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“We may use wood with intelligence only if
we understood wood”,

Frank Lloyd Wright, 1928.





Aos meus Pais,

e

à Ana e à Margarida





Acknowledgements

Em primeiro lugar, quero deixar expresso o meu especial agradecimento ao Professor
José Xavier, pela sua dedicação exclusiva e incansável na orientação deste trabalho. A
sua competência e a sua persistência foram os atributos fundamentais para conseguirmos
ultrapassar as diversas etapas desta maratona do conhecimento. Além disso, agradeço-lhe
também pela sua amizade.

Quero agradecer também ao Professor José Morais e ao Professor José Lousada pelas
suas superiores contribuições, indispensáveis ao desenvolvimento desta tese. Estou par-
ticularmente grato ao Professor José Morais pela sua sempre esclarecida e esclarecedora
orientação nos momentos decisivos.

Ao Prof. Abílio Silva, agradeço a disponibilidade e prontidão com que sempre respon-
deu às minhas questões.

Agradeço com profunda emoção à minha família e amigos pelo apoio e pelo reforço
positivo constante no que respeita ao presente e anteriores desafios que me fui propondo
relativamente à minha formação académica. Em particular à Ana e à Margarida agradeço
pela paciência e por terem sabido lidar com a privação da minha companhia e colaboração
familiar.

A todos os colegas e amigos que de alguma forma contribuíram para este projeto, os
meus sentidos agradecimentos pelo apoio e colaboração. Em particular, muito do alento
veio da companhia e da amizade dos colegas Marcelo Oliveira e Fernando Silva.

Finalmente, queria agradecer ao Instituto Superior Politécnico de Viseu pelo suporte
financeiro sem o qual teria sido mais difícil desenvolver este trabalho e também à Escola
Superior de Tecnologia de Viseu pela disponibilização das instalações do LTIMM e ao
Departamento de Engenharia de Madeiras pelo esforço na criação das condições possíveis,
num contexto de dificuldades várias, para a realização deste trabalho.

ix





Abstract

In this work the radial and longitudinal variations of maritime pine (Pinus pinaster
Ait.) transverse elastic properties, within the stem, were investigated. Ring-oriented
tensile tests through five radial positions and three height levels were carried out in 750
radial-tangential specimens, at the growth ring scale (meso scale). The strain fields over
the gauge section were measured by digital image correlation. A suitable balance between
accuracy and spatial resolution was achieved in order to reconstruct the gradient strain
fields generated by the material heterogeneity at the growth rings level. A segmentation
technique based on image processing and analysis was implemented in order to split each
annual ring cross the region of interest, into three main tissue layers: resin channels, ear-
lywood (EW) and latewood (LW). Accordingly, transverse elastic moduli of each EW and
LW layers were then estimated by two different identification methods: the Anisotropic-
based Method (AbM) and the Virtual Fields Method (VFM). The VFM was applied to
directly identify in-situ Q11 and Q66 stiffness components associated to EW and LW. The
AbM was applied to the global ER and GRT evaluation. These effective elastic properties
were then used to infer the local ones as a function of mean density, combining the ap-
plication of a micromechanical model (mixture law) and a unit cell model. The Q11 and
Q66 LW/EW ratios were found in the order of 1.32 and 2.45, respectively. These ratios
suggest a linear relationship between elastic properties and density. Furthermore, the
spatial variability of the elastic properties was analysed and related to the meso structure
heterogeneity, which was given namely by means of density measurements provided by X-
ray microdensitometry. The results were found in good agreement, presenting significant
correlations with density. Specifically, both effective ER and GRT were most often up to
approximately 90% determined by mean density.

Keywords
Maritime pine, radial-tangential plane, meso scale, ring-oriented tensile test, digital image
correlation, anisotropic-based method, virtual fields method, mechanical properties, X-ray
microdensitometry.
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Resumo

Neste trabalho investigou-se a variação radial e longitudinal das propriedades elásti-
cas nas direções perpendiculares ao fio da madeira de pinho marítimo (Pinus pinaster
Ait.) ao nível do tronco. Foram realizados ensaios de tracção na direcção radial uti-
lizando 750 provetes com faces orientadas no plano radial-tangencial e à escala do anel
de crescimento (escala meso). Os campos de deformação ocorridos na região de interesse
foram medidos por correlação digital de imagem. Um equilíbrio entre a preçisão e a res-
olução espacial do método foi estabelecido, a fim de avaliar correctamente os gradientes
dos campos de deformação gerados pela estrutura heterogénea do material à escala de
observação. Uma técnica de segmentação baseada em processamento e análise de imagem
foi implementada, no sentido de separar em cada anel as áreas correspondentes aos três
tecidos principais: canais de resina, lenho inicial (LI) e lenho final (LF). Por conseguinte,
as constantes elásticas transversais de cada tipo de lenho, dentro do anel, foram então
estimadas através da aplicação de duas metodologias de identificação distintas: o método
baseado na anisotropia (MbA) e o método dos campos virtuais (MCV).

O MCV foi aplicado na identificação directa das componentes da matriz de rigidez
Q11 e Q66 associadas ao LI e ao LF e o MbA foi aplicado na identificação do módulo de
elasticidade radial (ER) e do módulo de corte (GRT ) globais. Estas propriedades elásticas
efetivas foram depois utilizadas para inferir as respetivas propriedades locais do LI e do
LF em função da densidade média, combinando a aplicação de um modelo micromecânico
(lei de misturas) e um modelo celular unitário. Os rácios LF/LI obtidos para as com-
ponentes Q11 e Q66 foram 1.32 e 2.45, respetivamente, sugerindo a existência de uma
relação linear entre as propriedades elásticas e a densidade. Por outro lado, foi anal-
isada a variabilidade espacial das propriedades elásticas em função da heterogeneidade
da meso estrutura, traduzida nomeadamente pelas medições de densidade que foram real-
izadas através de microdensitometria de raios-X. Os resultados demonstraram a existência
de correlações significativas com a densidade. Concretamente, tanto o ER como o GRT
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efetivos apresentaram determinações pela densidade muitas vezes na casa dos 90%.

Palavras-chave
Pinho marítimo, plano radial-tangencial, escala meso, ensaios de tração, correlação digital
de imagem, método baseado na anisotropia, método dos campos virtuais, propriedades
mecânicas, microdensitometria de raios-X.



Resumo Alargado

A madeira é um biomaterial de estrutura celular, com uma anatomia complexa e het-
erogénea. Esta heterogeneidade reflete-se em várias escalas de observação (Dinwoodie,
2000), incluindo a escala dos anéis de crescimento (escala meso) e a escala do tronco
da árvore (escala macro). Na análise do comportamento mecânico da madeira é usual
assumir-se um comportamento linear elástico ortotrópico, em que as direcções de simetria
são a direcção longitudinal (L) das fibras, a direcção radial (R) dos anéis de crescimento e a
direcção tangencial (T) aos anéis de crescimento. A identificação das propriedades mecâni-
cas de um material fortemente heterogéneo e ortotrópico como a madeira, a um custo
aceitável, coloca diversos problemas quer ao nível da mecânica experimental quer ao nível
da modelação. Os métodos convencionais utilizados para a identificação das propriedades
elásticas da madeira à escala macro baseiam-se em ensaios estaticamente determinados
(nos quais o estado de tensão na região de interesse pode ser deduzido directamente a
partir da força resultante aplicada) e em técnicas pontuais de medição dos deslocamentos
ou deformações (Xavier et al., 2004). Esses métodos requerem a execução de vários en-
saios independentes, cada um deles em amostras com um grande número de provetes, para
a obtenção de resultados estatisticamente significativos. Esta é a abordagem adoptada
na maioria dos trabalhos publicados sobre a variabilidade das propriedades elásticas da
madeira à escala macro (Bao et al., 2001; Machado and Cruz, 2005). As limitações dos
métodos convencionais podem em parte ser ultrapassadas recorrendo às técnicas óticas
de medição dos campos cinemáticos (Grédiac, 2004). Entre elas conta-se a correlação
digital de imagem (CDI), empregue por alguns autores para identificar as propriedades
da madeira à escala macro e à escala meso (Dumail and Salmén, 2001; Farruggia and
Perré, 2000; Ljungdahl et al., 2006; Shipsha and Berglund, 2007; Xavier, 2007). Porém,
na esmagadora maioria destes trabalhos, os métodos óticos continuam associados a en-
saios estaticamente determinados, os quais, além de não tirarem partido do potencial
desses métodos de campo, são de difícil aplicação à madeira. Na verdade, a ortotropia
da madeira e a variabilidade da sua estrutura anatómica, tornam difícil a realização de
ensaios onde o estado de tensão seja acessível a partir das condições de fronteira, por via
analítica (Keunecke et al., 2008). Aliás, pelas razões indicadas, as próprias condições de
fronteira experimentais não são conhecidas a não ser aproximadamente. São escassos os
trabalhos relativos aos métodos de identificação das propriedades elásticas da madeira a
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partir de ensaios estaticamente indeterminados (Jernkvist and Thuvander, 2001; Xavier
et al., 2007, 2009). Desde o trabalho pioneiro de Grédiac (1989), tem vindo a ser desen-
volvido um método inverso, conhecido por Método dos Campos Virtuais (MCV), o qual
só recentemente foi aplicado pela primeira vez à madeira (Xavier et al., 2007, 2009). O
MCV foi também recentemente usado para determinar campos de propriedades em placas
de materiais compósitos (Kim et al., 2007) e também em painéis de fibras de média den-
sidade (Xavier et al., (in press)). A extensão do MCV na identificação de propriedades
elásticas locais da madeira à escala meso será um contributo significativo para a com-
preensão da origem anatómica da variabilidade das propriedades da madeira, às escalas
meso e macro. Além disso, o conhecimento das propriedades elásticas à escala meso é
essencial para muitas áreas da mecânica da madeira, por exemplo, para o estudo do com-
portamento da madeira em fractura (de Moura et al., 2008; Thuvander et al., 2000), para
análise do comportamento das ligações de peças de madeira por cavilha (Santos et al.,
2009; Zink-Sharp et al., 1999) e dos processos tecnológicos de transformação da madeira
(Holmberg et al., 1999).

Para caracterizar completamente o comportamento mecânico da madeira é necessário
conhecer os modelos de variação dessas propriedades no referencial de simetria material
(referencial LRT). Em particular, o estudo desses modelos no plano RT revela-se de re-
dobrada importância já que é nele que se observam as principais fontes de variabilidade
oriundas da estrutura do material e que por sua vez desempenham um papel prepon-
derante no seu comportamento em fractura, no desempenho das ligações e também nas
operações de transformação da madeira. Os ensaios mecânicos são um meio de obter essa
informação, contudo, não só por motivos de economia mas também de rapidez e funcional-
idade, importa evoluir para modelos de ensaio que permitam obter da mesma resposta
mecânica o máximo de informação. De acordo com Jeong (2008), os métodos de identi-
ficação das propriedades mecânicas da madeira à escala macro podem ser melhorados se
tiverem em linha de conta as características do material ao nível do anel de crescimento.
É neste contexto que se insere esta tese, cujo objectivo se prende com a caracterização da
madeira de pinho marítimo (P. pinaster) no plano transverso (RT) e à escala dos anéis
de crescimento (escala meso).

O presente trabalho é apresentado ao longo de vários Capítulos, cujos temas se re-
sumem em seguida. O Capítulo 1, está dividido em três secções, sendo que na primeira
secção, é apresentada uma revisão sobre a estrutura anatómica da madeira, em particular
da madeira das espécies resinosas, grupo ao qual pertence a madeira de P. pinaster, aqui
em estudo. Escolheu-se esta espécie por ser a mais relevante no nosso País, tanto do ponto
de vista comercial como social. De acordo com dados de 2010 (AIFF, 2010), o mercado
do pinho, em Portugal, representa 62% do VAB da Fileira Florestal, com um volume
de vendas de quase 3500 milhões de euros, dos quais 927 milhões de euros resultam das
exportações e é responsável por cerca de 65000 empregos industriais diretos, envolvendo
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89% das empresas do sector. Por outro lado, a madeira de P. pinaster é o suporte de
grande parte das indústrias da fileira florestal nomeadamente da indústria de painéis, de
segmentos específicos da indústria de celulose, das indústrias de paletes e de um vasto
universo de pequenas e médias empresas de exploração florestal e indústrias de serração.
A estrutura anatómica e o comportamento mecânico da madeira podem ser analisados de
uma forma hierarquizada e a diferentes escalas de observação. Neste trabalho, a madeira
será analisada à escala meso. A esta escala, a madeira é modelada como um sólido con-
tínuo e heterogéneo, composto por camadas alternadas de lenho inicial (LI) formado na
Primavera e lenho final (LF) formado no Verão. No LI, as células apresentam paredes
celulares finas e amplos lumens, enquanto no LF, as paredes são mais espessas e os lu-
mens escassos. Ao nível do anel de crescimento, as propriedades mecânicas acompanharão
essa variação (Bigorgne, 2011). Na segunda secção, faz-se uma revisão sobre os ensaios
mecânicos, de tração, de compressão e de corte, já aplicados à madeira, em trabalhos de
caracterização das propriedades elásticas nas direções perpendiculares ao fio. Finaliza-se
este capítulo, com uma revisão do ponto de vista da variabilidade espacial da estrutura
anatómica da madeira e das suas propriedades físicas e mecânicas, procurando evidenciar
as eventuais relações entre as propriedades e a estrutura bem como o seu contributo para
a qualidade da madeira.

O Capítulo 2 é dedicado, por um lado, à análise do estado da arte no que refere
aos métodos de identificação inversa, e, por outro lado, às técnicas óticas para medições
de campo, com especial relevo para as técnicas não interferométricas, e em particular a
correlação digital de imagem, utilizada neste trabalho. A identificação dos parâmetros
materiais que figuram nas equações constitutivas é efetuada por via experimental através
da aplicação de ensaios mecânicos adequados (Hodgkinson, 2000). O problema inverso
na mecânica experimental consiste assim na caracterização dos parâmetros constitutivos
desconhecidos assumindo-se o conhecimento da geometria da amostra, das condições de
fronteira (ou, mais precisamente, das forças e os momentos resultantes) e das deformações
(ou dos deslocamentos). Os ensaios normalizados são convencionalmente realizados de
modo a alcançar um estado de tensão-deformação homogéneo na região de interesse da
amostra onde são realizadas as medições. Convenientemente, este método leva a soluções
baseadas em equações explícitas que relacionam os parâmetros desconhecidos com a força
de carregamento e as deformações medidas (testes estaticamente determinados). Neste
caso, os dispositivos pontuais, tais como extensómetros, são usualmente empregues na
medição do estado de deformação do material. No entanto, na prática, a aplicação destes
ensaios pode revelar-se difícil devido, por exemplo, à ocorrência de efeitos localizados,
especialmente para materiais anisotrópicos e heterogéneos (Pierron et al., 1998). Além
disso, vários métodos de ensaio independentes são necessários para lidar com o compor-
tamento não isotrópico (Guitard, 1987), o que, na prática, exige um esforço adicional em
termos de tempo e de custo. O desenvolvimento recente das técnicas óticas de campo
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possibilitou uma nova abordagem ao nível dos ensaios de caracterização mecânica dos
materiais (Grédiac, 2004). O princípio de base desta nova abordagem assume que na
região de interesse (ROI) são gerados campos de deformação heterogéneos e complexos,
de tal modo que vários parâmetros materiais estão embebidos na resposta mecânica do
material (ensaios estaticamente indeterminados). Recorrendo a uma estratégia adequada
de identificação inversa, todos os parâmetros envolvidos poderão ser convenientemente
determinados. Na literatura, existem apenas alguns métodos de identificação propostos
(Avril et al., 2008). A abordagem mais usual é baseada no método de actualização do
modelo de elementos finitos (FEMUM). Este método consiste na construção de um mod-
elo de elementos finitos do ensaio mecânico, considerando uma função objetivo com a
diferença entre os resultados numéricos e experimentais (deslocamento ou deformação)
sobre a ROI. A minimização desta função objetivo em relação aos parâmetros desconheci-
dos (variáveis de projeto), iterativamente atualizadas no modelo, proporciona a solução
para o problema. Este método é flexível e não necessita propriamente de medições de
campo. No entanto, uma vez que é iterativo, pode ser demorado e a convergência depen-
dente da estimativa inicial das variáveis. Além disso, requer o conhecimento adequado das
condições de fronteira a impor no modelo para evitar erros sistemáticos nos valores das
variáveis identificadas. A presença de ruído nas medições também afetará a robustez deste
método iterativo. Para ultrapassar as desvantagens associadas ao FEMUM, abordagens
alternativas têm sido propostas. Entre elas, existem, por exemplo, o método baseado na
anisotropia (MbA) (Majano-Majano et al., 2012), e o MCV (Pierron and Grédiac, 2012).
Nesse sentido é proposto neste capítulo um ensaio de tracção em provetes com curvatura
dos anéis variável para a caracterização, por um lado, das componentes ortotrópicas do P.
pinaster no plano RT, e, por outro lado, das suas propriedades locais levando em consider-
ação a heterogeneidade da própria estrutura da madeira à escala de observação. Este será
o ensaio de base proposto neste trabalho. Para este ensaio específico, foram desenvolvidos
dois métodos de identificação: o MbA e o MCV. Os princípios de base destes métodos de
identificação são também descritos em detalhe neste capítulo.

O Capítulo 3 é dedicado à descrição do trabalho experimental, desde a seleção das
árvores e dos toros, passando pelo desdobramento em tábuas, sua secagem e condiciona-
mento até à obtenção dos provetes e posterior aplicação do padrão de speckle, necessário
para uma adequada utilização da técnica de CDI. Apresenta-se também o procedimento
inerente aos trabalhos de medição da densidade através da microdensitometria de raios
X, bem como o set-up experimental envolvendo os ensaios mecânicos e a aquisição das
imagens para a medição das deformações através da CDI. Os ensaios normalizados para
a caracterização mecânica da madeira baseiam-se em provetes com geometria simples e
em situações de carregamento elementares com base em estados de tensão/deformação
simples ou homogéneos na zona de medição, para os quais existem equações explícitas
para a identificação das propriedades. Pelo contrário, neste trabalho, é proposto um
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método baseado na aplicação de um único ensaio de tração em provetes com diferentes
orientações dos anéis, para identificar todas as propriedades, no plano transverso, definido
pelas direções ortotrópicas R e T : ER, ET , νRT e GRT onde E, ν e G se referem ao mó-
dulo de Young, coeficiente de Poisson e módulo de corte, respetivamente. Um esquema
representativo da geometria do provete é apresentado na figura 3.1. O provete consiste
num paralelepípedo com as dimensões nominais de 50(R)×5(T)×2(L) mm. Adotou-se
esta solução que permite tirar partido de uma determinada orientação dos anéis em re-
lação ao eixo de carregamento, definida por um ângulo médio θ, conforme ilustrado na
figura 3.1. A madeira utilizada neste trabalho foi obtida de cinco árvores de P. pinaster
com idades compreendidas entre os 65 e os 70 anos, provenientes de um povoamento
não ordenado, localizado em Orgens, no concelho de Viseu (região centro-norte de Por-
tugal). A seleção das árvores foi efetuada com base em aspetos macroscópicos essenciais
da morfologia do fuste, como sejam a ausência de defeitos de conformação, a ausência
de doenças, a maior linearidade vertical e a menor conicidade do fuste (Carvalho, 1996).
Após o abate, as árvores foram seccionadas em diversos toros, tendo sido selecionados para
este trabalho, apenas os cinco toros basais, com 2.8 metros de comprimento, por serem
considerados os que fornecem madeira com melhor qualidade na árvore. Os toros foram
desfiados em pranchas com 40 mm de espessura, que depois de devidamente empilhadas
de forma a reconstituir cada toro (Fig. 3.2), foram submetidas a um processo de secagem
natural, monitorizado através de medições regulares com um higrómetro GANNr HT
85T, até atingirem um teor em água entre 10 e 12%, sendo em seguida armazenadas no
Laboratório de Tecnologia das Indústrias de Madeiras e Mobiliário da Escola Superior
de Tecnologia e Gestão de Viseu, onde se procedeu á fabricação dos provetes. Para o
trabalho experimental, foram fabricados 15 provetes para as medições de densidade com
dimensões nominais de 3(L) x 5(T ) mm e comprimento igual ao raio da prancha central,
correspondendo a 5 árvores e 3 posições em altura para cada uma, e 750 provetes para
os ensaios mecânicos, correspondendo a 5 árvores, 3 posições em altura, 5 posições radi-
ais e 10 provetes para cada posição radial. Os ensaios mecânicos foram realizados numa
máquina Instronr 5848 Microtester, a uma velocidade do travessão de v = 0.2 mm.min−1.
Considerando a distância entre amarras de l0 = 30 mm, os ensaios foram executados a
uma taxa de deformação de ε̇ = v/l0 = 1.1 × 10−4 s−1, para a qual o carregamento foi
aplicado de forma contínua durante um período de tempo inferior a 3 minutos para evitar
os efeitos viscoelásticos. A força aplicada foi medida por meio de uma célula de carga
de 2 kN. Ao set-up usual do ensaio de tração, foi associado um sistema independente
de aquisição e correlação de imagem formando no seu conjunto o set-up fotomecânico
(Fig. 3.12). A aquisição da imagem durante o ensaio foi feita com um sistema ótico con-
stituído por uma camara CCD (Charge Coupled Device) de 8 bits Baumer Optronicr

FWX20 e uma lente telecêntrica Opto-Engineering TC 2309, cujas características são re-
sumidas nas tabelas 3.1 e 3.2, respetivamente. Para a correlação de imagem utilizou-se o
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código comercial ARAMISr DIC-2D v6.0.2 da GOM mbH (ARAMIS; Xavier et al., 2012).
No que respeita à densidade, as medições foram realizadas no Laboratório de Produtos
Florestais do Departamento Florestal, da UTAD, de acordo com o procedimento descrito
por (Lousada, 2000), utilizando um microdensitómetro de duplo feixe JOYCE LOEBELr

MK3 (Fig. 3.7) equipado com um gerador de raios-X SEIFERTr ISO-Debyeflex. As prin-
cipais vantagens desta técnica de medição são, a elevada sensibilidade do fotomultiplicador
do microdensitómetro, a elevada capacidade de resolução (de 10 a 200 valores por mm),
a velocidade de processamento (3 cm/min) e o registo da informação numa pelicula ra-
diofotográfica (Kodakr Industrex CX) que torna possível a realização de leituras as vezes
que forem necessárias. A variação da densidade média na madeira das espécies resinosas
(0.4 - 0.7 g.cm−3) não é tão elevada como nas espécies de folhosas (0.2 - 1.2 g.cm−3).
Apesar desta enorme variabilidade, à parede celular das fibras é habitualmente atribuído
um valor constante de 1.5 (Skaar, 1989) ou 1.53 (Tsoumis and Passialis, 1977) dependendo
dos autores. Por isso, as diferenças referidas, apenas podem ser atribudas às diferenças
verificadas nas proporções parede/lúmen de cada espécie. Para o P. pinaster, a variação
da densidade média dentro do anel é considerada habitualmente entre 0.4 e 0.9 g.cm−3

(Lousada, 2000) em resultado das diferenças entre as camadas de LI e LF, nomeadamente
o rácio entre o volume da parede celular e o volume total da célula.

O Capítulo 4 é dedicado, numa primeira fase, à identificação das propriedades elás-
ticas perpendiculares ao fio e posteriormente à apresentação e discussão da anàlise da
variabilidade dos parâmetros da densidade e das propriedades elàsticas do P. pinaster ao
nível do tronco, quer em altura, quer em largura na direção radial. Além disso procura-se
também identificar e descrever os eventuais padrões de correlação existentes entre eles.
No que respeita à identificação das propriedades elásticas, neste capítulo aplica-se o MbA.
Este método baseia-se na teoria da elasticidade anisotrópica e permite – assumindo um
estado plano de tensão, que o material é contínuo, homogéneo e governado por um com-
portamento linear elástico ortotrópico – obter as componentes da matriz de flexibilidade
explicitamente através das condições de fronteira determinadas diretamente dos ensaios
experimentais. Uma vez identificadas as propriedades globais, utiliza-se uma lei de mis-
turas baseada em modelos micromecânicos, desenvolvidos para os materiais compósitos,
para estimar as constantes elásticas da madeira em função das propriedades elásticas
dos constituintes individuais (Jones, 1999), que complementada com modelos celulares
unitários relacionando as propriedades elásticas dos constituintes individuais com a den-
sidade (Gibson and Ashby, 1997), nos permitem obter as propriedades mecânicas do LI e
do LF. Na sequência da revisão realizada no primeiro capítulo e em resultado do próprio
trabalho até aqui descrito, fica claro que é extremamente relevante o conhecimento dos
padrões de variação das propriedades físicas e mecânicas da madeira, quando se perspetiva
o desenvolvimento de qualquer estudo relacionado com a qualidade da madeira. No que
respeita à densidade, e de acordo com Lousada (2000), existem muitas referências acerca
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dos seus padrões de variação relativamente às espécies resinosas e em particular ao P.
pinaster. De um modo geral, todas elas indicam que há mais variação dentro da árvore
do que entre árvores. Normalmente os estudos sobre a variabilidade da densidade são
realizados de acordo com três modelos de variação principais: (i) como varia a densidade
radialmente ao nível do anel com base nas transições LI-LF, (ii) como varia a densidade
radialmente de anel para anel desde a medula até ao câmbio e (iii) como varia a densidade
longitudinalmente, considerando diferentes níveis de altura na árvore. Tendo em conta
que a densidade da parede celular é constante (aproximadamente igual a 1.5 g.cm−3) e que
as variações da densidade são devidas, quase exclusivamente, às diferenças da proporção
parede/lúmen, ou seja, à maior ou menor quantidade de parede celular presente num
determinado volume de madeira, espera-se que as propriedades mecânicas, na condição
de outros fatores permanecerem constantes, apresentem padrões de variação idênticos aos
verificados para a densidade (Lousada, 2000; Zobel and Buijtenen, 1989).

