicting the wind power output) is 

related to uncertainty.  

The schematic illustration in Figure 3.1 clearly distinguishes both terminologies.  

As demonstrated in this figure, the hourly differences in wind power outputs are due to the 

natural variability of primary energy source (wind speed); whereas, the likelihood of having 

different power outputs at a given hour is a result of uncertainty (partial unpredictability) in 

the wind speed. Other terminologies used in this thesis are snapshot and scenario. A snapshot 

refers to an hourly operational situation. Alternatively, it can be understood as a demand—

generation pattern at a given hour. A scenario, on the other hand, denotes the evolution of 

an uncertain parameter over a given time horizon (often yearly). For example, the hourly 

variations of wind power production and electricity consumption collectively form a group of 

snapshots; whereas, the annual demand growth (which is subject to uncertainty) and RES 

power output uncertainty are represented by a number of possible storylines (scenarios) [89].  
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Figure 3.1 - Illustration of variability and uncertainty in wind power output. 
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3.2.2 Sources of Uncertainty and Variability in DGIP 

The various sources of uncertainties in DGIP are related to the variability and randomness of 

operational situations. There are some other uncertainties mostly related to the long-term 

price, rules, regulations and policies, etc. They can be generally categorized as random and 

nonrandom uncertainties [91]. The random ones are also known as high-frequency 

uncertainties because they correspond to situations that occur repeatedly, and hence, 

possess historical data. In general, they can be characterized by probability distribution 

functions (PDFs), estimated by fitting the historical data. Such uncertainties have a profound 

impact on the operation of power distribution systems. Demand variability is one example in 

this category. On the other hand, nonrandom uncertainties do not occur repeatedly or they 

are characterized by low frequency situations; so, they can hardly be statistically 

represented. A good example here is budget available for investment [89].  

A well-developed DGIP tool should therefore encompass a methodology which effectively and 

efficiently takes into account both types of uncertainties. Exhaustive modeling of all sources 

of uncertainty and variability may not only be computationally unaffordable but also 

inefficient. Identifying the most relevant sources of uncertainty and variability for the target 

problem is a crucial step that should not be overlooked. For example, consider two uncertain 

parameters: wind power output and emission price. Even if both are subject to uncertainty 

and variability, the degree of variation or uncertainty of one is totally different from the 

other. Apparently, the variability and uncertainty of wind power output are a lot higher than 

that of emission price. Hence, one would expect the former to have a higher influence on the 

planning outcome compared to the latter.  

In this chapter, the variability due to intermittent DG power outputs (mainly wind and solar) 

and demand are captured by considering a sufficiently large number of hourly operational 

states, also known here as “snapshots”. The hourly data may be historical or generated from 

individual or joint PDFs of uncertain parameters. To ensure problem tractability, the hourly 

snapshots are then reduced by means of k-means clustering, which leads to a substantially 

lower number of representative snapshots compared to the original set of data. This means 

each of the selected snapshots, representing a group of similar operational situations, is 

assigned a weight 𝜋𝑤 proportional to the number of operational situations in its group.  

For instance, the wind power output profile in Figure 3.1 has two profiles for the sample 

hours. Each day throughout the planning horizon has such profiles of its own. This means that 

for a horizon of three years long the number of snapshots per scenario is equal to 3x8760. 

Such number of operational snapshots in each year and scenario are clustered into a 

predefined number of snapshot groups. In addition to the characterization of the RES power 

output uncertainty via scenarios (as in Figure 3.1), the uncertainty regarding the evolution of 

the system (emission price, demand growth, etc.) is also represented by a number of 

scenarios (or storylines) unfolding as time passes by. Combinations of all these scenarios then 

form the final set of scenarios (as in Figure 3.2) that are used in the analysis.   
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Figure 3.2 - A schematic representation of (a) possible future scenarios’ trajectories with multiple 

scenario spots along the planning horizon, (b) a decision structure at each stage [89]. 

 

The schematic representation in Figure 3.2 illustrates the multi-stage and multi-scenario DGIP 

modeling framework and the expansion solution structure (i.e. Xi’s). At each stage of the 

planning horizon, we obtain a single and robust expansion strategy which is good enough for 

all scenarios [89], [92]. Note that while operational variables depend on each scenario and 

snapshot, the investment decision variables only depend on the time stage index. This means 

that the investment solution obtained should satisfy all conditions in every scenario, making 

the solution robust against any realization of the considered scenarios. It should be noted 

here that the robustness of the solution is directly related with the level of details of 

uncertainty and variability characterization. Generally, the higher the numbers of snapshots 

and scenarios considered are, the more robust the solution is. However, there is always a 

threshold beyond which adding more snapshots and scenarios does not significantly change 

the solution but increases unnecessary computational burden. If the scenarios considered in 

the planning are carefully selected to be representative enough of all possible uncertainty 

realizations, then, the robustness and reliability of the solution can be more guaranteed.  

In this chapter, the evolution of carbon dioxide (CO2) price and electricity demand growth are 

captured through a predefined number of scenarios, each with a certain degree of 

realization 𝜌𝑠. For the sake of simplicity, all scenarios are assumed to be equally probable. 

The effects of other sources of uncertainty such as fuel prices, and tariffs of energy 

generated by various DGs (both conventional and renewable power generation units) are then 

analyzed via sensitivity analysis. 
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3.3 Mathematical Model 
 

3.3.1 Brief Description of the problem 

This chapter focuses on investigating how sensitive DG investment decisions are with respect 

to variations of selected uncertain parameters. This is relevant for identifying the parameters 

with the highest influence on DG investment so as to design a DGIP model by adequately 

factoring the variability and the uncertainty of the most relevant parameters. Eventually, this 

helps to ensure an optimal integration of DG in network systems.  

A DGIP problem is naturally dynamic because the solution has to explicitly provide the 

necessary information regarding when DG investments are needed. Regarding the planning 

horizon and decision stages, accounting for the dynamic nature of the problem, a more 

realistic approach would be to formulate the problem with multiple decision stages (i.e. 

multi-year decision framework) while accounting for all possible future scenarios. However, 

to ensure tractability, the numbers of stages and scenarios are usually limited.  

In this chapter, the DGIP problem is formulated as a multi-stage and multi-scenario 

optimization model within a given planning window (horizon). This modeling framework 

assumes that there are n probable future storylines (or scenarios) each associated with a 

probability of realization 𝜌𝑠 that stochastically represents relevant sources of uncertainties. 

3.3.2 Objective Function 

The resulting DGIP model, a MILP optimization problem, minimizes the sum of net present 

value (NPV) of four cost terms as in (3.1). Here, the binary investment and utilization 

variables as well as the operational variables such as generated power, flows, etc. constitute 

the set of decision variables of the optimization. 

The first term in (3.1), 𝑇𝐼𝐶, represents the total NPV of the investment costs of DG, 

constituting conventional and various renewable energy sources, under the assumption of a 

perpetual planning horizon [93]. In other words, “the investment cost is amortized in annual 

installments throughout the lifetime of the installed DG”, as is done in [71]. The second term 

𝑇𝑂𝑀𝑅𝐶 corresponds to the total sum of NPV: (i) operation, maintenance and reliability (OMR) 

costs throughout the planning stages, and (ii) the OMR costs incurred after the last planning 

stage. Note that the costs in (ii) rely on the OMR costs of the last planning stage and a 

perpetual planning horizon is assumed when spreading these costs after the last planning 

stage. To further clarify this, consider the illustrative example in Figure 3.3. It is understood 

that investments are made in a specific year within the planning horizon (the second year in 

this case) and the investment costs are amortized throughout its lifetime. However, the OMR 

costs are incurred every year within and after the planning horizon. To balance these cost 

terms, a perpetual planning horizon, i.e. an endless payment of fixed payments is assumed.  
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Figure 3.3- Illustration of cost components within and outside the planning horizon [89]. 

 

Based on the finance theory [93], the present value of perpetuity, which is the sum of the net 

worth of infinite annual fixed payments, is determined by dividing the fixed payment at a 

given period by the interest rate 𝑖. Based on this, the OMR costs include the associated annual 

costs within (part I) and outside the planning horizon (part II). The latter (part II) are 

determined by the perpetuity of the costs in the last planning stage updated by net present 

value factor in this case (1 + 𝑖)−3. Note that after the lifetime of the DG elapses, investments 

will be made in the same DG with the same cost according to the assumption of a perpetual 

planning horizon. 

The third term 𝑇𝐸𝑀𝐶 in (3.1) corresponds to the total sum of NPV emission costs in the 

system throughout the planning stages and those incurred after the last planning stage under 

the same assumptions as in the case of OMR costs. Similarly, the last term 𝑇𝐿𝐶 in (3.1) 

accounts for the total NPV cost of losses. 

  

  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐶 = 𝑇𝐼𝐶 + 𝑇𝑂𝑀𝑅𝐶 +  𝑇𝐸𝑀𝐶 + 𝑇𝐿𝐶 (3.1) 

  

 

  

where 

 

                 𝑇𝐼𝐶 = ∑(1 + 𝑖)−𝑡𝐼𝑛𝑣𝐶𝑡
𝑁/𝑖

𝑡𝜖Ω𝑡⏟              
𝑁𝑃𝑉 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

 

  

  

  

 
 𝑇𝑂𝑀𝑅𝐶 = ∑(1 + 𝑖)−𝑡

𝑡𝜖Ω𝑡

(𝑀𝑛𝑡𝐶𝑡
𝑁 +𝑀𝑛𝑡𝐶𝑡

𝐸 + 𝐸𝐶𝑡
𝑁 + 𝐸𝐶𝑡

𝐸 + 𝐸𝐶𝑡
𝑆𝑆 + 𝐸𝑁𝑆𝐶𝑡)

⏟                                          
𝑁𝑃𝑉 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛,   𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑎𝑛𝑑 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠

 

 
+(1 + 𝑖)−𝑇(𝑀𝑛𝑡𝐶𝑇

𝑁 +𝑀𝑛𝑡𝐶𝑇
𝐸 + 𝐸𝐶𝑇

𝑁 + 𝐸𝐶𝑇
𝐸 + 𝐸𝐶𝑡

𝑆𝑆 + 𝐸𝑁𝑆𝐶𝑇)/𝑖⏟                                        
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛,   𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑎𝑛𝑑 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇  
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              𝑇𝐸𝑀𝐶 = ∑(1 + 𝑖)−𝑡

𝑡𝜖Ω𝑡

 (𝐸𝑀𝐶𝑡
𝑁 + 𝐸𝑀𝐶𝑡

𝐸)
⏟                    

𝑁𝑃𝑉 𝑜𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

+ (1 + 𝑖)−𝑇(𝐸𝑀𝐶𝑇
𝑁 + 𝐸𝑀𝐶𝑇

𝐸)/𝑖⏟                  
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇

 

  

and 

𝑇𝐿𝐶 = ∑(1 + 𝑖)−𝑡

𝑡𝜖Ω𝑡

 𝐿𝑜𝑠𝑠𝑡
⏟            
𝑁𝑃𝑉 𝑜𝑓𝑙𝑜𝑠𝑠𝑒𝑠 𝑐𝑜𝑠𝑡

+ (1 + 𝑖)−𝑇𝐿𝑜𝑠𝑠𝑇/𝑖⏟          
𝐿𝑜𝑠𝑠𝑒𝑠 𝑐𝑜𝑠𝑡 𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇

 

  

The individual cost terms in (3.1) are computed as follows. The NPV of the total costs is given 

by the sum of the amortized investment costs of DG, constituting conventional and various 

renewable energy sources (3.1.1), expected maintenance and operation cost of new (3.1.2, 

3.1.4) and existing (3.1.3, 1.5) DGs, as well as the expected cost of unserved energy which is 

captured by penalizing any unserved power as in (3.1.6). In addition, the expected cost of 

emission and energy purchased from the grid (if any) are also included in the objective 

function (see equations 3.1.7 through 3.1.9). The cost of network losses in the system, 

computed as in (3.1.10), is also included in the objective function. Note that to keep the 

problem linear, the quadratic flow function in (3.1.10) is linearized using a first-order 

approximation (i.e. piecewise linearization) as in [17].  

In order this chapter to be self-contained, the linearized model is provided in Appendix A. 

Here, five piecewise linear segments are considered throughout analysis, which is in line with 

the findings in [94].  

  

  

𝐼𝑛𝑣𝐶𝑡
𝑁 = ∑ ∑ ∑

𝑖(1 + 𝑖)𝜂𝑝,𝑘

(1 + 𝑖)𝜂𝑝,𝑘 − 1
𝐼𝐶𝑝,𝑘

𝑁 (𝑥𝑝,𝑘,𝑛,𝑡
𝑁 − 𝑥𝑝,𝑘,𝑛,𝑡−1

𝑁 )

𝑝𝜖Ω𝑝𝑘𝜖Ω𝑘

 

𝑛∈Ω𝑛

 (3.1.1) 

  

  

  

                        𝑀𝑛𝑡𝐶𝑡
𝑁 = ∑ ∑ ∑ 𝑀𝐶𝑝,𝑘

𝑁

𝑝𝜖Ω𝑝𝑘𝜖Ω𝑘

𝑥𝑝,𝑘,𝑛,𝑡
𝑁

𝑛∈Ω𝑛

 (3.1.2) 

  

  

  

                        𝑀𝑛𝑡𝐶𝑡
𝐸 = ∑ ∑ ∑ 𝑀𝐶𝑝,𝑘

𝐸

𝑝𝜖Ω𝑝𝑘𝜖Ω𝑘

𝑢𝑝,𝑘,𝑛,𝑡
𝐸

𝑛∈Ω𝑛

 (3.1.3) 

  

  

  

                             𝐸𝐶𝑡
𝑁 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑ ∑ 𝑂𝐶𝑝,𝑘

𝑁

𝑝𝜖Ω𝑝𝑘𝜖Ω𝑘

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝑁

𝑛∈Ω𝑛𝑤𝜖Ω𝑤𝑠𝜖Ω𝑠

 (3.1.4) 

  

  

  

                             𝐸𝐶𝑡
𝐸 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑ ∑ 𝑂𝐶𝑝,𝑘

𝐸

𝑝∈Ω𝑝𝑘𝜖Ω𝑘

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝐸

𝑛∈Ω𝑛𝑤𝜖Ω𝑤𝑠𝜖Ω𝑠

 (3.1.5) 
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                         𝐸𝑁𝑆𝐶𝑡 = ∑ ∑ 𝜌𝑠 ∑ 𝜋𝑤𝜐𝑠,𝑤,𝑡𝛿𝑛,𝑠,𝑤,𝑡
𝑤𝜖Ω𝑤𝑠𝜖Ω𝑠𝑛∈Ω𝑛

 (3.1.6) 

  

  

  

                           𝐸𝑀𝐶𝑡
𝑁 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑ ∑ 𝜆𝑠,𝑤,𝑡

𝐸𝑀𝐼

𝑝𝜖Ω𝑝

𝐸𝑅𝑝,𝑘
𝑁

𝑘𝜖Ω𝑘

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝑁

𝑛∈Ω𝑛𝑤𝜖Ω𝑤𝑠𝜖Ω𝑠

 (3.1.7) 

  

  

  

                           𝐸𝑀𝐶𝑡
𝐸 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑ ∑ 𝜆𝑠,𝑤,𝑡

𝐸𝑀𝐼

𝑝𝜖Ω𝑝

𝐸𝑅𝑝,𝑘
𝐸

𝑘𝜖Ω𝑘

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝐸

𝑛∈Ω𝑛𝑤𝜖Ω𝑤𝑠𝜖Ω𝑠

 (3.1.8) 

  

  

  

                             𝐸𝐶𝑡
𝑆𝑆 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜆𝑠𝑠,𝑠,𝑤,𝑡𝑔𝑠𝑠,𝑠,𝑤,𝑡

𝑆𝑆

𝑠𝑠∈Ω𝑠𝑠𝑤𝜖Ω𝑤𝑠𝜖Ω𝑠

   (3.1.9) 

  

  

  

𝐿𝑜𝑠𝑠𝑡 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ λs,w,t
𝑔𝑛𝑚

(𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙∗𝑏𝑛𝑚)
2(𝑓𝑛𝑚,𝑠,𝑤,𝑡)

2

𝑛,𝑚∈Ω𝑛𝑤𝜖Ω𝑤𝑠𝜖Ω𝑠

 (3.1.10) 

  

Notice that equation (3.1.1) is weighted by the capital recovery factor 
𝑖(1+𝑖)

𝜂𝑝,𝑘

(1+𝑖)
𝜂𝑝,𝑘−1

. Besides, 

𝑥𝑝,𝑘,𝑛,0
𝑁 is defined to be zero, and the formulation in (3.1.1) ensures that the investment cost of 

each DG is considered only once in the summation. For example, suppose an investment in a 

particular DG is made in the fourth year of a five-year planning horizon. This means the DG 

will be available during the fourth and the fifth years because of the logical constraint in 

(3.8). Hence, the binary variables associated to this DG in those years will be 1 while the rest 

will be zero i.e. 𝑥𝑝,𝑘,𝑛,𝑡
𝑁 = {0,0,0,1,1}. In this particular case, only the difference (𝑥𝑝,𝑘,𝑛,4

𝑁 −

𝑥𝑝,𝑘,𝑛,3
𝑁 ) equals 1 while the remaining ones are all zero, i.e. (𝑥𝑝,𝑘,𝑛,𝑡

𝑁 − 𝑥𝑝,𝑘,𝑛,𝑡−1
𝑁 ) = 0, ∀𝑡 ≠ 4, and 

hence the investment cost is considered only once. Equations (3.1.2) and (3.1.3) stand for the 

annual maintenance costs of candidate and existing DGs, respectively. These cost components 

are multiplied by the corresponding binary variables to determine whether each DG is being 

utilized or not. Note that the binary investment variable is also used for this purpose because 

there is no economic explanation or justification as to why it cannot be utilized immediately 

after an investment is made on a given asset. For the case example given above, the DG will 

incur maintenance costs in the last two years. For existing generators, binary variables are 

used to indicate their respective utilizations. The operation costs given by (3.1.4) and (3.1.5) 

for candidate and existing DGs, respectively, depend on the amount of power generated for 

each scenario, snapshot, stage and DG type. Therefore, these costs represent the expected 

costs of operation. Similarly, the penalty term for the unserved power, given by (3.1.6), is 

dependent on the scenarios, snapshots and time stages. Equation (3.1.6) therefore gives the 

expected cost of unserved energy. The expected emission costs of candidate and existing 

generators are given by (3.1.7) and (3.1.8), respectively.  



47 
 

3.3.3 Constraints 

 

3.3.3.1 Load Balance Constraints  

The load balance at each node is given by equation (3.2). 

  

  

∑ ∑(𝑔𝑛,𝑝,𝑘,𝑠,𝑤,𝑡
𝐸

𝑝𝜖Ω𝑝𝑘𝜖Ω𝑘

+ 𝑔𝑛,𝑝,𝑘,𝑠,𝑤,𝑡
𝑁 ) + ∑ 𝑔𝑠𝑠,𝑠,𝑤,𝑡

𝑆𝑆

𝑠𝑠∈Ω𝑠𝑠

+ 𝛿𝑛,𝑠,𝑤,𝑡 − ∑ 𝑓𝑛𝑚,𝑠,𝑤,𝑡
𝑛,𝑚∈Ω𝑛

+ ∑ 𝑓𝑚𝑛,𝑠,𝑤,𝑡
𝑛,𝑚∈Ω𝑛

≥ 𝑑𝑛,𝑠,𝑤,𝑡     ; ∀𝑠 ∈ 𝑛 
(3.2) 

  

 

3.3.3.2 Investment Limits 

In real problems, there always exist financial constraints; therefore, the maximum allowable 

budget for investment in DGs for a given year is limited by (3.3). 

  

  

∑ ∑ ∑ 𝐼𝐶𝑝,𝑘
𝑁 (𝑥𝑝,𝑘,𝑛,𝑡

𝑁

𝑝𝜖Ω𝑝𝑘𝜖Ω𝑘

− 𝑥𝑝,𝑘,𝑛,𝑡−1
𝑁 )

𝑛∈Ω𝑛

≤ 𝐼𝑛𝑣𝐿𝑖𝑚𝑡 (3.3) 

  

 

3.3.3.3 Generation Capacity Limits 

The minimum and maximum capacity limits of existing and candidate generators are 

represented by (3.4) and (3.5), respectively. Note that the binary variables also appear here 

and multiply these bounds. This is to make sure that the power generation variable is zero 

when the generator remains either unutilized or unselected for investment. In the case of 

intermittent power source, the lower generation limits 𝐺𝑝,𝑘,𝑠,𝑤,𝑚𝑖𝑛
𝐸  and 𝐺𝑝,𝑘,𝑠,𝑤,𝑚𝑖𝑛

𝑁 is often set to 

0 while the corresponding upper limits are set equal to the actual power output of the DG 

corresponding to the level of primary energy source (wind speed and solar radiation, for 

instance). Hence, the upper bound in this case depends on the operational state (i.e. the 

snapshot) and the scenario.   

  

  

𝑢𝑛,𝑝,𝑘,𝑡
𝐸 𝐺𝑝,𝑘,𝑠,𝑤,𝑚𝑖𝑛

𝐸 ≤ 𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝐸 ≤ 𝑢𝑛,𝑝,𝑘,𝑡

𝐸 𝐺𝑝,𝑘,𝑠,𝑤,𝑚𝑎𝑥
𝐸  (3.4) 

  

  

  

𝑥𝑛,𝑝,𝑘,𝑡
𝑁 𝐺𝑝,𝑘,𝑠,𝑤,𝑚𝑖𝑛

𝑁 ≤ 𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝑁 ≤ 𝑥𝑛,𝑝,𝑘,𝑡

𝑁 𝐺𝑝,𝑘,𝑠,𝑤,𝑚𝑎𝑥
𝑁    (3.5) 
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3.3.3.4 Unserved Power Limit 

The upper and lower limits of the unserved power are given by (3.6). Normally, the maximum 

unserved power one can have at a certain node is the demand at that node. However, the 

upper bound may be superfluous because, under normal circumstances, when a sufficiently 

large penalty factor is used in the objective function, the unserved power variable will tend 

to be very close to zero by optimality. 

  

0 ≤ 𝛿𝑛,𝑠,𝑤,𝑡 ≤ 𝑑𝑛,𝑠,𝑤,𝑡 (3.6) 

  

 

3.3.3.5 DG Penetration Level Limit 

Mainly due to technical reasons, there can be a maximum penetration level of DG integration 

(or, equivalently saying, the maximum percentage of demand covered by DG power). This is 

ensured by adding the constraints in (3.7). 

  

∑ ∑ ∑(

𝑘𝜖𝛺𝑘𝑝𝜖𝛺𝑝

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝐸 + 𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡

𝑁 )

𝑛∈Ω𝑛

≤ 𝜑𝑑𝑛,𝑠,𝑤,𝑡 (3.7) 

  

 

3.3.3.6 Logical Constraints 

Logically, an investment made at time stage t cannot be reversed or divested in the 

subsequent time stages; hence, the asset should be available for utilization immediately after 

the investment is made. Such constraints can be realized using (3.8). 

  

𝑥𝑝,𝑘,𝑛,𝑡
𝑁 ≥ 𝑥𝑝,𝑘,𝑛,𝑡−1

𝑁    (3.8) 

  

 

3.3.3.7 Network Model Constraints 

As mentioned earlier, integrating DGs could in some cases result in technical problems in the 

system such as congestion, voltage rise and stability issues. Therefore, if these issues are 

deemed critical, it may be desirable to include network constraints so that power flows and 

node voltages remain within their respective permissible ranges. To this end, a linearized 

network model, first proposed in [95] in the context of transmission expansion planning and 

further extended to distribution network system planning in [96], is used here. In distribution 

systems, since active power flow dominates the apparent power flow, reactive power flow 

can be neglected. Hence, without loss of generality, only the active power flow through a 

given line, given by (3.9), can be considered. Equation (3.10) ensures that the flow through 

the distribution lines do not exceed their corresponding thermal capacities. 
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𝑀𝑛𝑚(𝑧𝑛𝑚 − 1) ≤ 𝑓𝑛𝑚,𝑠,𝑤,𝑡 − {𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙(∆𝑉𝑛,𝑠,𝑤,𝑡 − ∆𝑉𝑚,𝑠,𝑤,𝑡)𝑔𝑛𝑚 − 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙
2 𝑏𝑛𝑚𝜃𝑛𝑚,𝑠,𝑤,𝑡}    

≤  𝑀𝑛𝑚(1 − 𝑧𝑛𝑚) 
(3.9) 

  

  

  

−𝑓𝑛𝑚
𝑚𝑎𝑥𝑧𝑛𝑚 ≤ 𝑓𝑛𝑚,𝑠,𝑤,𝑡 ≤ 𝑧𝑛𝑚𝑓𝑛𝑚

𝑚𝑎𝑥 (3.10) 

  

Note that the voltage at each node is assumed to be equal to 𝑉𝑛𝑜𝑚 + ∆𝑉𝑛,𝑠,𝑤,𝑡   where 

∆𝑉𝑛,𝑠,𝑤,𝑡  stands for the voltage deviation at each node which is bounded as −𝜀 ∗ 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ≤

∆𝑉𝑛,𝑠,𝑤,𝑡 ≤ 𝜀 ∗ 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙. For the analysis throughout this chapter, the tolerance factor ε is set to 

0.05, and the voltage magnitude and angle at all substations are set to  1.05𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙 and 0, 

respectively. 

 

3.3.3.8 Radiality Constraints 

The traditional radiality constraint in (3.11) [97], along with the load balance equation, gives 

the necessary condition for a distribution network to be radial and connected. The analysis in 

this chapter considers a radial network, and does not include grid expansion or switching. 

Therefore, equation (3.11) is sufficient to keep the radiality of the network and ensure that 

all nodes are connected.     

  

  

∑ 𝑧𝑛𝑚
𝑛,𝑚∈𝛺𝑛

= 𝑁𝑛 − 𝑁𝑆𝑆   (3.11) 

  

 

3.4 Case Studies  

 

3.4.1 System Data 

The system considered in the study is a real-life insular distribution network in São Miguel 

Island, Azores, Portugal. In this system, currently, there is no electricity market, and there is 

no energy imported (purchased) from the transmission grid.  The system has a peak demand 

of 70.2 MW, and information about existing generators is shown in Table 3.1. The investment 

limit in each year is set to 120 M€. The average cost of electricity 𝜆𝑠,𝑤,𝑡 used for estimating 

cost of losses is assumed to be the average of all marginal costs of power production of DGs. 

In this system, various DG types with capacities ranging from 1 to 30 MW are considered as 

candidates for investment (see in Table 3.2). These fall into small-to medium-scale DG 

categories according to the capacity-based classification of DGs in [98]. The installation and 

maintenance costs of each DG are either directly obtained from [98] and [99] or estimated 

using the so-called six-tenths rule [100], which e stablishes a relationship between cost and 

quantity (in this case, installed capacity).  
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Table 3.1 – Data for existing generators  

 Generator type, p Alternative, 

k 

Installed 

capacity 

(MW) 

OCp,k 

(€/MWh) 

ICp,k 

(M€) 

MCp,k  

(M€) 

ERp,k     

(tons 

/MWh) 

        

1 Hydro Hydro 4.07 7.0 NA 0.38 0.0121 

2 Geothermal GEOT 24.0 5.0 NA 1.20 0.0165 

3 HFO-T* HFO 98.0 145.4 NA 0.01 0.5600 

4 Wind WD 0 10.0 17.0 NA 0.80 0.0276 

* Heavy fuel oil turbine 

 

 
Table 3.2 – Data for candidate generators  

 Generator type, p Alternative, 

k 

Installed 

capacity 

(MW) 

OCp,k 

(€/MWh) 

ICp,k  

(M€) 

 

MCp,k  

(M€)     

 

ERp,k     

(tons/MWh) 

1 Solar PV 1 1.0 40 3.00 0.06 0.0584 

2 Solar PV 2 1.5 40 3.83 0.08 0.0584 

3 Solar PV 3 2.0 40 4.55 0.09 0.0584 

4 Solar PV 4 2.5 40 5.20 0.10 0.0584 

5 Solar PV 5 3.0 40 5.80 0.12 0.0584 

6 Solar PV 6 4.0 40 6.89 0.14 0.0584 

7 Solar PV 7 6.0 40 8.79 0.17 0.0584 

8 Solar PV 8 10 40 11.94 0.24 0.0584 

9 Wind WD 1 1.0 17 2.64 0.05 0.0276 

10 Wind WD 2 2.0 17 4.00 0.08 0.0276 

11 Wind WD 3 5.0 17 6.93 0.14 0.0276 

12 Wind WD 4 10 17 10.51 0.21 0.0276 

13 CGT** CGT 1 30 145.4 27.00 0.01 0.5600 

14 Biomass BM 1 20 20 80.00 3.00 0.0276 

** Combustion gas turbine 
 

 

This method reflects the economy of scale that exists in DGIP, i.e. the higher the installed 

capacities of DGs of the same type, the lower the costs per installed kW get. The hourly 

series (historical data) of wind speed and solar radiation at various locations of the island are 

obtained from publicly available databases [101], [102], respectively.  

The correlation among the hourly wind speed and solar radiation series is approximately -

0.13. The geographical coordinates where these data are taken from include (37.790,-

25.385), (37.778,-25.489), (37.866,-25.816), (37.797,-25.170), (37.717,-25.505), (37.823,-

25.487), (37.772,-25.375) and (37.782,-25.661). Then, the wind (WD) and solar photovoltaic 

(PV) power production series used in the simulations are determined by plugging the wind 

speed and the radiation data in the corresponding power curve expressions.  

The DGIP problem is coded in GAMS 24.0 and solved using CPLEX 12.0. All simulations are 

carried out in HP Z820 Workstation with E5-2687W processor, clocking at 3.1 GHz. 
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3.4.2 Scenario Definition 

Defining scenarios is in itself a complex problem, which requires exhaustive research and 

sufficient knowledge of the evolution of the system under consideration. Because of this, the 

number and the nature of scenarios are mostly predefined, and, to do this, planners often 

rely on expert knowledge. In this work, three scenarios (storylines) are defined in connection 

to the possible evolutions of two relevant uncertain parameters over the planning horizon, 

namely, electricity demand growth and emission price. Table 3.3 shows the three evolutions 

of demand growth, denoted as Low, Moderate and High, having an equal degree of 

realization. Similarly, the emission price is represented by three equally probable storylines 

(scenarios), as depicted in Table 3.3. Out of these individual scenarios, assuming the two 

uncertain parameters are independent, we can get nine different combinations, which form 

the new set of scenarios used in the simulations. With this as a base-case, sensitivity analyses 

are carried out to study the impact of several system parameters other than these, which 

involve some degree of uncertainty, on DG investment decisions. These parameters include 

interest rate, DG penetration limit, solar PV and wind power output uncertainty, generator 

availability, electricity tariffs and fuel prices. 

 

3.4.3 Impact of Network Inclusion/Exclusion on DGIP Solution 

To assess the impacts on the DGIP solution, the formulated problem is solved with and 

without network. The former considers the entire network system but the latter assumes that 

the electricity demand is aggregated and connected to a hypothetical node and all generators 

are assumed to be connected to this node. One of the main differences lies in the network 

losses which are only accounted for when considering the network. However, since 

distribution networks span over a small geographical area, the feeders and distribution lines 

are usually short. Therefore, in properly designed distribution networks, power losses are 

negligible and, hence, they are not expected to significantly change DG investment planning 

solution. This argument has been experimentally verified by running simulations with and 

without a network on two insular networks (the distribution networks of São Miguel Island 

described before and La Graciosa Island presented in [103]). In both cases, the DGIP results 

with and without network are very similar, only differing in one DG investment. Moreover, the 

differences in total investment cost throughout a three-year planning horizon are 2.2 and 

3.5%, respectively.  

Table 3.3 – Demand growth and CO2 price scenarios 

Stages 

Demand growth scenarios 
 CO2 price scenarios 

(€/ton of CO2) 

Low Moderate High Low Moderate High 

T0 0% 0% 0%  5 5 5 

T1 2% 5% 10%  7 12 20 

T2 5% 10% 20%  10 18 30 

T3 7% 15% 30%  13 25 45 
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Generally, excluding the network slightly results in overinvestment. This is because 

neglecting the network would naturally mean neglecting the voltage constraints. As a result, 

this would lead to an increase in the size of DG integrated to the system that would otherwise 

be impossible when considering the network due to voltage rise issues.  

In the systems studied, the increase in DG investments as a result of not considering the 

network is negligible. Moreover, the cost of losses in both test cases is too small (accounting 

for less than 0.02 % of the total system cost) to have an impact on the solution. Based on 

these results, the sensitivity analysis here is carried out without considering the network. This 

is not expected to affect the analysis work since the main aim of the work here is to identify 

the parameters that significantly influence DGIP solutions.  

It should be clearly understood that the work in this chapter is not to make investment 

decisions; it should rather be understood as an important step that provides relevant input to 

the development of robust planning tools. The exclusion of network (i.e. collapsing the whole 

system into one node) reduces the computation burden and helps one to increase the level of 

details of other relevant issues such as uncertainty and variability of uncertain parameters. It 

should however be noted that the aforementioned findings may largely depend on the size 

and the type the system being considered.  

 

3.4.4 Results and Discussion 

The analysis results with regards to the sensitivity of investment decisions on DGs with 

variations of selected system parameters are presented and discussed as follows. 

 

3.4.4.1 Demand Growth and CO2 Price 

The total investment cost for every combination of demand growth and emission price 

scenarios are shown in Table 3.4, along with the corresponding overall system costs as in 

Table 3.5. We can see in these tables that DG investments are more sensitive to emission 

price uncertainty than to demand growth. The DG investment decisions corresponding to each 

scenario and time stage are given in Table B.1 of Appendix B. 

 

Table 3.4 – Impact of demand growth and CO2 price uncertainty on DG investments 

 

TIC  

(M€) 

CO2 price scenarios 

Low Moderate High 

Demand growth 

scenarios 

Low 38.462 46.220 54.540 

Moderate 38.462 46.996 64.245 

High 38.462 53.078 64.757 
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3.4.4.2 Interest Rate 

The evolution of interest rate remains uncertain, and hence it is subject to change at any 

time in the future. To see its effect on DG investment decisions, it is changed by holding 

other parameters at their base case values. Generally, investments in DG fall as the interest 

rate increases. This is illustrated in Figure 3.4, where one can clearly observe the decreasing 

trends of investment in DG (renewables, in particular). Their share in the total energy 

produced also follows a similar trend. This is in line with financial theory which states that 

higher interest rates deter investments because this raises the expected rate of return of an 

investment, which does not incentivize investments. As an example, an interest rate of 2% 

results in investments in all candidate DGs of wind and solar types except PV1 and PV2 (see in 

Table 3.2); whereas, for an interest rate of 12%, the investments made only include PV7, PV8 

and all wind type DGs. The huge difference here highlights how sensitive the investment 

decisions can be with respect to the interest rate. 

 

3.4.4.3 DG Penetration Level Factor 

This factor is another relevant parameter that affects the investment decisions of DGs. 

Intuitively, one may ponder that the higher the value of this factor, the higher the incentive 

for integrating more renewables, and therefore, the higher the DG investments 

 

Table 3.5 – Variation of objective function value with demand growth and CO2 price scenarios 

 

TC  

(M€) 

CO2 price scenarios 

Low Moderate High 

Demand growth 

scenarios 

Low 246.111 283.029 338.211 

Moderate 289.224 336.038 406.261 

High 375.187 442.091 543.606 

 

 

Figure 3.4 - Impact of interest rate on DG investments and energy production from wind and solar 
sources. 
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But this holds only up to a certain threshold, beyond which there seems to be few or no new 

investments made. Figure 3.5 clearly reflects this phenomenon. In the case study presented 

in this chapter, the threshold value of the penetration level seems to be 40%. Below this 

level, investments made in DG steadily increase with the penetration level from almost no 

investments at 10% to seven investments at 40%. However, this is not the case for higher 

penetration levels. Even if the penetration level is set beyond 40%, no new investments are 

justified. 

As can be seen in Figure 3.5, the impact of DG penetration level on emissions and expected 

system costs is also significant. As expected, the increase in DG investments is offset by a 

higher decrease in operation and emission costs, leading to decreasing trends of the expected 

system cost and the emissions with increasing penetration level. Beyond 40%, the rate of 

changes in both curves is however insignificant. This may be the maximum technical 

penetration limit of variable energy sources in the absence of energy storage and appropriate 

reactive power compensation mechanisms put in place to counter the negative effects of 

integrating variable generation such as voltage and grid stability issues. To maintain a healthy 

operation of the system, high production levels of RES-based DGs need to be curtailed. The 

curtailment rate and level increase with the size of variable power capacity installed in the 

system. Hence, in this situation, further investment on such resources (beyond 40%) may not 

be justified because doing so does not lead to further reduction in system costs.   

