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"There is a real danger that computers
will develop intelligence and take over.
We urgently need to develop direct
connections to the brain so that
computers can add to human intelligence
rather than be in opposition.”

Stephen Hawking
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Resumo

Com o interesse emergente na visao ativa, os investigadores de visdo computacional tém
estado cada vez mais preocupados com os mecanismos de atencdo. Por isso, uma série de
modelos computacionais de atencao visual, inspirado no sistema visual humano, tém sido de-
senvolvidos. Esses modelos tém como objetivo detetar regides de interesse nas imagens.

Esta tese esta focada na atencao visual seletiva, que fornece um mecanismo para que
0 cérebro concentre os recursos computacionais num objeto de cada vez, guiado pelas pro-
priedades de baixo nivel da imagem (atencdo Bottom-Up). A tarefa de reconhecimento de
objetos em diferentes locais é conseguida através da concentracao em diferentes locais, um
de cada vez. Dados os requisitos computacionais dos modelos propostos, a investigacao nesta
area tem sido principalmente de interesse tedrico. Mais recentemente, psicologos, neurobidlo-
gos e engenheiros desenvolveram cooperacoes e isso resultou em beneficios consideraveis. No
inicio deste trabalho, o objetivo é reunir os conceitos e ideias a partir dessas diferentes areas
de investigacao. Desta forma, é fornecido o estudo sobre a investigacdo da biologia do sistema
visual humano e uma discussao sobre o conhecimento interdisciplinar da matéria, bem como
um estado de arte dos modelos computacionais de atencao visual (bottom-up). Normalmente,
a atencao visual é denominada pelos engenheiros como saliéncia, se as pessoas fixam o olhar
numa determinada regido da imagem é porque esta regiao é saliente. Neste trabalho de inves-
tigacao, os métodos saliéncia sdo apresentados em funcao da sua classificagcdo (biologicamente
plausivel, computacional ou hibrido) e numa ordem cronoldgica.

Algumas estruturas salientes podem ser usadas, em vez do objeto todo, em aplicacoes
tais como registo de objetos, recuperacao ou simplificacao de dados. E possivel considerar
estas poucas estruturas salientes como pontos-chave, com o objetivo de executar o reconheci-
mento de objetos. De um modo geral, os algoritmos de reconhecimento de objetos utilizam um
grande nimero de descritores extraidos num denso conjunto de pontos. Com isso, estes tém um
custo computacional muito elevado, impedindo que o processamento seja realizado em tempo
real. A fim de evitar o problema da complexidade computacional requerido, as caracteristicas
devem ser extraidas a partir de um pequeno conjunto de pontos, geralmente chamados pontos-
chave. O uso de detetores de pontos-chave permite a reducao do tempo de processamento e a
quantidade de redundancia dos dados. Os descritores locais extraidos a partir das imagens tém
sido amplamente reportados na literatura de visao por computador. Uma vez que existe um
grande conjunto de detetores de pontos-chave, sugere a necessidade de uma avaliacao compar-
ativa entre eles. Desta forma, propomos a fazer uma descricao dos detetores de pontos-chave
2D e 3D, dos descritores 3D e uma avaliacao dos detetores de pontos-chave 3D existentes numa
biblioteca de publica disponivel e com objetos 3D reais. A invariancia dos detetores de pontos-
chave 3D foi avaliada de acordo com variacoes nas rotacoes, mudancas de escala e translacoes.
Essa avaliacao retrata a robustez de um determinado detetor no que diz respeito as mudancas
de ponto-de-vista e os critérios utilizados sao as taxas de repetibilidade absoluta e relativa. Nas
experiéncias realizadas, o método que apresentou melhor taxa de repetibilidade foi o método
ISS3D.

Com a analise do sistema visual humano e dos detetores de mapas de saliéncia com in-
spiracao bioldgica, surgiu a ideia de se fazer uma extensao para um detetor de ponto-chave
com base na informacao de cor na retina. A proposta produziu um detetor de ponto-chave 2D
inspirado pelo comportamento do sistema visual. O nosso método € uma extensao com base
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na cor do detetor de ponto-chave BIMP, onde se incluem os canais de cor e de intensidade de
uma imagem. A informacao de cor é incluida de forma bioldgica plausivel e as caracteristi-
cas multi-escala da imagem sao combinadas num Unico mapas de pontos-chave. Este detetor
€ comparado com os detetores de estado-da-arte e é particularmente adequado para tarefas
como o reconhecimento de categorias e de objetos. O processo de reconhecimento é realizado
comparando os descritores 3D extraidos nos locais indicados pelos pontos-chave. Para isso, as
localizagcées do pontos-chave 2D tém de ser convertido para o espaco 3D. Isto foi possivel porque
o conjunto de dados usado contém a localizacao de cada ponto de no espaco 2D e 3D. A avaliacao
permitiu-nos obter o melhor par detetor de ponto-chave/descritor num RGB-D object dataset.
Usando o nosso detetor de ponto-chave e o descritor SHOTCOLOR, obtemos uma noa taxa de
reconhecimento de categorias e para o reconhecimento de objetos é com o descritor PFHRGB
que obtemos os melhores resultados.

Um sistema de reconhecimento 3D envolve a escolha de detetor de ponto-chave e de-
scritor, por isso é apresentado um novo método para a detecao de pontos-chave em nuvens de
pontos 3D e uma analise comparativa é realizada entre cada par de detetor de ponto-chave
3D e descritor 3D para avaliar o desempenho no reconhecimento de categorias e de objetos.
Estas avaliacoes sao feitas numa base de dados publica de objetos 3D reais. O nosso detetor
de ponto-chave é inspirado no comportamento e na arquitetura neural do sistema visual dos
primatas. Os pontos-chave 3D sdo extraidas com base num mapa de saliéncias 3D bottom-up,
ou seja, um mapa que codifica a saliéncia dos objetos no ambiente visual. O mapa de salién-
cia é determinada pelo calculo dos mapas de conspicuidade (uma combinacao entre diferentes
modalidades) da orientacao, intensidade e informacdes de cor de forma bottom-up e puramente
orientada para o estimulo. Estes trés mapas de conspicuidade sdo fundidos num mapa de salién-
cia 3D e, finalmente, o foco de atencao (ou "localizacao do ponto-chave”) esta sequencialmente
direcionado para os pontos mais salientes deste mapa. Inibir este local permite que o sistema
automaticamente orientado para proximo local mais saliente. As principais conclusées sao: com
um nimero médio similar de pontos-chave, o nosso detetor de ponto-chave 3D supera os outros
oito detetores de pontos-chave 3D avaliados, obtendo o melhor resultado em 32 das métricas
avaliadas nas experiéncias do reconhecimento das categorias e dos objetos, quando o segundo
melhor detetor obteve apenas o melhor resultado em 8 dessas métricas. A Unica desvantagem
€ o tempo computacional, uma vez que BIK-BUS é mais lento do que os outros detetores. Dado
que existem grandes diferencas em termos de desempenho no reconhecimento, de tamanho
e de tempo, a selecao do detetor de ponto-chave e descritor tem de ser interligada com a
tarefa desejada e nds damos algumas orientacdes para facilitar esta escolha neste trabalho de
investigacao.

Depois de propor um detetor de ponto-chave 3D, a investigacao incidiu sobre um método
robusto de detecao e tracking de objetos 3D usando as informacdes dos pontos-chave num filtro
de particulas. Este método consiste em trés etapas distintas: Segmentacao, Inicializacdo do
Tracking e Tracking. A segmentacao € feita de modo a remover toda a informacao de fundo,
a fim de reduzir o nUmero de pontos para processamento futuro. Na inicializacdo, usamos um
detetor de ponto-chave com inspiracao bioldgica. A informacao do objeto que queremos seguir
€ dada pelos pontos-chave extraidos. O filtro de particulas faz o acompanhamento dos pontos-
chave, de modo a se poder prever onde os pontos-chave estarao no proximo frame. As experién-
cias com método PFBIK-Tracking sao feitas no interior, num ambiente de escritorio/casa, onde
se espera que robods pessoais possam operar. Também avaliado quantitativamente este método
utilizando um "Tracking Error". A avaliacdo passa pelo calculo das centroides dos pontos-chave e
das particulas. Comparando o nosso sistema com o método de tracking que existe na biblioteca
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usada no desenvolvimento, nos obtemos melhores resultados, com um nimero muito menor de
pontos e custo computacional. O nosso método é mais rapido e mais robusto em termos de
oclusao, quando comparado com o OpenniTracker.

Palavras-chave

Atencao Visual; Sistema Visual Humano; Saliéncia; Regidao de Interesse; Visdo Computacional
Biologicamente Motivada; Detetores de Ponto-Chave; Pontos de Interesse; Reconhecimento de
Objetos 3D; Extracao de Caracteristicas; Avaliacdo da Performance; Tracking; Filtro de Partic-
ulas; Aprendizagem Automatica.
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Resumo Alargado

Este capitulo resume, de forma alargada e em Lingua Portuguesa, o trabalho de investi-
gacao descrito na tese de doutoramento intitulada "Biologically Motivated Keypoint Detection
for RGB-D Data". A parte inicial deste capitulo descreve o enquadramento da tese, o problema
abordado, os objetivos do doutoramento, o argumento da tese, e descreve as suas principais
contribuicdes. De seguida, é abordado o topico de investigacao sobre a detecao de pontos-chave
e sao apresentados com maior detalhe os trabalhos de investigacao e as principais contribuicoes
da tese. O capitulo termina com a discussao breve das principais conclusdes e a apresentacao
de algumas linhas de investigacao futura.

Introducao

Esta tese aborda o tema da detecdo de ponto-chave, propondo novos métodos com in-
spiracao bioldgica e uma avaliacdo contra os métodos do estado-da-arte num sistema de re-
conhecimento de objetos. O contexto e o foco da tese sdo ainda descritos neste capitulo, em
conjunto com a definicao do problema, motivacao e objetivos, o estado da tese, as principais
contribuicoes, bem como a organizacao de tese.

Motivacao e Objetivos

Vivemos num mundo cheio de dados visuais. O fluxo continuo de dados visuais esta con-
stantemente a bombardear as nossas retinas e precisa de ser processado de forma a extrair
apenas a informacao que € importante para as nossas acoes. Para selecionar as informagdes
importantes a partir da grande quantidade de dados recebidos, o cérebro deve filtrar as suas
entradas. O mesmo problema é enfrentado por muitos sistemas técnicos modernos. Os sistemas
de visdo computacional precisam de lidar com um grande niimero de pixels em cada imagem,
bem como com a elevada complexidade computacional das muitas abordagens relacionadas com
a interpretacao dos dados numa imagem [[1]. A tarefa torna-se especialmente dificil, se um sis-
tema tem de funcionar em tempo real.

A atencao visual seletiva fornece um mecanismo para que o cérebro seja capaz de con-
centrar os recursos computacionais num Unico objeto de cada vez, guiados pelas propriedades
da imagem de baixo nivel (atencao Bottom-Up) ou com base numa tarefa especifica (atencao
Top-Down). O reconhecimento dos objetos em diferentes localizagdes é conseguido através da
concentracao da atencao em diferentes locais, um de cada vez. Durante muitos anos, a investi-
gacdo nesta area teve principalmente um interesse teorico, dadas as exigéncias computacionais
dos modelos apresentados. Por exemplo, Koch e Ullman [2] apresentaram o primeiro modelo
teodrico de atencao seletiva em macacos, mas foi sé Itti et al. [3] que conseguiram reproduzir
este modelo num computador. Desde entao, o poder computacional aumentou substancial-
mente, permitindo o aparecimento de mais implementacdes de sistemas computacionais de
atencao, que sao Uteis em aplicacOes praticas.

No inicio, esta tese pretende apresentar ambas as faces dos sistemas de atencao visual,
da neurociéncia aos sistemas computacionais. Para os investigadores interessados em sistemas
computacionais de atencao, o conhecimento da neurociéncia sobre a atencéo visual humana é
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dada no capitulo . Enquanto que para os neurocientistas sdo apresentados os varios tipos de
abordagens computacionais disponiveis para a simulacdo de atencao visual humana baseada na
atencdo Bottom-Up (capitulo fi). Este trabalho apresenta nio sé abordagens biologicamente
plausiveis, mas também discute as abordagens computacionais e hibridas (uma mistura de con-
ceitos biologicos e computacionais). Heinke e Humphreys [4] realizaram uma revisao dos mode-
los de atencdo computacionais com um proposito psicologico. Por outro lado, um estudo sobre
modelos computacionais inspirados na neurobiologia e psicofisica da atencao sdao apresentados
por Rothenstein e Tsotsos [{1]]. Finalmente, Bundesen e Habekost [5], e mais recentemente Borji
e Itti [6], apresentam uma revisao abrangente dos modelos de atencao psicologica em geral.

Uma outra area que tem atraido muita atencdo na comunidade de visdo computacional
tem sido a detecao de ponto-chave, o desenvolvimento de uma série de métodos que sao es-
taveis a uma ampla gama de transformacgoes [7]. Os pontos-chave sao pontos de interesse e
podem ser considerados pontos que ajudam os humanos a reconhecer os objetos de uma forma
computacional. Alguns deles sdo desenvolvidos com base em caracteristicas gerais [8], mais
especificas [7,9,10] ou uma mistura delas [[11]. Dado o nimero de detetores de pontos-chave,
é surpreendente como é que muitos dos melhores sistemas de reconhecimento nao usam estes
detetores. Em vez disso, eles processam a imagem inteira, quer pelo pré-processamento de
imagem inteira de forma obter vetores de caracteristicas [[12], por sub-amostragem dos de-
scritores numa grelha [13] ou pelo processamento de imagens inteiras de forma hierarquica
e detetando caracteristicas salientes durante processo [[14]. Estas abordagens fornecem uma
série de dados que ajudam a classificacao, mas também introduzem uma grande quantidade de
redundancia [[15] ou alto custo computacional [[13]. Normalmente, o maior custo computacional
destes sistemas esta na fase de processar as caracteristicas (ou descritores em 3D), por isso,
faz sentido usar apenas um subconjunto nao redundante de pontos obtidos a partir da imagem
de entrada ou da nuvem de pontos. O custo computacional dos descritores é geralmente ele-
vado, por isso nao faz sentido extrair descritores em todos os pontos. Assim, os detetores de
pontos-chave sao usados para selecionar pontos de interesse sobre os quais descritores serao
entdo computados. A finalidade dos detetores de pontos-chave é a de determinar os pontos que
sao diferentes, a fim de permitir que uma descricao eficiente do objeto e que continue a existir
uma correspondéncia mesmo com variacdes no ponto-de-vista do objeto [{16].

Motivado pela necessidade de comparar quantitativamente as diferentes abordagens de
detecao de ponto-chave, num processo experimentalmente comum e bem estabelecido, dado o
grande numero de detetores de pontos-chave disponiveis e inspirado pelo trabalho apresentado
para 2D em [17,18] e para 3D em [19], uma comparacao entre varios detetores de pontos-chave
3D é feita neste trabalho. Em relacado ao trabalho apresentado em [17,19], a novidade consiste
no uso de um conjunto de dados real em vez de um artificial, maior niUmero de nuvens de pontos
3D e detetores de pontos-chave diferentes. A vantagem de usar nuvens de pontos 3D reais é
que estas refletem o que acontece na vida real, como com a visdo do robd. Estes nunca "véem"
um objeto perfeito ou completo, como os apresentados por objetos artificiais. Para avaliar a
invariancia dos métodos de detecao de ponto-chave, os pontos-chave sdo extraidos diretamente
da nuvem inicial. Além disso, uma transformacao é aplicada a nuvem de pontos 3D original antes
de extrair um outro conjunto de pontos-chave. Uma vez obtidos os pontos-chave da nuvem de
pontos transformada, € possivel aplicar uma transformacao inversa, de modo que possam ser
comparados com os pontos-chave extraidos a partir da nuvem inicial. Se um dado método for
invariante a transformacao aplicada, os pontos-chave extraidos diretamente da nuvem original
devem corresponder aos pontos-chave extraidos a partir da nuvem onde a transformacéao foi
aplicada.
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O interesse sobre o uso de informacdes da profundidade em aplicacoes de visao computa-
cional vem crescendo recentemente, devido a diminuicao dos precos das camaras 3D, como a
Kinect ou a Asus Xtion. Com este tipo de camaras, € possivel fazer uma analise 2D e 3D dos
objetos capturados. As informacdes de profundidade melhora a percecao do objeto, uma vez
que permite determinar de sua forma ou geometria. As camaras podem retornar diretamente
a imagem 2D e a nuvem de pontos correspondente, a qual é composta pela informacao RGB
e profundidade. Informagdes de profundidade melhoram a percepcao do objeto, uma vez que
permite a determinacdo de sua forma ou geometria. Um recurso Util para os utilizadores deste
tipo de sensores é a biblioteca PCL [20] que contém muitos algoritmos que lidam com dados das
nuvens de pontos, desde a segmentacdo ao reconhecimento. Esta biblioteca é utilizada para
lidar com dados reais em 3D e também para avaliar a robustez dos detetores com variacoes no
ponto-de-vista dos dados reais em 3D.

Nesta tese, é apresentado um novo detetor de ponto-chave em 2D. O método possui
motivacado bioldgica e multi-escala, que usa os canais da cor e da intensidade de uma imagem.
Este tem por base o método Biologically Inspired keyPoints (BIMP) [7], o qual é um detetor rapido
de ponto-chave com base na biologia do cértex visual humano. A extensao deste método é feita
introduzindo a analise da cor de forma similar ao que é feito na retina humana. A avaliacao
comparativa é feita no conjunto de dados RGB-D Object Dataset [21], composto por 300 objetos
reais e divididos em 51 categorias. A avaliacdo do método apresentado e dos detetores de
pontos-chave do estado-da-arte é feita com base no reconhecimento do proprio objeto e da sua
categoria utilizando descritores 3D. Este conjunto de dados contém a localizacdo de cada ponto
no espaco 2D, o que nos permite usar detetores de ponto-chave 2D nestas nuvens de pontos.

Aqui também é proposto um detetor de ponto-chave para 3D derivado de um modelo de
detecdo de saliéncias baseado na atencao espacial numa arquitetura biologicamente plausivel
proposta em [2, 3]. Este utiliza os trés canais de caracteristicas: a cor, a intensidade e a
orientacdo. O algoritmo computacional deste modelo de saliéncia foi apresentado em [3] e
continua a ser a base de muitos modelos posteriores e o detetor de saliéncia padrao nas imagens
2D. Neste trabalho é apresentado a versao 3D deste detetor de saliéncia e foi demonstrado
como podem ser extraidos os pontos-chave a partir de um mapa de saliéncia. Os detetores de
pontos-chave 3D e os descritores comparados podem ser encontrados na versao 1.7 da PCL [20].
Com isso, é possivel encontrar o qual é o melhor par de detetor ponto-chave/descritor para
objetos em nuvem de pontos 3D. Isto é feito a fim de superar as dificuldades que surgem quando
se pretende escolher o par mais adequado para uso numa determinada tarefa. Este trabalho
propde-se a responder a esta pergunta com base no conjunto de dados RGB-D Object Dataset.

Em [22], o Alexandre foca-se nos descritores disponiveis na PCL, explicando como eles
funcionam e fez uma avaliacao comparativa sobre o mesmo conjunto de dados. Ele compara
descritores com base em dois métodos de extracdo de ponto-chave: o primeiro é um detetor de
ponto-chave e a segunda abordagem consiste apenas numa sub-amostragem da nuvem de pontos
de entrada com dois tamanhos diferentes, usando uma voxelgrid com 1 e 2 cm. Os pontos sub-
amostradas sao considerados pontos-chave. Uma das conclusdes deste trabalho é que o aumento
do nimero de pontos-chave melhora os resultados de reconhecimento a custa do aumento do
tamanho e custo computacional. O mesmo autor estuda a precisdo das distancias, tanto para
os reconhecimento dos objetos bem como das suas categorias [23].

As propostas desta tese terminam com um sistema de tracking de pontos-chave. O track-
ing é o processo de seguir objetos em movimento ao longo do tempo usando uma camara. Ex-
iste uma vasta gama de aplicagGes para estes sistemas, tais como, aviso de colisdo de veiculos,
robdtica movel, localizacdo de um orador, seguimento de pessoas e de animais, o acompan-
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hamento de um alvo militar e imagens médicas. Para realizar o seguimento, o algoritmo analisa
as sequéncias de imagens de video e emite a localizacao dos alvos em cada uma das imagens.

Existem duas componentes principais num sistema de seguimento visual: representacao
do alvo e a sua filtragem. A representacao do alvo é principalmente um processo bottom-up,
ao passo que a filtragem é principalmente um processo top-down. Estes métodos fornecem
uma variedade de ferramentas para identificar o objeto em movimento. Alguns algoritmos de
seguimento mais comuns sao: Blob tracking, Kernel-based ou mean-shift tracking e contour
tracking. A filtragem envolve a incorporacao de informacao prévia sobre a cena ou sobre o ob-
jeto, tem de lidar com a dinamica de objetos e realizar uma avaliacao das diferentes hipoteses.
Estes métodos permitem o seguimento de objetos complexos juntamente com a interacdo objeto
mais complexo como seguir objetos em movimento atras de obstaculos [24]. Nesta tese, a in-
formacao é fornecida diretamente por uma camara Kinect. Com esta camara, nao € necessario
gastar recursos computacionais para produzir o mapa de profundidade, uma vez que este é
fornecido diretamente pela camara. Na visao estéreo tradicional, com duas camaras, colocadas
horizontalmente uma da outra sao utilizadas para obter dois pontos de vista diferentes de uma
cena, de uma maneira semelhante a visdo binocular humana.

Principais Contribuicoes

Esta seccdo descreve brevemente as quatro principais contribuicdes cientificas resul-
tantes do trabalho de investigacao apresentado nesta tese.

A primeira contribuicéo ¢ a descricdo e a avaliacao da invariancia de detetores de pontos-
chave 3D que estao disponiveis publicamente na biblioteca PCL. A invariancia de detetores de
pontos-chave 3D é avaliada de acordo com varias rotacdes, mudancas de escala e translacdes.
Os critérios de avaliacdo utilizados sao a taxa de repetibilidade absoluta e a relativa. Usando
estes critérios, a robustez dos detetores ¢é avaliada em relacdo as mudancas do ponto-de-vista.
Este estudo é parte do capitulo 4, que consiste num artigo publicado na 9'" Conference on
Telecommunications (Conftele'13) [25] e estendido para a 9! International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP'14) [26].

A segunda contribuicdo desta tese € a proposta de um detector de ponto-chave 2D, que
contém inspiracao biologica. O método é uma extensao da colorimétrica do detetor de pontos-
chave [7], onde a informacao de cor estd incluido em uma maneira plausivel biologica
e reproduz a informacdo como a cor é analisada na retina. Caracteristicas da imagens em
varias escalas sdo combinadas num Unico mapa pontos-chave. O detetor é comparado com os
detetores do estado-da-arte e é particularmente adequado para tarefas como o reconhecimento
de categorias e de objetos. Com base nesta comparacao, foi obtido o melhor par de detetor
de ponto-chave 2D/descritor 3D no conjunto de dados RGB-D Object Dataset. Este detetor de
ponto-chave 2D é apresentado no capitulo b e foi publicado na 10" International Symposium on
Visual Computing (ISVC'14) [27].

A terceira contribuicao desta tese consiste num detetor de ponto-chave 3D baseado na
saliéncia e inspirado pelo comportamento e arquitetura neural do sistema visual dos primatas.
Os pontos-chave sdo extraidos com base num bottom-up mapa de saliéncias 3D, ou seja, um
mapa que codifica a saliéncia dos objetos no ambiente visual. O mapa de saliéncia é determi-
nado pelo calculo de mapas conspicuidade (uma combinacao entre diferentes modalidades) da
orientacao, intensidade e informacdes de cor num processo bottom-up e de uma maneira pu-
ramente orientada para o estimulo. Estes trés mapas de conspicuidade sao fundidos num dnico
mapa de saliéncia 3D e, finalmente, o foco de atencao (ou "localizacao dos pontos-chave”) é
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sequencialmente direcionado para os pontos mais salientes deste mapa. A inibicao de este local
permite que o sistema seja capaz de automaticamente mudar o foco de atencao para o proximo
local mais saliente. A analise comparativa entre cada par de detetores de ponto-chave 3D e
descritores 3D é realizada, a fim de avaliar o seu desempenho no reconhecimento de objetos e
categorias. Este detetor de ponto-chave 3D é descrito no capitulo fl, que consiste num artigo
publicado na 20" Portuguese Conference on Pattern Recognition (RecPad'14) [28] e estendido
para a IEEE Transaction on Image Processing (IEEE TIP) [29].

A (ltima contribuicdo desta tese é a proposta de um sistema robusto de detecao e de segui-
mento (tracking) de objetos 3D usando informacdes dos pontos-chave num filtro de particulas.
0 método é composto por trés etapas distintas: Segmentacao, Inicializacdo do Tracking e Track-
ing. Um passo da segmentacao € realizado para remover toda a informacéo de fundo, a fim de
reduzir o niUmero de pontos para os processamentos posteriores. A informacao inicial do objeto
a ser seguido é dado pelos pontos-chave extraidos. O filtro de particulas faz o acompanhamento
dos pontos-chave, de modo a que se possa prever onde € que este se encontrara na proximo
imagem. Este tracker é apresentado no capitulo i e publicado na 10" IEEE Symposium Series
on Computational Intelligence (IEEE SSCI'14) [30].

Organizacao de Tese

Esta tese esta organizada em oito capitulos principais. O primeiro capitulo descreve o
contexto, foco e o problema abordado no trabalho de investigacao, bem como a motivacao
da tese, objetivos, declaracdo e a abordagem adotada para resolver o problema. Também esta
incluido um resumo das principais contribuices desta tese, seguido da descricao da organizacao
e estrutura da tese. Os temas e a organizacdo dos principais capitulos restantes desta tese sao
apresentados a seguir.

O capitulo P fornece uma visao geral sobre o sistema visual humano, descrevendo como
é feito o processamento dos sinais visuais captadas pelos nossos olhos. A descricdo € baseada
na opinidao de neurocientistas e psicologos, sendo mais focado numa area de atencao visual
humana. Este capitulo é adicionado nesta tese, a fim de dar suporte a analise das diferencas
entre as aplicacées com inspiracao bioldgica e as computacionais apresentadas no capitulo f.

No capitulo § é apresentado o estado-da-arte de métodos bottom-up de detecéo de sal-
iéncia. Estes sdo classificados com base na sua inspiracao: biologicamente plausivel, puramente
computacional, ou hibrido. Quando um método é classificado como biologicamente plausivel,
significa que resulta do conhecimento sobre o sistema visual humano. Outros métodos sao pu-
ramente computacionais e ndo com base em qualquer dos principios biolégicos da visdo. Os
métodos classificados como hibridos sdo aqueles que incorporam ideias parcialmente baseados
em modelos biologicos.

O capitulo H é composto por trés partes: 1) descricio dos detetores de ponto-chave
2D e 3D que serado usados em capitulos posteriores; 2) descricao de descritores 3D que serao
usados para avaliar os detetores de ponto-chave e obter o melhor par de detetor de ponto-
chave/descritor no reconhecimento de objetos; 3) por fim, uma avaliacao da repetibilidade dos
detetores de ponto-chave 3D, a fim de medir a invariancia dos métodos relativamente a rotacao,
mudanca de escala e translacao.

No capitulo  é apresentado um novo método de detecdo de ponto-chave com inspiracéo
bioldgica e compara com os métodos do estado-da-arte numa perspetiva de reconhecimento
de objetos. Uma extensao de cor com base na retina foi desenvolvido para um detetor de
ponto-chave existente na literatura e inspirado no sistema visual humano.
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Enquanto que no capitulo | é proposto um detetor de ponto-chave 3D baseado num
método bottom-up de detecdo de saliéncia e avaliados da mesma forma como apresentado
anteriormente. Os mapas de conspicuidade obtidos a partir da intensidade e orientacao sao
entao fundidas a fim de produzir o mapa de saliéncia. Com isso, a atencdo pode ser direcionada
para o ponto mais saliente e considera-lo um ponto-chave.

O capitulo [ apresenta um método de tracking de pontos-chave 3D que usa um filtro de
particulas e é composto por trés etapas principais: Segmentacao, Inicializacao do Tracking e
Tracking. Este método é comparado com um outr que esta presente na biblioteca utilizada. As
experiéncias sao feitas no interior, num ambiente de escritério/casa, onde se espera que robds
pessoais possam operar.

Por fim, o capitulo § apresenta as conclusdes e contribuicées desta tese e discute direcdes
para um futuro trabalho de investigacao.

Atencéao Visual Humana

O capitulo P aborda o tema da atencéo visual humana por parte dos neurocientistas e
psicologos, a fim de facilitar a compreensao de como é feito o processamento de informacdes no
sistema visual humano. A maioria da informacao vem de uma area normalmente referida como
Computational Neuroscience e definida por Trappenberg como: "o estudo tedrico do cérebro
usado para descobrir os principios e mecanismos que orientam as capacidades de desenvolvi-
mento, organizac@o, processamento das informacées mentais e do sistema nervoso” [31].

Sistema Visual

Nesta seccao é apresentada uma introducao sobre a anatomia e fisiologia do sistema
visual. Informacdes mais detalhadas podem ser encontrados em, por exemplo, Hubel [32] e
Kolb et al. [33].

Retina

A retina é uma parte do cérebro responsavel pela formacédo de imagens, isto €, o sentido
da visao [32]. Em cada retina ha cerca de 120 milhdes de fotoreceptores (cones e bastonetes)
que libertam moléculas neurotransmissoras a uma taxa que é maxima na escuridao e diminui,
de forma logaritmica, com o aumento da intensidade da luz. Este sinal é entdo transmitido para
uma rede local de células bipolares e células ganglionares.

Ha cerca de 1 milhdo de células ganglionares na retina e nos seus axons que formam o
nervo otico (ver figura .1). Ha, portanto, cerca de 100 fotoreceptores por célula ganglionar;
no entanto, cada uma das células do ganglio recebe sinais de um campo recetivo na retina, uma
area mais ou menos circular que cobre milhares de fotoreceptores.

Uma imagem é produzida pela excitacao dos bastonetes e cones da retina. A excitacao
€ processada por varias partes do cérebro que funcionam em paralelo, para formar uma repre-
sentacao do ambiente externo no cérebro.