As propriedades elásticas dos constituintes da madeira ao nível do anel de crescimento
constituem informação fundamental para aplicação em outros estudos como, no compor-
tamento da madeira em fratura nas direções perpendiculares ao fio da madeira (de Moura
et al., 2008; Thuvander et al., 2000), no comportamento mecânico das ligações coladas
na madeira (Santos et al., 2009; Zink-Sharp et al., 1999), nos fenómenos de formação e
propagação de fendas em obras de arte quando expostas a grande variação de humidade
(Dureisseix et al., 2011) e nos processos de maquinação da madeira (Holmberg et al.,
1999). No entanto, a identificação das propriedades à escala meso coloca diversas difi-
culdades. As abordagens tradicionais baseiam-se na aplicação de ensaios estaticamente
determinados, que por sua vez utilizam pequenas amostras de cada camada individual
de LI e de LF (Cramer et al., 2005; Farruggia and Perré, 2000). Para aceder à variação
espacial das propriedades elásticas ou para a sua representatividade estatistica, estas abor-
dagens requerem uma enorme quantidade de amostras. Esta limitação pode em parte ser
ultrapassada utilizando uma abordagem diferente, baseada em ensaios mecânicos estati-
camente indeterminados, a partir dos quais vários parâmetros podem ser identificados a
partir de um único ensaio mecânico (Jernkvist and Thuvander, 2001; Xavier et al., 2007,
2009). Esta metodologia tira partido da cinemática das medições de campo (i.e., desloca-
mento ou deformação) fornecidas por uma técnica ótica adequada em associação com um
método inverso de identificação. Assim, no capitulo 5, apresenta-se a aplicação do método
dos campos virtuais para um conjunto de dez provetes, correspondendo ao nível da altura
do peito e à posição radial mais próxima do câmbio, no sentido de procurar validar esta
metodologia.

Por fim apresentam-se as principais conclusões retiradas ao longo de todo o trabalho,
e apresentam-se sugestões de trabalho complementar a desenvolver futuramente, muitas
delas em consequência do enquadramento temporal em que um trabalho desta natureza
tem que ser executado.
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Introduction

Within Europe, there has been an increase in the use of wood for structural purposes,
namely in the form of beams, pillars, joists, crossbars and laths. However, it is still very
common to classify timber, particularly the Portuguese pine, with poor quality in terms of
strength and durability or with less noble qualities, highlighting the fact that the spread of
timber structures is conditioned on the assurance of their competitiveness with regard to
other materials, especially by quality grading. This purpose of structural timber valuation
can be achieved by increasing our knowledge on the mechanical behaviour of wood, with
the elaboration of projects adequately grounded in concepts of structural safety and with
a building system that meets the quality criteria, involving raw materials and manpower
already adopted for steelwork and reinforced concrete.

As a natural composite material formed by trees, wood has a hierarchical structure
which can be analysed and modelled at several length scales, starting from nano scale of
chemical constituents up to the stem (Smith et al., 2003). Moreover, it has a complex and
heterogeneous structure, resulting from the ability of the tree to change its morphology in
response to variations in external forces acting during the growing process (Niklas, 1992).
Thus, excepting for some simplified hypothesis (e.g. at the macro scale, clear wood has
been modelled as a continuous, orthotropic and homogeneous material), wood can be
regarded as a heterogeneous and anisotropic material. This means that the mechanical
properties of wood can vary spatially within and among trees and along the direction of
solicitation. Therefore, for wood quality assessment with regard to end-user applications
in a politic of better preservation and management of the available natural resources, both
bulk and spatial variation of mechanical properties of wood species within and among trees
must be accurately characterised by suitable approaches. However, this characterisation
poses several difficulties due to the inherent hierarchy, anisotropy and heterogeneity of
wood. From an experimental point of view, for instance, conventional apparatus such as
strain gauges for punctual strain measurements and standard mechanical test methods
(based on homogeneous stress/strain fields) are most often very difficult to implement
(e.g., simplified and based assumptions difficult to guarantee in practice), expensive and
very time consuming.

On the transverse cross-section of a softwood tree, concentric annual rings can be
observed formed by the cambium at each growing season. At each point, two orthotropic
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directions can be defined: the radial (R) and the tangential (T) directions, perpendicular
and parallel to the growth rings structure, respectively. The anisotropy of wood in the
radial-tangential (RT) plane has been explained by the reinforcement added by wood ray
cells oriented radially across the stem (Ljungdahl et al., 2006), and by the more regular
arrangement of cells along the radial direction than in the tangential one (Persson, 2000).
At the stem level, the width and the number of the growth rings varies as a function of
the tree growing rate, which is mostly controlled by external environment factors during
growth. Moreover, the stem is usually split into juvenile and mature woods, regarding the
cambial age in which wood cells have been formed. Although not yet fully understood,
these aspects have been pointed out to justify the two significant radial variations of
wood properties that can be observed in the transverse plane (Machado and Cruz, 2005;
Xavier et al., 2009). At the magnification of the growth rings (1-10 mm), the cellular
structure of wood can be resolved. It consists of a cellular tissue, aligned along the
longitudinal direction of the stem. At this level, an individual annual growth ring can be
assumed consisting of two principal layers called earlywood (springwood) and latewood
(summerwood). The cells in the earlywood are characterised by thin walls and large
diameters, whilst the latewood cells are smaller in diameter and have thick walls. Although
this structural differentiation can support the local variability on density and mechanical
properties (Hassel et al., 2009), the bulk properties of the wood cell itself remains roughly
constant (Dinwoodie, 2000). The mechanical characterisation of wood at the growth ring
scale is relevant because in many applications its behaviour is rather affected by the local
heterogeneity verified at this level of observation. Such applications can include fracture
mechanics (Dourado et al., 2008; Thuvander et al., 2000), the mechanical behaviour of
bolted wood connections (Santos et al., 2009; Zink-Sharp et al., 1999), crack formation
and propagation on culture heritage objects (e.g., paintings) subjected to critical moisture
content variations (Dureisseix et al., 2011), and wood transformation processes (Holmberg
et al., 1999).

Full-field optical methods of displacement or strain measurement have become very
useful tools in experimental solid mechanics. According to the physical phenomenon
involved in the measurement, these methods can be sorted into white-light techniques
(e.g., digital image correlation and grid methods) and interferometric techniques (e.g.,
speckle and moiré interferometry and shearography) (Grédiac, 2004). By comparison
with more conventional punctual techniques (e.g., strain gauges or extensometers) these
methods have some important advantages: (i) they provide full-field data so gradient
fields can be conveniently assessed; (ii) they are contact-free (eventually, they can require
some preparation of the surface of interest). In parallel, novel identification methods
have been developed in order to take advantage of the full-field measurements. A review
of these methods can be found in (Avril et al., 2008). A novel application consists in
measuring several parameters from a single test configuration. This integrated numerical-
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experimental approach seems quite promising to wood mechanics because of its anisotropy
and inherent variability (Jernkvist and Thuvander, 2001; Xavier et al., 2007, 2009).

In this framework, this thesis aims to effectively characterise the mechanical behaviour
of wood in the RT plan and at growth rings scale (meso scale). In this work full-field
measurements provided by digital image correlation (DIC) were coupled with identification
strategies for assessing the radial variation of wood transverse elastic properties at the
meso scale. Tensile tests at the tissue level were carried out on P. pinaster. Several tests
were performed on samples cut at different radial positions within the stem and at three
vertical locations. Five different trees were tested seeking representativeness of the spatial
variation patterns within the stem.

From the point of view of its organization, this work is presented along several chap-
ters divided into sections. The first chapter is divided into three sections, with the first
one presenting a review of wood anatomical structure, especially of coniferous species, the
group were the timber of P. pinaster here studied belongs. In the second section, a review
on the tensile, compression and shear mechanical tests, already applied to wood in the
transverse plane is presented. To end this chapter, spatial variability of wood anatomical
structure and its physical and mechanical properties is revised, looking for evidence of any
connections between the properties and structure as well as its contribution to wood qual-
ity definition. Chapter two is dedicated, on the one hand, to the analysis of identification
methods applied to wood on the transverse plane at the meso scale, and, on the other hand,
to full-field optical techniques with emphasis on non-interferometric techniques, including
DIC, used in this work. On the third chapter, the experimental work is described in de-
tails. It starts by reporting the tasks since trees and logs selection, to the boards sawing,
drying and conditioning procedure, until specimens manufacture. X-ray microdensitom-
etry procedure for density measurements are then presented. A detailed description of
the DIC technique applied to wood is then presented, with focus on the speckle pattern
painting and selection of the optical devices and measuring parameters. To end with, the
mechanical test and experimental setup is reported. Chapter four is dedicated, on a first
step, to the transverse elastic properties identification by de anisotropic-based method on
a global approach, followed by the local properties estimation based on a micromechanical
model (mixtures law) coupled with a unit cell model with the respective earlywood and
latewood mean density contribution. Besides, the spatial variation of both density and
elastic properties is analysed and their relationships discussed. The identification of local
transverse stiffness components within the annual rings by the virtual fields method is
presented for a case study in Chapter five. Results are compared with the ones estimated
on chapter four, based on the global identification. Finally, major conclusions throughout
the work are drawn and perspectives for future work are outlined.
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Chapter 1

Characterisation of the transverse
linear elastic behaviour of wood:
anisotropy and heterogeneity

In this chapter, a review on the structure and transverse (e.g., along the radial-
tangential plane) mechanical behaviour of wood is presented. Particularly emphasis is
given to the spatial variability of structure and transverse elastic properties of wood
within and between trees. Assessing wood quality by eventual relationships between elas-
tic properties and anatomical structure will be reviewed.
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1.1 Hierarchical structure and modelling of wood

1.1.1 Introduction

Wood is a natural composite, characterised by a hierarchical structure of molecular
units of cellulose, or its aggregates, embedded in a matrix of other phases (hemicelluloses
and lignin) according to a multilevel architecture, ranging from molecular to structural
scales, as schematically represented in Figure 1.1, that confer it specific characteristics
and unique properties for multifunctional applications (Tirrel et al., 1994). That unique
characteristics and abundant supply of wood have made it the most desirable building
material throughout history since it has been widely used in building construction, boats,
furniture and appliances and currently give it the potential to incorporate numerous ma-
terials synthesised by man through engineering. As an organic material derived from high
anatomical complexity plants, wood has a cellular structure composed of fibres, arranged
in preferable direction named wood fibre direction, corresponding to the axial length of the
stem, parallel to the longitudinal direction (L) of material symmetry, that are traversed
radially (R) by medullar rays, giving it different properties in its three main directions of
symmetry (Fig. 1.2). For softwood species, as is the case of P. pinaster, more than 95%
of the fibres that make up tissues, are elongated cells with 2-5 mm in length and with
10-80 µm in diameter called tracheids (Carvalho, 1996, pag. 59).

If the cross section of a log is analysed at the macroscopic scale, some major structural
features of wood can be identified (Fig. 1.3), namely, two zones of different tonality,
comprising a central dark region called heartwood and a bright area, forming an outer
ring to the core, what is designated sapwood. The trunk section width occupied by each
of these wood tissues, varies considerably depending on the age of the tree. Sapwood
corresponds to the most recent wood formed by the cambium, and it is used by trees to
perform water and nutrients transport from the roots to leaves, while heartwood, being
the oldest part of the timber, is composed of sapwood tracheids that were losing their
transport activity, moving the nutrients to form deposits, which however are metabolised
in several types of extractives such as waxes, oils, resins, fats and tannins. In the case of P.
pinaster, the process of heartwood formation is accompanied by synthesis and deposition
of significant amounts of phenolic compounds, which generally exhibit toxicity in relation
to biological organisms, pending on the main responsible for the greatest difficulty that
xylophagous agents have to degrade the heartwood, ensuring their natural durability
(Freitas et al., 2003). In the centre of the stem coinciding with the axis of the tree,
a dark colour point corresponding to the pith can be distinguished, which in spite of
its colour and position, is a spongy tissue, distinct from the core, resulting from the
initial vertical growth of the tree. From the pith, on the overall transverse section with
heartwood and sapwood, distinguished layers with alternating light-dark colour can be
observed, organized in concentric rings arrangement, which layers correspond to the radial
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Figure 1.1: Wood chain from cell wall to structural level.

Figure 1.2: Material referential of symmetry (LRT).
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season growth of the tree. Each pair of consecutive light-dark layers is called annual
growth ring. The development of the tree does not occur uniformly throughout the year.
Instead, depending on the seasons and on the availability of heat, light and water, cambial
activity experiences large variations, so that the annual growth rings consisting of these
two distinct areas of staining. The light layer formed during the spring, with favorable
conditions of light, heat and water availability, is called earlywood (EW ) or springwood,
while the dark one, formed during the summer and autumn in less favorable soil and
climatic conditions, is termed latewood (LW ) or summer wood.

When increasing the magnification scale, entering the microscopic level of the wood
structure, it is possible to identify, although in the transverse plane (RT plane), the
arrangement and geometry of the cells, according to Figure 1.4.

The tree has a rather complex structure, whose high efficiency results from its need to
adapt to withstand stresses to which it is subject throughout its lifetime. In this process,
over time, the anatomical arrangement of timber is being adapted to create maximum
resistance in the direction of loading, while in other directions has a much lower resistance.
However, for an adequate characterisation of wood as a building material, its hierarchical
anatomical structure must be analysed and modelled at different scales (Fig. 1.1) in order
to optimise the mechanisms (expressed in the singularities of the material) involved in the
action-reaction systems. Moreover, despite the timber engineering handles with properties
and performance of the material as a structural component, the study of wood properties
at macro scale (clear wood or defect free) and other scales of greater detail, is very
important for the understanding of basic problems in wood engineering (Thelandersson
and Larsen, 2003).

1.1.2 Structural scale

At the scale of observation of structural applications (1–10 m), in which wood is
used as a component of a structural system with dimensions that cannot always relieve
it of natural growth defects, such as resin pockets, reaction wood, crossing grain, etc.,
which tend to undervalue the material strength (Table 1.1), wood cannot be considered a
homogeneous material (Thelandersson and Larsen, 2003). Furthermore, the number and
the size of these anomalies ranging from board to board and consequently from element
to element within the same structure, which means that the properties of lumber exhibit
significant variability. Therefore, the mechanical behaviour of wood at structural scale
cannot be achieved reliably, based only on the properties of clear wood. Conceptually, at
this scale, the timber is modelled as a cylindrical orthotropic material having three planes
of symmetry along their directions L, R and T (Fig. 1.2). However, by the dimensions
involved at this scale, and for purposes of engineering design, wood can be considered as
isotropic in the RT plane, since the anisotropy ratios in this plane, compared with the L
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Figure 1.3: Major structural features of wood (adapted from Jozsa and Middleton (1994)).

Figure 1.4: Microscopic structure of softwoods: a) earlywood; b) latewood; c) annual ring
boundary d) ray e) resin duct; f) radial tracheid; g) parenchyma; h) bordered pits; i)
cross-field pits; j) rays with horizontal resin duct.
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Table 1.1: Strength/density ratios for some materials for structural applications.

Material Density Strength Strength/Density
Kg/m3 MPa 10−3 MPa.m3/Kg

Structural steel 7800 400–1000 50–130
Aluminium 2700 100–300 40-110
Concrete, compression 2300 30–120 13-50
Clear softwood, tension 400–600 40–200 100-300
Clear softwood, compression 400–600 30–90 70–150
Structural timber, tension 400–600 15–40 30–80
Glass fibre in epoxi, typical value, tension - - 500
Carbon fibre in epoxi, typical value, tension - - 1000

direction, is relatively low.

1.1.3 Macro scale

At macroscopic scale of observation (1-10 cm), the volume of matter is sufficiently
large compared with the volume of the unit cells or an equivalent volume of annual rings,
so it can be assumed as a continuous material. Besides, clear wood can be assumed
as a homogeneous material consisting of fibres oriented predominantly in the longitudinal
direction. Each specimen of clear wood, representing an elementary volume of the material
with uniform mechanical properties, is assumed as a continuous medium in which each
material point is defined by three principal directions, defining the coordinate system of
the material according to the referential of symmetry shown in Figure 1.2, the longitudinal
direction parallel to the grain, the radial direction perpendicular to the grain and parallel
to the rays, and the tangential direction, perpendicular to L and R and tangent to the
growth rings.

1.1.4 Growth ring scale

The growth rate of the tree varies throughout the year depending on water and light
availability and temperature, which is related to the seasons and introduces two sources of
heterogeneity at the level of the anatomical structure of the wood formed, both at growth
ring level. The first one consists on the formation of the woody tissue in different periods
of spring (EW ) and summer (LW ) and the second is related to the growth rate as reflected
in the amount of tissue that is formed at each station and consequently a differentiated
thickness on the layers of annual growth. Therefore, at the growth ring scale of observation
(meso scale; 1-10 mm), each ring comprises two main layers, one corresponding to the EW

and another corresponding to the LW , as can be seen in Figure 1.5. As the EW is formed
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during the spring, the structure of tracheid cells is characterised by large diameter thin
walled while the LW has small cell diameters thick-walled. The transition between the
EW and LW may be more or less smooth (in some cases it is even possible to distinguish
a transition zone) while between the LW and EW of the following year the transition
is always abrupt, and therefore well defined, due to the vegetative cessation that occurs
during Winter.

At this scale of observation, the heterogeneity of wood structure becomes relevant,
firstly, due to the large difference in stiffness between the tissues that make up the two
layers that constitute a ring, and on the other hand, due to the presence of rays wrapped in
parenchyma cells oriented in the radial direction and the presence of resin ducts oriented
parallel to the fibre. The cell structure arrangement itself, more aligned in the radial
direction and more interspersed in the tangential direction, contributes to the anisotropy
of the material in this plane and implicitly to the wood mechanical response.

Within a ring, zooming to a single EW or LW layer, one can access to the cell scale
(10-100 µm), where their size and geometry play an important role on the heterogeneity
characterisation. Therefore, at this scale, wood is usually analysed and modelled as a cel-
lular structure, applying unit cell models based on beam theory with different geometrical
parameters to characterise the rigidity of wood.

1.1.5 Cell wall scale

On the scale of sub-microscopic observation (0.1-10 µm), the wood cell wall structure
can be observed, whose basic unit, the microfibril, is only visible using electron microscopy,
reaching the nanoscale (10−3 µm). The microfibril is a grouping of cellulose molecules
chains (C6H12O5)n (Fig. 1.6), where n (degree of polymerisation) equal to 5000-10000
(Haygreen and Bowyer, 1982) and hemicellulose molecules, strengthened by the lignin
matrix. The microfibrils have rectangular section with 100-300 Å wide and 50-100 Å
thick and several microns long. The subsequent aggregation of microfibrils bundles in
layers with 300-600 Å reveals itself in the form of plates or layers that constitute the cell
wall.

Figure 1.7 shows the structure of the cell wall of a wood fibre, which consists of the
following layers: a tinny primary wall (P) and a thick secondary wall (S) divided into three
sub-layers (S1, S2 and S3). The connection between two adjacent cells is assured by the
middle lamella (M) forming a structure of cell aggregates. The middle lamella is chemically
characterised by the predominance of lignin which is a substance of phenolic nature, also
present in the primary wall of adjacent tracheids, functioning as the cement binder. The
primary wall is highly lignified and contains a considerable amount of hemicelluloses.
According to (Kollman and Côté Jr., 1984), in this layer the cellulose content is relatively
low, not exceeding 20 to 25%, and the microfibrils have no preferred orientation. In the
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Figure 1.5: Annual rings and earlywood/latewood layers: meso scale.

secondary wall, predominant substances are cellulose, hemicelluloses and lignin, this one
being scattered or associated to the hemicelluloses and to the cellulose. The S1 and S3

layers are formed by microfibrils spirals whose deviation to the tracheid axis varies between
50◦ and 90◦. In contrast, the S2 layer shows the microfibrils oriented almost parallel to the
same axis, with a deviation of only 10◦ to 30◦. Furthermore, the S2 layer is the thickest
among the layers of the secondary wall (3 to 15 times thicker than the S1 and S3 together)
hence, it has a high influence on physical and mechanical behaviour of wood. On cells
of mature wood, the microfibril angle of the S2 layer is approximately 7◦ or less, while
on the juvenile wood (as on compression wood) this angle may be up to 45◦ (Jozsa and
Middleton, 1994).

From its chemical composition, wood can be defined as a reinforced composite, whose
mechanical behaviour is a combination of high elasticity of the cellulose under short-term
loads and plastic flow of the hemicelluloses and lignin under long-term loads, which is
different from most other structural materials (Jeong, 2008).
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Figure 1.6: Fibrils e microfibrils: arrangement and composition.

Figure 1.7: Cell wall structure: M) middle lamella; P) Primary wall; S1) Secondary wall
(external layer); S2) Secondary wall (middle layer); S3) Secondary wall (internal layer);
W) lumen (adapted from (Tsoumis, 1991).
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1.1.6 Conclusions

Trees can be distinguished by their anatomical structure into softwood and hardwood
species. Pinus pinaster, was selected as the material for this work, because, it is the
most relevant specie in our country, both from the economic and social points of view.
According to 2010 data from AIFF, the pine market in Portugal represents 62% of the
Forestry VAB, with a sales volume of almost 3500 million euros, from which 927 million
euros in exportation and accounts for about 65000 direct manufacturing jobs, involving
89% of the industry. Furthermore, maritime pine is the support of the majority of indus-
tries including panels industry, specific segments of the cellulose industry, the industries
of pallets and a large number of small and medium enterprises of forestry and sawmills.
The anatomical structure and the mechanical behaviour of wood can be analysed hierar-
chically at several length scales. Models to predict mechanical properties of wood at the
macro scale level could be improved by including the intra-ring characteristics but little
research has explored the uncertainties of mechanical properties at the EW and LW lay-
ers (Jeong, 2008). In this work, wood will be analysed at the mesoscopic scale. At this
scale, wood is modelled as a continuous (solid) and inhomogeneous material, consisting
of alternate layers of EW and LW . In EW , the cells are characterised by thin walls and
large lumens, whilst in LW , the walls are thicker and lumens are smaller. Within an
individual growth ring, mechanical properties will follow that variation (Bigorgne, 2011).
It is relevant to know these sets of local properties since they can play an important role
in applications such as fracture mechanics (Dourado et al., 2008) to better understand
fracture mechanisms, of wood joints by means of crack propagation (Santos et al., 2009)
and wood machining, for instance.

1.2 Mechanical tests for wood characterisation in the
transverse plane

1.2.1 Tensile tests

The elastic moduli of wood perpendicular to the grain (ER and ET ) are considerably
lower than the one parallel to the grain (EL). Usually, the proposed tensile tests for
wood transverse stiffness characterisation (e.g., ASTM D143, 2007) only consider the
strength evaluation. As an alternative to these standards, some authors have proposed
different approaches, which consider the orthotropic behaviour of wood (Aicher et al.,
2001; Pereira, 2005). Particularly, Pereira (2005) proposed two specimen geometries for
radial and tangential characterisation, which can be observed in table 1.2(a) and (b)
respectively. The tangential sample is made from two pieces of wood glued together
in order to obtain a specimen with double symmetry. The uniaxial stress-strain field
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Table 1.2: Classical mechanical tests for wood characterisation in the transverse plane.

Mechanical test Elastic properties
(a)
Tensile test in the R
direction
(Pereira, 2005)

ER, νRT

(b)
Tensile test in the T
direction
(Pereira, 2005)

ET , νTL

(c) Off-axis tensile test
(Garrido, 2004) GRT

(d)
Transverse compres-
sion test (Simon,
2009)

ER, νRT

(e)
Iosipescu shear test
(Xavier, 2003)

GRT

(f)
Arcan shear test
(Oliveira, 2004)

GRT
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generated from wood mechanical response to the perpendicular tensile load, allow getting
the engineering constants by applying the equations (1.1), where 1− 2 ≡ R− T , P is the
applied load, A is the initial cross-section area, εi (i = 1, 2) is the strain component in
the i direction, E is the Young’s modulus and ν is the Poisson’s ratio.