Alternatively, Figure 3.6 shows the variation of DG investments with respect to the DG 

penetration level factor. The results in this figure also strengthen the fact that DG 

investments show some variations with an increasing level of this factor. The level of 

emissions gets lower as the DG penetration factor is increased up to a certain level (around 

40%), beyond which the change is insignificant. This is indicative of the effect of increasing 

investments in DGs up to this level, which is in line with the previous statement.  

 

 
 

Figure 3.5 - Variations of emissions, investment and expected system costs with DG penetration level 
factor. 
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Figure 3.6 - Variation of DG investments with penetration level and their effect on total CO2 emissions. 

 
3.4.4.4 Fuel Prices and Electricity Tariffs 

 

The impact of fuel prices and electricity tariffs of renewable generators are also analyzed by 

varying the levels of these parameters. The results of this sensitivity analysis are summarized 

in Table 3.6. As it can be seen in this table, DG investment decisions are very sensitive to fuel 

prices. For example, when the fuel price is considered to be 30% lower than that of the base 

case, it becomes less attractive to invest on DG (especially solar photovoltaics). But a fuel 

price 30% higher results in more investments in PV. 

In addition to fuel prices, electricity tariffs also play a significant role in the decision-making 

process, particularly in the context of DG investment planning. In general terms, the price of 

electricity generated from wind or solar DG highly depends on the initial level of capital 

invested on these DG technologies. Once the investments are made, operation costs are 

normally very low. Nowadays, the capital costs of the main components pertaining to these 

technologies are continuously falling, with a learning rate of more than 20% per annum.  

This trend will most likely be sustained [99], resulting in a dramatically lower final cost of 

electricity (tariff) generated from such resources.  

The effects of variations in PV energy tariffs on DG investments are especially investigated in 

this chapter. As shown in Table 3.6, when solar PV generators are considered to be as 

competitive as wind power generators, i.e. with a tariff of €20/MWh, more investments in PV 

are made compared to the base case. On the other hand, if the electricity tariff of energy 

coming from PV turns out to be twice that of the base case (€80/MWh), the number of 

investments made in solar PV declines. However, this is not likely to happen given the current 

learning rate of solar PV technology. It is also worth mentioning that the planning solution in 

the case of +100% tariff for PV energy is exactly the same as the solution in the -30% fuel 

price case, which shows the importance of energy tariff arrangement by the regulatory body. 
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The crowding of investment decisions in the first stage in Table 3.6 may be due to two 

reasons. The first reason could be because of the absence of investment constraints related 

to financial and logistic matters. The second reason could be because of the relatively higher 

net present value of operation, maintenance and emission costs in the first stage when 

compared with that of any other stage. This, along with the first reason, may justify more 

investments to be made in the first stage rather than in any one of the subsequent stages.   

 

3.4.4.5 Wind and Solar Power Output Uncertainty 

To analyze the effect of uncertainty in wind and solar power outputs, two scenarios are 

created for each. One scenario is taken to be above the average hourly profile (roughly 30% 

higher than that of the base case), and the other one is taken below the average profile 

(approximately 30% lower than that of the base case) in each case. The results of the analysis 

are summarized in Table 3.7. One can observe that when the B-wind scenario is considered, 

the number of investments on wind type DGs becomes lower than these of the base case (see 

in Table 3.6). This is because of the lower yield of wind resources. In contrast, more 

investments are made on wind type DGs when the A-wind scenario is considered.  

The sensitivity of investments in solar PVs with respect to the uncertainty of PV outputs is 

even higher, as can be seen in this table. Note that the reasons mentioned before in the case 

of Table 3.6 could explain the crowding of investments in the first stage in Table 3.7. 

 

Table 3.6 – Impact of price and DG tariffs on DG investment decisions 

 

Stages 

 
Changes in fuel price 

 Changes in PV energy 

tariff 

 

 +0% -30% +30%  -50% +100% 

Investment in 

wind and solar 

DGs 

T1 

 
PV8, WD1, 

WD2, WD3, 

WD4 

WD1, 

WD2, 

WD3, 

WD4 

PV7, PV8, 

WD1, WD2, 

WD3, WD4 

 
PV7, PV8, 

WD1, WD2, 

WD3, WD4 

WD1, 

WD2, 

WD3, WD4 

T2  PV7 PV8 PV6  - PV8 

T3  - - PV5  PV6 - 

TC (M€)  364 312 412  358 372 

Total expected emissions  

(x 1000 tons of CO2) 

 
268.8 296.4 256.5 

 
263.1 296.4 

 

 

Table 3.7 – Impact of wind and solar PV output uncertainty on DG investment decisions 

Scenarios 
 Time stages  

TIC (M€) 

 

TC (M€)  T1 T2 T3   

Wind Scenarios 
Below average (B)  PV8,WD2, WD3,WD4 PV7 -  44.81  412 

Above average (A)  PV8, WD1,WD2, WD3,WD4 - -  38.46  339 

Solar Scenarios 
Below average (B)  PV8, WD1,WD2, WD3,WD4 - -  38.46  373 

Above average (A)  PV8, WD1,WD2, WD3,WD4 PV7 PV6  47.00  360 
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3.4.4.6 Demand and RES Power Output Uncertainty 

As stated earlier, the natural variation with time that exists in some of the system 

parameters such as demand and renewable energy source (RES) outputs leads to a large 

number of operational situations, adding extra complexity to the DGIP problem. Because of 

this, a significantly reduced number of snapshots are usually considered in such problems. For 

example, demand variability is commonly represented by a load duration curve, which is then 

aggregated into three to five load blocks. 

Unfortunately, this may compromise the quality of solution obtained. In light of this, we 

investigate how the reduction of operational situations, via clustering, affects the DG 

investment solution. To do this, we make use of k-means clustering algorithm, a popular 

clustering analysis method in data mining, to obtain different number of data clusters 

(aggregates). The representative snapshot in each cluster is assumed to be the mean of the 

snapshots grouped together. For different number of clusters, the investments made, along 

with total cost and average simulation time, are summarized in Table 3.8.  

According to the results in this table, there seems to be a tendency to overinvest when the 

snapshots are further reduced. This may be due to an overestimation of the operation costs, 

which triggers more investments. Basically, investments are justified if the net reduction in 

operation costs (which may include cost of energy production, emission and losses) is higher 

than or equal to the overall investment costs. Based on this, if the operation costs are 

artificially overstated for some reason such as clustering inaccuracy, the net reduction in 

operation costs may seemingly be high, leading to the justification of more investments.  

However, it should be noted that this may not always be the case, i.e. a lower number of 

clusters may not necessarily be associated with an overestimation of operation costs. 

Depending on how the representative snapshots in all clusters are taken, the operation costs 

may be overestimated or underestimated, resulting in overinvestment or underinvestment, 

respectively. 

 

Table 3.8 – Impact of snapshot aggregation on DG investment decisions 

 

TIC (M€) 

TC (M€)  

Average simulation 

time (seconds) Number of snapshots Stage 1 (T1) Stage 2 (T2) Stage 3 (T3) 

Peak demand 47.849 6.691 5.118 - - 

100 38.462 8.533 6.082 359.45 2 

300 38.462 8.533 6.082 360.66 4 

324 * [71] 38.462 8.533 6.082 362.98 6 

500 38.462 8.533 6.082 361.56 7 

1000 38.462 8.533 6.082 362.37 21 

2000 38.462 8.533 6.082 363.09 60 

4000 38.462 8.533 0.000 363.55 210 

6000 38.462 8.533 0.000 363.70 420 

8760 38.462 8.533 0.000 363.80 720 

* Snapshots are reduced according to the method in the reference 
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Another important observation from Table 3.8 is that clustering the hourly operational 

snapshots in a year shows little impact on the investment solution beyond a certain threshold 

(which lies somewhere in the range of 300 and 400). This reflects that as far as the initially 

large number snapshots are clustered into 300 or more and the representative snapshots are 

carefully selected, the investment outcomes may not be influenced by clustering operational 

situations but significantly facilitate the solution process.  

 

3.4.4.7 Generator Availability 

It is understood that a generator can only produce power when it is available. There are two 

main factors which affect generator’s availability: unplanned (forced) and planned 

(scheduled) outages. Such outages may also condition DG investment solution. Especially, 

more investments can be expected if, by chance, generator outages partially or fully coincide 

with relatively high production times of DG candidates. For example, if outages essentially 

occur during sunny hours, more investments could be made on solar PV candidate generators 

to fill in the generation gap left behind as a result of the outages. However, the chance of 

this happening can be very low since both processes are independent. In the particular 

example presented earlier, the effects of forced outages of geothermal and hydro power 

units on the solution are analyzed. The availability series of these units are generated using a 

binomial distribution function, assuming generator outage rates of 15% and 10%, respectively. 

Note that these rates consider both types of outages. When generating the series, an average 

off-time of 4 hours is factored in for both generator types. Given this input information, the 

DGIP problem is solved and its solution includes PV8 and all wind DG candidates in the first 

stage, PV7 in the second stage, and PV6 in the third stage with a total investment cost of 

53.08 M€. This solution differs from that of the base case by one investment (i.e. PV6).  

But, in general, more investments could be justified if the generator outages occur 

during/around the peak hours of renewable power productions.  

 

3.5 Chapter Conclusions 

This chapter has presented comprehensive experimental analyses to determine the sensitivity 

of DG investments with variations of several uncertain parameters. The aim of such analyses 

has been first to investigate the effect of variability and uncertainty in model parameters on 

the investment decisions of DGs, and second to identify the parameters that have the highest 

degree of influence on DG investments. The results of our analyses generally showed that 

both uncertainty and variability have a meaningful influence on DG investment decisions.  

In fact, the degree of influence varies from one parameter to another. Results from the case 

study show that generator outages have little or no impact on the RES-based DG investments; 

whereas, uncertainty in CO2 and fuel prices, interest rate and RES power outputs significantly 

influence investment decisions especially in variable energy sources.  



59 
 

In particular, it has been found out that uncertainty in CO2 and fuel prices as well as interest 

rate dramatically condition decisions compared to the uncertainty in demand growth and RES 

power outputs. A thorough investigation on the number of clusters of the hourly operational 

snapshots in a year shows that the clustering process results in little impact on the 

investment solution beyond a certain threshold (somewhere in the range of 300 and 400). This 

reflects that as far as the initially large number snapshots are clustered into 300 or more, and 

the representative snapshots are carefully selected, the results may not be influenced by 

clustering operational situations but significantly facilitate the solution process.  

In general, the results reveal that ignoring or inadequately considering uncertainty and 

variability in model parameters has a quantifiable cost. Based the extensive analysis, a 

stochastic modeling of uncertainty related to emission and fuel prices, interest rate, RES 

power outputs and demand growth is very critical for obtaining robust investment decisions. 

The comprehensive analysis performed in this chapter can help planners to properly weigh 

the effect of ignoring or considering the uncertainty and/or variability of one or more model 

parameters. Accordingly, a realistic planning tool considering all relevant sources of 

uncertainty and/or variability and solution methodologies can be developed, which leads to 

high quality and robust investment solutions. 

  



60 
 

Chapter 4 

Multi-Stage Stochastic DG Investment Planning with 

Recourse 

 
Taking the findings of the analysis in Chapter 3 as input, a detailed model is developed  

in Chapter 4 to guide the complex decisions-making process of DG investment planning in  

the distribution system in the face of uncertainty. The problem is formulated from a 

coordinated system planning viewpoint and the operational variability and uncertainty 

introduced by intermittent generation sources, electricity demand, emission prices, demand 

growth and others are accounted for via probabilistic and stochastic methods, respectively.  

 
4.1 Introduction 

The advent of emerging solutions such as active management of distribution networks [57] or 

fully automated and intelligent networks – the so-called smart grids [104] - is expected to 

keep on facilitating smooth integration of DGs by alleviating existing technical limitations. 

Hence, DG is expected to play an important role in distribution systems, making the issue of 

DG investment planning (DGIP) highly important. This is because, throughout the world, new 

regulations are put in place to reduce the heavy dependence of such systems on fossil fuels 

for energy production. However, several DG sources are intermittent in nature, making the 

operation and planning of distribution networks very challenging. This is because such sources 

introduce significant operational variability and uncertainty to the system. The terms 

(operational) variability and uncertainty in this chapter should be understood according to the 

following definitions. Variability, as defined in [90], refers to the natural variation in time of 

a specific uncertain parameter; whereas, uncertainty refers to “the degree of precision with 

which the parameter is measured” or predicted. In addition to the aforementioned sources of 

uncertainty, there are several other parameters (such as fuel prices, demand growth, etc.) 

which are subject to high level uncertainty. The compounded effect of all these relevant 

issues certainly requires crafting new methods and tools in order to realize an optimal or a 

cost-efficient integration of DGs. Indeed, the robustness and reliability of the solutions 

obtained from DGIP models highly depends on the level of details of the methods and tools 

embedded in such models and their effectiveness in managing uncertainty and variability. 

This chapter aims to introduce a novel multi-stage stochastic DGIP model with recourse under 

a high penetration level of stochastic generation resources in distribution systems. The model 

incorporates methods to manage uncertainty and operational variability introduced by the 

variable energy sources (such as wind and solar) as well as demand. This enhances the 

robustness of the decisions made.  
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The problem, formulated as a mixed integer linear programming (MILP) optimization, 

simultaneously minimizes the net present value of losses, emission, operation and 

maintenance as well as unserved energy costs, while fulfilling a number of technical and 

economic constraints. Note that the DGIP problem here is formulated from the system 

perspective (i.e. a coordinated planning approach).  

This chapter is organized as follows: In section 4.2, the uncertainty and the operational 

variability facing a DGIP problem are briefly explained. Subsequently, section 4.3 presents 

the mathematical formulation and detailed description of the DGIP model. Section 4.4 

discusses the results of the case studies. Finally, in Section 4.5, the relevant conclusions and 

implications based on the outcome are drawn. 

 

 

4.2 Modeling Uncertainty and Variability in DGIP 

The various sources of uncertainty and variability in a DGIP problem are related to the 

variability in time and the randomness of operational situations [105]. In addition, there are 

some other uncertainties mostly related to the long-term electricity, emission and fuel 

prices, rules, regulations and policies, etc.  

A well-developed DGIP tool should therefore encompass a methodology which effectively and 

efficiently takes account of operational variability and uncertainty. Exhaustive modeling of all 

sources of uncertainty and variability may not only be computationally unaffordable but also 

inefficient. A systemic approach is required to handle these issues in an efficient and 

effective manner. In this thesis, the variability due to intermittent DG power outputs (mainly, 

wind and solar) and demand are captured by considering a sufficiently large number of 

operational states, also known as here “snapshots”. The hourly data may be historical or 

generated from individual or joint PDFs of uncertain parameters.  

To ensure tractability, a standard clustering technique is used to reduce the number of 

snapshots. Here, each cluster represents a group of similar operational situations.  

A representative snapshot is then selected from each cluster based on certain criteria (for 

example, the medoid). Then, each of the selected snapshots, representing a group of similar 

operational situations, is assigned a weight 𝜋𝑤 proportional to the number of operational 

situations in its group. In addition to variability, demand and RES outputs are subject to 

uncertainty due to partially unpredictable nature (especially variable energy sources such as 

wind and solar). In other words, the realizations of these parameters cannot be perfectly 

forecast. This relevant issue (i.e. uncertainty) is accounted for considering a sufficiently large 

number of scenarios for each individual uncertain parameter. In the case of wind power 

output uncertainty, for instance, each scenario represents a possible hourly wind power 

output profile throughout the planning horizon. Hence, one can generate multiple profiles of 

this type, each with a certain degree of realization.  
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However, for computational reasons, the number of scenarios needs to be limited. Similarly, 

a number of scenarios are also defined to characterize the solar power output uncertainty.  

In addition, the evolutions of emission price and demand growth can be each represented by 

many scenario trajectories, each showing the considered parameter’s data realizations. 

Combinations of all these individual scenarios then form the final set of global scenarios that 

are used in the analysis. This is schematically illustrated in Figure 4.1. The global scenarios 

(S1 through Sn) are formed by combining individual scenarios. Note that the profiles in this 

figure are shown only for the purpose of illustrating the concepts; the profiles used in the 

analysis are actually different from these. The actual ones, for instance, span over the entire 

planning horizon. 

 

4.3 Mathematical Model 

4.3.1 Overview and Modeling Assumptions 

Although many studies have been carried out on DGIP, most of them focus on a small subset of the 

vast sources of variability and uncertainty when formulating the DGIP problem. As it can be 

observed in the literature presented in Chapter 3, dealing with the variability pertaining to 

electricity demand seems to be considered in many works in the literature (often by aggregating 

it into 3 to 5 demand levels) while the others are largely ignored or represented in an overly 

simplified manner. Moreover, analyses in previous works are mostly limited to one or two DG 

types; the possible investment options pertaining to the size and technology type of DGs are not 

sufficiently explored in most of them. Therefore, a comprehensive DGIP model, equipped with 

appropriate tools for managing the most relevant sources of variability and uncertainty as well as 

considering various DG types and sizes, is still needed to guide the complex decision making 

process of DGIP. This way, an optimal integration of DGs can be guaranteed.  

 

 
 

Figure 4.1 - A graphical illustration of scenario generation. 
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Furthermore, the issue of combining robust and flexible investment decisions has not been 

addressed so far. It is understood that most real-world problems often require two types of 

investment decisions to be made: robust decisions (short-term) and adaptive decisions (medium to 

long-term) both in the face of high level uncertainty. The former are sometimes called “here and 

now” decisions while the latter are referred to as “wait and see” decisions.  

In the present work, to emulate such a decision-making process, a two-period planning framework 

is proposed. Each period has multiple planning stages. The first period is a short-term horizon in 

which robust decisions, good enough for all scenarios, are pursued. The second one spans over a 

medium to long-term horizon involving exploratory and/or flexible investment decisions that are 

scenario-dependent [89].  

Note that the investment solution in the second period can also be understood as a set of 

investments required to make adjustments to the first-period decisions depending on the scenario 

unveiled in the second period. In other words, the proposed model combines both robust (short-

term) and adaptive (medium to long-term) decisions, which is one of its salient features.  

 

4.3.2 Brief Description of the Problem 

As stated in the previous sections, the DGIP problem is formulated considering the dynamic 

nature of the problem i.e. featuring multiple planning stages. In addition, in order to combine 

“here and now” and “wait and see” investment decisions, a two-period stochastic 

optimization framework is proposed in this chapter.  

This modeling framework assumes that there are n probable future storylines (or scenarios) 

each associated with a probability of realization ρs that stochastically represents relevant 

sources of uncertainties. Note that the terminologies snapshot and scenario, as defined in this 

chapter, correspond to an operational situation at a particular hour, and the evolution of an 

uncertain parameter over a given time horizon (often yearly), respectively.  

The whole modeling scheme adopted in this chapter (i.e. the multi-stage and multi-scenario 

DGIP modeling framework and the expansion solution structure) is illustrated in Figure 4.2. 

This figure schematically represents possible future scenario trajectories with multiple 

scenario spots along the planning horizon. The figure also illustrates the decision structure, 

involving investment decisions independent of the scenarios and decisions, adapted to every 

scenario in every stage of the second period in a “what-if” fashion.  

The decisions in the first period form a set of stochastic solutions which should be good 

enough for all scenarios. Those in the second period can be regarded as a set of adaptive 

solutions because the investment decisions made depend on the scenarios.   
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Figure 4.2 - A schematic representation of (a) possible future scenario trajectories and (b) a decision structure  
[92]. 

 

As shown in Figure 4.2, in the first planning period, a single robust investment decision, 𝑥𝜏 , is 

made at the 𝜏th stage (where 𝜏 = 1, 2, … , 𝑇1) which are common (or good enough) for all 

scenarios [92]. On the other hand, flexible or adaptive decisions 𝑥𝑥𝑠,𝜁 and 𝑦𝑠,𝜁 (where 

𝜁 = 𝑇1 + 1, 𝑇1 + 2,… , 𝑇) are made at every stage of the second period [92]. Note that the 

decisions in the first period are more relevant than those made in the second period because 

they correspond to the “here and now” decisions, where the latter are implementable 

straightforwardly. However, the second-period decisions can also be very useful if seen from 

the flexibility/strategic planning perspective. In order to broaden the investment options, 

two DG investment pools are considered, one for each period. The context of an investment 

pool should be understood as a given set of DGs which is a candidate for investment.  

The lengths of the first and the second investment periods are given by T1 and T2, 

respectively. 

Here, the recourse formulation makes it possible to postpone investments from the first 

period, 𝑥𝜏, to the second period,  𝑥𝑥𝑠,𝜁, if deemed economical. The algebraic formulation of 

the model developed here is presented and explained in detail in the following sub-sections.  

 

4.3.3 Objective Function 

The objective function is composed of seven cost terms, each weighted by the net present 

value (NPV) factor as in (4.1). Here, the investment and the utilization variables as well as 

the operational variables such as generated power, flows, etc. constitute the set of decision 

variables of the optimization.  
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min
𝐼𝑛𝑣𝑉𝑎𝑟,
𝑂𝑝𝑉𝑎𝑟

𝑇𝐶 = 𝛼 ∗ 𝑇𝐼𝐶 + 𝛽 ∗ 𝑇𝑂𝑀𝑈𝐸𝐶 + 𝛾 ∗ 𝑇𝐸𝑀𝐶 + 𝜉 ∗ 𝑇𝐿𝐶 
(4.1) 

  

where  𝐼𝑛𝑣𝑉𝑎𝑟 and 𝑂𝑝𝑉𝑎𝑟 denote all investment and operational variables. Moreover, the 

subtotal costs related to investment (𝑇𝐼𝐶), operation, maintenance and unnerved energy 

(𝑇𝑂𝑀𝑈𝐸𝐶), emissions (𝑇𝐸𝑀𝐶) and losses (𝑇𝐿𝐶) in (4.1) are computed using the corresponding 

expressions in Table 4.1. 

The first term in (4.1) represents the NPV of DG investment costs under the assumption of 

perpetual planning horizon [93]. In other words, “the investment cost is amortized in annual 

installments throughout the lifetime of the installed DG”, as is done in [71].  

The second term corresponds to the sum of NPV operation, maintenance and energy not 

served (OM&ENS) costs throughout the planning stages. The third one gathers the 

corresponding OM&ENS costs incurred after the last planning stage, which rely on the OM&ENS 

costs of the last planning stage. Note that a perpetual planning horizon is assumed when 

spreading these costs over the horizon following the last planning stage. The fourth term in 

(4.1) refers to the sum of NPV emission costs in the system throughout the planning stages.  

 

Table 4.1 – Expression of cost components in the objective function. 

Cost terms Expression 

𝑇𝐼𝐶 
∑

𝐼𝑛𝑣𝐶𝑡
𝑁

𝑖(1 + 𝑖)𝑡
𝑡𝜖Ω𝑡⏟        

𝑁𝑃𝑉 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

 

  

  

𝑇𝑂𝑀𝑈𝐸𝐶 

∑
(𝑀𝑛𝑡𝐶𝑡

𝑁 +𝑀𝑛𝑡𝐶𝑡
𝐸 + 𝐸𝐶𝑡

𝑁 + 𝐸𝐶𝑡
𝐸 + 𝐸𝐶𝑡

𝑆𝑆 + 𝐸𝑁𝑆𝐶𝑡)

(1 + 𝑖)𝑡
𝑡𝜖Ω𝑡⏟                                    

𝑁𝑃𝑉 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛,   𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑎𝑛𝑑 𝑃𝑁𝑆 𝑐𝑜𝑠𝑡𝑠

+
(𝑀𝑛𝑡𝐶𝑇

𝑁 +𝑀𝑛𝑡𝐶𝑇
𝐸 + 𝐸𝐶𝑇

𝑁 + 𝐸𝐶𝑇
𝐸 + 𝐸𝐶𝑡

𝑆𝑆 + 𝐸𝑁𝑆𝐶𝑇)

𝑖(1 + 𝑖)𝑇⏟                                  
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛,   𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑎𝑛𝑑 𝑃𝑁𝑆 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇  

 

  

  

𝑇𝐸𝑀𝐶 
∑

(𝐸𝑀𝐶𝑡
𝑁 + 𝐸𝑀𝐶𝑡

𝐸 + 𝐸𝑀𝐶𝑡
𝑆𝑆)

(1 + 𝑖)𝑡
𝑡𝜖𝛺𝑡

 
⏟                    

𝑁𝑃𝑉 𝑜𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

+
(𝐸𝑀𝐶𝑇

𝑁 + 𝐸𝑀𝐶𝑇.
𝐸 + 𝐸𝑀𝐶𝑇

𝑆𝑆)

𝑖(1 + 𝑖)𝑇⏟                  
𝐶𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇

 

  

  

𝑇𝐿𝐶 
∑

𝐿𝑜𝑠𝑠𝑡
(1 + 𝑖)𝑡

𝑡𝜖Ω𝑡

 
⏟        
𝑁𝑃𝑉 𝑜𝑓𝑙𝑜𝑠𝑠𝑒𝑠 𝑐𝑜𝑠𝑡

+
(1 + 𝑖)−𝑇𝐿𝑜𝑠𝑠𝑇

𝑖⏟          
𝐿𝑜𝑠𝑠𝑒𝑠 𝑐𝑜𝑠𝑡 𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇
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And, the emission costs incurred after the last planning stage under the assumption of 

perpetual planning horizon are also given by the fifth term. Similarly, the last two cost terms 

in (4.1) compute the total NPV cost of losses throughout the planning horizon and those 

incurred after the last planning stage, respectively. 

The sum of all these costs gives the total cost (TC) which is to be minimized. Note that the 

four relevance factors in (4.1) (i.e. 𝛼, 𝛽 , γ and 𝜉) are all assumed to be equal throughout this 

chapter but depending on the relative importance of each cost component, different factors 

may be considered. In the event that different factor values were adopted, normalization 

may be required to avoid undesirable effect in terms of solution fidelity that may arise from 

unbalances in cost components. 

Each of the cost “functions” in Table 4.1 is computed as follows. Equation (4.2) represents 

the total sum of amortized DG investment costs weighted by the capital recovery factor, 

𝑖(1+𝑖)
𝜂𝑝,𝑘

(1+𝑖)
𝜂𝑝,𝑘−1

. Note that 𝑥𝑝,𝑘,𝑛,0
𝑁  is defined to be zero, and the formulation in (4.2) ensures that the 

investment cost of each DG is considered only once in the summation. For example, suppose 

an investment in a particular DG is made in the fourth year of a five-year planning horizon. 

This means the DG unit will be available during the fourth and the fifth years. Hence, the 

binary variable associated to this DG in those years will be 1 while the rest will be zero i.e. 

𝑥𝑝,𝑘,𝑛,𝑡
𝑁1 = {0,0,0,1,1}. In this particular case, only the difference (𝑥𝑝,𝑘,𝑛,4

𝑁1 − 𝑥𝑝,𝑘,𝑛,3
𝑁1 ) equals 1, 

implying that the investment cost is considered only once. It should be noted that the DG 

investment variables can also be integers (i.e. with possible integer values other than 0 and 

1). 

Equations (4.3) and (4.4) stand for the sum of annual maintenance costs of new and existing 

DGs, respectively. These cost components are multiplied by the corresponding binary 

variables to determine whether each DG is being utilized or not. Note that the binary 

investment variable is also used for this purpose because there is no economic explanation or 

justification as to why it cannot be utilized immediately after an investment is made on a 

given asset. For the case example given above, the DG unit will incur maintenance costs in 

the last two years. For existing generators, binary variables are used for indicating their 

respective utilizations. 

  

  

𝐼𝑛𝑣𝐶𝑡
𝑁 = ∑ ∑ ∑

𝑖(1 + 𝑖)𝜂𝑝,𝑘

(1 + 𝑖)𝜂𝑝,𝑘 − 1
𝐼𝐶𝑝,𝑘

𝑁1(𝑥𝑝,𝑘,𝑛,𝜏
𝑁1 − 𝑥𝑝,𝑘,𝑛,𝜏−1

𝑁1 )

𝑝∈Ω𝑝𝑘∈Ω𝑘𝑛∈Ω𝑛

 

 

              + ∑ 𝜌𝑠
𝑠∈Ω𝑠

∑ ∑ ∑
𝑖(1 + 𝑖)𝜂𝑝,𝑘

(1 + 𝑖)𝜂𝑝,𝑘 − 1
𝐼𝐶𝑝,𝑘

𝑁1(𝑥𝑥𝑝,𝑘,𝑛,𝑠,𝜁
𝑁1 − 𝑥𝑥𝑝,𝑘,𝑛,𝑠,𝜁−1

𝑁1 )

𝑝∈Ω𝑝𝑘∈Ω𝑘𝑛∈Ω𝑛

 

 

        + ∑ 𝜌𝑠
𝑠∈Ω𝑠

∑ ∑ ∑
𝑖(1 + 𝑖)𝜂𝑝,𝑘

(1 + 𝑖)𝜂𝑝,𝑘 − 1
𝐼𝐶𝑝,𝑘

𝑁2(𝑦𝑝,𝑘,𝑛,𝑠,𝜁
𝑁2 − 𝑦𝑝,𝑘,𝑛,𝑠,𝜁−1

𝑁2 )

𝑝∈Ω𝑝𝑘∈Ω𝑘𝑛∈Ω𝑛

 ;   ∀𝜏 ∈ Ω𝑃1;  ∀𝜁

∈ Ω𝑃2 

(4.2) 
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𝑀𝑛𝑡𝐶𝑡
𝑁 = ∑ ∑ ∑ 𝑀𝐶𝑝,𝑘

𝑁1

𝑝∈Ω𝑝𝑘∈Ω𝑘

𝑥𝑝,𝑘,𝑛,𝑡
𝑁1

𝑛∈Ω𝑛

 

 

               + ∑ 𝜌𝑠
𝑠∈Ω𝑠

∑ ∑ ∑ 𝑀𝐶𝑝,𝑘
𝑁1

𝑝∈Ω𝑝𝑘∈Ω𝑘

𝑥𝑥𝑝,𝑘,𝑛,𝑠,𝜁
𝑁1

𝑛∈Ω𝑛

 

 

               + ∑ 𝜌𝑠
𝑠∈Ω𝑠

∑ ∑ ∑ 𝑀𝐶𝑝,𝑘
𝑁2

𝑝∈Ω𝑝𝑘∈Ω𝑘

𝑦𝑝,𝑘,𝑛,𝑠,𝜁
𝑁2

𝑛∈Ω𝑛

  ; ∀𝑡 ∈ Ω𝑡;  ∀𝜁 ∈ Ω𝑃2 

(4.3) 

  

  

  

  

𝑀𝑛𝑡𝐶𝑡
𝐸 = ∑ ∑ ∑ 𝑀𝐶𝑝,𝑘

𝐸

𝑝∈Ω𝑝𝑘∈Ω𝑘

𝑢1𝑝,𝑘,𝑛,𝜏
𝐸

𝑛∈Ω𝑛

 

 

               + ∑ 𝜌𝑠
𝑠∈Ω𝑠

∑ ∑ ∑ 𝑀𝐶𝑝,𝑘
𝐸

𝑝∈Ω𝑝𝑘∈Ω𝑘

𝑢2𝑝,𝑘,𝑛,𝑠,𝜁
𝐸

𝑛∈Ω𝑛

 ; ∀𝜏 ∈ Ω𝑃1;  ∀𝜁 ∈ Ω𝑃2  

(4.4) 

  

  

  

     𝐸𝐶𝑡
𝑁 = ∑ 𝜌𝑠 ∑ ∑ 𝜋𝑤 ∑ ∑ 𝑂𝐶𝑝,𝑘,𝑛,𝑠,𝑤,𝜏

𝑁1

𝑝∈Ω𝑝𝑘∈Ω𝑘𝑤∈Ω𝑤𝑛∈Ω𝑛𝑠∈Ω𝑠

 

 

               + ∑ 𝜌𝑠 ∑ ∑ 𝜋𝑤 ∑ ∑ 𝑂𝐶𝑝,𝑘,𝑛,𝑠,𝑤,𝜁
𝑁2

𝑝∈Ω𝑝𝑘∈Ω𝑘𝑤∈Ω𝑤𝑛∈Ω𝑛𝑠∈Ω𝑠

  ;  ∀𝜏 ∈ Ω𝑡;  ∀𝜁 ∈ Ω𝑃2 

(4.5) 

  

  

  

      𝐸𝐶𝑡
𝐸 = ∑ 𝜌𝑠 ∑ ∑ 𝜋𝑤 ∑ ∑ 𝑂𝐶𝑝,𝑘,𝑠,𝑤,𝑡

𝐸

𝑝∈Ω𝑝𝑘∈Ω𝑘𝑤∈Ω𝑤𝑛∈Ω𝑛𝑠∈Ω𝑠

 ;  ∀𝑡 ∈ Ω𝑡  (4.6) 

  

  

  

  𝐸𝑁𝑆𝐶𝑡 = ∑ 𝜌𝑠 ∑ ∑ 𝜋𝑤𝜐𝑠,𝑤,𝑡𝛿𝑛,𝑠,𝑤,𝑡
𝑤∈Ω𝑤𝑛∈Ω𝑛𝑠∈Ω𝑠

  ;  ∀𝑡 ∈ Ω𝑡  (4.7) 

  

  

  

  𝐸𝑀𝐶𝑡
𝑁 = ∑ 𝜌𝑠 ∑ ∑ 𝜋𝑤 ∑ ∑ 𝜇𝑠,𝑤,𝑡

𝐸𝑀𝐼

𝑝∈Ω𝑝

𝐸𝑅𝑝,𝑘
𝑁1

𝑘∈Ω𝑘

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝑁1

𝑤∈Ω𝑤𝑛∈Ω𝑛𝑠∈Ω𝑠

  

 

               + ∑ 𝜌𝑠 ∑ ∑ 𝜋𝑤 ∑ ∑ 𝜇𝑠,𝑤,𝜁
𝐸𝑀𝐼

𝑝∈Ω𝑝

𝐸𝑅𝑝,𝑘
𝑁2

𝑘∈Ω𝑘

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝜁
𝑁2

𝑤∈Ω𝑤𝑛∈Ω𝑛𝑠∈Ω𝑠

 ; ∀𝑡 ∈ Ω𝑡;  ∀𝜁 ∈ Ω𝑃2 

(4.8) 

  
  
  

𝐸 𝑀𝐶𝑡
𝐸 = ∑ 𝜌𝑠 ∑ ∑ 𝜋𝑤 ∑ ∑ 𝜇𝑠,𝑤,𝑡

𝐸𝑀𝐼

𝑝∈Ω𝑝

𝐸𝑅𝑝,𝑘
𝐸

𝑘∈Ω𝑘

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝐸

𝑤∈Ω𝑤𝑛∈Ω𝑛𝑠∈Ω𝑠

 ; ∀𝑡 ∈ Ω𝑡 (4.9) 

  

  

  

𝐸𝑀𝐶𝑡
𝑆𝑆 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜇𝑠,𝑤,𝑡

𝐸𝑀𝐼 𝐸𝑅𝑠𝑠
𝑆𝑆𝑔𝑠𝑠,𝑠,𝑤,𝑡

𝑆𝑆

𝑠𝑠∈Ω𝑠𝑠𝑤∈Ω𝑤𝑠∈Ω𝑠

  ;  ∀𝑡 ∈ Ω𝑡 (4.10) 

  



68 
 

    𝐸𝐶𝑡
𝑆𝑆 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜎𝑠𝑠,𝑠,𝑤,𝑡𝑔𝑠𝑠,𝑠,𝑤,𝑡

𝑆𝑆

𝑠𝑠∈Ω𝑠𝑠𝑤∈Ω𝑤𝑠∈Ω𝑠

 ;  ∀𝑡 ∈ Ω𝑡 (4.11) 

  

  

  

   𝐿𝑜𝑠𝑠𝑡 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜅𝑠,𝑤,𝑡
𝑟𝑛𝑚

(𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙)
2(𝑓𝑛𝑚,𝑠,𝑤,𝑡)

2

𝑛,𝑚∈Ω𝑛𝑤∈Ω𝑤𝑠∈Ω𝑠

 ;  ∀𝑡 ∈ Ω𝑡 (4.12) 

  

The total operation costs given by (4.5) and (4.6) for candidate and existing DGs, 

respectively, depend on the amount of power generated for each scenario, snapshot and 

stage. Therefore, these costs represent the expected costs of operation. Similarly, the 

penalty term for the unserved power, given by (4.7), is dependent on the scenarios, snapshots 

and decision stages. Equation (4.7) therefore gives the expected cost of unserved energy in 

the system. The expected emission costs of power generated by new and existing generators, 

and that of power purchased from the grid are given by (4.8), (4.9) and (4.10), respectively. 