Os bastonetes, que sao muito mais numerosos do que os cones e sao responsaveis pela
nossa visao com pouca luz, sendo que com luz do dia estes nao contribuem para a formacao da
imagem [34,35]. Por outro lado, os cones nao respondem a luz fraca, mas sdo responsaveis pela
nossa capacidade de ver detalhes finos e para a nossa visao a cores [32].
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Aretina, ao contrario de uma camara, nao envia apenas uma imagem para o cérebro. Esta
codifica espacial (comprime) a imagem para a ajustar a capacidade limitada do nervo oético. A
compressao € necessaria porque ha 100 vezes mais células fotoreceptoras do que ganglionares.
Na retina, a codificacao espacial é realizada pelas estruturas center-surround implementadas
pelas células bipolares e ganglionares. Existem dois tipos de estruturas center-surround na
retina (ver figura R.2): ON-Center e OFF-Center. As ON-Center utilizam um centro de com
peso positivo e um peso negativo na vizinhanca. As OFF-Center usam exatamente o oposto. A
pesagem positiva é mais conhecida como excitadora e pela negativa o inibidora [32].

Estas estruturas center-surround nao sao fisicas, no sentido em que podem ser vistas
através da coloracdo de tecidos e a analise das amostras anatomicas da retina. As estruturas
center-surround sdo apenas logicas (isto €, matematicamente abstratas) no sentido em que
elas dependem da forca da conexao entre as células bipolares e ganglionares. Acredita-se que a
forca de ligacao entre as células depende do nimero e tipos de canais de ides incorporados nas
sinapses entre as células bipolares e ganglionares. Kuffler, na década de 1950, foi o primeiro a
comecar a entender as estruturas center-surround na retina dos gatos

As estruturas center-surround sao matematicamente equivalentes aos algoritmos de de-
tecao de arestas utilizados por programadores de computador para extrair ou reforcar os con-
tornos de uma imagem. Assim, a retina realiza operacdes sobre as arestas dos objetos dentro do
campo visual. Depois da imagem ser espacialmente codificada pelas estruturas center-surround,
o sinal é enviado através do nervo 6tico (isto €, dos axons das células do ganglio) para o quiasma
através do Lateral Geniculate Nucleus, como apresentado na figura .1.

Lateral Geniculate Nucleus

O Lateral Geniculate Nucleus é o centro de transmissdo primaria para informacoes visuais
recebidas da retina e encontra-se no interior do talamo. Este recebe informacdes diretamente
das células ganglionares da retina através do nervo 6tico e do sistema de ativacao reticular. O
sistema de ativacao reticular € uma area do cérebro responsavel pela regulacdo da excitacao
(estado fisiologico e psicolégico de estar acordado ou recetivo a estimulos). Os neuronios no
LGN enviam seus axons através da radiacao otica, uma via direta para o cértex visual primario,
como mostrado na figura .3. Nos mamiferos, os dois caminhos mais fortes que ligam o olho ao
cérebro sao aqueles que sao projetados para a parte dorsal do LGN no talamo e para o superior
colliculus [36].

Tanto o LGN do hemisfério direito e como o esquerdo recebem entradas de cada um dos
olhos. No entanto, cada um recebe apenas informacdo de uma metade do campo visual. Isto é
devido aos axons das células do ganglio da metade interna da retina (lado nasal), atravessando
para o outro lado do cérebro através do quiasma, como é apresentado na figura 2.1. Os axons das
células ganglionares da metade exterior dos lados da retina (temporais) permanecem no mesmo
lado do cérebro. Por isso, o hemisfério direito recebe informacdes visuais do campo visual
esquerdo, e o hemisfério esquerdo recebe a informacao visual do campo visual direito [37].

Cortex Visual

O cortex visual do cérebro é a parte responsavel pelo processamento de informacao visual.
Ele esta localizado no lobo occipital, na parte de tras do cérebro (ver figura.4). O termo cortex
visual refere-se ao cortex visual primario (também conhecida como cortex estriado ou V1) e as
areas do cortex extra-estriado compreende as areas visuais V2, V3, V4 e V5.

XXiii



Biologically Motivated Keypoint Detection for RGB-D Data

Os neurdnios no cortex visual permitem o desenvolvimento de uma acdo quando os es-
timulos visuais aparecem dentro de seu campo recetivo. Por definicdo, o campo recetivo é a
regiao dentro de todo o campo visual que provoca uma "potencial de acdo" (na fisiologia, um
potencial de acao é um evento de curta duracdo em que o potencial elétrico da membrana de
uma célula rapidamente sobe e desce, seguindo uma trajetoria consistente). Mas um deter-
minado neuronio pode responder melhor a um subconjunto de estimulos dentro de seu campo
recetivo. Por exemplo, um neuroénio no V1 pode disparar a qualquer estimulo vertical no seu
campo recetivo e ignorar outros tipos de estimulo. Nas areas visuais anteriores, como no cortex
inferotemporal (ver figura .3), um neurédnio pode disparar apenas quando uma determinada
face aparece em seu campo recetivo.

Cortex Primario (V1) O cortex visual primario € a area mais bem estudados do sistema visual.
Em todos os mamiferos estudados, esta localizada no polo posterior do cortex occipital (respon-
savel por processar os estimulos visuais), como apresentado nas figuras 2.3 e 2.4. E altamente
especializada no processamento de informacdes sobre objetos estaticos e em movimento, e é
excelente em reconhecimento de padroes.

O V1 tem um mapa bem definido de informacao espacial visual. Por exemplo, nos seres
humanos todo o topo do calcarine sulcus responde fortemente para a metade inferior do campo
visual, e a parte inferior para a metade superior do campo visual. Concetualmente, o mapea-
mento retinotopic é uma transformacédo da imagem visual da retina para V1. A correspondéncia
entre um determinado local em V1 no campo subjetivo da visao é muito precisa: até mesmo os
pontos cegos sao mapeados para o V1.

O consenso atual parece ser que as respostas iniciais de neurénios do V1 sdo compostas
por uns conjuntos de filtros espaco-temporais seletivos. No espaco, o funcionamento do V1
pode ser pensado como sendo semelhante a muitas funcdes espaciais locais, transformadas
de Fourier, ou mais precisamente filtros de Gabor. Teoricamente, esses filtros juntos podem
realizar o processamento neural das frequéncias espaciais, orientacdes, movimentos, direcdes,
velocidades (frequéncia temporal), e muitas outras caracteristicas espaco-temporais.

Os neurénios do V1 também sao sensiveis a organizacao global de uma cena [38]. Estas
propriedades provavelmente resultam da repeticao do processamento e conexdes laterais nas
piramides dos neuronios [39]. As conexdes feedforward sao na sua maioria de conducéo, e as
conexoes de feedback sao as que na sua maioria modulam em seus efeitos [40, 41].

As teorias computacionais da atencao espacial no sistema visual propéem que a modu-
lacao da atencao aumenta as respostas dos neurénios em muitas areas do cortex visual [42--44].
O lugar natural onde é possivel prever um aumento precoce deste tipo é no V1 e recente as ev-
idéncias do functional Magnetic Resonance Imaging (FMRI) mostram que o cortex estriado pode
ser modulado pela atencao de uma maneira consistente com esta teoria [45].

Area Visual V2 A area visual V2, também denominada por cortex prestriate [46], é a segunda
maior area do cortex visual e a primeira regido dentro da area de associacdo visual. Esta recebe
fortes conexdes feedforward do V1 e envia fortes ligacoes para o V3, V4 e V5. Ele também
envia forte conexdes de feedback para o V1. Funcionalmente, o V2 tem muitas propriedades
em comum com V1. Investigacdes recentes tém mostrado que as células no V2 mostram uma
pequena quantidade de modulacao a atencao (mais do que em V1, menos do que em V4), sendo
definidas como padrées moderadamente complexos, e pode ser acionado por varias orientacoes
em diferentes sub-regides dentro de um Unico recetivo campo [47, 48].
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Argumenta-se que todo o fluxo ventral (ver figura .4) é importante para a meméria vi-
sual [49]. Esta teoria prevé que a memoria relacionada com o reconhecimento de objetos sofre
alteracoes e que pode resultar na manipulacao do V2. Um estudo recente revelou que cer-
tas células do V2 desempenham um papel muito importante no armazenamento da informacao
relacionada com o reconhecimento de objetos e na conversao de memorias de curto prazo em
memorias de longo prazo [50]. A maioria dos neurdnios nesta area respondem a caracteristi-
cas visuais simples, como a orientacao, frequéncia espacial, tamanho, cor e forma [51--b3].
As células do V2 também responder a varias caracteristicas de formas complexas, tais como
a orientacao dos contornos ilusorios [51] e se o estimulo provém do foreground ou do back-
ground [54,55].

Area Visual V3 A regido do cortex V3 esta localizado imediatamente a frente do V2. Ha ainda
uma certa controvérsia sobre a extensao exata da area V3, alguns investigadores propéem que
o cortex esta localizado a frente do V2 e podem incluir duas ou trés subdivisdes funcionais. Por
exemplo, Felleman et al. [56] propoem a existéncia de um V3 dorsal no hemisfério superior,
que é distinto do V3 ventral localizado na parte inferior do cérebro. A regiao dorsal e ventral
do V3 tém ligacoes distintas com outras partes do cérebro e possuem neuronios que respondem
a diferentes combinacdes de estimulos visuais.

Area Visual V4 A area visual V4 esta localizada antes do V2 e depois da area Posterior Infer-
otemporal, como se mostra na figura 2.3. V4 é a terceira area cortical no fluxo ventral e recebe
fortes entradas feedforward do V2 e envia fortes ligacoes para o Posterior Inferotemporal. V4
€ a primeira area ventral na corrente que tem uma forte modulacao da atencao. A maioria dos
estudos indicam que a atencao seletiva pode alterar as taxas de disparo dos neurdnios do V4 em
cerca de 20%. Moran e Desimone [57] caracterizaram estes efeitos, e este foi o primeiro estudo
a encontrar efeitos de atencao em qualquer lugar no cértex visual [58]. Ao contrario do V1,
0 V4 é ajustado de forma a extrair caracteristicas dos objetos de média complexidade, como
formas geométricas simples, embora ninguém consiga ainda apresentar uma descricao completa
dos parametros do V4.

Area Visual V5 ou MT A area visual V5, também conhecida como area visual Middle Temporal
(MT)), é uma regido do cértex visual que se pensa ter um papel importante na percecdo do
movimento e orientacdes globais de alguns movimentos oculares [59]. As suas entradas incluem
das areas visuais V1, V2 e da parte dorsal do V3 [60, 61], regides koniocellulare do Lateral
Geniculate Nucleus [62]. As projecdes para o MT| variam um pouco, dependendo do campo
visual periférico [63]. DeAmgelis e Newsome [64] argumentam que os neurénios no MT| estdo
organizados com base em seu ajustes na disparidade binocular.

De uma forma global, o V1 é a area que fornece a entrada mais importante para o MT [59]
(ver figura 2.3). No entanto, varios estudos tém demonstrado que os neurénios do MT séo
capazes de responder as informagoes visuais muitas vezes de forma seletiva [65]. Além disso,
a investigacao realizada por Zeki [6€] sugere que certos tipos de informacdes visuais podem
chegar MT| antes mesmo de chegarem ao V1.

Atencao Visual

Nesta seccao sao discutidos varios conceitos sobre a atencao visual. Informacdes mais
detalhadas podem ser encontrados em, por exemplo, Pashler [67,68], Style [69], e Johnson and
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Proctor [70].

De um modo geral, embora parece que estamos a manter uma representacao rica do nosso
mundo visual, apenas uma pequena regiao da cena é analisada em detalhe, em cada momento:
foco da atencdo. Esta é, geralmente, mas nem sempre, a mesma regiao que € capturada pe-
los olhos [71,72]. A ordem pela qual uma cena é analisada é determinada pelos mecanismos
de atencao seletiva. Corbetta prop0s a seguinte definicdo de atencao: “define a capacidade
mental para selecionar estimulos, respostas, memorias, ou pensamentos que sGo comporta-
mentalmente relevantes entre muitos outros que sGo comportamentalmente irrelevantes” cite
Corbetta1998.

Existem duas categorias de fatores que motivam a atencao: os fatores bottom-up e os
fatores top-down [73]. Corbetta e Shulman [74] analisar as evidéncias em redes parcialmente
segregadas de areas do cérebro que desempenham diferentes funcdes da atencao. A preparacao
e aplicacdo de uma meta direcionada (top-down) de selecdo de estimulos é realizada por um
sistema que inclui partes do cértex intraparietal e do cortex frontal superior, o que também
€ modulado pela detecado de estimulos. Um outro sistema, onde a selecdo top-down nao esta
incluida, é em grande parte lateralizado para o hemisfério direito, onde se inclui o cortex tem-
poroparietal e o cortex frontal inferior. Este sistema é especializado na detecdo de estimulos
comportamentalmente relevantes, particularmente quando eles sao salientes ou inesperados.
Assim, é possivel indicar que existem duas areas separadas do cérebro que estao envolvidos
na atencao. De acordo com Theeuwes [75], a influéncia bottom-up nao € voluntariamente su-
pressivo: uma regiao altamente salientes captura o foco de atencao, independentemente da
tarefa.

Os fatores bottom-up derivam exclusivamente da cena visual [76]. As regides de interesse
gue atraem a atencdo de um modo bottom-up sdao denominadas por salientes e as caracteris-
ticas responsaveis por estas reacoes devem ser suficientemente discriminantes em relacao as
caracteristicas circundantes. Além da atencao bottom-up, este mecanismo é também chamado
a atencdo exogena, automatica, reflexiva, ou atencao periférica dirigida [77].

Em contraste, a atencdo top-down é estimulada por fatores cognitivos como as expec-
tativas de conhecimento e objetivos atuais [74]. Por exemplo, os condutores de automoveis
sdo mais propensos a ver postos de gasolina numa rua e os ciclistas a notar a existéncia de
ciclovias [78].

Os mecanismos de atencao bottom-up foram mais cuidadosamente investigados do que os
mecanismos de atencao top-down. Uma razao é que os dados que impulsionam os estimulos sdo
mais faceis de controlar do que os fatores cognitivos, como o conhecimento e as expectativas,
embora pouco se sabe sobre a interacao entre os dois processos.

Os mecanismos de atencéo seletiva no cérebro humano ainda permanecem em aberto no
campo da investigacao da percecao. A inexisténcia de uma area do cérebro exclusivamente ori-
entada para atencao visual [79--81] € uma das descobertas mais importantes da neurofisiologia,
mas a selecdo visual parece estar presente em quase todas as areas do cérebro associadas com
o processamento visual [82]. Além disso, as novas descobertas indicam que muitas areas do
cérebro partilham o processamento da informagdes através dos diferentes sentidos e ha cada
vez mais evidéncias de que grandes partes do cortex sao multi-sensoriais [83]. A rede das areas
anatomicas executa os mecanismos de atencao [74]. As opinides divergem sobre a questao:
quais sao as areas que executam determinadas tarefas.
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Saliéncia, Modelos Computacionais para a Atencéao Visual

A atencao visual seletiva, inicialmente proposta por Koch e Ullman [2], é usada por muitos
modelos computacionais de atencao visual. Mapa de saliéncia é o termo introduzido por Itti et
al. [3] no seu trabalho sobre rapid scene analysis, e por Tsotsos et al. [84] e Olshausen et al. [83]
nos seus trabalhos sobre "atencao visual®. Em alguns estudos, como por exemplo em [84, 8€], o
termo saliéncia aparece referido como “"atencao visual" ou em [87, 88] como “imprevisibilidade,
raridade ou surpresa”. Os mapas de saliéncia sao utilizados como sendo um mapa escalar bidi-
mensional que representam a localizacao da saliéncia visual, independentemente do estimulo
particular que faz com que a localizacao seja saliente [{].

Com o interesse emergente na "visdo ativa", os investigadores da area da visao por com-
putador tém-se preocupado cada vez mais com os mecanismos de atencao e propuseram nu-
merosos modelos computacionais de atencao. Um sistema de visao ativo é um sistema que pode
manipular o ponto de vista da(s) camara(s), a fim de analisar o seu meio ambiente circundante
e de forma obter uma melhor informacao a partir dele.

Os métodos de detecao de saliéncias podem ser classificados em: biologicamente plausiveis,
puramente computacionais, ou hibridos [89]. Outros tipos de categorias sdo descritas em [6].
Em geral, todos os métodos utilizam uma abordagem de baixo nivel para determinar o contraste
das regides na imagem em relacdo ao seu ambiente, utilizando uma ou mais caracteristicas
de intensidade, cor ou orientacdo. Quando um método é dito biologicamente plausivel que
significa que este resulta do conhecimento do sistema visual humano. Geralmente, ha uma ten-
tativa de combinar elementos conhecidos, extraidos pela retina, Lateral Geniculate Nucleus,
cortex visual primario (V1), ou por outros campos visuais (tais como V2, V3, V4 e V5). Itti et
al. [3], por exemplo, a base de seu método é uma arquitetura biologicamente plausivel pro-
posta em [2], onde eles determinam o contraste center-surround com o abordagem Difference
of Gaussians (DoG). Frintrop et al. [90] apresentam um método inspirado no método do Itti et
al., mas as diferencas no center-surround sao obtidas recorrendo a filtros quadrados e imagens
integrais de forma a reduzir o tempo de processamento.

Os métodos sdao puramente computacionais e ndo possuem qualquer tipo de base nos
principios biologicos da visdao. Ma and Zhang [86] and Achanta et al. [91] estimam a saliéncia
usando as distancias do center-surround. Enquanto Hu et al. [92] estimam a saliéncia através da
aplicacao de medidas heuristicas sobre medidas de saliéncia iniciais obtidas pelo thresholding
do histograma dos mapas de caracteristicas. A maximizacao da informacdo mitua entre as
distribuicoes das caracteristicas do centro e da vizinhanca de uma imagem é feita em [93]. Hou
e Zhang [94] executam o processamento no dominio das frequéncias.

Os métodos classificados como hibridos sdo aqueles que incorporam ideias que sao par-
cialmente baseadas nos modelos bioldgicos. Aqui, o método de Itti et al. [3] € usado por Harrel
et al. [95] de forma a gerar os mapas de caracteristicas e a normalizacao é feita através de uma
abordagem em grafos. Outros métodos utilizam abordagens computacionais como a maximiza-
cdo da informacao [96] que representam modelos plausiveis bioldgicos de detecdo de saliéncias.

Exemplos da Detecao de Saliéncias

Nesta seccdo sdao apresentados alguns resultados obtidos por varios métodos de detecao
de saliéncia. A avaliacao foi realizada em duas bases de dados, que vamos descrever.

A primeira base de dados, denominada por "Toronto", foi apresentado em [9€]. Esta
contém 120 imagens capturadas em ambientes fechados e ao ar livre com uma resolucao de 681 x
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511 pixels. Para o eye tracking, as imagens foram apresentadas aleatoriamente a 20 pessoas
e entre cada imagem era apresentada uma tela cinzenta durante 2 segundos num monitor CRT
de 21 polegadas e as pessoas estavam a uma distancia de 0.75 metros do monitor. Os estimulos
eram imagens a cores e a tarefa passava pela visualizacao da mesma, de forma a registarem
quais eram as zonas para onde as pessoas olhavam mais.

A segunda base de dados é denominada por "MIT" e foi apresentada em [97]. As imagens
foram coletadas a partir da "Flicker: creative commons" e do conjunto de dados "LabelMe".
Nesta base de dados contém 1007 imagens, estas foram vistas livremente e a tela cinza aparecia
durante 1 segundo entre cada imagem e o sistema de eye tracking era reajustado apds cada 50
imagens.

A tabela apresenta os mapas de saliéncia produzidos por 13 métodos em trés imagens
de cada uma das base de dados, aqui também sao apresentados os tempos médios que cada um
dos métodos demorou a produzir o mapa.

Aplicacoes

Até agora, a atencao concentrou-se nos conceitos da atencdo visual humana e apresen-
tam teorias psicologicas e neuroldgicas sobre o que se sabe sobre o sistema visual humano que
tem influenciado os modelos de atencdo computacionais. Também foi feita uma descricao da
estrutura geral e das caracteristicas dos modelos computacionais de atencao, dando uma visao
geral do estado-da-arte nesta area. Ha, no entanto, muitas aplicacoes tecnoldgicas destes mod-
elos que foram desenvolvidos ao longo dos anos e que tém aumentado ainda mais o interesse
na modelacao da atencao. As aplicacées que modelam a atencao estao organizadas em quatro
categorias: imagem, objeto, robdtica e video, como mostra a tabela B.2.

A categoria das imagens foi dividida em cinco sub-categorias: assembling, compressao,
avaliacdo da qualidade, resolucao e target. Ha também algumas aplicacdes adaptadas para
funcionarem com videos. A diferenca entre um método que s6 pode funciona com imagens
estaticas e outro que funciona nos videos esta ligado a sua complexidade computacional, porque
se eles pretenderem analisar todo o video, 0 método tem de ser extremamente rapido. Além
disso, as operacdes realizadas num video utilizando mapas de saliéncia sao muito semelhantes
as usadas nas imagens.

A divisao feita para a categoria objeto € a seguinte: detecao, reconhecimento, segmen-
tacdo e tracking. A detecao de objetos € um passo muito importante na visao de computador
e isso pode ser feito através de mapas de saliéncia, como demonstrado por varios autores.
Os métodos apresentados que se focam na segmentacao utilizando os mapas de saliéncia sao
métodos que dao mais importancia para as arestas dos objetos.

Detetores de Ponto-Chave, Descritores e Avaliacao

Aqui é feita uma descricao de alguns detetores de pontos-chave 2D e 3D (mais focado no
3D), e também dos descritores 3D. Finalmente, uma avaliacdo de detetores de pontos-chave
3D (disponiveis na biblioteca PCL) sao feitos com objetos reais em nuvens de pontos 3D. A
invariancia dos detetores de pontos chave 3D é avaliada de acordo com a rotacdo, mudanca de
escala e translacao. Os critérios de avaliacao utilizados sdo a taxa de repetibilidade absoluta e
a relativa. Usando estes critérios, a robustez dos detetores é avaliada em relacao as mudancas
de ponto-de-vista.
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Detetores de Ponto-Chave

Harris 3D, Lowe and Noble Methods O método de Harris [98] é baseado na detecao de arestas
e estes tipos de métodos sao caracterizados pelas variagoes nas intensidades. Na biblioteca PCL
estdo disponiveis duas variantes do detetor de pontos-chave Harris3D: estes sao denominados
por Lowe [99] e Noble [100]. A diferenca entre eles é a funcdo que define a resposta dos
pontos-chave.

Kanade-Lucas-Tomasi (KLT) Este detetor [98] foi proposto alguns anos apos o detetor Harris e
possui a mesma base que o detetor Harris3D. A principal diferenca é que a matriz de covariancia
é calculada usando os valores das intensidades, em vez dos normais da superficie.

Curvature O método de curvatura calcula as curvaturas principais da superficie em cada ponto
usando os normais. A resposta dos pontos-chave utilizada para suprimir os pontos-chave mais
fracos em torno dos mais fortes € o mesmo que no detetor Harris3D.

Smallest Univalue Segment Assimilating Nucleus (SUSAN) Este é um método genérico de
baixo nivel no processamento de imagem que, para além da detecédo de cantos, também tem
sido utilizado para detecao e de supressao de ruido [[101].

Scale Invariant Feature Transform (SIFT) Este foi proposto em [9] e a versao 3D em [[102],
sendo que partilha propriedades semelhantes as dos neurénios no cortex temporal inferior que
sao usados no reconhecimento de objetos na visao dos primatas.

Speeded-Up Robust Features (SURF) Os autores deste método inspiraram-se no método SIFT
para o desenvolver [[10]. Este é baseado na soma das respostas das 2D Haar wavelet e fizeram
uma utilizacao eficiente das imagens integrais.

Intrinsic Shape Signatures 3D (ISS3D) 0O ISS3D [[103] € um método relacionado com a medicao
da qualidade das regides. Este método utiliza a magnitude do menor valor préprio (para incluir
apenas os pontos com grandes variacoes ao longo de cada direcao principal) e a relacao entre
dois valores proprios sucessivos (para excluir pontos similares ao longo de direcées principais).

Biologically Inspired keyPoints (BIMP) O BIMP [7] é um detetor de ponto-chave com base no
cortex visual e visa resolver o do problema computacional do método apresentado em [[104].

Descritores 3D

3D Shape Context O descritor 3DSC [[105] é a versao 3D do descritor Shape Context [[106] e é
baseado numa grelha esférica centrada em cada ponto-chave.

Point Feature Histograms Este descritor é representado pelas normais da superficie, as esti-
mativas da curvatura e as distancias entre os pares de pontos [[107]. Este possui uma versao que
usa a informacao da cor denominado por PFHRGB.
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Fast Point Feature Histograms O descritor FPFH [[108,/109] € uma simplificacdo do PFH (definido
mais a frente) e neste caso os angulos das orientacdes das normais nao sao calculadas para todos
os pares de pontos e seu vizinhos.

Viewpoint Feature Histogram Em [{110], os autores propdem uma extensao do descritor FPFH,
denominada por VFH (definido mais a frente). A principal diferenca é que a superficie da normal
€ centrada na centroide e nao num ponto.

Clustered Viewpoint Feature Histogram O descritor CVFH [111] é uma extensdo do VFH e a
ideia por tras deste é que os objetos possuem regides estaveis.

Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram O descritor OUR-
CVFH [112] é um descritor semi-global baseado no Semi-Global Unique Reference Frames e no
CVFH, sendo que este explora a orientacao fornecida pelo reference frame para codificar as
propriedades geométricas da superficie do objeto.

Point Pair Feature O descritor PPF [[113] assume que tanto a cena e como o modelo sao rep-
resentados como um conjunto finito de pontos orientados, onde uma normal é associada a cada
ponto, este também possui uma versao que usa informacao da cor denominada por PPFRGB.

Signature of Histograms of OrienTations O descritor SHOT [{114] baseia-se numa assinatura
de histogramas que representam caracteristicas topoldgicas, de forma a torna-lo invariante a
translacao e a rotacao. Em [115], eles propdem duas variantes: a primeira € uma versao que
usa informacao da cor, no espaco CIELab, (SHOTCOLOR); no segundo (SHOTLRF), eles codificam
apenas a informacao referencial local, descartando os bins do histograma provenientes da forma
e das informacoes esféricas.

Unique Shape Context Uma atualizacdo do descritor 3DSC é proposto em [[116], denominado
por USC. Os autores relataram que um dos problemas encontrados no 3DSC reside nas multiplas
descricoes para o mesmo ponto-chave, com base na necessidade de obter tantas versoes do
descritor como o nimero de azimuth bins.

Ensemble of Shape Functions Em [[117], eles introduziram o descritor ESF, que se baseia na
forma para descrever as propriedades do objeto. Isto é feito recorrendo as trés funcoes de
forma apresentadas em [[118]: o angulo, a distancia entre pontos e area.

Point Curvature Estimation O descritor PCE calcula as direcées e magnitudes das principais
curvaturas da superficie em cada ponto-chave.

Caracteristicas dos Descritores Na tabela sao apresentadas algumas caracteristicas dos
descritores apresentados e € baseada naquela que é apresentada em [22]. A segunda coluna
contém o nimero de pontos gerados por cada descritor dado um ponto da nuvem de entrada com
n pontos Neste trabalho, a nuvem de entrada serao apenas os pontos-chave. A terceira coluna
mostra o comprimento de cada ponto. A quarta coluna indica se o descritor requer o calculo
dos normais de superficie em cada ponto. A coluna 5 mostra se o método é um descritor global
ou apenas local. Descritores globais requerem a nocao de objeto completo, enquanto que os
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descritores locais sao processados localmente em torno de cada ponto-chave e trabalham sem
esse pressuposto. A sexta coluna indica se o descritor é baseado na geometria ou da forma do
objeto, e se a analise de um ponto é feita usando uma esfera.

Conjunto de Dados

Neste trabalho de investigacao foi utilizado o conjunto de dados RGB-D Object Datasetf
[21]. Este conjunto de dados foi coletado por meio de uma camara RGB-D e contém um total
de 207621 nuvens segmentadas. O conjunto de dados contém 300 objetos distintos capturados
numa plataforma giratdria em 4 diferentes poses e os objetos sao organizados em 51 categorias.
Exemplos de alguns objetos sdo apresentados na figura {.1. E possivel ver que existem alguns
erros nas nuvens de pontos, isto deve-se a erros de segmentacao ou ruido do sensor de profun-
didade (alguns materiais nao refletem o infravermelho usado para obter informacées de pro-
fundidade). Os objetos escolhidos sao normalmente encontrados em residéncias e escritorios,
onde se espera que rob0s pessoais possam operar.

Avaliacao dos Detetores de Ponto-Chave

Este trabalho é motivado pela necessidade de comparar quantitativamente diferentes
abordagens para a detecao de pontos-chave numa framework experimental, dado o grande
numero de detetores de pontos-chave disponiveis. Inspirado pelos trabalhos em 2D apresentados
em [17,[18] e para 3D em [[19] é feita uma comparacao de varios detetores de pontos-chave 3D.
Em relacao aos trabalhos em [[17,[19], a novidade é que foi usado um conjunto de dados real em
vez de um artificial, o grande nimero de nuvens de pontos 3D e diferentes detetores de pontos-
chave. A vantagem de usar nuvens de pontos 3D riais € que estas refletem o que acontece na
vida real, como na visao do robd. Estes nunca "veem" um objeto perfeito ou completo, como os
representados por objetos artificiais.

0 sistema de avaliacao dos detetores de pontos-chave utilizado é apresentado na figura
K.2. De forma a avaliar a invariancia destes métodos, os pontos-chave sdo extraidos diretamente
da nuvem inicial. Além disso, a transformacéo € aplicada na nuvem 3D original antes de extrair
um novo conjunto de pontos-chave. Obtendo estes pontos-chave da nuvem transformada, a
transformacao inversa é aplicada, de modo a compara-los com os pontos-chave extraidos a partir
da nuvem inicial. Se um método particular é invariante para uma determinada transformacao
aplicada, os pontos-chave extraidos diretamente da nuvem original devem corresponder aos
pontos-chave extraidos a partir da nuvem onde a transformacao foi aplicada.

A caracteristica mais importante de um detetor de ponto-chave é a sua repetibilidade.
Esta caracteristica leva em conta a capacidade do detetor conseguir encontrar o mesmo con-
junto de pontos-chave em diferentes aparicées do mesmo modelo. As diferencas no modelos
podem ser devido ao ruido, mudanca de ponto de vista, oclusdao ou por uma combinacao dos
anteriores. A medida repetibilidade usada nesta neste trabalho é baseada na medida utilizada
em [[17] para pontos chave 2D e em [[19] para os pontos-chave em 3D, que sao repetibilidade
absoluta e relativa.