E1 =
P/A

ε1
and ν12 = −ε2

ε1
. (1.1)

However, if the annual growth rings curvature is sharp across the region of interest
(ROI) of the specimen a heterogeneous stress-strain field can occur as is stated by different
authors (Aicher et al., 2001; Pedersen et al., 2003). Moreover, the degree of heterogeneity
increases with the anisotropy ratio ER/ET and it is also dependent on the shear modulus
of the material. Lower values of the shear modulus will raise the effect of the ER/ET ratio
(Aicher et al., 2001; Pedersen et al., 2003). Pereira (2005) has proposed a numerical cor-
rection factor as a way to account with both stress and strain heterogeneous distributions
for the properties determined directly from Eqs. (1.1).

1.2.2 Compression tests

The behaviour of wood in compression perpendicular to grain has been studied by
several authors (Bigorgne, 2011; Gibson and Ashby, 1997; Majano-Majano et al., 2012;
Nairn, 2007; Shipsha and Berglund, 2007; Simon, 2009). Different specimen dimensions
and loading cases, leading to different stress distributions and stress-strain responses have
been employed (see STEP, 1996, Figure 4, p. IV-2-4). As for the case of tensile tests
carried out perpendicularly to the grain, the elastic properties of wood in transverse com-
pression can be influenced by both shear coupling effects and by the cylindrical symmetry
of the annual rings pattern. Simon (2009), held some compression tests on Picea speci-
mens at macro scale, whose configuration can be seen in table table 1.2(d). In this test,
the load applied to the specimen has approximately 45 degrees with the annual rings di-
rection. As the softwoods are known by their low shear modulus compared to their radial
and tangential stiffness, the intention was to take advantage on this relative weakness
based on the heterogeneous strain fields on the central region of the sample in RT plane.
Bigorgne (2011) has also made some studies on Picea applying standard compressive tests
on the RT plane and at meso scale. In a more recent work, Majano-Majano et al. (2012)
proposed a test method consisting of three different uniaxial compression loads application
over the same rectangular prismatic specimen. The loads were applied along the three
different directions defined by the edges of the specimen, which will define the general axes
(xyz). A key point here was that the orientation of the material coordinate system (LRT)
was not coincident with any of the three specimen directions. With this configuration,
the compression loading applied along only one general axis, produces normal and shear
stresses along the local material axes LRT. Their corresponding elongations and angular
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distortions can therefore be measured simultaneously by a 3D optical digital measurement
system and the material parameters determined based on an inverse method for obtaining
the complete compliance matrix.

1.2.3 Shear tests

The characterisation of wood shear mechanical behaviour it’s been a problem of ex-
perimental mechanics whose complexity as to do with the difficulty to define appropriate
tests for obtaining a pure and uniform shear state. Some of the most relevant works on
wood shear properties identification were developed under the application of three differ-
ent tests: off-axis tensile, arcan and iosipescu. In the next sub-sections a review on them
will be presented.

1.2.3.1 Off-axis tensile test

The off-axis tensile test was firstly proposed by Chamis and Sinclair (1977) for unidi-
rectional fibrous composites. Lather, other studies with major developments were under-
taken also on fibrous composites (Kawai et al., 1997; Pierron and Vautrin, 1996; Pierron
et al., 1998; Pindera and Herakovick, 1986; Sun and Berreth, 1998; Sun and Chung,
1993). The application of this test to clear wood was also investigated by several authors
(Ebrahimi and Sliker, 1981; Liu, 2002; Sliker and Yu, 1993; Xavier et al., 2004; Zhang and
Sliker, 1991). The specimen consists basically of a rectangular coupon, whose geometrical
directions (x, y) make an angle with the orthotropic directions of the material (1, 2) as
illustrated in the schematic representation of the off-axis tensile test in table 1.2(c). When
a uniform and uniaxial load (P ) is applied at the specimen ends along its longitudinal di-
rection (x) in the central cross-section, the in-plane stress state, considering the specimen
coordinate system, is equal to,

σxx =
P

A
, σyy = σxy = 0 (1.2)

where A is the cross-section area of the specimen (with A = w × t ). Starting from the
equation (1.2) and using classical formulae of matrix transformation, the stress compo-
nents in the material coordinate system (1, 2) can be written as

σ1 =
P

A
cos2 α, σ2 =

P

A
sin2 α, σ6 =

P

A
cosα sinα. (1.3)

representing the biaxial state of stress in the material axes, dependent on the off-axis angle
generated by the initial uniaxial state of stress. To maximize the effect of the load on the
material stress components and thus its shear behaviour, the best angle must be defined
preliminarily. This calibration procedure can be achieved regarding to either the stiffness
and strength properties of the material by evaluating the best angle corresponding to the
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maximum ε6(α)/εx ratio (ε6 is the shear strain in the material axes and εx the strain
along the specimen longitudinal direction) (Chamis and Sinclair, 1977) and normalising
the stress components with respect to the material strength parameters and evaluate their
variation from the α angle: σ1(α)/X

+, σ2(α)/Y
+ and σ6(α)/S, where X+ and Y + are

the transverse tensile strengths and and S is the shear strength (Alloba, 1997).
During the experimental procedure, specimens are clamped to the testing machine

yielding some end effects on gripping zone traduced by the lack of rotation of the spec-
imens. This constraint usually contributes to nonuniform strain field generation at the
central region of the samples. To address this limitation, specimen faces at the gripping
zone are reinforced by end tabs. To get the best result on the correction of the earlier
mentioned localised end effects, oblique end tabs must be used instead of rectangular ones
to avoid S-shape deformation of the specimen (Pierron and Vautrin, 1996; Pindera and
Herakovick, 1986). In this case some authors have been proved that a uniform state of
stress can be achieved across a larger region of the specimen (Kawai et al., 1997; Pierron
and Vautrin, 1996; Pierron et al., 1998; Sun and Berreth, 1998; Sun and Chung, 1993).
Thus, the correct identification of the shear modulus can be reached from

G12 =
σ6

ϵ6
. (1.4)

According to Sun and Chung (1993) the angle of the end tabs (β) can be determined
by

cot β = −S16

S11

(1.5)

where the Sij (i, j = 1, 6) are the elements of the compliance matrix over the specimen
coordinate system.

1.2.3.2 Iosipescu shear test

The iosipescu shear test was introduced in 1967 by Iosipescu for isotropic materials
study. Since the 80s, has widely been used on fibrous composite materials (Adams and
Walrath, 1987; Ho et al., 1993; Ifju, 1994; Morton et al., 1992; Pierron, 1998; Pierron
and Vautrin, 1994; Pindera et al., 1987, 1990; Walrath and Adams, 1983) and was even
adopted as a standard test (ASTM D5379, 1993). In 1991, it was applied for the first time
to the wood shear behaviour identification, by Janowiak and Pellerin (1992), followed by
several other authors for different species (De Magistris and Salmén, 2005; Dumail and
Salmén, 2001; Dumail et al., 2000; Liu, 2000; Xavier et al., 2004; Yoshihara et al., 1999).
On table 1.2(e) a schematic representation of the Iosipescu test method is presented. The
sample consists of a small parallelepiped with two symmetric V-notches at its centre. Dur-
ing test procedure, the vertical cross-head movement of the testing machine is transferred
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into a predominant shear loading at the central region, by a proper fixture. As the specific
geometry based on the two notches allows a quasi-uniform distribution of the shear stress
in that region, the mean shear stress (σ6) is given by:

σ6 =
P

A
(1.6)

where P represents the resultant of the vertical load applied to the specimen, and A the
area of the smallest cross-section between the notches (A = d× t , in table 1.2(e)). As the
shear strain (ε6) it is usually measured with a biaxial rosette, bonded at the centre of the
specimen at ±45◦ with respect to the specimen longitudinal axis. Assuming that the shear
stress is uniform in the section between notches, the shear modulus can be determined as

Ga
12 =

σ6

ε6
. (1.7)

However, several authors have shown that neither the stress distribution between V-
notches nor the strain distribution over the area covered by the rosette, are uniform (Ho
et al., 1993; Morton et al., 1992; Pierron, 1998; Pindera et al., 1987). Thus, the shear
modulus identified from equation (1.7) is an apparent value. To overcome this limitation,
numerical correction factors have been proposed by Pierron (1998) for the correct shear
modulus determination:

Gc
12 =

σO
6

P/A

εsg6
εO6

Ga
12 = CSGa

12, (1.8)

where Gc
12 is the efective shear modulus, σO

6 the shear stress value at the centre of the
specimen, P/A the average shear stress between the notches, εsg6 the shear strain measured
by the rosette, εO6 the shear strain at the centre of the specimen, CS are the shear stress
correction factors determined by finite element analyses. Whilst C factor quantifies the
degree of heterogeneity of the shear stress distribution between the notches, the S factor
takes into account the heterogeneity of the shear strain distribution over the gauge area.
For P. pinaster specimens oriented in the LR, LT and RT planes, the CS correction factor
was determined respectively equal to 0.96 (−4%), 0.91 (−9%) and 1.02 (2%) (Xavier et al.,
2003, 2004). Regarding to this, it can be concluded that the error in the shear modulus
evaluation by using equation 1.7, is smaller or of the same order of magnitude of the scatter
usually found experimentally in the characterisation of wood mechanical properties due
to its peculiar variability.

The data reduction method presented above assumes that both stress and strain distri-
butions are constant through the thickness of the specimen. However, some authors (Ifju,
1994; Morton et al., 1992; Pierron, 1998) have pointed out that strain measurements on
both front and back surfaces of the specimen can be significantly different, thus leading to
an additional scatter in the identification of the shear modulus. This effect assumes more
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relevance when testing thick specimens or when the fibres direction is oriented parallel
to the loading direction. Although, Pierron (1998) has demonstrated that this effect can
be minimised by measuring the shear strain on both faces of the specimen and take their
average for the determination of the shear modulus of the material.

1.2.3.3 Arcan shear test

The Arcan test was first proposed for the shear characterisation of plastic materials
by Goldenberg et al. (1958). These authors proposed an S shaped specimen with a notch
whose geometry leads to a predominant shear stress state in the transverse section of the
specimen. Afterwards, both in the field of fibre-reinforced composite materials (Arcan
et al., 1976; El-Hajjar and Haj-Ali, 2004; Hung and Liechi, 1997; Mohr and Doyoyo, 2003;
Voloshin and Arcan, 1980) as well as for clear wood specimens (Liu and Ross, 2005;
Oliveira, 2004; Rammer and Hernandez, 1988), the configuration was substituted by a
butterfly shaped specimen. Oliveira (2004) configuration test is shown in table 1.2(f). The
specimen is attached to a specific fixture, consisting of two separated supports mounted
in a butterfly shape, used to impose a predominant shear stress across the central part
of the specimen. This mooring system was emphasised on several studies (El-Hajjar and
Haj-Ali, 2004; Hung and Liechi, 1997; Mohr and Doyoyo, 2003; Oliveira, 2004), since
it has important effects on the specimen mechanical response. From the point of view
of the experimental measurements, the Arcan test is rather close to the Iosipescu test,
once both load and gauge strains are measured at the central region of the specimen.
Afterwards, the average shear stress and the average shear strain are determined from
those measurements. Finally, the shear modulus in the material coordinate system is
simply determined through equation 1.8.

1.3 Spatial variability of wood structure and properties

1.3.1 Introduction

Wood is a material with biological origin, whose properties varies from species to
species and, within species, from individual to individual. The variability of wood prop-
erties within species may be associated with genetic factors, soil and climate conditions,
silvicultural practices, among other factors that affect the growth rate of the tree. Since
most of the pine production is used for structural purposes, whether in the form of beams,
joists, pillars, floors or other structural components subjected to stresses of varying in-
tensity, the most interesting properties for wood structure designers, are the modules, the
crush strength and the toughness of wood, featuring its rigidity and resistance. Because
wood exhibits different properties in different directions (anisotropy), for an appropriate
characterisation of its mechanical behaviour, it is necessary to take into account a large
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number of analysis parameters, associated with the properties mentioned. Reducing them
for only a few key parameters, sufficient to define the quality of wood would be of great
interest.

As already mentioned in section 1, the most relevant aspect of the wood anatomy is
its hierarchical organization at different scales, ranging from structural level, typical of
structural applications, until the nano scale layers of the cell wall. Is this hierarchical
structure which gives wood the heterogeneity, and explains its variable mechanical be-
haviour and its anisotropy. For example, in the longitudinal direction, the rigidity and
strength of timber are large, when compared with other materials, if resistance is consid-
ered in relation to the material weight, while in the perpendicular directions is relatively
soft and less resistant.

1.3.2 Sources of variability

It is known that almost all the characteristics of softwood vary significantly from
the pith to the cambium (Lousada et al., 1994; Machado and Cruz, 2005). In terms of
density, it follows a pattern of variation, increasing in the cambium direction, largely due
to the formation of juvenile wood near the pith, through the influence of the crown of the
tree, during youth (from 5 to 20 years). Juvenile wood (Figure 1.8) is characterised by
having low density, grain deviation, low percentage of LW, shorter tracheids and thinner
cell walls in comparison with the wood formed in the outer layers called mature wood
(Lousada et al., 1994; Schweinbruger, 2007).

The results of Machado and Cruz (2005), showed a strong and consistent effect of
the distance to pith on all mechanical properties studied, mainly because of the juve-
nile/mature wood heterogeneity influence on wood properties variability. A trend for
the decrease of mechanical properties along the stem, from bottom to top, was detected.
Moreover, they observed a general increase of strength and stiffness for distance to pith,
from 10 to 90 % of the trunk radius. Also (Dumail and Castéra, 1997), studied the within
tree variability related with juvenile wood occurrence on Maritime pine to demonstrate
a decrease from the base to the top of the tangential shrinkage and the anisotropic ratio
between RT dimensional variations. In another study of the same species, Dumail et al.
(1998) concluded that the within-tree variations are significant for hardness, energy re-
lease rate and basic density when considering the radial position effect. They found a
strong relationship between hardness and basic density. Summarizing, juvenile wood is
an important wood quality attribute because it can have lower density and always has
shorter fibres, larger fibril angle, and slightly lower cellulose content than mature wood.

As a tree grows, it responds to the environment in many ways. It inevitably develops
anomalous features (defects) that reduce the strength of lumber cut from it. The worst of
these defects are knots, cross grain (spiral, diagonal, interlocked and wavy) and reaction
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Figure 1.8: On stem juvenile/mature wood distribution(adapted from (Jozsa and Middle-
ton, 1994)

wood. Knots in particular, reduce wood strength due to the occurrence of grain devi-
ation, since the fibres of the node are generally perpendicular to the remaining timber.
Furthermore it is very common the existence of cracks along the dried nodes, which re-
duces the material strength. Cross grain is a generic term describing wood fibres that are
not aligned with the stem’s longitudinal axis. Severe cross grain occurs when trees that
have grown spirally or with pronounced taper are cut for lumber. Some cross grain is the
inevitable result of cutting prismatic, rectangular pieces from a tapered mass of concen-
tric cylinders. Cross grain drastically reduces the tensile strength of the lumber and can
precipitate abrupt and early bending failures. Moreover, the elastic properties are signif-
icantly influenced by the existence of reaction of wood, which is normally associated to
marrow eccentricity, and results from stem exposure to asymmetric effort, taking tree to
produce (on the side subjected to compression) smaller and rounded tracheids with much
thicker walls, particularly at S2 layer where occurs large concentrations of lignin, as well
as a great microfibril angle. This kind of wood is harder, heavier and more resistant to
compression but less resistant to tensile stresses, being also more fragile. Most softwoods
grow compression wood on the underside of the branches.

There are other sources of variability associated to the wood processing. For example,
during wood drying, there may be checks, shakes, and splits which are fractures in the
wood that open as the lumber loses water (Simpson, 1991). Checks align with the longitu-
dinal axis of the piece and are normal to the growth rings. Splits run through checks and
are usually found at the ends of timber. The worst of the splits are often trimmed off after
the lumber is dried as a final step in cutting lumber. Improper kiln-drying can accentuate
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splitting at the ends. Shakes are thin voids within the tree that seem to occur naturally
as the tree is growing. Shakes also align with the axis of the tree, but they lie in plane
with the growth rings. It is as if the tree had delaminated slightly at a transition between
EW and LW . Timber’s strength relies upon the connection between adjacent wood cells.
Though checks, shakes, and splits may close, the cells never reconnect across the frac-
ture. By physically separating pieces of lumber, checks, shakes, and splits are detrimental
in many ways. Just what and how much effect these separations have, depends on the
location and severity of the defects, and the end use of the timber.

1.3.3 Variability versus quality

Typically, wood quality is closely related to the variability that she presents, which in
turn is related to its heterogeneity. Since the amount of variability is a key issue, both in
the processing and in the performance of timber, the variation of basic density, stiffness and
strength must be known for an intelligent application of wood. In practice, this variability
of properties must be translated into quality grades according to their relevance for the
intended use. In Portugal, structural timber of maritime pine is classified only with visual
grading rules into two main grades: grade E for structural timber suitable for general
applications and grade EE (corresponding to the higher strength) for structural timber to
be applied in special structures. This classification is based on the Portuguese standard
NP4305 (1995) that is compatible with the Eurocode 5 (ENV1995-1-1) (STEP, 1996).

According to Jozsa and Middleton (1994), "wood quality is defined in terms of at-
tributes that make it useful for a given end use", so it can only have meaning when
the final product and its use are known, due to their relationship with the cumulative
effect of various wood properties in a product. For structural framing, joists, planks,
beams, stringers, posts and other lumber products, strength and stiffness are the main
characteristics to consider on grade definition. From the natural grade-setting properties,
density is taken as one of the most relevant, because it provides an excellent means of
predicting end-use properties of wood such as strength, stiffness, hardness, heating value,
machinability, pulp yield an paper making quality. Not only the mean density but also
the density variation can be important as a measure of wood suitability for some en uses.
Regarding the same authors, another important natural grade-setting characteristic has
to do with the amount of juvenile wood on stem. The proportion of juvenile/mature wood
is an important wood quality attribute, because, it can have lower density and always has
short fibres, larger fibril angle, and slightly lower cellulose content than mature wood. A
higher proportion of juvenile wood can result in reduced lumber strength. In structural
uses, where load bearing capability is vital, also the presence of compression wood can be
used to downgrade timber because of its harmful effects on strength and shrinkage.

From Lousada et al. (1994), density is one of the most important indicator of wood



26 CHAPTER 1. CHARACTERISATION OF THE TRANSVERSE LINEAR . . .

quality since, in addition to its strong correlation with other properties such as mechanical
strength, shrink, resistance to biodegradation and paper quality, and provides very precise
quantification of the amount of raw material present in a piece of wood. Tsehaye et al.
(2000), also states that the density has always been considered the best parameter to
define the intrinsic quality of wood, if is assumed as an indicator of strength, stiffness and
other properties. However, as a result of their work comparing the density and stiffness
parameters as parameters of wood selection for structural purposes concluded that rigidity
is more adequate than density for measuring wood quality for structural applications.

1.3.4 Conclusions

Overall, at the individual level, the characteristics of timber depend on the relative
position to the tree axis (in R direction), and with the relative position to the base of
the stem (in L direction). The patterns and causes of density and mechanical properties
variation have been widely studied in planes parallel to the grain, while on the perpendic-
ular planes there is still little information available. Furthermore, the greatest differences
occur in the radial direction (Baillères et al., 2005). On the basis of what was exposed on
the wood anatomy, we can easily understand that the variability at the growth rings scale,
where the timber may be considered as a bi-composite, is considered to be predominant
in this context, because of the wide variation in geometric parameters of the cells and
their typical arrangement along the R e T directions, and in particular due to the cell
wall thickness variations, reflecting itself in all other scales.
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Chapter 2

Material parameter identification from
full-field measurements

In this chapter, identification methods for extracting relevant constitutive parameters
based on full-field measurements will be reviewed. Moreover, a survey on full-field optical
techniques is presented, given emphasis on digital image correlation.

Contents
2.1 Identification methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.2 Ring-oriented tensile test at the meso scale . . . . . . . . . . . . . . . . . 35
2.1.3 Anisotropic-based method . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.4 Virtual fields method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.4.1 Constitutive equations . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.4.2 Growth ring segmentation . . . . . . . . . . . . . . . . . . . . . . 42
2.1.4.3 Principle and choice of virtual fields . . . . . . . . . . . . . . . . 43

2.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Full-field optical techniques . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.2 Digital image correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.3 Strain field reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



34 CHAPTER 2. MATERIAL PARAMETER IDENTIFICATION FROM FULL- . . .

2.1 Identification methods

2.1.1 Introduction

The material parameters figuring in constitutive equations are determined experimen-
tally using suitable mechanical tests (Hodgkinson, 2000). The typical inverse problem
solved in experimental solid mechanics, is the characterisation of unknown constitutive
parameters assuming to know specimen geometry, boundary conditions (or more pre-
cisely, resultant forces and moments) and the strains (or displacements). Standard tests
are conventionally performed yielding to a homogeneous or simple state of stress-strain
across the gauge area. Conveniently, this approach leads to closed-form solutions (explicit
equations) relating the unknown material parameters to load and strain measurements
(statically determined tests). In this case, punctual devices, such as strain gauges, are
usually employed for measuring the strain state. However, in practice, the implementa-
tion of these tests can be difficult due to for instance end-effects, especially for anisotropic
and heterogeneous materials (Pierron et al., 1998). Moreover, independent test methods
are needed to deal with non-isotropic behaviour (Guitard, 1987), which demands an extra
effort in both time and cost from a practical point of view.

The recent development of full-field optical techniques has enabled a new glance on
mechanical tests for material characterisation (Grédiac, 2004). The basic assumption is
that heterogeneous and complex strain fields are generated across the region of interest by
proper specimen geometry and loading system. In this case, several material parameters
can be activated at once in the mechanical response of the material (statically undeter-
mined tests). By means of a suitable identification strategy all the involved material
parameters can be determined. A few approaches exist in the literature for addressing
this problem. A recent survey of this methods is presented in Avril et al. (2008). The
most familiar approach may be the finite element model updating method (FEMUM).
It consists in building a finite element model of the mechanical test and considering a
cost function of the difference between numerical and experimental data (displacement or
strain) over the region of interest. The minimisation of this cost function with respect
to the unknown material parameters (design variables), iteratively updated in the model,
provides the solution to the problem. This method is flexible and does not specifically
require full-field measurements. However, as it is iterative, it can be time consuming and
the convergence dependent on the initial guess of parameters. Moreover, accurate bound-
ary conditions need to be modelled to avoid a bias on the identified parameters. The
presence of noise in the measurements will also affect the robustness of the updating rou-
tine. To overcome the drawbacks associated to the FEMUM, alternative approaches have
been proposed. Among them, there is for instance the anisotropic-based method (AbM)
(Majano-Majano et al., 2012), and the virtual fields method (VFM) (Pierron and Grédiac,
2012). The principle of these identification strategies will be presented in the following
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when applied to the global and local identification of the transverse elastic properties of
wood at the meso scale based on ring-oriented tensile tests.

2.1.2 Ring-oriented tensile test at the meso scale

Standard tests for wood mechanical characterisation are based on simple specimen
geometries and elementary loading cases relying on homogeneous or simple stress-strain
states at the gauge section, in which closed-form solutions exists for parameter identi-
fication. Conversely, in this work, a single ring-oriented tensile test is proposed for the
characterisation of wood properties in the transverse plane defined by the radial (R)
and tangential (T) orthotropic directions. The mechanical model of this test method is
schematically shown in Figure 2.1. A rectangular specimen with nominal dimensions L

(length)× w (width) × b (thickness) (b < w < L) is submitted to a uniaxial stress state
at its ends given by σxx(t) = F (t)/wb, where F (t) is the resultant applied load at the
instant t (measured experimentally using a load cell) and wb is the nominal cross-section
area.