The expected cost of energy purchased from upstream (i.e. transmission grid), is also 

accounted for by (4.11). The expected cost of network losses in the system are computed as 

in (12). Note that, to keep the problem linear, the quadratic flow function in (4.12) is 

linearized using a first-order approximation employed in [17]. In order this chapter to be self-

contained, the linearized model is provided in Appendix A. Here, five piecewise linear 

partitions are considered throughout the analysis, which is in line with the findings in [94]. 

 

4.3.4 Constraints 

 

4.3.4.1 Load Balance Constraints 

Equation (4.13) enforces the Kirchhoff’s current law (i.e. the load balance) at each node. 

  

  

∑ ∑ (𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝐸

𝑝∈Ω𝑝𝑘∈Ω𝑘

+ 𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝑁1 ) + ∑ ∑ 𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝜁

𝑁2

𝑝∈Ω𝑝𝑘∈Ω𝑘

+ ∑ 𝑔𝑠𝑠,𝑠,𝑤,𝑡
𝑆𝑆

𝑠𝑠Ω𝑠𝑠

+ 𝛿𝑛,𝑠,𝑤,𝑡 = 𝑑𝑛,𝑠,𝑤,𝑡  ;  

 

∀𝑛 ∈ Ω𝑛;  ∀𝑡 ∈ Ω𝑡;  ∀𝜁 ∈ Ω𝑃2;  ∀𝑠 ∈ Ω𝑠; ∀𝑤 ∈ Ω𝑤  

(4.13) 

  

 

4.3.4.2 Linear Constraints of Generation Cost 

The cost of a conventional power generation unit C(P) is a nonlinear function of the 

generated power P. Such nonlinear relationship is often approximated by a quadratic curve, 

i.e. 𝐶(𝑃) = 𝐴 + 𝐵 ∗ 𝑃 + 𝐶 ∗ 𝑃2; where  A, B and C are the cost coefficients which mainly 

depend on the type of fuel used. In order to linearize this curve, we use an SOS2 (special 

order set of type 2) approach, which is extensively discussed in [94]. The constraints related 

to the linear cost models of existing and new DGs can be found in Appendix C. 
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4.3.4.3 Investment Limits 

A budget constraint for investing in DGs is enforced by adding constraint (4.14) for the first 

period and (4.15) for the second one. 

  

  

∑ ∑ ∑ 𝐼𝐶𝑝,𝑘
𝑁1(𝑥𝑝,𝑘,𝑛,𝜏

𝑁1

𝑝∈Ω𝑝𝑘∈Ω𝑘

− 𝑥𝑝,𝑘,𝑛,𝜏−1
𝑁1 )

𝑛∈Ω𝑛 

≤ 𝐼𝑛𝑣𝐿𝑖𝑚𝜏  ; ∀𝜏 ∈ Ω
𝑃1 (4.14) 

  

  

∑ ∑ ∑ 𝐼𝐶𝑝,𝑘
𝑁1(𝑦𝑝,𝑘,𝑛,𝑠,𝜁

𝑁2

𝑝∈Ω𝑝𝑘∈Ω𝑘

− 𝑦𝑝,𝑘,𝑛,𝑠,𝜁−1
𝑁2 )

𝑛∈Ω𝑛

+ ∑ ∑ ∑ 𝐼𝐶𝑝,𝑘
𝑁1(𝑥𝑥𝑝,𝑘,𝑛,𝑠,𝜁

𝑁1

𝑝∈Ω𝑝𝑘∈Ω𝑘

− 𝑥𝑥𝑝,𝑘,𝑛,𝑠,𝜁−1
𝑁1 )

𝑛∈Ω𝑛

 

 

≤ 𝐼𝑛𝑣𝐿𝑖𝑚𝑠,𝜁   ;  ∀𝜁 ∈ Ω
𝑃2;  ∀𝑠 ∈ Ω𝑠 

 

(4.15) 

  

  

  

 

4.3.4.4 Generation Capacity Limits 

The capacity limits of existing generators in the first and the second periods are given by (16) 

and (4.17), respectively. In the case of candidate generators, the corresponding constraints 

are (4.18)—(4.20). Note that the binary variable associated to a given generator multiplies the 

corresponding generation limits. This is to make sure that the power generation variable is 

zero when the generator remains either unutilized or unselected for investment.  

  

  

𝑢1𝑝,𝑘,𝑛,𝜏
𝐸 𝐺𝑚𝑖𝑛𝑝,𝑘,𝑠,𝑤

𝐸 ≤ 𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝜏
𝐸 ≤ 𝑢1𝑝,𝑘,𝑛,𝜏

𝐸 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤
𝐸  ; 

 

∀𝑛 ∈ Ω𝑛;  ∀𝜏 ∈ Ω𝑃1;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘  ; ∀𝑝 ∈ Ω𝑝 

(4.16) 

  
  
  

𝑢2𝑝,𝑘,𝑛,𝜁
𝐸 𝐺𝑚𝑖𝑛𝑝,𝑘,𝑠,𝑤

𝐸 ≤ 𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝜁
𝐸 ≤ 𝑢2𝑝,𝑘,𝑛,𝜁

𝐸 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤
𝐸   ; 

 

∀𝑛 ∈ Ω𝑛;  ∀𝜁 ∈ Ω𝑃2;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘;  ∀𝑝 ∈ Ω𝑝 

(4.17) 

  

  

  

𝑥𝑝,𝑘,𝑛,𝑡
𝑁1 𝐺𝑚𝑖𝑛𝑝,𝑘,𝑠,𝑤

𝑁1 ≤ 𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝑁1 ≤ 𝑥𝑝,𝑘,𝑛,𝑡

𝑁1 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤
𝑁1  ; 

 

∀𝑛 ∈ Ω𝑛;  ∀𝑡 ∈ Ω𝑃1;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘;  ∀𝑝 ∈ Ω𝑝 

(4.18) 

  

  

  

𝑥𝑥𝑝,𝑘,𝑛,𝑠,𝜁
𝑁1 𝐺𝑚𝑖𝑛𝑝,𝑘,𝑠,𝑤

𝑁1 ≤ 𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝜁
𝑁1 ≤ 𝑥𝑥𝑝,𝑘,𝑛,𝑠,𝜁

𝑁1 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤
𝑁1  ; 

 

∀𝑛 ∈ Ω𝑛;  ∀𝜁 ∈ Ω𝑃2;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘;  ∀𝑝 ∈ Ω𝑝 

(4.19) 
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𝑦𝑝,𝑘,𝑛,𝑠,𝜁
𝑁2 𝐺𝑚𝑖𝑛𝑝,𝑘,𝑠,𝑤

𝑁2 ≤ 𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝜁
𝑁2 ≤ 𝑦𝑝,𝑘,𝑛,𝑠,𝜁

𝑁2 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤
𝑁2  ;  

 

∀𝑛 ∈ Ω𝑛;  ∀𝜁 ∈ Ω𝑃2;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘;  ∀𝑝 ∈ Ω𝑝 

(4.20) 

  

It should be noted that the above constraints are in generalized forms because the upper   

and the lower limits are scenario and snapshot dependent. These constraints need to 

otherwise be different for different types of DGs. For instance, for conventional DGs, both 

the upper and the lower power generation limits are often fixed; they do not usually vary 

with the yearly scenarios or hourly snapshots. However, this is different in the case of 

intermittent generators such as solar and wind types, whose upper bounds are determined by 

the availability of the primary energy sources (solar radiation and wind speed, in this case) 

while the lower bounds are often set to zero. 

 

4.3.4.5 Unserved Power Limit 

The unserved power at any given node cannot exceed the demand at that node, and this is 

enforced by:  

  

  

0 ≤ 𝛿𝑛,𝑠,𝑤,𝑡 ≤ 𝑑𝑛,𝑠,𝑤,𝑡 ; 
 

∀𝑛 ∈ Ω𝑛;  ∀𝑡 ∈ Ω𝑡;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤 

(4.21) 

  

 

 

4.3.4.6 DG Penetration Limit 

It has been stated earlier that DG integration may in some cases negatively influence 

stability, power quality and security of distribution systems. In order to alleviate such 

technical problems, the penetration level of DG power is often limited. This is enforced by 

adding the constraints in (4.22). This constraint ensures that the total power generated by 

existing and new DGs at any operation time should be less than a certain percentage of the 

demand at the same time. Note that the second term in (4.22) is considered in the 

summation only when t > 𝑇1.    

  

  

∑ ∑ ∑(

𝑘∈𝛺𝑘𝑝∈𝛺𝑝

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝐸 + 𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡

𝑁1 )

𝑛∈Ω𝑛

+ ∑ ∑ ∑ 𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝜁
𝑁2

𝑘∈𝛺𝑘𝑝∈𝛺𝑝𝑛∈Ω𝑛

≤ 𝜑𝐷𝑠,𝑤,𝑡 

 

; ∀𝑡 ∈ Ω𝑡;  ∀𝜁 ∈ Ω𝑃2;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘;  ∀𝑝 ∈ Ω𝑝  

(4.22) 
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4.3.4.7 Logical Constraints 

The set of constraints in (4.23)—(4.28) ensure that an investment made at decision stage t 

cannot be reversed or divested in the subsequent stages; instead, the asset should be 

available for utilization immediately after the investment is made. The logical constraints in 

(4.23) guarantee that investment decisions made at a given stage in the first period are 

available in the immediate stages in the first stage. 

  

𝑥𝑝,𝑘,𝑛,𝜏
𝑁1 ≥ 𝑥𝑝,𝑘,𝑛,𝜏−1

𝑁1  ; 

∀𝑛 ∈ Ω𝑛;  ∀𝜏 ∈ Ω𝑃1;  ∀𝑘 ∈ Ω𝑘;  ∀𝑝 ∈ Ω𝑝 
(4.23) 

  

  

  

𝑥𝑝,𝑘,𝑛,𝜁
𝑁1 = 𝑥𝑝,𝑘,𝑛,𝑇1

𝑁1  ; 
 

∀𝑛 ∈ Ω𝑛;  ∀𝜁 ∈ Ω𝑃2;  ∀𝑘 ∈ Ω𝑘;  ∀𝑝 ∈ Ω𝑝 

(4.24) 

  

  

  

𝑥𝑥𝑝,𝑘,𝑛,𝑠,𝜁
𝑁1 ≥ 𝑥𝑥𝑝,𝑘,𝑛,𝑠,𝜁−1

𝑁1   ; 
 

∀𝑛 ∈ Ω𝑛;  ∀𝜁 ∈ Ω𝑃2;  ∀𝑠 ∈ Ω𝑠;  ∀𝑘 ∈ Ω𝑘 ; ∀𝑝 ∈ Ω𝑝 
(4.25) 

  

  

  

𝑥𝑥𝑝,𝑘,𝑛,𝑠,𝑇1
𝑁1 = 𝑥𝑝,𝑘,𝑛,𝑇1

𝑁1  ; 
 

∀𝑛 ∈ Ω𝑛;  ∀𝑠 ∈ Ω𝑠;  ∀𝑘 ∈ Ω𝑘;  ∀𝑝 ∈ Ω𝑝 

(4.26) 

  

  

  

𝑦𝑝,𝑘,𝑛,𝑠,𝜁
𝑁2 ≥ 𝑦𝑝,𝑘,𝑛,𝑠,𝜁−1

𝑁2   ; 
 

∀𝑛 ∈ Ω𝑛;  ∀𝜁 ∈ Ω𝑃2;  ∀𝑠 ∈ Ω𝑠;  ∀𝑘 ∈ Ω𝑘;  ∀𝑝 ∈ Ω𝑝; ∀𝑛 ∈ Ω𝑛 

(4.27) 

  

  

  

𝑦𝑝,𝑘,𝑛,𝑠,𝑇1
𝑁2 = 0  ; 

 

∀𝑛 ∈ Ω𝑛;  ∀𝑠 ∈ Ω𝑠;  ∀𝑘 ∈ Ω𝑘;  ∀𝑝 ∈ Ω𝑝 
(4.28) 

 

 

4.3.4.8 Network Model Constraints 

The active power flow through each line in the network is represented by a linearized AC 

network model, first proposed in [95] in the context of transmission expansion planning and 

further extended to distribution network system planning in [96].  

Modeling both active and reactive power flows is the most elegant approach. The importance 

of reactive power in a system is unquestionable. However, unlike active power, it is widely 

accepted that reactive power “does not travel very far”; it can be produced (compensated) 

locally.  
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In other words, the reactive power requirement in a system can be met by reactive power 

sources placed very close to the locations where such power is “consumed”. Otherwise, 

reactive power flows in the network may increase, leading to an increase in losses which is 

not desirable. Generally, in well-compensated distribution network systems, such flows are 

normally expected to be very small. Because of this and computation reasons, they are 

neglected in the analysis throughout this chapter. Although the most orthodox way of 

modeling the system is to use a full-AC model or its variants that consider both active and 

reactive power flows, embedding such a model in a complex, long-term stochastic planning 

model (as in the present work) is not computationally affordable. Because of this, the “direct 

current” (DC) network model (which does not consider reactive power flow) is widely used in 

power system planning and operation problems. In some cases, long-term planning problems 

under uncertainty are developed without explicitly modeling the physical equations of 

networks, mainly due to computational reasons. In general, the use of a DC network model in 

such problems yields reasonably accurate planning solutions. In the present work, the 

modified DC model [95], [96] is employed where the active power flow model is given by 

(4.29). The constraint in (4.30) ensures that the flow through the distribution lines do not 

exceed their corresponding thermal limits. 

  

𝑀𝑛𝑚(𝑧𝑛𝑚 − 1) ≤ 
 

𝑓𝑛𝑚,𝑠,𝑤,𝑡 − {𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙(∆𝑉𝑛,𝑠,𝑤,𝑡 − ∆𝑉𝑚,𝑠,𝑤,𝑡)𝑔𝑛𝑚 − 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙
2 𝑏𝑛𝑚𝜃𝑛𝑚,𝑠,𝑤,𝑡} 

 

≤ 𝑀𝑛𝑚(1 − 𝑧𝑛𝑚)  ; 
 

∀𝑛,𝑚 ∈ Ω𝑛;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤∀𝑡 ∈ Ω𝑡 

(4.29) 

  

Note that the voltage deviations at each node ∆Vn,s,w,t and ∆Vm,s,w,t are bounded as −ε ∗

Vnominal ≤ ∆Vn,s,w,t ≤ ε ∗ Vnominal. For the analysis throughout this chapter, the tolerance factor 

ε is set to 0.05, and the voltage magnitude and angle at the substation are set to  1.05Vnominal 

and 0, respectively.  

  

  

−𝑓𝑛𝑚
𝑚𝑎𝑥𝑧𝑛𝑚 ≤ 𝑓𝑛𝑚,𝑠,𝑤,𝑡 ≤ 𝑧𝑛𝑚𝑓𝑛𝑚

𝑚𝑎𝑥  ; 
 

∀𝑛,𝑚 ∈ Ω𝑛;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤∀𝑡 ∈ Ω𝑡 

(4.30) 

  

 

4.3.4.9 Radiality Constraints 

Current distribution systems are predominantly operated in a radial structure. Moreover, 

island operation, which may be imminent with DG integration, is not often desired. In this 

regard, the traditional radiality constraint in (4.31) [97], along with the load balance 

equation, gives the necessary condition for a distribution network to be radial and connected.  
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However, this constraint alone is not sufficient to fulfill the aforementioned requirements 

(i.e. to keep radiality and all nodes connected) particularly in planning problems involving 

grid expansion, switching and integration of DGs or reactive power sources [106]. Additional 

constraints as in [97] needs to be incorporated to guarantee that all nodes in the system are 

connected. However, this is out of the scope of this thesis, and will be addressed in future 

works considering grid expansion and switching.  

The work in this chapter considers a radial network. Therefore, for this case, Equation (4.31) 

is sufficient to keep the radiality of the network and ensure that all nodes are connected. 

  

  

   ∑ 𝑧𝑛𝑚𝑛,𝑚∈𝛺𝑛 = 𝑁𝑛 − 𝑁𝑆𝑆  ; 
 

∀(𝑛,𝑚) ∈ Ω𝑐  

(4.31) 

  

 

 

4.4 Case Studies 
 

4.4.1 System Data and Assumptions 

The system considered in the study is a real-life distribution network in São Miguel Island, 

Portugal. The system has a peak demand of 70.2 MW, and info about existing generators is 

shown in Table 4.2.  

In this system, various DG types with capacities ranging from 1 to 30 MW are considered as 

candidates for investment (see Table 4.3). These fall into small to medium-scale DG 

categories according to the capacity-based classification of DGs in [98]. The installation and 

maintenance costs of each DG are either directly obtained from [98] and [99] or estimated 

using the so-called six-tenths rule [100], which establishes a relationship between cost and 

quantity (in this case, the installed capacity). This method reflects the economy of scale that 

exists in DGIP i.e. the higher the installed capacities of DGs of the same type are, the lower 

the costs per installed kW get. 

 

Table 4.2 – Data for existing generators 

No. Generator type, 

p 

Alternative, 

k 

Installed 

capacity  

(MW) 

OCp,k  

(€/MWh) 

ICp,k 

(M€) 

MCp,k  

(M€) 

ERp,k    

(tons/MWh) 

1 Hydro   Hydro 4.07 7.0 NA 0.38 0.0121 

2 Geothermal   GEOT 24.0 5.0 NA 1.20 0.0165 

3 HFO-T*   HFO 98.0 145.4 NA 0.01 0.5600 

4 Wind   WD 0 10.0 17.0 NA 0.80 0.0276 

* Heavy fuel oil turbine, NA = Not applicable 
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Table 4.3 – Data for candidate generators 

No. DG type, p DG 

alternative 

 k 

Installed capacity 

[MW] 

OCp,k  

[€/MWh] 

ICp,k 

[M€] 

 

MCp,k 

[M€] 

 

ERp,k     

[tons/ 

MWh] 

1 Solar PV 1 1.0 40 3.00 0.06 0.0584 

2 Solar PV 2 1.5 40 3.83 0.08 0.0584 

3 Solar PV 3 2.0 40 4.55 0.09 0.0584 

4 Solar PV 4 2.5 40 5.20 0.10 0.0584 

5 Solar PV 5 3.0 40 5.80 0.12 0.0584 

6 Solar PV 6 4.0 40 6.89 0.14 0.0584 

7 Solar PV 7 6.0 40 8.79 0.17 0.0584 

8 Solar PV 8 10 40 11.94 0.24 0.0584 

9 Wind WD 1 1.0 17 2.64 0.05 0.0276 

10 Wind WD 2 2.0 17 4.00 0.08 0.0276 

11 Wind WD 3 5.0 17 6.93 0.14 0.0276 

12 Wind WD 4 10 17 10.51 0.21 0.0276 

13 CGT* CGT 1 30 145.4 27.00 0.01 0.5600 

14 BM** BM 1 20 20 80.00 3.00 0.0900 

* Combustion gas turbine; ** Biomass 

 

The hourly series (historical data) of wind speed and solar radiation at various locations of the 

island are obtained from publicly available databases [101], [102], respectively.  

The geographical coordinates where these data are taken from include (37.790,-25.385), 

(37.778,-25.489), (37.866,-25.816), (37.797,-25.170), (37.717,-25.505), (37.823,-25.487), 

(37.772,-25.375) and (37.782,-25.661). Then, the wind (WD) and solar photovoltaic (PV) 

power production series, used in the simulations, are determined by plugging in the wind 

speed and radiation data in the corresponding power curve expressions. Note that two wind-

speed regimes (offshore and onshore) are considered in the case study. 

 

4.4.2 Scenario Definition 

In this chapter, the uncertainty introduced by four most relevant uncertain parameters 

namely, electricity demand growth, emission price, wind and solar PV power output is taken 

into consideration. In other words, the evolutions of emission price, electricity demand 

growth as well as uncertainty due to intermittent energy sources (solar PV and wind, in 

particular) are captured through a predefined number of scenarios, each with a certain 

probability. The demand growth for a certain year can be somehow estimated via forecasting 

tools but this introduces some uncertainty due to the forecasting error. As illustrated in 

Figure 4.3, this leads to a confidence interval in which the demand profile is likely to lie. 

Similarly, the confidence intervals of wind and solar power outputs are formed, as shown in 

Figure 4.4. And, for the analysis in this work, three demand growth scenarios are considered 

corresponding to the middle, top and bottom curves which form the band in Figure 4.3.   

In a similar manner, the wind and solar power output scenarios are defined. 
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Figure 4.3 - A sample demand profile for day 11 in the second stage (i.e. τ = 2) of the first period, reflecting 
demand growth uncertainty. 

 

 
 

Figure 4.4 - Wind and solar PV power output uncertainty characterization example. 

 

The following assumptions are made for the case study: 

 Discount rate is set to 7% and kept the same throughout the planning horizon. 

 DG penetration limit factor is assumed to be 40%.  

 The lifetime of all DGs is considered to be 20 years. 

 In order to take account of the variability introduced by electricity demand, solar PV 

and wind power sources, an initial set of 8760 snapshots (either historical data, 

obtained using forecasting tools or generated via Monte Carlo methods), corresponding 

to the hourly operational situations in a single year, is assumed to be available.  

 An ordinary clustering methodology (k-means algorithm) is employed to reduce these 

snapshots to 300 representative ones (see in the following subsection how this is 

decided). 
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 For the sake of simplicity, the same candidate DG pools are considered in the first and 

the second periods. 

 Investment decisions in the first period can be postponed to the second period, if 

deemed economical. 

 The planning horizon is considered to be 8 years, in which the length of the first period 

is three years. 

 The cost coefficients (𝐴, 𝐵 and 𝐶) of the conventional generation units are assumed to 

be 0.74 €/h, 35 €/MWh and 550 €/h/(MW)2. For the RES-based generation units, 𝐴 

and 𝐶  are both zero while 𝐵 is set equal to 𝑂𝐶𝑝,𝑘 in Table 4.3. 

 The cost of unserved energy is assumed to be 3000 €/MWh.  

In general, a total of 81 scenarios (storylines) are defined in connection to the possible 

evolutions of the aforementioned parameters over the planning horizon. Table 4.4 shows the 

three evolutions of demand growth, denoted as Low, Moderate and High, having equal degree 

of realization. To further illustrate this, hourly demand profiles of a sample day in the second 

stage, corresponding to the three demand growth scenarios, are shown in Fig. 4.3. Similarly, 

the emission price is represented by three equally probable storylines (scenarios), as shown in 

Table 4.4. Wind and solar PV power output uncertainties are also represented by three 

equiprobable scenarios as explained above. Given these individual scenarios, assuming all 

uncertain parameters are independent, 81 different combinations are obtained, which form 

the new set of scenarios used in the simulations. 

 

4.4.3 Results and Discussion 

The formulated DGIP problem is coded in GAMS 24.0, and solved using CPLEX 12.0. The 

optimality gap is set to zero in all cases. All simulations are carried out in an HP Z820 

Workstation having E5-2687W processor with two cores, clocking at 3.1GHz speed.  

 

Table 4.4 – Demand growth and emissions scenarios 

Stage 
Demand growth scenarios 

Emission price scenarios  

(€/tons) 

Low Moderate High Low Moderate High 

τ=0 0.0% 0% 0% 7 7 7 

τ=1 2.0% 5% 10% 9 12 20 

τ=2 5.0% 10% 20% 12 18 30 

τ=3 7.0% 15% 30% 16 25 45 

ζ=4 9.0% 20% 40% 20 30 50 

ζ=5 11.0% 25% 50% 20 30 50 

ζ=6 13.0% 30% 60% 20 30 50 

ζ=7 14.5% 35% 70% 20 30 50 

ζ=8 16.0% 40% 80% 20 30 50 
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4.4.3.1 Deciding the number of representative clusters 

It has already been stated earlier that the large number of snapshots (operational situations) 

should be reduced to ensure problem tractability. This is accomplished by clustering the large 

initial set of snapshots. The minimum number of clusters, which sufficiently balances 

accuracy and computational burden, is often decided by trial and error. A famous rule of 

thumb in this case is the “Elbow” method, which is commonly used in clustering analysis. This 

method simply approximates the minimum number of clusters by plotting the objective value 

of the clustering algorithm for different number of clusters. Instead of using the objective 

value of the algorithm, the values of certain system variables, namely, investment and total 

costs, expected emissions and simulation time are used here. We analyze the impact of 

reducing the snapshots on these system variables. 

The analysis results are summarized in Table 4.5. For the sake of clarity, Figure 4.5 also plots 

the computational time and investment cost against the number of clusters. It is evident to 

see that the higher the number of clusters is, the more accurately the aforementioned 

variables are optimized but the higher the computational requirement is.  

 

Table 4.5 – Impact of snapshot reduction on system variables 

Number of 

clusters 
Total investment  

cost  (M€) 

Total cost 

(M€) 

CPU time 

(h) 

Expected emissions (tons) 

Period 1 Period 2 
Entire 

horizon 

100 70.01 468.40 0.20 293142 877712 877712 

200 69.93 469.67 0.58 294279 882015 882015 

300 69.74 470.41 1.50 295122 885118 885118 

400 69.58 470.79 3.87 295530 887225 887225 

500 69.55 471.10 6.50 295935 888015 888015 

1000 69.53 472.25 25.50 297215 892531 892531 
 

 

 

 

 

 
 

Figure 4.5 – Effect of snapshot reduction on the investment cost. 
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On the contrary, when the number of clusters is further reduced, the computational burden 

decreases, but this compromises the overall accuracy of the solution. Increasing the clusters 

further beyond a certain threshold does not lead to significant variations in the results apart 

from adding considerable computational burden. This threshold is related to the minimum 

number of clusters required to effectively balance accuracy and computational requirement. 

One can easily see in Table 4.5 and Figure 4.5 that the threshold lies somewhere between 250 

and 400. Accordingly, the number of clusters is taken to be 300 for the rest of the analysis.  

Hence, the finally reduced number of snapshots that are used in the planning process is 300.  

 

4.4.3.2 DGIP results 

The DGIP problem is solved considering the investment variable of DG as binary {0, 1} and 

integer {0, 1, 2, …} investment variables. These two cases are optimized separately but assuming 

the same set of candidate DGs. Table 4.6 summarizes the investment outcome at each stage 

of the two planning periods for both cases. As it can be observed in this table, majority of the 

investments tend to be made in the beginning of each period (i.e. the first and the fourth 

stages, in particular). Two reasons may explain the crowding of investment decisions towards 

the beginning of each investment period. The first reason may be because of the net present 

value (NPV) of operation and emission costs, which is higher in the foremost decision stages 

of the planning horizon. For instance, the operation, maintenance and emission costs are 

relatively higher in the first stage when compared with that of any other stage throughout the 

planning horizon. Hence, it becomes more attractive to invest in the leading stages so that 

such costs are reduced in short-run as well as in medium/long-run. The second reason may be 

because of lack of investment constraints related to financial and logistical matters.     

 

Table 4.6 – DG investments in each stage 

Horizon Stages 

DG investment solution NPV of investment cost (M€) 

Binary Integer Binary Integer 

1st period 

τ = 1 
PV7, PV8, WD1,  

WD2, WD3, WD4 
5 WD4 35.644 56.093 

τ = 2 -      - 0 0 

τ = 3 - 1 WD4 0 9.272 

2nd period 

ζ = 4 
PV6, PV7, PV8, WD1,  

WD2, WD3, WD4 
PV8, WD4 27.123† 15.215† 

ζ = 5 
PV5, PV6, PV7, PV8,  

WD1, WD2, WD3 
PV8, WD4 3.675† 3.444† 

ζ = 6 
PV4,  PV6, PV7, PV8,  

WD1, WD2 
PV8, WD4 1.534† 2.173† 

ζ = 7 
PV4,  PV5, PV6, PV7,  

PV8, WD1, WD2 
PV8, WD4 1.009† 2.914† 

ζ = 8 
PV3, PV4, PV5, PV6,  

PV7, PV8, WD1, WD2 
PV8, WD4 0.754† 2.210† 

NPV of total cost (M€) 470.415 400.991† 

Computational time (h) 1.5 21 
† Expected investment cost (weighted by the probabilities of scenarios)
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Figure 4.6 – Evolution of emissions over the planning stages. 

 

In line with the investments made, the evolution of expected emissions over the entire 

planning horizon also follows a predictable trend. For instance, because of the huge 

investments in stage 1, the expected (average) emissions are significantly reduced, and a 

similar phenomenon can be observed in stage 4. Apart from these two stages, emissions tend 

to slightly increase. Such increase in emissions can be explained by the increasing trend of 

demand because, in the absence of more investments in RESs, conventional generators should 

generate more to meet the increasing demand. However, as illustrated in Figure 4.6, the 

average emissions curve remains far below that of the “do-nothing” scenario, where no 

investments are assumed to be made. Table 4.6 clearly shows the differences between the 

binary and the integer solutions. The overall impact of each solution on the expected 

emissions is also illustrated in Figure 4.6. One can infer from Table 4.6 that the model based 

on integer variables better exploits the benefits of economy of scale as there is a tendency of 

avoiding investment in DGs with low capacities. As shown in this table, the integer investment 

solution only encompasses multiples of WD4 in the first period, and WD4 and PV8 in the 

second period. Even if this means higher investment cost, the overall/total cost is found out 

to be about 15% lower than that of the model with binary ones. In addition, when using the 

integer-based model, the overall reduction in emissions is higher than when using the binary-

based model, as illustrated in Figure 4.6. However, it is worth mentioning here that solving 

the general integer-based model is much harder (about 14 times according to the results in 

Table 4.6) than the binary-based one. 

 

4.4.3.3 The significance of the proposed models 

The importance of planning under uncertainty i.e. the significance of the proposed stochastic 

model can be shown by comparing decisions made under uncertainty and by ignoring 

uncertainty. Also, relevant metrics can be used to quantify the importance of uncertainty and 

demonstrate the practicality of the stochastic model. Here, we employ two metrics, expected 

value of perfect information (EVPI) and expected cost of ignoring uncertainty (ECIU), which 

are commonly used in stochastic programming applications for similar purposes. 
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As its name implies, EVPI gives an estimate of the maximum amount a planner would be 

willing to pay in return for perfect information or a prediction tool that allows the planner to 

have a perfect foresight about the future. In other words, EVPI quantifies the value of 

knowing the future with certainty. This parameter is given by the difference between the 

expected cost of stochastic solution and its fully deterministic counterpart. For the binary-

based stochastic solution, the EVPI amounts to 2.39 M€. Putting this value in perspective of 

the total investment cost in the first period (see in Table 4.6), one can observe that it is not 

negligible. The ECIU, on the other hand, measures the cost of making naïve decisions i.e. the 

cost of assuming that a given scenario happens with certainty. This metric can be 

alternatively understood as the value of stochastic solution. For the binary-based stochastic 

model, the ECIU is calculated to be 3.43 M€, which is not also negligible. When comparing this 

value with the total NPV of investment costs in the first period (see in Table 4.6), one can 

easily see that it amounts to more than 9% of this cost. Moreover, note that this value 

corresponds to a weighted sum of the cost of ignoring uncertainty (CIU) across all scenarios.  

Depending on which deterministic scenario is considered to obtain the naïve decisions, the 

CIU value varies tremendously as depicted in Figure 4.7. Here, for some scenarios, CIU is as 

high as 22 M€, which clearly shows that naïve/deterministic solutions (i.e. decisions made by 

ignoring uncertainty) can have significant costs. In other words, this indicates the quality of 

the stochastic solution, and hence, the practicality of the proposed stochastic model. 

 

 
 

Figure 4.7 – Cost of ignoring uncertainty. 

 

4.5 Chapter Conclusions 

In this chapter was presented a novel multi-stage stochastic distributed generation 

investment planning model for making investment decisions under uncertainty. The problem 

was formulated from a coordinated system planning viewpoint, simultaneously minimizing the 

net present value of costs rated to losses, emission, operation and maintenance, as well as 

the cost of unserved energy.  
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The formulation was anchored on a two-period planning horizon, each having multiple stages. 

The first period was a short-term horizon in which robust decisions were pursued in the face 

of uncertainty; whereas, the second one spans over a medium to long-term horizon involving 

exploratory and/or flexible investment decisions. The operational variability and uncertainty 

introduced by intermittent generation sources, electricity demand, emission prices, demand 

growth and others were accounted for via probabilistic and stochastic methods, respectively. 

Metrics such as cost of ignoring uncertainty and value of perfect information were used to 

clearly demonstrate the benefits of the proposed stochastic model. A real-life distribution 

network system was used as a case study, and the results showed the effectiveness of the 

proposed model.  
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Chapter 5 

Impacts of Optimal Energy Storage Deployment and 

Network Reconfiguration on Renewable Integration 

Level in Distribution System 
 

This chapter is based on the previous chapter but gives a step ahead by adding network 

switching to the problem and a novel mechanism to quantify the impacts of network 

switching and/or reinforcement as well as deployment of ESSs on the level of renewable 

power integrated in the system. To carry out this analysis, a dynamic and multi-objective 

stochastic mixed integer linear programming (S-MILP) model is presented, which jointly takes 

the optimal deployment of RES-based DGs and ESSs into account in coordination with 

distribution network reinforcement and/or reconfiguration. 

5.1 Introduction  

To overcome or alleviate the negative consequences of RES integration in distribution systems, a 

number of smart-grid related technologies and concepts are available which can be rolled out in 

coordination with the variable energy sources. Among these technologies, energy storage systems 

(ESSs) have been poised to be viable solutions to increase the level of penetration of RES-based 

distributed generations while minimizing their side effects [107]. The use of ESS “levels” the gap 

between renewable generation and demand by storing energy in periods of low electricity 

demand or high production from renewable energy sources, and releasing the stored energy in 

periods of higher demand [108]. Such a practice brings about several technical and economic 

benefits especially in terms of cost reduction as well as reliability, power quality and stability 

improvements in the system. Distribution reconfiguration can also increase the flexibility of the 

system, possibly paving the way to an increased penetration level of variable energy sources. 

The increased penetration of variable renewable DGs will have a positive and/or negative impact 

based on system conditions. Conventional electrical networks carry a unidirectional power flow. 

The introduction of DGs implies a bidirectional power flow and increased variability and 

uncertainty in the system. Such variability and uncertainty of RES power production can be partly 

counterbalanced by deploying ESSs. In other words, integrating ESSs in the network systems can 

counteract the unpredictable variation of the energy supplied by intermittent RESs. In addition, 

ESSs balance demand and power generation. Excess energy is stored during periods of high RES 

power production and low demand, and is released during periods of peak demand [108]. The 

placement and sizing optimization of ESSs is important to mitigate the unpredictable variation of 

the energy supplied by RESs. In [109], a detailed review is presented, including the individual ESS 

applications with respect to several storage options, settings, sizing methodologies and control. 
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Previous studies in the literature about DSR have traditionally focused on the minimization of 

system losses [110]. However, the DSR problem needs to address not only the classic objectives, 

i.e. minimizing losses, the voltage profile improvement and/or system reliability, but also two 

additional problems complementary to these issues: the massive RES integration and the paradigm 

of smart grid from the perspective of intelligent reconfiguration [111], [112], [113]. Because of 

all this, performing reconfiguration is becoming one of the most relevant topics in connection 

with the distribution network systems. 

Given the background, this chapter develops a new joint optimization model that maximizes the 

RES integration in distribution network systems. The model simultaneously determines the 

optimal allocation, sizing and timing of DGs as well as ESSs. In addition, this chapter presents a 

comprehensive analysis on the impacts of distribution reconfiguration and joint deployment of 

ESSs on the RES-based integration level. 

The remainder of this chapter is organized as follows: In Section 5.2, a description of the 

developed mathematical model is presented. Subsequently, Section 5.3 presents and 

discusses the obtained results. Finally, in Section 5.4, the relevant conclusions and 

implications based on the outcome are drawn. 

 

 

5.2 Mathematical Model 

5.2.1 Objective Function 

The problem is formulated as a multi-objective stochastic MILP optimization with an overall cost 

minimization as in (5.1). The objective function in (5.1) is composed of NPV of five cost terms 

each weighted by a certain relevance factor  𝛾𝑗; ∀𝑗 ∈ {1,2, … ,5}. 