A invariancia dos métodos é avaliada em relacao a rotagado, translacdo e mudanca de
escala. Para isto, a rotacao é realizada de acordo com os trés eixos (X, Y e Z). As rotacoes
aplicadas variaram entre os 5° e os 45°, com saltos de 10°. A translacado é realizada simul-
taneamente nos trés eixos e o deslocamento da nuvem de pontos é aplicado em cada eixo e

Conjunto de dados publico e disponivel em http://www.cs.washington.edu/rgbd-dataset.
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obtido aleatoriamente. Por fim, as mudancas de escala sao aplicadas de forma aleatéria (entre
11x,5x]).

Na tabela §.2 sdo apresentados alguns resultados em relacdo a cada detetor de ponto-
chave aplicado as nuvens originais. A percentagem de nuvens onde os detetores de pontos-chave
sdo extraidos com sucesso (mais do que um ponto-chave) é apresentado na coluna 2. A coluna 3
representa o nimero médio de pontos-chave extraidos em cada nuvem. E finalmente, o tempo
médio gasto na detecao dos pontos-chave (em segundos) por cada método.

Para fazer uma comparacao justa entre os detetores, todas as etapas sao iguais (ver
figura4.2). As figuras 4.4, B.5 e i.4 mostram os resultados da avaliacao dos diferentes métodos
aplicados com as varias transformagées. O threshold das distancias analisadas variam entre
[0, 2] cm, com pequenas variacoes entre elas e foram calculadas para 33 distancias identicamente
espacadas. Conforme apresentado na seccéo K.1, os métodos tém um conjunto relativamente
grande de parametros a serem ajustado: os valores utilizados foram os estabelecidos por padrao
na biblioteca PCL.

Extensao Colorimétrica Inspirada na Retina para um Detetor de
Ponto-Chave 2D

O BMMSKD usa a informacdo da cor de forma a criar uma extensdao do método BIMP.
A maneira pela qual se adiciona a informacao de cor é baseada numa arquitetura neural do
sistema visual primata [3,/119]. A figura b.1 apresenta o diagrama de blocos deste novo detetor
de ponto-chave.

Para uma dada imagem a cores, sao criadas trés novas imagens a partir dos canais RGB,
que sao: RG, BY e aimagem em escala de cinza / (apresentadas na coluna da esquerda da figura
b6.2). Os canais r, g e b sdo normalizados por / a fim de dissociar a tonalidade da intensidade. No
entanto, as variacoes de tonalidade nao sao percetiveis a muito baixa luminancia (e, portanto,
nao sao salientes), logo a normalizacao é aplicada somente nos locais onde / € maior do que 1/10
de seu maximo ao longo de toda a imagem. Quatro canais de cores sdo criados: R para o canal
vermelho, G para o verde, B para o azul e Y para amarelo. Em cada um dos canais de cor RG,
BY e I, o detetor de ponto-chave BIMP é aplicado e sdo fundidos os locais dos pontos-chave.

Dada a aplicacao do método BIMP em cada canal, sao obtidos trés conjuntos de pontos-
chave kgrg, kgy e k; e apresentados na coluna da direita entre a segunda e quarta linha da
figurap.2. A localizacdo é considerada um ponto-chave, se existe um outro canal de cor na sua
vizinhanca que indica que existe um ponto-chave na regiao. Um exemplo do resultado da fusao
é apresentada no fundo da primeira coluna na figura p.2.

Resultados e Discussao

O processo de captura das imagens/nuvens de pontos e a segmentacao sao simulados pelo
conjunto de dados RGB-D Object Dataset [21]. Foi selecionado de modo aleatério um conjunto
de 5 imagens/nuvens de pontos de cada objeto distinto, num total de 1500 imagens. Deste
conjunto de dados foram selecionadas 1500 imagens e com estas foi possivel gerar mais de 2
milhoes de comparacoes para cada par detetor de ponto-chave/descritor. Neste trabalho de
investigacao foram avaliados 60 pares (4 detetores de ponto-chave x 15 descritores). Nesta
parte da tese existe a particularidade que os detetores de ponto-chave funcionam com imagens
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2D e os descritores em 3D, sendo para isso necessario fazer uma projecdo dos pontos-chave para
o espaco 3D.

Uma das etapas no reconhecimento é a correspondéncia entre um descritor de entrada
(objeto a ser reconhecido) e um descritor que esteja armazenado na base de dados. A corre-
spondéncia é tipicamente feita recorrendo uma funcao de distancia entre os dois conjuntos de
descritores. Em [23], sdo estudadas varias funcdes de distancia, sendo que neste trabalho foi
usada a medida Dsg.

A fim de realizar a avaliacdo do reconhecimento serao utilizados trés medidas, que sao as
curvas ROC, AUC e DEC. Os valores para a AUC e DEC obtidos no reconhecimento das categorias
e dos objetos sdo apresentados nas tabelas b.3 e .4, e as curvas ROCs s&o apresentadas nas
figuras 5.5 e b.6.

Como mostra a tabela 5.3 e b.4, o método aqui apresentado melhora os resultados do
reconhecimento, tanto a nivel da categoria do objeto como do préprio objeto. Comparando
esta com a abordagem com a original, € possivel verificar que a informacao de cor apresentou
uma melhoria significativa em ambos os tipos de reconhecimento.

Para o reconhecimento da categoria (tabela b.3), o método BMMSKD, aqui apresentado,
mostra piores resultados em apenas trés casos para a medida AUC e em seis casos para o DEC.
Nos outros pares existem melhorias significativas em comparacao com os outros trés métodos
de detecdo de pontos-chave, que também séo visiveis nos graficos da figura 5.5. O melhor
resultado para o reconhecimento da categoria foi obtido pelo par BMMSKD/PFHRGB, sendo o
Unico em que o indice DEC ultrapassou o limiar de 1.000. Além disso, o BMMSKD s6 apresenta
uma menor AUC em comparacao com o valor médio (no caso do descritor ESF), mas em termos
do valor médio do DEC este ja é inferior em cinco casos.

Os resultados do reconhecimento de objetos sao apresentados na tabela 5.4 e nos gra-
ficos da figura 5.6. Comparando os resultados globais do detetor de pontos-chave SIFT para o
reconhecimento de categorias com os do detetor de pontos-chave SURF no reconhecimento de
objetos, é possivel verificar que existe uma inversao entre os resultados. Ou seja, enquanto o
método SIFT apresentou melhores resultados em varios casos e o SURF n&do, aqui € o oposto. De
forma geral, existe uma melhoria nos resultados do reconhecimento de objetos para todos os
métodos, porque nao existem tantas variacdes nos dados.

Detetor de Ponto-Chave 3D com Inspiracao Bioldgica

O BIK-BUS é um detetor de pontos-chave baseado nos mapas de saliéncia. Os mapas de
saliéncia sao determinados pelo calculo de mapas de conspicuidade da intensidade e orientacao
de forma bottom-up. Estes mapas de conspicuidade sdo fundidos num mapa de saliéncia e,
por fim, o foco de atencao é sequencialmente direcionado para os pontos mais salientes neste
mapa [120]. Usando esta teoria e seguindo os passos apresentados em [3,119] é apresentado
este novo detetor de pontos-chave (ver diagrama na figura p.1)).

Filtragem Linear

A parte inicial deste método é semelhante a extensao colorimétrica inspirada na retina
apresentada anteriormente. Aqui, os quatro canais de cor (R, G, B and Y) e o canal da intensi-
dade / também sao usados. As piramides Gaussianas [[121] sao usadas nas escalas espaciais, que
progressivamente reduzem a nuvem de pontos. Cinco piramides Gaussianas R(a), G(o), B(o),
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Y(o) and /(o) sao criadas a partir dos canais da cor e da intensidade, onde o ¢ representa o
desvio padrao do kernel Gaussiano.

As piramides das orientacoes O(g, 6) sao obtidas recorrendo as normais extraidas a partir
do canal da intensidade /, onde 6 € {0°,45°,90°,135°} sao as orientacdes preferenciais [[121].
No cortex visual primario, a resposta aos impulsos nos neurdnios da orientacao seletiva é aprox-
imada por filtros de Gabor [122]. As piramides de orientacdo sao criadas de uma forma semel-
hante aos canais de cor, mas aplicando filtros Gabor 3D com diferentes orientacoes 6.

Diferencas Center-Surround

Na retina, as células bipolares e ganglionares codificam a informacao espacial, utilizando
estruturas center-surround. As estruturas center-surround na retina podem ser descritas como
on-center e off-center. O on-center usam um centro pesado positivamente e os vizinhos neg-
ativamente, sendo que o off-center usam exatamente o oposto. A pesagem positiva € mais
conhecida como excitadora e a negativa como inibidora [[123].

O primeiro conjunto de mapas de caracteristicas esta preocupado com o contraste das
intensidades. Nos mamiferos, este é detetado pelos neuronios sensiveis aos centros escuros e
vizinhancas brilhantes (off-center) ou aos centros brilhantes e vizinhancas escuras (on-center)
[B,122].

Para os canais de cor, o processo € semelhante e no cortex € normalmente denominado por
um sistema "color double-opponent” [3]. No centro dos seus campos recetivos, os neurdénios sao
excitados por uma cor e inibida por outra, enquanto que o inverso € verdadeiro na vizinhanca. A
existéncia de um oponente espacial e cromatico entre pares de cores no cortex visual primario
humano é descrito em [[124]. Dado um oponente cromatico sao criados os mapas RG(c,s) e
BY(c, s) de forma a ter em conta o oponente cromatico vermelho/verde e verde/vermelho, e
azul/amarelo e amarelo/azul.

Normalizacdo

Um passo de normalizacao é realizado visto que ndo podemos combinar diretamente os
diferentes mapas de caracteristicas, isto porque representam diferentes dinamicas e mecanis-
mos de extracao. Alguns objetos salientes aparecem apenas em alguns mapas, que podem ser
mascarados pelo ruido ou por outro objetos menos salientes presentes num maior nimero de
mapas. De forma a resolver este problema é utilizado um operador de normalizacdo N(.). Isto
promove 0s mapas que contém um pequeno nimero de fortes atividades, e suprime os picos no
mapas que possuem muitos [3].

Combinagao Escalar

Os mapas de conspicuidade sdo a combinacao dos mapas de caracteristicas, para a inten-
sidade, cor e orientacdo. Eles sdo obtidos através da reducao de cada mapa para a escala quatro
e uma adicdo ponto-a-ponto "ép'. O mapa de conspicuidade para a intensidade é definido por
| e para os canais de cor por C. Para orientacao sao criados inicialmente quatro mapas inter-
mediarios, que sdo uma combinacdo dos seis mapas de caracteristicas para um determinado 6.
Finalmente, eles sdo combinados num Gnico mapa. Os trés canais separados (/, C e O) tém uma
contribuicdo independente no mapa de saliéncia e onde as caracteristicas semelhantes entre
eles terdao um forte impacto no saliéncia.
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Combinacéo Linear

0 mapa final da saliéncia é obtido pela normalizacao e por uma combinacao linear entre
eles:

S=< (N +NO) +N(©O). (1)

Wl =

Inhibition-Of-Return

O Inhibition-Of-Return faz parte do método e é responsavel pela selecdo de pontos-chave.
Ele deteta a localizacao mais saliente (maximo global) e dirige a atencao para ele, considerando-
0 a localizacao de um ponto-chave. Depois disso, o0 mecanismo Inhibition-Of-Return suprime
este local no mapa de saliéncias e as suas vizinhancas num pequeno raio, de tal forma a que a
atencao seja dirigida autonomamente para o proximo local mais saliente na imagem. A supressao
€ conseguida substituindo valores mapa de saliéncia com zero. O seguinte iteracao vai encontrar
o ponto mais saliente (novo maximo) num local diferente. Este processo iterativo € interrompido
quando o maximo do mapa de saliéncias atinge um determinado valor minimo, o qual é definido
por um limiar. Computacionalmente, o Inhibition-Of-Return executa um processo semelhante
ao de selecionar os maximos globais e locais.

Avaliacao Experimental e Discussao

Porcdes desta avaliacao, bem como as nuvens de pontos selecionadas, sao as mesmas
que as apresentadas no método anterior. As principais diferencas entre estas duas avaliagoes
sdo relativas ao nUmero de pares de detetores de pontos-chave/descritores avaliados e ao fato
de que estes detetores de pontos-chave funcionarem diretamente sobre as nuvens de pontos e
nao nas imagens 2D. Aqui, é avaliado um total de 135 pares (9 detetores de ponto-chave x 15
descritores).

As medidas de AUC e DEC sé&o apresentadas na tabela .3, enquanto os ROCs para o recon-
hecimento das categorias e de objetos sdo apresentados nas figuras b.4 e b.5, respetivamente.
A tabela .4 apresenta as informacdes sobre o nimero de vezes em que cada detetor de pontos-
chave conseguiu obter o melhor resultado no reconhecimento de categorias e de objetos, e as
somas dessas contagens (na coluna total).

Em termos de tempo computacional e espaco, os requisitos dos descritores variam muito.
Se a aplicacao desejada necessita de desempenho em tempo real ou de usar dispositivos embe-
bidos com recursos limitados existem alguns descritores que nao podem ser consideradas.

Considerando apenas a precisao, a melhor combinacao para o reconhecimento das cat-
egorias é o par BIK-BUS/PFHRGB, seguido de perto do BIK-BUS/SHOTCOLOR, ISS3D/PFHRGB e
ISS3D/SHOTCOLOR, tanto em termos de AUC e DEC. Os pares BIK-BUS/PFHRGB e BIK-BUS/SHOTCOLOR
tém exatamente a mesma AUC, a diferenca esta no DEC onde ¢é ligeiramente superior no caso
de PFHRGB. Em relacao aos descritores 3DSC e SHOTLRF, o detetor de pontos-chave proposto
obtém o melhor DEC, enquanto que a AUC é melhor quando se utiliza o detetor Curvature em
ambos os descritores.

Em termos de reconhecimento de objetos, o melhor par é o BIK-BUS/PFHRGB, mas so
bate a segunda melhor combinacao, ISS3D/PFHRGB, porque apresenta um melhor DEC. Para os
descritores SHOT e SHOTCOLOR se compararmos o detetor de ponto-chave aqui apresentado
com o ISS3D obtemos melhorias de 1.5% no caso de reconhecimento de categorias, e de 1.1%
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e 1.4% no reconhecimento de objetos, respetivamente. O Unico ponto contra é em relacao
ao tempo de processamento, uma vez que é de aproximadamente 6 vezes mais lento do que
ISS3D. O tempo de processamento pode ser reduzido através de uma paralelizagdo ou por uma
implementacdo em GPGPU. A arquitetura do BIK-BUS, apresentada na figura p.1, mostra que a
paralelizacao seria uma boa estratégia para resolver este problema.

Aplicacdo de Pontos-Chave 3D no Tracking

Esta parte da tese foca-se numa aplicacao dos detetores de pontos-chave no tracking. O
método PFBIK-Tracking é apresentado na figura [7.1. Este é composto por duas etapas principais:
Segmentacao e Tracking, que serao descritas em detalhe a seguir.

A segmentacao comeca com o Pass Through Filter. Este filtro remove regides de pro-
fundidade que nédo estdo contidas nas distancias de trabalho desejadas [d i, dimax], ONde dpin
é a distancia minima em que o sistema deve funcionar e d,,,, a distancia maxima. As regioes
com profundidades que nao estejam incluidas entre essas distancias sao considerados de fundo
(background) e sao descartadas pelo nosso sistema de tracking. Ao retirar estas regides (apre-
sentado na figura 7.2(b)), que ndo tem informacdes interessantes para o sistema de tracking de
objetos, € obtida uma consideravel reducao no tempo de processamento.

A segunda etapa da segmentacdo € uma segmentacao planar, que se baseia no algo-
ritmo RANSAC [125]. Este é um método iterativo para estimar os parametros de um modelo
matematico do conjunto de dados observados. A distribuicdo dos dados inliers pode ser expli-
cada por um conjunto de parametros do modelo, mas podem estar sujeitos a ruido e outliers
que sao dados que nao se encaixam no modelo. Os outliers podem vir de valores extremos do
ruido, de medicoes erradas ou hipéteses incorretas sobre a interpretacao dos dados. Dada a
regido plana estimada por algoritmo RANSAC, é possivel remover as regides planas a partir da
nuvem, mantendo apenas os restantes objetos (como apresentado na figura F.2(c)).

Inicializacao do Tracking

Na primeira nuvem de pontos capturada, de forma inicializar o tracking, é aplicado uma
terceira etapa da segmentacdo que passa pela extracao de um cluster. O objetivo é que os
pontos do mesmo cluster tenham uma pequena distancia entre eles, enquanto que os pontos
em diferentes agrupamentos estejam a uma grande distancia uns dos outros. Esta etapa ira
retornar uma lista com os clusters (apresentado na figura 7.2(d)) e onde cada um contém as
informacdes de um objeto presente na cena da nuvem.

Como mencionado anteriormente, em [26], foi apresentada uma avaliacao dos detetores
de pontos-chave disponiveis na biblioteca PCL. O detetor SIFT foi proposto em [9] e é represen-
tado por vetores de medicdes locais nas nuvens de pontos. A implementacao 3D d detetor de
pontos-chave SIFT (SIFT3D) foi apresentado em [[102]. Ele usa uma versao 3D da Hessiana para
selecionar esses pontos de interesse.

Tracking

Como apresentado na figura 7.1, o tracking é realizado por um filtro de particulas adap-
tativo apresentado em [[126,127] . Eles apresentaram uma abordagem estatistica para adaptar
o tamanho do conjunto de amostras dos filtros de particulas on-the-fly. O nimero de particulas

XXXVi



adapta-se com base na distancia Kullback-Leibler [128], onde é interligado o erro introduzido
pela representacdo a base da amostra do filtro de particulas. Este método ira escolher difer-
entes nimeros de amostras, dependendo da densidade da nuvem de pontos 3D.

Resultados

Para avaliar o desempenho do método é calculada a distancia euclidiana entre a centroide
dos pontos-chave e a centréide da particulas do método. O objetivo de realizar esta comparacao
€ verificar se um sistema € capaz de seguir os pontos-chave de um objeto. Isto é feito, a fim
de nao ser necessario aplicar um detetor de ponto-chave em todas as frames. Num sistema de
tempo real, nao é possivel aplicar um detetor de ponto-chave em cada frame, devido ao custo
computacional do seu calculo.

A fim de avaliar adequadamente o desempenho do método, este sera comparado com um
método que realiza a sub-amostragem dos pontos na nuvem, denominado por OpenniTracker
disponivel na biblioteca PCL. E aplicado o processo de segmentacdo neste tracker, onde o re-
sultado desta etapa é apresentado na figura [7.3. Assim, os dados de entrada sdo exatamente
0s mesmos para ambos os métodos.

A diferenca entre os dois métodos ¢ a inicializacao do filtro de particulas. Considerando
que um € inicializado com os resultados do detetor de ponto-chave e o OpenniTracker com uma
sub-amostragem. Isto € uma diferenca muito importante no reconhecimento de objetos, porque
a sub-amostragem so6 reduz o nimero de pontos de uma forma linear, enquanto o detetor de
ponto-chave faz uma reducao do nimero de pontos com base nas caracteristicas do objeto.

Os resultados s&o apresentados nas tabelas 7.1, 7.2 e 7.3, e foram obtidos com o conjunto
de dados capturado por noés e apresentado na figura F.3. Este conjunto de dados contém 10
objetos diferentes em movimento num total de 3300 nuvens de pontos.

Principais Conclusdes

Esta tese foi focada em sistemas baseados na atencao visual humana. Os sistemas desen-
volvidos tem caracteristicas que foram obtidas a partir de estudos no campo da neurociéncia e da
psicologia. Para entender essas caracteristicas, uma visao geral do sistema visual humano (capi-
tulo ) e uma revisao dos métodos computacionais que tentam modelar atencéo visual (capitulo
B) foi fornecida. O foco foi principalmente nos modelos de atencio bottom-up, embora alguns
modelos top-down também foram discutidos em [129--133].

A atencao visual é um campo altamente interdisciplinar e os investigadores nesta area
provém de diferentes origens. Para os psicologos, as investigacoes realizadas na area do com-
portamento humano ¢é feita através do isolamento de determinadas funcdes especificas, a fim
de compreender os processos internos do cérebro, muitas vezes resultando em teorias ou mod-
elos psicofisicos [134]. Enquanto que os neurocientistas observam a resposta do cérebro em
relacdo a determinados estimulos [[135], usando técnicas como o fMRI, tendo portanto, uma
visdo direta das areas do cérebro que estdo ativas sob certas condicoes [45,136,137]. Final-
mente, os engenheiros utilizam as descobertas feitas nessas areas, e tentam reproduzi-las em
modelos computacionais, de modo a que possam reduzir o tempo de processamento em algumas
aplicacoes [42--44].

Nos ultimos anos, estas diferentes areas tém lucrado consideravelmente umas das outras.
Os psicologos usam pesquisa realizada por neurocientistas, a fim de melhorar os seus mode-
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los de atencao, enquanto os neurocientistas usam as experiéncias feitas pelos psicdlogos para
interpretar seus dados [[134]. Além disso, os psicologos comecaram a implementar modelos
computacionais ou usam modelos computacionais desenvolvidos anteriormente, para verificar
se eles tém um comportamento semelhante ao da percecdo humana. Assim, os psicologos ten-
dem a melhorar a compreensao dos mecanismos e ajudam no desenvolvimento de melhores
modelos computacionais.

A atencao computacional ganhou uma popularidade significativa na Gltima década. Um
dos fatores que contribuiu para o aumento na popularidade foi a melhoria dos recursos com-
putacionais. Outra contribuicao, foi os ganhos de desempenho obtidos a partir da inclusao
de mddulos de atencao visual (ou detecao saliéncia) em sistemas de reconhecimento de obje-
tos [[131,1138,139].

A maioria das investigacoes apresentadas, centrou-se na componente bottom-up da atencao
visual. Enquanto os esforcos anteriores sao apreciados, o campo da atencao visual ainda carece
de principios computacionais para a atencao dirigida a uma determinada tarefa. A direcao
promissora para investigacoes futuras é o desenvolvimento de modelos que levem em conta o
custo computacional dependendo das exigéncias da tarefa, especialmente em ambientes in-
terativos, complexos e dinamicos. Além disso, ainda ndo ha um entendimento nos principios
computacionais baseados na atencéo visual. A solucdo esta além do escopo de uma Unica area.
A fim de se obter uma solucdo, € necessario que exista a cooperacao entre as varias areas, a
partir da comunidade de aprendizagem automatica, de visao por computador e também as areas
biologicas, assim como neurologia e psicologia.

A tabela B.2 mostra algumas areas onde foram aplicados os mapas de saliéncia, mas ndo
houve referéncias ao fato de estes serem usados para extrair diretamente de pontos-chave, os
que mais se aproximaram foram o Rodrigues e du Buf [104]. O trabalho de Ardizzone et al. [14Q]
compara se um determinado método extrai os pontos-chave nas regides mais salientes. Com
isso, foi feita uma analise dos detetores de pontos-chave mais populares e apresentados no
capitulo H, especialmente para os que utilizam informacées RGB-D. Além de uma descricdo dos
descritores 3D e foi feita uma avaliacao de detetores de pontos-chave 3D, em dados publicos
disponiveis com objetos 3D reais. A comparacdo experimental proposta neste trabalho delineou
aspetos dos métodos do estado-da-arte para os detetores de pontos-chave 3D. Este trabalho
permitiu assim avaliar qual dos métodos apresenta o melhor desempenho em termos de varias
transformacoes (rotacao, mudanca de escala e de translacao).

A novidade deste trabalho em comparacao com os trabalhos apresentados em [[17] e [19]
sdo: é uso de um conjunto de dados real em vez de um artificial, um grande nimero de nuvens
de pontos e diferentes detetores de pontos-chave. A vantagem de utilizar uma base de dados
real € que os nossos objetos possuem "oclusdes”, obtidos por algum tipo de falha no sensor de
infravermelhos da camara ou do método de segmentacao. Nos objetos artificiais isso ndo acon-
tece, desta forma os métodos de pontos-chave podem gerar resultados melhores, mas menos
realistas. Pelo contrario, as experiéncias realizadas refletem o que pode acontecer na vida real,
como, com a visdo de um rob6. Em geral, SIFT3D e ISS3D produziram os melhores resultados em
termos de repetibilidade e o ISS3D demonstrou ser o mais invariante.

Uma outra parte deste trabalho de investigacdo é descrita no capitulo f| e abrangeu o
estudo de um detetor de ponto-chave 2D num sistema de reconhecimento. Aqui também é
feita a proposta de um novo método de detecao de ponto-chave que usa as informacoes de cor
da retina, chamado BMMSKD. A informacao da cor da retina foi aplicada como uma extensao ao
método BIMB, a fim deste suportar a utilizacao das informacées provenientes da cor. A avaliacio
da abordagem proposta foi feita em dados publicos disponiveis com objetos 3D reais. Para esta
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avaliacdo, os detetores de ponto-chave utilizados foram desenvolvidos recorrendo a biblioteca
OpenCV e os locais dos pontos em 2D foram projetados para o espaco 3D de forma a se poder
usar os descritores 3D disponiveis na biblioteca PCL.

Com este trabalho, foi possivel verificar que os locais de pontos chave podem ajudar ou
prejudicar o processo de reconhecimento e os descritores que usam informacoes de cor devem
ser usados em vez de um similar que use apenas informacdes da forma. Uma vez que existem
grandes diferencas em termos de resultados no reconhecimento, de tamanho dos descritores
e de custo computacional, o descritor a ser usado deve ser ajustado dependendo da tarefa
desejada. Se pretender realizar o reconhecimento da categoria de um objeto ou um sistema
em tempo real, a recomendacdo passa por usar o método SHOTCOLOR, isto porque mesmo
apresentando uma taxa de reconhecimento de 7% abaixo do PFHRGB o seu custo computacional
€ muito menor. Por outro lado, para fazer o reconhecimento de objetos, a recomendacao passa
por usar PFHRGB porque apresenta uma taxa de reconhecimento de 12.9% superior ao descritor
SHOTCOLOR.

Um novo detetor de ponto-chave 3D biologicamente motivado pelo comportamento e a
arquitetura neuronal do sistema visual dos primatas foi apresentado no capitulo fl. Da mesma
forma que no capitulo f, uma avaliacio comparativa foi realizada entre varios detetores de
pontos-chave e descritores num conjunto de dados publicos disponiveis com objetos 3D reais.
O BIK-BUS é um detetor de ponto-chave que usa uma técnica computacional para determinar a
atencéao visual, que também sdo conhecidos como mapas de saliéncia. Os mapas de saliéncia
sdo determinados por um conjunto de caracteristicas bottom-up. A fusao desses conjuntos
produziram o mapa de saliéncia e o foco de atencao € sequencialmente direcionado para os
pontos mais salientes neste mapa, o que representa um ponto-chave.

Na avaliacdo, os detetores de pontos-chave 3D e os descritores 3D estdao disponiveis na
biblioteca PCL. Com um nUmero médio similar de pontos-chave, o detetor de ponto-chave 3D
proposto supera os outros oito detetores de pontos-chave 3D avaliados por obtendo o melhor
resultado em 32 das métricas avaliadas nas experiéncias de reconhecimento por categoria e
objeto, quando o segundo melhor detetor s6 obteve o melhor resultado em 8 dessas métricas (ver
tabelap.4), num total de 60 testes. A Unica desvantagem é o tempo computacional, uma vez que
BIK-BUS é mais lento do que os outros detetores. Para um sistema em tempo real, os detetores
ISS3D ou Curvatura sao boas escolhas, uma vez que tém um desempenho que so6 é superado pelo
BIK-BUS e sdo mais rapidos. Finalmente, em termos dos descritores, a recomendacdo passa
pela utilizacao de PFHRGB ou SHOTCOLOR. PFHRGB deve ser usado se pretender um sistema
de reconhecimento mais preciso e em tempo real uma boa escolha é o SHOTCOLOR porque
apresenta um bom equilibrio entre as taxas de reconhecimento e complexidade temporal.

Neste trabalho de investigacao, também foi apresentado uma aplicacao os detetores de
pontos-chave 3D, denominado por PFBIK-Tracking, que era um sistema para realizar o segui-
mento dos pontos-chave. O objetivo era eliminar a necessidade de aplicacao de um detetor
de ponto-chave em todas as sequéncias de imagens que queriamos analisar. Isso porque, se
os detetores de pontos-chave fossem aplicados a todos as imagens, o sistema nao seria capaz
de operar em tempo real. Para resolver este problema, um tracker de ponto-chave foi de-
senvolvido a fim de simular a aplicacao dos detetores de pontos-chave em todos as imagens do
video, uma vez que o principal objetivo seria para extrair os descritores de um objeto particular
na cena, de modo a executar o reconhecimento. Para isso, varias etapas de segmentacdo foram
apresentadas, de forma a remover todo o fundo e os objetos ficarem isolados. Com os objetos
segmentados, um método de clustering e o detetor de ponto-chave SIFT3D séo aplicados, o qual
foi utilizado para inicializar o filtro de particulas. O detetor de ponto-chave SIFT3D foi usada
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porque tem caracteristicas semelhantes as do IT [99]. Depois deste ser inicializado com o ob-
jeto pretendido, s6 sera necessario ter como entrada a saida da segmentacao. Esta abordagem
obteve melhores resultados do que usar o OpenniTracker disponivel na biblioteca PCL, sendo
um método mais rapido e robusto.

Os principais objetivos desta tese foram cumpridos mediante a apresentacao dos trés
métodos. Juntos, os métodos propostos permitem a incorporacdo de caracteristicas com inspi-
racao biologica em sistemas de reconhecimento. Neste caso, as experiéncias foram realizadas
apenas num sistema de reconhecimento de objetos, mas pode ser aplicada a outros tipos, tais
como sinais biométricos 3D (um exemplo seria o uso da face em 3D).

Direcées Para Trabalho Futuro

Como trabalho futuro destacamos trés direcdes principais. A primeira seria a reducao
do custo computacional dos dois detetores ponto-chave apresentados. E possivel considerar a
paralelizacao do codigo ou uma implementacao do GPGPU, a fim de reduzir o tempo computa-
cional de BMMSKD e BIK-BUS. Esta paralelizacao é possivel por causa da arquitetura dos métodos,
mostrado nas figuras 5.1 e .1.