If a uniaxial tensile test is carried out on a prismatic specimen (Fig. 2.1(b)), the area
integral of the longitudinal stress over each cross-section (free-body diagram) must be
equal (in equilibrium) with the applied axial loading. This statement can be written as

σxx(x, t) =
1

wb

∫ b/2

−b/2

∫ w/2

−w/2

σxx(x, y, z, t)dydz =
F (t)

wb
(2.1)

where σxx(x, t) is the average longitudinal stress (engineering stress) at a given instant
t, (y, z) are coordinates over the cross-section and x is the longitudinal axis along with
tension is applied. It is worth noting that the integral constraint is less restrictive than the
purely uniform stress assumption, since Eq. (2.1) is still valid even if σxx is not uniform
across the cross-section. In plane stress assumption, σxx will be a function of only x and
y coordinates. For a given cross-section, the equilibrium statement can then be written
as ∫ w/2

−w/2

σxx(x, y)dy =
F

b
(2.2)

2.1.3 Anisotropic-based method

Let us assume a plane stress approach (i.e., σzz = σxz = σyz = 0). Moreover, polar
coordinates r and θ will be used, as represented in Fig. 2.1(a); this coordinate system
is more realistic with regard to the geometrical arrangement of the circumferential ring
wood structure across the transverse plane. Cartesian and polar coordinates of a point P
in the plane are simple related by
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Figure 2.1: (a) polar coordinate system; (b) mechanical model of the tensile test.

x = r cos θ and y = r sin θ. (2.3)

At a given point P on the plane, a polar orthonormal basis (er, eθ) is defined by (Fig. 2.1(a)){
er

eθ

}
=

[
cos θ sin θ

− sin θ cos θ

]{
ex

ey

}
= [Q]

{
ex

ey

}
(2.4)

where [Q] represents the transformation matrix from cartesian to polar coordinates, in
which the first and second rows contains, respectively, the cosine direction of the unit
vectors er and eθ in the Cartesian basis (ex, ey). This transformation matrix is proper-
orthogonal: [Q][Q]T = [Q]T [Q] = [I], with det([Q]) = 1.

In a first approximation, it is assumed that the material is continuous, homogeneous
and governed by a linear elastic orthotropic behaviour. In the case where material and
specimen coordinate systems are coincident (i.e., θ = 0 in Fig. 2.1(b)), the Hooke’s law
writes as (in Voigt notation)

εrr

εθθ

εrθ

 =


S11 S12 0

S21 S22 0

0 0 S66



σrr

σθθ

σrθ

 ⇒ {ε} = [S] {σ} (2.5)

where {ε} is the reduced strain pseudo-vector, {σ} is the reduced stress pseudo-vector,
and [S] is the reduced compliance matrix in the material coordinate system, defining at
each material point a linear relationship between stress and strain. The components of
the compliance matrix can be written explicitly as a function of engineering constants
determined directly from experimental test methods as (Jones, 1999)

[S] =


1/E1 −ν21/E2 0

−ν12/E1 1/E2 0

0 0 1/G12

 . (2.6)
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where Ei are Young’s modulus, νij the Poisson’s ration and Gij the Shear modulus (i, j =
1, 2). Since the compliance matrix is symmetric (Sij = Sji), the following relationship
must be verified νij/Ei = νji/Ej (i, j = 1,2).

Let us move now to an off-axis tensile test configuration in which the material coor-
dinates system (er, eθ) has a given angle (the off-axis angle θ in Fig. 2.1(a)) with regard
to the specimen coordinate system (ex, ey). In this case, the stress state in the material
coordinate system (e.g., polar coordinate system), [σ], is given with regard to the applied
stress state, [σ ′], by the following transformation rule of second-order symmetric tensors

[σ] = [Q][σ ′][Q]T , (2.7a)

with

[σ] =

[
σrr σrθ

σrθ σθθ

]
and [σ ′] =

[
σxx σxy

σxy σyy

]
. (2.7b)

In Voigt notation, Eq. (2.7) writes (with c = cos θ; s = sin θ)
σrr

σθθ

σrθ

 =


c2 s2 2cs

s2 c2 −2cs

−cs cs c2 − s2



σxx

σyy

σxy

 ⇒ {σ} = [Tσ] {σ ′} . (2.8)

In the same way, the strain pseudo-vector (in Voigt notation) in the material coordinate
system can be written as

εrr

εθθ

εrθ

 =


c2 s2 cs

s2 c2 −cs

−2cs 2cs c2 − s2



εxx

εyy

εxy

 ⇒ {ε} = [Tε] {ε ′} . (2.9)

The reduced transformation matrices of stress ([Tσ]) and strain ([Tε]) satisfy the following
properties

[Tσ]
−1 = [Tε]

T and [Tε]
−1 = [Tσ]

T . (2.10)

The transformation of the compliance matrix [S], between material (er, eθ) and spec-
imen (ex, ey) coordinate systems, can be deduced from the above stress (Eqs. 2.8) and
strain (Eqs. 2.9) transformations. Starting from Eq. (2.5) one gets

{ε} = [S] {σ} ⇔ [Tε] {ε ′} = [S][Tσ] {σ ′} ⇔ {ε ′} = [Tε]
−1[S][Tσ] {σ ′} . (2.11)

Therefore, in the off-axis configuration, the Hooke’s law in the specimen coordinate system
is given by
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εxx

εyy

εxy

 =


S ′
11 S ′

12 S ′
16

S ′
21 S ′

22 S ′
26

S ′
16 S ′

26 S ′
66



σxx

σyy

σxy

 ⇒ {ε ′} = [S ′] {σ ′} (2.12a)

where,
[S ′] = [Tσ]

T [S][Tσ]. (2.12b)

or in an expanding form
S ′
11 S ′

12 S ′
16

S ′
21 S ′

22 S ′
26

S ′
16 S ′

26 S ′
66

 =


c2 s2 cs

s2 c2 −cs

−2cs 2cs c2 − s2



S11 S12 0

S21 S22 0

0 0 S66




c2 s2 cs

s2 c2 −cs

−2cs 2cs c2 − s2

 .

(2.12c)
The compliance matrix in the specimen coordinate system for an arbitrary off-angle con-
figuration can be expressed as a function of engineering constants as (Jones, 1999)

[S ′] =


1/Ex −νyx/Ey ηx,xy/Gxy

−νxy/Ex 1/Ey ηy,xy/Gxy

ηxy,x/Ex ηxy,y/Ey 1/Gxy

 (2.13)

in which, by definition, ηi,ij = εi/εij and ηij,i = εij/εi. These constants are shear-extension
coupling coefficients1. The coefficient ηi,ij expresses the stretching in the i-direction caused
by shear stress in the ij-plane, whilst ηij,i characterised the shearing in the ij-plane caused
by normal stress in the i-direction.

From the anisotropic elasticity theory, it is possible to derive an explicit relationship
linking unknown compliance coefficients with specimen dimensions, loading configuration
and strain measurements as


c2 s2 cs

s2 c2 −cs

−2cs 2cs c2 − s2



εxx

εyy

εxy

 =


S11 S12 0

S21 S22 0

0 0 S66




c2 s2 2cs

s2 c2 −2cs

−cs cs c2 − s2



σxx

σyy

σxy

 (2.14a)

or, in compact form
[Tε] {ε ′} = [S][Tσ] {σ ′} (2.14b)

in which,

- [Tε] and [Tσ]: are transformation matrices whose elements are cosine directions defined
in function of the off-axis angle between material and specimen coordinates systems;

1These constants can also be called coefficients of mutual influence.
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- {ε ′}: lists the strain components across the gauge section;

- {σ ′}: is the applied stress state at the ends of the specimen.

In practice, the strain components at the gauge section ({ε ′}) can be determined by a suit-
able full-field optical method, as for instance, digital image correlation (see Section 2.2.2).
Let us assume herein that a specimen with an off-axis configuration is submitted to a
uniaxial stress (σyy = σxy = 0), as schematically represented in Fig. 2.1(b)

[σ ′] =

[
σxx 0

0 0

]
. (2.15)

The system of Eqs. (2.14) is undetermined since there are only three equations and even-
tually five unknowns (or at least four, if the compliance matrix symmetry is imposed at
this stage). Let us rewrite Eqs. (2.14) as a function of the unknown compliance matrix
as follows


σxxc

2 σxxs
2 0 0 0

0 0 σxxc
2 σxxs

2 0

0 0 0 0 −σxxcs




S11

S12

S21

S22

S66


=


εxxc

2 + εyys
2 + εxycs

εxxs
2 + εyyc

2 − εxycs

−2εxxcs+ 2εyycs+ εxy(c
2 − s2)


(2.16a)

or, in compact form
[A] {S} = {b} (2.16b)

One way to solve the linear system of Eqs. (2.16) is carry out at least two independent
tests with different off-axis angles

• Loading case 1 (off-axis angle θ1): [A1] {S} = {b1}
• Loading case 2 (off-axis angle θ2): [A2] {S} = {b2}

This approach yields to an overdetermined system of equations which can be solved with
regard to the compliance components ({S}) using the concept of pseudo-inverse. Generi-
cally, if m loading cases are considered, Eqs. (2.16) write

[A1]

[A2]
...

[Am]

 {S} =


{b1}
{b2}

...

{bm}

 (2.17a)
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or, in compact form
[R] {S} = {q} . (2.17b)

Finally, Eqs. (2.17) can then be solved as

{S} = ([R]T [R])−1[R]T {q} . (2.18)

2.1.4 Virtual fields method

2.1.4.1 Constitutive equations

To start with, let us assume herein a plane stress approach (e.g., σzz = σxz = σyz = 0).
Moreover, polar coordinates r and θ will be used, as represented in Fig. 2.1(a); this
coordinate system is more realistic with regard to the geometrical arrangement of the
circumferential ring wood structure across the transverse plane. Cartesian and polar
coordinates of a point P in the plane are simple related by

x = r cos θ and y = r sin θ. (2.19)

At a given point P on the plane, a polar orthonormal basis (er, eθ) is defined by (Fig. 2.1(a)){
er

eθ

}
=

[
cos θ sin θ

− sin θ cos θ

]{
ex

ey

}
= [a]

{
ex

ey

}
(2.20)

where [a] represents the transformation matrix from cartesian to polar coordinates, in
which the first and second rows contains, respectively, the cosine direction of the unit
vectors er and eθ in the Cartesian basis (ex, ey). This transformation matrix is proper-
orthogonal: [a][a]T = [a]T [a] = [I], with det([a]) = 1.

In a first approximation, it is assumed that the material is continuous, homogeneous
and governed by a linear elastic orthotropic behaviour. In the case where material and
specimen coordinate systems are coincident (i.e., θ = 0 in Fig. 2.1(b)), the Hooke’s law
can be written as (in Voigt notation)

σrr

σθθ

σrθ

 =


Q11 Q12 0

Q12 Q22 0

0 0 Q66



εrr

εθθ

εrθ

 ⇔ {σ} = [Q] {ε} (2.21)

where {σ} is the reduced stress pseudo-vector, {ε} is the reduced strain pseudo-vector,
and [Q] is the reduced stiffness matrix in the material coordinate system, defining at each
material point a linear relationship between stress and strain. The components of the
stiffness matrix can be written explicitly as a function of engineering contacts determined
directly from experimental test methods as (Jones, 1999)
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Q11 =
E1

1− ν21ν12
, Q22 =

E2

1− ν21ν12
(2.22)

Q12 =
ν12E2

1− ν21ν12
=

ν21E1

1− ν21ν12
, Q66 = G12.

where Ei are Young’s modulus, νij the Poisson’s ration and Gij the Shear modulus (i, j =
1, 2). Since the stiffness matrix is symmetric (Qij = Qji), the following relationship must
be verified νij/Ei = νji/Ej (i, j = 1,2).

Let us move now to an off-axis tensile test configuration in which the material coor-
dinates system (er, eθ) has a given angle (the off-axis angle θ in Fig. 2.1(a)) with regard
to the specimen coordinate system (ex, ey). In this case, the stress state in the material
coordinate system (i.e., polar coordinate system), [σ], is given with regard to the applied
stress state, [σ ′], by the following transformation rule of second-order symmetric tensors

[σ] = [a][σ ′][a]T , (2.23a)

with

[σ] =

[
σrr σrθ

σrθ σθθ

]
and [σ ′] =

[
σxx σxy

σxy σyy

]
. (2.23b)

In Voigt notation, Eq. (2.23) writes (with c = cos θ; s = sin θ)
σrr

σθθ

σrθ

 =


c2 s2 2cs

s2 c2 −2cs

−cs cs c2 − s2



σxx

σyy

σxy

 ⇔ {σ} = [Tσ] {σ ′} . (2.24)

In the same way, the strain pseudo-vector (in Voigt notation) in the material coordinate
system can be written as

εrr

εθθ

εrθ

 =


c2 s2 cs

s2 c2 −cs

−2cs 2cs c2 − s2



εxx

εyy

εxy

 ⇔ {ε} = [Tε] {ε ′} . (2.25)

The reduced transformation matrices of stress ([Tσ]) and strain ([Tε]) satisfy the following
properties

[Tσ]
−1 = [Tε]

T and [Tε]
−1 = [Tσ]

T . (2.26)

The transformation of the stiffness matrix [Q], between material (er, eθ) and specimen
(ex, ey) coordinate systems, can be deduced from the above stress (Eqs. 2.24) and strain
(Eqs. 2.25) transformations. Starting from Eq. (2.21) one gets
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{σ} = [Q] {ε} ⇔ [Tσ] {σ ′} = [Q][Tε] {ε ′} ⇔ {σ ′} = [Tε]
T [Q][Tε] {ε ′} . (2.27)

Therefore, in the off-axis configuration, the Hooke’s law in the specimen coordinate system
is given by

εxx

εyy

εxy

 =


Q′

11 Q′
12 Q′

16

Q′
12 Q′

22 Q′
26

Q′
16 Q′

26 Q′
66



σxx

σyy

σxy

 ⇔ {ε ′} = [Q ′] {σ ′} (2.28a)

where,
[Q ′] = [Tε]

T [Q][Tε]. (2.28b)

or in an expanding form
Q′

11 Q′
12 Q′

16

Q′
12 Q′

22 Q′
26

Q′
16 Q′

26 Q′
66

 =


c2 s2 −2cs

s2 c2 2cs

cs −cs c2 − s2



Q11 Q12 0

Q12 Q22 0

0 0 Q66




c2 s2 cs

s2 c2 −cs

−2cs 2cs c2 − s2

 .

(2.28c)

2.1.4.2 Growth ring segmentation

An image of the growth ring structure is shown in Fig. 2.2. This field of view corre-
sponds to the region where full-field measurements will be provided (in this case using
digital image correlation, see Section 2.2.2). The image of the growth ring structure will
be analysed using image processing and analysis tools in order to identify each constituent
in the structure. A binary or mask image can then be obtained, classifying earlywood
(EW), latewood (LW) and resin channels (RC) subregions as schematically represented
in Fig. 2.2. In a first approximation, resin channels will be removed and the identifi-
cation performed on EW and LW tissues. It is chosen here to associate a given set of
elastic properties ([Q]) to each sub-region. Therefore, the following relationship can be
established

[Q(x, y)] = [Qe]I1 + [Ql]I2 (2.29a)

(where e ≡ EW and l ≡ LW for simplification) and

I1 =

[
I(x, y)− I l(x, y)

Ie(x, y)− I l(x, y)

]
, I2 =

[
I(x, y)− Ie(x, y)

I l(x, y)− Ie(x, y)

]
(2.29b)
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where I(x,y) is the light intensity field (Fig. 2.2) and

Ie(x, y) =

{
1 if (x, y) ∈ EW

0 otherwise
, I l(x, y) =

{
1 if (x, y) ∈ LW

0 otherwise
. (2.30)

2.1.4.3 Principle and choice of virtual fields

The virtual fields method (VFM) is based on the principle of virtual work (PVW). In
absence of body forces and under static conditions, the PVW can be written as

−
∫
V

σ : ε⋆ dV︸ ︷︷ ︸
W ⋆

int

+

∫
∂V

T · u⋆ dS︸ ︷︷ ︸
W ⋆

ext

= 0 (2.31)

where σ is the Cauchy stress tensor, ε⋆ is the virtual strain tensor, T is the vector of
external surface tractions applied over the solid boundary ∂V and u⋆ is the virtual dis-
placement vector. Eq. (2.31) describes the static equilibrium of a body by balancing out
the internal virtual work (W ⋆

int) of internal loads and the external virtual work (W ⋆
ext) of

external loads, for any kinematically admissible (strain and displacement) virtual fields
(e.g., satisfying the boundary conditions and u⋆ being a function of class C1).

Let us assume herein a uniaxial plane stress approach (Eq. 2.2). Under this assumption
Eq. (2.31) simplify to

∫ w/2

−w/2

∫ L

0

σxxε
⋆
xx dxdy =

1

b

∫
∂V

T · u⋆ dS (2.32)

where L is the length of the gauge section. In developing the VFM, a relevant consti-
tutive equation must be assumed a priori and imputed in the PVW (Eq. 2.32). From
Eqs. (2.21), (2.24), (2.25), (2.29), in the material coordinate system, the following rela-
tionship holds

[Tσ]{σ′} = [Q][Tε]{ε′} (2.33a)

⇔ {σ′} = [Tε]
T [Q][Tε]{ε′} (2.33b)

⇔ {σ′} = [Tε]
T ([Qe]I1 + [Ql]I2)[Tε]{ε′}. (2.33c)
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Figure 2.2: (up) growth ring structure: image and histogram; (bottom) illustration of the
segmentation based on the histogram of the image.

From Eq. (2.33c), the σxx stress component can be written as

σxx = {εI}T [TI ] {QI} (2.34a)

where

{εI}[1×6] =
{
εxxI1 εyyI1 εxyI1 εxxI2 εyyI2 εxyI2

}T

(2.34b)

and

[TI ][6×8] =



c4 s4 0 0 0 0 0 0

0 c2s2 c2s2 0 0 0 0 0

0 0 0 −2cs(c2 − s2) 0 0 0 0

0 0 0 0 c4 s4 0 0

0 0 0 0 0 c2s2 c2s2 0

0 0 0 0 0 0 0 −2cs(c2 − s2)


(2.34c)

and
{QI}[8×1] =

{
Qe

11 Qe
12 Qe

22 Qe
66 Ql

11 Ql
12 Ql

22 Ql
66

}T

. (2.34d)
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Replacing Eq. (2.34a) into Eq. (2.32) the following equation is obtained

∫ w/2

−w/2

∫ L

0

{εI}T [TI ] {QI} ε⋆xx dxdy =
1

b

∫
∂V

T · u⋆ dS (2.35)

linking the unknown stiffness components for each EW and LW layers with strain field
provided by some full-field optical technique, global growth ring orientation, specimen ge-
ometry, applied loading and any kinematically admissible virtual displacement and strain
fields.

In order to solve Eq. (2.35) kinematically admissible virtual displacement and strain
fields must be chosen. In a first approach, these virtual fields were chosen as summarised
in Table 2.1. These virtual fields are illustrated in Fig. 2.3. Taking into account this set
of virtual fields, Eq.(2.35) can be written for a given cross-section as

∫ w/2

−w/2

∫ x0+δ

x0

{εI}T [TI ] {QI} dxdy =
δF (t)

b
(2.36)

where δ represents the gauge length over which DIC measurements will be actually avail-
able (Fig. 2.3). In this case, the virtual fields were conveniently chosen to cancel out the
integrals over the regions of the specimen were measurements were not provided. The
integral forms in Eq.(2.36) can be approximated by summation (e.g. using rectangu-
lar method) assuming that enough spatial density of measurements is provided by DIC
(spatial resolution)

1

nm

n∑
i=1

m∑
j=1

{εI(xi, yj)}T [TI ] {QI} =
δF (t)

b
(2.37)

where n and m are, respectively, the total number of data points in the horizontal and
vertical directions obtained by DIC. This form of the VFM is equivalent to write that
the average stress in each cross section is equal to the applied stress. Thus, for a given
cross-section (xi), Eq.(2.37) can be written as

1

m

m∑
j=1

{εI(xi, yj)}T [TI ] {QI} =
F (t)

b
⇔ [pi][1×8] {QI} = r. (2.38)

By taking all cross sections along the gauge length (i = 1, . . . , n) it follows that
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Table 2.1: Selection of virtual fields (after (Sutton et al., 2008)).

Domain(a) Virtual displacements Virtual strains

� 0 < x < x0 u⋆
x = 0, u⋆

y = 0 ε⋆xx = 0, ε⋆yy = 0, ε⋆xy = 0

� x0 < x < x0 + δ u⋆
x = x, u⋆

y = 0 ε⋆xx = 1, ε⋆yy = 0, ε⋆xy = 0

� x0 + δ < x < L u⋆
x = δ, u⋆

y = 0 ε⋆xx = 0, ε⋆yy = 0, ε⋆xy = 0

(a) where x0 is a given location within the gauge length (L) and δ is any length such
that x0 + δ < L.

Figure 2.3: Mechanical model of the tensile test and illustration of the selected virtual
fields.
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[p1]
...

[pn]

{
Q
}
=


r
...

r

 ⇔ [P ][n×8] {QI} = {R}[n×1]. (2.39)

Eq. (2.39) represents an overestimated system of equations that can be solved for the
unknown orthotropic stiffness parameters of EW and LW constituents. For the purpose
of identifiability and robustness of the method, however, additional information may be
required for the full characterisation of material parameters. Therefore, for a given set of
tests with different ring-orientation configurations, Eq. (2.39) can be built such as

[P1]
...

[Pt]

 {QI} =


R1

...

Rt

 ⇔ [P ][(n×t)×8] {QI} = {R}[(n×t)×1]. (2.40)

where t is the total number of independent tests. This last equation can then be solved
using the pseudo-inverse matrix as

{QI} = ([P ]T [P ])−1[P ]T{R}. (2.41)

2.1.5 Conclusion

A new approach for material parameter characterisation based on full-field measure-
ments was summarised in this section. Among different methods, the so-called anisotropic-
based method and the virtual fields method were chosen for tackle the problem of identi-
fication of global and local transverse elastic properties of wood at the growth ring scale.
The principle of these methods applied to the characterisation of wood at the meso scale
was presented.
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Table 2.2: Optical methods in experimental mechanics.

White-light techniques

Measurand(a) Periodic pattern Speckle pattern

ux, uy
(b) in-plane geometrical moiré digital speckle photography

(Cloud, 1995; Post et al., 1994) (Sjödahl, 1998)

grid method digital image correlation
(Surrel, 1999, 2004a) (Pan et al., 2009b; Sutton et al., 2009)

feature tracking method
(Dahl and Malo, 2009; Franke et al., 2007)

uz shadow and projection moiré –
(Cloud, 1995; Post et al., 1994)

grid projection –
(Le Magorou et al., 2002)

ux, uy, uz
(c) – stereo-correlation

(Orteu, 2009)

θx, θy(d) reflection moiré –
(Cloud, 2006)

deflectometry
(Surrel, 2004b)

Interferometric techniques

Measurand Diffuse light Diffracted light
ux, uy, uz speckle interferometry moiré interferometry

(Cloud, 1995) (Post et al., 1994)

εx, εy, εxy speckle shearography grating shearography
(Hung and Ho, 2005) (Lee et al., 2004)

(a) u - displacement; θ - slope; ε - strain
(b) the in-plane (ux, uy) measurements are coupled with the out-of-plane (uz) displacement
(c) the camera calibration is needed
(d) the slope measurements are coupled with position coordinates
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2.2 Full-field optical techniques

2.2.1 Introduction

Experimental mechanics typically rely on surface deformation measurements (plane
stress, plane strain or kinematic assumptions). Mechanical test methods are convention-
ally carried out using strain gauges (punctual) or extensometers (average). Data reduction
schemes (closed-form solutions) are then proposed for determining material properties as
a function of load, specimen dimensions and kinematic (displacement or strain) measure-
ments (Hodgkinson, 2000). More recently, full-field optical methods of displacement and
strain measurements have being proposed and increasingly used in experimental solid me-
chanics (Grédiac, 2004). In contrast to punctual or average techniques, these methods
provide full-field data and are contact-free. A survey of these techniques is summarised
in Table 2.2.

In white-light optical techniques, the geometrical deformation of a textured material
surface is retrieved by analysing the spatial variation of light intensity observed during
deformation (photometric measurements). It is assumed that the local luminance reflected
at a given point is constant throughout the material deformation (optical flow constraint).
Eventually, three classes of white-light techniques can be highlighted: (i) phase-measuring
(based on periodic patterns); (ii) image correlation (based on random patterns); (iii)
feature tracking (based on object marking) (Table 2.2).

The interferometric optical techniques are based on the phenomenon of interference
of light waves. These methods require a monochromatic and coherent light source (e.g.,
a laser). Considering the way light interacts with the material surface, these methods
can be sorted into diffused light (speckle) and diffracted light (grating) interferometric
techniques (Table 2.2). Speckle interferometry is based on the diffuse reflection of light
from an optical rough surface, whereas grating interferometry is based on the diffraction
of light over a grating on the object surface. Several configurations can be set-up by
changing the directions of illumination and observation (sensitivity vector) for in-plane
and out-of-plane displacement measurements. The moiré interferometry is a technique
based on grating metrology allowing the measurement of both in-plane and out-of-plane
displacements. Finally, shearography set-ups can be used (Table 2.2), providing directly
the measurement of the (optical) derivatives of the displacement.