The first term in (1), TInvC, represents the total investment cost under the assumption of a 

perpetual planning horizon. In other words, “the investment cost is amortized in annual 

instalments throughout the lifetime of the installed component”. 

Here, the total investment cost is the sum of investment costs of DGs, distribution network system 

(DNS) components (feeders and transformers) and ESSs, as in (5.2). This cost is computed as in 

(5.7)—(5.9).  

The second term, TMC, in (5.1) denotes the total maintenance costs which is given by the sum of 

maintenance costs of new and existing DGs as well as that of DNS components and ESSs at each 

stage plus the corresponding costs incurred after the last time stage, as in (5.3). Note that the 

latter depend on the maintenance costs of the last stage according to a perpetual planning 

horizon. These maintenance costs are computed using equations (5.10)—(5.12). 
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The third term, TEC, in (5.1) refers to the total cost of energy in the system, which is the sum of 

the cost of power produced by new and existing DGs, supplied by ESSs and purchased from 

upstream at each stage as in (5.4). Equation (5.4) also includes the total energy costs incurred 

after the last time stage under the assumption of a perpetual planning horizon. Note that these 

costs depend on the energy costs of the last stage. The detailed mathematical expressions for 

computing the cost of DG power produced and ESS power supplied as well as that of purchased 

power are given in (5.13), (5.14) and (5.15), respectively. The fourth term TENSC represents the 

total cost of unserved power in the system, given as in (5.5). This is computed using equation 

(5.16). The last term, TEmiC, gathers the total emission costs in the system, given by the sum of 

emission costs for the existing and new DGs in equations (5.17)—(5.19) as well that of purchased 

power (5.20). 

  

  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐶 = 𝛾1 ∗ 𝑇𝐼𝑛𝑣𝐶 + 𝛾2 ∗ 𝑇𝑀𝐶 + 𝛾3 ∗ 𝑇𝐸𝐶 + 𝛾4 ∗ 𝑇𝐸𝑁𝑆𝐶 + 𝛾5 ∗  𝑇𝐸𝑚𝑖𝐶 (5.1) 

  

As mentioned earlier, the objective function is composed of five terms, each associated with a 

certain relevance factor. These factors can have dual purposes. The first one is to provide the 

planner with the needed flexibility for the planner to include/exclude each cost term in/from the 

objective function. In this case, the associated relevance factor is set to 1 if the cost term is 

included; otherwise the factor is set to 0. Another purpose of these factors boils down to the 

relative weight in which the planner wants to apply on each cost term. To emphasize the 

importance of a given cost term, a relatively higher value can be assigned than any other term in 

the objective function.  

  

  

    𝑇𝐼𝑛𝑣𝐶 = ∑
(1 + 𝑟)−𝑡

𝑟
𝑡𝜖Ω𝑡

(𝐼𝑛𝑣𝐶𝑡
𝐷𝐺 + 𝐼𝑛𝑣𝐶𝑡

𝐿𝑁 + 𝐼𝑛𝑣𝐶𝑡
𝐸𝑆 + 𝐼𝑛𝑣𝐶𝑡

𝐶𝐴𝑃)
⏟                                    

𝑁𝑃𝑉 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

 
(5.2) 

  

  

  

       𝑇𝑀𝐶 = ∑(1 + 𝑟)−𝑡

𝑡𝜖Ω𝑡

 (𝑀𝑛𝑡𝐶𝑡
𝐷𝐺 +𝑀𝑛𝑡𝐶𝑡

𝐿𝑁 +𝑀𝑛𝑡𝐶𝑡
𝐸𝑆 +𝑀𝑛𝑡𝐶𝑡

𝐶𝑎𝑝
)

⏟                                      
𝑁𝑃𝑉 𝑜𝑓  𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡𝑠

 

 

                  +      
(1 + 𝑟)−𝑇

𝑟
(𝑀𝑛𝑡𝐶𝑇

𝐷𝐺 +𝑀𝑛𝑡𝐶𝑇
𝐿𝑁 +𝑀𝑛𝑡𝐶𝑇

𝐸𝑆 +𝑀𝑛𝑡𝐶𝑇
𝐶𝑎𝑝
)

⏟                                    
𝑁𝑃𝑉 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇 

 

(5.3) 

  

  

  

𝑇𝐸𝐶 = ∑(1 + 𝑟)−𝑡

𝑡𝜖Ω𝑡

 (𝐸𝐶𝑡
𝐷𝐺 + 𝐸𝐶𝑡

𝐸𝑆 + 𝐸𝐶𝑡
𝑆𝑆)

⏟                        
𝑁𝑃𝑉 𝑜𝑓  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

 +
(1 + 𝑟)−𝑇

𝑟
(𝐸𝐶𝑇

𝐷𝐺 + 𝐸𝐶𝑇
𝐸𝑆 + 𝐸𝐶𝑇

𝑆𝑆)
⏟                      
𝑁𝑃𝑉 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇 

 
(5.4) 
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            𝐸𝑁𝑆𝐶 = ∑(1 + 𝑟)−𝑡

𝑡𝜖Ω𝑡

 𝐸𝑁𝑆𝐶𝑡
⏟            
𝑁𝑃𝑉 𝑜𝑓  𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠

+
(1 + 𝑟)−𝑇

𝑟
𝐸𝑁𝑆𝐶𝑇⏟          

𝑁𝑃𝑉 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇 

 
(5.5) 

  

  

  

𝑇𝐸𝑚𝑖𝐶 = ∑(1 + 𝑟)−𝑡

𝑡𝜖Ω𝑡

 (𝐸𝑚𝑖𝐶𝑡
𝐷𝐺 + 𝐸𝑚𝑖𝐶𝑡

𝑆𝑆)
⏟                      

𝑁𝑃𝑉 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

+
(1 + 𝑟)−𝑇

𝑟
(𝐸𝑚𝑖𝐶𝑇

𝐷𝐺 + 𝐸𝑚𝑖𝐶𝑇
𝑆𝑆)

⏟                    
𝑁𝑃𝑉 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇

 
(5.6) 

  

Equation (5.2) translates the total investment costs within the planning horizon, where  InvCt
DG 

denotes the investment costs of DGs, InvCt
DNS is the investment costs in the distribution network 

system and InvCt
ES is the investment cost in ESS. Equation (5.3) represents the total maintenance 

costs of new and existing DGs, DNS components and ESSs at each stage. These costs are updated 

by the NPV factor associated to each year. Here, MntCt
DG denotes the maintenance cost of DGs 

while MntCt
DNS and MntCt

EScorrespond to the maintenance costs of distribution network system 

and ESSs, respectively. Equation (5.4) shows the total cost of energy in the system, which is the 

sum of the cost of power produced by new and existing DGs, supplied by ESSs and purchased from 

upstream at each stage. TENSC in (5.5) represents the total cost of unserved power in the system. 

This is interpreted as the energy not supplied costs (ENSC). The total emission cost of power 

production using DGs (EmiCt
DG) and that of purchased power (EmiCt

SS) is given by (5.6).  

Equations (5.7)—(5.9) represent the investment costs of DGs, feeders and energy storage system, 

respectively. Notice that all investment costs are weighted by the capital recovery factor, 

r(1+r)LT

(1+r)LT−1
. The formulations in (5.7)—(5.10) ensure that the investment cost of each component 

added to the system is considered only once in the summation. 

  

  

                 𝐼𝑛𝑣𝐶𝑡
𝐷𝐺 = ∑ ∑

𝑟(1 + 𝑟)𝐿𝑇𝑔

(1 + 𝑟)𝐿𝑇𝑔 − 1
𝐼𝐶𝑔,𝑖(𝑥𝑔,𝑖,𝑡 − 𝑥𝑔,𝑖,𝑡−1)

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔

 ; 𝑤ℎ𝑒𝑟𝑒 𝑥𝑔,𝑖,0 = 0 (5.7) 

  

  

  

               𝐼𝑛𝑣𝐶𝑡
𝐷𝑁𝑆 = ∑

𝑟(1 + 𝑟)𝐿𝑇𝑘

(1 + 𝑟)𝐿𝑇𝑘 − 1
𝐼𝐶𝑘(𝑥𝑘,𝑡 − 𝑥𝑘,𝑡−1

𝑘𝜖𝛺ℓ

) 

 

                                 + ∑ ∑
𝑖(1 + 𝑖)𝐿𝑇𝑡𝑟

(1 + 𝑖)𝐿𝑇𝑡𝑟 − 1
𝑡𝑟𝜖𝛺𝑡𝑟𝑠𝑠𝜖𝛺𝑠𝑠

𝐼𝐶𝑡𝑟(𝑥𝑡𝑟,𝑠𝑠,𝑡 − 𝑥𝑡𝑟,𝑠𝑠,𝑡−1) ; 

(5.8) 

  

  

  

𝐼𝑛𝑣𝐶𝑡
𝐸𝑆 = ∑∑

𝑟(1 + 𝑟)𝐿𝑇𝑒𝑠

(1 + 𝑟)𝐿𝑇𝑒𝑠 − 1
𝐼𝐶𝑒𝑠,𝑖(𝑥𝑒𝑠,𝑖,𝑡 − 𝑥𝑒𝑠,𝑖,𝑡−1)

𝑖𝜖𝛺𝑖𝑐𝜖𝛺𝑐

 ; 𝑤ℎ𝑒𝑟𝑒 𝑥𝑒𝑠,𝑖,0 = 0 (5.9) 
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Equation (5.10) stands for the maintenance costs of new and existing DGs at each time stage.  

The maintenance cost of a new/existing feeder is included only when its corresponding 

investment/utilization variable is different from zero, as shown in (5.11). Equation (5.12) is 

related to the maintenance costs of energy storage at each stage. 

  

  

       𝑀𝑛𝑡𝐶𝑡
𝐷𝐺 = ∑ ∑𝑀𝐶𝑔

𝑁

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔

𝑥𝑔,𝑖,𝑡 + ∑ ∑𝑀𝐶𝑔
𝐸

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔

𝑢𝑔,𝑖,𝑡 (5.10) 

  

  

  

𝑀𝑛𝑡𝐶𝑡
𝐷𝑁𝑆 = ∑ 𝑀𝐶𝑘

𝐸

𝑘𝜖𝛺𝑒ℓ

𝑢𝑘,𝑡 + ∑ 𝑀𝐶𝑘
𝑁𝑥𝑘,𝑡

𝑘𝜖𝛺𝑛ℓ

+ ∑ 𝑀𝐶𝑡𝑟
𝐸

𝑡𝑟𝜖𝛺𝐸_𝑡𝑟

𝑢𝑡𝑟,𝑠𝑠,𝑡 + ∑ 𝑀𝐶𝑡𝑟
𝑁𝑥𝑡𝑟,𝑠𝑠,𝑡

𝑡𝑟𝜖𝛺𝑁_𝑡𝑟

 (5.11) 

  

  

  

        𝑀𝑛𝑡𝐶𝑡
𝐸𝑆 = ∑∑𝑀𝐶𝑒𝑠𝑥𝑒𝑠,𝑖,𝑡

𝑖𝜖𝛺𝑖𝑐𝜖𝛺𝑐

 (5.12) 

  

The total cost of power produced by new and existing DGs is given by equation (5.13). Note that 

these costs depend on the amount of power generated in each scenario, snapshot and stage. 

Therefore, they represent the expected costs of operation. Similarly, equations (5.14) and (5.15) 

account for the expected costs of energy supplied by the energy storage system, and that 

purchased from upstream (i.e. transmission grid), respectively. 

  

  

𝐸𝐶𝑡
𝐷𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑(𝑂𝐶𝑔,𝑖,𝑠,𝑤,𝑡

𝑁 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑁

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔

+ 𝑂𝐶𝑔,𝑖,𝑠,𝑤,𝑡
𝐸

𝑤𝜖𝛺𝑤

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸 )

𝑠𝜖𝛺𝑠

 (5.13) 

  

  

  

                      𝐸𝐶𝑡
𝐸𝑆 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜆𝑠,𝑤,𝑡

𝑒𝑠 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ

𝑒𝑠∈𝛺𝑒𝑠𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (5.14) 

  

  

  

                       𝐸𝐶𝑡
𝑆𝑆 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜆𝑠,𝑤,𝑡

𝜍
𝑃𝜍,𝑠,𝑤,𝑡
𝑆𝑆

𝜍∈𝛺𝜍𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (5.15) 

  

The penalty for the unserved power, given by (5.16), is also dependent on the scenarios, 

snapshots and time stages. Therefore, equation (5.16) gives the expected cost of unserved energy 

in the system. 

  

  

𝐸𝑁𝑆𝐶𝑡 = ∑ 𝜌𝑠 ∑ ∑𝜋𝑤𝜐𝑠,𝑤,𝑡𝛿𝑖,𝑠,𝑤,𝑡
𝑖𝜖𝛺𝑖𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (5.16) 
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The expected emission costs of power generated by new and existing DGs are given by (5.17)—

(5.19), and that of energy purchased from the grid is calculated using (5.20). Note that, for the 

sake of simplicity, a linear emission cost function is assumed here. In reality, the emission cost 

function is highly nonlinear and nonconvex. 

  

  

                                      𝐸𝑚𝑖𝐶𝑡
𝐷𝐺 = 𝐸𝑚𝑖𝐶𝑡

𝑁 + 𝐸𝑚𝑖𝐶𝑡
𝐸 (5.17) 

  

  

  

𝐸𝑚𝑖𝐶𝑡
𝑁 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝑁𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝑁

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (5.18) 

  

  

  

𝐸𝑚𝑖𝐶𝑡
𝐸 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝐸𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝐸

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (5.19) 

  

  

  

                                      𝐸𝑚𝑖𝐶𝑡
𝑆𝑆 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑∑𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝜍
𝑆𝑆𝑃𝜍,𝑠,𝑤,𝑡

𝑆𝑆

𝑖𝜖𝛺𝑖𝜍𝜖𝛺𝜍𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (5.20) 

  

Note that ρs denotes the probability of each scenario while πw is the weight associated with each 

representative snapshot. These parameters appear in equations (5.13)—(5.20). Setting values for 

these parameters is not generally straightforward. For the sake of simplicity, all scenarios are 

assumed to be equally probable. The steps being followed to determine the value of each 

representative snapshot are described as follows. First, a large number of snapshots are clustered 

into a predefined number of groups, substantially lower than the original number of snapshots. 

The number of groups needs to ideally strike the right balance between accuracy and numerical 

feasibility. Each group contains a set of snapshots with similar characteristics. Then, a 

representative snapshot (for instance, the medoid) is selected in each group. This snapshot is used 

in the analysis by assigning a weight 𝜋𝑤 proportional to the number of snapshots grouped 

together. 

 

5.2.2 Constraints 

 

5.2.2.1 Kirchhoff’s Current Law (Active Power Balances) 

The active power balance at each node is enforced by equation (5.21): 

  

  

∑ (𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸 + 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝑁 )

𝑔𝜖Ω𝐷𝐺

+ ∑ (𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ − 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ )

𝑒𝑠𝜖Ω𝑒𝑠

+ 𝑃𝜍,𝑠,𝑤,𝑡
𝑆𝑆 + ∑ 𝑃𝑘,𝑠,𝑤,𝑡

𝑖𝑛,𝑘𝜖𝑖

− ∑ 𝑃𝑘,𝑠,𝑤,𝑡
𝑜𝑢𝑡,𝑘𝜖𝑖

+ 𝛿𝑖,𝑠,𝑤,𝑡

= ∑ 0.5𝜑𝑘,𝑠,𝑤,𝑡
𝑖𝑛,𝑘𝜖𝑖

+ ∑ 0.5𝜑𝑘,𝑠,𝑤,𝑡
𝑜𝑢𝑡,𝑘𝜖𝑖

+ 𝐷𝑠,𝑤,𝑡
𝑖  ;  ∀𝜍, ∀𝜍𝜖𝑖. 

(5.21) 
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Equation (5.21) denotes that the sum of all incoming flows should be equal to the sum of all 

outgoing flows at each node. The losses in every feeder are considered as “virtual loads” which 

are equally distributed between the nodes connecting the feeder. Note that losses are a quadratic 

function of flows (not shown here). Hence, they are linearized using a first order approximation, 

as in [114]. Five linear partitions are used throughout the analysis in this chapter, which is in line 

with the findings in [94]. 

 

5.2.2.2 Energy Storage Model Constraints 

For the sake of simplicity, a generic ESS is employed here. This is modelled by the set of 

constraints in (5.22)—(5.28). Equations (5.22) and (5.23) represent the bounds of power capacity 

of the ESS while being charged and discharged, respectively. Inequality (5.24) prevents 

simultaneous charging and discharging operation of the ESS in a given operational time w.  

The amount of stored energy in the ESS reservoir at a given operational time w as a function of 

the energy stored until 𝑤 − 1 is given by (5.25). The maximum and minimum levels of storages in 

the operational time w are also considered through inequality (5.26). Equation (5.27) shows the 

initial level of stored energy in the ESS as a function of its maximum reservoir capacity. In a multi-

stage planning approach, Equation (5.28) ensures that the initial level of energy in the ESS at a 

given year is equal to the final level of energy in the ESS in the preceding year. Moreover, the 

reservoir level at the end of the planning horizon should be equal to the initial level, which is 

enforced by the second constraint in (5.28). Such a constraint guarantees that the optimal 

solution returned by the solution algorithm is not because of the initial reservoir level.  

Here, ηes
dch is assumed to be ηes

ch. 

  

  

0 ≤ 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ ≤ 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ 𝑥𝑒𝑠,𝑖,𝑡𝑃𝑒𝑠,𝑖
𝑐ℎ,𝑚𝑎𝑥

 (5.22) 

  

  

  

0 ≤ 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ ≤ 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ 𝑥𝑒𝑠,𝑖,𝑡𝑃𝑒𝑠,𝑖
𝑐ℎ,𝑚𝑎𝑥

 (5.23) 

  

  

  

𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ + 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ ≤ 1 (5.24) 

  

  

  

𝐸𝑒𝑠,𝑖,𝑠,𝑤,𝑡 = 𝐸𝑒𝑠,𝑖,𝑠,𝑤−1,𝑡 + 𝜂𝑐ℎ,𝑒𝑠𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ − 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ /𝜂𝑑𝑐ℎ,𝑒𝑠 (5.25) 

  

  

  

𝐸𝑒𝑠,𝑖
𝑚𝑖𝑛𝑥𝑒𝑠,𝑖,𝑡 ≤ 𝐸𝑒𝑠,𝑖,𝑠,𝑤,𝑡 ≤ 𝑥𝑒𝑠,𝑖,𝑡𝐸𝑒𝑠,𝑖

𝑚𝑎𝑥  (5.26) 

  

  

  

𝐸𝑒𝑠,𝑖,𝑠,𝑤0,𝑇1 = 𝜇𝑒𝑠𝑥𝑒𝑠,𝑖,𝑇1𝐸𝑒𝑠,𝑖
𝑚𝑎𝑥  (5.27) 
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𝐸𝑒𝑠,𝑖,𝑠,𝑤1,𝑡+1 = 𝐸𝑒𝑠,𝑖,𝑠,𝑊,𝑡;   𝐸𝑒𝑠,𝑖,𝑠,𝑊,𝑇 = 𝐸𝑒𝑠,𝑖,𝑠,𝑤0,𝑇1 (5.28) 

  

Notice that inequalities (5.22) and (5.23) involve products of charging/discharging indicator 

variables and investment variable. In order to overcome these nonlinearities, new continuous 

positive variables 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ , and 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ , which replace the bilinear products in each constraint, 

are introduced such that the set of linear constraints in (5.29) and (5.30) hold. For instance, the 

product 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ 𝑥𝑒𝑠,𝑖,𝑡 is replaced by the positive variable 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ . Then, the bilinear product is 

decoupled by introducing the set of constraints in (5.29) [115]. Similarly, the product 

𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ 𝑥𝑒𝑠,𝑖,𝑡is decoupled by including the set of constraints in (5.30). 

  

  

𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ ≤ 𝑥𝑒𝑠

𝑚𝑎𝑥𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ  ;  𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ ≤ 𝑥𝑒𝑠,𝑖,𝑡  ; 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ ≥ 𝑥𝑒𝑠,𝑖,𝑡 − (1 − 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ )𝑥𝑒𝑠
𝑚𝑎𝑥 (5.29) 

  

  

  

𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ ≤ 𝑥𝑒𝑠

𝑚𝑎𝑥𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ  ;  𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ ≤ 𝑥𝑒𝑠,𝑖,𝑡  ; 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ ≥ 𝑥𝑒𝑠,𝑖,𝑡 − (1 − 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ )𝑥𝑒𝑠
𝑚𝑎𝑥 (5.30) 

  

 

5.2.2.3 Active Power Limits of DGs 

The active power limits of existing generators are given by (5.31). Inequality (5.32) represents the 

corresponding constraints in the case of new generators. Note that the binary variables multiply 

both bounds to make sure that the power generation variable is zero when the generator remains 

either unutilized or unselected for investment. 

  

  

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸,𝑚𝑖𝑛 𝑢𝑔,𝑖,𝑡 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝐸 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸,𝑚𝑎𝑥 𝑢𝑔,𝑖,𝑡 (5.31) 

  

  

  

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑁,𝑚𝑖𝑛 𝑥𝑔,𝑖,𝑡 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝑁 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑁,𝑚𝑎𝑥 𝑥𝑔,𝑖,𝑡 (5.32) 

  

It should be noted that these constraints are applicable only for conventional DGs. In the case of 

variable generation sources (such as wind and solar PV), the upper bound 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑚𝑎𝑥  should be set 

equal to the minimum of the actual production level at a given hour, which is dependent on the 

level of primary energy source (wind speed and solar radiation), and the rated (installed) capacity 

of the generating unit. The lower bound 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑚𝑎𝑥  in this case is simply set to zero. 

 

5.2.2.4 Active Power Limits of Power Purchased 
  

  

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸,𝑚𝑖𝑛 𝑢𝑔,𝑖,𝑡 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝐸 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸,𝑚𝑎𝑥 𝑢𝑔,𝑖,𝑡 (5.33) 
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For technical reasons, the power that can be purchased from the transmission grid could have 

minimum and maximum limits, which is enforced by (5.33). However, it is understood that setting 

such limits is difficult. These constraints are included here for the sake of completeness. In this 

chapter, these limits are set to 1.5 times the minimum and maximum levels of the total load in 

the system. 

 

5.2.2.5 Logical Constraints 

The set of logical constraints in (5.34) ensure that an investment decision already made cannot be 

reversed. In addition to the constraints described above, the direct current (DC) based network 

model and radiality related constraints presented in [114] are used here. 

  

  

𝑥𝑘,𝑡 ≥ 𝑥𝑘,𝑡−1;   𝑥𝑔,𝑖,𝑡 ≥ 𝑥𝑔,𝑖,𝑡−1;   𝑥𝑒𝑠,𝑖,𝑡 ≥ 𝑥𝑒𝑠,𝑖,𝑡−1 (5.34) 

  

 

5.2.2.6 Radiality Constraints 

There are two conditions that must be fulfilled in order a distribution network system (DNS) to be 

radial. First, the solution must have 𝑁𝑖 − 𝑁𝑆𝑆 circuits. Second, the final topology should be 

connected. Equation (5.35) represents the first necessary condition for maintaining the radial 

topology of a DNS. 

  

  

∑ 𝑂𝑅(𝑥𝑘,𝑡 , 𝑢𝑘,𝑡)

𝑘∈Ω𝑖𝑗

= 𝑁𝑖 −𝑁𝑆𝑆   ; ∀𝑡 (5.35) 

  

Note that the above equation assumes that a line investment is possible in all corridors. Hence, in 

a given corridor, we can have either an existing branch or a new one, or both connected in 

parallel, depending on the economic benefits of the final setup (solution) brings about to the 

system. The radiality constraint in (5.35) then has to accommodate this condition. One way to do 

this is using the Boolean logic operation given as in (5.35). Unfortunately, this introduces 

nonlinearity. We show how this logic can be linearized using an additional auxiliary variable 𝑧𝑘,𝑡 

and the binary variables associated to existing and new branches i.e. 𝑢𝑘,𝑡 and 𝑥𝑘,𝑡, respectively. 

Given𝑧𝑘,𝑡: = 𝑂𝑅(𝑥𝑘,𝑡  , 𝑢𝑘,𝑡), this Boolean operation can be expressed using the following set of 

linear constraints: 

 

  

  

𝑧𝑘,𝑡 ≤ 𝑥𝑘,𝑡 + 𝑢𝑘,𝑡;  𝑧𝑘,𝑡 ≥ 𝑥𝑘,𝑡;  𝑧𝑘,𝑡 ≥ 𝑢𝑘,𝑡; 0 ≤ 𝑧𝑘,𝑡 ≤ 1   ; ∀𝑡 (5.36) 
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Then, the radiality constraints in (5.35) can be reformulated using the zk,t variables as: 

  

  

∑ 𝑧𝑘,𝑡
𝑘∈𝛺𝑖𝑗

= 𝑁𝑖 − 𝑁𝑆𝑆       ; ∀𝑡 (5.37) 

  

When all loads in the DNS are only powered up by power imported through a number of 

substations, the final solution obtained automatically satisfies the two aforementioned conditions; 

hence, no additional constraints are required i.e. (5.36) along with (5.37) are sufficient to 

guarantee radiality. However, it should be noted that, in the presence of DGs and reactive power 

sources, these constraints alone may not ensure the radiality of the distribution network, as 

pointed out in [106] and further discussed in [97]. 

 

5.3 Case Studies 

 

5.3.1 System Data and Assumptions 

The standard IEEE 119-bus distribution network, shown in Figure 5.1, is used here for carrying out 

the required analysis mentioned earlier. The system has a rated voltage of 11.0 kV, and a total 

demand of 22709.72 kW and 17041.068 kVAr. Network data and other related information about 

this test system can be found in [116] and the data are in the Appendix E. According to [117], the 

active power losses in this system is 1298.09 kW, and the minimum node voltage of the system is 

0.8783 p.u., which occurs at bus 116.  

Other data and assumptions made throughout this chapter are as follows. The planning horizon is 

3 years long, which is divided into yearly decision stages, and a fixed interest rate of 7% is used. 

The expected lifetime of the generic ESS is assumed to be 15 years while that of DGs and feeders 

is 25 years. Two investment options with installed capacities of 0.5 and 1.0 MVA are considered 

for each wind and solar PV type DG units. The installation cost and emission related data of these 

DG units in [118] are used here. For the sake of simplicity, all maintenance cost of each DG is 

assumed to be 2% of the corresponding investment cost while that of any feeder is  

450 €/km/year. The investment cost of each feeder is 38700 €/km. The current flow limits of 

each feeder are considered to be as follows. The current limit in each of the feeders {(1,2); (2,4); 

(1,66); (66,67)} is 1200 A while the set of feeders {(4,5); (5,6); (6,7); (4,29); (29,30); (30,31); 

(67,68); (67,81); (81,82); (1,105); (105,106); (106,107)} have each 800 A capacity limit. The 

current flow limits of the remaining feeders are considered to be 400 A. Moreover, it is assumed 

that all feeders can be switched on/off, if deemed necessary. In addition, it is assumed that the 

availability of wind and solar power sources is uniform throughout the system nodes.  

The operational variability and uncertainty introduced by wind and solar PV type DGs, demand 

and electricity price are accounted for via the clustering method proposed in [103]. 
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Figure 5.1 - Single line diagram of the test system in base case. 

 

The maximum allowable bus voltage deviation in the system is set to 5%, and node 1 is considered 

as a reference with a voltage magnitude of 1.0. Taking the base case demand as a reference, 

annual demand growths of 0%, 5% and 10% are also considered in all simulations. Emission prices 

in the first, second and third time stages are set to 25, 45 and 60 €/tCO2e, respectively, and the 

emission rate of power purchased from upstream is arbitrarily set to 0.4 tCO2e/MWh. The cost of 

unserved energy is 2000 €/MWh. A power factor of 0.9 is considered throughout the system, and is 

assumed to be the same throughout. The base power is set to 1 MVA. An ESS with a 1 MW power 

and a 5 MWh reservoir capacity is considered for investment. 

 

5.3.2 Results and Discussion 

Given the aforementioned data and assumptions, the developed optimization problem has been 

solved considering six different cases (designated as A though F). Case A represents the base case 

topology where no investments are made. This case can be alternatively understood as the “do-

nothing” scenario. Case B is similar to the base case (i.e. with no investments) but considers the 

network reconfiguration problem. Case C corresponds to a scenario where only DG investments 

are made on the base case topology (i.e. without reconfiguration).  
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Case D is similar to Case C except that the former simultaneously considers optimal 

reconfiguration and DG investments. The last two cases (Cases E and F) correspond to scenarios 

where optimal investment planning in DGs is coordinated with that of ESSs. The difference is that 

Case E uses the base case topology (i.e. without reconfiguration) while Case F optimizes the 

network via reconfiguration. Table 5.1 clearly summarizes the different cases. 

The values of the most relevant variables are analyzed (as depicted in Table 5.2) over the three 

years planning horizon. The results in Table 5.2 reveal the significant differences in overall NPV 

cost in the system, share of the combined energy supplied by RES and ESS, cost of total network 

losses and unserved power among the aforementioned cases. The results are also compared with 

the base case system where no investments are made and the network topology is held the same 

(i.e. the “do-nothing” scenario). Carrying out an optimal reconfiguration of the network alone, as 

in Case B, results in about 5.44 % reduction in the cost of losses, and a 15.9% reduction in the NPV 

overall system cost compared with that of Case A. In addition, network reconfiguration reduces a 

total of 1.18 p.u. average load curtailment in the third year to 0.57 p.u. in Case B that would 

otherwise occur at nodes 52, 53, 54, 55, 56 and 116 due to a number of factors such as technical 

constraints and high demand level.  

Another more interesting observation from Table 5.2 is that Cases C and D lead to (approximately) 

50% reduction in the overall system cost, and a 75% reduction in the amount of imported energy. 

Wind and solar power sources are complementary by nature. This natural phenomenon seems to 

be exploited when DG investments are not accompanied by investments in ESSs (i.e. Cases C and 

D). This is because, according to the DG investment solution in Table 5.2, the operational 

variability in the system seems to be handled by investing an appreciable amount in both 

complementary power sources (wind and solar). The level of demand covered by RESs in both 

cases amounts to nearly 75%. Moreover, as a result of investing in DGs, losses in the system are 

slashed down by about 82%. Generally, the corresponding reductions in Case D are slightly higher 

than those in Case C. This is due to the network reconfiguration which has been considered in 

Case D.  

 

Table 5.1 - Distinguishing the different cases  

Cases Reconfiguration 

Investment 

DGs ESSs 

A No No No 

B Yes No No 

C No Yes No 

D Yes Yes No 

E No Yes Yes 

F Yes Yes Yes 
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Table 5.2 - Results of relevant variables for different cases 

Optimization variables 
Cases* 

A B C D E F 

Cost terms 
(k€) 

Investment 0 0 92478 88489 100754 99368 

Maintenance 189 201 52604 50355 57295 56513 

Energy + Emission 424715 433188 121820 123232 48424 48973 

PNS 94441 2095 926 0 0 0 

Losses 12515 11834 2204 2161 1242 1098 

Total cost (k€) 531860 447318 270033 264236 207715 205952 

Energy 
share (%) 

Wind - - 64 64 89 90 

Solar - - 10 11 0 0 

Imported 100 100 26 25 11 10 

Installed 
size (p.u.) 

Wind - - 36 33 40 40 

Solar - - 10 11 0 0 

ESS - - - - 18 17 

*A: Base case; B: Reconfiguration only; C: DG investment on base case topology; D: DG investment plus 

reconfiguration; E: DG and ESS investment on base case topology; F: DG and ESS investment plus 

reconfiguration. 

 

The results corresponding to Cases E and F show that the total cost and cost of losses are 

dramatically reduced by more than 60% and 90%, respectively. These figures are in line with the 

results reported in a similar work [113]. The reductions in active losses are 88.56% and 89.66%, 

respectively. Moreover, the amount of imported energy is 11% and 10% of the total energy 

demand in Cases E and F, respectively. All this reveals the substantial benefits of coordinating 

investments in DG with ESSs. Generally, ESSs significantly improve system flexibility, enabling 

large-scale accommodation of RES energy. Interestingly, the total amount of installed DGs (40 

MVA) is lower in Cases E and F (with ESSs) than in Cases C and D (without ESSs). Even if this is the 

case, in the absence of a storage medium (as in Cases C and D), there may be frequent RES power 

spillages when the demand is lower than the total generated power. However, the installation of 

ESSs leads to an efficient utilization of RES power. This is evident from the amount of energy 

consumption covered by the combined energy from RESs and ESSs in Cases E and F is about 90%. 

Normally, a network switching capability also improves system flexibility, leading to a high level 

RES penetration. In this particular study, the effect of network switching on the level of RES 

power absorbed by the system is not significant as one can observe in Table 5.2. This may 

however be case-dependent. A more frequent switching capability could, for instance, have a 

significant impact. 

The optimal location and size of installed DGs and ESSs corresponding to Cases C through F is 

summarized in Table 5.3. This is also conveniently plotted in Figure 5.2. As the formulated 

problem is based on a multi-year decision framework, the aggregate investment decisions made in 

each stage along the planning horizon is presented in Table 5.4.  
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Table 5.3 - Optimal sizes and locations of DGs and ESSs for different cases 

 
Wind * Solar *, § ESS *, † 

Nodes Case C Case D Case E Case F Case C Case D Case E Case F 

14 1 1 1 1 0 0 0 0 

19 1 0 1 0 0 0 0 0 

20 1 0 2 1 0 0 1 1 

21 0 1 0 1 0 0 0 0 

24 0 1 1 1 0 0 0 0 

25 1 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 2 1 

32 1 1 1 2 0 0 0 0 

33 1 1 1 1 0 0 1 1 

34 0 0 1 0 0 0 0 0 

35 1 0 0 1 1 1 0 0 

37 1 1 1 1 0 0 0 0 

38 1 1 1 1 0 0 0 1 

42 0 1 2 1 0 0 0 0 

43 1 0 0 1 0 0 1 1 

44 1 1 2 1 1 1 0 0 

52 2 2 2 2 1 2 2 1 

53 1 1 1 1 0 0 0 0 

56 3 1 1 1 0 0 1 1 

61 1 1 1 1 0 0 1 1 

66 0 0 0 0 0 0 1 1 

69 1 1 1 1 0 0 0 0 

73 1 1 1 1 1 1 1 1 

74 1 1 1 1 0 0 0 0 

77 1 1 1 2 1 1 1 1 

79 1 1 1 1 0 0 0 0 

82 0 0 1 1 0 0 0 0 

83 1 1 1 1 0 0 1 1 

84 0 0 0 0 1 1 0 0 

85 1 1 1 1 0 0 0 0 

89 1 1 1 1 0 0 1 1 

96 1 1 1 1 0 0 0 0 

100 0 1 0 1 1 1 1 1 

101 1 1 2 1 0 0 0 0 

106 1 1 1 1 0 0 0 0 

107 0 0 0 0 0 0 1 1 

108 1 1 1 1 0 0 0 0 

109 0 0 0 1 0 0 0 0 

112 1 1 1 1 1 1 1 1 

113 0 0 0 0 0 0 0 0 

114 1 1 1 1 0 1 0 0 

115 0 0 0 0 1 0 0 0 

116 2 2 3 2 1 1 1 1 

117 1 1 1 1 0 0 0 0 

119 0 1 1 1 0 0 0 0 

121 1 0 0 0 0 0 0 0 

Total (p.u.) 34 31 38 38 10 11 18 17 
*A: Base case; B: Reconfiguration only; C: DG investment on base case topology; D: DG investment plus 

reconfiguration; E: DG and ESS investment on base case topology; F: DG and ESS investment plus 

reconfiguration. § No solar type investment decisions in cases E and F; † ESS investments are not 

considered in the cases other than E and F.  
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Table 5.4 – Total DGs and ESSs for different cases 

 

 
Case C 

 
Case D 

 
Case E 

 
Case E 

Year 
 

Wind Solar 
 

Wind Solar 
 

Wind Solar ESS 
 

Wind Solar ESS 

1 
 

31 9 
 

29 7 
 

36 0 17 
 

36 0 15 

2 
 

2 0 
 

2 2 
 

2 0 0 
 

1 0 2 

3 
 

3 1 
 

2 2 
 

2 0 1 
 

3 0 0 

Total 
 

36 10 
 

33 11 
 

40 0 18 
 

40 0 17 

 

 

 

Figure 5.2 - Optimal placement and size of DGs and ESSs for different cases (* only in cases E and F). 