Em segundo lugar, seria uma boa ideia fornecer algumas dicas sobre o porqué de um de-
tetor de ponto-chave ou uma combinacao de um detetor de ponto-chave e descritor funcionam
melhor do que os outros por um determinado teste especifico. Isto pode ser feito selecionando
um pequeno numero dos melhores detetores de pontos-chave e descritores (com base nos re-
sultados apresentados neste trabalho de investigacao), a fim de analisar quais sao as melhores
pares para fazerem o reconhecimento de um tipo particular de categoria ou um objeto. Neste
trabalho, uma analise foi feita a fim de abranger o conjunto de dados completo e nao se con-
centrou num casos especificos. Esta analise nao foi realizada por dois motivos: 1) o conjunto de
dados usado neste trabalho é muito grande, sendo composto por 300 objetos e estes estao divi-
didos em 51 categorias; 2) também foram avaliar 135 pares de detetor de ponto-chave/descritor
e esta analise é inviavel usando todos esses métodos.

Por fim, o trabalho futuro incidira sobre o sistema de tracking de pontos-chave proposto
e aqui ha varias possibilidades ainda em aberto e que podem ser exploradas. A primeira possi-
bilidade centra-se na a substituicido do método de detetor de ponto-chave, a fim de utilizar o
BIK-BUS em vez de SIFT3D. Isso deve ser feito visto que o BIK-BUS apresentou melhores resultados
do que SIFT3D no framework de reconhecimento de objetos e categorias.

Outro ponto a explorar e melhorar neste trabalho de investigacao sera o conjunto de
dados. Os dados a serem adicionados a este conjunto de dados passam pela adicao de mais
objetos e a forma como os objetos se movem na cena. Este novo conjunto de dados ja foi
capturado, ele contém 46 objetos diferentes, que sdo organizados em 24 categorias e tém varios
longos periodos de oclusado (como por exemplo, fora do alcance da camara ou atras de caixas). A
captura dos objetos foi feita usando uma camara Kinect colocada em varios locais de uma sala e
os objetos deslocavam-se sobre um carro telecomandado, a fim de ser capaz de se moverem ao
longo da sala. Para utilizar este conjunto de dados ainda é necessario segmentar os objetos que
estdo em movimento na cena. A segmentacao vai permitir a realizacdo de varias experiéncia e
comparacgoes neste conjunto de dados. As primeiras experiéncias incluem uma avaliacao similar
a que foi feita nos capitulos B e f, isso ira permitir consolidar os resultados apresentados nesses
capitulos. Com os objetos segmentados, é possivel propor uma extensao para o CLEAR MOT
Metric [141]. Esta medida so esta disponivel para métodos 2D e nao considera a profundidade
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do objeto, desta forma a extensao para o 3D devera incluir a informacéo da profundidade e nao
apenas a largura e altura dos objetos, como é feito no 2D. A diferenca com a medida proposta no
capitulo ] é que ela também faz a avaliacio da sobreposicéo entre a posicao do objeto real e o
estimado pelo método de tracking. Por fim, devera ser feito o reconhecimento das categorias e
dos objetos usando as particulas do método de tracking como pontos-chave, a fim de comparar
com o processo de reconhecimento utilizando detetores de pontos-chave.
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Abstract

With the emerging interest in active vision, computer vision researchers have been in-
creasingly concerned with the mechanisms of attention. Therefore, several visual attention
computational models inspired by the human visual system, have been developed, aiming at
the detection of regions of interest in images.

This thesis is focused on selective visual attention, which provides a mechanism for the
brain to focus computational resources on an object at a time, guided by low-level image prop-
erties (Bottom-Up attention). The task of recognizing objects in different locations is achieved
by focusing on different locations, one at a time. Given the computational requirements of the
models proposed, the research in this area has been mainly of theoretical interest. More re-
cently, psychologists, neurobiologists and engineers have developed cooperation's and this has
resulted in considerable benefits. The first objective of this doctoral work is to bring together
concepts and ideas from these different research areas, providing a study of the biological re-
search on human visual system and a discussion of the interdisciplinary knowledge in this area, as
well as the state-of-art on computational models of visual attention (bottom-up). Normally, the
visual attention is referred by engineers as saliency: when people fix their look in a particular
region of the image, that's because that region is salient. In this research work, saliency meth-
ods are presented based on their classification (biological plausible, computational or hybrid)
and in a chronological order.

A few salient structures can be used for applications like object registration, retrieval or
data simplification, being possible to consider these few salient structures as keypoints when
aiming at performing object recognition. Generally, object recognition algorithms use a large
number of descriptors extracted in a dense set of points, which comes along with very high com-
putational cost, preventing real-time processing. To avoid the problem of the computational
complexity required, the features have to be extracted from a small set of points, usually called
keypoints. The use of keypoint-based detectors allows the reduction of the processing time and
the redundancy in the data. Local descriptors extracted from images have been extensively
reported in the computer vision literature. Since there is a large set of keypoint detectors, this
suggests the need of a comparative evaluation between them. In this way, we propose to do a
description of 2D and 3D keypoint detectors, 3D descriptors and an evaluation of existing 3D key-
point detectors in a public available point cloud library with 3D real objects. The invariance of
the 3D keypoint detectors was evaluated according to rotations, scale changes and translations.
This evaluation reports the robustness of a particular detector for changes of point-of-view and
the criteria used are the absolute and the relative repeatability rate. In our experiments, the
method that achieved better repeatability rate was the ISS3D method.

The analysis of the human visual system and saliency maps detectors with biological in-
spiration led to the idea of making an extension for a keypoint detector based on the color
information in the retina. Such proposal produced a 2D keypoint detector inspired by the be-
havior of the early visual system. Our method is a color extension of the BIMP keypoint detector,
where we include both color and intensity channels of an image: color information is included
in a biological plausible way and multi-scale image features are combined into a single key-
points map. This detector is compared against state-of-art detectors and found particularly
well-suited for tasks such as category and object recognition. The recognition process is per-
formed by comparing the extracted 3D descriptors in the locations indicated by the keypoints
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after mapping the 2D keypoints locations to the 3D space. The evaluation allowed us to obtain
the best pair keypoint detector/descriptor on a RGB-D object dataset. Using our keypoint de-
tector and the SHOTCOLOR descriptor a good category recognition rate and object recognition
rate were obtained, and it is with the PFHRGB descriptor that we obtain the best results.

A 3D recognition system involves the choice of keypoint detector and descriptor. A new
method for the detection of 3D keypoints on point clouds is presented and a benchmarking is
performed between each pair of 3D keypoint detector and 3D descriptor to evaluate their per-
formance on object and category recognition. These evaluations are done in a public database
of real 3D objects. Our keypoint detector is inspired by the behavior and neural architecture
of the primate visual system: the 3D keypoints are extracted based on a bottom-up 3D saliency
map, which is a map that encodes the saliency of objects in the visual environment. The saliency
map is determined by computing conspicuity maps (a combination across different modalities)
of the orientation, intensity and color information, in a bottom-up and in a purely stimulus-
driven manner. These three conspicuity maps are fused into a 3D saliency map and, finally, the
focus of attention (or "keypoint location") is sequentially directed to the most salient points in
this map. Inhibiting this location automatically allows the system to attend to the next most
salient location. The main conclusions are: with a similar average number of keypoints, our 3D
keypoint detector outperforms the other eight 3D keypoint detectors evaluated by achiving the
best result in 32 of the evaluated metrics in the category and object recognition experiments,
when the second best detector only obtained the best result in 8 of these metrics. The unique
drawback is the computational time, since BIK-BUS is slower than the other detectors. Given
that differences are big in terms of recognition performance, size and time requirements, the
selection of the keypoint detector and descriptor has to be matched to the desired task and we
give some directions to facilitate this choice.

After proposing the 3D keypoint detector, the research focused on a robust detection and
tracking method for 3D objects by using keypoint information in a particle filter. This method
consists of three distinct steps: Segmentation, Tracking Initialization and Tracking. The seg-
mentation is made to remove all the background information, reducing the number of points for
further processing. In the initialization, we use a keypoint detector with biological inspiration.
The information of the object that we want to follow is given by the extracted keypoints. The
particle filter does the tracking of the keypoints, so with that we can predict where the keypoints
will be in the next frame. In a recognition system, one of the problems is the computational cost
of keypoint detectors with this we intend to solve this problem. The experiments with PFBIK-
Tracking method are done indoors in an office/home environment, where personal robots are
expected to operate. The Tracking Error evaluates the stability of the general tracking method.
We also quantitatively evaluate this method using a "Tracking Error”. Our evaluation is done by
the computation of the keypoint and particle centroid. Comparing our system that the tracking
method which exists in the Point Cloud Library, we archive better results, with a much smaller
number of points and computational time. Our method is faster and more robust to occlusion
when compared to the OpenniTracker.
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Chapter 1

Introduction

This thesis addresses the subject of keypoint detection, proposing new methods with bio-
logical inspiration and evaluating them against the state-of-art methods in an object recognition
framework. The context and focus of the thesis are further described in this chapter, with the
problem definition, motivation and objectives, the thesis statement, the main contributions,
and the thesis organization.

1.1 Thesis Motivation and Objectives

We live in a world full of visual data. The continuous flow of visual data flowing towards
our retinas needs to be processed to extract the information important for our actions. To
select the important information from the large amount of data received, the brain must filter
its inputs. The same problem is faced by many modern technical systems. Computer Vision
Systems (CV9) have to deal with a very large number of pixels in each frame, as well as with
the high computational complexity of many approaches related to the interpretation of image
data [11]], making the task specially difficult if the system has to function in real time.

Selective visual attention provides a mechanism for the brain to focus computational
resources on an object at a time, either guided by low-level image properties (Bottom-Up at-
tention) or based on a specific task (Top-Down attention). Recognizing objects on different lo-
cations is achieved by focusing the attention on one location at a time. For many years, research
in this area has been mainly of theoretical interest, given the computational requirements of
the models presented. For example, Koch and Ullman [2] presented the first theoretical model
of selective attention in monkeys but only Itti et al. [3] that could reproduce this model on a
computer. Since then, the computing power has increased substantially, allowing the appear-
ance of more implementations of computational attention systems that are useful in practical
applications.

First, this thesis intends to present both faces of visual attention systems, from neuro-
science to computational systems. For researchers interested in computer attention systems,
the necessary neuroscience knowledge on human visual attention is given (in chapter ). While
for neuroscientists, the various types of available computational approaches for the simulation
of human visual attention based on Bottom-Up attention are presented (in chapter B). This
work presents not only the biologically plausible approaches, but discusses also the computa-
tional and hybrid approaches (a mixture of biological and computational concepts). Heinke and
Humphreys [4] conducted a review of the computational attention models with a psychological
purpose. On the other hand, a study on computational models of attention inspired by neuro-
biology and psychophysics is presented by Rothenstein and Tsotsos [{1]]. Finally, Bundesen and
Habekost [B] presents a comprehensive review of psychological attention models in general.

An area that has attracted a lot of attention in the computer vision community is the area
of keypoint detection, with the development of a series of methods which are stable under a
wide range of transformations [7]. The keypoints are points of interest which can be consid-
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ered to help humans on the recognition of objects in a computational way. Some of them are
developed based on general features [8], specific [[7,9,10] or a mixture of them [11]. Given the
number of existing keypoint detectors, it is surprising that many of top recognition systems do
not use these detectors. Instead, they process the entire image, either by pre-processing it to
obtain feature vectors [12], by sampling descriptors on a dense grid [[13] or by processing en-
tire images hierarchically and detecting salient features in the process [14]. These approaches
provide a lot of data that helps classification, but also introduce much redundancy [[15] or high
computacional cost [13]. Typically, the largest computational cost of these systems is in the
stage of feature computation (or descriptors in 3D). Therefor, it makes sense to use a non-
redundant subset of points from the input image or point cloud: as the computational cost of
descriptors is generally high, it does not make sense to extract descriptors from all points. Thus,
keypoint detectors are used to select interesting points which descriptors are then computed
in these locations. The purpose of the keypoint detectors is to determine the points that are
different in order to allow an efficient object description and correspondence with respect to
point-of-view variations [{16].

Motivated by the need to quantitatively compare different keypoint detector approache,
in a common and well established experimentally framework inspired by the work on 2D [[17,[18]
and 3D features [[19] a comparison of several 3D keypoint detectors is made. In relation to the
work of Schmid et al. [17] and Salti et al. [[19], the novelties are: it uses a real database instead
of an artificial one; the large number of 3D point clouds; and different keypoint detectors. The
benefit of using real 3D point clouds is that it reflects what happens in real life (e.g. robot
vision). Robots never "see" a perfect or complete object, like the ones simulated by artificial
objects. To evaluate the invariance of keypoint detection methods, the keypoints are extracted
directly from the original cloud. Moreover, a transformation to the original 3D point cloud be-
fore extracting a second set of keypoints is applied. Once we have those keypoints from the
transformed cloud, it is possible to apply an inverse transformation, so that they can be com-
pared with the keypoints extracted from the original cloud. If a particular method is invariant
to the applied transformation, the keypoints extracted directly from the original cloud should
correspond to the keypoints extracted from the cloud where the transformation was applied.

The interest on using depth information in computer vision applications has been growing
recently due to the decreasing prices of 3D cameras such as Kinect and Asus Xtion. This type of
cameras renders, it is possible to make a 2D and 3D analysis of the captured objects, as depth
information improves object perception, allowing the determination of its shape or geometry.
The cameras can return directly the 2D image and the corresponding cloud point, which is
composed by the RGB and depth information. Depth information improves object perception,
as it allows the determination of its shape or geometry. A useful resource for users of this type
of sensors is the Point Cloud Library (PCL) [20] which contains many algorithms that deal with
point cloud data, from segmentation to recognition, from search to input/output. This library is
used in this work to deal with real 3D data and also to evaluate the robustness of the detectors
with variations of the point-of-view in real 3D data.

In this thesis, a new 2D keypoint detector is also presented. The method is a biologically
motivated multi-scale keypoint detector, which uses color and intensity channels of an image.
our approach is based on the Biologically Inspired keyPoints (BIMF) [7], which is a fast keypoint
detector inspired by the biology of the human visual cortex, extended by introducing color
analysis, similar to what is done in the human retina. A comparative evaluation is conducted
on a large public RGB-D Object Dataset [21], which is composed by 300 real objects from 51
categories. The evaluation of the proposed method and the state-of-art keypoint detectors
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is based on category and object recognition using 3D descriptors. This dataset contains the
location of each point in the 2D space, which allows us to use 2D keypoint detector methods on
the point clouds.

Furthermore, a 3D keypoint detector is also proposed, which consists on a saliency model
based on spatial attention derived from the biologically plausible architecture proposed by Koch
and Ullman [2] and Itty et al. [3]. It uses three feature channels: color, intensity and orientation.
The computational algorithm of this saliency model has been presented in [3] and it remains
the basis of later models and the standard saliency benchmark in 2D images. We present the 3D
version of this saliency detector and demonstrate how keypoints can be extracted from a saliency
map. The 3D keypoint detectors and descriptors that are compared can be found in version 1.7
of the [20]. It is then possible to find what is the best pair of keypoint detector/descriptor
for 3D point cloud objects. This is done to overcome the difficulty that arises when choosing
the most suitable pair of keypoint detector and descriptor for use in a particular task, which is
archived with the public RGB-D Object Dataset.

In his work [22], Alexandre focuses on the descriptors available in PCL, explaining how
they work and making a comparative evaluation on the same dataset. It compares descriptors
based on two methods for keypoint extraction: the first one is a keypoint detector; and the
second approach consists on sub-sampling the input cloud with two different sizes, using a
voxelgrid with 1 and 2 centimeter leaf size, being the sub-sampled points considered keypoints.
One conclusion in his work is that the increased number of keypoints improves recognition results
at the expense of size and computational time. In this study, we further explore that approach
demonstrating that the results also depend on the keypoint location. The same author studies
the accuracy of the distances both for objects and category recognition and finds that simple
distances give competitive results [23].

This thesis ends by proposing a system for tracking keypoints, where the tracking is the
process of following moving objects over time using a camera. There is a vast range of appli-
cations for tracking, such as, vehicle collision warning and avoidance, mobile robotics, speaker
localization, people and animal tracking, tracking a military target and medical imaging. To per-
form tracking an algorithm analyzes sequential video frames and outputs the location of targets
on each frame. There are two major components of a visual tracking system: target represen-
tation and filtering. Target representation is mostly a bottom-up process, whereas filtering is
mostly a top-down process. These methods give a variety of tools for identifying the moving
object. We identified the following as the most common target representation algorithms: Blob
tracking, Kernel-based or mean-shift tracking and contour tracking. Filtering involves incorpo-
rating prior information about the scene or object, dealing with object dynamics, and evaluating
different hypotheses. These methods allow the tracking of complex objects along with more
complex object interaction (e.g. tracking objects moving behind obstructions [24]).

In this thesis, we use the information given by a Kinect camera directly. With this camera,
it is unnecessary to spend time producing the depth map, since it is given by the camera. In
traditional stereo vision systems, two cameras are placed horizontally from one another and
used to obtain two differing views of the scene, in a similar manner to the human binocular
vision.
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1.2 Main Contributions

This section briefly describes the four main scientific contributions resulting from the
research work in this thesis.

The first contribution is an in-depth analysis of 3D keypoint detectors that are publicly
available in the library, with their description and an evaluation of the invariance. The
invariance of the 3D keypoint detectors is evaluated according to rotations, scale changes and
translations. The evaluation criteria used are the absolute and the relative repeatability rate.
Using these criteria, the robustness of the detectors is evaluated with for changes of point-of-
view. This study is part of chapter H, which consists of an article published in the 9" Con-
ference on Telecommunications (Conftele'13) [25] and extended to the 9" International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VIS-
APP'14) [26].

The second contribution of this thesis is the proposal of a 2D keypoint detector containing
biological inspiration. The method can be regarded as a color extension of the keypoint
detector [7], where the color information is included in a biological plausible way and repro-
duces the color information in the retina. Multi-scale image features are combined into a single
keypoints map. The detector is compared against state-of-art detectors and is particularly
well-suited for tasks such as category and object recognition. The evaluation gave the best
pair 2D keypoint detector/descriptor on a RGB-D object dataset. This 2D keypoint detector is
presented in chapter | and published in the 107" International Symposium on Visual Computing
(ISVC'14) [27].

The third contribution of this thesis consists of a 3D keypoint detector based on saliency
and inspired by the behavior and neural architecture of the primate visual system. The keypoints
are extracted based on a bottom-up 3D saliency map, which is a map that encodes the saliency
of objects in the visual environment. The saliency map is determined by computing conspicuity
maps (a combination across different modalities) of the orientation, intensity and color infor-
mation in a bottom-up and in a purely stimulus-driven manner. These three conspicuity maps
are fused into a 3D saliency map and, finally, the focus of attention (or "keypoint location") is
sequentially directed to the most salient points in this map. Inhibiting this location automati-
cally allows the system to attend to the next most salient location. A benchmarking between
each pair of 3D keypoint detector and 3D descriptor is performed, to evaluate their performance
on object and category recognition. These evaluations are done in a public database of real 3D
objects. This 3D keypoint detector is described in chapter [, which consists of an article pub-
lished in the 20" Portuguese Conference on Pattern Recognition (RecPad'14) [28] and extended
to the IEEE Transactions on Image Processing (IEEE TIP) [29].

The last contribution of this thesis is the proposal of a robust detection and tracking
method for 3D objects by using keypoint information in a particle filter. The method is composed
by three distinct steps: Segmentation, Tracking Initialization and Tracking. The segmentation
step is performed to remove the background information, thus reducing the number of points
for further processing. The initial information of the tracked object is given by the extracted
keypoints. The particle filter does the tracking of the keypoints, so with that we can predict
where the keypoints location will be in the next frame. This tracker is presented in chapter | and
published in the 10" IEEE Symposium Series on Computational Intelligence (IEEE SSCI'14) [30].
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1.3 Thesis Outline

This thesis is organized in eight chapters. The present chapter describes the context,
focus and the problems addressed in the research work, as well as the thesis motivation, ob-
jectives, statement and the adopted approach for solving the problem. A summary of the main
contributions of this doctoral program is also included, followed by a description of its organi-
zation and structure. The remainder chapters of this thesis can are summarized as follows.

Chapter [l provides an overview on the Human Visual System (HVY), describing how it
process the visual signals captured by the eyes. That description is based on the opinion of neu-
roscientists and psychologists, being focused on the area of human visual attention. This chapter
is added in this thesis to give support to the analysis of the differences between applications
with biological inspiration and computational ones, presented in chapter f.

Chapter B presents the state-of-art of bottom-up saliency methods. The methods are
categorized based on whether they are biologically plausible, purely computational, or hybrid.
When a method is classified as biologically plausible it means that it follows the knowledge
of the HVY. Other methods are purely computational and not based on any of the biological
principles of vision. The methods classified as hybrid are those that incorporate ideas that are
partially based on biological models.

Chapter { is composed by three parts: 1) description of the 2D and 3D keypoint detectors
that will be used in later chapters; 2) description of 3D descriptors that will be used to evaluate
the keypoint detectors and get the best pair of keypoint detector/descriptor in object recogni-
tion; 3) a repeatability evaluation of the 3D keypoint detectors, to measure the invariance of
the methods relatively to the rotation, scale change and translation.

Chapter [ presents a new keypoint detection method with biological inspiration and com-
pares it against state-of-the art methods in object recognition. A retinal color extension was
also developed for an existing keypoint detector in the literature, inspired by the HVS.

Chapter B proposes a 3D keypoint detector based on a biological bottom-up saliency
method, which is evaluated in the same way as presented earlier. The conspicuity maps ob-
tained from the intensity and orientation are fused in order to produce the saliency map. With
that, the attention can be directed to the most salient point, thus considering a keypoint.

Chapter |7 presents a particle filter framework for 3D keypoint tracking and it is composed
by three main steps: segmentation, tracking initialization and tracking. This method is com-
pared against the one presented in the used library. The experiments are done indoors in an
office/home environment, where personal robots are expected to operate.

Chapter g presents the conclusions and contributions of this thesis and discusses directions
for future research work.



Biologically Motivated Keypoint Detection for RGB-D Data



Chapter 2

The Human Visual Attention: Neuroscientists and
Psychologists Perspectives

This chapter introduces the topic of human visual attention as seen by neuroscientists
and psychologists, in order to facilitate the understanding of how information processing in the
is done. Most of the information comes from an area commonly referred to as Compu-
tational Neuroscience, defined by Trappenberg as: “the theoretical study of the brain used to
discover the principles and mechanisms that guide the development, organization, information
processing and mental abilities of the nervous system” [31].

2.1 Visual System

In this section, an introduction on the anatomy and physiology of the visual system is
presented. More detailed information can be found in, for example, Hubel [32] and Kolb et
al. [33].

2.1.1 Retina

The retina is part of the brain, having been sequestered from it early in development
but having kept its connections with the brain proper through a bundle of the optic nerve. It is
responsible for the formation of images, i.e., the sense of sight [32].

In each retina there are about 120 million photoreceptors (rods and cones) that release
neurotransmitter molecules at a rate that is maximal in darkness and decreases, logarithmically,
with increasing light intensity. This signal is then transmitted to a local chain of bipolar cells
and ganglion cells.

There are about 1 million ganglion cells in the retina and their axons form the optic nerve
(see figure R.1). There are, therefore, about 100 photoreceptors per ganglion cell; however,
each ganglion cell receives signals from a receptive field on the retina, a roughly circular area
that covers thousands of photoreceptors.

Between the photoreceptors and bipolar cells, there is a horizontal layer of cells (called
horizontal cells) linked together so that the potential of each is a weighted average of its neigh-
bors' potential. Each bipolar cell receives input from a photoreceptor and a horizontal cell,
producing a signal that is proportional to the logarithm of the difference between the signals
produced by the other two cells. As a result, large areas with uniform illumination produce
very weak signals, and areas with illumination changes, such as object contours, result in strong
signals. That is, the retina detects essentially brightness variations.

As horizontal cells have a relatively slow response, when a photoreceptor detects a moving
object, they still have information about the previous object position. This way, the output
signal of the bipolar cells (after passing through the layer of amacrine cell to the ganglion cells)
contains useful information for motion detection.



Biologically Motivated Keypoint Detection for RGB-D Data

Right Crossed colliculus trochlear
eye fibers | nerve
Medial

1 - | | N |
| Optic ) Uncrossed Pulvinar | geniculate I
nerve fibers | nucleus |

-

Right
,‘1' <\ hemisphere

Primary visual

Nasal half . . . . areas in occipital
. OO O 5 e lobes of cerebral
h i cortex
| | 1
, ' ! ."‘4
=\ _f /\%" o~ ' ! 3
)‘! Optic N ’ £ Left
/ < chiasm AN hemisphere
= | |
[ Temporal tract ! Nucleus of !
| half ! Lateral oculomotor |
: geniculate nerve :
Left nucleus
! Nucleus of

Commissure abducent
of Gudden nerve

Figure 2.1: The optic nervous system. The visual system includes the eyes, the connecting pathways
through to the visual cortex and other parts of the brain in the mammalian system (figure adapted from
[142]).

An image is produced by the excitation of the rods and cones in the retina. The excitation
is processed by various parts of the brain that work in parallel to form a representation of the
external environment in the brain.

Rods, which are far more numerous than cones, are responsible for our vision in dim light
and saturated at daylight levels and don't contribute to the image formation [34, 35]. Cones
do not respond to dim light but are responsible for our ability to see fine detail and for our
color vision [32]. The light in most office settings falls between these two levels. At these light
levels, both rods and cones are actively contributing to the information patterns coming out of
the eye.

In humans, there are three types of cones sensitive to three different spectra, resulting in
trichromatic color vision [144]. The cones are conventionally labeled according to the ordering
of the peak wavelengths of their spectral sensitivities: short, medium, and long cone types
[145]. These three types do not correspond well to particular colors as we know them, but the
short, medium and long wavelengths are considered as a representation of the blue, green and
red colors, respectively [[144,[146]. It is the lack of one or more of the sub-types of cones that
causes individuals to have deficiencies in color vision or other types of color blindness [[147].
These individuals are not blind to the objects of a certain color, but experience the inability
to distinguish between two groups of colors that can be distinguished by people with normal
vision.

Retinal ganglion cells have two types of response, depending on the cell's receptive field:
ON cells and OFF cells (see figure R.2). These receptive fields comprise a central region ap-
proximately circular, where the light has an effect on the firing of the cell, and a ring around
it. In ON cells, an increment in light intensity in the center of the receptive field causes the
firing rate to increase. In OFF cells, it makes it decrease [32]. In a linear model, this response
profile is well described by a difference of Gaussians and is the basis for many edge detection
algorithms. In addition to these simple differences in ganglion cells, they are also differentiated
by chromatic sensitivity and the type of spatial sum they employ [32].
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Figure 2.2: Receptive field with center-surround organization. The upper photoreceptors are composed
by OFF-Center and ON-Surround, and the bottom one is the inverse (figure adapted from [[143]).

Regarding the visual signal transfer to the brain via the visual system, the retina is verti-
cally divided in two: the temporal half (closer to the temple) and the nasal half (closer to the
nose), as shown in figure 2.1. The axons from the nasal half cross the brain at the optic chiasm
(see figure R.1)) to join with axons from the temporal half of the other eye before reaching the
Lateral Geniculate Nucleus (LGN).

Although there are over 120 million receptive cells in the retina, there are only about
1.2 million fibers (axons) in the optic nerve, thus a large amount of pre-processing is performed
inside of the retina. The fovea produces the most accurate information. Although it occupies
about 0.01% of the visual field (less than 2° of visual angle), about 10% of axons in the optic
nerve are devoted to it. The resolution limit of the fovea was determined at around 10, 000
points. The information capacity is estimated at 500, 000 bits per second, discolored, or about
600, 000 bits per second, with color.

The retina, unlike a camera, doesn't just send an image to the brain. It spatially encodes
(compress) the image to fit the limited capacity of the optic nerve. Compression is necessary
because there are 100 times more photoreceptor cells as ganglion cells, as mentioned above. In
the retina, the spatial coding is performed by the center-surround structures as implemented
by bipolar and ganglion cells. There are two types of center-surround structures in the retina
(see figure R.2): ON-Center and OFF-Center. The ON-Center use a positive weighed center and
negatively weighed neighbors. The OFF-Center use exactly the opposite. The positive weighing
is better known as excitatory and the negative as inhibitory [32].

These center-surround structures are not physical in the sense that they can be seen by
staining tissue samples and examining the anatomy of the retina. The center-surround structures
are logical (i.e., mathematically abstract) in the sense that they depend on the strength of
connection between bipolar and ganglion cells. It is believed that the connection strength
between cells depends on the number and types of ion channels embedded in the synapses
between bipolar and ganglion cells. Kuffler, in the 1950s, was the first to begin to understand
these center-surround structures in the retina of cats [148].

The center-surround structures are mathematically equivalent to edge detection algo-
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rithms used by computer programmers to extract or enhance the edges in an image. Thus, the
retina performs operations on the object edges within the visual field. After the image is spa-
tially encoded by the center-surround structures, the signal is sent through the optic nerve (via
the axons of ganglion cells) across the optic chiasm to the LGN, as shown in figure 2.1

2.1.2 Lateral Geniculate Nucleus (LGN)

The is the primary broadcasting center for visual information received from the retina
and is found inside the thalamus. The receives information directly from retinal ganglion
cells via the optic tract and from the Reticular Activating System (RAY). RAS is an area of the
brain responsible for regulating arousal (physiological and psychological state of being awake or
reactive to stimuli) and sleep-wake transitions. The neurons in the send their axons through
the optic radiation, a direct pathway to the primary visual cortex, as shown in figure 2.3. In
mammals, the two strongest paths that connect the eye to the brain are those that are designed
for LGNd (dorsal part of the in the thalamus), and for the Superior Colliculus (50) [36].

In humans and monkeys, the is normally described as having six distinct layers. The
two inner layers, 1 — 2, are called the magnocellular layers, while the four outer layers, 3 — 6,
are called parvocellular \ayers [151].

Both the of the right and left hemispheres receive inputs from each eye. However,
each receives information from only one half of the visual field. This is due to the axons of
ganglion cells of the inner half of the retina (nasal side), crossing to the other side of the brain
through the chiasm, as shown in figure 2.1. The axons of ganglion cells of the outer half of the
retina (temporal sides) remain on the same side of the brain. Therefore, the right hemisphere
receives visual information from the left visual field, and the left hemisphere receives visual
information from the right visual field [37].

The receives input from some sources, including the cortex and sends its output to

Parietal cortex

Occipital lobe

( Retina )—P( LGN

Inferotemporal
cortex

Figure 2.3: Block diagram of the connections between the visual reception and the visual specialized brain
lobes of the HVS. The dorsal pathway comprises several cortical areas, including the Middle Temporal (MT))
or V5, the Medial Superior Temporal (MST)) area, and the ventral and lateral intraparietal areas (VIP and
LIP). The Parieto-Occipital (PQ) sulcus separates the parietal and occipital lobes. Visual areas TE and
TEO (for which Anterior Inferotemporal (A[T)) and Posterior Inferotemporal (PIT)) are alternative names
[149,150], respectively) have a significant reciprocal connection with the perirhinal cortex (cortical region
in the Inferotemporal ([T]) cortex), figure adapted from [{142].
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the cortex. The receives some input from the optic tract, as shown in figure 2.1. The axons
that leave the go to the V1 visual cortex (see figure R.3). Both magnocellular layers 1 — 2
and the parvocellular layers 3 — 6 send their axons to layer 4 of V1. Studies involving blindsight
people have suggested that the projections of the not only travel to the primary visual
cortex, but also to higher cortical areas V2 and V3 [[152].