The selection of an optical method for a particular application may not be straight-
forward. Eventually, several guidelines can be considered taken into account the cost, the
measurand (displacement, strain. . .), the scale of observation, the required performances
(resolution, spatial resolution. . .), the simplicity of execution, and the expected values
of deformation (e.g., small or high strains). Among optical techniques (Table 2.2), digi-
tal image correlation (DIC) has becoming widely used (Pan et al., 2009b; Sutton et al.,
2009). On the one hand, with regard to counterpart methods, this technique neither



50 CHAPTER 2. MATERIAL PARAMETER IDENTIFICATION FROM FULL- . . .

requires specific and expensive optical devices (e.g., lasers and anti-vibration tables) nor
time-consuming surface preparation. On the other hand, DIC can be flexibly coupled with
mechanical testing machines. Moreover, it can be conveniently applied from structural
to micro or nano scale. In mechanical tests DIC-2D is usually used, whilst in structural
applications DIC-3D (stereovision) can be preferable. The development of DIC has also
followed closely the recent progress on computer science, automated image processing and
digital cameras. In contrast with interferometric methods, phase analysis of the fringe im-
ages and phase unwrapping process are not required. Nevertheless, DIC measurements
are usually unreliable near boundaries or discontinuities since subsets in the image are
typically used for displacement evaluation through mathematical correlation (local ap-
proach). Taking into account the aforementioned considerations, in this work, the DIC
method was deemed suitable for analysing the wood deformation at the growth ring scale.
In the following, a review of the local approach of the DIC-2D method is presented.

2.2.2 Digital image correlation

A schematic representation of the photo-mechanical set-up coupling DIC-2D with a
mechanical test is shown in Figure 2.4. A (quasi-)planar target object is imaged by a
camera-lens optical system connected to a computer for real-time visualisation. In the
DIC method the displacement of an object is measured by correlating images of the sur-
face recorded at successive deformation stages. It is assumed that the surface of interest
has a local, random textured pattern uniquely characterising the material surface. In
estimating the object motion, the pinhole camera model (perspective projection) can be
considered. It is defined by the magnification of the imaging system (mm/pixel), which
is assumed constant during image acquisition (e.g., out-of-plane movements are neglected
and the object undergo only in-plane deformation). Besides, geometrical distortion in-
duced by optical aberrations are assumed either negligible (differential measurements) or
taken into account by a distortion correction method. After image recording, a matching
(correlation) process is carried out between images taken before and after deformation as
schematically shown in Figure 2.5. The reference (undeformed) image is divided by square
or rectangular subsets with size Ω ≡ (2M + 1) × (2N + 1) pixels, where M and N are
number of pixels in the x and y image directions, respectively (Figure 2.5). In order to en-
hance the displacement spatial resolution (defined as the smaller distance separating two
independent displacement measurements), subsets can slightly overlap by sharing some
pixels. In this case, the subset step (fd) will be smaller than the subset size (fs). Adja-
cent (fs = fd) or spaced (fs < fd) subsets can also be selected depending on the purpose.
The selection of these measuring parameters is a key issue because they will contribute
to the spatial resolution (∆u) and the resolution (σu) associated to DIC measurements.
Therefore, they should then be carefully chosen with regard to the application, in a com-
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promise between correlation (small subsets) and interpolation (large subsets) errors. By
locally minimising the difference on light intensity distribution between a pair of images,
subset mapping in the deformed image is calculated allowing the definition of full-field
displacements (a displacement vector is conventionally attached to each subset, P (x0, y0)

in Figure 2.5).
Several mathematical correlation criteria have been proposed for estimation of the

displacement fields in the subset matching process. It has been shown that the zero-
normalized sum of squared differences (ZNSSD) is a robust algorithm since it take into
account offset and linear scale variations of light intensity and is most efficient when using
iterative procedure for the minimisation problem (Pan et al., 2009b)

CZNSSD(p) =
∑
Ω

 f(xi, yi)− fm√∑
Ω [f(xi, yi)− fm]

2
−

g(x′
i, y

′
j)− gm√∑

Ω

[
g(x′

i, y
′
j)− gm

]2
2

(2.42)

where Ω is the subset domain, f(xi, yj) is the pixel grey level at (xi, yj) in the reference
image, g(x′

i, y
′
j) is the pixel grey level at (x′

i, y
′
j) in the deformed image, and fm and gm are

the mean gray-level values over the subset in reference and deformed image, respectively,
given by

fm =
1

(2M + 1)2

i=M∑
i=−M

i=N∑
i=−N

f(xi, yj) (2.43a)

gm =
1

(2N + 1)2

i=M∑
i=−M

i=N∑
i=−N

g(x′
i, y

′
j) (2.43b)

Eq. (2.42) has to be solved (minimised) with regard to the deformation parameter (p)
which will characterise the mapping function (shape function). Both first-order and
second-order shape functions have been commonly used, given respectively by (Pan et al.,
2009b) {

x′
i − xi = u0 + u1

Td

y′j − yj = v0 + v1
Td

(2.44)

with u1 =
{

∂u
∂x
, ∂u
∂y

}T

, v1 =
{

∂v
∂x
, ∂v
∂y

}T

, d = {xi − x0, yj − y0}T and p = {u0, v0,u1,v1}T ;
and {

x′
i − x = u0 + u1

Td+ 1
2
dTu2d

y′j − y = v0 + v1
Td+ 1

2
dTv2d

(2.45)
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Figure 2.4: Photo-mechanical setup of the digital image correlation.

where u2 = [∂u
2

∂x2 ,
∂u2

∂x∂y
; ∂u2

∂x∂y
, ∂v

2

∂y2
], v2 = [ ∂v

2

∂x2 ,
∂v2

∂x∂y
; ∂v2

∂x∂y
, ∂v

2

∂y2
] and p = (u0, v0,u1,u2,v1,v2).

Iterative algorithm, e.g. Newton-Raphson or Levenberg-Marquardt, can then be used for
finding optimal deformation parameter optimising the correlation coefficient (Bing et al.,
2006; Pan et al., 2009b).

2.2.3 Strain field reconstruction

The digital image correlation technique provides displacements over a large set of
discrete data points over a region of interest. Continuous strain fields, required in the
parameter identification problem, are to be determined from this type of noisy displace-
ments. Therefore, a suitable technique must be used to derive the strain field from the
measured displacement field, according to the following relationships

ε1(x, y) =
∂ux(x, y)

∂x

ε2(x, y) =
∂uy(x, y)

∂y

ε6(x, y) =
∂ux(x, y)

∂y
+

∂uy(x, y)

∂x
. (2.46)

It is worth noticing that the numerical differentiation of the measured displacement fields
(Eqs. 2.46) is not straightforward since this procedure can amplify noise. For instance,
direct differentiation using finite differences can lead to a strain resolution in the range of
10−3 (e.g., for a displacement resolution of about 10−2 and a strain step of 5 subsets, a
strain resolution of 2×10−3 is obtained using central finite differences), which is normally
to high for practical use in mechanical tests. Several strategies can be then used to
solve Eqs. (2.46). Most of them consists in approximating the data points using smooth
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Figure 2.5: Principle of the digital image correlation technique.

basis functions. The differentiation of the data is then based on the differentiation of
the approximated basis functions in the least-square sense. Generically these methods
can be sorted on global and local strategies. Global approaches can be developed using
2D polynomial basis functions (Cordero and Roth, 2005; Pannier et al., 2006; Xavier
et al., 2007), nonuniform rational B-spline (NURBS) basis functions (Elguedj et al., 2011;
Réthoré et al., 2010) and global least-squares minimization using finite element shape basis
functions (Avril et al., 2010). Local approaches can be developed using polynomial diffuse
approximation (Avril et al., 2010), moving lest-squares (MLS) methods (Xiang et al.,
2007), and point-wise local least-squares fitting (Pan et al., 2009a; Wattrisse et al., 2001).
In order to capture the strain localisation due to the different constituents observed at the
growth ring scale (namely, earlywood and latewood), this former local method was selected
in this work. This approach used a first order shape function to locally approximate the
displacement field measured by DIC. In this approach the regularisation parameters is
the size of the strain window: (2m+ 1)× (2m+ 1). The value of m must be chosen in a
compromise between level of low-pass filtering and accuracy of the representativeness of
the strain field.

2.2.4 Conclusion

In this section, a brief survey of full-field optical methods was presented. Focus was
given to the digital image correlation method, since this technique was chosen for this
work. The basic principle of DIC as well as the numerical reconstruction of strain fields
were presented. Identification methods such as VFM require full-field information, hence
the relevance of using DIC.





References

S. Avril, M. Bonnet, A.-S. Bretelle, M. Grédiac, F. Hild, P. Ienny, F. Latourte, D. Lemosse,
S. Pagano, E. Pagnacco, and F. Pierron. Overview of identification methods of me-
chanical parameters based on full-field measurements. Experimental Mechanics, 48(4):
381–402, 2008.

S. Avril, P. Feissel, F. Pierron, and P. Villon. Comparison of two approaches for differen-
tiating full-field data in solid mechanics. Measurement Science and Technology, 21(1):
015703, 2010.

P. Bing, X. Hui-min, X. Bo-qin, and D. Fu-long. Performance of sub-pixel registration
algorithms in digital image correlation. Measurement Science and Technology, 17(6):
1615–1621, 2006.

G.L. Cloud. Optical methods in experimental mechanics. Part 23: Reflection moiré.
Experimental Techniques, 30(5):19–22, 2006.

G.L. Cloud. Optical methods of engineering analysis. Cambridge University Press, New
York, 1995.

R.R. Cordero and P. Roth. On two methods to evaluate the uncertainty of derivatives
calculated from polynomials fitted to experimental data. Metrologia, 42(1):39–44, 2005.

K.B. Dahl and K.A. Malo. Planar strain measurements on wood specimens. Experimental
Mechanics, 49(4):575– 586, 2009.

Thomas Elguedj, Julien Réthoré, and Aurélien Buteri. Isogeometric analysis for strain
field measurements. Computer Methods in Applied Mechanics and Engineering, 200:
40–56, 2011.

S. Franke, B. Franke, and K. Rautenstrauch. Strain analysis of wood components by close
range photogrammetry. Materials and Structures, 40:37–46, 2007.

M. Grédiac. The use of full-field measurement methods in composite material characteriza-
tion: Interest and limitations. Composites Part A: Applied Science and Manufacturing,
35(7-8):751–761, 2004.

D. Guitard. Mécanique du matériau bois et composites. Cepaduès-Editions, Collection
Nabla, 1987.

J.M. Hodgkinson. Mechanical testing of advanced fibre composites. Cambridge, Woodhead
Publishing Limited, 2000.

Y.Y. Hung and H.P. Ho. Shearography: An optical measurement technique and applica-
tions. Materials Science and Engineering, 49(3):61–87, 2005.

R. M. Jones. Mechanics of composite materials. Taylor and Francis, 2nd edition, 1999.



56 REFERENCES

L. Le Magorou, F. Bos, and F. Rouger. Identification of constitutive laws for wood-
based panels by means of an inverse method. Composite Science and Technology, 62
(4):591–596, 2002.

J.-R. Lee, J. Molimard, A. Vautrin, and Y. Surrel. Digital phase-shifting grating shearog-
raphy for experimental analysis of fabric composites under tension. Composites Part
A: Applied Science and Manufacturing, 35(7-8):849–859, 2004.

A. Majano-Majano, J. Fernandez-Cabo, S. Hoheisel, and M. Klein. A test method for
characterizing clear wood using a single specimen. Experimental Mechanics, 52:1079–
1096, 2012.

J.-J. Orteu. 3-D computer vision in experimental mechanics. Optics and Lasers in Engi-
neering, 47(3-4):282–291, 2009.

B. Pan, A. Asundi, H. Xie, and J. Gao. Digital image correlation using iterative least
squares and pointwise least squares for displacement field and strain field measurements.
Optics and Lasers in Engineering, 47(7-8):865–874, 2009a.

B. Pan, K. Qian, H. Xie, and A. Asundi. Two-dimensional digital image correlation for
in-plane displacement and strain measurement: a review. Measurement Science and
Technology, 20(6):062001, 2009b.

Y. Pannier, S. Avril, R. Rotinat, and F. Pierron. Identification of the elastic-plastic
constitutive parameters from statically undetermined tests using the Virtual Fields
Method. Experimental Mechanics, 46(6):735–755, 2006.

F. Pierron and M. Grédiac. The Virtual Fields Method. Springer New York, 2012.

F. Pierron, E. Alloba, Y. Surrel, and A. Vautrin. Whole-field assessment of the effects
of boundary conditions on the strain field in off-axis tensile testing of unidirectional
composites. Composites Science and Technology, 58(12):1939–1947, 1998.

D. Post, G. Han, and P. Ifju. High sensitivity moiré. Springer Verlag, New York, 1994.

J. Réthoré, T. Elguedj, P. Simon, and M. Coret. On the use of nurbs functions for displace-
ment derivatives measurement by digital image correlation. Experimental Mechanics,
50(7):1099–1116, 2010.

M. Sjödahl. Some recent advances in electronic speckle photography. Optics and Lasers
in Engineering, 29(2-3):125–144, 1998.

Y. Surrel. Fringe analysis. In P.K. Rastogi, editor, Photomechanics (Topics in Applied
Physics), pages 57–104. Springer Verlag, 1999.

Y. Surrel. La technique de la grille pour la mesure de champs de déplacements et ses
applications. Instrumentation, Mesure, Métrologie, 4(3-4):193–216, 2004a.

Y. Surrel. Deflectometry: A simple and effecient noninterferometric method for slope
measurement. In Xth SEM International Congress on Experimental Mechanics. Society
for Experimental Mechanics, 7-10 June in Costa Mesa, California, USA, 2004b.

M.A. Sutton, J. Yan, S. Avril, F. Pierron, and S. Adeeb. Identification of heterogeneous
constitutive parameters in a welded specimen: Uniform stress and virtual fields methods
for material property estimation. Experimental Mechanics, 48(4):451–464, 2008.

M.A. Sutton, J.-J. Orteu, and H. Schreier. Image correlation for shape, motion and



REFERENCES 57

deformation measurements: Basic concepts, theory and applications. Springer, 2009.

B. Wattrisse, A. Chrysochoos, J.-M. Muracciole, and M. Némoz-Gaillard. Analysis of
strain localization during tensile tests by digital image correlation. Experimental Me-
chanics, 41(1):29–39, 2001.

J. Xavier, S. Avril, F. Pierron, and J. Morais. Novel experimental approach for
longitudinal-radial stiffness characterisation of clear wood by a single test. Holz-
forschung, 61(5):573–581, 2007.

G.F. Xiang, Q.C. Zhang, H.W. Liu, X.P. Wu, and X.Y. Ju. Time-resolved deformation
measurements of the portevinŰle chatelier bands. Scripta Materialia, 56(8):721–724,
2007.





Chapter 3

Experimental work

This chapter describes the procedures of the experimental work carried out in the
framework of this thesis. To start with, the selection, manufacturing and preparation
of the wood material is presented. X-ray microdensitometry measurements are then de-
scribed. To end with, the experimental set-up of the mechanical test coupled with the
digital image correlation technique is carefully presented.
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3.1 Material and specimens

3.1.1 Samples geometry

Standard tests for wood mechanical characterisation are based on simple specimen
geometries and elementary loading cases relying on homogeneous or simple stress-strain
states at the gauge section, in which closed-form solutions exists for parameter identifi-
cation. Conversely, in this work, a single ring-oriented test method is proposed for the
full characterisation of wood properties in the transverse plane defined by the radial (R)
and tangential (T) orthotropic directions: ER, ET , νRT and GRT where E, ν and G stand
for Young’s modulus, Poisson’s ration and shear modulus, respectively. A schematic rep-
resentation of the test method is presented on Figure 3.1. The specimen consists of a
parallelepiped specimen with the dimensions of 50(R)×5(T)×2(L) mm. This solution has
been adopted taking advantage of a particular orientation of the annual growth rings with
regard to the loading axis, defined by an average angle θ (Fig. 3.1).

3.1.2 Trees selection and sampling

As it is well known, mostly of the Portuguese forest is not ordered, i.e., is not subject
to forestry management that lead to a favouring of the quality of its main raw material,
that is wood. The stands of pine, except as the occasional patches of pine forest of Leiria,
also did not escape this reality. Therefore, in this study, like others before (Garrido,
2004; Oliveira, 2004; Pereira, 2005; Xavier, 2003), we tried to use wood that would be
representative of the majority that we can buy in commercial distribution, although we
consider that it would be very important to change the mindset of the owners so as not
systematically slaughtered best trees for use with low economic value, and even more to
spread the advantages of performing thinning, and pruning to ensure some homogeneity
between individuals of the farm, as a way of adding value to timber.

The material used in this study was obtained from five trees of Pinus pinaster, from a
private stand located in Orgens in the municipality of Viseu (central-northern Portugal).
In a first step, to the selection of the tree, based on the macroscopic morphology of the
key shaft such as the absence of defects of structure, the absence of disease, higher or
lower vertical linear taper of the stem (Carvalho, 1996).

After felled trees, aged between 65 and 70 years, they were split into several logs,
having been selected for this work, only the basal logs of each, with 2.8 meters long,
because they are considered to provide the best quality wood in the tree. Each log was
numbered from 1 to 5 and transported to the sawmill, where was been outspread on to 40
mm thickness boards, following a continuous output sawing methodology held parallel to
the line identified in diametrical cross section of the stem, with the aim to minimize the
number of samples containing reaction wood.
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Figure 3.1: Sampling geometry for ring-oriented tensile test.

These boards, after being piled in order to reconstitute each log (Fig. 3.2) were sub-
jected to natural drying process, monitored by regular measurements with a GANNr HT
85T hygrometer, until reaching a moisture content between 10 and 12% and then stored
in the Laboratory of Wood and Furniture Industries Technologies of the School of Tech-
nology and Management of the Polytechnic Institute of Viseu, where were conditioned
until samples manufacture.

3.1.3 Specimens sampling and manufacture

In each one of the logs already deployed, we selected the central plank, containing the
pith, in which the positions to get the samples were defined and marked, both for the
mechanical tests and for density measurements. According to the publications reviewed
and in order to maximize the effects of longitudinal an radial variability at each stem
selected, three positions in the longitudinal (L) direction (named L1, L2 and L3) were
defined, as shown in Figure 3.3, and 5 positions in the radial (R) direction (designated
R1, ..., R5) where established, as shown in Figure 3.4, and for each one of these radial
positions 10 specimens were obtained with different ring orientations in order to take
advantage of the natural heterogeneity (see table xx)

The three positions in height were identified and numbered in ascending order, towards
the base of the tree to the crown, corresponding the L1 level to a height of 500 mm, the
L2 level to a height of 1300 mm (DBH) and the L3 level to a height of 2300 mm.

In each of these height levels, after identifying the side of the board presenting a more
regular and homogeneous rings distribution, in order to foil the presence of reaction wood
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Figure 3.2: Logs after being sawn and dried.

Figure 3.3: Sampling for along height variability on stem.
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Figure 3.4: Sampling for radial variability on stem.

(compression wood), sixteen radial strips of wood were cut, containing all rings from the
pith to the bark, with a length approximately equal to the radius of the stem (R direction)
of about 3 mm thickness (L direction) and 5 mm width (T direction) as illustrated in
Figure 3.4. One of these radial strips was used for density measurements (§ 3.2) and the
other fifteen were used to obtain the specimens for mechanical tests. In this case, in each
strip, five radial positions were identified and numbered in ascending order from the pith
to the bark, each one corresponding to about 20% of the total length, from which we get
a total of 10 specimens, in two groups of five with two main ring orientations, ensuring
that its mid sections coincide with the radial position identified. Since the total length of
five samples exceeded the radial length of the strip obtained we adopted a procedure of
overlapping the specimens to ensure radial characterization of wood in the five positions
identified (Fig. 3.4).

For ease of specimens identification for mechanical tests, a six-digit code was adopted,
which identifies the tree, the height position, the radial position, the number of specimen
and the orientation of growth rings in relation to the radial direction of material symmetry
(Figure 3.5). Thus, the first digit ranges from 1 to 5, the second digit ranges from 1 to
3, the third digit ranges from 1 to 5, the fourth digit ranges from 0 to 9 and the last two
will have two text options: ON or OF, concerning to ring orientation. For example, a
specimen named 3241ON, was taken from the third tree (3), at breast height (2), from
the fourth radial position (4), is specimen number (1) and has rings oriented next to the
radial direction of material symmetry (ON). Resuming, for this study 15 specimens were
manufactured to perform density measurements, corresponding to the five trees and the
three height positions for each, and 750 specimens for mechanical tests, corresponding
to the five trees, three height positions, five radial positions and ten specimens for each
radial position. After obtaining the specimens for mechanical tests, we proceeded to the
registration of its dimensions, using a Mitutoyor digital caliper with a resolution of 0.01
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mm and an accuracy of 0.02 mm.

3.2 X-ray microdensitometry measurements

3.2.1 Wood density

Despite density has been used for a long time as one of the most important property to
characterize wood, is assumed as a feature widely floating, since it can vary not only from
one species to another in a considerable proportion, but at the same species depending on
the tree location, on the tree age, on the height level inside the stem, on the characteristics
of ring formation year and, inside of the ring, on the season it was formed (spring or
summer).

The variation of wood average density in softwoods (0.4 - 0.7 g.cm−3) is not as high as
between hardwoods (0.2 - 1.2 g.cm−3). Although this variability, to the woody cell wall
material is assigned a constant value of 1.5 g.cm−3 (Skaar, 1989) or 1.53 g.cm−3 (Tsoumis
and Passialis, 1977), regarding the authors. So the differences just can be related to the
differences in the wall/empty space proportions.

For P. pinaster, wood density variation inside the annual ring is normally considered
between 0.4 and 0.9 g.cm−3 (Lousada, 2000) and it results from the differences between
EW and LW layers, namely the ratio between cellular wall volume and the overall cellular
volume.

3.2.2 X-ray microdensitometer technique

Traditional methods for density determining, based on weight/volume ratio are condi-
tioned to application on specimens with measurable dimensions by traditional ways and
gives only mean values for a given volume of wood. Furthermore, over the years has
emerged the need for a more detailed characterization, namely between different rings
and inside rings. Since the 60’s, several techniques based on wood permeability to radi-
ations have been developed, allowing determining, in addition to average density, several
other density parameters, such as EW mean density (DEW ), LW mean density (DLW ),
maximum density (Dmax), minimum density (Dmin) and the respective dimensions and
fractions of EW and LW layers within the growth ring, namely, ring width (RingW ), EW
percentage (%EW), EW width (EWW ), LW percentage (%LW), LW width (LWW ) and
heterogeneity index (HI). We apply a technique that takes advantage of wood perme-
ability to x-rays. The main equipments, installed on the Forest Products Laboratory of
UTAD, consist of a Joyce Loebl MK3 double-beam microdensitometer, equipped with
a Seifert ISO-Debyeflex 1001 X-ray generator. The main advantages of this technique
are the high sensitivity of the microdensitometer photomultiplier, the high resolution ca-
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Figure 3.5: Samples codification and numbering scheme.

(a)

(b)

Figure 3.6: Wood and reference samples before X-ray (a) and after X-ray
(b)bombardment.
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Figure 3.7: Microdensitometer Joyce Loebl MK3.

pability (from 10 to 200 values per mm), the processing speed (3 cm.min−1), and the
registry on a Kodak Industrex CX X-ray film that makes possible to take reads as often
as necessary. The measurements were performed according to the procedure described in
Lousada (2000) on samples with nominal dimensions of 3(L)×5(T) and length equal to
the local radius of the central board, conditioned at 12% MC. Local density measurement
of Pinus pinaster wood was performed with a spatial resolution of 0.1 mm (ten values per
mm) and with an accuracy of 8×10−4 g.cm−3. Exposure time to radiation was 350 s at
an intensity of 18 mA; accelerating tension of 12 kV was applied with a 2.5 m distance
between the X-ray source and the film. After the samples bombardment with radiation
we obtain the negative image of its structure printed on the film (Fig. 3.6b) representing
their optical density that will be read from the microdensitometer (Fig. 3.7). Optical
density will be then converted into wood density by a linear regression equation definition
using the optical and the real density values of the reference samples.

From the local density profile across the overall length of the specimens, and after the
growth rings limits determination based on the simultaneous observation of the specimen
image on the x-ray film and the mean density values measured, the density parameters
defined above, in the first paragraph, were then calculated. For the annual rings boundary
definition, it was consider the value of 0.650 g.cm−3 as a limit between the EW and LW
for the calculation of the EW and LW densities and respective percentages. That value
was maintained besides the evidence from Lousada et al. (1994) that do not annul the
existence of a high amount of transition wood which improves the amount and the influence
of the LW percentage turning the EW density less accurate on the determination of mean
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density.