 

As it can be seen in this table, majority of the investments are made in the first stage. This may 

be because of two reasons. The first one could be due to lack of appropriate financial and 

logistical constraints in the optimization model. The second and most plausible reason could be 

due to higher NPV factor of the first stage than any subsequent one. Note that the higher this 

factor is, the more relevant the associated costs in the objective function are, hence, leading to 

more investments in DGs and ESSs. 

The average voltage profiles at each node and for each case are depicted in Figure 5.3.  

A cumulative distribution of the average voltage values, corresponding to different cases, is also 

conveniently represented in Figure 5.4. In both figures, it is interesting to see the substantial 

contributions of DG and ESS installations to voltage profile improvement. As shown in Figure 5.3, 

the coordinated integration of DGs and ESSs along with reconfiguration (i.e. Case F), especially 

leads to the best voltage profile which is almost flat throughout the system.  
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Figure 5.3 - Average voltage profiles in the system for different cases. 

 

 

 

 

Figure 5.4 - Cumulative distribution function of average voltages in the system for different cases. 
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Table 5.5 compares the optimal network topologies (i.e. the switches to be opened) 

corresponding to the different cases with that of the base case topology. The benefit of joint DG 

and ESS investments along with network reconfiguration in terms of losses reduction (over 89% on 

average) can be seen in Figure 5.5. The spikes observed in cases D and F are because of the 

variability in the RES power injected into the system. 

 

Table 5.5 - Optimal reconfiguration outcome for different cases (List of switches to be opened) 

Y
e
a
r 

Case A Case B Case D Case F 

1 

(8,24); (9,42); (17,27); 
(25,36); (38,65); 
(48,27); (56,45); 
(61,100); (65,56); 
(76,95); (91,78); 

(103,80); (113,86); 
(110,89); (115,123) 

(23,24); (26,27); (35,36); 
(41,42); (44,45); (48,27); 

(54,56); (61,100); 
(64,65); (76,95); (77,78); 

(103,80); (110,89); 
(113,86); (115,123) 

(17,27); (23,24); (35,36); 
(41,42); (48,27); (54,56); 

(56,45); (61,100); 
(64,65); (76,95); (77,78); 

(103,80); (110,89); 
(113,86); (115,123) 

(9,42); (17,27); (23,24); 
(25,36); (38,65); (48,27); 

(54,56); (56,45); 
(61,100); (76,95); 
(91,78); (103,80); 
(110,89); (113,86); 

(115,123) 

2 

(8,24); (9,42); (17,27); 
(25,36); (38,65); 
(48,27); (56,45); 
(61,100); (65,56); 
(76,95); (91,78); 
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Figure 5.5 - Total system losses profile. 
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As stated earlier, stability concern is one of the major issues that are associated with high level 

RES integration in distribution systems. The controllability of voltage and frequency can be 

dramatically undermined or even sometimes become out of reach. Because of these reasons, the 

penetration level of DGs (including RESs) in many distribution systems is limited to a value often 

less than about 25%. However, this contradicts with the ambition to meet other objectives such as 

reducing the carbon footprint of power production and ensuring energy security among others. 

The integration of RESs is likely to be supported with enabling technologies that have the 

capability to effectively address the integration challenges and consequently increase the 

penetration level. The results in this chapter largely demonstrate the fact that large-scale 

integration of variable energy sources is possible when such energy sources are optimally 

deployed with ESSs and a mechanism that improve the flexibility of the network is put in place. 

 

5.4 Chapter Conclusions  

There is a wide consensus about integrating more renewable energy sources—RESs to solve a 

multitude of global concerns such as meeting an increasing demand for electricity, reducing 

energy security and heavy dependence on fossil fuels for energy production, and reducing the 

overall carbon footprint of power production. Framed in this context, the coordination of RES 

integration with ESSs, along with the network’s switching capability and/or reinforcement, is 

expected to significantly improve system flexibility, thereby increasing the capability of the 

system in accommodating large-scale RES power. Hence, in this chapter a novel mechanism to 

quantify the impacts of network switching and/or reinforcement as well as deployment of ESSs on 

the level of renewable power integrated in the system was presented. To carry out this analysis, a 

dynamic and multi-objective stochastic mixed integer linear programming model was developed, 

which jointly takes the optimal deployment of RES-based DGs and ESSs into account in 

coordination with distribution network reinforcement and/or reconfiguration. The IEEE 119-bus 

test system was used as a case study. The results clearly show the capability of ESS deployment in 

dramatically increasing the level of renewable DGs integrated in the system. Although case-

dependent, the impact of network reconfiguration on RES power integration is not significant. 
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Chapter 6 

New Multi-stage and Stochastic Mathematical 

Model for Maximizing RES Hosting Capacity 
 

This chapter presents a new coordinated multi-stage and stochastic mathematical model, 

developed to support the decision-making process of planning distribution network systems 

(DNSs) for integrating large-scale “clean” energy sources. The model, formulated from the 

system operator’s viewpoint, determines the optimal sizing, timing and placement of 

distributed energy technologies (particularly, renewables) in coordination with energy 

storage systems and reactive power sources. The ultimate goal of this optimization work is 

to maximize the size of renewable power absorbed by the system while maintaining the 

required/standard levels of power quality and system stability at a minimum possible cost. 

One of the points that distinguish this chapter from the predecessors is the use of a 

linearized AC network model, which captures the inherent characteristics of electric 

networks, and balances well accuracy with computational burden. 

 

6.1 Introduction  

Nowadays, the issue of integrating distributed generations (DGs) (renewable DGs, in particular) is 

globally gaining momentum because of several techno-economic and environmental factors. Since 

recent years, the size of DGs integrated into distribution systems has been increasing. This trend 

is more likely to continue in the years to come because it is now widely accepted that DGs bring 

wide-range benefits to the system. However, given the current set-up of distribution networks 

(which are generally passive), large-scale DG integration is not technically possible because this 

brings about tremendous challenges to the system operation, especially in undermining the power 

system quality and stability.  

Such challenges/limitations are expected to be alleviated when distribution networks undergo the 

anticipated evolutionary process from passive to active networks or smart grids. This transition is 

expected to result in a system that is adequately equipped with appropriate technologies, state-

of-the-art solutions and a new operational philosophy that is totally different from the current ‘fit 

and forget’ approach. This is expected to offer sufficient flexibility and control mechanism in the 

system. Nevertheless, the process is not straightforward as it demands exceptionally huge 

investments in smart-grid technologies and concepts to fully automate the system, and this should 

be accompanied by a new operational philosophy. Therefore, the whole transformation process 

(i.e., the transformation of current distribution systems to full-scale smart-grids) might be very 

slow, and its realization might take several decades.  
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However, given the techno-economic factors and global concerns about environmental issues, the 

integration of renewable energy sources (RESs) cannot be postponed. It is likely that the 

integration of DGs in distribution systems will go ahead along with smart-grid enabling 

technologies that have the capability to alleviate the negative consequences of large-scale 

integration of DGs. In other words, in order to facilitate (speed up) the much-needed 

transformation of conventional (passive) DNSs and support large-scale RES integration, different 

smart-grid enabling technologies such as reactive power sources, advanced switching and storage 

devices are expected to be massively deployed in the near term.  

To this end, developing strategies, methods and tools to maximize the penetration level of DGs 

(particularly, RESs) has become very crucial to guide such a complex decision-making process.  

In this respect, this chapter focuses on the development of multi-stage mathematical models to 

determine the optimal sizing, timing and placement of energy storage systems and reactive power 

sources as well as that of RESs in distribution networks. The ultimate goal of this optimization 

work is to maximize the RES power absorbed by the system at a minimum cost while maintaining 

the power quality and stability at the required/standard levels. 

The problem is formulated from the system perspective (i.e. in centralized planning framework). 

In a deregulated environment and from the smart-grid context where the current regulatory and 

technical challenges are expected to be fully resolved, planning will most likely involve 

distributed decision-making processes. One may rightfully argue that the investment decisions 

obtained from a coordinated planning model may not be implemented in reality. This is because 

distributed decisions often lead to sub-optimal solutions, which may be different from the ones 

obtained by the centralized planning model. However, this does not mean that the outcomes of 

the coordinated planning model cannot be used. For instance, these outcomes can be regarded as 

the best investment targets. Given these targets, distributed decisions (solutions) can be 

systematically made to approach one or more of these targets (for example, via incentive or 

market-based mechanisms).  

From another perspective, in the absence of “attractive” market environment (seen from the 

private investors), distribution network systems may not see significant breakthrough when it 

comes to investments in DGs and energy storage systems (ESSs). In this case, DSOs may, instead, 

be given additional roles and responsibilities that include investing in DGs and ESSs in coordination 

with network investments. DSOs may also oversee investments in DGs and ESSs. In addition, DSOs 

may also be required to manage these assets in a coordinated manner to keep the system 

integrity, stability and power quality at the required/standard levels. Another issue which 

explains the versatility of the coordinated approach is related to the realization of smart-grids. 

Even if there is a general consensus on the smartification of power systems (distribution networks, 

in particular), and there are signs that some systems are evolving into smart-grids, the whole 

process is going to probably take very long time. Based on the aforementioned reasons, a 

centralized (coordinated) approach of the planning problem can provide vital solutions.  
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Reducing fossil fuel dependence and mitigating climate change have led to an increased pressure 

to change the current generation paradigm. The compounded effect of increasing demand for 

electricity, environmental and climate change concerns is triggering a policy shift all over the 

world, especially when it comes to energy production. Integration of DG, particularly, RESs, in 

electric distribution network systems is gaining momentum. In particular, the recent 

developments in a climate change conference held in Paris (COP21) are expected to accelerate 

renewable integration. It is highly expected that large-scale DG integration will be one of the 

solutions capable of mitigating the aforementioned problems and overcoming the challenges. 

Because of this, Governments of various nations have introduced targets to achieve large-scale 

integration of DGs. In particular, in the European Union, which strongly advocates the importance 

of integrating renewables, RESs are expected to cover 20% and 50% of the overall energy 

consumption by 2020 and 2050, respectively. 

DGs offer a more environmentally friendly option through great opportunities with renewable-

enabling technologies such as wind, photovoltaic, biomass, etc. RESs are abundant in nature, 

which, under a favorable RES integration policy and incentive mechanism, makes it attractive for 

the large-scale power generation sector. Nevertheless, there is no rule or partial rule on the DG 

unit’s connection; typically, these are traditionally connected at the end of radial feeder systems 

or nodes with greater load on the distribution system. This is realized often with several impeding 

restrictions put in place to alleviate the negative consequences of integrating DGs in the system.  

The optimal and dynamic planning of the DG placement and sizing is becoming extremely 

important for energy producers, consumers and network operators in technical and economic 

terms. There are many studies in the literature on this topic, yet most of them only consider the 

optimal location of a single DG unit or do not consider simultaneously positioning and sizing RES 

units, mainly due to their high dispatch unpredictability. The increase in DG penetration increases 

the uncertainty and the fluctuations of power production. If the placement and proper sizing is 

not taken into account, the benefits of DG integration can be lost, leading to inefficient operation 

and increasing the electricity cost and energy losses. Another major concern with the wide DG 

penetration is system reliability. The penetration of distributed systems can result in the 

degradation of power quality, particularly in cases of slightly meshed networks [119] or 

microgrids. In this paradigm, the use of ESS has been seen as one of the viable options to mitigate 

the aforementioned concerns.  

The DG allocation and sizing subject have attracted special interest from researchers in recent 

years. An excellent review of previous works related to this subject area, published  prior to the 

year 2013, is presented  in [120]. In [120] and [121],  an analysis of several techniques used on 

the DG impact assessment in the electrical system is presented. Most of these techniques analyze 

the distribution system to determine rules that can be used for DG integration [122]–[126]. 

Important issues related to the connection of DG units are the network topology, DG capacity and 

suitable location; because, each bus in the system has an optimal level of DG integration. If the 

value surpasses this level, system losses can increase [127], [128].  
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Recently, several methods have been proposed for planning and operation or in some cases for 

both location and sizing of DGs in the distribution system. In general, these methods can be 

classified as heuristic [129]–[144], numerical [145]–[152] and analytical [153], [154] based 

methods. Heuristic based methods apply advanced artificial intelligence algorithms, such as 

genetic algorithms (GA) [129]–[132], particle swarm optimization (PSO) [133]–[137], harmony 

search (HS) [138], [139] and big bang crunch (BBC) [140]–[142].  

Numerical methods are algorithms that seek numerical results for different problems in particular 

to the problem in question. Some of the most recently works use nonlinear mixed integer 

programming (MINLP) [145]–[147], mixed integer linear programming (MILP) [148], [149], 

quadratic programming (QP) [150] and AC optimal power flow (OPF)-based [151]. The exhaustive 

search methods seek the optimal DG location for a given DG size under different load models. 

Therefore, these methods fail to represent accurately the behavior of the DG optimization 

problem involving two discrete variables, both for optimum DG size and optimal DG location.  

In [153], authors present a technique with a probabilistic basis for determining the capacity and 

optimal placement of wind DG units to minimize energy loss in the distribution system.  

A sensitivity analysis is presented in [154] for DG placement and sizing in the network. 

Despite many studies in the literature on areas related to DG placement and sizing problem, most 

of them only consider the optimal location of a single DG unit, mostly of conventional DGs.  

The simultaneous consideration of placement, timing and sizing of DG units (especially RESs), 

along with the placement, timing and sizing of smart-grid enabling technologies, seems to be far 

from being addressed in the literature. The increase in RES-based DG penetration increases the 

uncertainty and the fluctuations of the system production. If the placement and proper sizing is 

not taken into account, the benefits of DG integration may not be exploited; instead, this may 

result in the degradation of system efficiency, increased cost of electricity and energy losses. 

Another major concern with the wide-range DG penetration is system reliability. However, the 

simultaneous investment planning of DGs, ESSs and reactive power sources is expected to 

significantly alleviate these challenges and increase the penetration level of RES-based DGs. 

A new multi-stage and stochastic mathematical model is developed in this chapter to support the 

decision-making process of planning distribution network systems (DNSs) for integrating large-

scale “clean” energy sources. The proposed model, formulated from the system operator’s 

viewpoint, determines the optimal sizing, timing and placement of distributed energy 

technologies (particularly, renewables) in coordination with energy storage systems and reactive 

power sources. The ultimate goal is to maximize the size of renewable power absorbed by the 

system while maintaining the required/standard levels of power quality and system stability at a 

minimum possible cost. From the methodological perspective, the entire problem is formulated as 

a mixed integer linear programming optimization, allowing one to obtain an exact solution within 

a finite simulation time. Moreover, it employs a linearized AC network model which captures the 

inherent characteristics of electric networks, and balances well accuracy with computational 

burden.  
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This chapter is organized as follows: Section 6.2 presents a brief description of the uncertainty 

and variability pertaining to variable energy sources and electricity demand, and how these issues 

are handled in the planning process. The mathematical formulation and detailed description of 

the proposed model are presented in section 6.3. Subsequently, in section 6.4, the results are 

presented and discussed. Finally, relevant conclusions are drawn in Section 6.5. 

6.2 Uncertainty and Variability Management  

 

There are various sources of uncertainty and variability in a distribution systems planning 

problem, particularly with intermittent renewable sources. These are related to the variability in 

time and the randomness of operational situations [105]. In addition, there are other 

uncertainties mostly related to the long-term electricity, carbon and fuel prices, rules, 

regulations and policies, etc. To account for uncertainty in demand, two demand scenarios are 

formed by assuming a ±5% prediction error margin from a long real-life demand profile (which is 

8760 long). This gives a total of three demand profile scenarios, which are kept the same 

throughout the planning horizon. Due to the lack of sufficient historical data, first, synthetic 

hourly wind speed and solar radiation series (20 for each) are generated using the methods in 

[119] and [120], respectively considering the autocorrelations and diurnal patterns of each 

parameter. Then, the average wind speed and solar radiation profiles are determined from the 

generated series. The power outputs corresponding to each wind speed and solar radiation are 

then determined by plugging in these values in the respective power curves given by equations 

(6.1) and (6.2). Note that these power output samples (snapshots) cannot be used directly in the 

planning process because the resulting wind power output profiles may not respect the natural 

correlations that exist between them and the average electricity demand profile. These samples 

should be readjusted to reflect the temporal correlations that naturally exist among demand, 

solar radiation and wind speed series. To this end, the correlation between wind and solar sources 

is considered to be -0.3 while that of wind and demand is 0.28, which is in line with the results in 

[155]. A correlation of 0.5 is assumed between solar and demand, according to [156].  

Given this desired correlation matrix, the wind and the solar power output profiles can be 

transformed into new ones, respecting the correlation among them. Such adjustments in the 

correlation of data series are performed using Cholesky factorization, a method used for 

generating correlated random variables. The method works as follows. Given a desired correlation 

matrix R, and uncorrelated data D, a new data Z whose correlation matrix is R can be generated 

by simply multiplying the Cholesky decomposition of R by D. Then, the hourly wind and solar 

power output are determined by plugging in these readjusted series into their corresponding 

power curves given by equations (6.1) and (6.2). 

  

𝑃𝑤𝑛𝑑,ℎ =

0                        ; 0 ≤ 𝑣ℎ ≤ 𝑣𝑐𝑖
𝑃𝑟(𝐴 + 𝐵𝑣ℎ

3) ;  𝑣𝑐𝑖 ≤ 𝑣ℎ ≤ 𝑣𝑟
𝑃𝑟                     ;  𝑣𝑟 ≤ 𝑣ℎ ≤ 𝑣𝑐𝑜
0                              ;  𝑣ℎ ≤ 𝑣𝑐𝑜

 (6.1) 
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In the above equation, A and B are parameters represented by the expressions in [157] and [158].  

Similarly, the hourly solar power output 𝑃𝑠𝑜𝑙,ℎ is determined by plugging in the hourly solar 

radiation levels in the solar power output expression given in (6.2) [159]. 

  

𝑃𝑠𝑜𝑙,ℎ =

{
 
 

 
 

𝑃𝑟𝑅ℎ
2

𝑅𝑠𝑡𝑑 ∗ 𝑅𝑐
       ; 0 ≤ 𝑅ℎ ≤ 𝑅𝑐

𝑃𝑟𝑅ℎ
𝑅𝑠𝑡𝑑

           ; 𝑅𝑐 ≤ 𝑅ℎ ≤ 𝑅𝑠𝑡𝑑

𝑃𝑟       ; 𝑅ℎ ≥ 𝑅𝑠𝑡𝑑 

 (6.2) 

  
 

In the present work, uncertainty in wind speed and solar radiation is assumed to lead to a ±15% 

deviation on average from the corresponding average power output profiles. This approximately 

translates to ±5% forecasting error in wind speed or solar radiation. Note that such error or higher 

is induced even by the most advanced forecasting tools available today. Based on the 

assumptions, two hourly profiles of wind power output are generated by considering the ±15% 

margin (one above the average and one below the average profile). In total, this leads to 3 wind 

power output profiles (including the average profile). These are defined as wind scenarios. 

Similarly, to account for the uncertainty in solar power outputs, two profiles are generated for 

each by considering a ±15% uncertainty margin. The two generated solar power output profiles 

along with the average profile form the set of solar scenarios. An illustration of uncertainty 

characterization of wind and solar power outputs was shown in Fig. 4.4.  

Note that each of these scenarios has 8760 snapshots of demand, wind and solar power outputs. 

These individual scenarios are combined to form a set of 27 scenarios (3x3x3), which are used in 

the analysis. These scenarios are assumed to be equally probable; hence, the probability of 

realization of each scenario 𝜌𝑠 is given by 1/27.  

To ensure problem tractability, the multi-dimensional input data (27x8760) is clustered into 

27x200 groups via a standard clustering technique (k-means algorithm [160], which has been 

applied in investment planning problems as in [161]). Here, each cluster represents a group of 

similar operational situations. A representative snapshot, the medoid in this case, is then selected 

from each cluster. A weight is assigned to each representative snapshot, which is proportional to 

the number of operational situations in its group. Note that while clustering such a large number 

of operational situations in this manner is critically important to guarantee problem tractability, 

the chronological orders (and by implication the autocorrelations) of the considered data (time 

series) are not unfortunately preserved in the reduced number of operational situations. In other 

words, such information is lost during the clustering process. In the context of medium- to long-

term planning problems, the impact of such information loss on the planning outcome may not be 

significant. However, if this is a concern, the chronological information can be somehow 

recovered by methods as in [162] and [163].  
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6.3 Mathematical Model 

 

6.3.1 Brief Description of the Problem 

As mentioned earlier, this chapter develops an integrated optimization model that simultaneously 

finds the optimal locations and sizes of installed DG power (particularly, focusing on wind and 

solar), energy storage systems and reactive power sources such as capacitor banks. The optimal 

deployment of the aforementioned enabling technologies should inherently meet the goal of 

maximizing the renewable power integrated/absorbed into the system. The entire model is 

formulated as a stochastic mixed integer linear programming (SMILP) optimization. In addition, 

instead of the customary direct current (DC) network models, a linearized AC model is used here 

to better capture the inherent characteristics of the network system. An ideal representation of 

the network system would be to use the full AC network model. However, embedding this model 

in planning problems is computationally unaffordable. Because of their appealing computational 

performances, DC based optimization models are commonly used in distribution systems planning 

problems. However, the DC network model does not consider reactive power flows, which can 

have significant impact on planning solutions, such as investment decisions related to capacitor 

banks. In addition, voltage magnitudes are often considered to be the same throughout the system. 

Voltage angles are also sometimes neglected in DC models. All these simplifying assumptions may 

result in sub-optimal solutions (often underinvestment) when embedded in planning models. The 

linearized AC model on the contrary acknowledges the presence of both active and reactive 

power flows, voltage magnitude and angle differences among nodes in the system.  

The model captures the physical characteristics of the network system in a better way when 

compared to DC network models, and very close to the ideal AC network model. Computationally 

speaking, the linearized AC model is more expensive than the DC network model because it 

involves a more detailed network representation than the DC model. However, embedding the 

linearized AC model in planning problems yields far better solutions than when using the DC one. 

Hence, the linearized AC model can be generally regarded as a bridge between the DC and the AC 

network models. Planning models based on this linearized AC model are tractable enough, and the 

results are accurate enough. 

The schematic representation in Figure 3.2 illustrates the multi-stage and multi-scenario modeling 

framework and the expansion solution structure (i.e. 𝑋𝑡’s, where 𝑋𝑡 represents the solution 

vectors of several investment variables). At each stage of the planning horizon, we obtain a single 

investment solution which is good enough for all scenarios [89], [92]. Note that while operational 

variables depend on each scenario and snapshot, the investment decision variables only depend 

on the time stage index. This means that the investment solution obtained should satisfy all 

conditions in every scenario, making the solution robust against any realization of the considered 

scenarios. It should be noted here that the robustness of the solution is directly related with the 

level of details of uncertainty and variability characterization.  
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Generally, the higher the numbers of snapshots and scenarios considered are, the more robust the 

solution is. However, there is always a threshold beyond which adding more snapshots and 

scenarios does not significantly change the solution but increases unnecessary computational 

burden. If the scenarios considered in the planning are carefully selected to be representative 

enough of all possible uncertainty realizations, then, the robustness and reliability of the solution 

can be more guaranteed.  

The length of the planning horizon in the present work is assumed to be three years, which is then 

divided into yearly decision stages. In each stage, investment decisions related to DGs, ESSs, 

capacitor banks and lines are made. These decisions can be regarded as here-and-now because 

such decisions are independent of any scenario or snapshot. However, operation variables (such as 

actual power productions, storage level, power flows, etc.) depend on scenarios and snapshots, as 

well as decision stages. 

 

 

6.3.2 Objective Function 

As mentioned earlier, the objective of this chapter is to maximize RES integration in DNS from the 

system perspective (or, from the Distribution System Operators’ point of view) by optimally 

deploying different smart-grid enabling technologies at a minimum cost. Here, it is assumed that 

the DSO owns some generation sources and ESSs.  

The resulting problem is formulated as a multi-stage stochastic MILP an overall cost minimization 

as an objective (6.3). The objective function in (6.3) is composed of Net Present Value (NPV) of 

five cost terms each multiplied by a certain relevance factor 𝛼𝑗; ∀𝑗 ∈ {1,2, … ,5}. Note that, in this 

chapter, all cost terms are assumed to be equally important; hence, these factors are set equal. 

However, depending on the relative importance of the considered costs, different coefficients 

(relevance factors) can be adopted in the objective function. Note that all cost terms have the 

same units (Euros). In reality, the objective function is one: the total cost in the system which is 

the sum of various cost components (operation, maintenance, emission, investment, etc.). 

However, a decision-maker may not be interested in some of these costs, for instance, because 

their values (and/their expected influences on the solution) are negligible compared with others. 

Such cost terms would then have their relevance factors set to zero. It is for this sole purpose that 

the relevance factors (which should not be confused with weights like in the Pareto-type 

optimization) are included in the formulation.  

In the present work, a perpetual planning horizon [93] is assumed when formulating the 

integrated planning problem, as in [71]. This is purposely done to balance different cost terms 

within and outside the actual planning horizon. To further clarify this, consider the illustrative 

example in Figure 3.3 It is understood that investments are made in a specific year within the 

planning horizon (the second year in this case) and the investment costs are prorated throughout 

its lifetime  i.e. distributed into equal payments among the years within the life span of the asset.  
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However, the maintenance and operation (O&M) related costs are incurred every year within and 

after the planning horizon. To balance these cost terms, a perpetual planning horizon, i.e. an 

endless payment of fixed payments is assumed. Based on the finance theory [93], the present 

value of perpetuity, which is the sum of the net worth of infinite annual fixed payments, is 

determined by dividing the fixed payment at a given period by the interest rate r. Based on this, 

the O&M costs include the associated annual costs within (part I) and outside the planning horizon 

(part II). The latter (part II) are determined by the perpetuity of the costs in the last planning 

stage updated by net present value factor in this case (1 + 𝑟)−3. Note that after the lifetime of a 

given asset elapses, investments will be made in the same asset with the same cost, leading to a 

seemingly perpetual planning horizon.   

The first term in (6.3), 𝑇𝐼𝑛𝑣𝐶, represents the total investment costs under the assumption of 

perpetual planning horizon [93]. In other words, “the investment cost is amortized in annual 

installments throughout the lifetime of the installed component”, as is done in [71]. Here, the 

total investment cost is the sum of investment costs of new and existing DGs, feeders, energy 

storage system and capacitor banks, as in (6.4).  

The second term, 𝑇𝑀𝐶, in (6.3) denotes the total maintenance costs, which is given by the sum of 

individual maintenance costs of new and existing DGs as well as that of feeders, energy storage 

system and capacitor banks in the system at each stage and the corresponding costs incurred after 

the last planning stage, as in (6.5). Note that the latter costs depend on the maintenance costs of 

the last planning stage. Here, a perpetual planning horizon is assumed.  

The third term 𝑇𝐸𝐶 in (6.3) refers to the total cost of energy in the system, which is the sum of 

the cost of power produced by new and existing DGs, purchased from upstream and supplied by 

energy storage system at each stage as in (6.6). Equation (6.6) also includes the total energy costs 

incurred after the last planning stage under a perpetual planning horizon. These depend on the 

energy costs of the last planning stage.  

The fourth term 𝑇𝐸𝑁𝑆𝐶 represents the total cost of unserved power in the system and is 

calculated as in (6.7).  

The last term TImiC gathers the total emission costs in the system, given by the sum of emission 

costs for the existing and new DGs as well that of power purchased from the grid at the 

substations. 

 
  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐶 = 𝛼1 ∗ 𝑇𝐼𝑛𝑣𝐶 + 𝛼2 ∗ 𝑇𝑀𝐶 + 𝛼3 ∗ 𝑇𝐸𝐶 + 𝛼4 ∗ 𝑇𝐸𝑁𝑆𝐶 + 𝛼5 ∗  𝑇𝐼𝑚𝑖𝐶 (6.3) 

  

  

  

     𝑇𝐼𝑛𝑣𝐶 = ∑
(1 + 𝑟)−𝑡

𝑟
𝑡𝜖Ω𝑡

(𝐼𝑛𝑣𝐶𝑡
𝐷𝐺 + 𝐼𝑛𝑣𝐶𝑡

𝐿𝑁 + 𝐼𝑛𝑣𝐶𝑡
𝐸𝑆 + 𝐼𝑛𝑣𝐶𝑡

𝐶𝐴𝑃)
⏟                                    

𝑁𝑃𝑉 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

 
(6.4) 
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        𝑇𝑀𝐶 = ∑(1 + 𝑟)−𝑡

𝑡𝜖Ω𝑡

 (𝑀𝑛𝑡𝐶𝑡
𝐷𝐺 +𝑀𝑛𝑡𝐶𝑡

𝐿𝑁 +𝑀𝑛𝑡𝐶𝑡
𝐸𝑆 +𝑀𝑛𝑡𝐶𝑡

𝐶𝑎𝑝
)

⏟                                      
𝑁𝑃𝑉 𝑜𝑓  𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡𝑠

 

 

                   +      
(1 + 𝑟)−𝑇

𝑟
(𝑀𝑛𝑡𝐶𝑇

𝐷𝐺 +𝑀𝑛𝑡𝐶𝑇
𝐿𝑁 +𝑀𝑛𝑡𝐶𝑇

𝐸𝑆 +𝑀𝑛𝑡𝐶𝑇
𝐶𝑎𝑝
)

⏟                                    
𝑁𝑃𝑉 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇 

 

(6.5) 

  

  

  

𝑇𝐸𝐶 = ∑(1 + 𝑟)−𝑡

𝑡𝜖Ω𝑡

 (𝐸𝐶𝑡
𝐷𝐺 + 𝐸𝐶𝑡

𝐸𝑆 + 𝐸𝐶𝑡
𝑆𝑆)

⏟                        
𝑁𝑃𝑉 𝑜𝑓  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

 +
(1 + 𝑟)−𝑇

𝑟
(𝐸𝐶𝑇

𝐷𝐺 + 𝐸𝐶𝑇
𝐸𝑆 + 𝐸𝐶𝑇

𝑆𝑆)
⏟                      
𝑁𝑃𝑉 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇 

 
(6.6) 

  

  

  

      𝐸𝑁𝑆𝐶 = ∑(1 + 𝑟)−𝑡

𝑡𝜖Ω𝑡

 𝐸𝑁𝑆𝐶𝑡
⏟            
𝑁𝑃𝑉 𝑜𝑓  𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠

+
(1 + 𝑟)−𝑇

𝑟
𝐸𝑁𝑆𝐶𝑇⏟          

𝑁𝑃𝑉 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇 

 
(6.7) 

  

  

  

    𝑇𝐸𝑚𝑖𝐶 = ∑(1 + 𝑟)−𝑡

𝑡𝜖Ω𝑡

 (𝐸𝑚𝑖𝐶𝑡
𝐷𝐺 + 𝐸𝑚𝑖𝐶𝑡

𝑆𝑆)
⏟                      

𝑁𝑃𝑉 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

+
(1 + 𝑟)−𝑇

𝑟
(𝐸𝑚𝑖𝐶𝑇

𝐷𝐺 + 𝐸𝑚𝑖𝐶𝑇
𝑆𝑆)

⏟                    
𝑁𝑃𝑉 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇

 
(6.8) 

  

 

The individual cost components in (6.4)—(6.8) are computed by the following expressions. 

Equations (6.9)—(6.12) represent the investment costs of DGs, feeders, energy storage system and 

capacitor banks, respectively. Notice that all investment costs are weighted by the capital 

recovery factor, 
𝑟(1+𝑟)𝐿𝑇

(1+𝑟)𝐿𝑇−1
.  

The formulations in (6.9)—(6.12) ensure that the investment cost of each asset added to the 

system is considered only once in the summation. In this regard, there are two issues that need to 

be taken care of in the formulation. On one hand, it is required that investment decisions already 

made at a given stage cannot be reversed back (divested) in the subsequent stages. This condition 

is met by the set of logical constraints described in the following subsection in the model 

formulation, for example,  𝑥𝑔,𝑖,𝑡 ≥ 𝑥𝑔,𝑖,𝑡−1.  

Such a logical constraint states that the investment decision at a planning stage t should be at 

least equal to the investment decision in the preceding stage 𝑡 − 1. In other words, 𝑥𝑔,𝑖,𝑡 should be 

equal to the investments made in the preceding stages plus the additional investment in stage 𝑡.  

On the other hand, only the investment costs for the marginal (additional) investment made at 

each stage should be considered in the investment cost summations in (6.9)—(6.12). In the 

example, the additional (marginal) investments made at each stage are given by: (𝑥𝑔,𝑖,𝑡 − 𝑥𝑔,𝑖,𝑡−1). 

This is why the investment cost function in (6.9) contains this expression.  
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Now, suppose the decision variable on DG investments 𝑥𝑔,𝑖,𝑡 is defined as a binary one. This means 

that only one DG of type g can be installed at node i in either of the planning stages. Suppose it 

becomes most economical to install it in the second year i.e. 𝑥𝑔,𝑖,2 = 0. The logical constraint in 

(6.70) leads to 𝑥𝑔,𝑖,3 ≥ 𝑥𝑔,𝑖,2 i.e. 𝑥𝑔,𝑖,3 ≥ 1. For this particular example, the binary variable for each 

stage i.e. {𝑥𝑔,𝑖,1; 𝑥𝑔,𝑖,2; 𝑥𝑔,𝑖,3} is equal to {0; 1; 1}, respectively.  

Recall that the investment cost of this DG should be considered only once (in the second year) in 

the summation, and this is taken care of by the expression (𝑥𝑔,𝑖,𝑡 − 𝑥𝑔,𝑖,𝑡−1) in Equation (6.9).  

All the differences for this particular example are (𝑥𝑔,𝑖,1 − 𝑥𝑔,𝑖,0) = 0, (𝑥𝑔,𝑖,2 − 𝑥𝑔,𝑖,1) = 1, and 

(𝑥𝑔,𝑖,3 − 𝑥𝑔,𝑖,2) = 0, which indicates that the investment cost is considered only once at the second 

stage. Instead of defining the variable xg,i,t as a binary variable, one may allow it to have any 

integer value as far as it is deemed optimal.  

In this case, for the above example, suppose the optimal solution is to install one DG in the 

second stage and one more DG in the third stage which means {𝑥𝑔,𝑖,1; 𝑥𝑔,𝑖,2; 𝑥𝑔,𝑖,3} is equal to 

{0; 1; 2}. Note that 𝑥𝑔,𝑖,3 should be equal to 2 because the investment decision made in the 

preceding stages should be also available in the third stage. For this example, (𝑥𝑔,𝑖,1 − 𝑥𝑔,𝑖,0) = 0, 

(𝑥𝑔,𝑖,2 − 𝑥𝑔,𝑖,1) = 1, and (𝑥𝑔,𝑖,3 − 𝑥𝑔,𝑖,2) = 1, showing that the investment cost each DG is 

considered only once in the summation.  

In general, the formulation remains valid regardless of how the investment variables are defined. 

Note that investment variables refer to the decision variables corresponding to investments in 

DGs, energy storage systems, capacitor banks and distribution lines in each of the decision stages 

along the 3-year planning horizon.  

Equation (6.13) stands for the maintenance costs of new and existing DGs at each time stage. The 

maintenance cost of a new/existing feeder is included only when its corresponding investment/ 

utilization variable is different from zero. Similarly, the maintenance costs of new and existing 

feeders at each stage are given by Equation (6.14). Equations (6.15) and (6.16) are related to the 

maintenance costs at each stage of energy storage and capacitor banks, respectively. 