The precise function of the is unknown. It has been shown that while the retina
performs spatial decorrelation through center-surround inhibition, the performs temporal
decorrelation [[153]. However, there is certainly much more going on. Recent experiments in
humans with functional Magnetic Resonance Imaging (FMRI) found that both spatial attention
and saccadic eye movements can modulate the activity in the [154].

2.1.3 Visual Cortex

The brain's visual cortex is the part of the cortex responsible for processing visual infor-
mation. It is located in the occipital lobe, at the back of the brain (see figure 2.4). The term
visual cortex refers to the primary visual cortex (also known as striate cortex or V1) and areas
of extrastriate visual cortex such as V2, V3, V4 and V5. The primary visual cortex is anatomi-
cally equivalent to the area Brodmann 17 [[155]. The areas of the extrastriate cortex consist of
Brodmann 18 and Brodmann 19 [155].

The dichotomy between the way you enter dorsal/ventral (also called flow “where/what'
or "action/perception’ [58]) was defined by [[156] and is still a controversial topic among vision
scientists and psychologists. It is probably an excessive simplification of the true state of affairs

Frontal
lobe

Parietal

Temporal
lobe

Figure 2.4: Specialized brain lobes (left hemisphere) and the ventral and dorsal streams (figure adapted
from [142]).
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in the visual cortex. It is based on the study of visual illusions, such as the Ebbinghaus illusion,
that may distort judgments of nature perception, but when the subject responds with an action,
such as grasping, no distortion occurs. However, recent work, like in [[157], suggests that both
systems of action and perception are equally fooled by such illusions.

The neurons in the visual cortex allow the development of an action when visual stim-
uli appear within their receptive field. By definition, the receptive field is the region within
the entire visual field that causes an action potential (in physiology, an action potential is a
short-lasting event in which the electrical membrane potential of a cell rapidly rises and falls,
following a consistent trajectory). But any given neuron can better respond to a subset of stim-
uli within its receptive field. For example, a neuron in V1 may fire to any vertical stimulus in
its receptive field and ignore other types of stimulus. In the earlier visual areas, like in the [T]
cortex (see figure R.3), a neuron can only fire when a certain face appears in its receptive field.

2.1.3.1 Primary Visual Cortex (V1)

The primary visual cortex is the best-studied area of the visual system. In all studied
mammals, it is located in the posterior pole of the occipital cortex (the occipital cortex is
responsible for processing visual stimuli), as shown in figures 2.3 and R.4. It is the simplest and
oldest part of the visual cortical area. It is strongly specialized in processing information about
static and moving objects, and is excellent in pattern recognition. The primary visual cortex is
divided into six distinct functional layers, labeled 1 to 6. The 4th layer is the one that receives
more visual input from the LGN. The average number of neurons in the primary visual cortex of
an adult human being was estimated to be 280 million [[158].

V1 has a well defined map of visual spatial information. For example, in humans the whole
top of the calcarine sulcus responds strongly to the lower half of the visual field, and the bottom
of the calcarine to the upper half of the visual field. Conceptually, this retinotopic mapping is
a transformation of the visual image of the retina to V1. The correspondence between a given
location in V1 in the subjective field of vision is very precise: even the blind spots are mapped
in V1. In humans and animals with a fovea on the retina the proportion of the central visual
field, a phenomenon known as cortical magnification. Perhaps for the purpose of precise spatial
encoding, neurons in V1 have the smallest receptive field size in all regions of the visual cortex.

The tuning properties of V1 neurons differ greatly. That is, the responses can discriminate
small changes in visual orientations, spatial frequencies and colors. In addition, individual V1
neurons in human and animals with binocular vision have ocular dominance (namely, there is a
preference for one of the eyes). In V1, and in the primary sensory cortex in general, neurons with
similar properties tend to cortical columns. Hubel and Wiesel [[159] proposed a new organization
of classic ice cube cortical columns for two tuning properties: ocular dominance and orientation.
However, this model can not accommodate color, spatial frequency and many other features
to which neurons are tuned. The exact arrangement of all these cortical columns within V1
remains a research topic.

The current consensus seems to be that the initial responses of V1 neurons are composed
of sets of tiled selective spatio-temporal filters. In space, the operation of the V1 can be thought
of as similar to many local spatial functions, complex Fourier transforms, or more precisely
Gabor transforms. Theoretically, these filters together can carry out the neural processing of
spatial frequencies, orientations, movements, directions, speeds (thus temporal frequency),
and many other spatio-temporal features.

V1 neurons are also sensitive to the global scene organization [38]. These response prop-
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erties probably result from recurrent processing and lateral connections in the neuron pyra-
mids [39]. Feedforward connections are mostly driving, and feedback connections are mostly
modulatory in their effects [40, 41]]. Evidence shows that the feedback connections originating
from higher-level areas such as V4, [T, MT], with larger and more complex receptive fields, can
change and shape responses in V1, representing contextual or extra-classical receptive field
effects [160--163].

Computational theories of spatial attention in the visual system propose that the attention
modulation increases the responses of neurons in many areas of the visual cortex [42--44]. The
natural place where it is possible predict an early increase of this type is V1 and recent
evidence shows that the striate cortex can be modulated by attention in a manner consistent
with this theory [45].

Studies in macaque disagree as to the presence and amount of attention modulation in V1
[164]. Experiments performed with human neuroimaging are less ambiguous and invariably find
robust changes of attention in primary visual cortex [45,165] and in subcortical structures [[166,
167]. Electrophysiological studies in humans often report an attention modulation in the visual
cortex [[136,137], but the spatial origins of these signals are normally only estimated by indirect
means (for example, the response time of the signal or the relation of waveforms on stimulus
location). Direct estimates of neural modulation from electrophysiological measurements with
higher spatial precision differ considerably [168]. Another recent study of attention modulation
in human V1 using intracranial electrodes in a single subject could not find attention effects
[169]. One possible explanation for this result is that this task was not demanding enough to
generate strong modulation of the neural response. Generally, it appears that attention can
act at early places in the visual stream and modulate neural responses, but the effects may be
weaker than those seen in higher areas or confined to a subset of the neural population [[164].

2.1.3.2 Visual Area V2

The visual area V2, also called the prestriate cortex [46], is the second largest area of
the visual cortex, and the first region within the visual association area. It receives strong
feedforward connections from V1 and sends strong connections to V3, V4 and V5. It also sends
strong feedback connections to V1.

Anatomically, V2 is divided into four quadrants, a dorsal and ventral representation in
each hemisphere (left and right). Together, these four regions provide a complete map of the
visual world. Functionally, V2 has many properties in common with V1. Recent research has
shown that cells in V2 show a small amount of attention modulation (more than in V1, less than
in V4), are set to moderately complex patterns, and can be driven by multiple orientations in
different sub-regions within a single receptive field [47, 48].

It is argued that the entire ventral stream (see figure .4) is important for visual memory
[49]. This theory predicts that the Object-Recognition Memory (ORM) undergoes changes that
may result in the manipulation of V2. In a recent study it was revealed that certain V2 cells
play a very important role in storage in the ORM, and the conversion of short-term memories
into long-term memories [50]. This area is highly interconnected within the ventral stream
of the visual cortex. In the monkey brain, this area receives strong feedforward connections
from the primary visual cortex and sends strong projections to the other secondary visual cortex
areas (V3, V4 and V5) [[170,[171] (see figure 2.3). Most neurons in this area respond to simple
visual features such as orientation, spatial frequency, size, color and shape [51]--53]. V2 cells
also respond to various characteristics of complex shapes, such as the orientation of illusory
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contours [51] and if the stimulus is part of the foreground or the background [b4, 55].

2.1.3.3 Visual Area V3

The V3 cortex region is located immediately in front of V2. There is still some controversy
over the exact extent of area V3, with some researchers proposing that the cortex located in
front of V2 may include two or three functional subdivisions. For example, Felleman et al. [56]
proposed the existence of a dorsal V3 in the upper hemisphere, which is distinct from ventral
V3 located at the bottom of the brain. The dorsal and ventral V3 have distinct connections with
other parts of the brain, appear in different sections stained with a variety of methods, and
contain neurons that respond to different combinations of visual stimuli.

The dorsal V3 is usually considered part of the dorsal stream (shown in figure .4), re-
ceiving inputs from V2 and the primary visual area and projecting to the Posterior Parietal (PP)
cortex. Some studies with suggested that the V3 area may play a role in the processing of
global motion [[172]. Other studies considered the dorsal V3 as part of a larger area called the
dorsomedial area, which contains a representation of the entire visual field. The neurons in the
dorsomedial area respond to the coherent motion of large patterns covering large portions of
the visual field [[173].

The ventral V3 has considerably weaker connections to the primary visual area, and
stronger connections to the [T cortex. While previous studies suggested that the ventral V3
had only a representation of the upper visual field, a more recent work indicates that this area
is more extensive than previously appreciated, and like the other visual areas, may contain a
complete visual representation [174].

2.1.3.4 Visual Area V4

The visual area V4 is one of the visual areas of the extrastriate visual cortex. It is located
before V2 and after the PIT] area, as shown in figure 2.3. V4 is the third cortical area in the
ventral stream, receiving strong feedforward input from V2 and sending strong connections to
the PIT].

V4 is the first area in the ventral stream that has a strong attention modulation. Most
studies indicate that selective attention can change firing rates in V4 by about 20%. Moran and
Desimone [b7] characterize these effects, and this was the first study to find effects of attention
anywhere in the visual cortex [58].

Like the V1, V4 is tuned at the level of orientation, spatial frequency, and color. But
unlike V1, V4 is set to feature extraction of objects of intermediate complexity, like simple
geometric shapes, although no one develop a complete description of the V4 parameter space.
The visual area V4 is not tuned for complex objects like faces, as the areas of the [T cortex.

The firing properties of V4 were first described, at the end of 1970, by Zeki [66], that
also named the area. Originally, Zeki argued that the purpose of V4 was to be responsible
for processing color information. At the beginning of 1980, it was proved that V4 was directly
involved in the shape recognition, as previous areas of the cortex. This research supported the
hypothesis of the two streams first presented by Ungerleider and Mishkin [[156].

2.1.3.5 Visual Area V5 or MT

The visual area V5, also known as Middle Temporal (MT)) visual area, is a region of the
extrastriate visual cortex, which is thought to play an important role in the perception of motion,
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the integration of local motion signals into global perceptions and orientations of some eye
movements [59]. The MT is connected to a large variety of cerebral cortical and subcortical
areas. ltsinputs include visual cortical areas V1, V2 and dorsal V3 [60,61], koniocellulare regions
of the [62] and inferior pulvinar. The pattern of projections to MT changes somewhat
between the representations of the foveal and peripheral visual fields [63]. The MT was shown
to be organized in steering columns [[175]. DeAmgelis and Newsome [64] argued that the neurons
in MT| have also been organized based on its fit to the binocular disparity.

The standard view is that V1 provides the most important input to the MT| [59] (see figure
R.3). However, several studies have shown that neurons in MT| are able to respond to visual
information, often in a selective manner, even after V1 is destroyed or disabled [65]. In addition,
research carried out by Zeki [66] suggests that certain types of visual information may reach MT]
before it even reaches V1.

The MT] sends its outputs to areas located in the immediately surrounding cortex. Early
studies of the electro-physiological properties of neurons in MT showed that a large proportion
of cells were in tune with the speed and direction of visual stimuli on the move [176,177]. These
results suggest that MT plays a significant role in the processing of visual motion.

The study of lesions also supports the role of MT| in motion perception and eye movement.
Neuropsychological studies of a patient who could not see motion, seeing the world as a series
of static frames instead, suggested that MT in the primates is homologous to V5 in humans
[178,179]. There is still much controversy about the exact form of the calculations performed
in MT| [[180] and some research suggests that movement perception is already available at lower
levels of the visual system (such as on the V1 [[181,182]). These results left open the question of
precisely what MT could do that V1 could not. Much work has been performed in this region, since
it seems to integrate the local signals of visual motion in the global movement of complex objects
[183]. For example, an injury in V5 can cause a deficit in motion perception and processing of
complex stimuli. It contains many neurons tuned to the motion of complex visual features. The
micro-stimulation of a neuron located in the V5 affects the perception of motion. For example,
if someone finds a neuron with a preference for upward motion, and then uses an electrode to
stimulate it, the monkey becomes more sensitive to upward motion [[184].

2.2 Visual Attention

In this section, several concepts regarding visual attention are discussed. More detailed
information can be found in, for example, Pashler [67,68], Style [69], and Johnson and Proctor
[70].

Generally, we seem to keep a rich representation of our visual world and major changes
to our environment will attract our attention. Only a small region of the scene is analyzed in
detail, in each moment: the attention focus region. This is usually, but not always, the same
region which is fixed by the eyes [71,72]. The order in which a scene is investigated is deter-
mined by the mechanisms of selective attention. Corbetta proposed the following definition of
attention: "defines the mental ability to select stimuli, responses, memories, or thoughts that
are behaviorally relevant among many others that are behaviorally irrelevant” [[134].

There are two categories of factors that motivate attention: the bottom-up factors and
top-down factors [73]. Corbetta and Shulman [74] review the evidence on partially segregated
networks of brain areas that perform different attention functions. The preparation and appli-
cation of goal directed (top-down) selection of stimuli is performed by a system that includes
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parts of the intraparietal cortex and superior frontal cortex, which is also modulated by the de-
tection of stimuli. Another system, which the top-down selection is not involved with, is largely
lateralized to the right hemisphere, where it includes the temporoparietal cortex and inferior
frontal cortex. This system is specialized on the detection of behaviorally relevant stimuli, par-
ticularly when they are salient or unexpected. Thus, it is possible to indicate that there are
two separate areas of the brain that are involved in attention. According to Theeuwes [75], the
bottom-up influence is not voluntarily suppressible: a highly salient region captures the Focus
of Attention (FOA), regardless of the task.

The bottom-up factors are derived solely from the visual scene [76]. The regions of inter-
est that attract our attention in a bottom-up way are called salient and the feature responsible
for this reaction must be sufficiently discriminating in relation to surrounding features. Be-
yond the bottom-up attention, this mechanism is also called exogenous attention, automatic,
reflexive, or peripherally directed attention [77].

In contrast, top-down attention is spurred by cognitive factors like knowledge expecta-
tions and current goals [74]. For example, car drivers are more likely to see gas stations on a
street and cyclists to notice the existence of bicycle paths [78].

In psychophysics, top-down influences are often investigated, through so-called signaling
experiments. In these experiments, a signal directs the attention to the target. The signals may
have different characteristics: they can indicate where the target is, for example, a central
arrow that points to the direction of the target [69,135], or what destiny will be, for example,
the signal is a target image or a word that describes the target [[185,186].

The mechanisms of bottom-up attention have been more thoroughly investigated than
the mechanisms of top-down attention. One reason is that the data driven stimuli are easier
to control than cognitive factors, such as knowledge and expectations, although little is known
about the interaction between the two processes.

The mechanisms of selective attention in the human brain still remain open in the field
of perception research. The nonexistence of a brain area solely oriented for visual attention
[79--81]] is one of the most important discoveries in neurophysiology, but the visual selection
appears to be present in almost all areas of the brain associated with visual processing [82].
Additionally, new discoveries indicate that many areas of the brain share the processing of
information from different senses and there is growing evidence that large parts of the cortex are
multi-sensory [83]. A network of anatomical areas performs the mechanisms of attention [74].
The major areas of this network are the PH cortex, the §d, the Lateral Intraparietal (LIF) area,
the Frontal Eye Field (FEF) and the pulvinar, as shown in figures and .3. Opinions differ on
the question of what areas perform certain tasks.

Posner and Peterson [[187] describe three important functions related to attention: the
orientation of attention, target detection and alertness. According to them, the first function,
the orientation of attention to a salient stimulus, is accomplished by the interaction of three
areas: PP, B4, and the pulvinar. The PP is responsible for the release of the focus of attention
from its current location, Inhibition-Of-Return (IOR), the EQ shifts attention to a new location
and the pulvinar is specialized in reading data from the indexed location and is called by the
posterior attention system. The second function of attention, target detection, is performed
by what the authors call anterior attention system. Finally, they state that the alertness to
high-priority signals is dependent on activity in the norepinephrine system arising in the locus
coeruleus [[188].

The and the 5] are the brain areas involved in eye movements. Recently, Bichot [189]
points out that the is the place where a kind of map projections is located, which derives
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information from bottom-up, as well as top-down influences. The saliency maps, for other
researchers, are located in different areas, for instance at LIP [190], at 50 [191], at V1 [192] or
at V4 [[193].

The source of top-down signals may derive from a network of areas in the parietal and
frontal cortex. Based on [[194], these areas include the Superior Parietal Lobe (SPL), the FEA
and the Supplementary Eye Field (SEF). The transient response of the signal in the occipital
lobe and more sustained responses in the dorsal PP cortex along the intraparietal sulcus (IPs)
and frontal cortex in or near the putative human homologue of the FEFs were found by Corbetta
and Shulman [74]. The interaction of bottom-up and top-down signals occurs in V4, in the view
of Ogawa and Komatsu [195].

2.3 Summary

With this chapter, an overview of the was provided. Visual attention is a highly in-
terdisciplinary field and researchers in this area come from different backgrounds [131]. For
psychologists, research conducted in the area of human behavior is performed by isolating cer-
tain specific tasks, in order to understand the internal processes of the brain, often resulting in
psychophysical theories or models [[134]. While neurobiologists observe the brain's response to
certain stimuli [135], using techniques such as fMRI, having therefore a direct view of the brain
areas that are active under certain conditions [45,136,137].

In recent years, these different areas have profited considerably from each other. Psy-
chologists use research conducted by neurobiologists, in order to improve their attention mod-
els, while neurobiologists consider psychological experiments to interpret their data [134]. In
addition, psychologists began to implement computer models or use computer models previ-
ously developed, to verify that they have a similar behavior to that of human perception. Thus,
psychologists tend to improve the understanding of the mechanisms and help the development
of better computational models.
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Chapter 3

Saliency, the Computational Models of Visual
Attention

Selective visual attention, initially proposed by Koch and Ullman [2], is used by many
computational models of visual attention. Saliency maps is a term which was introduced by Itti
et al. [3] in their work on the rapid scene analysis, and by Tsotsos et al. [84] and Olshausen
et al. [85] in their work on visual attention. In some studies, for example in [84, 86], the
term saliency appears referred to as visual attention or in [87, 88] as unpredictability, rarity or
surprise. The saliency maps are used as a two-dimensional scalar map of values representing
the visual saliency of the corresponding location, independently of the particular stimulus that
makes the location salient [{1]].

With the emerging interest in active vision, the computer vision researchers have been
increasingly concerned with the mechanisms of attention and have proposed a number of com-
putational models of attention. An active vision system is one that can manipulate the point
of view of the camera(s) in order to analyze the surrounding environment and to obtain better
information from it.

The methods that will be presented can be categorized based on whether they are biolog-
ically plausible, purely computational, or hybrid [89]. Other types of categories are described
in [6]. In general, all methods employ a low-level approach by determining the contrast of
the image regions relative to their surroundings, using one or more features of intensity, color
and orientation. When a method is said to be biologically plausible it means that it follows the
knowledge of the HVS. There is usually an attempt to combine known features, extracted by
the retina, LGN, primary visual cortex (V1), or by other visual fields (such as V2, V3, V4 and V5).
Itti et al. [3], for example, base their method on a biologically plausible architecture proposed
in [2]. They determine the center-surround contrast with the Difference of Gaussians (DoG) ap-
proach. Frintrop et al. [90] present a method inspired by Itti's method, but the center-surround
differences are obtained using square filters and integral images to reduce the processing time.

Other methods are purely computational and not based on any of the biological principles
of vision. Ma and Zhang [86] and Achanta et al. [91] estimate the saliency using the distances
from the center-surround. While Hu et al. [92] estimate the saliency through the application
of heuristic measures on the initial saliency measures obtained by histogram thresholding of
feature maps. The maximization of mutual information between the distributions of features in
the center and surround of an image is made [23]. Hou and Zhang [94] perform the processing
in the frequency domain.

The methods classified as hybrid are those that incorporate ideas that are partially based
on biological models. Here, the method of Itti et al. [3] is used by Harrel et al. [95] to generate
the characteristics maps; the normalization is performed by an approach based on graphs. Other
methods use computational approaches like maximization of information [96] that represent
biological plausible models of saliency detection.

In the rest of this chapter, we focus only on those models which can process arbitrary
digital images and return corresponding saliency maps. In each of the following sections, the
models are introduced in chronological order.
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3.1 Biological Plausible Methods

Many plausible biological models that have strong links with the psychological or neu-
rophysiological findings are described in this section. Almost all these attention models are
directly or indirectly inspired by cognitive concepts.

A visual attention model is proposed by Ahmad [196]. It consists of a network propagation
corresponding to the pulvinar, whose outputs correspond to the areas V4, IT and MT. The main
network corresponds to the §d, and PP areas, while the control network corresponds to the
PP areas and the working memory corresponds to the prefrontal cortex.

The attention model proposed by Niebur and Koch [[197] scans the scene both in the form
of a rapid, bottom-up, saliency-driven and task-independent manner and in a slower, top-down,
volition-controlled and task-dependent manner, based on the work in [2,198,199].

Itti et al. [3, 200] built a saliency model based on spatial attention derived from the bio-
logically plausible architecture proposed by Koch and Ullman [2], using three feature channels:
color, intensity, and orientation. This model has been the basis of later models and the stan-
dard benchmark for comparison. It has been shown to correlate with human eye movements
in free-viewing tasks [201,202]. The features are calculated by a linear set of center-surround
operations, similar to visual receptive fields. Typically visual neurons are more sensitive to a
small region of the visual space (the center), while stimuli presented in a broader concentric
region with the center (the surround) inhibit the neuronal response. This type of architecture,
sensitive to local spatial discontinuities, is particularly well-suited to detect locations which
stand out from their surroundings and is a general computational principle in the retina, LGN,
and primary visual cortex [[122]. Based on retinal input, given the intensity, color, and orienta-
tions, they create Gaussian pyramids. The center-surround contrast is determined using a DoG
approach from the Gaussian pyramids, creating "feature maps”. An input image is subsampled
into a Gaussian pyramid and each pyramid level ¢ is decomposed into channels for Red (R),
Green (G), Blue (B), Yellow (Y), Intensity (I), and local orientations (O,). From these channels,
center-surround feature maps f, for different features [ are constructed and normalized (N (-)).
In each channel, maps are summed across scale and normalized again:

4 ct+4

f[:J\/(Z > f[,c,s) NVelLUlcUly (3.1)
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The feature maps are combined into a single "conspicuity map" for each feature type:
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The three conspicuity maps then are summed into the unique bottom-up saliency map:
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In [203], this model was extended by adding motion and flicker contrasts to video domain.

The saliency maps produced by this approach have been used by other researchers for
applications that apply image processing in small devices [204] and unsupervised object seg-
mentation [205, 206]. For example, a Markov random field model is used to integrate the seed
values from the saliency map along the low-level color features, texture, and edges to grow the
salient object regions [205]. The Winner-Take-All detects the most salient location and directs
attention towards it, such that only features from this location reach a more central represen-
tation for further analysis. An JOR mechanism transiently suppresses this location in the saliency
map, such that attention is autonomously directed to the next most salient image location.

Itti's framework [3] and Ahmad's model [[196] build up an elegant mapping from computa-
tional attention model to biological theories. However, the high computational complexity in
these systems requires a massively parallel method to obtain fast responses, which is a common
character of biological structure based attention models. For high-level applications as robot
vision and video content analysis, it is hecessary that these models produce fast responses.

Rosenholtz et al. [207, 208] proposed a visual search model. This model could also be
used to predict the saliency over an image, in this case the participants were free to rotate the
eyes in order to detect the target, if necessary. Initially, features of each point are derived in
an appropriate uniform feature space. Then, they computed the distractor features based on
the features distribution, mean, p, and covariance, Y . With that, the model defines saliency
target as the Mahalanobis distance, A, between the target feature vector, T, and the mean of
the distractor distribution, where

—1

N =(T—p)) (T—p). (3.5)

This model is similar to [209--211] in the sense that it estimates 1/P(x) (rarity of a feature or
self-information) for each image location x. This model also underlies a clutter measure of
natural scenes [212].

Li [213] introduced a neural implementation for the saliency map of the V1 area that can
also account for search difficulty in pop-out and conjunction search tasks, as in [203].

In [214], a saliency map was computed by extracting primary visual features using the
method of Itti et al. [3]. Besides the primary visual features, this method also detected pop-out
objects based on their social relevance, in particular, human faces by the method proposed
in [215]. The final activation map was obtained by combining the scalar saliency map and the
detected faces. Given the computed activation map, the fixation points were defined as the
peak locations of the activation map while fixation field sizes were estimated by an adaptable
retinal filter centered on the fixation points. The FOA was moved serially over the detected
Region of Interests (ROIs) by a decision theoretic mechanism. The generated sequence of eye
fixations was determined from a perceptual benefit function based on perceptual costs and
rewards, while the time distribution of different ROls was estimated by memory learning and
decaying.

Le Meur et al. [216] proposed a method for bottom-up saliency based on the HVS. Initial,
they conducted several eye-tracking experiments in order to infer the mechanisms in HVS. With
that, they implemented features like center-surround interactions, visual masking, perceptual
decomposition and contrast sensitivity functions to build the saliency model. They extended this
model in [217] to the spatio-temporal domain by fusing temporal, chromatic and achromatic
information. Here, visual features are extracted from the visual input into several separate
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parallel channels. A feature map is obtained for each channel, then a unique saliency map is
built from the combination of those channels. The major novelty lies in the inclusion of the
temporal dimension as well as the addition of a coherent normalization scheme.

Navalpakkam and Itti [218, 219] proposed a computational model for the task-specific
guidance of visual attention in real-world scenes. Their model emphasizes four aspects that are
important in biological vision: determining task-relevance of an entity, biasing attention for the
low-level visual features of desired targets, recognizing these targets using the same low-level
features, and incrementally building a visual map of task-relevance at every scene location.
Given a task definition in the form of keywords, the model first determines and stores the
task-relevant entities in working memory, using prior knowledge stored in Long-Term Memory
(LTM). It attempts to detect the most relevant entity by biasing its visual attention system with
the entity's learned low-level features. It attends to the most salient location in the scene,
and attempts to recognize the attended object through hierarchical matching against object
representations stored in LTM. It updates its working memory with the task-relevance of the
recognized entity and updates a topographic task-relevance map with the location and relevance
of the recognized entity. The model's performance on search for single features and feature
conjunctions is consistent with existing psychophysical data. These results of their biologically-
motivated architecture suggest that the model may provide a reasonable approximation to many
brain processes involved in complex task-driven visual behaviors.

Frintrop [131] presented a biologically motivated computer model called Visual Object
Detection with a Computational Attention System (VOCUY). The system is based on a mechanism
of human perception called selective attention. To imitate the biological process the
system first analyses the provided audio and video data, considering different features like
contrast, color or intensity in parallel. Then, the saliency maps that indicate interest regions,
are generated based on the analysis. If additional information is provided the maps are then
processed in search for matching attributes. In other words, the model can use both bottom-up
attention cues, characteristics of the image and top-down cues and emotion related aspects of
the image [220]. In the end, all the information is fused and a focus region is established for
more detailed analysis.

is based on psychological models like the feature integration theory presented
in [221] and on computational models as the Neuromorphic Vision Toolkit of Itti et al. [3]. It is
also one of the few systems able to perform goal-directed search, which means that it is able to
recognize previously defined objects in provided data. The system is also able to process data
in real time and thus it may be used in robotics or monitoring systems [222,223]. The model
represents a major step forward on integration of data and model-driven mechanisms for studies
of visual attention [[131] and has been referenced in many works on computer vision [224].
Frintrop et al. [90,131] used images integrals [215,225] to accelerate the computation of center-
surround differences to find regions salient using maps of separate features of color, intensity
and orientation. Their proposal obtains a higher resolution in the saliency maps as compared to
the method of [3]. For this, they resize the filter on each scale, instead of the image and thus
maintain the same resolution as the original image on all scales.

Kootstra et al. [226] proposed a multi-scale extension for three symmetry-saliency op-
erators and compared them with human eye-tracking data. This extension was applied on the
isotropic symmetry and radial symmetry operators presented in [227] and the color symmetry
of Heidemann [228]. The authors compared their model against the Itti et al. [3] method and
showed that their performance is significantly better on symmetric stimuli.

Marat et al. [229] developed a bottom-up model for spatio-temporal saliency prediction in
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video. Based on the magnocellular and parvocellular cells of the retina, their approach extracts
from the video. With this, they produce a static saliency map and a dynamic one, which is fused
in a single spatio-temporal map. Prediction results of this model were better for the first few
frames of each clip snippet.

Bian et al. [230, 231] propose a biologically plausible frequency domain saliency detec-
tion method called Frequency Domain Divisive Normalization (FDN), which has the topology of
a biologically based spatial domain model, but is conducted in the frequency domain. This re-
duces computational complexity because unlike all spatial domain methods, they don't need
to decompose the input image into numerous feature maps separated in orientation and scale
(like [3,93]), and then compute saliency at every spatial location of every feature map. Saliency
is normally defined as some measure of difference between center and surround. In order
to overcome this constraint, they propose a Piecewise Frequency Domain Divisive Normaliza-
tion (PFDN) using Laplacian pyramids and overlapping local patches. While is slower than
FDN, it is more biologically plausible and performs better in eye fixation prediction.