3.3 Full-field displacement measurements

The full-field displacement of a (quasi-)planar target surface can be measured using
the digital image correlation (DIC) method by processing images recorded before and after
deformation. The digital images can be recorded using different apparatus depending on
the scale of observation (e.g., using a camera-lens optical system or a scanning electron
microscope). The target surface of interest must have a textured pattern with suitable
contrast (covering as much as possible the dynamic range of the camera sensor, but
avoiding pixel saturation) and characteristic size (pixels per speckle) with regard to the
field of view (region of interest). Moreover, the DIC measurement parameters (i.e., subset
size, subset step and base length for strain computation) must be chosen in order to fulfill a
correct balance between spatial resolution (interpolation errors) and accuracy (correlation
errors) with regard to the physical phenomenon or application under analysis. In this work
the software ARAMIS DIC-2D v6.0.2 by GOM (ARAMIS) was used.

3.3.1 Camera-lens optical system

The mechanical tests carried out in this work were focused at the growth ring scale. In
the hierarchical structure of wood, this level of magnification corresponds to a meso scale
with a characteristic length within the range of about 1 up to 10 mm. Thus, a camera-
lens optical system was still suitable for image grabbing. A 8-bit Charged Coupled Device
(CCD) Baumer Optronic FWX20 camera was used (Table 3.1). This camera was coupled
with an Opto-Engineering telecentric lens TC 23 09 whose characteristics are summarised
in Table 3.2. Although this type of lens is more expensive, and eventually larger and
heavier than normal lenses of similar focal length, the main advantage of a telecentric
lens resides in the fact that the magnification is kept constant over a defined working-
distance range. In performing in-plane displacement measurements by DIC, this feature is
particular advantageous for avoiding errors induced by out-of-plane parasitic movements
(Haddadi and Belhabib, 2008; Sutton et al., 2008). This camera-lens system leads to the
following metrics:

– A conversion factor (pixel size on the object plane) of fc = 4.4 µm/pixel (1/fc =
0.227 pixel/µm) is obtained.

– If an image displacement accuracy of 10−2 pixels is assumed (Bornert et al., 2009),
this configuration lead to an object displacement accuracy of 4.4×10−2 µm.

– To achieve a minimum image speckle size containing, for instance, 5 pixels, an av-
erage object speckle size of 21.9 µm must be guarantee in practice. If it is assumed
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Table 3.1: Baumer Optronic FWX20
CCD camera.

Sensor format 1/1.8”
Number of pixel 1624×1236 pixels2

Scan area 7.15 × 5.44 mm2

Pixel size 4.4 × 4.4 µm2

Table 3.2: Opto Engineering Telecentric
lens TC 23 09.

Magnification 1.0 ± 3%
Field Of View (1/1.8”) 7.1 × 5.4 mm2

Working Distance 63.3 ± 2 mm
Working F-number 11
Telecentricity < 0.08◦

Field Depth 0.9 mm

that an image subset size must containing at least 3×3 speckles (i.e., six bright and
dark intensity transitions in each direction) to ensure suitable accuracy and isotropy
in the subset matching process (minimum speckle inclusion criterion allowing max-
imum spatial resolution) (Sutton et al., 2009, p.237), this will define a subset of
15×15 pixels2 = 225 pixels2. This corresponds to a minimum spatial resolution of
66 µm.

3.3.2 Speckle pattern

To solve the correspondence problem in image matching, a target surface of interest
must have a random (fingerprint uniqueness), isotropic (not having a preferred orientation)
and contrasted (for computing image spatial derivatives) gray-level pattern (Sutton et al.,
2009). This textured pattern is so-called speckle pattern, in similarity with the speckle
image observed over a rough surface by coherent illumination. Such pattern can exist
naturally on the material surface or, otherwise, must be created artificially using a suitable
feature marking technique. For this purpose, different techniques – e.g., using spray
or airbrush paint, toner powder deposit or lithography (Sutton et al., 2000) – can be
used, each of them eventually suitable for a given scale of observation from structural
down to micro or nano scale. A suitable balance between region of interest (angle of
view) and average (speckle) size of white-to-dark marks must be achieved in order to
enhance the displacement spatial resolution (the smallest distance between independent
measurements) associated to the DIC measurements. This can be particularly important
when spatially gradient strain fields are expected to occur.

At the scale of the growth rings, the wood cellular structure can be resolved as shown
in Figure 3.8. Therefore, in a first approach, the natural texture of the surface may
be considered as a carrier pattern for DIC measurements. The surface was polished
by using sandpaper with grit size decreasing from P180 up to P320. This procedure
was fundamental for enhancing the details of the cellular tissue and therefore the image
contrast. However, a uniform finishing across the growth rings was rather difficult to
achieve, due to density variation between earlywood and latewood layers. In consequence,
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a uniform contrast of the cellular texture (i.e. the cell walls with regard to lumen space)
across the field of view was not possible. Particularly, in the latewood layer where the
ratio lumen/cell wall is minimum, the image contrast was significantly reduced. This
situation was disadvantageous because large subset windows need to be used in this case
in order to define a suitable local pattern for DIC (aperture problem). Eventually a
microtome of sliding knife could be used for sharp cutting of cells (enhancing contrast),
but this machining operation was not easy to achieve in practice across the whole surface
of the specimen (50(R)×5(T ) mm). To enhance the contrast of the cellular tissue image
(i.e., brightness difference between the wood substance in the cell wall and the lumen)
obtained in a microscopy, Thuvander et al. (2000) have proposed to rubber a slurry of
talcum powder into the surface to fill the lumen. At the magnification of the growth
rings (meso scale) this procedure was not straightforward, and not improve significantly
the contrast of the image. Furthermore, the rather regular texture of the cellular tissue
may not guarantee the uniqueness of the subset texture pattern, which can lead to some
mis-matching in the correlation algorithm.

Instead of using the natural cellular pattern, an artificial speckle pattern was painted
on the wood surface. Firstly, a thin coating of white paint was applied uniformly over a
polished region of interest. In order to guarantee a suitable detail of the dark marks with
regard to the characteristic size of the field of view (Table 3.2), an airbrush was used for
random distribution of dark spots. With this procedure a more uniform distribution of
the speckle pattern was obtained. A different approach was proposed by Jernkvist and
Thuvander (2001) using micron carbon toner particles spread over white background paint
in radial tensile tests on spruce. The application of such particles may be however more
tricky to achieve in practice than the airbrush, in order to guarantee a roughly uniform
spatial distribution of random white-to-dark marks over the whole region of interest.
Figure 3.9 shows the typical speckle pattern obtained using airbrush painting (an IWATA
Custom Micron CM-B airbrush model was used with fluid nozzle of diameter 0.18 mm
and spray range lower than 60 microns). As it can bee seen qualitatively from the image
and histogram a suitable pattern for DIC was obtained.

3.3.3 Measuring parameters

In the DIC method some parameters such as subset size, subset step and base length
for strain computation must be chosen a priori. These parameters directly influence the
spatial resolution and accuracy associated to the measurements (Lecompte et al., 2006;
Pan, 2011; Triconnet et al., 2009); therefore, they must be carefully chosen. In order
to select this set of measuring parameters, a rigid-body translation test was proposed as
guideline (at our best knowledge there are no standards available at the moment). The
advantage of this type of test is that the kinematic fields are a priori known, e.g. the
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Figure 3.8: (left) natural texture of wood at the growth ring scale; (right) image histogram.
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Figure 3.9: (left) speckle pattern across the growth rings; (right) image histogram.
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(a) (b)

Figure 3.10: (a) (UX − UX) map and histogram; (b) εX map and histogram (subset size
of 15×15 pixels, subset step of 11×11 pixels and strain gauge length of 7 subsets).
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displacement field is theoretical constant (all subsets must have the same displacement
value) and the strain field is expected to be zero. Thus, the DIC parameters can be
arbitrarily chosen and their influence on the measuring errors, with regard to the theoret-
ical solution, evaluated on a statistical basis. Square subsets of 9×9 (39.6×39.6), 11×11
(48.4×48.4), 15×15 (66×66), 21×21 (92.4×92.4) and 31×31 (136.4×136.4) pixels2 (µm2)
were chosen for this analysis. Moreover, a strain gauge length of 3, 5, 7, 9 and 11 subsets
was considered for the strain computation.

A translation test along the x (horizontal) direction was performed on a target speckle
pattern object by recording two images, before and after deformation. The displacements
between this pair of images were measured by the ARAMIS DIC-2D, taking different val-
ues of subset size. For each case study, the mean value of the displacement over the entire
field (subsets) was calculated. In further processing, the displacement field was subtracted
by the mean value, yielding residual map as shown, as an example, in Figure 3.10(a). As
can be seen from the histogram of this map (a figure representing the number of subsets
with given values of displacement), a roughly Gaussian noise distribution is obtained.
Therefore, the standard deviation of this residual signal was considered for estimating
the displacement resolution. The variation of this threshold value for displacement de-
tection as a function of the subset (number of pixels per correlation window) is shown
in Figure 3.11(a). As can be concluded, the correlation error decreases by increasing the
subset size. This is, however, achieved by losing spatial resolution (interpolation errors).
This analysis was extended to the strain fields. Figure 3.10(b) shows typical noisy strain
map and histogram associated to the translation test measurements. The evaluation of
the standard deviation (strain resolution) with regard to the gauge length used in the
strain computation is shown in Figure 3.10(b), for the set of subsets selected. As can be
expected, the strain resolution converge to the theoretical value of 0.01% as the gauge
length increases, independently of the subset size used for displacement calculation. By
analysing these results a compromise was found by choosing a subset size of 15×15 pixels,
a subset step of 11×11 pixels (4 pixels overlapping between subsets), and a strain gauge
length of 7 subsets (represented by a ′+′ in Figure 3.11). The choice to slightly overlap
the correlation windows by 4 pixels was to enhance spatial resolution associated to the
measurements at the growth ring scale. Note that for a subset size of 15×15 pixels2, a
displacement spatial resolution of 66 µm was obtained, which corresponds roughly to the
largest dimensions of wood cell (EW layer) of P. pinaster. In this case, the displacement
resolution was about 1.75×10−2 pixels (0.066 µm). Besides, a strain spatial resolution
of 0.461 mm was defined in order to guarantee some measuring points within each EW
and LW layers (from X-ray microdensitometry measurements on P. pinaster the width of
EW and LW layers was estimated to 0.3-3.4 mm and 0.5-3.6 mm, respectively). For this
strain length, a strain resolution around 0.015% was obtained, which is still suitable for
measuring the strains in the linear domain of the material mechanical response.
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Figure 3.11: (a) evaluation of the displacement resolution (standard deviation) with regard
to subset size; (b) evaluation of the strain resolution (standard deviation) with regard to
gauge length (corresponding to a subset size of 15×15 pixels, a subset step of 11×11 pixels
and a strain gauge length of 7 subsets).

3.4 Photo-mechanical set-up of the tensile test

The mechanical tensile tests were carried out in an Instron 5848 Microtester machine
under displacement control at a rate of v = 0.2 mm.min−1. Considering a free length
between grips of l0 = 30 mm, these tests were performed at a strain rate of ε̇ = v/l0 =

1.1×10−4 s−1. For this rate of deformation, the load was applied continuously throughout
the test in less than 3 min allowing neglecting viscoelastic effects. The load was measured
by means of a 2 kN load cell. The photo-mechanical set-up, coupling the tensile test with
the digital image correlation technique, is shown in Figure 3.12. Two Raylux 25 white-
light LED sources at about 45◦ with regard to the optical axis were used for uniform
illumination of the specimen. The shutter time was typically set to 0.5 ms in order to use
the maximum of the gray level distribution still avoiding pixel saturation. Taking a test
velocity of v = 0.2 mm.min−1, an exposure time of te = 5× 10−4 s and a pixel size on the
object plane of pO = 4.4 µm.pixel−1, a small displacement blurring in the image along the
loading direction of 1.66 × 10−3µm (e.g. 0.04% of the pixel size) is expected to occur. To
help prevent both slippage of the specimen into the grips throughout the test and local
crushing damage, sandpaper of P180 grit size was placed between the specimen loading
faces and the tensile grip faces.

Painting a speckle pattern across the wood surface (Figure 3.9) had the disadvantage
of hiding the annual growth ring structure (Figure 3.8). Therefore, the following proce-
dure was implemented in order to recover the image of the growth rings. Both surfaces of
the specimen were carefully polished. The speckle pattern was then painted on one face.
The specimen was firstly mounted on the lower tensile grip into the testing machine with
the natural growth rings surface towards the CCD camera (left image in Figure 3.12).
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Figure 3.12: (left) image of the wood growth ring structure; (right) photo-mechanical
set-up coupling the tensile test with the digital image correlation technique.

After focusing (fixing the working distance to 63.3 mm), one image of the growth ring
structure was recorded. Finally, the specimen was rotated by 360◦ by rotating the whole
lower tensile grip in order to image the opposite face with the speckle pattern (right image
in Figure 3.12). It was assumed at this stage that the growth ring structure is invariant
thought the thickness of the specimen; therefore the layout of growth ring structure could
be retrieved after flipping images. Thus, the kinematic (displacement and strain) mea-
surements provided by DIC could be associated afterwards to the local structure of the
material at the growth ring level.
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Chapter 4

Identification of transverse elastic
properties of P. pinaster by the
anisotropic-based method

This chapter is dedicated to the identification of transverse elastic properties of P.
pinaster by the anisotropic-based method (AbM). Density parameters and elastic prop-
erties will be discussed with regard to variability patterns within the stem. Besides, the
possible correlations between the elastic constants and density parameters are investi-
gated.
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4.1 Introduction

Wood mechanical characterisation is made by experimental work with application of
suitable tests to found its unknown constitutive parameters, based on specimen geometry,
boundary conditions and displacements knowledge. However these tests can be of diffi-
cult implementation for such material because of some material particularities, like the
anisotropic behaviour and anatomical heterogeneities. Trying to take advantage of those
particularities, in this work, a single ring-oriented tensile test was applied for the material
transverse elastic properties characterisation and the generated heterogeneous strain fields
across de region of interest were measured with digital image correlation. In a first ap-
proach, all the transverse stiffness components available on mappings resulting from wood
mechanical response, here considered as clear wood, were attempted to identify assuming
a uniaxial stress state on the specimen coordinate system. In terms of wood quality, since
it is closely related to its own heterogeneity, property variation patterns along the stem
becomes a relevant issue once they can provide a measure of spatial variability and so,
help on wood usefulness definition, both in terms of best processing and best applications.
Hence, both density and elastic properties were patterned along the stem as well as their
relationships were sought after.

4.2 Anisotropic-based method

4.2.1 On the identification of global elastic components

The identification strategy used in this work was based on anisotropic elasticity theory.
The general framework was firstly proposed by Majano-Majano et al. (2012). This method
will be called hereafter anisotropic-based method (AbM) (§ 2.1.3). Wood on the RT
plane will be assumed as an orthotropic linear elastic material. Moreover, the continuum
assumption will be kept, even if at the magnification of the growth rings the wood cellular
structure can be resolved. Therefore, the orthotropic medium is characterised by four
independent stiffness components. Due to the natural cylindrical shape of the stem, the
constitutive law will be developed in polar coordinates.

For a given identification of global compliance components on the transversal plane,
ten specimens per position were simultaneously processed by the AbM. To start with,
results from a given position in the stem were analysed for validation purposes. The axial
stress-strain curves associated to each specimen are plot in Fig. 4.1(a). In this case, the
axial stress was simply determined as load divided by initial cross-section, whilst the axial
strain was determined as the integral (mean) of the axial strain field over the region of
interest (virtual gauge section). The difference on the non-linear behaviour observed on
the stress-strain curves was strictly related to the variation of the off-axis angle (rings
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curvature), which was in this case within the range of 4–42◦. An example of the strain
fields on the material coordinate system obtained from the ring-oriented tensile test is
given in Fig. 4.2, corresponding to a specific level of loading. The histogram of the
strain fields are also shown. As it can be seen, heterogeneous strain fields are obtained
according to the structure heterogeneity itself at the scale of observation. Moreover, all
the three components exist in the material coordinate system, although with different
amplitude. A more detailed description on the strain fields will be given in Chapter 5,
when local parameter identification will be discussed (§ 5.3). It is worth noticing that
punctual measurements provided by, for instance, strain gauges will be more sensitivity
to earlywood and latewood constituents (e.g., Micro-Measurement CEA-06-125WT-350
0/90 rosettes have a gauge area of 3.18 × 4.57 mm2 (Xavier et al., 2004)) than the global
average carried out here from full-field measurements across the entire region of interest,
therefore less scatter in the identification is expected (Xavier et al., 2012). From this
set of data, the four stiffness components were determined directly by applying the AbM
as shown in Fig. 4.1(b). The elastic components were here converted into engineering
constants (see explicit relationships in Eq. (2.6), § 2.1.3) for comparison purposes with
reference values, which are summarised in Table 4.1 (Forest Products Laboratory, 1999;
Xavier et al., 2004). As it can be concluded, the identification of all engineering constants
are in agreement with reference values determined at the macro scale.

The identification strategy aims at identifying simultaneously all the elements of the
compliance matrix and therefore all independent engineering constants in the material
coordinate system. However, the robustness of the approach must be verified. For that
purpose, a second example is represented in Fig. 4.3. In this case, as it can be concluded
from the axial stress-strain curves (Fig. 4.3(a)), the ten specimens have an off-axis angles
rather similar, e.g., among the specimens there are not much curvature variation. Indeed,
in this case the off-axis angles vary in the range of 4–11◦. As a result, the identification
is not suitable, for instance, for ET as it may be expected (Fig. 4.3(b)). For the purpose
of identifiability and robustness of the method, these off-axis angles can be eventually
optimised or chosen with some criterion. For instance, for the identification of the shear
modulus (S66 = 1/GRT ) the off-axis angle (ring orientation) can be chosen so that shear
behaviour in the material coordinate system is enhanced (Chamis and Sinclair, 1977).
For this purpose the following relationships can be used where the strain components in
the material coordinate system (εrr, εrθ and εθθ) are normalised with regard to the axial
applied strain (εxx) 

εrr/εxx = (S11c
2 + S12s

2)/∆

εθθ/εxx = (S12c
2 + S22s

2)/∆

εrθ/εxx = S66cs/∆

(4.1a)
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(a) (b)

Figure 4.1: Example 1 of (a) stress-strain curves on the specimen coordinate system;
(b) engineering elastic properties in the RT plate determined by the anisotropic-based
method.

(a) (b) (c)

Figure 4.2: Strain field components on the material coordinate system (a) εrr, (b) εθθ, (c)
εrθ (load = 50 N).
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(a) (b)

Figure 4.3: Example 2 of (a) stress-strain curves on the specimen coordinate system;
(b) engineering elastic properties in the RT plate determined by the anisotropic-based
method.

Table 4.1: Reference (after (Forest Products Laboratory, 1999; Xavier et al., 2004)) and
identified properties of P. pinaster in the RT plane.

Elastic properties
Reference AbM

min – max mean min – max mean± std(a)

ER (GPa) 1.5 - 1.9 1.7 1.4-2.6 1.8± 0.23
ET (GPa) 0.8 - 1.4 1.1 0.4-1.5 0.9± 0.24
νRT (-) 0.68 - 0.71 0.7 0.53-0.95 0.7± 0.09
GRT (GPa) 0.255 - 0.280 0.268 0.110-0.333 0.175± 0.04

(a) Standard deviation
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with,
∆ = S11c

4 + 2(S11 + 1/2S66)c
2s2 + S22s

4. (4.1b)

These equations (4.1) are dependent on the material properties and the off-axis angle.
Fig. 4.4 plots the evaluation of equations (4.1) for P. pinaster; the elastic properties of
reference where taken from (Xavier et al., 2004). In terms of test optimisation a cost
function can be used defined as follows,

ϕ(θ) =
(εrr − εθθ)

2 + (εrr − εrθ)
2 + (εθθ − εrθ)

2

3(ε2rr + ε2θθ + ε2rθ)
. (4.2)

Figure 4.5 plots the cost function (Eq. 4.2) as a function of the off-axis angle. As it can
be concluded strain components in the material coordinate system are balanced out for
angles as high as 60◦.

From these results, only ER and GRT were kept for further analysis regarding spatial
variability within the stem. Complementary tests on specimens preferentially oriented on
the T direction should be systematically used for complete identification of all orthotropic
stiffness componentes. In alternative, a more heterogeneous test should be proposed
eventually using rectangular (unnotched) specimens loading in the Iosipescu test (Xavier
et al., 2007) or a kind of compression test over a small disc.

4.2.2 On the estimation of local elastic components

There are in the literature few experimental data for mechanical properties of EW
and LW layers (Cramer et al., 2005; Farruggia and Perré, 2000; Jernkvist and Thuvander,
2001). An indirect evaluation was proposed here in order to estimate local elastic prop-
erties of EW and LW from the global identification obtained by AbM. For this purpose,
the following basis equations and approach were used. Micromechanical models that have
been developed in the framework of composite materials aiming to estimate elastic con-
stants as a function of the elastic properties of individual constituents (Jones, 1999), where
applied to estimate EW and LW properties. The motivation for such analytical models
was to reduce cost and time required in the experimental evaluation of these constituent
parameters.

The transverse Young’s modulus ER can be developed according to the following re-
lationship

1

ER

=
vEW

EEW
R

+
vLW

ELW
R

(4.3)

where vα represent the volume fraction and Eα
R the constituent Young’s moduli (with

α = EW,LW). In solving Eq. (4.3) for the EW and LW constituents elastic constants,
an addition equation can be assumed based on unit cell models. Regular honeycomb
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Figure 4.4: Variation of strain components in the material coordinate system with regard
to the off-axis angle for P. pinaster.

Figure 4.5: Cost function versus off-axis angle, balancing out strain components on the
material coordinate system.
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Table 4.2: Local transverse elastic properties of P. pinaster estimated from the global
properties.

Elastic properties
Global Identification Local Estimation
min – max mean EW± std(a) LW± std

ER (GPa) 1.4 - 2.6 1.8 1.5 ± 0.20 2.5± 0.34
GRT (GPa) 0.110 - 0.333 0.175 0.146 ± 0.04 0.243± 0.05

(a) Standard deviation

models have been generically applied to wood in order to provide an estimation of elastic
constants as a function of geometry, properties and density of cellular wood (cell wall)
tissue (Gibson and Ashby, 1997). From these models the transverse moduli can be related
as

ELW
R

EEW
R

=

(
ρLW

ρEW

)a

(4.4)

The a exponent is commonly chosen equal to 3 (Gibson and Ashby, 1997), but recent
experiments has evidenced that this scaling should be close to a linear variation (Modén
and Berglund, 2008). Therefore, for the radial moduli a = 1.5 was chosen in this work.
In turn, the transverse shear modulus GRT was determined according to the following rule
of mixtures

1

GRT

=
vEW

GEW
RT

+
vLW

GLW
RT

(4.5)

where Gα
RT are the constituent shear moduli (with α = EW,LW). For this material

parameter, the following relationship between shear moduli and density was assumed

GLW
RT

GEW
RT

=

(
ρLW

ρEW

)3

(4.6)

Table 4.2 resumes the local properties for both EW and LW layers of the annual
ring, estimated from the AbM global elastic properties. By the reasons presented earlier
regarding the identifiability, only the values for ER and GRT were estimated.

4.3 Variability of wood properties within the stem

From the revision made in the first chapter and as a result of the work described so
far, this chapter aims to investigate patterns of variability of wood properties within the
stem in order to assess possible grade parameters to define wood quality for structural
applications.
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As regards density, and according to Lousada (2000), there are many references about
their variation patterns concerning softwood species and in particular the P. pinaster. In
general, all indicate that there is more variation within the tree than among trees. Usually,
density studies are developed regarding on three radial and axial variation models: (i)
one radial variation model inside the rings based on EW/LW transitions, (ii)another
radial variation model between the growth rings from pith to cambium and (iii) one axial
variation model associated to different levels of height on tree.

Considering that cell wall density is constant (approximately equal to 1.5 g.cm−3,
density variations on wood are due, almost exclusively, by the differences on wall-lumen
ratio, i.e., greater or lesser quantity of cell wall present in a given portion of wood.
Thus, the mechanical strength and stiffness of wood is directly dependent on the strength
and stiffness of the cell wall, wherein further wall, higher density, greater resistance and
rigidity. Thus, it is understood that for the conditions under which the variation of other
factors remain constant, the patterns of variation of mechanical properties closely follow
the patterns of density variation (Lousada, 2000; Zobel and Buijtenen, 1989).

4.3.1 Variability of density

From the anatomical point of view, radial variation from pith to cambium origin is not
a function of the distance to pith but of the cambium physiological age which generates the
cells. It is worth noticing that the five radial positions of interest were defined effectively
in terms of distance to pith but considering always, approximately, the same physiological
age for each one.

To asses density variation patterns inside the stem, density measurements of, approx-
imately, 135 to 190 mm long samples cut from the five trees according to the procedure
described in Chapter 3, were made. The density measurements were performed by means
of X-ray microdensitometry. In the raw data interpretation, a multiple regression analyzes
was applied, following the procedure presented by Lousada (2000).