  

𝐼𝑛𝑣𝐶𝑡
𝐷𝐺 = ∑ ∑

𝑟(1 + 𝑟)𝐿𝑇𝑔

(1 + 𝑟)𝐿𝑇𝑔 − 1
𝐼𝐶𝑔,𝑖(𝑥𝑔,𝑖,𝑡 − 𝑥𝑔,𝑖,𝑡−1)

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔

 ; 𝑤ℎ𝑒𝑟𝑒 𝑥𝑔,𝑖,0 = 0 (6.9) 

  

  

  

                    𝐼𝑛𝑣𝐶𝑡
𝐿𝑁 = ∑

𝑟(1 + 𝑟)𝐿𝑇𝑘

(1 + 𝑟)𝐿𝑇𝑘 − 1
𝐼𝐶𝑘(𝑥𝑘,𝑡 − 𝑥𝑘,𝑡−1

𝑘𝜖𝛺ℓ

) ;  𝑤ℎ𝑒𝑟𝑒 𝑥𝑘,0 = 0 (6.10) 

  

  

  

                    𝐼𝑛𝑣𝐶𝑡
𝐸𝑆 = ∑ ∑

𝑟(1+𝑟)𝐿𝑇𝑒𝑠

(1+𝑟)𝐿𝑇𝑒𝑠−1
𝐼𝐶𝑒𝑠(𝑥𝑒𝑠,𝑖,𝑡 − 𝑥𝑒𝑠,𝑖,𝑡−1𝑖𝜖𝛺𝑖𝑒𝑠𝜖𝛺𝑒𝑠 )  ;  

𝑤ℎ𝑒𝑟𝑒 𝑥𝑒𝑠,𝑖,0 = 0 
(6.11) 
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𝐼𝑛𝑣𝐶𝑡
𝐶𝐴𝑃 = ∑∑

𝑟(1 + 𝑟)𝐿𝑇𝑐

(1 + 𝑟)𝐿𝑇𝑐 − 1
𝐼𝐶𝑐(𝑥𝑐,𝑖,𝑡 − 𝑥𝑐,𝑖,𝑡−1)

𝑖𝜖𝛺𝑖𝑐𝜖𝛺𝑐

 ; 𝑤ℎ𝑒𝑟𝑒 𝑥𝑐,𝑖,0 = 0 (6.12) 

  

  

  

                     𝑀𝑛𝑡𝐶𝑡
𝐷𝐺 = ∑ ∑𝑀𝐶𝑔

𝑁

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔

𝑥𝑔,𝑖,𝑡 + ∑ ∑𝑀𝐶𝑔
𝐸

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔

𝑢𝑔,𝑖,𝑡 (6.13) 

  

  

  

                     𝑀𝑛𝑡𝐶𝑡
𝐿𝑁 = ∑ 𝑀𝐶𝑘

𝐸

𝑘𝜖𝛺𝑒ℓ

𝑢𝑘,𝑡 + ∑ 𝑀𝐶𝑘
𝑁𝑥𝑘,𝑡

𝑘𝜖𝛺𝑛ℓ

 (6.14) 

  

  

  

                      𝑀𝑛𝑡𝐶𝑡
𝐸𝑆 = ∑ ∑𝑀𝐶𝑒𝑠𝑥𝑒𝑠,𝑖,𝑡

𝑖𝜖𝛺𝑖𝑒𝑠𝜖𝛺𝑒𝑠

 (6.15) 

  
  
  

                    𝑀𝑛𝑡𝐶𝑡
𝐶𝑎𝑝

= ∑ ∑𝑀𝐶𝑐𝑥𝑐,𝑖,𝑡
𝑖𝜖𝛺𝑖𝑐𝜖𝛺𝑐

 (6.16) 

  

The total cost of power produced by new and existing DGs is given by Equation (6.17). Note that 

these costs depend on the amount of power generated at each scenario, snapshot and stage. 

Therefore, these costs represent the expected costs of operation. Similarly, Equations (5.18) and 

(6.19) respectively account for the expected costs of energy supplied by the energy storage 

system, and that purchased from upstream (i.e., transmission grid).  

The penalty for the unserved power, given by (6.20), is also dependent on the scenarios, and time 

stages. Equation (6.20) therefore gives the expected cost of unserved energy in the system.  

The expected emission costs of power generated by new and existing DGs are given by (6.21)—

(6.23), and that of energy purchased from the grid is calculated using (6.24). Note that, for the 

sake of simplicity, a linear emission cost function is assumed here. In reality, the emission cost 

function is highly nonlinear and nonconvex, as in [44]. 

 

  

𝐸𝐶𝑡
𝐷𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑(𝑂𝐶𝑔,𝑖,𝑠,𝑤,𝑡

𝑁 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑁

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔

+ 𝑂𝐶𝑔,𝑖,𝑠,𝑤,𝑡
𝐸

𝑤𝜖𝛺𝑤

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸 )

𝑠𝜖𝛺𝑠

 (6.17) 

  

  

  

  

  

𝐸𝐶𝑡
𝐸𝑆 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑∑𝜆𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ

𝑖𝜖𝛺𝑖𝑐𝜖𝛺𝑐𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (6.18) 
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𝐸𝐶𝑡
𝑆𝑆 = ∑ 𝜌𝑠 ∑ 𝜋𝑤∑𝜆𝑠,𝑤,𝑡

𝜍
𝑃𝜍,𝑠,𝑤,𝑡
𝑆𝑆

𝜍,𝛺𝜍𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (6.19) 

  

  

  

𝐸𝑁𝑆𝐶𝑡 = ∑ 𝜌𝑠 ∑ ∑𝜋𝑤𝜐𝑠,𝑤,𝑡𝛿𝑖,𝑠,𝑤,𝑡
𝑖𝜖𝛺𝑖𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (6.20) 

  

  

  

𝐸𝑚𝑖𝐶𝑡
𝐷𝐺 = 𝐸𝑚𝑖𝐶𝑡

𝑁 + 𝐸𝑚𝑖𝐶𝑡
𝐸    (6.21) 

  

  

  

𝐸𝑚𝑖𝐶𝑡
𝑁 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝑁𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝑁

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (6.22) 

  
  
  

𝐸𝑚𝑖𝐶𝑡
𝐸 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝐸𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝐸

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (6.23) 

  
  

  

𝐸𝑚𝑖𝐶𝑡
𝐸 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝐸𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝐸

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (6.24) 

 

 

6.3.3 Constraints 

 

6.3.3.1 Kirchhoff’s Voltage Law 

The customary AC power flow equations, given by (6.25) and (6.26), are highly non-linear and 

non-convex. Understandably, using these flow expressions in power system planning applications 

is increasingly difficult. Because of this, Equations (6.25) and (6.26) are often linearized by 

considering two practical assumptions. 

The first assumption is concerning the bus voltage magnitudes, which in distribution systems are 

expected to be close to the nominal value 𝑉𝑛𝑜𝑚. The second assumption is in relation to the 

voltage angle difference 𝜃𝑘 across a line which is practically small, leading to the trigonometric 

approximations 𝑠𝑖𝑛 𝜃𝑘 ≈ 𝜃𝑘 and 𝑐𝑜𝑠 𝜃𝑘 ≈ 1. Note that this assumption is valid in distribution 

systems, where the active power flow dominates the total apparent power in lines. Furthermore, 

the voltage magnitude at bus i can be expressed as the sum of the nominal voltage and a small 

deviation ∆𝑉𝑖, as in (6.27). 

  

𝑃𝑘 = 𝑉𝑖
2𝑔𝑘 − 𝑉𝑖𝑉𝑗(𝑔𝑘 cos 𝜃𝑘 + 𝑏𝑘 sin 𝜃𝑘) (6.25) 
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𝑄𝑘 = −𝑉𝑖
2𝑏𝑘 + 𝑉𝑖𝑉𝑗(𝑏𝑘 cos 𝜃𝑘 − 𝑔𝑘 sin 𝜃𝑘) (6.26) 

  

  

  

𝑉𝑖 = 𝑉𝑛𝑜𝑚 + ∆𝑉𝑖 , 𝑤ℎ𝑒𝑟𝑒 ∆𝑉𝑚𝑖𝑛 ≤ ∆𝑉𝑖 ≤ ∆𝑉
𝑚𝑎𝑥 (6.27) 

  

Note that the voltage deviations at each node ∆𝑉𝑖 are expected to be very small. Substituting 

(6.27) in (6.25) and (6.26) and neglecting higher order terms, we get:  

  

𝑃𝑘 ≈ (𝑉𝑛𝑜𝑚
2 + 2𝑉𝑛𝑜𝑚∆𝑉𝑖)𝑔𝑘 − (𝑉𝑛𝑜𝑚

2 + 𝑉𝑛𝑜𝑚∆𝑉𝑖 + 𝑉𝑛𝑜𝑚∆𝑉𝑗)(𝑔𝑘 + 𝑏𝑘𝜃𝑘) (6.28) 

  

  

  

𝑄𝑘 ≈ −(𝑉𝑛𝑜𝑚
2 + 2𝑉𝑛𝑜𝑚∆𝑉𝑖)𝑏𝑘 + (𝑉𝑛𝑜𝑚

2 + 𝑉𝑛𝑜𝑚∆𝑉𝑖 + 𝑉𝑛𝑜𝑚∆𝑉𝑗)(𝑏𝑘 − 𝑔𝑘𝜃𝑘) (6.29) 

  

Note that Equations (6.28) and (6.29) still contain nonlinearities because of the products of two 

continuous variables—voltage deviations and angle differences. However, since these variables 

(∆𝑉𝑖, ∆𝑉𝑗 and 𝜃𝑘) are very small, their products can be neglected. Hence, the above flow 

equations become: 

  

                                                              𝑃𝑘 ≈ 𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘 (6.30) 

  

  

  

𝑄𝑘 ≈ −𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑏𝑘 − 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘 (6.31) 

  

The linear planning model proposed here is based on the above linearized flow equations.  

This linearization approach was first introduced in [95] in the context of transmission expansion 

planning problem. When the investment planning problem includes network switching, 

reinforcement, replacement and expansion of feeders, Equations (6.30) and (6.31) must be 

multiplied by the corresponding binary variables as in (6.32) —(6.35). This is to make sure the flow 

through an existing/a new feeder is zero when its switching/investment variable is zero; 

otherwise, the flow in that feeder should obey the Kirchhoff’s law. 

  
                                               𝑃𝑘 ≈ 𝑢𝑘,𝑡{𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑔𝑘 − 𝑉𝑛𝑜𝑚

2 𝑏𝑘𝜃𝑘} (6.32) 

  

  

  

𝑄𝑘 ≈ 𝑢𝑘,𝑡{−𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑏𝑘 − 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘} (6.33) 
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                                               𝑃𝑘 ≈ 𝑥𝑘,𝑡{𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘} (6.34) 

  

  

  

𝑄𝑘 ≈ 𝑥𝑘,𝑡{−𝑉𝑛𝑜𝑚(∆𝑉𝑖 − ∆𝑉𝑗)𝑏𝑘 − 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘} (6.35) 

  

The bilinear products, involving binary with voltage deviation and angle difference variables, 

introduces undesirable nonlinearity to the problem. This nonlinearity can be avoided using the 

big-M formulation i.e. by reformulating the above equations into their respective disjunctive 

equivalents as in (6.36)—(6.39). As a rule-of-thumb, the big-M parameter is often set to the 

maximum transfer capacity in the system.   

  

   |𝑃𝑘,𝑠,𝑤,𝑡 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑠,𝑤,𝑡 − ∆𝑉𝑗,𝑠,𝑤,𝑡)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝑡  )}| ≤ 𝑀𝑃𝑘(1 − 𝑢𝑘,𝑡) (6.36) 

  

  

  

|𝑄𝑘,𝑠,𝑤,𝑡 − {−𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑠,𝑤,𝑡 − ∆𝑉𝑗,𝑠,𝑤,𝑡)𝑏𝑘 − 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘,𝑠,𝑤,𝑡} | ≤ 𝑀𝑄𝑘(1 − 𝑢𝑘,𝑡) (6.37) 

  

  

  

     |𝑃𝑘,𝑠,𝑤,𝑡 − {𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑠,𝑤,𝑡 − ∆𝑉𝑗,𝑠,𝑤,𝑡)𝑔𝑘 − 𝑉𝑛𝑜𝑚
2 𝑏𝑘𝜃𝑘,𝑠,𝑤,𝑡}| ≤ 𝑀𝑃𝑘(1 − 𝑥𝑘,𝑡) (6.38) 

  

  

  

|𝑄𝑘,𝑠,𝑤,𝑡 − {−𝑉𝑛𝑜𝑚(∆𝑉𝑖,𝑠,𝑤,𝑡 − ∆𝑉𝑗,𝑠,𝑤,𝑡)𝑏𝑘 − 𝑉𝑛𝑜𝑚
2 𝑔𝑘𝜃𝑘,𝑠,𝑤,𝑡}| ≤ 𝑀𝑄𝑘(1 − 𝑥𝑘,𝑡) (6.39) 

  

 

6.3.3.2 Flow Limits 

The apparent power flow through a line 𝑆𝑘is given by √𝑃𝑘
2 + 𝑄𝑘

2 and this has to be less than or 

equal to the rated value which is denoted as: 

  

𝑃𝑘
2 + 𝑄𝑘

2 ≤ (𝑆𝑘
𝑚𝑎𝑥)2 (6.40) 

  

Considering line switching/investment, Equation (6.40) can be rewritten as: 

  

  

𝑃𝑘,𝑠,𝑤,𝑡
2 + 𝑄𝑘,𝑠,𝑤,𝑡

2 ≤ 𝑢𝑘,𝑡(𝑆𝑘
𝑚𝑎𝑥)2 (6.41) 

  

  

  

  

𝑃𝑘,𝑠,𝑤,𝑡
2 + 𝑄𝑘,𝑠,𝑤,𝑡

2 ≤ 𝑥𝑘,𝑡(𝑆𝑘
𝑚𝑎𝑥)2 (6.42) 
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The quadratic expressions of active and reactive power flows in (6.41) through (6.42) can be 

easily linearized using piecewise linearization, considering a sufficiently large number of linear 

segments, 𝐿.  

There are a number of ways of linearizing such functions such as incremental, multiple choice, 

convex combination and other approaches in the literature [164]. Here, the first approach (which 

is based on first-order approximation of the nonlinear curve) is used because of its relatively 

simple formulation. To this end, two non-negative auxiliary variables are introduced for each of 

the flows 𝑃𝑘   and 𝑄𝑘 such that 𝑃𝑘 = 𝑃𝑘
+ − 𝑃𝑘

− and 𝑄𝑘 = 𝑄𝑘
+ − 𝑄𝑘

−.  

Note that these auxiliary variables (i.e., 𝑃𝑘
+ , 𝑃𝑘

−, 𝑄𝑘
+ and𝑄𝑘

−) represent the positive and negative 

flows of 𝑃𝑘 and 𝑄𝑘, respectively. This helps one to consider only the positive quadrant of the 

nonlinear curve, resulting in a significant reduction in the mathematical complexity, and by 

implication the computational burden. In this case, the associated linear constraints are: 

  

                       𝑃𝑘,𝑠,𝑤,𝑡
2 ≈∑𝛼𝑘,𝑙𝑝𝑘,𝑠,𝑤,𝑡,𝑙

𝐿

𝑙=1

 (6.43) 

  

  

  

                        𝑄𝑘,𝑠,𝑤,𝑡
2 ≈∑𝛽𝑘,𝑙𝑞𝑘,𝑠,𝑤,𝑡,𝑙

𝐿

𝑙=1

 (6.44) 

  

  

  

𝑃𝑘,𝑠,𝑤,𝑡
+ + 𝑃𝑘,𝑠,𝑤,𝑡

− =∑𝑝𝑘,𝑠,𝑤,𝑡,𝑙

𝐿

𝑙=1

 (6.45) 

  

  

  

𝑄𝑘,𝑠,𝑤,𝑡
+ + 𝑄𝑘,𝑠,𝑤,𝑡

− =∑𝑞𝑘,𝑠,𝑤,𝑡,𝑙

𝐿

𝑙=1

 (6.46) 

  
  

 

where 𝑝𝑘,𝑠,𝑤,𝑡,𝑙 ≤ 𝑃𝑘
𝑚𝑎𝑥 𝐿⁄  and 𝑞𝑘,𝑠,𝑤,𝑡,𝑙 ≤ 𝑄𝑘

𝑚𝑎𝑥/𝐿. 
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6.3.3.3 Line Losses 

The active and reactive power losses in line k can be approximated as follows: 

  

                                𝑃𝐿𝑘 = 𝑃𝑘,𝑖𝑗 + 𝑃𝑘,𝑗𝑖 ≈ 2𝑉𝑛𝑜𝑚
2 𝑔𝑘(1 − cos 𝜃𝑘) ≈ 𝑉𝑛𝑜𝑚

2 𝑔𝑘𝜃𝑘
2  (6.47) 

  

  

𝑄𝐿𝑘 = 𝑄𝑘,𝑖𝑗 + 𝑄𝑘,𝑗𝑖 ≈ −2𝑉𝑛𝑜𝑚
2 𝑏𝑘(1 − cos 𝜃𝑘) ≈ −𝑏𝑘𝑉𝑛𝑜𝑚

2 𝜃𝑘
2 (6.48) 

  

Clearly, Equations (6.47) and (6.48) are nonlinear and nonconvex functions, making the problem 

more complex to solve. This can be overcome by having the quadratic angle differences 

piecewise-linearized, as it is done for the quadratic flows in the above. However, instead of doing 

this, the expressions in (6.47) and (6.48) can be expressed in terms of the active and the reactive 

power flows as in (6.49) and (6.50). Note that Equation (6.49) can be easily obtained by 

multiplying the squared expressions of both sides of the equations in (6.30) and (6.31) by the 

resistance of the branch, combining the resulting equations, neglecting higher order terms and 

reordering both sides of the resulting equation. Equation (6.50) is also obtained in a similar 

fashion but by multiplying the squared expressions by reactance. For the sake of completeness, 

details concerning the derivations (6.49) and (6.50) are presented in Appendix D. 

  

𝑃𝐿𝑘,𝑠,𝑤,𝑡 = 𝑟𝑘{𝑃𝑘,𝑠,𝑤,𝑡
2 + 𝑄𝑘,𝑠,𝑤,𝑡

2 }/𝑉𝑛𝑜𝑚
2  (6.49) 

  

  

  

𝑄𝐿𝑘,𝑠,𝑤,𝑡 = 𝑥𝑘{𝑃𝑘,𝑠,𝑤,𝑡
2 + 𝑄𝑘,𝑠,𝑤,𝑡

2 }/𝑉𝑛𝑜𝑚
2  (6.50) 

  

Note that expressing the losses as a function of flows has two advantages.  First, doing so reduces 

the number of nonlinear terms that has to be linearized, which in turn results in a model with a 

reduced number of equations and variables. For example, if Equations (6.47) and (6.48) are used 

instead, in addition to the quadratic power flow terms 𝑃𝑘
2 and 𝑄𝑘

2, the quadratic angle differences 

𝜃𝑘
2 should also be linearized to make the problem linear and convex. On the contrary, when Eqs. 

(6.49) and (6.50) are used, one is only required to linearize 𝑃𝑘
2 and 𝑄𝑘

2. Second, it avoids 

unnecessary constraints on the angle differences when a line between two nodes is not connected 

or remains not selected for investment. This is often avoided by introducing binary variables and 

using a so-called big-M formulation [95]. However, this adds extra complexity to the problem.  

 

5.3.3.4 Kirchhoff’s Current Law (Active and Reactive Load Balances) 

All the time, load balance should be respected at each node i.e. the sum of all injections should 

be equal to the sum of all withdrawals at each node. This is enforced by adding the following two 

constraints:  
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∑ (𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸 + 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝑁 )

𝑔𝜖Ω𝐷𝐺

+ ∑ (𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ − 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ )

𝑒𝑠𝜖Ω𝑒𝑠

+ 𝑃𝜍,𝑠,𝑤,𝑡
𝑆𝑆 + ∑ 𝑃𝑘,𝑠,𝑤,𝑡

𝑖𝑛,𝑘𝜖𝑖

− ∑ 𝑃𝑘,𝑠,𝑤,𝑡
𝑜𝑢𝑡,𝑘𝜖𝑖

+ 𝛿𝑖,𝑠,𝑤,𝑡 = 𝐷𝑠,𝑤,𝑡
𝑖 + 𝑃𝐿𝜍,𝑠,𝑤,𝑡 +∑

1

2
𝑃𝐿𝑘,𝑠,𝑤,𝑡

𝑘𝜖𝑖

 ;  ∀𝜍, ∀𝜍𝜖𝑖 
(6.51) 

  

  

  

∑ (𝑄𝑔,𝑖,𝑠,𝑤,𝑡
𝐸 + 𝑄𝑔,𝑖,𝑠,𝑤,𝑡

𝑁 )

𝑔𝜖Ω𝐷𝐺

+ ∑ 𝑄𝑖,𝑠,𝑤,𝑡
𝑐

𝑐𝜖Ω𝑐

+ 𝑄𝜍,𝑠,𝑤,𝑡
𝑆𝑆 + ∑ 𝑄𝑘,𝑠,𝑤,𝑡

𝑖𝑛,𝑘𝜖𝑖

− ∑ 𝑄𝑘,𝑠,𝑤,𝑡
𝑜𝑢𝑡,𝑘𝜖𝑖

= 𝑄𝑠,𝑤,𝑡
𝑖 + 𝑄𝐿𝜍,𝑠,𝑤,𝑡 + ∑

1

2
𝑄𝐿𝑘,𝑠,𝑤,𝑡

𝑖𝑛,𝑘𝜖𝑖

+ ∑
1

2
𝑄𝐿𝑘,𝑠,𝑤,𝑡

𝑜𝑢𝑡,𝑘𝜖𝑖

 ;  ∀𝜍, ∀𝜍𝜖𝑖 
(6.52) 

  

 

Equations (6.51) and (6.52) stand for the active and the reactive power balances at each node, 

respectively. 

 

6.3.3.5 Bulk Energy Storage Model Constraints 

The generic bulk ESS is modeled by constraints (6.53) —(6.59).  

  

0 ≤ 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ ≤ 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ 𝑥𝑒𝑠,𝑖,𝑡𝑃𝑒𝑠,𝑖
𝑐ℎ,𝑚𝑎𝑥

 (6.53) 

  

  

  

0 ≤ 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ ≤ 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ 𝑥𝑒𝑠,𝑖,𝑡𝑃𝑒𝑠,𝑖
𝑐ℎ,𝑚𝑎𝑥

 (6.54) 

  

  

  

𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ + 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ ≤ 1 (6.55) 

  

  

  

𝐸𝑒𝑠,𝑖,𝑠,𝑤,𝑡 = 𝐸𝑒𝑠,𝑖,𝑠,𝑤−1,𝑡 + 𝜂𝑒𝑠 
𝑐ℎ𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ − 𝛽𝑒𝑠 
𝑑𝑐ℎ
𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ  ; 𝑤ℎ𝑒𝑟𝑒 𝛽𝑒𝑠

𝑑𝑐ℎ = 1/𝜂𝑒𝑠 
𝑑𝑐ℎ (6.56) 

  
  
  

𝐸𝑒𝑠,𝑖
𝑚𝑖𝑛𝑥𝑒𝑠,𝑖,𝑡 ≤ 𝐸𝑒𝑠,𝑖,𝑠,𝑤,𝑡 ≤ 𝑥𝑒𝑠,𝑖,𝑡𝐸𝑒𝑠,𝑖

𝑚𝑎𝑥  (6.57) 

  
  
  

𝐸𝑒𝑠,𝑖,𝑠,𝑤0,𝑇1 = 𝜇𝑒𝑠𝑥𝑒𝑠,𝑖,𝑇1𝐸𝑒𝑠,𝑖
𝑚𝑎𝑥  (6.58) 

  
  
  

𝐸𝑒𝑠,𝑖,𝑠,𝑤1,𝑡+1 = 𝐸𝑒𝑠,𝑖,𝑠,𝑊,𝑡;  𝐸𝑒𝑠,𝑖,𝑠,𝑊,𝑇 = 𝐸𝑒𝑠,𝑖,𝑠,𝑤0,𝑇1 (6.59) 
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The limits on the capacity of ESS while being charged and discharged are considered in 

Inequalities (6.53) and (6.54), respectively. Inequality (6.55) prevents simultaneous charging and 

discharging operation of ESS at the same operational time w. The amount of stored energy within 

the reservoir of bulk ESS at the operational time w as a function of energy stored until 𝑤 − 1 is 

given by (6.56). The maximum and minimum levels of storages in operational time w are also 

considered through inequality (6.57). Equation (6.58) shows the initial level of stored energy in 

the bulk ESS as a function of its maximum reservoir capacity. In a multi-stage planning approach, 

Equation (5.59) ensures that the initial level of energy in the bulk ESS at a given year is equal to 

the final level of energy in the ESS in the preceding year and the reservoir level at the end of the 

planning horizon should be equal to the initial level. The latter constraint guarantees that the 

optimal solution returned by the solution algorithm is not because of the initial reservoir level. 

For the sake of simplicity, 𝜂𝑒𝑠 
𝑑𝑐ℎ is assumed to be equal to 𝜂𝑒𝑠 

𝑐ℎ , as in [165], [166]. Both the charging 

𝜂𝑒𝑠
𝑐ℎ and discharging 𝜂𝑒𝑠

𝑑𝑐ℎ efficiencies are expressed in terms of the energy at the nodes where the 

storage system is connected to. Because of this, a certain percentage of the energy fed to the 

storage system will be stored while the remaining will be lost in the form of losses (electrical, 

chemical, heat, etc.). This is related to the charging efficiency, which should then be less than 1. 

On the other hand, in order to withdraw a given amount of energy from the storage system, more 

energy is needed to cover the discharging losses. This is why we have 1/𝜂𝑒𝑠
𝑑𝑐ℎ in Equation (6.56) 

associated with the energy at the output side of the energy storage system. 

Notice that inequalities (6.53) and (6.54) involve products of charging/discharging binary variables 

and investment variable. In order to linearize these, new continuous positive variables 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ , 

and 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ , which replaces the bilinear products in each constraint, is introduced such that the 

set of linear constraints in (6.60) and (6.61) hold. For instance, the product 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ 𝑥𝑒𝑠,𝑖,𝑡 is 

replaced by the positive variable 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ . Then, the bilinear product is decoupled by introducing 

the set of constraints in (6.60) [115]. 

  

𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ ≤ 𝑥𝑒𝑠

𝑚𝑎𝑥𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ  ;  𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ ≤ 𝑥𝑒𝑠,𝑖,𝑡  ; 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ ≥ 𝑥𝑒𝑠,𝑖,𝑡 − (1 − 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ )𝑥𝑒𝑠
𝑚𝑎𝑥 (6.60) 

  

Similarly, the product 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ 𝑥𝑒𝑠,𝑖,𝑡is decoupled by including the following set of constraints: 

  

𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ ≤ 𝑥𝑒𝑠

𝑚𝑎𝑥𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ  ;  𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ ≤ 𝑥𝑒𝑠,𝑖,𝑡  ; 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ ≥ 𝑥𝑒𝑠,𝑖,𝑡 − (1 − 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ )𝑥𝑒𝑠
𝑚𝑎𝑥 (6.61) 

  

The large number of discrete variables in the storage model presented above can render 

significant computational burden. To overcome this, a relaxed ESS model can be formed without 

the charging and discharging indicator variables as:  

  

0 ≤ 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ ≤ 𝑥𝑒𝑠,𝑖,𝑡𝑃𝑒𝑠,𝑖

𝑐ℎ,𝑚𝑎𝑥
 (6.53’) 
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0 ≤ 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ ≤ 𝑥𝑒𝑠,𝑖,𝑡𝑃𝑒𝑠,𝑖

𝑐ℎ,𝑚𝑎𝑥
 (6.54’) 

  
  
  

𝐸𝑒𝑠,𝑖,𝑠,𝑤,𝑡 = 𝐸𝑒𝑠,𝑖,𝑠,𝑤−1,𝑡 + 𝜂𝑒𝑠 
𝑐ℎ𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ − 𝛽𝑒𝑠 
𝑑𝑐ℎ
𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ  ; 𝑤ℎ𝑒𝑟𝑒 𝛽𝑒𝑠

𝑑𝑐ℎ = 1/𝜂𝑒𝑠 
𝑑𝑐ℎ  (6.56’) 

  

 

Under normal conditions, the ESS model in (6.53’), (6.54’) and (6.56’) is exact because by the 

principle of optimality, at most one of the variables 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ  and 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ  can be greater than 

zero. In other words, it does not economic sense to have both variables to be greater than zero at 

the same time. 

 
6.3.3.6 Active and Reactive Power Limits of DGs 

The active and reactive power limits of existing generators are given by (6.62) and (6.63), 

respectively. In the case of new (candidate) generators, the corresponding constraints are (6.64) 

and (6.65). Note that the binary variables multiply the minimum and the maximum generation 

limits to make sure that the power generation variable is zero when the generator remains either 

unutilized or unselected for investment. 

  

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸,𝑚𝑖𝑛 𝑢𝑔,𝑖,𝑡 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝐸 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸,𝑚𝑎𝑥 𝑢𝑔,𝑖,𝑡 (6.62) 

  

  

𝑄𝑔,𝑖,𝑠,𝑤,𝑡
𝐸,𝑚𝑖𝑛 𝑢𝑔,𝑖,𝑡 ≤ 𝑄𝑔,𝑖,𝑠,𝑤,𝑡

𝐸 ≤ 𝑄𝑔,𝑖,𝑠,𝑤,𝑡
𝐸,𝑚𝑎𝑥 𝑢𝑔,𝑖,𝑡 (6.63) 

  

  

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑁,𝑚𝑖𝑛 𝑥𝑔,𝑖,𝑡 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝑁 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑁,𝑚𝑎𝑥 𝑥𝑔,𝑖,𝑡 (6.64) 

  

  

𝑄𝑔,𝑖,𝑠,𝑤,𝑡
𝑁,𝑚𝑖𝑛 𝑥𝑔,𝑖,𝑡 ≤ 𝑄𝑔,𝑖,𝑠,𝑤,𝑡

𝑁 ≤ 𝑄𝑔,𝑖,𝑠,𝑤,𝑡
𝑁,𝑚𝑎𝑥 𝑥𝑔,𝑖,𝑡 (6.65) 

  

 

It should be noted that these constraints are applicable only for conventional DGs which have 

reactive power support capabilities. In the case of variable generation sources, slight 

modifications are required. For instance, for wind and solar PV generators, the upper bound 

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑚𝑎𝑥  should be equal to the actual production level at a specific hour, which in turn depends on 

the level of primary energy source (wind speed and solar radiation). The lower bound 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑚𝑖𝑛  in 

this case is simply set to zero.  

In addition, conventional wind and solar PV sources do not often have the capability to provide 

reactive power support; hence, they are operated at a constant and lagging or unity power factor. 

Under such an operation, the following constraints should be used: 
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𝑄𝑔,𝑖,𝑠,𝑤,𝑡
𝐸 = tan (cos−1(𝑝𝑓𝑔)) ∗ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝐸  (6.63’) 

  
  
  

𝑄𝑔,𝑖,𝑠,𝑤,𝑡
𝑁 = tan (cos−1(𝑝𝑓𝑔)) ∗ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝑁  (6.65’) 

  

where 𝑝𝑓𝑔is the power factor of the wind or solar type generator 𝑔. Under normal cases, 

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸 = 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝐸,   𝑚𝑎𝑥 and 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑁 = 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝑁,   𝑚𝑎𝑥. 

On the other hand, for wind and solar PV type DGs with reactive power support capabilities such 

as doubly fed induction generator (DFIG) based wind turbine and voltage source inverter (VSI) 

based PV, the following constraints are used: 

  

− tan(cos−1(𝑝𝑓𝑔)) ∗ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸 ≤ 𝑄𝑔,𝑖,𝑠,𝑤,𝑡

𝐸 ≤ tan (cos−1(𝑝𝑓𝑔)) ∗ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸  (6.63’’) 

  
  
  

− tan(cos−1(𝑝𝑓𝑔)) ∗ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑁 ≤ 𝑄𝑔,𝑖,𝑠,𝑤,𝑡

𝑁 ≤ tan (cos−1(𝑝𝑓𝑔)) ∗ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑁  (6.65’’) 

  

The above two inequalities show that the wind and solar type DGs are capable of operating 

between 𝑝𝑓𝑔 leading power factor (capacitive) and 𝑝𝑓𝑔 lagging power factor (reactive). This 

means such DGs are capable of “producing” and “consuming” reactive power depending on 

operational situations in the system. 

 

6.3.3.7 Reactive Power Limit of Capacitor Bank 

Inequality (6.66) ensures that the reactive power produced by the reactive power sources 

(capacitor banks) is bounded between zero and the maximum possible capacity. 

  

0 ≤ 𝑄𝑖,𝑠,𝑤,𝑡
𝑐 ≤ 𝑥𝑐,𝑖,𝑡𝑄𝑐

0 (6.66) 

  

 

 

6.3.3.8 Active and Reactive Power Limits of Power Purchased 

For technical reasons, the power that can be purchased from the transmission grid could have 

minimum and maximum limits, which is enforced by (6.67) and (6.68). However, it is understood 

that, in reality, setting such limits is difficult. They are included here only for the sake of 

completeness. 

  

𝑃𝜍,𝑠,𝑤,𝑡
𝑆𝑆,𝑚𝑖𝑛 ≤ 𝑃𝜍,𝑠,𝑤,𝑡

𝑆𝑆 ≤ 𝑃𝜍,𝑠,𝑤,𝑡
𝑆𝑆,𝑚𝑎𝑥

 (6.67) 
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𝑄𝜍,𝑠,𝑤,𝑡
𝑆𝑆,𝑚𝑖𝑛 ≤ 𝑄𝜍,𝑠,𝑤,𝑡

𝑆𝑆 ≤ 𝑄𝜍,𝑠,𝑤,𝑡
𝑆𝑆,𝑚𝑎𝑥

 (6.68) 

  

For the analysis, the active power production limits are simply set to 1.5 times the minimum and 

the maximum levels of total load in the system.  

Note that the multiplier is higher than one in the system because of the losses, which needs to be 

covered by generating extra power. The reactive power limits are determined by the power factor 

of the substation as: 𝑄𝜍,𝑠,𝑤,𝑡
𝑆𝑆,𝑚𝑖𝑛 = −𝑡𝑎𝑛 (𝑐𝑜𝑠−1(𝑝𝑓𝑠𝑠)) ∗ 𝑃𝜍,𝑠,𝑤,𝑡

𝑆𝑆  and 𝑄𝜍,𝑠,𝑤,𝑡
𝑆𝑆,𝑚𝑎𝑥 = 𝑡𝑎𝑛 (𝑐𝑜𝑠−1(𝑝𝑓𝑠𝑠)) ∗

𝑃𝜍,𝑠,𝑤,𝑡
𝑆𝑆 , where 𝑝𝑓𝑠𝑠 is a given power factor at the substation, which is assumed to be 0.9 

throughout the analysis in this chapter. 

 

6.3.3.9 Logical Constraints 

The following logical constraints ensure that an investment decision cannot be reversed i.e. an 

investment already made cannot be divested. 

  

𝑥𝑘,𝑡 ≥ 𝑥𝑘,𝑡−1 (6.69) 

  

  

  

𝑥𝑔,𝑖,𝑡 ≥ 𝑥𝑔,𝑖,𝑡−1 (6.70) 

  

  

  

𝑥𝑒𝑠,𝑖,𝑡 ≥ 𝑥𝑒𝑠,𝑖,𝑡−1 (6.71) 

  

  

  

𝑥𝑐,𝑖,𝑡 ≥ 𝑥𝑐,𝑖,𝑡−1 (6.72) 

  

 

6.3.3.10 Radiality Constraints 

Distribution networks are structurally meshed but predominantly operated in a radial manner 

because of technical reasons (particularly related to the protection). The presence of DGs and 

reactive power sources in the system nodes other than substation nodes (which is the subject of 

the present work) may lead to islanding i.e. some loads may be isolated from the mains 

(substations) and/or loops, breaking the radiality of the network. This is not desired mainly 

because of the aforementioned technical reasons.  

To ensure radiality, two conditions must be fulfilled. First, the solution must have 𝑁𝑖 − 𝑁𝜍 

circuits. Second, the final topology should be connected. Equation (6.73) represents the first 

necessary condition for maintaining the radial topology of DNS. 
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∑ 𝑂𝑅(𝑥𝑘,𝑡 , 𝑢𝑘,𝑡)

𝑘∈Ω𝑖𝑗

= 𝑁𝑖 −𝑁𝜍   ; ∀𝑡 (6.73) 

  

Note that the above equation assumes line investment is possible in all corridors. Hence, in a 

given corridor, we can have either an existing branch, a new one, or both connected in parallel, 

depending on the economic benefits of the final setup (solution) brings about to the system.  

The radiality constraint in (6.73) then has to accommodate this condition. One way to do this is 

using the Boolean logic operation, as in (6.73). Unfortunately, this introduces nonlinearity.  

We show how this logic can be linearized using an additional auxiliary variable zk,t and the  

binary variables associated to existing and new branches (i.e., 𝑢𝑘,𝑡 and 𝑥𝑘,𝑡), respectively.  