The algorithm from input image to final saliency map is given by:

1. Convert the input image to CIELab color space;
2. Decompose the image into a number of scales using a Laplacian pyramid;

3. For each scale and every color channel, separate into overlapping local patches with a
shift between patches;

4. Perform a Fourier transform for each patch using R[k] = F,{/}, where F denotes a Fourier
transform and R[k] is the k-th Fourier coefficient;

W e IRKI

5. Calculate normalization terms E; = N

and to simplify set the constants w =
g=1;

6. Obtain the divisive normalized Fourier coefficients;

7. Obtain the saliency maps of each patch S = W|F~'{R}|?, where F~'! denotes the inverse
Fourier transform, W is a windowing function to remove edge effects, and S is the corre-
sponding spatial domain saliency map;

8. For each scale and color channel, recombine the saliency maps of all patches by taking
the maximum value at each pixel location;

9. Resize all scales to be equal in size and take the spatial maximum across all scales and
color channels to obtain the final saliency map;

10. Smooth the saliency map with a Gaussian filter.

Chikkerur et al. [232] proposed a model similar to the model of Rao [[130]. The goal of
their work is to infer the identity and the position of objects in visual scenes: spatial attention
emerges as a strategy to reduce the uncertainty in shape information while feature-based at-
tention reduces the uncertainty in spatial information. In this model, attention emerges as the
inference in a Bayesian graphical model which implements interactions between ventral and
dorsal areas. This model is able to explain some physiological data (neural responses in ventral
stream (V4 and PIT) and dorsal stream (LIF and FEF)) as well as psychophysical data (human
fixations in free viewing and search tasks).
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Murray et al. [233] proposed a model based on a low-level vision system. This model
contains a principled selection of parameters as well as an innate spatial pooling mechanism,
can be generalized to obtain a saliency model. They generalize a particular low-level model
developed to predict color appearance [234] and has three main levels:

1. Visual stimuli are processed based on what is known about the early human visual pathway
(color-opponent and luminance channels, followed by a multi-scale decomposition);

2. A simulation of the inhibition mechanisms present in cells of the visual cortex;

3. Information is integrated at multiple scales by performing an inverse wavelet transform
directly on weights computed from the non-linearization of the cortical outputs.

Biologically plausible models have the advantage of expanding our view of biological un-
derpinnings of visual attention. This further helps understanding computational principles or
neural mechanisms of this process as well as other complex processes such as object recogni-
tion.

3.2 Computational Methods

A serial model for visual pattern recognition based on the primate selective attention
mechanism and applied it to handwritten digit and face recognition was proposed by Salah et
al. [138]. In an attentive level, they constructed a bottom-up saliency map using simple features
in order to decrease the computational cost. In the intermediate level, the information is
extracted by dividing the image space into uniform regions and training a single-layer perceptron
at each region of the image. Finally, they used an associative level with a discrete Observable
Markov Model (OMM) in order to combine the information. Regions visited by a fovea are treated
as states of the DMM. An OR allows the fovea to focus on the other positions in the image.

The work of Ramstrom and Christensen [129] is focused on a discussion of saliency measure
using multiple cues based on game theory concepts. Feature maps are integrated using a scale
pyramid, inspired by the attention mechanism of Tsotsos et al. [84]. The nodes of the pyramid
are subject to trading on a market and the outcome of the trading represents the saliency. They
use the spotlight mechanism for finding the ROI.

In [130, 235], they proposed a template matching model by sliding a template of the
desired target to every location in the image. In each location, they compute saliency as a
similarity measure between the template and the local image patch.

Ma et al. [86,236] propose a method based on local contrast for generating saliency maps
which operates on a scale only and is not based on any biological model. The input to this
map is resized and the image color in the space CIELuv is subdivided into blocks of pixels. The
saliency map is obtained by summing the differences of blocks of pixels in small neighborhoods.
This framework extracts the regions and points of attention. For object segmentation, a fuzzy-
growing method is applied in the saliency map regions. In contrast with Itti's framework [3] and
Ahmad's model [[196], they employ the theories on human attention mechanisms as high-level
guidance for computer algorithm design. For example, they proposed a motion attention model
for video skimming [237], a static attention model for image content analysis [86], and a pure
computational algorithm for salient region extraction from video [238]. They have also proposed
a user attention model for video summarization in [239], which integrated Itti's model as static
attention model.
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The model of visual control presented in [240] is built around the concept of visual behav-
iors. They borrow the usage of behavior from the robotics community to refer to a sensory-action
control module that is responsible for handling a single narrowly defined goal [241]. The key
advantage of the behavior based approach is compositionality: complex control problems can
be solved by sequencing and combining simple behaviors. For the purpose of modeling human
performance it is assumed that each behavior has the ability to direct the eye, perform appro-
priate visual processing to retrieve the information necessary for performance of the behavior's
task, and choose an appropriate course of action.

Hu et al. [92,242] estimate the saliency applying heuristic measures to the initial saliency
obtained by histogram thresholding the feature maps. The threshold was applied to the color,
intensity and orientation maps through the analysis of histogram thresholding entropy instead
of an approach in different scales. Then, they use a spatial compactness measure, calculated as
the area of the convex hull covering the saliency region, and saliency density, which is a function
of the magnitude of saliency values in the saliency feature maps, to weigh the individual saliency
maps before their combination.

Gao and Vasconcelos [93] maximize the mutual information between feature distributions
of the center and surround regions of an image by proposing a specific goal for the saliency:
classification. An object in the visual stimulus is classified as belonging to each class of interest
(or not), and the saliency must be assigned to locations that are useful for this task. This was
initially used for object detection [93], where a set of features are selected to improve the
discrimination of the class of interest from all other stimuli, and the saliency is defined as the
weighted sum of the responses in the set of features which are salient to this class.

In [243, 244], Gao et al. extended their static image saliency to dynamic scenes. The
saliency is measured as the Kullback-Leibler (KL) divergence between the histogram of features
in a location and the surrounding region, with the features implemented as optic flow. They use
DoG filters and Gabor filters, to measure the saliency of a point as the KL divergence between the
histogram of filter responses on the point and the histogram of filter responses in the surrounding
region. Thus, they solve the complexity problem commonly faced by this type of models, as well
as some models of ridge filters using linear responses as features. These models always assign
high salience scores for highly textured areas. In [245], these authors used discriminant saliency
model in recognition applications, which shows good performance.

Ko and Nam [206] used a Support Vector Machine (SVM) trained on the region features
of the image to select the salient regions of interest from the input image, which are then
clustered to extract the salient objects.

Jodogne and Piater [246] proposed reinforcement learning algorithm that can be used
when the perceptual space contains images, called Reinforcement Learning of Visual Classes
(RLVQ). is an iterative algorithm that is suitable for learning direct image-to-action map-
pings by taking advantage of the local-appearance paradigm. It consists of two interleaved
learning processes: Reinforcement learning of a mapping from visual classes to actions, and
incremental building of a feature-based image classifier.

Hou and Zhang [94] presented a model that is independent of features, categories, or
other forms of prior knowledge of the objects. Through analysis of the log-spectrum of an input
image, they extract the spectral residual of an image. In this model, the spectral residual is the
innovation and serves as a compressed representation of a scene. Given an input image /(x),
amplitude A(f) and phase P(f) are derived. Then, the log spectrum £(f) is computed from the
down-sampled image. From £(f), the spectral residual R(f) can be obtained by multiplying £(f)
with h,(f) which is an n x n local average filter. Using Inverse Fast Fourier Transform, they
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build, in the spatial domain, the output image called saliency map. The saliency map contains
mainly the non-trivial portion of the scene. To improve the result, they smoothed the saliency
map with a Gaussian filter. This process can be summarized as:

S(x) = g(x)+ 3" (exp (R(f) + P(F)*, (3.6)

R(f) = L(f) — ho(f) * £(F), (3.8)

L(f) = log (A(f)), (3.9)

A(f) =R BIZ(x). (3.10)

where § and §~' denote the Fourier and Inverse Fourier Transforms, respectively. P denotes
the phase spectrum of the image, and is preserved during the process. By thresholding they find
salient regions, called proto-objects, for fixation prediction.

In [247], they proposed a novel dynamic visual attention model based on the rarity of
features. They introduce the Incremental Coding Length (ICL) which is a principle of how it is
possible to distribute energy in the attention system. This principle aims to optimize the imme-
diate energy distribution in the system in order to achieve an energy-economic representation of
its environment. With the salient visual cues corresponding to unexpected features (according
to the definition of ICL)), the extracted features may elicit entropy gain in the perception state.
The basis functions, described below, are used as features in the attention analysis. Specifi-
cally, they use 8 x 8 RGB image patches from natural scenes for training. A set of 8 x 8 x 3 =192
basis functions is then obtained. To validate this theoretical framework, they examined exper-
imentally several aspects of visual attention. Comparing with static saliency maps, their model
predicted saccades more accurately than did other mainstream models. Because the model up-
dates its state in an online manner, they can consider the statistics of a temporal sequence and
the model achieved strong results in video saliency generation. Finally, when features, based
on [CL], are combined using weighted sampling, the model provides a coherent mechanism for
dynamic visual search with JOR.

Boccignone [248] addressed the issue of joint segmentation and saliency computation
in dynamic scenes. They used a mixture of Dirichlet processes, as a basis for computational
modeling of object-based visual attention. The idea of using mixture modeling for low-level
saliency was first proposed in [249], but limited to classic finite mixtures, in the context of
static images and without addressing the issue of segmentation. He also proposed an approach
for partitioning a video into shots based on a foveated representation of a video.

[250] propose a simplified version of the model proposed in [210], projecting it to run
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in real time. They empirically evaluate the saliency model in saccades control of a camera in
social robotics situations.

More recently, in [251], Zhang et al. developed an algorithm in which the saliency is
updated online on each new frame. The performance of the model for predicting human fix-
ation while watching videos is comparable to previous methods, with the advantage that it is
substantially simpler.

Butko and Movellan [252] extend Najemik and Geisler framework [253] by applying long-
term Partially Observable Markov Decision Processes (POMDF) [254] planning methods, in which
the primary goal is to gather information. Najemik and Geisler [253] developed an Information
Maximization (Infomax) model of eye movement and applied it to explain the visual search
of simple objects. They modeled the visual search as a control strategy designed to detect
the location of a visual target. According to these authors, the model successfully captured
some aspects of human saccades, but has two important limitations: (1) Its fixation policy is
glutton, maximizing the instantaneous information gain rather than the long-term gathering of
information; (2) It applies only to artificially constructed images.

Butko and Movellan [252] refer to their extension of the approach presented in [253] as
Infomax - Partially Observable Markov Decision Processes (I-POMDP), where they showed that
long-term reduces search time. The new formulation allows them to give answers to
questions about the temporal dynamics of optimal eye movement. Furthermore, the strategy
search varies depending on the characteristics of the optical device that is used to search [252].
While this model is intended to solve the first limitation of the model in [253], the second
limitation remained unsolved. The model was only suitable for a limited class of psychophysical
stimuli, in particular images that could be described as containing a field of Gaussian noise.
In [255], they present a first attempt to extend the model to be useful for computer
vision applications. And in [[132], they have a computational analysis of eye movement from the
point of view of the theory of stochastic optimal control.

A model of attention with visual memory and online learning is proposed in [161], and
it is composed of three parts: Sensory Mapping (SM), Cognitive Mapping (CM) and Motor Map-
ping (MM). The novelty of this model lies in the [CM, which incorporates into the visual memory
and online learning. To mimic visual memory, they present an Amnesic Incremental Hierachi-
cal Discriminant Regression tree which is used to guide the amnesic elimination of redundant
information from the tree. The Self-Supervised Competition Neural Network in CM has the char-
acteristics of online learning since its connection weights can be updated in real time according
to environment changes.

Guo et al. [256] present an approach named Phase spectrum of Quaternion Fourier Trans-
form (PQFT]) that produces a spatial-temporal saliency, thereby extending the Quaternion Fourier
Transform method [257]. More recently, in [258], these authors have applied the saliency de-
tection method to perform the compression of images and video, taking advantage of the
multi-resolution representation of wavelets.

Achanta et al. [91]] present a method to determine saliency regions in images using the
CIELab color space [259]. They use low level color and luminance features. An advantage of this
method is that the saliency maps have the same size and resolution as the input image. They
use the difference-of-mean filter to estimate the center-surround contrast. The lower frequen-
cies are retained depending of the size of the largest surround filter and higher frequencies
depend on the size of the smallest central filter. In this way, this approach retains all of the
frequency range 10, 1] with a notch in the mean. They demonstrate the use of this algorithm in
the segmentation of semantically meaningful whole objects from digital images.
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More recently, in [89], Achanta et al. changed some concepts of their previous method
[91] so that the objects’ salient regions have more well defined limits. These limits are preserved
through a substantial retention of the most frequent content from the original image. The
saliency map is obtained by calculating the Euclidean distance between the mean vector Lab
(obtained by converting the image to the CIELab color space) of an input image and each pixel
value of a version of the image with Gaussian blur, before being converted to CIELab color
space. They uniformly attribute saliency values to the entire salient regions, instead of only
to the edges or texture regions. This is achieved by relying on the overall contrast of the pixel
instead of the local contrast measured in terms of both color and intensity features.

Unlike previous models presented by these authors, Achanta and Siisstraunck [260] present
a model where they are concerned with the computational efficiency, noise robust re-targeting
scheme based on seam carving [261]] by using saliency maps that assign higher importance to
visually prominent whole regions (and not just edges). The values of the stronger saliency are
not just assigned to the edge image, but to the whole region. This is accomplished by calculat-
ing global pixel saliency using intensity as well as color features. The saliency maps easily avoid
the artifacts that conventional seam carving generates and are more robust in the presence of
noise. In this method, the saliency maps are processed only once, independently of the number
of seams added or removed.

The most recent algorithm for saliency detection presented by Achanta and Susstraunck
[262] is based on the premise that you can make assumptions about the scale of the object to
be detected based on their position in the image. A pixel belonging to a salient object near the
boundary will be less central than one inside the object. So, assuming that the salient object
is completely within the image, and not cut-off by the image borders, it is possible to vary
the bandwidth of the center-surround filter by increasing the low frequency cut-off when they
approach the image borders. Indeed, as they approach the image borders they use a more local
surround region. They choose to do this by making the surround symmetric around the center
with respect to the edges of the image. When choosing a surrounding symmetrical to each
pixel, they implicitly address each pixel to be placed in the center of its own sub-image. This
method is different from the one in [89], where the entire image is used as the common global
surround (abstracted as the average image CIELab color vector) to any given pixel, resulting in
an asymmetric environment for pixels that are not in the center of the image.

Rosin [263] proposed an edge-based scheme for saliency detection over grayscale images,
being composed in four steps:

A simple method for detecting salient regions in images was proposed by Rosin [263]. This
method only requires: a Sobel edge detection; a threshold decomposition at multiple levels
to produce a set of binary edge images; a the distance transformation on each of the binary
edge images to propagate the edge information; and sum it to obtain the overall saliency map.
Moreover, it avoids the need for setting any parameter values.

Seo and Milanfar [264] proposed a framework for both static and space-time saliency
detection. Initially they used a local image structure at each pixel represented by a matrix of
local regression kernels (equation B.11)), which are robust in the presence of noise and image
distortions.

det(C;) (xi — xi) " Ci(xi — x;) 2x2
K(x;—x;) = 2 ex { 02 , G e R4, (3.11)
where [ = 1,..., P, P is the number of the pixels in a local window, h is a global smoothing
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parameter, and the matrix C; is a covariance matrix estimated from a collection of spatial gra-
dient vectors within the local analysis window around a sampling position x; = [x1, x2]/ . Then,
they use a nonparametric kernel density estimation for such features, which results in a saliency
map constructed from a local "self-resemblance” measure, indicating the likelihood of saliency.
A "matrix cosine similarity” (a generalization of cosine similarity) is employed to measure the
resemblance of each pixel to its surroundings. For each pixel, the resulting saliency map rep-
resents the statistical likelihood of its feature matrix F; given the feature matrices F; of the
surrounding pixels:

1

N —T+p(FiF) "
Z,‘:1 exp ( o2

(3.12)

Si =

where p(F;, F;) is the matrix cosine similarity between two feature maps F; and F; , and o is a
local weighting parameter.

Yu et al. [265] attempt to simulate top-down influences. Five components of top-down
influences are modeled: structure of object representation for LTM, learning of object represen-
tations, deduction of task-relevant features, estimation of top-down biases, mediation between
bottom-up and top-down models, and perceptual completion. This model builds a dual-coding
object representation for LTM. It consists of local and global codings, characterizing internal
properties and global attributes of an object. Probabilistic Neural Networks (PNNs) are used
for object representation in that they can model probabilistic distribution of an object through
combination of confident values. A dynamically constructive learning algorithm was developed
to train PNNs when an object is attended. Given a task-specific object, this proposed model
recalls the corresponding object representation from PNNs, deduces the task-relevant feature
dimensions and evaluates top-down biases. Bottom-up and top-down biases are mediated to
yield a primitive grouping based saliency map. The most salient primitive grouping is finally put
into the perceptual completion processing module to yield an accurate and complete object
representation for attention.

Mahadevan and Vasconcelos [266] introduced a spatio-temporal saliency algorithm based
on a center-surround, which extends a discriminant formulation of center-surround saliency pre-
viously proposed for static imagery in [93]. This method is inspired by the biological mechanisms
of motion-based perceptual grouping. The combination of discriminant center-surround saliency
with dynamic textures produced spatio-temporal saliency algorithm, applicable to scenes with
highly dynamic backgrounds and moving cameras.

Li et al. [267] proposed a visual saliency model based on conditional entropy for both
image and video. Saliency was defined as the minimum uncertainty of a local region given
its surrounding area (namely the minimum conditional entropy), when perceptional distortion
is considered. They approximated the conditional entropy by the lossy coding length of mul-
tivariate Gaussian data. The final saliency map was accumulated pixel-by-pixel and further
segmented to detect the proto-objects. In [268], they proposed a newer version of this model
by adding a multi-resolution scheme to it.

Avraham and Lindenbaum [269] presented a bottom-up attention mechanism, based on a
validated stochastic model to estimate the probability that an image part is of interest. They
refer to the probability as saliency, and therefore specify the saliency mathematically. The
model quantifies the various intuitive observations, such as increased correspondence likeli-
hood between visually similar regions of the image. The algorithm starts with a pre-attentive
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segmentation and then uses a rough approximation to a graphical model to efficiently reveal
which segments are more likely to be of interest. They prefer the objects belonging to smaller
groups than those which are relatively very different from the rest of the image. Their approach
to the design of the saliency algorithm is to quantify the labels that are target and non-target
candidates in a probabilistic model, which would eventually identify the salience of a candidate
with their likelihood of being a target.

Borji et al. [133] proposed a three-layered approach for interactive object-based atten-
tion inspired by and U-Tree algorithms [270]. Each time the object that is most important
to disambiguate appears, a partially unknown state is attended by the biased bottom-up saliency
model and recognized. Then the appropriate action for the scene is performed.

Based on the principle of the [nfomaX, Wang et al. [271] introduced a computational
model to simulate human saccadic scanpaths on natural images. The model integrates some
factors that drives human attention reflected by eye movements: reference sensory responses,
fovea-periphery resolution discrepancy, and visual working memory. They compute three multi-
band filter response maps for each eye movement which are then combined into multi-band
residual filter response maps. Finally, they compute Residual Perceptual Information (RPI) at
each location, which is a dynamic saliency map varying along with eye movements. The next
fixation is selected as the location with the maximal RP] value.

3.3 Hybrid Methods

Lee and Yu [272] proposed that mutual information among the cortical representations of
the retinal image, the priors constructed from our long-term visual experience, and a dynamic
short-term internal representation constructed from recent saccades, all provide a map for
guiding eye navigations. By directing the eyes to locations of maximum complexity in neuronal
ensemble responses at each step, the automatic saccadic eye movement system greedily collects
information about the external world while modifying the neural representations in the process.
This model is close to the work presented in [253].

Renninger et al. [273] built a model based on the idea that humans fixate at those infor-
mative points in an image which reduce our overall uncertainty about the visual stimulus, and
it is similar to the approach presented in [272]. This model is a sequential information maxi-
mization approach whereby each fixation is aimed at the most informative image location given
the knowledge acquired at each point. A foveated representation is incorporated by reducing
resolution as distance increases from the center. Shape histogram edges are used as features.

Peters et al. [274--277] presented a model of spatial attention that can be applied to
arbitrary static and dynamic image sequences with interactive tasks. The claimed novelty lies
in the combination of these elements and in the fully computational nature of the model. The
bottom-up component computes a saliency map from 12 low-level multi-scale visual features.
The top-down component computes a low-level signature of the entire image, and learns to
associate different classes of signatures with the different gaze patterns recorded from human
subjects performing a task of interest. They measured the ability of this model to predict the
eye movements of people playing contemporary video games. They showed that a point-wise
multiplication of bottom-up saliency with the top-down map learned in this way results in high
prediction performance.

Harelet al. [95] proposed a new visual saliency model, called Graph-Based Visual Saliency.
It consists of two steps: first forming activation maps on certain feature channels, and then
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normalizing them in a way which highlights conspicuity and admits combination with other map.

Oliva et al. [278] and Torralba et al. [249,279] proposed a Bayesian framework for visual
search tasks, where they use biologically inspired linear filters for different orientations and
scales. The filter responses are known to correlate with each other. For example, a vertical
bar in the image will activate an adjusted filter to the vertical bars but will also activate (with
less intensity) an adjusted filter for bars with an inclination of 45 degrees. The joint probability
of a feature vector is estimated using multivariate Gaussian distributions [278] and posteriorly
by multivariate generalized Gaussian distributions [279]. Bottom-up saliency is derived from
their formulation as p(fw where f; represents a global feature that summarizes the probability
density of presence of the target object in the scene, based on analysis of the scene gist.

Torralba et al. [279] present their model of Contextual Guidance, which is a Bayesian
formulation of visual salience. The Contextual Guidance model makes use of global features,
forming a holistic representation of the scene to guide attention to locations in a scene that
might contain the target. Global features are calculated by forming a low-dimensional repre-
sentation of a scene, combining the low-level features in large parts of the image and using
Principal Component Analysis (PCA) to further reduce the dimensionality.

Bruce and Tsotsos [96] define bottom-up saliency based on maximum information sam-
pling. The information in this model is computed based on Shannon's self-information. The
distribution of the features is estimated from a neighborhood of a point, which can be as large
as the entire image. When the vicinity of each point is defined as the entire image of inter-
est, as implemented in [96], the definition of projection becomes identical to the term of the
bottom-up saliency from the work presented in [278,279]. It is noteworthy, however, that the
feature spaces used in the two models are different. They present a model for calculating the
visual saliency constructed on the basis of a theoretical formulation of information. The model
employs features that were learned from natural images using Independent Component Analy-
sis (ICA). These were shown to resemble the receptive fields of neurons in the primary visual
cortex (V1), and their answers have the desirable property of dispersion. Moreover, the features
learned are approximately independent, simplifying the likelihood estimation without making
independence assumptions.

The Bayesian Surprise theory of Itti et al. [88, 280, 281|]] define saliency as a deviation
from what is expected based on a set of internal models of the local visual world. According to
this theory, the organisms form models of their environment and assign probability distributions
over the possible models. With the arrival of new data, the distributions of the possible models
are updated with the Bayes rule and the KU divergence between the prior distributions, where
the posterior distributions is measured. The new data forces the distribution to be altered, the
greater the divergence. These KLU scores of different distributions with respect to the models
are combined to produce a saliency score. Their implementation of this theory leads to an
algorithm that determines the saliency as a kind of deviation of the features present in the
closest neighbors, but extends the concept of neighborhood to the spatio-temporal realm.

Kienzle et al. [282, 283] addressed the bottom-up influence of local image information
on human eye movements. The model consists of a non-parametric bottom-up approach for
learning attention directly from human eye-tracking data. The saliency function is determined
by its maximization of prediction performance on the observed data. A was trained to
determine the saliency using the local intensities. Also this method produces center-surround
operators analogous to receptive fields of neurons in early visual areas (LGN and V1).

Liu et al. [284--286] formulate salient object detection as a problem of image segmen-
tation, where they separate the salient object from the background. In [284], they propose a
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set of features including multi-scale contrast, center-surround histogram and color spatial dis-
tribution to describe a salient object locally, regionally and globally. The Conditional Random
Field (CRA) is learned to effectively combine these features to detect salient objects.

In [285,286], they extended the local, regional and global salient features to the field of
motion, so as to be applied not only to images, but also to videos. They designed a dynamic
programming algorithm to solve a global optimization problem, with a rectangle to represent
each salient object. The salient object sequence detection is defined as an energy minimization
problem (like a binary labeling) using a [CRF framework, while static and dynamic salience,
spatial and temporal coherence, and the global topic model are well defined and integrated to
identify a salient object sequence.

Zhang et al. [{15,210] proposed a model called Saliency Using Natural statistics (SUN),
by considering what the visual system is trying to optimize when directing attention. The re-
sulting model is a Bayesian framework in which bottom-up saliency emerges naturally as the
self-information of visual features, and overall saliency (incorporating top-down information
with bottom-up saliency) emerges as the point-wise mutual information between local image
features and the search target's features when searching for a target. Self-information in this
context, learned from natural images statistics, corresponds to the findings of the new items
that attract attention in visual search [287]. The formula for bottom-up saliency is similar
to the ones in [96, 249, 278, 279], which are all based on the concept of self-information or
a Bayesian formulation. The statistical differences between the current image statistics and
natural ones leads to radically different types of self-information. The motivation for using
self-information with the statistics of the current image is that a foreground object is likely to
have features that are distinct from the features of the background. Since targets are observed
less frequently than background during an organism’s lifetime, rare features are more likely to
indicate targets.

The idea that the salience of an item depends on its deviation from the average statistics
of the image can find its roots in the model of visual search proposed in [207], which represented
a number of motion pop-out phenomena, and can be seen as a generalization of the saliency of
the center-surround-base found in [2].

In [210], the saliency is calculated locally, which means that the model is consistent with
the early visual system neuroanatomy and results in an efficient algorithm, with very few free
parameters. They extend the model in [[15] to temporally dynamic scenes, and characterize the
video statistics around each pixel using a bank of spatio-temporal filters with separable space-
time components. The joint spatio-temporal impulse response of these filters is the product
of a spatial and a temporal impulse response. In [210], the spatial impulse responses are DoG,
which model the properties of neurons in the LGN.

To predict the likelihood of where humans typically focus on a video scene, Pang et
al. [288] proposed a stochastic model of visual attention by introducing a dynamic Bayesian
network to predict where humans typically focus in a video scene.. Their model simulates and
combines the visual saliency response and the cognitive state of a person to estimate the most
probable attended regions [289]. They reported that the are not deterministic and people
may attend to different locations on the same visual input on different occasions.

Garcia-Diaz et al. [211), 290, 291]] introduced an approach to visual saliency that relies
on a contextually adapted representation produced through adaptive whitening of color and
scale features. The proposed approach is based on the classic hierarchical decomposition of
images which are initially separate chromatic components (C/IELab color space). The luminance
channel is decomposed into various orientations and scale representation by means of Gabor
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bank of filters. This approach is inspired by the image representation described in the early
stages of the visual pathway. Then, whitening is imposed to groups of oriented scales for each
whitened chromatic component. This strategy keeps the number of components involved in
whitening limited, overcoming the problems of computational complexity. The decorrelation is
achieved by applying on the multi-scale responses, extracting from them a local measure
of variability. Furthermore, a local mean is performed to obtain a unified and efficient measure
of saliency. As a result, a specifically adapted image representation arises. The resulting image
components have zero mean and unit variance. To obtain a saliency map, they simply compute
point distinctiveness by taking, for each pixel, the squared vector norm in this representation
divided by the sum of the representation across all pixels (Hotelling's 77 statistic [292]).

we generalize our saliency framework to dynamic scenes and develop a simple, efficient,
and online bottom-up saliency algorithm.

Zhang et al. [251] extended the model to dynamic scenes and develop a simple,
efficient, and online bottom-up saliency algorithm. The first step starts by applying a bank of
spatio-temporal filters to each video. These filters are designed to be both efficient and in line
with the HVS. The probability distributions of these spatio-temporal features were learned from
a set of videos from natural environments. Finally, the model calculates features and estimates
the bottom-up saliency for each point as — log p(F = f£,).

Following the same direction as the one presented in [249, 278, 279, 293], they linearly
integrated three components (bottom-up saliency, gist, and object features) for explaining eye
movements in looking for people in a database of about 900 natural scenes.

Judd et al. [97] use a learning approach and train a linear classifier, similarly to one
in [283], directly from human eye tracking data and they also present a new public database.
The classifier trained by these authors uses low, mid and high level features extracted directly
from the images with a resolution of 200 x 200. The low-level biologically plausible features used
were: local energy of the steerable pyramid filters [294], the simple saliency model described
in [207,209], based on subband pyramids, and intensity, orientation and color contrast features
corresponding to the image features calculated in [3]. The mid-level features are due to the
horizon, where human beings naturally look more to the objects. At this feature level, they
introduced the horizontal line detector from mid-level gist features [209]. Finally, the high-
level features used are the Viola and Jones face detector [215,225] and the Felzenszwalb et al.
person detector [293].

Using the database presented in [97, 296] measured the amount of visual information
that is available from blurred images. Moreover, they separated the natural images in easy,
medium and hard based on their complexity using the following informal criterion: each image
was displayed at various resolutions and the authors estimated the lowest resolution in which
the image could be understood. The images perceived as having low resolution were classified
initially and images understood as containing higher resolutions were classified at the end.
Easy images are those which tend to contain a large object or a simple landscape and can be
understood using squared images with only 16 or 32 pixels resolution. The medium images have
multiple objects or are more complex and can be understood using squared images with around
32— 64 pixels. The hard images have many small details or are often abstract and need 64 — 128
pixels of resolution. To reduce the resolution of each image, they used the same method as
in [297]. They applied a binomial low-pass filter to each color channel, and then the filtered
image was downsampled by a factor of two. As color is an important feature, they preserved
the color range of the blurred version of the images. To do this, they scaled the range of each
downsampled image as large as possible within the range of 0 — 1, maintaining the same mean
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values of pixel luminance.

Li et al. [298] presented a probabilistic multi-task learning approach for visual saliency
estimation in video. Here, the problem of visual saliency estimation was modeled by simultane-
ously considering the stimulus-driven and task-related factors in a probabilistic framework. The
stimulus-driven component simulates the low-level processes in using multi-scale wavelet
decomposition and unbiased feature competition, while a task-related component simulates the
high-level processes to bias the competition of the input features. The algorithm learns various
fusion strategies, which are used to integrate the stimulus-driven and task-related components
to obtain the visual saliency, similar to the one presented in [276]. Experiments on two eye-
fixation datasets [299] and one regional saliency dataset [300] show that this model outperforms
seven existing bottom-up approaches presented in [3, 94, 95, 256, 280, 301, 302].