Figure 4.6 shows de mean density (Dmean) variation along the radius for all the trees
and at all height levels studied. Although it gives only a global overview, it is possible
to see that, in the juvenile wood, closer to the pith Dmean is low, increasing near to the
heartwood/sapwood border and decreasing slightly towards the cambium. Nevertheless,
sometimes, very close to the pit, Dmean values seemed to be higher than in the surrounding
wood.

When looking deeper inside those values and concentrate on just one tree, through
the Figures 4.7, 4.8, 4.9 and 4.10, showing the variation patterns for the different density
parameters analysed (see Chapter 1, section 3.2), we can easily reinforce the radial pre-
viously mentioned pattern variation within the stem, especially concerning to the greater
density values observed in the first rings (approximately the first 50 mm from the pith)



86 CHAPTER 4. IDENTIFICATION OF TRANSVERSE ELASTIC PROPERTIES . . .

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Rings number (physiological age)

 ρ
, (

g.
cm

−
3 )

Figure 4.6: Density over-ring distribution: all trees at all height levels.

which are due to heartwood presence, resulting from the extractives deposition. This
effect is much more evident in the first level (L1). At the higher levels on the stem, the
amount of heartwood decreases, making Dmean radial pattern more stable. In fact, on
height, and for each radial position, there is a decrease on Dmean from L1 to L3 positions.
As can be seen on appendix A, this is true for all the five trees and is in agreement with
literature.

Since it is a density parameter with greatest influence on radial variability within
the ring, figure 4.9 shows the latewood percentage (%LW ) variation. Combining the
analyses with figure 4.7, it is possible to see that, despite the position in height, the great
values of this parameter are coincident to the greater values of Dmean on radial pattern.
Besides, concerning to the variation on height, there is a slight fluctuation of this density
parameter, increasing from base to the top.

More or less consistent with the variation of the %LW , also the annual ring width
(RingW ) exhibits a pattern of apparent decrease with the height in the stem (Fig. 4.10).
Recently one method widely used to quantify the density variation (the heterogeneity)
at meso scale has been proposed by Ferrand (1982) and is based on standard deviation
determination for all individual values of density in each ring, which is designated het-
erogeneity index (HI). In Figure 4.11 the HI variation pattern for tree number one in the
direction of the beam as in height is presented. As it can be seen, radially, HI increases
from pith to the periphery, with a tendency to stabilize or even decrease slightly near the
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Figure 4.7: Dmean, DEW , DLW radial variation: tree number 1 - (a) L3, (b) L2, (c) L1.

cambium.

4.3.2 Variability of transverse elastic properties

Concerning to the variability of the elastic properties, the variation patterns for those
obtained from AbM method, will be presented. No matter our initial perspective to
determine all the four constants, ER, Et, νRT and GRT , for the reasons identified earlier,
at this time, with this set-up configuration and with this identification strategy, we only
could get three of them, namely, ER, νRT , GRT . Furthermore, we will only present the
within stem variation patterns for ER and GRT . The spatial variability by means of radial
and longitudinal variations of those mentioned elastic properties will be presented in the
next pages, regarding to the global properties identification and for tree number one. The
results for the other four trees will be presented in the appendix B, following the same
methodology presentation.

radial variability
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Figure 4.8: Dmean over radial and longitudinal positions variation: tree number 1.

Figure 4.9: %LW over radial and longitudinal positions distribution: tree number 1.

As in the previous section for density, also the elastic properties radial variation from
pith to cambium was analysed as a function of the cambium physiological age which
generates the cells. So, the annual growth ring(s) whose elastic properties were identified
on each specimen were the same for one specific radial position. Once more, that was
guaranteed by counting and numbering the rings from the cambium to the pith to fix the
radial position (physiological age) along the stem height.

For each level defined along the stem height, the mean values of the three elastic
properties were calculated and analysed over the five radial positions.

The set of images shown on figure 4.12 reveal the variation along the radius for ER.
The first result of the evaluation of the pattern achieved relies on the global decrease of the
transverse radial modulus from the first position (closer to the pith) to the fifth position
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s

Figure 4.10: RingW , EWW , LWW radial variation: tree number 1 - (a) L3, (b) L2, (c)
L1.

(closer to the cambium). This is valid independently on the stem height considered.
Concerning to the shear modulus variation, the figures Figure 4.13, shows a general

pattern of variation on radial direction consistent with the ER pattern, which is resumed
by a decrease from pith to cambium.

longitudinal variability
For each position defined along the stem radius, the mean values of the mentioned

elastic properties were calculated and analysed over the three height levels. As obtained
for the radial variation, also for the longitudinal one, the ER and the GRT modulus showed
a trend of reduction from the base to the top of the stem (Fig. 4.14) despite along the
stem height the decrease sometimes follow different fluctuations.
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Figure 4.11: HI over radial and longitudinal positions distribution: tree number 1.

Figure 4.12: ER over radial positions dis-
tribution: tree number 1

Figure 4.13: GRT over radial positions
distribution: tree number 1
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Figure 4.14: ER and GRT radial and longitudinal variation: tree number 1
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4.4 Elastic properties-density relationships

More than finding the global trends of variation, relationships between elastic prop-
erties patterns of variation in radial and longitudinal and homologous patterns of the
material anatomical characteristics must be understood, particularly expressed by the
density. Regarding on the figure 4.14, the global ER and GRT radial variations follow
that one presented by the mean density (Fig. 4.8), concerning to a general decrease from
the innermost (R1) to the outermost positions (R5). Looking to find some cause-effect
relationships between both elastic properties and density variations founded, linear fit
correlations were performed for the same test conditions (fixing cambial age and level).
Only the random factors associated to the tree life itself were varied, considering the five
trees values of the same elastic property over each of the density parameters, one at a
time. Considering the whole mesostructure over ROI, the complete annual growth rings
visible on that region (varying from one to four), for the ten specimens corresponding
to each radial position studied, were identified and their density parameters mean values
established to relate with the respective ER and GRT mean values.

Analyzing the obtained determination coefficient values for the case here presented,
and despite the positive or negative correlations verified, it can be appreciated that, in
general, both ER showed good relations with four of the density parameters, present-
ing determination coefficients always between 66.44% and 96.61%. Those parameters are
Dmean, Dmin, DEW and %LW. From all of them, Dmean is the parameter that more consis-
tently explains the variation for the three elastic properties, especially for ER and GRT .
Curiously, the annual ring width, often used as major aspect on wood quality definition
(Fernandez-Golfin and Diez, 1994), does not reveal much appetence to explain the elastic
properties here studied. Regarding to the ring width fractions, whenever both present
significant correlations with ER and GRT , for the EWW it is mostly negative whereas for
the LWW is positive. Also is confirmed that the greater determination coefficients were
observed in the positions closer to the pith. By organization and optimization reasons,
doing to the great number of images, only the study referring to one density parameter
(Dmean), for all physiological ages and eight levels, were presented in this section, regard-
ing to the ER and GRT relationships (Figs. 4.15, 4.16, 4.17, 4.18, 4.19), presenting
the remaining on appendix C. However, the complete results of determination coefficients
(in percentage) are presented in Table 4.3. Analyzing the extreme situations, concerning
to the Dmean correlation with ER and GRT , sometimes determination coefficient reaches
values above 90%. Nevertheless, from table 4.3, although Dmean presents most often the
highest determination coefficient values, none of the studied density parameters shows
a stable correlation pattern for any of the elastic properties revealing the mesostructure
heterogeneity.
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Figure 4.15: Linear fitting between ER, GRT , and Dmean: all trees at R1 position

Figure 4.16: Linear fitting between ER, GRT , and Dmean: all trees at R2 position
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Figure 4.17: Linear fitting between ER, GRT , and Dmean: all trees at R3 position

Figure 4.18: Linear fitting between ER, GRT , and Dmean: all trees at R4 position
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Figure 4.19: Linear fitting between ER, GRT , and Dmean: all trees at R5 position

4.5 Conclusion

Concerning to the elastic properties identification, the AbM method reveals suitable
for global ER, ET , νRT and GRT determination, achieving consistent values that are in
accordance with references (Table 4.1), notwithstanding the initial hypothesis assumed
of uniaxial tension state. However, some identifiability problems were reported for the
ET when the ring orientation was less variable within the specimens characterising the
same position. The local elastic properties concerning to the EW and LW tissues were
then estimated from the global properties, as a function of mean density, combining the
application of a micromechanical model (mixture law) and a unit cell model (Table 4.2).

Generally, correlations between Dmean and ER and GRT were positive and statistically
significant allowing the use of Dmean as mediator to infer local elastic properties. Besides
the average density, sometimes also other parameters showed significant correlations with
the elastic constants. Specifically, Dmin, LWW and DEW presented substantial and positive
determination of ER and GRT . With regard to EWW , when presented significant corre-
lation with the moduli, it was always negative which, physically, makes sense because the
greater the contribution of the EW fraction in the annual ring, the lower the ER and GRT .
From table 4.3, where all the determination coefficients are resumed, one can conclude
that, despite Dmean is the parameter that more frequently explains the elastic behaviour,
there are several others that alternately assume that role, which reveals the great variabil-
ity of the mesostructure from specimen to specimen. The scale here studied is not the one
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of the material but that of mesostructure. So, over the ROI, the representative element
(the annual ring) varies in number (from one to four) and implicitly in width. Against
this, becomes evident the interest and the benefit of a local analyses made point by point,
in which the correlations will be more reliable, once both density and elastic properties
result from the equivalent quantity (one facet size), against the ones here presented: elas-
tic properties were identified from the average of 10 specimens mechanical response, over
a 7.1x5.4mm2 region, whilst density was measured on a single specimen and with a 100
micron frequency.

The radial an the longitudinal within stem variability of ER and GRT was generally
characterized by a decrease pattern. Radially, the trends of variation determined were:
ER varied from 10-35% and GRT varied from 7-41% whilst longitudinally ER varied from
4-12% and GRT varied from 7-28%.



4.5. CONCLUSION 97

Ta
bl

e
4.

3:
C

or
re

la
ti

on
s

be
tw

ee
n

(E
R
)

an
d

(D
m

ea
n
,D

m
in

,D
m

ax
,D

E
W

,D
LW

,%
LW

,E
W

W
,L

W
W

,R
in

g W
,H

I)
fo

r
al

lt
re

es
.

E
la

st
ic

R
ad

ia
l

H
ei

gh
t

D
en

si
ty

pa
ra

m
et

er
s

P
ro

pe
rt

y
po

si
ti

on
le

ve
l

D
m

ea
n

D
m

in
D

m
ax

D
E
W

D
LW

%
LW

E
W

W
LW

W
R
in

g W
H

I

E
R

1
L1

79
.0

9
86

.0
0

52
.4

5
81

.4
1

34
.3

1
83

.9
2

79
.8

1
45

.5
1

14
.6

5
31

.6
3

L2
96

.6
1

93
.4

5
18

.5
0

96
.0

4
2.

20
89

.3
9

84
.7

4
52

.4
9

39
.1

2
54

.8
3

L3
79

.7
6

77
.1

7
43

.2
0

80
.5

6
22

.1
5

87
.8

0
72

.6
3

65
.1

6
13

.9
1

15
.4

4

2
L1

52
.2

7
21

.1
5

31
.8

0
22

.5
0

44
.0

7
63

.7
8

66
.2

4
15

.0
7

22
.4

6
16

.4
6

L2
4.

56
8.

52
28

.1
3

3.
76

31
.0

9
27

.8
7

8.
24

19
.6

6
12

.4
6

52
.6

6
L3

37
.3

4
35

.1
0

0.
83

56
.5

6
11

.0
5

20
.6

4
1.

91
14

.5
6

0.
27

28
.3

6

3
L1

11
.1

0
1.

46
3.

85
17

.7
2

0.
63

2.
11

22
.4

3
24

.7
1

25
.7

8
0.

12
L2

0.
39

7.
72

65
.2

7
14

.0
6

58
.5

8
1.

17
5.

67
31

.4
7

10
.2

3
65

.5
3

L3
4.

76
1.

46
8.

02
0.

74
3.

32
3.

85
6.

47
49

.5
8

10
.9

8
10

.0
8

4
L1

51
.6

4
12

.1
6

57
.0

9
23

.7
5

51
.2

4
32

.1
0

21
.2

4
81

.6
7

37
.7

2
17

.2
3

L2
32

.2
3

45
.7

6
39

.5
2

68
.0

7
21

.4
3

3.
83

0.
13

12
.2

6
3.

99
0.

01
L3

4.
20

14
.3

6
6.

51
8.

12
8.

65
5.

50
10

.8
2

6.
40

16
.3

8
7.

42

5
L1

3.
04

35
.2

9
20

.2
7

50
.5

1
27

.3
7

45
.5

6
10

.0
6

40
.4

5
20

.1
9

47
.4

3
L2

15
.7

1
44

.8
3

3.
27

38
.9

4
3.

37
0.

41
9.

30
0.

01
4.

37
24

.4
3

L3
47

.8
9

90
.9

9
22

.6
6

87
.5

2
25

.8
9

6.
90

24
.3

7
11

.5
1

22
.8

1
62

.4
6



98 CHAPTER 4. IDENTIFICATION OF TRANSVERSE ELASTIC PROPERTIES . . .

Table
4.4:

C
orrelations

betw
een

(G
R
T )

and
(D

m
ean ,D

m
in ,D

m
ax ,D

E
W

,D
LW

,%
LW

,E
W

W
,LW

W
,R

ing
W

,H
I)

for
alltrees.

E
lastic

R
adial

H
eight

D
ensity

param
eters

P
roperty

position
level

D
m

ean
D

m
in

D
m

ax
D

E
W

D
LW

%
LW

E
W

W
LW

W
R
ing

W
H

I

E
R

1
L1

90.72
75.87

70.18
80.36

52.07
79.31

60.89
23

17.94
10.84

L2
66.44

83.99
8.94

80.18
8.13

81.95
34.03

72
3.57

74.74
L3

68.17
70.29

17.36
75.68

4.81
83.87

50.2
71.96

2.6
43.34

2
L1

56.42
64.24

19.95
63.72

3.52
48.5

0.02
62.49

15.58
17.45

L2
18.48

76.53
1.8

50.77
2.22

0.09
14.21

14.96
15.38

29.72
L3

66.92
80.94

32.03
86.15

8.67
39.93

18.77
71.5

39.59
1.81

3
L1

14.86
29.82

10.82
71.65

21.97
15.78

0.02
4.3

0.66
21.16

L2
14.56

30.38
77.42

36.27
94.44

9.73
29.5

14.28
34.68

92
L3

0.07
3.2

13.82
2.53

7.58
0.11

20.03
56.99

26
31.33

4
L1

42.88
19.58

35.33
30.24

25.51
28.57

21.88
68.96

35.82
3.73

L2
24.64

68.95
18.84

78.48
6.69

1.09
5.31

1.42
1.22

6.39
L3

29.54
12.48

3.8
18.6

4.45
24.12

16.2
26.4

2.9
1.83

5
L1

0.07
81.36

67.58
86.44

69.28
18.68

63.23
60.49

71.06
84.73

L2
35.2

84.82
11.93

86.92
5.5

1
59.14

3.76
36.73

43.41
L3

84.58
68.47

32.65
74.09

29.81
6.05

49.84
1.81

33.18
39.69



References

C.C. Chamis and J.H. Sinclair. Ten degree off-axis test for shear properties in fiber
composites. Experimental Mechanics, 17(9):339–346, 1977.

S. Cramer, D. Kretschmann, R. Lakes, and T. Schmidt. Earlywood and latewood elastic
properties in loblolly pine. Holzforschung, 59(531-538):5, 2005.

F. Farruggia and P. Perré. Microscopic tensile tests in the transverse plane of earlywood
and latewood parts of spruce. Wood Science and Technology, 34(2):65–82, 2000.

J. I. Fernandez-Golfin and M. R. Diez. Influencia da la anchura del anillo de crecimento en
la densidade y otras propriedades físico-mecanicas de la madera estructural de diversas
espécies. Technical report, Centro de invetigación Florestal (CIFOR-INIA), 1994.

J. C. Ferrand. Réflexions sur la densité du bois. 2ere partie: Calcul de la desnsité et de
son heterogeneite. Holzforschung, 36(3):153–157, 1982.

Forest Products Laboratory. Wood handbook: Wood as an engineering material. Gen.
Tech. Rep. FPL-GTR-113, US Department of Agriculture, 1999.

L.J. Gibson and M.F. Ashby. Cellular solids. Structure and properties. Cambridge Uni-
versity Press, 1997.

L.O. Jernkvist and F. Thuvander. Experimental determination of stiffness variation across
growth rings in Picea abies. Holzforschung, 55(3):309–317, 2001.

R. M. Jones. Mechanics of composite materials. Taylor and Francis, 2nd edition, 1999.

J.L. Lousada. Variação fenotípica e genética em características estruturais na madeira
de Pinus pinaster Ait. PhD thesis, Universidade de Trás-os-Montes e Alto Douro, Vila
Real, Portugal, 2000.

A. Majano-Majano, J. Fernandez-Cabo, S. Hoheisel, and M. Klein. A test method for
characterizing clear wood using a single specimen. Experimental Mechanics, 52:1079–
1096, 2012.

C.S. Modén and L.A. Berglund. A two-phase annual ring model of transverse anisotropy
in softwoods. Composites Science and Technology, 68(14):3020–3026, 2008.

J. Xavier, S. Avril, F. Pierron, and J. Morais. Novel experimental approach for
longitudinal-radial stiffness characterisation of clear wood by a single test. Holz-
forschung, 61(5):573–581, 2007.

J. Xavier, A.M.P. de Jesus, J.J.L. Morais, and J.M.T. Pinto. Stereovision measurements
on evaluating the modulus of elasticity of wood by compression tests parallel to the
grain. Construction and Building Materials, 26(1):207–215, 2012.

J.C. Xavier, N. Garrido, J. Oliveira, J. Morais, P. Camanho, and F. Pierron. A comparison



100 REFERENCES

between the Iosipescu and off-axis shear test methods for the characterization of pinus
pinaster Ait. Composites Part A: Applied Science and Manufacturing, 35(7-8):827–840,
2004.

B.J. Zobel and J.P. Van Buijtenen. Wood variation: Its causes and control. Springer
Series in Wood Science, Ed: Timell, T.E., Springer-Verlag, 1989.



Chapter 5

Identification of transverse stiffness
properties of P. pinaster by the virtual
fields method

In this chapter, the in-situ characterisation of elastic properties of earlywood (EW)
and latewood (LW) constituents of P. pinaster by the virtual field method (VFM) was
investigated. The meso structure was classed using image processing and analysis tools
based on segmentation (classification) and contour detection. The material defining each
EW and LW layers was considered homogeneous, continuous and with a linear elastic
orthotropic behaviour.
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5.1 Introduction

The elastic properties of EW and LW constituents represent fundamental data in
applications such as the transverse fracture behaviour of wood (Bigorgne, 2011; Thu-
vander et al., 2000), the mechanical behaviour of bolted wood connections (Santos et al.,
2009; Zink-Sharp et al., 1999) and wood transformation processes (Holmberg et al., 1999).
However, the correct evaluation of wood properties at the growth ring scale poses several
difficulties. The conventional approach make use of statically determined tests, which
therefore are based on testing small samples of each individual layer (Cramer et al., 2005;
Farruggia and Perré, 2000). For statistical representativeness or spatial variation assess-
ment of elastic properties, this approach requires testing a huge amount of samples. This
limitation can be in part surmounted by a different approach based on statistically unde-
termined mechanical tests, from which several parameters can be identified from a single
test (Jernkvist and Thuvander, 2001; Xavier et al., 2007, 2009). This methodology relies
on full-field kinematic measurements (e.g., displacement or strain) provided by a suit-
able optical technique, coupled with an inverse identification method. In this chapter,
the identification of orthotropic elastic properties at the growth ring will be investigated.
The approach combines the virtual fields method with full-field measurements provided
by digital image correlation (DIC). This analysis represents a first approach for direct
evaluation of stiffness components at each EW and LW constituents at the growth ring
scale (§ 2.1.4). In order to validate the identification strategy, a given position on a tree
was selected, from which ten specimen with different ring-orientation were processed. As
case study, the first tree, at the breast height and outermost radial position was chosen.

5.2 Classification of the growth ring structure by image
processing

Images of the growth ring structure at the central part of the specimens were taken
just before testing. The size of the region of interest was fixed by the telecentric lens to
7.1 × 5.4 mm2, which typically covered a few annual rings. It is worth noticing that this
region corresponds to the one observed when performing DIC measurements, so a direct
correspondence can be established between strain fields and constituent layers at the meso
scale.

In processing the images of the wood structure at the annual growth rings, binary
(mask) images were defined for classifying relevant constituents at the scale of observation.
Taking into account the magnification of the optical system, by default, three regions were
assumed: (i) resin channels (RC); (ii) EW and (iii) LW. The algorithm for image processing
and analyses was implemented in Matlab according to the flowchart of Fig. 5.1, described
as follows (Fig 5.2):
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Figure 5.1: Image processing and analyses flowchart yielding the annual growth ring
classification.

(i) Input and flip-up the raw image of the growth ring structure. Selection of the
region of interest within the field of view corresponding to the region analysed by
DIC (Fig 5.2a).

(ii) Detection of each resin channel in the image by means of an elliptical contour. This
operation was found more accurate to be done manually by the user because the
pixel gray-level of these elements was not unique and constant throughout the image,
thus introducing difficulties in the automatisation of this process (Fig 5.2b). This
step was deemed necessary in order to remove these elements on the identification
process of EW and LW tissues afterwards.

(iii) Several algorithms have been proposed in the literature for image segmentation
based on histogram bilevel thresholding (Dirami et al., 2013). Eventually, they can
be computationally time consuming and their effectiveness and accuracy can be
significantly reduced when applied to a complex image such as one of the wood
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Figure 5.2: (a) growth ring structure across the gauge section, (b) resin channels mask;
(c) earlywood mask; (d) latewood mask.

structure at the growth ring level. In this work, the definition of the EW and LW
layers was achieved by iterative thresholding. At each step, pixels outside a given
interval in the histogram were set either to 0 (EW) or 255 (LW) (see step 3 in
Fig. 5.1). This procedure was required to clean up EW and LW layers, since the
original images had no clear pixel gray-level separation between them (note that
the pixel gray-level of the cell wall was naturally presented across the entire growth
rings). Besides, rays were eventually visible across the field of view introducing an
additional ambiguity. In this iterative processing, the histogram of the output image
was analysed at each step until clear definition of the latewood layer was achieved
(Fig 5.2d). The EW regions were then assumed as the counterpart of LW (Fig 5.2c).

The output binary images where then converted into mask matrices at each data point
where displacement and strain values are given by the DIC analysis. An overview of
this discretisation over the region of interest is shown in Fig. 5.3. As it can be seen
the optical system was enough resolution to sort out each relevant constituents at the
scale of observation. In a first approximation, an average off-axis angle was used to take
into account the global orientation of the annual rings structure. This approximation is
more accurate when the curvature of the growth rings (polar coordinate system) can be
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Figure 5.3: (a) growth ring structure across the gauge section, (b) resin channels mask;
(c) earlywood mask; (d) latewood mask.

reasonably approximated by a straight line (cartesian coordinate system). However, in
future work an image-based algorithm should be implemented for attribute a local off-axis
angle at each point in the image corresponding to the DIC spatial resolution.

5.3 Identification of local stiffness components at the
growth rings scale

For the purpose of validation, a given location within the stem was selected corre-
sponding to the first tree, at breast height and outermost radial position. Considering the
identifiability study previously carried out in § 4.2, only Q11 and Q66 stiffness components
of EW and LW layers were eventually expected to be identified. This was confirmed in the
current analyses in which inconsistent values of Q12 and Q22 were systematically obtained.
For the purpose of complete identification of these latter stiffness components, comple-
mentary tests would be needed in which the loading system will privilege the mechanical
deformation along those axes and planes of symmetry. However, this issue will not be
explicitly addressed in this work, being invoked in future work.

An example of the strain fields on the specimen coordinate system together with the
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(a) (b) (c)

Figure 5.4: Strain field components on the material coordinate system (a) εxx, (b) εyy,
(c) εxy (load = 55 N).

histogram of the strain maps is given in Fig. 5.4, for an applied load of about 55 N. To
start with, heterogeneous strain fields were obtained following the heterogeneity of the
wood structure at the growth ring level (Fig. 5.3). Moreover, all three components of the
strain field exist (i.e., they are different than zero), although with different amplitudes
and locations within the region of interest. As expected, the local strain values are much
influenced by the complex wood structure at the scale of observation. This is evidenced on
the bipolar strain histograms of Fig. 5.4. Considering as example the εxx map (Fig. 5.4(a)),
an average value of 1.7×10−3 of axial deformation was obtained for the LW layer, whilst a
value of 3.4×10−3 was reached in the EW tissue. In this case, in average, the ratio between
LW and EW strain values is equal to 2. This is consistent with an average density ratio of
1.8 g/cm3 between LW and EW tissues measured by X-ray micro-densitometry. Farruggia
and Perré (2000) have reported similar levels of axial (radial) strain, for the same range of
applied stress, when performing micro-mechanical tensile tests on isolated tissues of EW
and LW on spruce wood. A similar ratio between strain values associated to each EW
and LW layers was obtained for εyy (Fig. 5.4(b)) and εxy (Fig. 5.4(c)).