Given 𝑧𝑘,𝑡: = 𝑂𝑅(𝑥𝑘,𝑡  , 𝑢𝑘,𝑡), this Boolean operation can be expressed using the following set of 

linear constraints: 

  

∑ 𝑂𝑅(𝑥𝑘,𝑡 , 𝑢𝑘,𝑡)

𝑘∈Ω𝑖𝑗

= 𝑁𝑖 −𝑁𝜍   ; ∀𝑡 (6.74) 

  

Note that the auxiliary variable 𝑧𝑘,𝑡 is automatically constrained to be binary. Hence, it is not 

necessary to explicitly define 𝑧𝑘,𝑡 as a binary variable; instead, defining it as a continuous positive 

variable is sufficient.  

Alternatively, if 𝑧𝑘,𝑡 is defined to be binary variable from the outset, then, Equation (6.73) can be 

converted into a single range constraint as: 

  

0 ≤ 2𝑧𝑘,𝑡 − 𝑥𝑘,𝑡 − 𝑢𝑘,𝑡 ≤ 1     ; ∀𝑡 (6.75) 

  

Then, the radiality constraints in (6.73) can be reformulated using the 𝑧𝑘,𝑡 variables as: 

  

∑ 𝑧𝑘,𝑡
𝑘∈𝛺𝑖𝑗

= 𝑁𝑖 − 𝑁𝜍       ; ∀𝑡 (6.76) 

  

When all loads in the DNS are only fed by power from substations, the final solution obtained 

automatically satisfies the two aforementioned conditions; hence, no additional constraints are 

required i.e. (6.74) or (6.75) along with (6.76) are sufficient to guarantee radiality.  

However, it should be noted that in the presence of DGs and reactive power sources, these 

constraints alone may not ensure the radiality of the distribution network, as pointed out in [106] 

and further discussed in [97], [167]-[168]. This is however out of the scope of this chapter. If this 

is a critical issue, additional constraints need to be added to guarantee that all buses are linked, 

as proposed in [71], [53]–[55]. 
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The optimization problem, developed here, encompasses Equations (6.3)—(6.24) and constraints 

(6.36)—(6.39), (6.41)—(6.46), (6.49)—(6.61), (6.62), (6.63), (6.64), (6.65), (6.66)—(6.72), (6.74) or 

(6.75) and (6.76) when all considered DGs are conventional generators with reactive power 

support capabilities. Otherwise, constraints (6.63’) and (6.65’) need to be added in case  

RES-based DGs which do not have such capabilities are present in the system or included in the 

planning. In addition, if there are RES-based DGs which are instead capable of operating as 

“generators” or “consumers” of reactive power depending on system operational situations, 

constraints (6.63’’) and (6.65’’) should be included and applied. In addition, if a relaxed ESS 

model is sought, constraints (6.53)—(6.61) can be replaced with the constraints in (6.53’), (6.54’) 

and (6.56’). 

 

6.4 Case Studies 
 

6.4.1 System Data and Assumptions 

The radial DNS, shown in Figure 6.1, is used to test the proposed planning model. The total active 

and reactive loads of the system are 4.635 MW and 3.25 MVAr, respectively. The nominal voltage 

of the system is 12.66 kV. Information regarding network and demand data is provided in [169] 

and the data it is also available in the Appendix D. This system is selected for our case study 

because it is highly lossy and not properly compensated. The voltage profile in the base case, 

obtained from power flow analysis, can be found in [170]. For the sake of clarity, these nodal 

voltages are also reproduced in Figure 6.2 in the form of cumulative distribution function. Note 

that these results correspond to a substation power factor of 0.894 and with no lower voltage 

limit restrictions imposed on the system. As it can observed in Figure 6.2, more than 70% of the 

nodal voltages are below 0.95 per unit. However, this contradicts with the minimum voltage set in 

distribution systems (often above this limit) for stability reasons. Running power flows by imposing 

minimum voltage limits while keeping the substation power factor at 0.894 leads to infeasibility.  

 

1 2

3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

23

24

25

19

20

21

22

26
27

28 29

30
31

32 33

34

35

36

37 38 39
40

41  
 

Figure 6.1 - Single-line diagram of the IEEE 41-bus distribution network system. 
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Figure 6.2 - Cumulative distribution function (CDF) of voltages in the base case. 

This may be because of the high reactive power requirement in the system, which has to be 

provided by the substation given the fact that there the system is not well-compensated. 

Reducing the power factor of the substation to 0.706 results in a feasible solution but around 40% 

of the voltages are yet very close to the minimum value. 

The following assumptions are made when carrying out the simulations: 

 A 3-year planning horizon is considered, which is divided into yearly decision stages. 

 The interest rate is set to 7%. 

 Electricity price at the substation follows the same trend as the demand i.e. 

electricity price and demand profile are 100% correlated. 

 For the sake of simplicity, maintenance costs are taken to be 2% of the corresponding 

investment costs. 

 The expected lifetime of capacitor banks and energy storage systems is assumed to be 

15 years [171], [172], while that of DGs and feeders is 25 years [71]. 

 A 5% voltage deviation is considered to be the maximum allowable deviation from the 

nominal value that one can have in the system nodes i.e. −0.95𝑉𝑛𝑜𝑚 ≤ 𝑉𝑖 ≤ 1.05𝑉𝑛𝑜𝑚. 

 The power transfer capacity of all feeders is assumed to be 6.986 MVA. 

 All big-M parameters in the model formulation are set to 10, which is sufficiently 

higher than the power transfer capacity of all feeders. 

 When linearizing quadratic terms in the developed planning model, the number of 

partitions is set equal to 5. This balances well accuracy with computation burden, as 

concluded in [94]. 

 The efficiency of the bulk ES is assumed to be 90%. 

 The unit cost of capacitor banks is assumed to be €25/kVAr. 

 The size of the minimum deployable capacitor bank is considered to be 0.1 MVAr. 

 The investment cost of a 1.0 MW bulk ES, whose energy reservoir is 5 MWh, is 

considered to be 1.0 M€. 
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 The emission rate of power purchased is arbitrarily set equal to 0.4 tCO2e/MWh. 

 The investment cost of a given feeder is assumed to be directly proportional to its 

impedance i.e. 𝐶𝑖𝑗 = 𝛼 ∗ 𝑍𝑖𝑗 where the proportionality constant 𝛼 is 10,000 €/Ω. 

 Wind and solar type DGs, each with a 1 MW installed capacity, are considered as 

potential candidates to be deployed in the system. The investment costs of these 

generators are assumed to be 2.64 M€ and 3.00 M€, respectively. 

 Electricity demand in the first, the second and the third planning stages is assumed to 

be 5%, 10% and 15% higher than the demand in the base-case, respectively. 

 The emission prices in the first, second and third stages are set to 25, 45 and 60 

€/tCO2e, respectively. 

 Variable power generation sources (wind and solar, in particular) are assumed to be 

available in every node. This assumption emanates from the fact that distribution 

networks span over a small geographical area. Hence, the distribution of resources in 

this area can be considered to be the same. 

 The substation node (node 1) is considered as a reference; hence, its voltage 

magnitude and angle are set to 1.02 ∗ 𝑉𝑛𝑜𝑚and 0, respectively. 

 The cost of unserved energy is set to 3000 €/MWh. 

 

 

6.4.2 A Strategy for Reducing Combinatorial Solution Search Space 

In the case study presented above, all nodes in the system are assumed to be candidates for the 

placement of DGs, ESS and capacitor banks. However, this is not possible when the planning work 

is carried out on large-scale DNSs because the size of the problem becomes huge as a result of 

combinatorial explosion, rendering difficulty in solving the problem.  

Owing to this fact, the potential candidate nodes are often predetermined either arbitrarily or 

using some criteria for the selection such as the level of load, availability of resources, etc.  

For example, the possible connection points of RES-based DGs are often known a priori based on 

the availability of primary energy sources (such as wind speed and solar radiation). However, the 

variation in the availability of wind speed and solar radiation among the connection points in the 

DNS is not expected to be significant because it normally spans over a geographically small area, 

where the weather situation is more or less the same.  

Here, we show how the combinatorial solution search space can be substantially reduced using a 

simple heuristic method [89]. The method is based on solving a relaxed version of the original 

problem. This is done by treating all (normally integer) investment variables as continuous ones, 

with the exception of the line reinforcement variables. This effectively means fractional 

investment decisions are allowed. 

The method here works by first establishing a threshold for each fractional investment solution 

(i.e., corresponding to DGs, ESS and capacitor banks).  
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Then, those nodes whose corresponding values of investment solutions are lower than the preset 

thresholds are neglected. For instance, consider the investment solution of the relaxed problem 

corresponding to ESS at each node, as shown in Figure 6.3 In this case, the threshold is arbitrarily 

set to 0.15. As we can see, for most of the nodes, the investment values corresponding to ESS fall 

below this threshold. Only those values at the following nodes are significant: 

{14, 18, 29, 30, 31, 32, 37, 38, 39, 40}. This set of nodes is hence considered as the most likely 

locations in the system for ESS placements in the full stochastic mixed integer linear programming 

(S-MILP) model. It should be noted that such a reduction in possible connection points (from 41 to 

10) substantially speeds up the solution process as a result of the combinatorial solution search 

space. Similarly, the reduced set of nodes for possible capacitor and DG connections are obtained 

by arbitrarily considering 1.0 and 0.2 as the respective thresholds, as shown in Figures 6.4 and 6.5. 

 

Figure 6.3 - Decision variable for ESS at each node (last stage). 

 

 

Figure 6.4 - Investment solution for capacitor banks at each node (last stage). 
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Figure 6.5 - Investment solution for DGs at each node (last stage). 

 

In this case, {7, 8, 14, 24, 25, 29, 30, 31, 32, 37, 38, 39, 40} is the reduced set of nodes for capacitor 

bank connections, while that of DGs is {7, 8, 14, 18, 25, 29, 30, 31, 32, 37, 38, 39, 40}. Note that the 

procedure/criterion for setting the threshold in each case is an open question. It may also depend 

on the nature and the size of the system under consideration. In general, each threshold should 

be carefully set to a sufficiently low value so that relevant information is not lost (i.e. potential 

candidate nodes are not excluded). The thresholds in this chapter are set based on the intuition 

that those nodes, whose investment values are zero or close to zero, are less likely to appear in 

the final set of solutions.  

A deterministic planning model (i.e. considering a single scenario corresponding to the average 

demand, wind and solar PV power output profiles) is used to evaluate the performance of the 

heuristic approach proposed here. The results of the deterministic model obtained by applying the 

heuristic method are compared with that of the “brute force” model i.e. without reducing the set 

of candidate nodes for DG, ESS and capacitor placements. The investment decisions obtained are 

the same in both cases but the computational requirements substantially differ from one another. 

The proposed method helps to significantly reduce the combinatorial solution search space, and 

thus the computational effort by more than sevenfold. In general, for distribution networks of this 

size, the proposed heuristic approach may not be needed or a short-list of candidate nodes for 

DG, ESS and capacitor placement may be made available based on expert knowledge.  

The problem is tractable without the need of reducing the solution search space as shown in 

Table 6.1. However, one cannot rely on expert knowledge when the planning involves large-scale 

distribution network systems. In such problems, and when there is a lack of adequate computing 

machine, it is critical to employ mechanisms that reduce the combinatorial solution search space. 

In our case, this relates to reducing the number of candidate nodes for allocating DGs, ESSs and 

capacitor banks. 
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Table 6.1 – Computational size of the optimization problem 

 

Brute-force  Reduced 

Number of equations 11,032,828 9,039,895 

Number of variables 9,315,028 8,100,028 

Discrete variables 720 387 

Simulation time (hours) 26.2 3.7 

 

For the case study considered in this chapter, the results obtained by applying the heuristic 

approach are the same as those obtained with the “brute-force” model which treats every node 

as a candidate for placement of DGs, ESSs and capacitor banks. However, it should be noted that 

since the proposed method is heuristic, its performance can be different for different systems. 

The approach contributes a lot to the solution process; yet, the conclusions drawn from the test 

results in this chapter cannot be generalized. The authors acknowledge that vital information 

could be excluded when setting the threshold to reduce the number of candidate nodes.  

For instance, even if the investment solution at a certain node in the relaxed problem is close to 

zero, the node could still be feasible for DG, ESS and/or capacitor placement in the full-scale 

stochastic model. As a final remark, careful analysis of the system under consideration is required 

when applying the reduction method proposed in this chapter. Table 6.1 compares the size of the 

problem before and after applying the heuristic combinatorial solution search space reduction 

method. We can see that the combinatorial solution search space is reduced from 2720 to 2387, 

and this also helps to reduce the number of equations and continuous variables by more than 18% 

and 13%, respectively.  

 

 
6.4.3 Results and Discussion 

Intermittent power generation sources such as wind and solar PV type DGs normally operate with 

a fixed lagging power factor [173]. In other words, such generators “consume” reactive power, 

instead of “producing” and contributing to the voltage regulation in the system (also known as 

reactive power support). For instance, wind turbines installed in power systems throughout the 

world are predominantly based on asynchronous generators (also known as induction generators). 

As mentioned above, one of the typical characteristics of such machines is that they always 

“consume” reactive power. Because of this, such wind turbines are often operated at a constant 

power factor.  It is well-known that, in power systems, voltage regulation has been traditionally 

supported by conventional (synchronous) generators. However, this is likely to change in the near 

future given the upward trend of integrating such resources in power systems. Variable power 

generators, equipped with reactive power support devices predominantly based on power 

electronics, are expected to be deployed to enhance their capability to provide reactive power 

when it is needed in the system. We have carried out the system expansion for two cases: DGs 

without and with reactive power support capabilities.  
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The first case assumes that all wind and solar PV generators always “consume” reactive power, 

and they are operated at a fixed lagging power factor 𝑝𝑓𝑔. The reactive power 𝑄𝑔, in this case, is 

given by the product of the actual production of the DG and the tangent of the phase angle 

between voltage and current i.e. 𝑄𝑔 = 𝑃𝑔 ∗ 𝑡𝑎𝑛(𝑐𝑜𝑠 
−1(𝑝𝑓𝑔)). In other words, the ratio between 

active and apparent power is kept constant. For instance, asynchronous (induction) generators 

used in conventional wind turbines have such characteristics. Most solar PVs also “consume” 

reactive power because of the power electronics involved. The second case assumes that all wind 

and solar PV generators have the capability to “produce” or “consume” reactive power depending 

on the operational situations, in a “similar” way as conventional power generators. For instance, a 

variable generation source g in this category is capable of operating between 𝑝𝑓𝑔 lagging power 

factor (reactive) to pfg leading power factor (capacitive) depending on system requirements i.e. 

–𝑃𝑔 ∗ 𝑡𝑎𝑛(𝑐𝑜𝑠
−1(𝑝𝑓𝑔)) ≤ 𝑄𝑔 ≤ 𝑃𝑔 ∗ 𝑡𝑎𝑛(𝑐𝑜𝑠 

−1(𝑝𝑓𝑔)) where 𝑃𝑔 is the actual power output of the 

generator at a particular time and Qg is the reactive power “produced” or “consumed”.  

The results corresponding for each case are discussed as follows. 

 

6.4.3.1 Considering DGs Without Reactive Power Support 

The power factor of wind and solar PV type DGs is varied from 0.8 lagging power factor (reactive) 

to unity power factor [173]. This means such DGs consume reactive power all the time.  

The system is expanded considering this case, and the expansion results are discussed below.  

The optimal solution for capacitor banks, DGs and bulk ES in the system are shown in Tables 6.2 

through 6.4, respectively. In general, majority of the investments are made in the first stage.  

This is because the NPV of operation and emission costs are higher in the first stage than those in 

any of the subsequent stages. This makes it attractive to invest more in renewables in the first 

stage than in the other stages so that these costs are drastically reduced.  

 

Table 6.2 – Optimal investment solution of capacitor banks at the end of the planning horizon. 

Location 
Power factor 

1.0 0.95 0.9 0.85 0.8 

7 6 9 13 3 7 

8 1 0 0 5 11 

14 3 13 16 20 20 

24 0 1 2 2 10 

25 3 3 3 9 10 

29 0 3 1 12 20 

30 8 10 13 9 10 

31 1 2 1 7 1 

32 2 5 7 2 2 

37 1 1 1 8 4 

38 9 20 13 8 20 

39 1 1 10 7 8 

40 2 6 2 2 2 

Total MVAr 3.7 7.4 8.2 9.4 12.5 
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Table 6.3 – Optimal investment solution of DGs at the end of the planning horizon 

DG type Location 
Power factor 

1.0 0.95 0.9 0.85 0.8 

PV 29 0 0 0 1 0 

PV 32 0 1 0 0 0 

PV 38 1 1 0 0 1 

PV 39 0 0 1 0 0 

Wind 7 0 1 1 0 1 

Wind 14 3 3 3 3 3 

Wind 25 0 0 0 1 1 

Wind 29 0 1 0 1 3 

Wind 30 2 0 1 0 0 

Wind 31 0 0 0 1 0 

Wind 32 1 1 1 0 0 

Wind 37 0 0 0 1 0 

Wind 38 2 1 1 0 1 

Wind 39 0 1 1 1 1 

Total (MW) 9 10 9 9 11 

 
 

 
Table 6.4 – Optimal investment solution of ESS at the end of the planning horizon 

Location 
Power factor 

1.00 0.95 0.90 0.85 0.80 

14 2 2 2 2 2 

30 0 1 2 0 0 

31 0 0 0 1 0 

32 2 1 1 0 2 

38 2 0 0 2 0 

40 0 1 1 1 1 

Total (MW) 6 5 6 6 5 

 

As we can see in Table 6.2, the optimal location of capacitor banks mostly coincides with high 

load connection points (nodes) as well as with those closer to the end nodes. This is expected 

from the system operation point of view because capacitor banks are required at such nodes to 

meet the reactive power requirements and thus keep the corresponding voltages within allowable 

operational limits. Otherwise, the voltages are expected to drop at these nodes without a 

reactive power compensation mechanism put in place. As shown in Table 6.2, the total size of 

investment in capacitor banks required throughout the planning horizon varies from 3.7 MVAr at 

unity power factor to 12.5 MVAr at 0.8 lagging power factor, most of which are installed in the 

first stage of the planning horizon. 

As shown in Table 6.4, more investments are made in wind than in solar PV type DGs. This is 

because of the higher capacity factor of potential wind power generators compared to solar PV 

ones. In general, the total MW of DG power installed at each node throughout the planning 

horizon is shown in Table 6.4.  
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Here, it can be observed that the overall optimal size of DGs integrated into the system remains 

more or less the same regardless of the power factor setting. However, the optimal placements of 

the installed DGs are in some cases different for different power factor settings. It is worth 

mentioning here that majority of these investments are made in the first stage of the planning 

horizon. This may be due to the absence of investment constraints or because the NPV cost of 

operation and emissions is higher in the foremost stages than in the following ones. The results in 

Tables 6.2 through 6.4 show the strong relationships among the optimal investment solutions.   

For instance, Table 6.2 indicates that the lower the power factor is, the higher the investment 

requirement in capacitor banks is. This is due to the increasing reactive power consumption by 

the DGs. Unlike in capacitor banks, the total amount of DGs and ESSs installed in the system (see 

Tables 6.3 and 6.4) do not show significant variations with the reactive power settings. This is an 

indication that capacitor banks play a vital role in maintaining system integrity and stability as 

well as ensuring essentially the same level of DG integration regardless of the power factor 

setting. The results in Tables 6.3 and 6.4 also reveal that, the bulk ESSs and DGs in particular are 

optimally located close to one another. This is mainly because placing the ESSs close to the RES-

based DG connection points ensures optimal utilization and integration of such DGs in the system.  

It is well known that bulk ESS can bring significant benefits such as load following, power stability 

improvements, and enhancing the dispatchability of RESs from the system operator’s point of 

view according to their operation modes. Likewise, the optimal deployment of capacitor banks 

also brings substantial benefits to the system. The combination of all these entirely helps one to 

dramatically increase the size of RES-based DGs (up to 11 MW) that can be integrated into the 

system without violating system constraints. The optimal size of DGs would, otherwise, be limited 

to less than 3 MW [174]. It is interesting to see here that the integration of ESSs and capacitor 

banks has such a dramatic impact on the level of DG integration. This is due to the fact that ESSs 

and capacitor banks bring about significant flexibility and control mechanism to the system. 

Substantial improvements in voltage controllability are also clearly visible in Figures. 6.6 and 6.7 

corresponding to a power factor setting of 0.95. These figures show the voltage deviation profiles 

at each node with the selected operational situations (which can alternatively be understood as 

“long hours”) without and with system expansion, respectively. In the base case (shown in  

Figure 6.6), one can see that some of the node voltage deviations (especially those at the 

extreme nodes) tend to be very close to the minimum allowable limit. On the contrary, all node 

voltages largely stay very close to the nominal one (with an average deviation of approximately 

1.5 %), leaving significant margins to the operational limits. Alternatively, Figure 6.8 conveniently 

shows the variance of the voltage deviations at each node. It is also evident to see here that the 

variance of most of the deviations is very low. The highest variances at nodes 20 to 22 are due to 

high impedance of the feeder connected between nodes 19 and 20. The same reasoning explains 

the relatively high variances in the voltage deviations between nodes 13 and 18. However, these 

variances are negligible when put in perspective with the square of maximum deviation, i.e. 

(2 ∗ ∆𝑉𝑚𝑎𝑥/𝑉𝑛𝑜𝑚)
2, which in this case is approximately (2 ∗ 0.05)2 ≈ 1.0 %. In general, such a 

substantial improvement in voltage controllability has come from the combined effect of 

expansion decisions in DGs, ESSs and capacitor banks. 
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Figure 6.6 - Profiles of voltage deviations without system expansion in the first stage. 

 

 

 

 

 

 
Figure 6.7 - Profiles of voltage deviations at each node after expansion in the first stage. 
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Figure 6.8 - Variance of voltage deviations at each node as a result of variations in system operational 
states. 

 

 

Other important aspects in this expansion analysis are related to the impact of system expansion 

on the network losses and investments. Figure 6.9 shows a comparison of the network losses in 

the base case and with expansion for every operational state. We can see a significant reduction 

in network losses in the system (by nearly 50% on average) after the expansion planning is carried 

out. This is one of the major benefits of integrating DGs in the system. Concerning investments in 

lines, in this particular case study, not a single feeder is selected for reinforcements. This clearly 

indicates that a properly designed integration of DGs leads to substantial network 

reinforcement/investment deferrals. 

Table 6.5 summarizes the analysis results, showing the variations of different system variables for 

different values of power factors.  

Figure 6.10 also conveniently plots the trend of wind as well as combined solar and wind energy 

production shares for different power factor values. The results in this figure show that the wind 

energy production share increases when the power factor is further reduced. This may be because 

of the inherent characteristics of wind power production. In most cases, the availability and 

strength of wind speed is higher during low demand consumption hours (during night and early 

morning hours for instance) and lower during peak hours. This is directly related to the power 

production. During valley hours, the wind turbines act as reactive power sinks.  

In relation to this, it can generally be observed that the lower the power factor is, the higher the 

reactive power consumed by the wind turbines. This may improve system efficiency and pave the 

way to higher wind power production. Hence, this may justify their increasing share of power 

production with decreasing power factor.  
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Figure 6.9 - Network losses with and without system expansion (first stage). 

 

 

 

 

 

 
Table 6.5 – Values of system variables with varying power factor of RES-based DGs 

 
Power factor 1.0 0.95 0.9 0.85 0.8 

Total energy production (MWh) 179329 175545 176024 178848 172037 

RES energy 

production share 

(%) 

Wind 44.00 45.08 45.23 46.31 46.90 

PV 0.71 2.02 4.31 2.39 1.96 

Wind+PV 44.71 47.10 49.54 48.69 48.86 

Cost terms (M€) 

Investment cost 33.94 35.88 34.35 35.69 38.91 

Maintenance Cost 9.47 9.47 9.53 9.43 10.10 

Emission Cost 9.44 8.10 8.08 8.12 6.76 

Energy Cost 29.31 27.10 27.65 27.20 25.22 

Total cost (M€) 82.16 80.55 79.61 80.44 80.99 

Investment 

decisions 

Storage (MW) 6 5 6 6 5 

Capacitor (MVAr) 3.7 7.4 8.2 9.4 12.5 

DG (MW) 9 10 9 9 11 

Line reinforcements 1 3 1 1 2 

Average active power losses in stage 1 (MW) 0.448 0.440 0.430 0.441 0.448 

Average reactive power losses in stage 1 

(MVAr) 
0.339 0.745 0.983 1.098 1.602 
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Contrary to the case with wind type DGs, the peak power production of solar PV based DGs occur 

around the peak hours of consumption. This means that, unlike the wind type DGs, their 

contribution to the system as reactive power sinks during valley hours is limited.  

Hence, as can be seen in Figure 6.11, the optimal power factor setting for such DGs seems to be 

0.9. In general, this also seems to be the optimal power factor setting for the system because this 

results in the highest share of combined wind and solar PV energy production (see Figure 6.10). 

Besides, as can be seen in Table 6.5, the lowest overall cost (79.61 M€) as well as the lowest 

active power losses (0.430 MW) are achieved when the power factor is set to 0.9. 

 

 

Figure 6.10 - Evolution of solar and wind energy production share with varying power factor. 

 

 

 
 

Figure 6.11 - Evolution of solar PV energy production share with varying power factor. 
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As shown in Table 6.5, the amount of installed reactive power sources (capacitor banks, in this 

case) as well as the reactive power losses in the system increase with decreasing power factor. 

This is expected because the lower the power factor is, the higher the reactive power 

requirement of the DGs is. Transporting the reactive power generated by such reactive power 

sources increases the reactive power losses in the system.   

The impact of varying power factor on the voltage profile in the system is also investigated. 

Figures 6.12 and 6.13 illustrate the changes in the voltage profiles as a result of changing the 

power factor during peak and valley hours, respectively. In both cases, there are no significantly 

visible variations in voltage profiles regardless of the power factor settings, except for some nodes 

as in Figure 6.13.  

The average voltage deviations at each node for different power factor settings are also shown in 

Figure 6.14. In general, based on the results in Figures 6.13 and 6.14, there is no clear indication 

to say that one power factor setting is better than the other; it can be observed that what is 

deemed good for one node may be “bad” for another one. However, it is worth mentioning here 

that the voltage profiles are significantly improved as a result of simultaneously integrating DG, 

ESS and capacitor banks. The voltage deviations for those nodes, where DGs and capacitor banks 

are connected to, seem to be higher in absolute terms; yet, they remain within the permissible 

range. 

 

 

 

Figure 6.12 - Voltage deviation at each node during peak demand hour for different power factor 
values. 
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Figure 6.13 - Voltage deviation at each node during valley hour for different power factor values. 

 

 

 

 

 

 

 

 

Figure 6.14 - Average voltage deviations at each node for different power factor values. 
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6.4.3.2 Considering DGs With Reactive Power Support 

Nowadays, RES-based DGs (wind and solar types) are required to adhere to certain grid codes such 

as reactive power support, voltage ride through, etc. to alleviate the negative impacts of 

integrating such DGs in the system. Examples in this case are doubly fed induction generator 

(DFIG) based wind turbines and voltage-source inverter (VSI) based PV generators. In some 

systems,  the grid codes are already being enforced, and consequently wind/solar PV farms are 

required to operate from 0.95 lagging to 0.95 leading power factor [175].  

For the analysis in this section, wind and solar PV type DGs with reactive power support capability 

are considered in the simulations. The power factor is varied to investigate its effects on selected 

system variables, and the results are summarized in Table 6.6. The results here show that the 

optimal power factor setting for the wind type DGs seems to be 0.95 because this leads to the 

highest wind energy production level (47.13%) compared to any other setting. This is also clearly 

shown in Figure 6.15. The combined share of wind and solar PV energy production also peaks 

when the power factor is set to 0.95, as depicted in Figure 6.15.  

From Table 6.6 and Figure 6.16, one can see that the overall cost (which is the sum of 

investment, maintenance, emission and energy costs) is the lowest at the same power factor 

(79.40 M€). The lowest active power losses seem to however occur at a power factor of 0.9. 

The profiles of average voltage deviations at each node corresponding to different power factor 

settings are shown in Figure 6.17. Figure 6.18 also depicts the voltage deviations at each node 

corresponding to the valley hour of electricity consumption. One can see that there are no 

significant differences in these profiles, except for nodes where the distributed energy resources 

(DG, ESS and reactive sources) are connected to. The voltage variations at these nodes with the 

changes in power factor settings can be explained by the fact that the amount of each distributed 

energy resource installed at these nodes is different for different power factor values (see  

Table 6.6).    

 

 
Figure 6.15 - Evolution of wind and solar PV energy production share with varying power factor. 
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Table 6.6 – Values of system variables with varying power factor of RES-based DGs 

 
Power factor 1.00 0.95 0.9 0.85 0.80 

Total energy (MWh) 179329 179329 179851 175527 176027 

RES energy 

production share 

(%) 

Wind 44.00 47.13 42.90 42.76 41.41 

PV 0.71 0.00 1.91 1.91 3.40 

Wind+PV 44.71 47.13 44.82 44.67 44.81 

Cost terms (M€) 

Investment cost 33.94 33.18 33.09 31.68 32.56 

Maintenance Cost 9.47 9.98 8.92 9.00 8.48 

Emission Cost 9.44 8.07 9.38 9.44 9.40 

Energy Cost 29.31 28.17 29.04 29.49 28.76 

Total cost (M€) 82.16 79.40 80.43 79.61 79.20 

Investment 

decisions 

Storage (MW) 6 8 5 6 4 

Capacitor (MVAr) 3.7 3.4 3.3 7.9 5 

RES (MW) 9 8 9 8 9 

Line reinforcements 1 1 8 0 7 

Average active power losses in stage 1 (MW) 0.448 0.437 0.425 0.427 0.448 

Average reactive power losses in stage 1 

(MVAr) 
0.339 0.629 0.797 0.904 1.06 

 

 

 

 

 

 

 

 
Figure 6.16 - Evolution of total energy and emission costs with varying power factor. 
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Figure 6.17 - Average voltage deviations at each node for different power factor values. 

 

 

 

 

 

 

 

 
 

Figure 6.18 - Voltage deviations at each node during valley hour for different power factor values. 
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Comparing the results in Tables 6.5 and 6.6, one can observe that the consideration of reactive 

power support capability in the planning process results in a slight reduction in the objective 

function value (overall cost) and about 5% increase in the wind energy production share.  

In addition, as illustrated in Tables 6.5 and 6.6, when DGs with reactive power support capability 

are considered, losses in the system are lower than when DGs without such capability are instead 

installed. 

 

6.4.3.3 Impact of Wind Turbine and Solar PV Selections on the Results 

To carry out this analysis, the wind and solar PV DGs are assumed to operate from 0.95 lagging to 

0.95 leading. Two wind turbine sizes, with 1.0 MW and 2 MW capacities respectively, are 

considered for the analysis here. Similarly, solar PV units with 1.0 and 1.5 MW installed capacities 

are used here as candidates for investment. Note that the results in the previous subsection 

correspond to wind and solar PV type DGs both with a 1.0 MW capacity. The results corresponding 

to the second case, presented here, are compared with those corresponding to the 0.95 power 

factor setting in Table 6.6, also reproduced in Table 6.7. 

The differences in the results of both cases are visible. For instance, the total MW RES installed in 

the system increased from 8 MW in the previous case to 13.5 MW when wind turbines of 2.0 MW 

are used. As a result, the share of combined wind and solar PV energy production throughout the 

planning horizon is nearly 30% higher when DGs with higher capacity are installed. In addition, all 

cost terms and active power losses are lowered as a result of investing in DGs with higher installed 

capacities.  

 

Table 6.7 – Values of system variables with different sizes of RES-based DGs 

 

Wind/ solar PV size(MW) 1.0/1.0 2.0/1.5 

Total energy (MWh) 179329 167330 

RES energy production share 

(%) 

Wind 47.13 59.05 

PV 0.00 1.44 

Wind+PV 47.13 60.49 

Cost terms (M€) 

Investment cost 33.18 37.57 

Maintenance Cost 9.98 9.85 

Emission Cost 8.07 6.67 

Energy Cost 28.17 24.36 

Total cost (M€) 79.40 78.45 

Investment decisions 

Storage (MW) 8 5.0 

Capacitor (MVAr) 3.4 3.3 

RES (MW) 8 13.5 

Line reinforcements 1 1 

Average active power losses in stage 1 (MW) 0.437 0.408 

Average reactive power losses in stage 1 (MVAr) 0.629 0.742 
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Surprisingly, the storage requirement (5 MW) is significantly lower when wind turbines with higher 

installed capacity are used than in the other case (8 MW) as shown in Table 6.7, while the 

reactive power requirement is almost the same for both cases. The average voltage profiles of 

both cases in the system are also very similar (as shown in Figure 6.19). 

 

 
 

Figure 6.19 - Average voltage deviations at each node for different DG sizes. 

 

6.5 Chapter Conclusions 

A new dynamic and stochastic mathematical model of an integrated distribution system planning 

problem was proposed in this chapter. The results showed that the simultaneous integration of 

ESSs and reactive power sources largely enabled a substantially increased penetration of variable 

generation (wind and solar) in the system, and consequently reduced system costs and network 

losses as well as deferred network expansion or reinforcement needs, which is of crucial 

importance. For the case study, up to 13.5 MW installed capacity of wind and solar power has 

been added to the system within a three-years planning horizon. One can put this into perspective 

with the base-case peak load of 4.635 MW in the system. This means it has been possible to 

integrate RES power more than twice the peak demand in the base case. Generally, it has been 

unequivocally demonstrated that the joint planning of DGs, reactive power sources and ESS, 

proposed in this chapter, brings about significant improvements to the system, such as reduction 

of losses, electricity cost and emissions. Besides, the proposed modeling framework considerably 

contributes to improved voltage profile in the system. This in turn leads to an increased voltage 

stability margin in the system, which is essential for a normal/secure operation of the system as a 

whole. Overall, the novel planning model proposed here can be considered as a major leap 

forward towards developing controllable grids, supporting large-scale integration of RESs.  
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Chapter 7 

 

Conclusions, Directions for Future Work and 

Contributions  
 

In this chapter, the main conclusions of the thesis are highlighted on the basis of answering 

the research questions that constituted the main motivation of this research. The limitations 

of the work in this thesis, and some directions of future work are also discussed. Finally, the 

contributions of this work are highlighted by presenting the set of publications, in journals 

with high impact factor (first quartile), as book chapters or in conference proceedings of 

high standard (IEEE), leading to this thesis work. 

 

7.1 Main Conclusions 

The main conclusions drawn from the thesis work, pertaining to the research questions 

presented in Section 1.6, are summarized as follows. For the sake of clarity the research 

questions are reproduced here. 

 

 What is the current status of RES penetration across the world (with a special 

focus at distribution levels)? What are the main impeding factors for RES 

integration? How can the potential benefits of RESs be reaped without significant 

negative consequences? 

 

An increase in an overall world trend in the awareness of climate change and the 

need for mitigation efforts is bringing forth huge increase in the deployment of 

renewable energy in comparison to fossil fuel energy sources. The landmark that 

signals the dawning of this “renewables age” goes hand in hand with the degree of 

advancement in technologies and a higher level of RES penetration, which is being 

achieved around the world. Furthermore, there are several driving factors for these 

remarkable growths, among which are favorable government support policies and 

increasing competitiveness in costs. After several decades of efforts in research and 

continuous development in RESs, the yearly growth in the capacity of these plants is 

becoming greater than the total investment capacity added in power plants based on 

coal, natural gas and oil, all combined together. Nowadays, RESs have reached a 

significant level of share in energy supply options, becoming one of the prominent 

global alternative power supply sources. This trend will continue to increase at faster 

rates as long as the world’s desire for industrial-scale clean energy sources is on the 

higher side.  
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Thus, there is a global consensus on climate change mitigation and curbing GHG 

emissions which along with energy dependence, security and other structural issues 

are forcing states to create new market policies and the introduction of new energy 

policies (in particular, policies related to RESs that support the development and 

effective utilization of RESs). The integration of RESs in the electrical systems 

(particularly at distribution levels) is expected to accelerate in the years to come as a 

result of the recent agreement among several countries to limit GHG emissions and 

mitigate climate change. The level of DG integrated in distribution systems follows an 

upward trend, and there is a general consensus that DGs will contribute immensely to 

the effort of solving a multitude of global and local concerns, including the 

realization of RES integration goals set forth by different entities. 