Goferman et al. [303, 304] propose a context-aware saliency that detects regions of the
image representing the scene. The goal is to identify both fixation points and detect the dom-
inant object. In conformity with this setting, they present a detection algorithm that is based
on four observations realized in the psychological literature [221|, 305--307]:

1. Local low-level considerations, such as contrast and color;

2. Global considerations, suppressing features which occur frequently, maintaining the fea-
tures that deviate from the norm;

3. Visual organization rules, indicating that the visual forms may have one or more centers
of gravity depending on how they are organized;

4. High-level factors, such as human faces.

In conformity with the first observation, the areas that have different colors or patterns must
obtain higher saliency values. Moreover, the homogeneous or blurred areas must obtain lower
saliency values. According to the second observation, the features that occur more often should
be removed. For the third observation, the salient pixels are grouped and not spread throughout
the image. In this algorithm, they first define the saliency in a single local-global scale, based
on the principles 1 — 3. Then, they improve the saliency using multiple scales. In the next step,
they modify the saliency to further accommodate the third principle. Finally, observation four
is implemented as post-processing.

Cheng et al. [308] focus on data-driven bottom-up saliency using the detection of the
image contrast, based on the work presented in [309], where they believe that cortical cells
can be hard wired to respond preferentially to stimuli of high contrast in their receptive fields.
They propose a contrast analysis for extracting high-resolution, full-field saliency maps based
on the following observations:

1. A method based on global contrast, that separates a large-scale object from its surround-
ings, is preferred to obtain the local contrast;

2. Global considerations enable the assignment of comparable saliency values to similar im-
age regions, and can uniformly highlight entire objects;

3. The saliency of a region depends mainly on its contrast with neighboring regions;

4. Saliency maps should be rapid and easy to generate, in order to allow the processing of
large collections of files, and facilitate efficient classification of the images.
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They propose the Histogram-based Contrast (HJ) method to measure the saliency. The
HQ assigns pixel-wise saliency values based simply on the color separation from all other image
pixels to produce complete resolution saliency maps. They use a histogram-based approach
for efficient processing, while employing a smoothing procedure to control the quantization
artifacts. As an improvement over HJ maps, they incorporate spatial relations to produce
Region-based Contrast (RG) maps, where they first segment the input image into regions and
then assign saliency values to the segmented regions. The saliency value of a region is calculated
using a global contrast score, measured by contrast and spatial distances from a region to other
regions in the image.

Klein and Frintrop [310] based their model on the structure of cognitive visual attention,
and the saliency calculation is performed in each feature dimension. The method allows a con-
sistent computation of all the feature channels and a well-founded fusion (based on theoretical
information) of these channels into a saliency map.

Riche et al. [311]] proposed to extract multi-scale rarities from YCbCr color space using
multiple Gabor filters.

3.4 Examples of Saliency Detection

In this section, we will present some results obtained by some of the methods described
in this chapter. The assessment was carried out in two databases, which we will describe.

The first database, called Toronto, was presented by [96]. It contains 120 images captured
indoors and outdoors with a resolution of 681 x 511 pixels. For eye tracking, images were
presented randomly to each of 20 persons and between each image a gray mask was presented
during 2s on a 21-inch CRT monitor. The persons were at a distance of 0.75m from the monitor.
Stimuli were color images and the task was free viewing.

The second database is called MIT and was introduced by [97]. Images were collected
from Flicker creative commons and LabelMe datasets. In this database there are 779 landscape
images and 228 portrait images. Images were freely viewed with 1s gray screen between each
and the eye tracking camera was re-calibrated after every 50 images.

Table 3.1: Comparing saliency maps and average execution time of some models in images from Toronto
and MIT databases.

Databases

‘ Toronto ‘ MIT ‘

B
& & |

Mean Time 0.19s

Original

Itti et al. [3]

Torralba et al. [279]

Mean Time 0.20s Mean Time 0.41s
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Table 3.1: Comparing saliency maps and average execution time of some models in images from Toronto
and MIT databases.

‘ Databases ‘

‘ Toronto ‘ MIT ‘

A
o &

A= = .,.'/.‘4‘;' LW " ¢
[ 2ol 2 e | 3 B

Mean Time 0.61s Mean Time 0.60s

b

Original

Harel et al. [95]

Hou and Zhang [94]

Liu et al. [284]

Achanta et al. [91]

Zhang et al. [210]

Achanta et al. [B9]

Bruce and Tsotsos [312]

Judd et al. [97]

Achanta and Siisstrunk [262] . .
Mean Time 4.19s Mean Time 23.81s
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Table 3.1: Comparing saliency maps and average execution time of some models in images from Toronto
and MIT databases.

‘ Databases ‘

‘ Toronto ‘ MIT ‘

bR
& &

Original

Goferman et al. [303]

Mean Time 57.28s Mean Time 49.43s
Hou et al. [313 o
[313] Mean Time 0.02s Mean Time 0.01s

Table presents the saliency maps produced by 13 methods on 3 images from each of
the databases, and the average computational time needed to obtain them.

3.5 Applications

Until now, the attention has concentrated on the concepts of the human visual attention
and present psychological and neurological theories on what is known about the which has
influenced the computational attention models. There was also a description of the general
structure and features of computational models of attention, giving an overview of the state-
of-the art in this area. There are, however, many technological applications of these models
which have been developed over the years and which have further increased interest in attention
modeling. The applications of attention modeling are organized into four categories: image,
object, robotic and video, as shown in table @

The images category was divided into five sub-categories: assembling, compression, qual-
ity evaluation, resolution and target. In the assembling sub-category, we consider methods that
use saliency maps to perform image summarization through collage creation. Collage is a diffi-
cult and time consuming task, since the pieces should be nicely cut and matched [303]. Saliency
maps can also be used in image compression. Here, the compression rate in a region of the im-
age will depend on whether this is a salient region or not. If a region is not salient the applied
compression rate is higher. The use of saliency maps to evaluate the quality of images consists
in finding an automatic algorithm that evaluates the quality of pictures or video as a human ob-
server would do [318]. The image resolution task aims to arbitrarily change image aspect ratios
while preserving visually prominent features. The target sub-category consists in identifying a
target, no matter how many distractors are present.

There are also some applications adapted to work with videos. The difference between a
method that can only work with static images and another that can work with videos is linked to
its computational complexity, because if we wish to analyze all the video frames the method has
to be extremely fast. Besides, the operations that can be performed in a video using saliency

37



Biologically Motivated Keypoint Detection for RGB-D Data

Table 3.2: Applications that use computational models of attention.

Applications References
Category
Assembling [303,314,315]
9 Compression [258,316]
E Quality Evaluation | [317--319]
- Resolution [216,260,320--324]
Target [216,303, 320, 321]
Detection [89,91,218, 250, 255, 260, 262, 284, 285, 293]
ks Recognition [131,138,139,325,326]
38 Segmentation [205, 206, B27--329]
Tracking [97, 266, 330]
v Active Vision [133]
Jg Localization [131,B16, B26]
e Navigation [90,199,B26]
o Compression [203, 258, 331, 332]
é Detection [248]
Summarization [229,234]

maps are very similar to the ones used in the images category.

The division made for the object category is as follows: detection, recognition, segmen-
tation and tracking. The object detection is a very important step in computer vision and it
can be done using saliency maps, as demonstrated by several authors. When referring to the
recognition sub-category, the saliency maps are used as a basis for a recognition system, as
in [326] where landmarks are recognized so that the robot may move to a given location.

The methods presented that focus on segmentation using saliency maps are methods that
give more importance to the edges of objects, making it easier to define the object. The tracking
sub-category, considers problems where there is the need to track the eyes.

The presented applications that involved robots use the saliency maps for robot navigation
and localization.

3.6 Summary

Computational attention has gained a significant popularity in the last decade. Engi-
neers use the discoveries made by psychologists and neurobiologists, explained in chapter f2,
and attempt to reproduce them in computational models, so that they can reduce the process-
ing time in some applications [42--44]. One of the contributors to the increase in popularity
was the improvement in computational resources. Another contribution was the performance
gains obtained from the inclusion of visual attention (or saliency detection) modules in object
recognition systems [[131,1138,[139].

Most of the research presented, has been focused on the bottom-up component of vi-
sual attention. While previous efforts are appreciated, the field of visual attention still lacks
computational principles for task-driven attention. A promising direction for future research
is the development of models that take into account time varying task demands, especially
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in interactive, complex, and dynamic environments. In addition, there is not yet a principled
computational understanding of visual attention. The solution is beyond the scope of a single
area. In order to obtain a solution it is necessary to have the cooperation of the several areas,
from the machine learning community, computer vision and also the biological areas as well as
neurology and psychology.
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Chapter 4

Keypoint Detectors, Descriptors and Evaluation

When processing image or 3D point cloud data, features must be extracted from a small set
of points, usually called keypoints. This is done to avoid the computational complexity required
to extract features from all points. There are many keypoint detectors and this suggests the need
of a comparative evaluation. When the keypoint detectors are applied to objects, the aim is to
detect a few salient structures which can be used, instead of the whole object, for applications
like object registration, retrieval and data simplification. In this chapter, the description of
some 2D and 3D keypoint detectors (focusing more on 3D), and also 3D descriptors is made.
Finally, an evaluation of 3D keypoint detectors, available in PCL, is made with real objects
on 3D point clouds. The invariance of the 3D keypoint detectors is evaluated according to
rotations, scale changes and translations. The evaluation criteria used are the absolute and the
relative repeatability rate. Using these criteria, the robustness of the detectors is evaluated
with respect to changes of point-of-view.

4.1 Keypoint Detectors

4.1.1 Harris 3D

The Harris method [333] is a corner and edge based method and these types of methods
are characterized by their high-intensity changes. These features can be used in shape and
motion analysis and they can be detected directly from the grayscale images. For the 3D case,
the adjustment made in for the Harris3D detector replaces the image gradients by surface
normals, where the covariance matrix Cov will be calculated. The keypoints response measured
at each pixel coordinate (x, y, z) is then defined by

r(x,y,z)=det(Cov(x,y,z))—k (trace(Cov(x, y, 2))?%, (4.1)

where k is a positive real valued parameter and a thresholding process is used to suppress weak
keypoints around the stronger ones. The keypoint responses are positive in the corner region,
negative in the edge regions, and small in flat regions [333]. If the contrast of the point cloud
increases, the magnitude of the keypoint responses also increase. The flat region is specified
by the trace falling below some selected threshold.

In the are available two variants of the Harris3D keypoint detector: these are called
Lowe [29] and Noble [100]. The differences between them are the functions that define the
keypoints response (equation }.1)). Thus, for the Lowe method the keypoints response is given
by:

det(Cov(x,y,z))
trace(Cov(x, y, z))?"

rix,y,z) = (4.2)
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The keypoints response for Noble method is given by:

_det(Cov(x, y,2))
~ trace(Cov(x,y, z))’

r(x,y, z) (4.3)

In the case of the Lowe detector, the differences between the values of the keypoint
responses in the corner regions, edge regions and planar regions tend to be closer to zero com-
pared to those of the Noble detector. This means that there are more regions considered flat.

4.1.2 Kanade-Lucas-Tomasi

The Kanade-Lucas-Tomasi (KLT)) detector [98] was proposed a few years after the Harris
detector. In the 3D version presented in the PCL, this keypoint detector has the same basis as
the Harris3D detector. The main differences are: the covariance matrix is calculated using the
intensity value instead of the surface normals; and for the keypoints response they used the
first eigenvalue of the covariance matrix. Finally, the suppression process is similar to the one
used in the Harris3D method.

4.1.3 Curvature

The curvature method in the calculates the principal surface curvatures on each point
using the surface normals. The keypoints response used to suppress weak keypoints, around the
stronger ones is the same as in the Harris3D.

4.1.4 Smallest Univalue Segment Assimilating Nucleus

The Smallest Univalue Segment Assimilating Nucleus (SUSAN) corner detector was intro-
duced in [101]. is a generic low-level image processing technique which, apart from
corner detection, has also been used for edge detection and noise suppression. A geometric
threshold is applied, which is simply a precise restatement of the principle: if the nu-
cleus (center pixel of a circular region) lies on a corner then the Univalue Segment Assimilating
Nucleus (USAN) area will be less than half of its possible value.

is a measure of how similar a center pixel's intensity is to those in its neighborhood.
A gray value similarity function s(g1, g>) measures the similarity between the gray values g, and
g>. Summing over this kind of function for a set of pixels is equivalent to counting the number
of similar pixels. It can be used to adjust the detector's sensitivity to the image's global contrast
level. The smoothness plays of s(g1, g2) an important role in noise suppression [101], since it
only depends on the difference between g, and g,. To make the method more robust, points
closer in value to the nucleus receive a higher weighting. Moreover, a set of rules presented
in [334] are used to suppress qualitatively "bad" keypoints. Local minima of the SUSANs are then
selected from the remaining candidates.

4.1.5 Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT]) keypoint detector was proposed in [8]. This
method shares similar properties with neurons in inferior temporal cortex that are used for
object recognition in primate vision. In [102], the original algorithm for 3D data is presented,
which uses a 3D version of the Hessian to select the interest points, which will be called SIFT3D.
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The image / is convolved with a number of Gaussian filters whose standard deviations
differ by a fixed scale factor. That is, 0,1 = ko; where k is a constant scalar that should be set
to v/2. The convolutions yield smoothed images, denoted by

Gix,y,0p),i=1,...,n. (4.4)

The adjacent smoothed images are then subtracted by

D(x,y, ) = G(x, y, 9j41) — Glx,y, ). (4.5)

These two steps are repeated, yielding a number of DoGs over the scale space. Once DoGs have
been obtained, keypoints are identified as local minima/maxima of the DoGs across scales.
This is done by comparing each point in the DoGs to its eight neighbors at the same scale and
nine corresponding neighborhood points in each of the neighborhood scales. The dominant
orientations are assigned to localized keypoints.

4.1.6 Speeded-Up Robust Features

Speeded-Up Robust Features (SURR) [[10] is partly inspired by the descriptor. SURA
is based on sums of 2D Haar wavelet responses and makes an efficient use of integral images.
It uses an integer approximation to the determinant of Hessian blob detector, which can be
computed extremely quickly with an integral image. For features, it uses the sum of the Haar
wavelet response around the point of interest.

4.1.7 Intrinsic Shape Signatures 3D

Intrinsic Shape Signatures 3D (1SS3D) [{103] is a method relying on region-wise quality
measurements. This method uses the magnitude of the smallest eigenvalue (to include only
points with large variations along each principal direction) and the ratio between two successive
eigenvalues (to exclude points having similar spread along principal directions).

The S; = {F:, f;} at a point p; consists of two components: 1 -- The intrinsic ref-
erence frame F; = {p;, {e}, e/, e?}} where p; is the origin, and {e}, e/, 7} is the set of basis
vectors. The intrinsic frame is a characteristic of the local object shape and independent of
viewpoint. Therefore, the view independent shape features can be computed using the frame
as a reference. However, its basis {e}, e/, 7}, which specifies the vectors of its axes in the
sensor coordinate system, are view dependent and directly encode the pose transform between
the sensor coordinate system and the local object-oriented intrinsic frame, thus enabling fast
pose calculation and view registration. 2 -- The 3D shape feature vector f; = (fio, fn, ..., fik—1),
which is a view independent representation of the local/semi-local 3D shape. These features
can be compared directly to facilitate the matching of surface patches or local shapes from

different objects.

4.1.8 Biologically Inspired keyPoints

Biologically Inspired keyPoints (BIMPF) [7,335] is a cortical keypoint detector for extracting
meaningful points from images, solving the computational problem of [[104]. The keypoints are
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extracted by a series of filtering operations: simple cells, complex cells, end-stopped cells and
inhibition cells. Simple cells are modeled using complex Gabor filters with phases in quadrature
are given by:

%+ yip? 27%
Gro0.6.0(X, y) = exp (_20‘;/‘/) exp (z //{ ) , (4.6)

where x = xcos(0) + ysin(6), § = ycos(6) — xsin(0), with o the receptive field size, 6 the
filter orientation, A is the wavelength and y = 0.5. Simple cell responses are obtained by
convolving the image with the complex Gabor filter: R, = /% g,. Complex cells are the
modulus of simple cell responses C, o = |R)¢|. Remaining kernels are sums of Dirac functions
(0). If ds =0.6Asin(6) and dc = 0.6\ cos(6), double-stopped cell kernels are defined by

(x—=2ds, y+2dc)+0(x+2ds, y—2dc)
2

KDy = 5(x, y)— 2 (4.7)

and the final keypoints is given by

P 27
KP =Y |CuokPol™=> 1Ciok]p+Croko—Crolt, (4.8)
6=0 6=0

where 6+ is orthogonal to 0, |.|* represents the suppression of negatives values. k,{’g is the
tangential inhibition kernel and k%), the radial.

klh=—208(x,y)+d(x+dc, y+ds)+d(x—dc, y—ds) (4.9)
kh=0(x + dc/2,y + ds[2)+8(x — dc/2,y — ds/2). (4.10)

4.2 3D Descriptors

4.2.1 3D Shape Context

The 3D Shape Context (BDSJ) descriptor [105] is the 3D version of the Shape Context
descriptor [[106]. It is based on a spherical grid centered on each keypoint. The surface normal
estimation is used to orient the grid to the north pole. The grid is defined by bins along the
azimuth, elevation and radial dimensions. The bins along the azimuth and elevation dimensions
are equally spaced, on the other hand, the radial dimension is logarithmically spaced. The final
representation of the descriptor is a 3D histogram, where in each bin contains a weighted sum
of the number of points falling on the grid region. These weights are inversely proportional to
the bin volume and the local point density.

4.2.2 Point Feature Histograms

Descriptors such as Point Feature Histograms (PFH) [{107], Fast Point Feature Histograms
(FPFH) [108,109], Viewpoint Feature Histogram (VFH) [110], Clustered Viewpoint Feature His-
togram (CVFH) [f111] and Oriented, Unique and Repeatable Clustered Viewpoint Feature His-
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togram (OUR-CVFH) [{112] can be categorized as geometry-based descriptors [336]. These type
of descriptors are represented by the surface normals, curvature estimates and distances, be-
tween point pairs. The point pairs are generated by the point p and the points in its local
neighborhood g. And they are represented with the angles a, ¢ and 6, which are computed
based on a reference frame (u, v, w). The vector u is the surface normal at p, (n,), v is equal
to u x ﬁ and w is the cross product of these two vectors. With this reference frame, the
angles can be computed using: a =v' - n,, p=u'- ||I/73:¢7H2

PFHRGB is an version of in which is included information regarding the color of the
object. This variant includes three more histograms, one for the ratio between each color
channel of p and the same channel of g.

and 0 = arctan(w' - n,, u’ - n,).

4.2.3 Fast Point Feature Histograms

The descriptor [1108,109] is a simplification of the PFH. In this case, the normal
orientation angles are not computed for all point pairs of p and its neighborhood. The angles are
computed only from its k-nearest neighbors. The estimated values are stored into a histogram,
since this represents the divisions of the feature space.

4.2.4 Viewpoint Feature Histogram

In [f10], they proposed an extension of FPFH descriptor, called VFH. The main differences
between this and the other two descriptors above are: the surface normal is centered on the
centroid ¢ and not in the point p (n,); instead of computing the angles using all (PFH) or k-
nearest neighbors (FPFH), it uses only the centroid of the input cloud; adds a viewpoint
variance using the angle 8 = arccos( 7% ), wich represents the central viewpoint vector direction

llcTl
translated to each normal; and it only produces one descriptor for the input cloud.

4.2.5 Clustered Viewpoint Feature Histogram

The [111] is an extension to NFH. The idea behind this descriptor is that objects
which contains stable regions S. That enable them to be divided into in a certain number of
disjoint regions. Stable regions are obtained by first removing the points with high curvature
and then applying a smooth region growing algorithm. For each stable regions k, they find the
centroid ¢, and its normal (n.,) to compute a local reference frame. It is similar to the
descriptor, but instead of using the centroid ant its normal of the input cloud, it is only from
the stable region. The final descriptor is given by the concatenated local reference frames
(u, v, w, SDC, B), which is a histogram. The Shape Distribution Component (5DJ) is equal to

2
spe= =PI g
max{(c — px)?}

S| (4.11)

4.2.6 Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram

The [112] is a semi-global descriptor based on Semi-Global Unique Reference
Frames (SGURF) and CVFH [1111]], which exploits the orientation provided by the reference frame
to encode the geometrical properties of an object surface. For a specific surface S, it computes
N triplets (c;, n;, RF;) obtained from the smooth clustering and the computation.
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aims to solve some limitations of by defining multiple repeatable coordinate systems on
S. This allows to increase the spatial descriptiveness of the descriptor and obtain the 6DoF from
the alignment of the reference frames.

For the surface description, it uses an extension of in the following way: first, ¢;
and n; are used to compute the first three components of and the viewpoint component
as presented in [111]. The fourth component of is completely removed and instead the
surface S is spatially described by means of the computed RF;. To perform this, S is rotated
and translated, so that RF; is aligned with the x, y, z axes of the original coordinate system of S
and centered in ¢;. To take in account the perturbations on RF;, an interpolation is performed
by associating to each point p, eight weights. The weights are computed by placing three 1-
dimensional Gaussian functions over each axis centered at c¢;, which are combined by means of
weight multiplication. Finally, the weights associated with p, are added to 8 histograms, its
index in each histogram being selected as 7 where R is the maximum distance between any
point in S and ¢;.

4.2.7 Point Pair Feature

The Point Pair Feature (PPH) descriptor [113] assumes that both the scene and the model
are represented as a finite set of oriented points, where a normal is associated with each point.
It describes the relative position and orientation of two oriented points which is similar to the
surflet-pair feature from [[108,337]. If you have two points p; and p, and their normals n; and
n,, the PPF is given by

PPF(p1, p2) = (d2, £(n1, d), Z(n2, d), Z(n1, n2)), (4.12)

where Z(a, b) € [0, 7] represents the angle between o and b and d = p, — p1.

The model is represented by a set of PPF's, where similar feature vectors being grouped
together. This is computed for all the pair points. The distances are sampled in d ;s steps and
the angles in dungie = 27/nangie Steps and the vectors with the same discrete representation
are grouped.

An object model descriptor M can be mapped from the sampled space to the model
space S. The four dimensional PPF defined at equation are mapped to set A of all pairs
(m;, m;) € M? that define an equal feature vector.

The final local coordinates use a voting scheme, this is done in order to maximize the
number of scene points that lie on the model, allowing the recovery of the global object pose.
The similarities between their rotations and translations are used to obtain the pose through
the voting system.

In PCL, there is also a color version, called PPFRGB. In this version, three new ratios are
added, one for each color channel.

4.2.8 Signature of Histograms of OrienTations

The Signature of Histograms of OrienTations (SHOT]) descriptor [{114] is based on a sig-
nature histograms representing topological features, that make it invariant to translation and
rotation. For a given keypoint, it computes a repeatable local reference frame using the eigen-
value decomposition around it. In order to incorporate geometric information of point locations
in a spherical grid. For each spherical grid bin, a a one-dimensional histogram is obtained.
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This histogram is constructed by summing point counts of the angle between the normal of the
keypoint and the normal of each point belonging to the spherical grid. Finally, the descriptor
override all these histograms according to the local reference frame. It uses 9 values to encode
the reference frame, and 11 shape bins and 32 divisions of the spherical grid, which gives an
additional 352 values.

In [115], they propose two variants: one is a color version (SHOTCOLOR), where use the
CIELab color space as color information; the second one (SHOTLRF), they encode only the local
reference frame information, discarding the shape bins and spherical information (resulting in
a 9 values to describe the local reference frame).

4.2.9 Unique Shape Context

An upgrade of the descriptor [105] is proposed in [116], called Unique Shape Con-
text (USC). The authors reported that one of the problems found in 3DSC is to avoid multiple
descriptions for the same keypoint, based on the need to obtain as many versions of the de-
scriptor as the number of azimuth bins. It can cause a possible ambiguity during the successive
matching and classification process. To resolve that, they proposed to define only a local ref-
erence frame (as defined in [114]) for each keypoint, such that spherical grid associated to a
descriptor be directed exclusively by the two main directions in relation to the normal plane.
The remaining process for obtaining descriptor still the same as the BDSQ.

4.2.10 Ensemble of Shape Functions

In [117], they introduced the Ensemble of Shape Functions (ESH) which is a shape function
describing feature properties. This is done using the three shape functions presented in [118],
that are the angle, the point distance, and the area. To compute this, they use three points
randomly selected, where: two of them are used to calculate the distance; the angle is defined
by two lines created from all of them; and area of the triangle formed between them. An
approximation (voxel grid) of the real surface is used to separate the shape functions into more
descriptive histograms. These histograms will represent the point distances, angles, areas and
(on, off or both) surface

4.2.11 Point Curvature Estimation

The Principal Curvatures Estimation (PCH) descriptor calculates the directions and mag-
nitudes of principal surface curvatures (obtained using the cloud normals.) on each keypoint,
eigenvectors and eigenvalues respectively. For each keypoint, it will produce a descriptor with
5 values. Three values are the principal curvature, which is the eigenvector with the largest
eigenvalue and the other two values are the largest and smallest eigenvalues.

4.2.12 Descriptors Characteristics

Table presents some features of the descriptors and is based on the one presented
in [22]. The second column contains the number of points generated by each descriptor given
an input point cloud with n points In this work the input cloud will be only the keypoints points.
The third column shows the length of each point. The fourth column indicates if the descrip-
tor requires the calculation of the surface normals at each point. The column 5 shows if the
method is a global or a local descriptor. Global descriptors require the notion of the complete
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Table 4.1: Features and statistics of the evaluated descriptors in this work. n = number of points in input
cloud; p = Number of Azimuth bins; m = Number of stable regions; Y = Yes; N = No.

Descriptor N. Points  Point Size Normals Local/Global Category

3DSC nxp 1980 + 9 Y Local Spherical + Shape
CVFH m<n 308 Y Global Geometry + Shape
ESF 1 640 N Global Shape

FPFH n 33 Y Local Geometry
OUR-CVFH 1 308 Y Global Geometry + Shape
PCE n 5 Y Local Shape

PFH n 125 Y Local Geometry
PFHRGB n 250 Y Global Geometry

PPF n 5 Y Global Geometry
PPFRGB n 8 Y Global Geometry
SHOT n 352 +9 Y Local Geometric + Spherical
SHOTCOLOR n 1344 + 9 Y Local Geometric + Spherical
SHOTLRF n 9 N Local Geometric + Spherical
usc n 1980 + 9 N Local Spherical + Shape
VFH 1 308 Y Global Geometry

object while local descriptors are computed locally around each keypoint and work without that
assumption. The sixth column indicates if the descriptor is based on the geometry or shape of
the object, and if the analysis of a point is done using a sphere.

4.3 Dataset

The large RGB-D Object Datasetll [21] will be used to evaluate the 2D and 3D keypoint
detectors and 3D descriptors. This dataset is a hierarchical multi-view object dataset collected

"The dataset is publicly available at http://www.cs.washington.edu/rgbd-dataset.

Figure 4.1: Examples of some objects of the RGB-D Object Dataset.
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using an RGB-D camera and contains a total of 207621 segmented clouds. The dataset contains
300 physically distinct objects taken on a turntable from 4 different camera poses and the
objects are organized into 51 categories. Examples of some objects are shown in figure §.1.
It's possible to see that there are some errors in the point clouds, due to segmentation errors
and sometimes depth sensor noise (some materials do not reflect the infrared pattern used to
obtain depth information as well). The chosen objects are commonly found in home and office
environments, where personal robots are expected to operate.

4.4 Evaluation of 3D keypoint Detectors

This section is motivated by the need to quantitatively compare different keypoint detec-
tor approaches, in a common and well established experimentally framework, given the large
number of available keypoint detectors. Inspired by the work on 2D features [[17,18] and 3D [19],
and by a similar work on descriptor evaluation [22], a comparison of several 3D keypoint detec-
tors is made in this work. In relation to the work of [17,19], the novelty is that it used a real
database instead of an artificial, the large number of 3D point clouds and different keypoint
detectors. The benefit of using real 3D point clouds is that it reflects what happens in real life,
such as, with robot vision. These never "see" a perfect or complete object, like the ones present
by artificial objects.

The keypoint detectors evaluation pipeline used in this section is presented in figure
K.2. To evaluate the invariance of keypoint detection methods, the keypoints are extracted
directly from the original cloud. Moreover, the transformation is applied in the original 3D point
cloud before extracting another set of keypoints. Getting these keypoints from the transformed
cloud, the inverse transformation is applied, so that it is possible to compare these with the
keypoints extracted from the original cloud. If a particular method is invariant to the applied
transformation, the keypoints extracted directly from the original cloud should correspond to
the keypoints extracted from the cloud where the transformation was applied.

Keypoint
Detector (KI)

Keypoints
Input Cloud (SI) Correspondence

(RKhI)
| ; Transformation Keypoint
(Mh) Detector

Figure 4.2: Keypoint detectors evaluation pipeline used in this section.

Keypoints Inverse
Transformation (Kh)

4.4.1 Keypoints Correspondence

The correspondence between the keypoints extracted directly from the original cloud and
the ones extracted from the transformed cloud is done using the 3D point-line distance [338].
A line in three dimensions can be specified by two points p1 = (x1, y1,z1) and p> = (x2, y2, 22)
lying on it, then a vector line is produced. The squared distance between a point on the line
with parameter ¢ and a point py = (xo, yo. z0) is therefore
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d* =[(x1 — x0) + (x2 = x)tF +[(y1 — yo) + (y2 — y1)tP + [(z1 — 20) + (22 — z)t]". (4.13)

To minimize the distance, set d(d?)/dt = 0 and solve for t to obtain

(p1 = po) - (p2 — p1) (4.14)

t=— ,
lp2 = pal?

where - denotes the dot product. The minimum distance can then be found by plugging t back
into equation H4.13. Using the vector quadruple product ((A x B)? = A2B% — (A - B)?) and taking
the square root results, is obtained:

o = ltpo=p1) x (o — p2)|
lp2 — pil

. (4.15)

where x denotes the cross product. Here, the numerator is simply twice the area of the triangle
formed by points pg, p1, and p,, and the denominator is the length of one of the bases of the
triangle.

4.4.2 Repeatability Measures

The most important feature of a keypoint detector is its repeatability. This feature takes
into account the capacity of the detector to find the same set of keypoints in different instances
of a particular model. The differences may be due to noise, view-point change, occlusion or by
a combination of the above.

The repeatability measure used in this section is based on the measure used in [[17] for 2D
keypoints and in [[19] for 3D keypoints. A keypoint extracted from the model M, k transformed
according to the rotation, translation or scale change, (Ru, tn), is said to be repeatable if the
distance d (given by the equation §.15) from its nearest neighbor, /<{, in the set of keypoints
extracted from the scene S; is less than a threshold ¢, d < €.