Another important issue concerning the reconstruction of strain fields at the growth
ring level can be discussed based, for instance, in the εxx component (Fig. 5.4(a)). At
a given applied axial stress, it is physically plausible to assume that regions of pure
EW tissue deforms more than region of pure LW (the former having a higher signal-to-
noise ratio than the latter). This has been consistently observed in previous studies at
a suitable scale of observation (Garab et al., 2010; Hassel et al., 2009a,b; Réthoré et al.,
2010). Nevertheless, although this hypothesis seems globally verified across the region of
interest (Fig. 5.4), there are some data points, specially within the LW tissue, that have
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(a) (b) (c)

Figure 5.5: Strain field components on the specimen coordinate system (a) εrr, (b) εθθ,
(c) εrθ (load = 55 N).

an apparently very high level of strain, which is usually even higher than the strains at
the EW tissue. This is, however, physically inconsistent with the characteristics of the
tissues itself. This measurement clearly demonstrates the difficulties on the reconstruction
of the local strains (balance between spatial resolution and resolution) in a very complex
structure such as the one observed across a few annual growth rings of P. pinaster. These
locations within the region of interest associated to an apparent high level of strain can
be, however, systematically correlated with resin channels. Therefore, it is not surprising
that these locations of high strain level occur preferentially at the latewood layer since
it is within this tissue (and in the transition between EW and LW) that resin channels
usually forms during the seasonal growing period of P. pinaster wood (Carvalho, 1996).
Therefore, some regularisation must be taken into account when processing these strain
fields for the purpose of in-situ identification of EW and LW tissues. This contrast with
the global identification by the anisotropic-based method § 4.2, in which this regularisation
was not found significant due to the integration effect of considering average strain values
over the region of interest (i.e., a virtual strain gauge). It is interesting to notice that
regularisation of the estimated kinematic (e.g., displacement, strain or velocity) fields is
a common practice, for instance, in processing medical imaging. As an example, when
processing ultrasound imaging of the myocardial tissue by speckle tracking methods, the
velocity fields are in general noisy and may require correction before further processing
( D’hooge, 2007). A possible way is to take into account additional boundary conditions
based on a priori knowledge about the characteristics of the velocity field. For instance,
it may be assumed a priori that neighboring pixels must have similar velocity vectors in
both amplitude and direction during the regularization process.
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(a) (b)

Figure 5.6: Stiffness components of earlywood and latewood constituents: (a) Q11, (b)
Q66 as a function of the applied stress.

For the local identification, to start with, the region of resin channels were system-
atically removed across the region of interest. In this procedure, the mask of the resin
channels previously defined using image processing and analysis was applied (Fig. 5.3(b)).
Regions of each EW and LW layers were then defined by applying their respective masks
(Fig. 5.3(c) and Fig. 5.3(d), respectively). In addition, extra data points were rejected
based on statistical representativeness, in order to exclude a radius of influence of the resin
channels on the EW and LW deformations. For a given layer, the mean (µ) and standard
deviation (σ) over the segmented strain components were computed. Values outside the
interval of | µ ± σ | were then systematically removed (low-pass filtering effect). In this
way, some regularisation was taken into account by removing erroneous data points in
the vicinity of the resin channels. Indeed, this issue points out one major drawback of
DIC (local subset approach) when dealing with boundaries or discontinuities. The resin
channels are weakness zones within the growth rings, which most often promote the rup-
ture of the tissue. Usually resin channels are empty, but eventually they can be filled
with resin. Nevertheless, these elements can be seen as a discontinuity within the tissue
and, therefore, inaccurate values measured by DIC are excepted at these participar loca-
tions. This situation is similar when applying the DIC technique to fracture mechanical
tests, in which the formation and propagation of a crack is observed (Xavier et al., 2012;
Zhang and He, 2012). In these cases, a possible way to process the displacement (strain)
fields is just by removing erroneous or inaccurate data points (Pan, 2011). An example
of the strain fields obtained by removing erroneous data points, following the algorithm
described above, is presented in Fig. 5.5. As it can be seen, data points within EW and
LW tissues have seen systematically removed. In future work, other approaches can be
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Table 5.1: Comparison between virtual fields method (VFM) and anisotropic-based
method (AbM) identification methods for estimating local elastic engineering constants
of earlywood (EW) and latewood (LW).

ER

VFM AbM
EW LW LW/EW EW LW LW/EW

Mean (MPa) (%) 1272.8 1677.9 1.32 1673.8 2993.0 1.79
Rel. dif.(a) (%) 31.51% 78.37% 35.64%

GRT

VFM AbM
EW LW LW/EW EW LW LW/EW

Mean (MPa) 490.7 1203.6 2.45 121.4 693.9 5.72
Rel. dif. (%) 75.27% 42.34% 133.11%

(a) Relative difference (Rel. dif.)

sought to address this strain field regularisation problem, using for instance a global DIC
approach using NURBS base functions (Réthoré et al., 2010).

For the local material parameter identification, stages at an applied axial stress of 1 up
to 8 MPa were considered. The strain fields were processed using the VFM for extracting
in-situ transverse orthotropic elastic components as described in details in § 2.1.4. Fig. 5.6
shown results for Q11 and Q66 components of each EW and LW components as a function
of the applied axial stress. As it can be seen, the stiffness values are more stable with
regard to the applied loading for the EW identification. This is consistent with the fact
that the regularisation of strain field is more sensitive for LW regions. Indeed these regions
not only represent a smaller volume (area) fraction (e.g., the %LW is 30% from X-ray
micro-densitometry analyses), with regard to EW within the region of interest, but have
also a lower signal-to-noise ratio. Nevertheless, it is still clear that LW is stiffer than EW,
as one may expect.

The results of the local stiffness values determined by the VFM were discussed with
regard to the estimation made indirectly using cellular models and based on global param-
eter identified by the anisotropic-based method taking into account rule of mixtures and
local density information provided by X-ray micro-densitometry, as discussed in § 4.2.
This comparison is summarised in Table 5.1. For comparison purposes, Q11 and Q66

stiffness components where transferred, respectively, into ER(= Q11∆) and GRT (= Q66)

engineering constants (according to the explicit relationship in Eq. 2.22), assuming that
∆ ≡ ∆EW ≡ ∆LW = 1− νTRνRT = 0.819 (in which νRT = 0.586 and νTR = 0.309 for P.
pinaster wood (Xavier et al., 2004)). In terms of ER, a LW/EW ratio of 1.32 is obtained
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from stiffness values identified by the VFM, whilst a slightly high value of 1.79 is obtained
based on the global identification by the AbM. The LW/EW ratio of mean densities is
1.92 (estimated from X-ray micro-densitometry measurements), i.e., in the same order of
magnitude of the radial Young’s modulus. In turn, the GRT shear modulus has a LW/EW
ratio of 2.45 by the VFM, whilst a value of 5.72 is obtained based on the global identifi-
cation by the AbM. In the latter case, the higher different is justified by the fact that an
exponential of 3 was used for estimating local properties based on the ratio: (ρLW/ρEW )3.
However, direct results from the VFM indicates that this exponential term is too high.
Nevertheless, these results indicate that the ratio of shear modulus between EW and LW
is about the twice the one of the radial Young’s modulus.

5.4 Conclusion

For validation purposes, a case study was analysed by applying the VFM to directly
identify in-situ Q11 and Q66 stiffness components associated to EW and LW constituents
within the annual ring structure. Image processing and analyses were carried out over
the complex wood structure at the meso scale for classifying relevant constituents. At
the scale of observation, three layers were resolved: resin channels, EW and LW. Binary
(mask) images were then used to sort the strain fields for each layer. A regularisation
procedure was proposed in order to extract representative strains associated to EW and
LW layers. This regularisation of the strain fields was found crucial because erroneous
values were estimated in the vicinity of resin channels, since these regions within the
annual ring represent a discontinuity on the tissue and therefore displacements measured
by DIC are inaccurate (assumption: continuous based functions). These classified strain
fields were processed by the VFM for local identification of stiffness parameters. The Q11

and Q66 LW/EW ratios were found in the order of 1.32 and 2.45, respectively. These
ratios suggest a linear relationship between elastic properties and density, rather than a
cubic one based on cellular honeycomb models (Gibson and Ashby, 1997).

As a future work this analysis should be extended to further position in the tree for
assessing spatial variability of local properties within the stem. This is intended to be
relevant data for assessing wood quality based on pattern variations of properties within
the stem. Moreover, this information can be of major importance to validate multi-
scaling modelling, which take into account the spatial variability of cell wall constituents
within the stem (e.g., micro-fibril angle, chemical composition, local density....) (Wagner
et al., (in press). Moreover, the numerical study carried you by Nairn (2007) using the
material point method (morphological based model) of the transverse modulus of wood
as a function of ring orientation and elastic properties taking into account heterogeneity
and anisotropy could be properly validated. In addition, the regularisation of the strain
fields can be eventually improved using different approaches, such as global digital image



5.4. CONCLUSION 111

correlation using regular displacement fields that are consistent with the period pattern of
deformation within the annual growth ring, in a similar approach as proposed in (Leclerc
et al., 2009). This issue is of relevance since the identification is rather affected when
processing local strains associated to each constituent within each annual growth ring
structure.
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Conclusions and further work

Wood is a hierarchical structure with a spectrum of length scales. When analysing
and modelling wood at the meso scale (1-10 mm) on the transverse (RT) plane of sym-
metry, wood anisotropy and heterogeneity must be taken into account. These direction-
dependent and local properties represent fundamental data in problems dealing with frac-
ture mechanics, wood joints, wood drying and wood machining, for instance. Moreover,
their quantitative evaluation on a spatial variability bases within the stem can provide
relevant information for assessing and discussion wood quality. Besides, these patterns of
properties within the stem can be used for validating non-destructive methods based on
industrial X-ray computational tomography for assessing internal features of the stem for
log grading and sawing optimisation.

In this work, a single ring-oriented mechanical tensile test was proposed for the char-
acterisation of stiffness (compliance) orthotropic components in the RT plane and at the
meso scale. In this test small rectangular specimens with different off-axis orientation
(i.e., rings curvature) along the radial direction were used, taking advantage of the wood
structure variability itself to achieve a complex state of stress over de region of interest.
A new approach for material parameter characterisation based on full-field measurements
was developed. The so-called anisotropic-based (AbM) method and the virtual fields
method (VFM) were chosen for tackle the problem of identification of global and local
transverse elastic properties of wood at the growth ring scale.

Concerning to the identification of elastic properties, the AbM reveals suitable for
global evaluation of ER and GRT , achieving consistent values that are in accordance with
references, notwithstanding the initial hypothesis assuming an applied uniaxial stress
state. This hypothesis could be relaxed in a compression test using suitable spherical
bearing platens and lubrification for reducing friction. The local elastic properties con-
cerning to the EW and LW tissues were then estimated from the global properties, as a
function of mean density, combining the application of a micromechanical model (mixture
law) and a unit cell model.

The VFM was applied to directly identify Q11(∼ ER) and Q66(≡ GRT ) stiffness compo-
nents associated to earlywood and latewood constituents within the annual ring structure.
Image processing and analysis was implemented on the complex wood structure at the
meso scale for classifying resin channels, earlywood and latewood layers. The output
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binary images were then used to sort the strain fields for each layer. A regularisation
procedure was proposed in order to extract representative strains associated to earlywood
and latewood layers. This regularisation of the strain fields was found crucial because erro-
neous values were estimated in the vicinity of resin channels, since these regions within the
annual ring represent a discontinuity on the tissue and therefore displacements measured
by DIC are inaccurate (assumption: continuous based functions). These classified strain
fields were processed by the VFM for local identification of stiffness parameters. The Q11

and Q66 latewood/earlywood ratios were found in the order of 1.32 and 2.45, respectively.
These ratios suggest a linear relationship between elastic properties and density, rather
than a cubic one based on cellular honeycomb models (Gibson and Ashby, 1997).

Regarding to the density-elastic properties relationships, generally, correlations be-
tween Dmean and ER and GRT were positive and statistically significant. Besides the aver-
age density, other parameters determined from X-ray micro-densitometry measurements
showed significant correlations with the elastic constants in same cases. Specifically, Dmin,
LWW and DEW presented substantial and positive determination of ER and GRT . With
regard to EWW, when presented significant correlation with the moduli, it was always
negative which, physically, makes sense because the greater the contribution of the EW
fraction in the annual ring, the lower the ER and GRT .

Several issues arise from this work as future perspectives, which can be summarised
as follows:

– New test methods should be investigated for determining all orthotropic components
of wood in the RT plane at once in a single test. Eventually an unnotched Iosipescu
test with suitable optimisation of free length and ring curvatures (Xavier et al.,
2007) or a compression test on small specimens with off-axis angles oriented from 0◦

(radial direction) to 90◦ (tangential direction) (Garab et al., 2010) can be proposed.
The compression test configuration will have the advantage of extending the cur-
rent analysis to high-strain rate tests (i.e. ε̇ = 10−2–10−4) using the conventional
split Hopkinson pressure bar (SHPB) set-up (Koerber et al., 2010). In alternative,
additional tests should be proposed complementary to the ring-oriented tensile test
for evaluating all orthotropic components of wood in the RT plane, including some
tensile tests with specimens preferentially oriented along the T direction.

– As a future work this analysis should be extended to further position in the tree for
assessing spatial variability of local properties within the stem. This is intended to
be relevant data for assessing wood quality based on pattern variations of properties
within the stem. Moreover, this information can be of major importance to validate
multi-scaling modelling, which take into account the spatial variability of cell wall
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constituents within the stem (e.g., micro-fibril angle, chemical composition, local
density....) (Wagner et al., (in press). Moreover, the numerical study carried you
by Nairn (2007) using the material point method (MPM) of the transverse modulus
of wood as a function of ring orientation and elastic properties taking into account
heterogeneity and anisotropy could be properly validated.

– Improvement of strain fields regularisation using different approaches, such as global
digital image correlation using regular displacement fields that are consistent with
the period pattern of deformation within the annual growth ring, in a similar ap-
proach as proposed in (Leclerc et al., 2009). This issue is of relevance since the
identification is rather affected when processing local strains associated to each con-
stituent within each annual growth ring structure.

– Developing numerical analyses at the meso scale taking into account heterogeneity
and cylindrical orthotropy. An elegant possibility would be using a morphological
based model, such as the MPM, since the finite element analysis may have in this
application some limitations: (i ) the wood structure at the meso scale can be very
complex, and therefore difficult to built up an FEA mesh; (ii ) the mesh refinement
(the number of elements) required to accurately resolve the wood structure at the
scale of observation can be computationally expensive.
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A Density variation patterns
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TREE NUMBER 2

Figure 1: Dmean, DEW , DLW radial variation: (a) L3, (b) L2, (c) L1.
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Figure 2: RingW , EWW , LWW radial variation: (a) L3, (b) L2, (c) L1.
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Figure 3: Dmean over radial and longitudinal positions variation.

Figure 4: %LW over radial and longitudinal positions distribution.

Figure 5: HI over radial and longitudinal positions distribution.



A DENSITY VARIATION PATTERNS 127

TREE NUMBER 3

Figure 6: Dmean, DEW , DLW radial variation: (a) L3, (b) L2, (c) L1.
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Figure 7: RingW , EWW , LWW radial variation: (a) L3, (b) L2, (c) L1.
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Figure 8: Dmean over radial and longitudinal positions variation.

Figure 9: %LW over radial and longitudinal positions distribution.

Figure 10: HI over radial and longitudinal positions distribution.
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TREE NUMBER 4

Figure 11: Dmean, DEW , DLW radial variation: (a) L3, (b) L2, (c) L1.
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Figure 12: RingW , EWW , LWW radial variation: (a) L3, (b) L2, (c) L1.
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Figure 13: Dmean over radial and longitudinal positions variation.

Figure 14: %LW over radial and longitudinal positions distribution.

Figure 15: HI over radial and longitudinal positions distribution.



A DENSITY VARIATION PATTERNS 133

TREE NUMBER 5

Figure 16: Dmean, DEW , DLW radial variation: (a) L3, (b) L2, (c) L1.
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Figure 17: RingW , EWW , LWW radial variation: (a) L3, (b) L2, (c) L1.



A DENSITY VARIATION PATTERNS 135

Figure 18: Dmean over radial and longitudinal positions variation.

Figure 19: %LW over radial and longitudinal positions distribution.

Figure 20: HI over radial and longitudinal positions distribution.





B Elastic properties variation patterns
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Figure 21: ER radial variation for tree number 2.
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Figure 22: ER radial variation for tree number 3.
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Figure 23: ER radial variation for tree number 4.
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Figure 24: ER radial variation for tree number 5.
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Figure 25: GRT radial variation for tree number 2.
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Figure 26: GRT radial variation for tree number 3.
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Figure 27: GRT radial variation for tree number 4.
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Figure 28: GRT radial variation for tree number 5.
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Figure 29: ER and GRT radial and longitudinal variation for tree number 2.
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Figure 30: ER and GRT radial and longitudinal variation for tree number 3.
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Figure 31: ER and GRT radial and longitudinal variation for tree number 4.
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Figure 32: ER and GRT radial and longitudinal variation for tree number 5.
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Figure 33: Linear fitting between ER or GRT and Dmin: all trees at R1 position.
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Figure 34: Linear fitting between ER or GRT and Dmin: all trees at R2 position.
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Figure 35: Linear fitting between ER or GRT and Dmin: all trees at R3 position.
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Figure 36: Linear fitting between ER or GRT and Dmin: all trees at R4 position.
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Figure 37: Linear fitting between ER or GRT and Dmin: all trees at R5 position.
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Figure 38: Linear fitting between ER or GRT and Dmax: all trees at R1 position.
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Figure 39: Linear fitting between ER or GRT and Dmax: all trees at R2 position.

 

 

(L3)

 

(L2)

(L1)

y = !613.34x + 2229.9

R² = 0.0802
0

1000

2000

3000

0.7 0.8 0.9 1

E
R
(M
P
a
)

Dmax (g/cm
3)

y = !122.97x + 274.9

R² = 0.13820

100

200

300

0.7 0.8 0.9 1

G
R
T
(M
P
a
)

Dmax (g/cm
3)

y = !2896.7x + 4253.5

R² = 0.6527
0

1000

2000

3000

0.7 0.8 0.9 1

E
R
(M
P
a
)

Dmax (g/cm
3)

y = !315.73x + 457.77

R² = 0.77420

100

200

300

0.7 0.8 0.9 1

G
R
T
(M
P
a
)

Dmax (g/cm
3)

y = 434.52x + 1460

R² = 0.0385
0

1000

2000

3000

0.7 0.8 0.9 1

E
R
(M
P
a
)

Dmax (g/cm
3)

y = !143.84x + 283.48

R² = 0.10820

100

200

300

0.7 0.8 0.9 1

G
R
T
(M
P
a
)

Dmax (g/cm
3)

Figure 40: Linear fitting between ER or GRT and Dmax: all trees at R3 position.
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Figure 41: Linear fitting between ER or GRT and Dmax: all trees at R4 position.
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Figure 42: Linear fitting between ER or GRT and Dmax: all trees at R5 position.
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Figure 43: Linear fitting between ER or GRT and DEW : all trees at R1 position.
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Figure 44: Linear fitting between ER or GRT and DEW : all trees at R2 position.
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Figure 45: Linear fitting between ER or GRT and DEW : all trees at R3 position.
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Figure 46: Linear fitting between ER or GRT and DEW : all trees at R4 position.
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Figure 47: Linear fitting between ER or GRT and DEW : all trees at R5 position.

 

 

(L3)

 

(L2)

(L1)

y = 4416.7x ! 1717.2

R² = 0.2215
0

1000

2000

3000

0.65 0.7 0.75 0.8 0.85 0.9

E
R
(M
P
a
)

DLW (g/cm
3)

y = 297.96x ! 65.674

R² = 0.04810

100

200

300

0.65 0.7 0.75 0.8 0.85 0.9

G
R
T
(M
P
a
)

DLW (g/cm
3)

y = !1858.7x + 3397.4

R² = 0.0222
0

1000

2000

3000

0.65 0.7 0.75 0.8 0.85 0.9

E
R
(M
P
a
)

DLW (g/cm
3)

y = !835.66x + 855.76

R² = 0.08130

100

200

300

0.65 0.7 0.75 0.8 0.85 0.9

G
R
T
(M
P
a
)

DLW (g/cm
3)

y = 4820.5x ! 1873.9

R² = 0.3431
0

1000

2000

3000

0.65 0.7 0.75 0.8 0.85 0.9

E
R
(M
P
a
)

DLW (g/cm
3)

y = 735.39x ! 400.41

R² = 0.52070

100

200

300

0.65 0.7 0.75 0.8 0.85 0.9

G
R
T
(M
P
a
)

DLW (g/cm
3)

Figure 48: Linear fitting between ER or GRT and DLW : all trees at R1 position.
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Figure 49: Linear fitting between ER or GRT and DLW : all trees at R2 position.
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Figure 50: Linear fitting between ER or GRT and DLW : all trees at R3 position.
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Figure 51: Linear fitting between ER or GRT and DLW : all trees at R4 position.
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Figure 52: Linear fitting between ER or GRT and DLW : all trees at R5 position.
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Figure 53: Linear fitting between ER or GRT and %LW : all trees at R1 position.
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Figure 54: Linear fitting between ER or GRT and %LW : all trees at R2 position.
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Figure 55: Linear fitting between ER or GRT and %LW : all trees at R3 position.
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Figure 56: Linear fitting between ER or GRT and %LW : all trees at R4 position.
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Figure 57: Linear fitting between ER or GRT and %LW : all trees at R5 position.
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Figure 58: Linear fitting between ER or GRT and EWW : all trees at R1 position.
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Figure 59: Linear fitting between ER or GRT and EWW : all trees at R2 position.
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Figure 60: Linear fitting between ER or GRT and EWW : all trees at R3 position.
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Figure 61: Linear fitting between ER or GRT and EWW : all trees at R4 position.
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Figure 62: Linear fitting between ER or GRT and EWW : all trees at R5 position.
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Figure 63: Linear fitting between ER or GRT and LWW : all trees at R1 position.
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Figure 64: Linear fitting between ER or GRT and LWW : all trees at R2 position.
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Figure 65: Linear fitting between ER or GRT and LWW : all trees at R3 position.

 

 

(L3)

 

(L2)

(L1)

y = 81.47x + 1660.7

R² = 0.064
0

1000

2000

3000

0 0.5 1 1.5 2 2.5

E
R
(M
P
a
)

LWW (mm)

y = 36.895x + 148.69

R² = 0.2640

100

200

300

0 0.5 1 1.5 2 2.5

G
R
T
(M
P
a
)

LWW (mm)

y = 173.63x + 1643.8

R² = 0.1226
0

1000

2000

3000

0 0.5 1 1.5 2 2.5

E
R
(M
P
a
)

LWW (mm)

y = 13.751x + 159.91

R² = 0.01420

100

200

300

0 0.5 1 1.5 2 2.5

G
R
T
(M
P
a
)

LWW (mm)

y = 508.68x + 1435.6

R² = 0.8167
0

1000

2000

3000

0 0.5 1 1.5 2 2.5

E
R
(M
P
a
)

LWW (mm)

y = 60.931x + 139.99

R² = 0.68960

100

200

300

0 0.5 1 1.5 2 2.5

G
R
T
(M
P
a
)

LWW (mm)

Figure 66: Linear fitting between ER or GRT and LWW : all trees at R4 position.
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Figure 67: Linear fitting between ER or GRT and LWW : all trees at R5 position.
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Figure 68: Linear fitting between ER or GRT and RingW : all trees at R1 position.
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Figure 69: Linear fitting between ER or GRT and RingW : all trees at R2 position.
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Figure 70: Linear fitting between ER or GRT and RingW : all trees at R3 position.
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Figure 71: Linear fitting between ER or GRT and RingW : all trees at R4 position.
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Figure 72: Linear fitting between ER or GRT and RingW : all trees at R5 position.
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Figure 73: Linear fitting between ER or GRT and HI: all trees at R1 position.
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Figure 74: Linear fitting between ER or GRT and HI: all trees at R2 position.
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Figure 75: Linear fitting between ER or GRT and HI: all trees at R3 position.
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Figure 76: Linear fitting between ER or GRT and HI: all trees at R4 position.
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Figure 77: Linear fitting between ER or GRT and HI: all trees at R5 position.
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