The latest global trends in RES investment status reports indicate that renewables 

represented a 58.5% of net additions to global power capacity in 2014, with 

significant growth in all regions, which represents an estimated 27.7% of the world’s 

power generating capacity, enough to supply an estimated 22.8% of global electricity 

demand. Wind, solar and biomass power generations reached an estimated 9.1% of 

the world’s electricity in 2014, up from 8.5% in 2013. According to a renewables 

status report, the overall cost-cutting achieved to date helped to ensure such a strong 

momentum in 2014, reaching an investment boom up to 29% in solar, and 11% in wind 

technologies, and geothermal managing to raise 23%. Among the several renewable 

energy types, large-scale hydro was the one that showed the highest growth in terms 

of new investments. However, excluding this one, wind and solar were the ones that 

grew the most (62 and 56 GW respectively) in terms of new installed capacity, well 

above the corresponding values in 2014. For the first time in 2015, the amount of 

investment in RES generation made in the developing countries worldwide exceeded 

the investment made in developed economies. However, with the new capacity 

conventional generation added, the generation from clean energy in the world in 

2015 covered only 10% of world’s electricity demand. However, this avoided an 

amount of CO2 emissions equivalent to 1.5 Gigatons in 2015. 

Moreover, despite the robust growth of integration RESs in many power systems, 

there are still certain challenges and barriers that impede the smooth integration of 

RESs. These challenges and barriers can be broadly classified into two categories: 

technical and non-technical. The non-technical category includes challenges and 

barriers related to capital costs, market and economic issues, information and public 

awareness, socio-cultural matters, the conflict between stakeholders, regulation and 

policy. Most of the challenges and barriers explained before have proven solutions 

that happen to be overlooked in many systems; therefore, they are preventing the 

spread of RES development across the world.  
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In general, arising from the comprehensive overview of RES carried out in Chapter 2, 

these are summarized as follows: 

1. Market and economic barriers can be fixed by streamlining appropriate 

market and economic signals related to carbon taxes, emission trading 

schemes, finances and incentive mechanisms, as well as enhancing public 

support for R&D and creating a conducive environment for RES development. 

All this can have a considerable positive impact on the level of RES 

integration. 

2. Setting energy standards, continuous information campaigns and technical 

training about RESs and their benefits can enhance public knowledge and 

awareness, which can in the end have supportive roles in RES development.   

3. Creating an enabling environment for R&D, improving technical regulations, 

scaling up international support for technology transfer, liberalizing energy 

industries, providing incentive packages to RES developers, designing 

appropriate policies of RESs and conventional energy sources to minimize the 

regulatory and policy barriers to developing RESs. 

4. Coordinating investments of RESs based on variable generation resources such 

as wind and solar power with large-scale energy storage systems, demand side 

management participation and grid expansion can significantly increase the 

level of RES integration. 

5. Enhancing operation and the flexibility of conventional power generation 

sources can also be very useful to scale up RES integration. 

6. Designing an efficient wholesale market such as dynamic retail pricing and 

developing coordinated operation and planning tools (such as joint network 

and generation investment planning models) can have a positive role in RES 

integration. 

7. For full utilization of RESs, the coordination between distribution system 

operators (DSOs) and transmission system operators (TSOs) is also vital. 

8. It is also important to improve prediction tools, monitoring and control 

protocols that can help efficient utilization of the RESs. 

9. Ensuring regional interconnections via regional cooperation and increasing the 

level of participation of all stakeholders (including RES generators) in voltage 

control, provision of reserves, reactive power support, etc., are significantly 

helpful for the stated purpose.  

10. Using smart-grid technologies and concepts are also expected to facilitate a 

smooth integration of large-scale RESs because these are equipped with 

advanced control and management tools to counterbalance the intermittent 

nature of most RES energy productions. 
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 What are the parameters of uncertainty and/or variability that most influence 

the decision-making process in terms of investment solutions in DGs (especially, 

renewables)? 

 

The various sources of uncertainties and/or variability in DG investment planning are 

related to the variability and randomness of operational situations. Therefore, the 

combined effect of the variability and uncertainty is of utmost importance so that an 

economic integration of DGs can be carried out in distribution network systems.  

Accordingly, in Chapter 3, a comprehensive sensitivity analysis was carried out to 

identify the uncertain parameters which significantly influence the decision-making 

process in DG investments and quantify their degree of influence. To perform the 

analysis, a DG investment planning model was formulated as a novel multi-stage and 

multi-scenario optimization problem. Based on the numerical studies, the following 

conclusions can be drawn:  

 

1. The results of the numerical analyses generally show that both uncertainty 

and variability have a meaningful influence on DG investment decisions.  

In fact, the degree of influence varies from one parameter to another. 

 

2. The results from the particular case study show that generator outages have 

little or no impact on the RES-based DG investments; whereas, uncertainty in 

CO2 and fuel prices, interest rate and RES power outputs significantly 

influence investment decisions, especially in variable energy sources. In 

particular, it has been found out that uncertainty in CO2 and fuel prices as 

well as in the interest rate seem to dramatically condition decisions 

compared to the uncertainty in demand growth and RES power outputs. 

 

3. In general, the results revealed that ignoring or inadequately considering 

uncertainty and variability in model parameters has a quantifiable cost. 

 

4. Based on the extensive analysis, a stochastic modeling of uncertainty related 

to emission and fuel prices, interest rate, RES power outputs and demand 

growth is very critical for obtaining robust investment decisions. 

 

 How should different sources of uncertainty be modeled in the complex decision-

making problem concerning DG investment planning?  

 

The advent of emerging solutions such as active management of distribution networks 

or fully automated and intelligent networks ― the so-called smart grids ― is expected 

to keep on facilitating smooth integration of DGs by alleviating existing technical 

limitations. However, several DG sources are intermittent in nature, making the 

operation and planning of distribution networks very challenging. This is because such 

sources introduce significant operational variability and uncertainty to the system.  
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Hence, in Chapter 4, a novel multi-stage stochastic MILP model has been developed 

to guide the complex decision-making process of DG investment planning in 

distribution systems in the face of uncertainty. Chapter 4 used the outputs of Chapter 

3 to improve the developed model, and make it more robust. The established model 

features a number of important aspects that should be considered in the decision-

making process of a DG investment planning problem: 

 

1. It has an objective function which jointly minimizes cost of emission, 

operation, maintenance and energy not served; 

2. It accounts for the operational variability due to intermittent power sources 

and electricity demand via probabilistic methods.  

3. Uncertainty related to emission price, demand growth and the 

unpredictability of intermittent generation sources is handled via a stochastic 

approach.  

4. It is based on a dynamic decision framework, i.e., involving a multi-year 

decision structure.  

5. It is anchored on a two-period planning framework, involving short-term and 

medium/long-term planning windows. This allows obtaining robust short-term 

decisions in the face of uncertainty along with strategic (or flexible) decisions 

in the medium to long-term planning horizon. 

 

 From a quantitative and qualitative point of view, what are the impacts of 

network switching and/or reinforcement, as well as deployment of ESSs on the 

level of renewable power integrated in the system? 

There is a global consensus for the integration of DG sources, especially RESs, as a 

way to meet the growing demand for electric energy and to reduce the carbon 

footprint of energy production. Nevertheless, the realization of this considerable 

objective faces two big challenges. The first challenge is related to the variability and 

uncertainty introduced on the system by RESs. The second one is related to the 

stability of the system and quality of energy supplied. To overcome these challenges, 

it is necessary to integrate a set of enabling technologies, as well as to design an 

effective coordination mechanism among different technologies in distribution 

systems.  

Hence, in Chapter 5, a stochastic MILP optimization model has been developed to 

investigate the impacts of installing ESSs as well as network switching on the level of 

renewable power integration in a distribution network system. The resulting model is 

equipped with the necessary tools to jointly optimize the placement, timing and 

sizing of RES-based DGs and ESSs in coordination with optimal network 

reconfiguration, while respecting a number of technical, economic and environmental 

constraints.  
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The results have showed that: 

1. The capability of ESS integration dramatically increased the level and the 

optimal exploitation of renewable DGs. According to the results obtained, the 

simultaneous integration of DGs and ESSs resulted in an overall cost and 

average losses reduction of 60% and 90%, respectively, which is significant.  

2. Moreover, as high as 90% RES penetration level seems to be largely possible 

provided that this is supported by ESS deployments, again noteworthy.  

3. The contributions of DG and ESS installations to voltage profile improvement 

and overall system stability is substantial. The coordinated integration of DGs 

and ESSs along with reconfiguration leads to the best voltage profile, which is 

almost flat throughout the system. 

4. It was largely demonstrated the fact that large-scale integration of variable 

energy sources is possible when such energy sources are optimally deployed 

with ESSs and a mechanism that improve the flexibility of the network is put 

in place. 

5. Therefore, the optimal network reconfiguration, DG and ESS installations 

(jointly or separately) substantially contributed to voltage stability. In this 

particular case study, the impact of network switching on RES power 

integration has not been significant. However, it should be noted that this can 

be case-dependent; a more frequent switching operation can substantially 

influence the level of renewable integration. 

 

 How can the penetration of renewable energy sources in the power distribution 

system be maximized with currently available technologies? 

Given the techno-economic factors and global concerns about environmental issues, 

the integration of renewable energy sources (RESs) cannot be postponed. It is likely 

that the integration of DGs in distribution systems will go ahead along with smart-grid 

enabling technologies that have the capability to alleviate the negative consequences 

of large-scale integration of DGs. In other words, in order to facilitate (speed up) the 

much-needed transformation of conventional (passive) DNSs and support large-scale 

RES integration, different smart-grid enabling technologies such as reactive power 

sources, advanced switching and storage devices are expected to be massively 

deployed in the near term. To this end, developing strategies, methods and tools to 

maximize the penetration level of DGs (particularly, RESs) has become very crucial to 

guide such a complex decision-making process.  

Therefore, in Chapter 6, a new multi-stage and stochastic model for jointly 

optimizing the integration of smart-grid enabling technologies such as ESS, reactive 

power sources, and network switching, reinforcement and/or expansion has been 

developed to support large-scale renewable integration.  
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Due the complexity of the issue, this one was analyzed according the several problem 

aspects, giving rise to the following sub-questions: 

o What is the effect of reactive power support capability on the RES-based DG 

integration level? 

 

Intermittent power generation sources such as wind and solar PV type DGs 

normally operate with a fixed lagging power factor. In other words, such 

generators “consume” reactive power, instead of “producing” and 

contributing to the voltage regulation in the system (also known as reactive 

power support). For instance, wind turbines installed in power systems 

throughout the world are predominantly based on asynchronous generators 

(also known as induction generators). As mentioned above, one of the typical 

characteristics of such machines is that they always “consume” reactive 

power. Because of this, such wind turbines are often operated at a constant 

power factor.  It is well-known that, in power systems, voltage regulation has 

been traditionally supported by conventional (synchronous) generators. 
 

The results of considering DGs without reactive power support show a strong 

relationship among the optimal investments. That is, the lower the power 

factor is the higher the investment requirement in capacitor banks is. This is 

due to the increasing reactive power consumption by DGs. Unlike in capacitor 

banks, the total amount of DGs and ESSs installed in the system do not 

significantly vary with the reactive power settings. This is an indication that 

capacitor banks play a vital role in maintaining systems integrity and stability 

as well as ensuring essentially the same level of DG integration regardless of 

the power factor setting. The results of considering DGs with reactive power 

support show that the optimal power factor for wind type DG seems to be 

0.95 because this leads to the highest wind energy production level compared 

to any other setting. The combined share of wind and solar PV energy 

production also peaks when the power factor is set to 0.95. In general, it is 

demonstrated that the simultaneous integration of ESSs and reactive power 

sources largely enables a substantially increased penetration of variable 

generation (wind and solar) in the system. 
 

o What are the implications of integrating smart-grid enabling technologies in 

the distribution systems with respect to maximizing RES integration, 

reducing energy losses, costs and improving voltage profiles? 

 

The results showed a substantial improvement in voltage controllability due 

to the combined effect of expansion decisions in DGs, ESSs and capacitor 

banks. Such an investment also leads to a significant reduction in network 

losses in the system (by nearly 50%, on average).  
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Generally, it has been unequivocally demonstrated that the joint planning of 

DGs, reactive power sources and ESS, proposed in this thesis, brings about 

significant improvements to the system, such as reduction of losses, 

electricity cost and emissions. Besides, the proposed modeling framework 

considerably contributes to an improved voltage profile in the system. This in 

turn leads to an increased voltage stability margin in the system, which is 

essential for a normal/secure operation of the system as a whole. 
 

Comparing the results, it was observed that the consideration of reactive 

power support capability in the planning process results in a slight reduction 

in the objective function value (overall cost) and about 5% increase in the 

wind energy production share. In addition, when DGs with reactive power 

support capability are considered, losses in the system are lower than when 

DGs without such capability are instead installed.  

 

7.2 Directions for Future Works 

The following points may be further studied in order to broaden the understanding of the 

topics treated in this thesis: 

 With the introduction of enabling technologies, it is necessary to structure the system 

response in transient state having in view the smart grids implementation. 

 

 Investigate the application of new cluster techniques to improve the performance of 

the developed algorithms. 

 

 Stochastic models may bear a significant computational burden that may hamper 

their applicability. Several measures can be applied in order to reduce the 

computational time required to solve such models. First, modern computing 

techniques such as grid and cloud computing may be used. Since there are already 

companies that provide computational power at affordable prices, this proposal 

promises tractability even for large-scale mathematical programming problems. 
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Appendix A 
 

Piecewise Linearization 

Notice that equations (3.1.10) and (4.12) contains a quadratic flow term in Chapters 3 and 4, 

respectively. For the sake of simplicity, the indices are dropped here. This quadratic term is 

linearized using a first-order approximation as: 

  

𝑓𝑛𝑚
2 =∑(2𝑙 − 1)

𝑓𝑛𝑚
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∆𝑓𝑛𝑚,𝑙 ≥ ∆𝑓𝑛𝑚,𝑙+1 ;  ∀𝑙 < 𝐿 (A.5) 

  

 

where (A.1) represents the piecewise approximation of the quadratic flow variable by 

considering L segments. In order to use only the first quadrant of the quadratic curve (which 

is advantageous in terms of reducing problem complexity [94]), the flow variable is 

decomposed into its forward (positive) and reverse (negative) auxiliary flow variables as in 

(A.2). Note that both of these variables cannot be nonzero at the same time and are non-

negative as enforced by (A.3).  Eq. (A.4) ensures that the sum of the step-size flow variables 

∆fnm,l is equal to the flow. Eq. (A.5) guarantees a successive filling of the partitions. 
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Appendix B 
 

Deterministic Investment Solution 

A deterministic DGIP model can be formed by allowing the DG investment variables (in the 

presented model) to be scenario-dependent, i.e. by assuming a given scenario happens with 

certainty. The investment solution of each scenario is presented in Table B.1. As it can be 

seen, the DG investments are particularly sensitive to the variation of CO2 price. Note that, in 

Table B.1, Ti (where iϵ{1,2,3}) denotes the time stage in which the corresponding DG is 

installed. 

 

B.1 DG investment decisions for each scenario and stage. 

Scenarios DGs 

Demand growth CO2 price PV4 P32V5 PV6 PV7 PV8 WD1 WD2 WD3 WD4 

Low Low 0 0 0 0 T1 T1 T1 T1 T1 
Moderate Low 0 0 0 0 T1 T1 T1 T1 T1 

High Low 0 0 0 0 T1 T1 T1 T1 T1 

Low Moderate 0 0 0 T3 T1 T1 T1 T1 T1 

Moderate Moderate 0 0 0 T2 T1 T1 T1 T1 T1 

High Moderate 0 0 T3 T2 T1 T1 T1 T1 T1 

Low High 0 0 T2 T1 T1 T1 T1 T1 T1 

Moderate High T3 T3 T2 T1 T1 T1 T1 T1 T1 

High High T3 T2 T2 T1 T1 T1 T1 T1 T1 
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Appendix C 
 

SOS2-Based Generation Cost Linearization 

As mentioned in Chapter 4, generation costs are assumed to be quadratic functions of the 

generated power. Such nonlinear cost functions are linearly represented by making use of 

SOS2 variables [176]. This linearization technique leads to a set of convex combinations of 

piecewise linear segments of each quadratic generation cost curve. The set of constraints 

required in the linear cost model include the “function rows” related to existing DGs (C.1), 

and new DGs (C.2) and (C.3) corresponding to the first and the second periods. And, the 

respective “reference rows” are given by (C.4)—(C.6). Eqs. (C.7)—(C.9) ensure that the sum 

of all SOS2 variables used to linearize a particular generation cost curve is equal to 1. Such 

constraints are also referred to as “convexity rows”. Finally, Eq. (C.10) guarantees that no 

more than two adjacent SOS2 variables can have non-zero values. 

  

𝑂𝐶𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝐸 = ∑ 𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝑡,𝑙

𝐸 ∗ 𝐺𝐶𝑝,𝑘,𝑠,𝑛,𝑤,𝑡,𝑙
𝐸

𝑙∈Ω𝑙

 ; 

∀𝑛 ∈ Ω𝑛;  ∀𝑡 ∈ Ω𝑡;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘; ∀𝑝 ∈ Ω𝑝 

(C.1) 

  

  

𝑂𝐶𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝑁1 = ∑ 𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝑡,𝑙

𝑁1 ∗ 𝐺𝐶𝑝,𝑘,𝑛,𝑠,𝑤,𝑡,𝑙
𝑁1

𝑙∈Ω𝑙

;  

∀𝑛 ∈ Ω𝑛;  ∀𝑡 ∈ Ω𝑡;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤 ;  ∀𝑘 ∈ Ω𝑘; ∀𝑝 ∈ Ω𝑝 

(C.2) 

  

  

𝑂𝐶𝑝,𝑘,𝑛,𝑠,𝑤,𝜁
𝑁2 = ∑ 𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝜁,𝑙

𝑁2 ∗ 𝐺𝐶𝑝,𝑘,𝑛,𝑠,𝑤,𝜁,𝑙
𝑁2

𝑙∈Ω𝑙

 ; 

∀𝑛 ∈ Ω𝑛;  ∀𝜁 ∈ Ω𝑃2;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘; ∀𝑝 ∈ Ω𝑝 

(C.3) 

  

  

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝐸 = ∑ 𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝑡,𝑙

𝐸 ∗ (𝑙 ∗ 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤
𝐸

𝑙∈Ω𝑙

/𝐿) ; 

∀𝑛 ∈ Ω𝑛;  ∀𝑡 ∈ Ω𝑡;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘; ∀𝑝 ∈ Ω𝑝 

(C.4) 

  

  

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝑡
𝑁1 = ∑ 𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝑡,𝑙

𝑁1 ∗ (𝑙 ∗
𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤

𝑁1

𝐿
)

𝑙∈Ω𝑙

 ; 

∀𝑛 ∈ Ω𝑛;  ∀𝑡 ∈ Ω𝑡;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘; ∀𝑝 ∈ Ω𝑝 

(C.5) 

  

  

𝑔𝑝,𝑘,𝑛,𝑠,𝑤,𝜁
𝑁2 = ∑ 𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝜁,𝑙

𝑁2 ∗ (𝑙 ∗ 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤
𝑁2 /𝐿)

𝑙∈Ω𝑙

 ; 

∀𝑛 ∈ Ω𝑛;  ∀𝜁 ∈ Ω𝑃2;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘; ∀𝑝 ∈ Ω𝑝 

(C.6) 
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∑𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝑡,𝑙
𝐸

𝑙∈Ω𝑙

= 1   ; 

∀𝑛 ∈ Ω𝑛  ; ∀𝑡 ∈ Ω𝑡;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘; ∀𝑝 ∈ Ω𝑝 

(C.7) 

  

  

∑𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝑡,𝑙
𝑁1

𝑙∈Ω𝑙

= 1   ; 

∀𝑛 ∈ Ω𝑛;  ∀𝑡 ∈ Ω𝑡;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘; ∀𝑝 ∈ Ω𝑝 

(C.8) 

  

  

∑𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝜁,𝑙
𝑁2

𝑙∈Ω𝑙

= 1  ;  

∀𝑛 ∈ Ω𝑛;  ∀𝜁 ∈ Ω𝑃2 ; ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘; ∀𝑝 ∈ Ω𝑝 
(C.9) 

  

  

𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝑡,𝑙
𝐸 , 𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝑡,𝑙

𝑁1 , 𝜆𝑝,𝑘,𝑛,𝑠,𝑤,𝜁,𝑙
𝑁2  are SOS2 variables; 

∀𝑛 ∈ Ω𝑛;  ∀𝑡 ∈ Ω𝑡;  ∀𝜁 ∈ Ω𝑃2;  ∀𝑠 ∈ Ω𝑠;  ∀𝑤 ∈ Ω𝑤;  ∀𝑘 ∈ Ω𝑘;  ∀𝑝 ∈ Ω𝑝 
(C.10) 

  

  

  

where 𝐺𝐶𝑝,𝑘,𝑛,𝑠,𝑤,𝑡,𝑙
𝐸 = 𝐴𝑝,𝑘

𝐸 + (𝐵
𝑝,𝑘
𝐸 ∗ 𝑙 ∗ 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤

𝐸 /𝐿) + 𝐶𝑝,𝑘
𝐸 ∗ (𝑙 ∗ 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤

𝐸 /𝐿)
2
  

  

            𝐺𝐶𝑝,𝑘,𝑠,𝑛,𝑤,𝑡,𝑙
𝑁1 = 𝐴𝑝,𝑘

𝑁1 + (𝐵𝑝,𝑘
𝑁1 ∗ 𝑙 ∗ 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤

𝑁1 /𝐿) + 𝐶𝑝,𝑘
𝑁1 ∗ (𝑙 ∗ 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤

𝑁1 /𝐿)2  
  

and     𝐺𝐶𝑝,𝑘,𝑛,𝑠,𝑤,𝜁,𝑙
𝑁2 = 𝐴𝑝,𝑘

𝑁2 + (𝐵𝑝,𝑘
𝑁2 ∗ 𝑙 ∗ 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤

𝑁2 /𝐿) + 𝐶𝑝,𝑘
𝑁2 ∗ (𝑙 ∗ 𝐺𝑚𝑎𝑥𝑝,𝑘,𝑠,𝑤

𝑁2 /𝐿)2.,  
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Appendix D 
 

The derivations related to the losses equations in (6.49) and (6.50) are provided here. Squaring 

both sides of the flow equations in (6.49) and (6.50) and dividing each by Vnom
2 , we get: 

  

(𝑃𝑘)
2

𝑉𝑛𝑜𝑚
2

≈ [(∆𝑉𝑖 − ∆𝑉𝑗)𝑔𝑘]
2

⏟          
𝐼

− 2 ∗ 𝑔𝑘𝑉𝑛𝑜𝑚𝑏𝑘𝜃𝑘 ∗ (∆𝑉𝑖 − ∆𝑉𝑗)⏟                  
𝐼𝐼

+ (𝑉𝑛𝑜𝑚𝑏𝑘𝜃𝑘)
2 (D.1) 

  

  

(𝑄𝑘)
2

𝑉𝑛𝑜𝑚
2

≈ [(∆𝑉𝑖 − ∆𝑉𝑗)𝑏𝑘]
2

⏟          
𝐼

+ 2 ∗ 𝑏𝑘𝑉𝑛𝑜𝑚𝑔𝑘𝜃𝑘 ∗ (∆𝑉𝑖 − ∆𝑉𝑗)⏟                  
𝐼𝐼

+ (𝑉𝑛𝑜𝑚𝑔𝑘𝜃𝑘)
2 (D.2) 

  

Since the variables θk, ∆Vi and ∆Vj are very small, the second order terms (i.e. products of these 

variables) are close to zero. Hence, the first and the second terms in (D.1) and (D.2) can be 

neglected, leading to the following expressions, respectively. 

  

(𝑃𝑘)
2

𝑉𝑛𝑜𝑚
2

≈ (𝑉𝑛𝑜𝑚𝑏𝑘𝜃𝑘)
2 (D.3) 

  

  

(𝑄𝑘)
2

𝑉𝑛𝑜𝑚
2

≈ (𝑉𝑛𝑜𝑚𝑔𝑘𝜃𝑘)
2 (D.4) 

  

Multiplying both sides of (D.3) and (D.4) by rk and summing gives: 

  

𝑟𝑘 (
𝑃𝑘
𝑉𝑛𝑜𝑚

)
2

+ 𝑟𝑘 (
𝑄𝑘
𝑉𝑛𝑜𝑚

)
2

≈ 𝑟𝑘(𝑉𝑛𝑜𝑚𝑏𝑘𝜃𝑘)
2 + 𝑟𝑘(𝑉𝑛𝑜𝑚𝑔𝑘𝜃𝑘)

2 (D.5) 

  

After rearranging Eq. (D.5), we get: 

  

𝑟𝑘(𝑃𝑘
2 + 𝑄𝑘

2)/𝑉𝑛𝑜𝑚
2 ≈ 𝑔𝑘(𝑉𝑛𝑜𝑚𝜃𝑘)

2𝑟𝑘 (
(𝑏𝑘)

2

𝑔𝑘
+ 𝑔𝑘) (D.6) 

  

One can easily verify that rk (
(bk)

2

gk
+ gk) = 1, reducing Eq. (D.5) to: 

  

𝑟𝑘(𝑃𝑘
2 + 𝑄𝑘

2)/𝑉𝑛𝑜𝑚
2 ≈ 𝑔𝑘(𝑉𝑛𝑜𝑚𝜃𝑘)

2 (D.7) 
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Recall that the right hand side of (D.7) corresponds to the active power losses expression in 

(6.49), which proves the derivation. The flow-based reactive power losses in (6.50) are derived in 

a similar way. Multiplying both sides of (D.3) and (D.4) by xk instead of rk, adding both and 

rearranging the resulting equation leads to: 

  

𝑟𝑘(𝑃𝑘
2 + 𝑄𝑘

2)/𝑉𝑛𝑜𝑚
2 ≈ −𝑏𝑘𝑉𝑛𝑜𝑚

2 𝜃𝑘
2𝑥𝑘[−𝑏𝑘 + (𝑔𝑘)

2/(−𝑏𝑘)] (D.8) 

  

Note that, in Eq. (D.8), xk[−bk + (gk)
2/(−bk)] = 1. Hence, the equation reduces to:  

  

𝑟𝑘(𝑃𝑘
2 + 𝑄𝑘

2)/𝑉𝑛𝑜𝑚
2 ≈ −𝑏𝑘𝑉𝑛𝑜𝑚

2 𝜃𝑘
2 (D.9) 

  

Notice that the right hand side of Eq. (D.8) is equal to the reactive losses expression in (6.50). 
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Appendix E 
 

Test Systems 

 

IEEE 119 BUS DISTRIBUTION SYSTEM  

 

Line 
Index 

From Bus 
Index 

To 
Bus 

Index 

Line 
Resistance  

R [Ω] 

Line 
Reactance 

X [Ω] 

From bus Load 
Active Power  

P [kW] 

From bus Load 
Active Power  

Q [kvar] 

1 1 2 0.036 0.01296 0 0 
2 2 3 0.033 0.01188 133.84 101.14 
3 2 4 0.045 0.0162 1 11.292 
4 4 5 0.015 0.054 34.315 21.845 
5 5 6 0.015 0.054 73.016 63.602 
6 6 7 0.015 0.0125 144.2 68.604 
7 7 8 0.018 0.014 104.47 61.725 
8 8 9 0.021 0.063 28.547 11.503 
9 2 10 0.166 0.01344 87.56 51.073 
10 10 11 0.112 0.0789 198.2 106.77 
11 11 12 0.187 0.313 146.8 75.995 
12 12 13 0.142 0.1512 26.04 18.687 
13 13 14 0.18 0.118 52.1 23.22 
14 14 15 0.15 0.045 141.9 117.5 
15 15 16 0.16 0.18 21.87 28.79 
16 16 17 0.157 0.171 33.37 26.45 
17 11 18 0.218 0.285 32.43 25.23 
18 18 19 0.118 0.185 20.234 11.906 
19 19 20 0.16 0.196 156.94 78.523 
20 20 21 0.12 0.189 546.29 351.4 
21 21 22 0.12 0.0789 93.167 54.594 
22 22 23 1.41 0.723 85.18 39.65 
23 23 24 0.293 0.1348 168.1 95.178 
24 24 25 0.133 0.104 125.11 150.22 
25 25 26 0.178 0.134 16.03 24.62 
26 26 27 0.178 0.134 26.03 24.62 
27 4 28 0.015 0.0296 594.56 522.62 
28 28 29 0.012 0.0276 120.62 59.117 
29 29 30 0.12 0.2766 102.38 99.554 
30 30 31 0.21 0.243 513.4 318.5 
31 31 32 0.12 0.054 475.25 456.14 
32 32 33 0.178 0.234 151.43 136.79 
33 33 34 0.178 0.234 205.38 83.302 
34 34 35 0.154 0.162 131.6 93.082 
35 30 36 0.187 0.261 448.4 369.79 
36 36 37 0.133 0.099 440.52 321.64 
37 29 38 0.33 0.194 112.54 55.134 
38 38 39 0.31 0.194 53.963 38.998 
39 39 40 0.13 0.194 26.04 18.687 
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(Continuation of the previous table) 

Line 
Index 

From Bus 
Index 

To 
Bus 

Index 

Line 
Resistance  

R [Ω] 

Line 
Reactance 

X [Ω] 

From bus Load 
Active Power  

P [kW] 

From bus Load 
Active Power  

Q [kvar] 

40 40 41 0.28 0.15 393.05 342.6 
41 41 42 1.18 0.85 326.74 278.56 
42 42 43 0.42 0.2436 536.26 240.24 
43 43 44 0.27 0.0972 76.247 66.562 
44 44 45 0.339 0.1221 53.52 39.76 
45 45 46 0.27 0.1779 40.328 31.964 
46 35 47 0.21 0.1383 39.653 20.758 
47 47 48 0.12 0.0789 66.195 42.361 
48 48 49 0.15 0.0987 73.904 51.653 
49 49 50 0.15 0.0987 114.77 57.965 
50 50 51 0.24 0.1581 918.37 1205.1 
51 51 52 0.12 0.0789 210.3 146.66 
52 52 53 0.405 0.1458 66.68 56.608 
53 53 54 0.405 0.1458 42.207 40.184 
54 29 55 0.391 0.141 433.74 283.41 
55 55 56 0.406 0.1461 62.1 26.86 
56 56 57 0.406 0.1461 92.46 88.38 
57 57 58 0.706 0.5461 85.188 55.436 
58 58 59 0.338 0.1218 345.3 332.4 
59 59 60 0.338 0.1218 22.5 16.83 
60 60 61 0.207 0.0747 467.5 395.14 
61 61 62 0.247 0.8922 95.86 90.758 
62 1 63 0.028 0.0418 62.92 47.7 
63 63 64 0.117 0.2016 478.8 463.74 
64 64 65 0.255 0.0918 120.94 52.006 
65 65 66 0.21 0.0759 139.11 100.34 
66 66 67 0.383 0.138 391.78 193.5 
67 67 68 0.504 0.3303 27.741 26.713 
68 68 69 0.406 0.1461 52.814 25.257 
69 69 70 0.962 0.761 66.89 38.713 
70 70 71 0.165 0.06 467.5 395.14 
71 71 72 0.303 0.1092 594.85 239.74 
72 72 73 0.303 0.1092 132.5 84.363 
73 73 74 0.206 0.144 52.699 22.482 
74 74 75 0.233 0.084 869.79 614.775 
75 75 76 0.591 0.1773 31.349 29.817 
76 76 77 0.126 0.0453 192.39 122.43 
77 64 78 0.559 0.3687 65.75 45.37 
78 78 79 0.186 0.1227 238.15 223.22 
79 79 80 0.186 0.1227 294.55 162.47 
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(Continuation of the previous table) 

Line 
Index 

From Bus 
Index 

To 
Bus 

Index 

Line 
Resistance  

R [Ω] 

Line 
Reactance 

X [Ω] 

From bus Load 
Active Power  

P [kW] 

From bus Load 
Active Power  

Q [kvar] 

80 80 81 0.26 0.139 485.57 437.92 
81 81 82 0.154 0.148 243.53 183.03 
82 82 83 0.23 0.128 243.53 183.03 
83 83 84 0.252 0.106 134.25 119.29 
84 84 85 0.18 0.148 22.71 27.96 
85 79 86 0.16 0.182 49.513 26.515 
86 86 87 0.2 0.23 383.78 257.16 
87 87 88 0.16 0.393 49.64 20.6 
88 65 89 0.669 0.2412 22.473 11.806 
89 89 90 0.266 0.1227 62.93 42.96 
90 90 91 0.266 0.1227 30.67 34.93 
91 91 92 0.266 0.1227 62.53 66.79 
92 92 93 0.226 0.1227 114.57 81.748 
93 93 94 0.233 0.115 81.292 66.526 
94 94 95 0.496 0.138 31.733 15.96 
95 91 96 0.196 0.18 33.32 60.48 
96 96 97 0.196 0.18 531.28 224.85 
97 97 98 0.1866 0.122 507.03 367.42 
98 98 99 0.0746 0.318 26.39 11.7 
99 1 100 0.0625 0.0265 96.793 83.647 
100 100 101 0.1501 0.234 100.66 47.572 
101 101 102 0.1347 0.0888 456.48 350.3 
102 102 103 0.2307 0.1203 522.56 449.29 
103 103 104 0.447 0.1608 408.43 168.46 
104 104 105 0.1632 0.0588 141.48 134.25 
105 105 106 0.33 0.099 104.43 66.024 
106 106 107 0.156 0.0561 96.793 83.647 
107 107 108 0.3819 0.1374 493.92 419.34 
108 108 109 0.1626 0.0585 225.38 135.88 
109 109 110 0.3819 0.1374 509.21 387.21 
110 110 111 0.2445 0.0879 188.5 173.46 
111 109 112 0.2088 0.0753 918.03 898.55 
112 112 113 0.2301 0.0828 305.08 215.37 
113 100 114 0.6102 0.2196 54.38 40.97 
114 114 115 0.1866 0.127 211.14 192.9 
115 115 116 0.3732 0.246 67.009 53.336 
116 116 117 0.405 0.367 162.07 90.321 
117 117 118 0.489 0.438 48.785 29.156 

  118   33.9 18.98 
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IEEE 41 BUS DISTRIBUTION SYSTEM  

Line 
Index 

To Bus 
Index 

From 
Bus 

Index 

Line 
Resistance  

R [Ω] 

Line 
Reactance 

X [Ω] 

From bus Load 
Active Power  

P [kW] 

From bus Load 
Active Power  

Q [kvar] 

1 1 2 0.0992 0.0470 100 60 
2 2 3 0.4930 0.2511 90 40 
3 3 4 0.3660 0.1864 120 80 
4 4 5 0.3811 1.1941 60 30 
5 5 6 0.8190 0.7070 60 20 
6 6 7 0.1872 0.6188 200 100 
7 7 8 0.7114 0.2351 200 100 
8 8 9 1.0300 0.7400 60 20 
9 9 10 1.0440 0.7400 60 20 
10 10 11 0.1966 0.0650 45 30 
11 11 12 0.3744 0.1238 60 35 
12 12 13 1.4680 1.1550 60 35 
13 13 14 0.5416 0.7129 120 80 
14 14 15 0.5910 0.5260 60 10 
15 15 16 0.7463 0.5450 60 20 
16 16 17 1.2890 1.7210 60 20 
17 17 18 0.7320 0.5470 90 40 
18 2 19 0.1640 0.1565 90 40 
19 19 20 1.5042 1.3554 90 40 
20 20 21 0.4095 0.4784 90 40 
21 21 22 0.7089 0.9373 90 40 
22 3 23 0.4512 0.3083 90 50 
23 23 24 0.8980 0.7091 420 200 
24 24 25 0.8960 0.7011 420 200 
25 6 26 0.2030 0.1034 60 25 
26 26 27 0.2842 0.1447 60 25 
27 27 28 1.0590 0.9337 60 20 
28 28 29 0.8042 0.7006 120 70 
29 29 30 0.5075 0.2585 200 600 
30 30 31 0.9744 0.9630 150 70 
31 31 32 0.3105 0.3619 210 100 
32 32 33 0.3410 0.5302 60 40 
33 10 34 0.2030 0.1034 60 25 
34 34 35 0.2842 0.1447 60 25 
35 35 36 1.0590 0.9337 60 20 
36 36 37 0.8042 0.7006 120 70 
37 37 38 0.5075 0.2585 200 600 
38 38 39 0.9744 0.9630 150 70 
39 39 40 0.3105 0.3619 210 100 
40 40 41 0.3410 0.5302 60 40 
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