The overall repeatability of a detector both in relative and absolute terms is evaluated.
Given the set RKj, of repeatable keypoints for an experiment involving the model-scene pair
(My,S;), the absolute repeatability is defined as

I'aps = |R/</7[| (416)
and the relative repeatability is given by

po |R K
|Knt|

(4.17)

The set K}, is the set of all the keypoints extracted on the model M, that are not occluded in
the scene S, (see figure }.3). This set is estimated by aligning the keypoints extracted on M,
according to the rotation, translation and scale and then checking for the presence of keypoints
in S; in a small neighborhood of the transformed keypoints. If at least a keypoint is present in
the scene in such a neighborhood, the keypoint is added to Kj,.
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Figure 4.3: Graphical representation of sets of keypoints.

4.4.3 Results and Discussion

In this section, the invariance of the these methods are evaluated with respect to rotation,
translation and scale changes. For this, the rotation is varied according to the three axes (X, Y
and Z). The rotations applied ranged from 5° to 45°, with 10° step. The translation is performed
simultaneously in the three axes and the image displacement applied on each axis is obtained
randomly. Finally, the scale changes are applied in a random way (between ]1x,5x]).

In table 4.2 presents some results about each keypoint detector applied to the original
clouds. The percentage of clouds where the keypoint detectors successfully extracted (more
than one keypoint) is presented in column 2. In the column 3, it appears the mean number of
keypoints extracted by cloud. And finally, the mean computation time (in seconds) spent by
each method to extract the keypoints is presented. These times were obtained on a computer
with Intel®Core™i7-980X Extreme Edition 3.33GHz with 24 GB of RAM memory.

To make a fair comparison between the detectors, all steps in the pipeline (see figure
K.2)) are equal. Figures .4, .5 and .6 show the results of the evaluation of the different meth-
ods with various applied transformations. The threshold distances (&) analyzed vary between
[0,2] cm, with small jumps in a total of 33 equally spaced distances calculated. As presented in
section [.1, the methods have a relatively large set of parameters to be adjusted: the values
used were the ones set by default in PCL.

Regarding the relative repeatability (shown in figures §.4, #.6(a) and }.6(c)) the methods
presented have a fairly good performance in general. In relation to the rotation (see figure §.4),

Table 4.2: Statistics about each keypoint detector. These values come from processing the original clouds.

. . Mean of
Keypoint | % Keypoint Mean
extracted .
detectors clouds ) time (s)
keypoints
Harris3D 99.99 85.63 1.05
SIFT3D 99.68 87.46 9.54
ISS3D 97.97 86.24 1.07
SUSAN 86.51 242.38 1.64
Lowe 99.99 85.12 1.02
KLT 100.00 99.16 1.03
Curvature 99.96 119.36 0.70
Noble 99.99 85.12 1.04
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Figure 4.4: Rotation results represented by the relative repeatability measure (best viewed in color). The
presented neighborhood radius is in meters.

increasing the rotation angle of the methods tends to worsen the results. Ideally, the method
results should not change independently of the transformations applied. Regarding the applied
rotation, the method ISS3D is the one that provides the best results. In this transformation
(rotation), the biggest difference that appears between the various methods is in the 5 degrees
rotation. In this case, the method ISS3D achieves almost total correspondence keypoints with a
distance between them of 0.25 cm. Whereas for example the SIFT3D only achieves this perfor-
mance for keypoints at a distance of 1 ¢m. In both the scaling and translation (shown in figures
#.6(a) and 4.6(c)), the methods exhibit very similar results to those obtained for small rotations
(5° rotation in figure |.4(a)) with the exception of the SUSAN method, that has a relatively
higher invariance to scale changes.

Figures 4.5, #.6(b) and §.6(d) show the absolute repeatability, that present the number
of keypoints obtained by the methods. With these results, it is clear to see that the method
that has higher absolute repeatability (SUSAN) is not the one that shows the best performance
in terms of relative repeatability. In terms of the absolute repeatability, the ISS3D and SIFT3D
have better results than the method regarding the invariance transformations evaluated
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Figure 4.5: Rotation results represented by the absolute repeatability measure (best viewed in color). The
presented neighborhood radius is in meters.

in this work.

4.5 Summary

This chapter was focused on the available keypoint detectors on the and Open Source
Computer Vision (OpenCM) library, explaining how they work, and made a comparative evalua-
tion on public available data with real 3D objects. The description of the 3D keypoint detectors
and the repeatability evaluation of these methods was published in [25, 26].

The experimental comparison proposed in this work has outlined aspects of state-of-the-
art methods for 3D keypoint detectors. This work allowed us to evaluate the best performance
in terms of various transformations (rotation, scaling and translation).

The novelty of this work compared with the work of [17] and [[19]: a real database is used
instead of an artificial, the large number of point clouds and different keypoint detectors. The
benefit of using a real database is that objects have "occlusion”. This type of "occlusion™ is made
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Figure 4.6: Relative and absolute repeatability measures for the scale change and translation clouds (best
viewed in color). The relative repeatability is presented in figures @ and , and the absolute repeata-
bility in figures [b) and [d]. The presented neighborhood radius is in meters.

by some kind of failure in the infrared sensor of the camera or from the segmentation method.
In artificial objects this does not happen, so the keypoint methods may have better results, but
the experiments reflect what can happen in real life, such as, with robot vision. Overall, SIFT3D
and ISS3D yielded the best scores in terms of repeatability and ISS3D demonstrated to be the
more invariant.
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Chapter 5

Retinal Color Extension for a 2D Keypoint Detector

Most object recognition algorithms use a large number of descriptors extracted in a dense
grid, so they have a very high computational cost, preventing real-time processing. The use of
keypoint detectors allows the reduction of the processing time and the amount of redundancy
in the data. Local descriptors extracted from images have been extensively reported in the
computer vision literature. In this chapter, a keypoint detector inspired by the behavior of
the early visual system is presented. The method is a color extension of the BIMP keypoint
detector, where includes both color and intensity channels of an image. The color information
is included in a biological plausible way and reproduces the color information in the retina.
Multi-scale image features are combined into a single keypoints map. The detector is compared
against state-of-the-art detectors and is particularly well-suited for tasks such as category and
object recognition. The evaluation gave the best pair keypoint detector/descriptor on a RGB-D
object dataset. Using this keypoint detector and the SHOTCOLOR descriptor a good category
recognition rate is obtained and for object recognition it is with the PFHRGB descriptor that the
best results are obtained.

5.1 Proposed 2D Keypoint Detector

Biological Motivated Multi-Scale Keypoint Detector (BMMSKD) is a color information exten-
sion of BIMA. The way in which the color information is added is based on a neural architecture
of the primate visual system [3,119]. Figure presents the block diagram of the keypoint
detector.

For a given color image, three images from the RGB channels are created, which are:
RG, BY and grayscale image / (shown in the left column of the figure 5.2).

The r, g, and b channels are normalized by / in order to decouple hue from intensity.
However, because hue variations are not perceivable at very low luminance (and hence are not
salient), normalization is only applied at the locations where / is larger than 1/10 of its maximum

[ 1 [ BmmP
—>L RG Image J—b Method
’ [ ] [ BIMP ] Keypoints .
2D Image —>L BY Image J—bk Method | Map Fusion
I Grayscale BIMP
Image Method

Figure 5.1: Block diagram of the proposed 2D keypoint detector method. Our method receives an image
directly from the camera and generates the three new images (RG, BY and /). In each of these images the
keypoint detector is applied and the result of the three detections is fused. See the text for details.
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Figure 5.2: Our keypoint detection method. The first column shows the original image on the top and the
keypoint fusion on the bottom. The second, third and fourth columns contain the RG, BY and gray color
channels (top) and the respective keypoint detection on the bottom.

over the entire image (other locations yield zero r, g, and b). Four broadly-tuned color channels
are created: R for red channel, G for green, B for blue and Y for yellow:

R = w (5.1)
2
G=9=r+b 59
2
B_b_g+g)md(5m
_r+g |r—g|
y=122 029 5.4

Accordingly, maps

RG=R—-G (5.5)

are created in the model to represent the red/green opponency and

BY=B-Y (5.6)

for blue/yellow opponency (negative values are set to zero). For each color channel RG, BY
and /, the keypoint detector is applied and the keypoint locations are fused.

Given the application of the method on each channel, three sets of keypoints k¢,
kgy and k; are obtained, respectively (shown in the right column of the second to fouth rows of
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figure b.2). With these three sets, a keypoint map K, given by

Ky = krg U kgy U k; (57)

is created. A location is considered a keypoint, if there exists another color channel, in its
neighborhood, which indicates that there exists one keypoint in the region. This is:

k€ Ky: #K (k) > 1, (5.8)

m

where k; is a keypoint location, r the neighborhood radius and K, (k;) is a sub-set of K}, centered
in the point k; and with radius r. An example of the fusion result is presented in the bottom of
the first column in figure 5.2.

5.2 Object Recognition Pipeline

In this section, the pipeline used in this work is presented, shown in figure b.3. Each
block will be explained in the following subsections.

Location where

the descriptor will Object
be extracted Database
i
! -
Segmented 2D o | 2D Keypoint | o | 3D Descriptor g MEalztuarZC:n d o | Recognition
Input Camera Image Object "| Extraction "| Extraction o . o Result
and Matching
Segmentation A
Process Segmented 3D
Object Cloud

Figure 5.3: Block diagram of the 3D recognition pipeline.

5.2.1 Segmented Objects and Object Database

The input camera and segmentation process is simulated by the large RGB-D Object
Dataset [21]. A set of 5 images/point clouds of each physically distinct object, using a total
of 1500 from each of them.

Using the 1500 images and point clouds selected, the observations are given by the
Leave-One-Out Cross-Validation (LOOCM) method [339]. As the name suggests, involves
using a single observation from the original sample as the validation data, and the remaining
observations as the training data. This is repeated such that each observation in the sample is
used once as the validation data. This is the same as a K-fold cross-validation with K being
equal to the number of observations in the original sampling. With 1500 images/point clouds
and method is possible to perform more than 2200000 comparisons for each pair keypoint
detector/descriptor. A total of 60 pairs (4 keypoint detectors x 15 descriptors) are evaluated.
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5.2.2 2D Keypoint Detectors

The 2D image of the segmented object, present in the database, will feed the keypoint
extraction process, which is used to reduce the computational cost of the recognition system.
The keypoints implementation used is done in library [B40]. Figure 5.4 is an example
of the keypoint extraction by the four methods on an image of the used dataset. In table 5.1,
the average number of keypoints, mean computation time (in seconds) spent by each method
to extract the keypoints and the file size (in KiloBytes) is presented. These times were obtained
on a computer with Intel®Core™i7-980X Extreme Edition 3.33GHz with 24 GB of RAM memory.

5.2.3 3D Descriptors

The descriptors are extracted at the locations given by the keypoint detector obtained
from the 2D images, but the processing of descriptors is done in point clouds. The point clouds
have the 3D information of the segmented object, which is composed by: color (in the RGB color
space) and depth information. In table 5.2 are presented some statistics about the extracted
descriptors using the keypoint detectors (like in table 5.1)).

5.2.4 Distance Measure and Matching

One of the stages in recognition is the correspondence between a input descriptors and
a known object cloud (stored in the database). The correspondence is typically done using
a distance function between the sets of descriptors. In [23], multiple distance functions are
studied. In this work, the distance used is defined by

Table 5.1: Keypoints statistics for 2D keypoint detectors. The number of points, time in seconds (s) and
size in kilobytes (KB) presented are related to each cloud in the processing of the test set.

Keypoint Number of Points Time (s) Size (KB)
Detectors Mean4Std Median Mean+Std  Median Mean4Std Median
BMMSKD 142.03+141.00 92.00 10.65+1.61 10.45 6.55+6.22 4.36
BIMP [7] 56.05+53.07 37.00 3.93+0.90 3.82 2.69+2.35 1.83
SIFT [8] 46.83+63.02 24.00 0.26+0.07 0.23 2.27+2.78 1.27
SURF [[0] 47.77+60.06 24.00 0.28+0.07 0.28 2.324+2.67 1.28
Average 73.26+95.78 41.00 3.79+4.34 1.52 3.46+4.24 2.05
Original 5740.06+-6851.42  3205.00 316.86+375.73 177.23

(a) BMMSKD

(c) SIFT (d) SURF

Figure 5.4: Example of the keypoints extracted by the four methods in an image.
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Table 5.2: Descriptors statistics (for more details see caption of table B.1)).

. Time (s) Size (KB)

Descriptor

Mean=Std Median Mean=Std Median
3DSC 37.64+97.19 6.25 342.94+459.56  189.14
CVFH 0.024-0.02 0.01 0.77+0.12 0.75
ESF 0.18+0.06 0.17 7.33+0.54 7.46
FPFH 0.51+0.66 0.28 16.10+21.06 9.08
OUR-CVFH 0.0140.01 0.01 0.754+0.00 0.75
PCE 0.024-0.02 0.01 4.48+5.55 2.63
PFH 1.12+1.97 0.47 26.81+35.95 14.97
PFHRGB 1.96+3.48 0.80 55.86+76.21 30.66
PPF 0.09+0.26 0.02 809.94+3116.22  95.29
PPFRGB 0.03+0.03 0.02 6.79+8.84 3.92
SHOT 0.05+-0.06 0.03 101.37+136.74 55.68
SHOTCOLOR | 0.06+0.07 0.03 310.37+£419.98  169.47
SHOTLRF 0.03+0.03 0.02 7.5949.70 4.34
usc 35.29490.55 6.19 351.67+471.41  194.15
VFH 0.024-0.02 0.01 1.10+0.22 1.07
Average 6.214+40.02 0.09 141.76+875.97 9.94

D = Ly(ca, c) + Li(stda, stdg) (5.9)

that presents good results, in terms of recognition and run time, where c4 and cg are the
centroids of the sets A and B, respectively, and

A
stda(i) = W1_1 Z(aj(i) —cali))?,i=1,...,n, (5.10)
j=1

a;(i) refers to the coordinate i of the descriptor j, and likewise for stdz. The L; distance is
between descriptor (not sets) x, y € X and is given by

Litx,y) =D Ix()) = y(d]- (5.11)
i=1

5.2.5 Recognition Measures

In order to perform the recognition evaluation will be used three measures, which are
the Receiver Operator Characteristic (ROJ) curve, the Area Under the ROC Curve (AUQ) and the
Decidability (DEQ). The index [341]] is given by

1
DEC = |/Jintra - L’il1tel'|/\/2(052,1trg + Uiznter) (5'12)
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is the distance between the distributions obtained for the two classical types of comparisons:
between descriptors extracted from the same (intra-class) and different objects (inter-class).
The pinera and pinter denote the means of the intra- and inter-class comparisons, d7,,,, and o2,
the respective standard deviations and the decidability can vary between [0, oq|.

In statistics, a ROQ is a graphical plot that illustrates the performance of a binary classi-
fier system as its discrimination threshold is varied. The curve is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) at various threshold settings. It is also
known as a relative operating characteristic curve, because it is a comparison of two operating
characteristics (TPR and FPR) as the criterion changes [342]. The is equal to the probability
that a classifier will rank a randomly chosen positive instance higher than a randomly chosen
negative one (assuming ‘positive’ ranks higher than ‘'negative’) [343].

5.3 Results and Discussion

The obtained and DEC for category and object recognition are given in tables p.3 and
5.4. The ROGs for category and object recognition are shown in figures 5.5 and b.§, respectively.

As shown in table f.3 and .4, the method presented here increases the recognition results
in both category and object recognition. Comparing this one with the original approach, it is
possible to see that color information has introduced a significant improvement in both category
and object recognition.

For the category recognition (table 5.3), the method presented here shows worst
results only in three cases for the measure and in six cases for the DEJ. In the other pair
cases, it has significant improvements compared to the other three keypoint detection methods,

Table 5.3: AUC and DEC values for the category recognition for each pair 2D keypoints/descriptor. The
underline value is the best result for this descriptor and the best pair is the bold one.

Category Recognition
Descriptors BMMSKD BIMP [7] SIFT [9] SURF [10] Average
AUC DEC AUC DEC AUC DEC AUC DEC ‘ AUC DEC

3DsC 0.667 0.221 | 0.644 0.182 | 0.652 0.293 | 0.654 0.294 | 0.654 0.248
CVFH 0.601 0.270 | 0.590 0.194 | 0.582 0.158 | 0.580 0.148 | 0.558 0.193
ESF 0.748 0.825 | 0.748 0.827 | 0.754 0.873 | 0.753 0.865 | 0.751 0.848
FPFH 0.720 0.717 | 0.689 0.623 | 0.725 0.796 | 0.723 0.769 | 0.714 0.726
OURCVFH 0.615 0.338 | 0.588 0.291 | 0.585 0.275 | 0.595 0.284 | 0.596 0.297
PCE 0.616 0.360 | 0.597 0.305 | 0.600 0.302 | 0.595 0.292 | 0.602 0.315
PFH 0.742 0.843 | 0.716 0.746 | 0.739 0.872 | 0.737 0.853 | 0.734 0.829
PFHRGB 0.773 1.003 | 0.758 0.929 | 0.768 0.999 | 0.765 0.984 | 0.766 0.979
PPF 0.626 0.433 | 0.600 0.336 | 0.593 0.297 | 0.597 0.317 | 0.604 0.346
PPFRGB 0.551 0.011 | 0.553 0.013 | 0.554 0.056 | 0.537 0.028 | 0.549 0.027
SHOT 0.631 0.372 | 0.614 0.355 | 0.613 0.334 | 0.609 0.312 | 0.617 0.343
SHOTCOLOR | 0.700 0.609 | 0.674 0.570 | 0.684 0.591 | 0.679 0.575 | 0.684 0.586
SHOTLRF 0.681 0.489 | 0.640 0.378 | 0.626 0.321 | 0.631 0.325 | 0.645 0.378
usc 0.660 0.233 | 0.635 0.184 | 0.640 0.291 | 0.644 0.295 | 0.645 0.251
VFH 0.592 0.317 | 0.575 0.260 | 0.591 0.314 | 0.591 0.313 | 0.587 0.301
Average 0.662 0.470 | 0.641 0.413 | 0.647 0.451 | 0.646 0.441
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Table 5.4: AUC and DEC values for the object recognition for each pair keypoints/descriptor. The underline
value is the best result for this descriptor and the best pair is the bold one.

Object Recognition
Descriptors BMMSKD BIMP [7] SIFT [9] SURF [110] Average
AUC DEC AUC DEC AUC DEC AUC DEC AUC DEC

3DsC 0.690 0.244 | 0.658 0.196 | 0.657 0.295 | 0.666 0.307 | 0.668 0.261
CVFH 0.628 0.305 | 0.617 0.252 | 0.611 0.210 | 0.610 0.206 | 0.617 0.243
ESF 0.818 1.111 | 0.820 1.131 | 0.820 1.151 | 0.823 1.153 | 0.820 1.137
FPFH 0.776 0916 | 0.729 0.753 | 0.774 0.980 | 0.781 0.997 | 0.765 0.912
OURCVFH 0.659 0.511 | 0.626 0.384 | 0.616 0.340 | 0.614 0.301 | 0.629 0.384
PCE 0.632 0.407 | 0.606 0.329 | 0.603 0.311 | 0.614 0.352 | 0.614 0.350
PFH 0.794 1.062 | 0.759 0.910 | 0.792 1.105 | 0.796 1.110 | 0.785 1.047
PFHRGB 0.920 1.923 | 0.903 1.778 | 0.890 1.700 | 0.893 1.728 | 0.902 1.782
PPF 0.655 0.528 | 0.626 0.417 | 0.613 0.353 | 0.625 0.400 | 0.630 0.425
PPFRGB 0.568 0.031 | 0.542 0.055 | 0.579 0.076 | 0.581 0.034 | 0.568 0.049
SHOT 0.661 0.457 | 0.622 0.377 | 0.624 0.389 | 0.616 0.331 | 0.631 0.389

SHOTCOLOR | 0.787 0.911 | 0.740 0.794 | 0.730 0.764 | 0.730 0.762 | 0.747 0.808
SHOTLRF 0.707 0.564 | 0.654 0.422 | 0.624 0.294 | 0.634 0.338 | 0.655 0.405

usC 0.683 0.260 | 0.655 0.214 | 0.656 0.330 | 0.659 0.321 | 0.663 0.281
VFH 0.623 0.432 | 0.595 0.334 | 0.609 0.372 | 0.604 0.367 | 0.608 0.376
Average 0.707 0.644 | 0.677 0.556 \ 0.680 0.578 | 0.683 0.590 \

which are also visible in the graphs of the figure 5.5. The best result for the category recognition
was obtained by the pair BAMSKD/PFHRGB, being the only one where the exceeds the index
1.000. Moreover, the only presents a lower than the average for the ESF descriptor.

Regarding the object recognition the results are presented in table 5.4 and in the graphs
of the figure 5.6. Comparing the overall results of the SIFT keypoints detector in the category
recognition with those of the SURF keypoints detector in the object recognition, it is found
that there is an inversion. That is, while the SIFT method was the one who showed better
results several times here is quite the opposite. Overall, in the object recognition there exists
a improvement in the results for all the methods, because there is less variation in the data.

As can be seen, the retinal color extension, introduced in the keypoint detector,
produces a good improvement compared to the original method. For grayscale images, the
results will be the same as the BIMP, since this method generalizes it to color.

5.4 Summary

This chapter focused on keypoint detectors and presented a novel keypoint detector bi-
ologically motivated by the behavior and the neuronal architecture of the early primate visual
system. This new method and part of the presented results were published in [27]. The recogni-
tion evaluation is done on a public available dataset with real 3D objects. The keypoint detectors
were developed using the library and the keypoint locations are projected to the 3D
space in order to use available 3D descriptors on the library.

The main conclusions of this chapter are: 1) the keypoint locations can help or degrade
the recognition process; 2) a descriptor that uses color information should be used instead of
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Figure 5.5: ROCs for the category recognition experiments using 2D keypoint detectors (best viewed in
color).
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Figure 5.6: ROCs for the object recognition experiments using 2D keypoint detectors (best viewed in color).
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a similar one that uses only shape information; 3) since there are big differences in terms of
recognition performance, size and time requirements, the descriptor should be matched to
the desired task; 4) to recognize the category of an object or a real-time system, it is recom-
mended the use the SHOTCOLOR method because it presents a recognition rate of 7% below
of the PFHRGB but with a much lower computational cost; and 5) to do the object recogni-
tion, the recommendation is PFHRGB because it presents a recognition rate 12.9% higher than
SHOTCOLOR.
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Chapter 6

Biologically Inspired 3D Keypoint Detector based
on Bottom-Up Saliency

A new method for the detection of 3D keypoints on point clouds is presented. A bench-
marking between each pair of 3D keypoint detector and 3D descriptor is performed, in order to
evaluate their performance on object and category recognition. These evaluations are done in a
public database of real 3D objects. The keypoint detector is inspired by the behavior and neural
architecture of the primate visual system. The 3D keypoints are extracted based on a bottom-up
3D saliency map, that is, a map that encodes the saliency of objects in the visual environment.
The saliency map is determined by computing conspicuity maps (a combination across different
modalities) of the orientation, intensity and color information in a bottom-up and in a purely
stimulus-driven manner. These three conspicuity maps are fused into a 3D saliency map and,
finally, the focus of attention (or "keypoint location") is sequentially directed to the most salient
points in this map. Inhibiting this location automatically allows the system to attend to the next
most salient location.

6.1 Proposed 3D Keypoint Detector

The Biologically Inspired 3D Keypoint based on Bottom-Up Saliency (BIK-BUS) is a keypoint
detector that is based on saliency maps. The saliency maps are determined by computing con-
spicuity maps of the features intensity, color and orientation in a bottom-up and data-driven
manner. These conspicuity maps are fused into a saliency map and, finally, the focus of atten-
tion is sequentially directed to the most salient points in this map [120]. Using this theory and
following the steps presented in [3,[119], a new keypoint detector is presented (shown in figure

b-1).

6.1.1 Linear Filtering

The initial part of this step is similar to the retinal color extension presented in section
b.1. Here, the four broadly-tuned color channels (R, G, B and Y) and the intensity / channel
are also used.

Gaussian pyramids [121] are used in the spatial scales, which progressively low-pass and
down-sample the input cloud, producing horizontal and vertical cloud-reduction factors. Five
Gaussian pyramids R(o), G(o), B(o), Y(o) and /(o) are created from the color and intensity
channels, where o represents the standard deviation used in the Gaussian kernel.

Each Gaussian pyramid is achieved by convolving the cloud with Gaussian kernels of in-
creasing radius, resulting in a pyramid of clouds. We apply a similar concept to search the
density map D over a range of scales, where D can be {R, G, B, Y,/}. We convolve D with a
set of 3D Gaussian kernels to construct a pyramid of density maps, with each layer representing
the scale o. A factor of 2 is used to down-sample the density map and the reduction of the
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Figure 6.1: General architecture of our Biologically Inspired Keypoint Detector based on Bottom-Up
Saliency. Our method receives as input a point cloud similar to those shown in figures and p.3 and
a linear filter is applied to obtain the color, intensity and orientations information. The full process is
described in the text.
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standard deviation of the Gaussian kernel by v/2. The pyramid creation is a step similar to the

DoG presented in the section }.1.5.
Let L(-) (one of the five Gaussian pyramids) be a scale space for D:

Lix,y,z,0)=D=xg(x,y,z0), (6.1)

where x is the convolution operator and ¢(x, y, z, o) is a 3D Gaussian with standard deviation ¢
given by:

222
g(x,y,z,0) =exp (ngzz) . (6.2)

The orientation pyramids O(o, 6) are obtained using the normals extracted from the in-
tensity cloud /, where 6 € {0°,45°,90°,135°} is the preferred orientation [121]. In the primary
visual cortex, the impulse response of orientation-selective neurons is approximated by Gabor
filters [122]. The orientation pyramids are created in a similar way to the color channels, but
applying 3D Gabor filters with different orientations 6.

6.1.2 Center-Surround Differences

In the retina, bipolar and ganglion cells encode the spatial information, using center-
surround structures. The center-surround structures in the retina can be described as on-center
and off-center. The on-center use a positive weighed center and negatively weighed neighbors.
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The off-center use exactly the opposite. The positive weighing is better known as excitatory
and the negative as inhibitory [123].

Similarly to the visual receptive fields, a set of linear center-surround operations is used
to compute each feature. Visual neurons are most sensitive in a small region of the visual space
(the center), while stimuli in the surround inhibit neuronal response [3]. Center-surround is
computed as the difference between the center pixel at scale ¢ € {2, 3,4}, and the surround is
the corresponding pixel at scale

s=c+d, (6.3)

with 0 € {3,4}. The across-scale difference between two maps (represented by *©&') is obtained
by interpolation to the center scale ¢ and point-by-point subtraction.

The first set of feature maps is concerned with intensity contrast. In mammals, this
is detected by neurons sensitive either to dark centers on bright surrounds (off-center) or to
bright centers on dark surrounds (on-center) [3,122]. Here, both types of sensitivities are
simultaneously computed in a set of six maps /(c, s):

Ie,s) = 1) © (s (6.4)

For the color channels, the process is similar, which, in the cortex, is called "color double-
opponent’ system [3]. In the center of their receptive fields, neurons are excited by one color
and inhibited by an other, while the converse is true in the surround. The existence of a spatial
and chromatic opponency between color pairs in human primary visual cortex is described in
[124]. Given the chromatic opponency, the maps RG(c,s) and BY(c,s) are created to take
in account the red/green and green/red, and blue/yellow and yellow/blue double opponency,
respectively, as:

RG(c,s) = [(R(c) — G(c) ©(G(s) — R(s))|.  (6.5)

BY(c.s) = |(B(c) = Y(c) ©(Y(s) — B(s))|-  (6.6)

Orientation feature maps, O(c, s, ), encode, as a group, local orientation contrast be-
tween the center and surround scales:

O(c, s, 6) = |0(c, 0) O O(s, 6)|. (6.7)

6.1.3 Normalization

We cannot combine directly the different feature maps because they represent different
dynamic ranges and extraction mechanisms. Some salient objects appear only in a few maps,
which can be masked by noise or by less salient objects present in a larger number of maps. In
order to resolve that, a map normalization operator A/(.) is used. This promotes the maps that
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contain a small number of strong activity, and suppresses the peaks in the maps that have many
of them [3]. N(.) consists of:

1. Large amplitude differences are eliminated by normalizing the map values to a fixed range
[0..M], where M is the global maximum of the map;

2. Multiply the map by (M — m)?, where m is the average of all its other local maxima.

The lateral cortical inhibition is the biological motivation for this normalization [344].

6.1.4 Across-Scale Combination

The conspicuity maps are the combination of the feature maps, for intensity, color and
orientation. They are obtained through the reduction of each map to scale four and point-by-
point addition "', called across-scale addition. The conspicuity maps for the intensity, /, and
color channels, C, are given by:

4 c+4
=P N(l(c,s)) and (6.8)
c=2 s=c+3
4 c+4
C=F P W(RG(c,s) + N(BY(c,s))]. (6.9)
c=2 s=c+3

For orientation, we first created four intermediary maps, which are a combination of the
six feature maps for a given 6. Finally, they are combined into a single orientation conspicuity
map:

4 c+4
0= > NP & N(O(c,s.6)|. (6.10)
6e{0°,45°,90°,135°} c=2 s=c+3

The three separate channels (/, C and O) have an independent contribution in the saliency
map and where similar features will have a strong impact on the saliency.

6.1.5 Linear Combination

The final saliency map is obtained by the normalization and a linear combination between
them:

S== (N +N@O)+N(0)). (6.11)

Wl =

6.1.6 Inhibition-Of-Return

The OR is part of the method that is responsible for the selection of keypoints. It detects
the most salient location and directs attention towards it, considering that location a keypoint.
After that, the JOR mechanism transiently suppresses this location in the saliency map and its
neighborhoods in a small radius, such that attention is autonomously directed to the next most
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salient image location. The suppression was achieved replacing saliency map values with zero.
The following iteration will find the most salient point (the maximum) in different location.
This iterative process stops when the maximum of the saliency map reaches a certain value (a
minimum), which is defined by a threshold. Computationally, the JOR performs a similar process
of selecting the global and local maximums.

6.2 3D Object Recognition Pipeline

This section presents the pipeline used in this work, shown in figure b.2. The input clouds
used are given by the RGB-D Object Dataset [21] presented in the section B.3. These point
clouds will feed the keypoint extraction process (see more details in section b.2.1), which are
used to reduce the computational cost of the recognition system.

Typically, the largest computational cost of these systems is at the stage of computing
the descriptors, so, it makes sense to use only a subset of the input clouds. In figure b.2, the
cloud input also feeds the descriptors extraction, but it is only used to obtain information about
the keypoints neighbors (to calculate the normals at the point). A set of object descriptors is
compared to those that have been previously computed and which are in the object database.
The one that presents the smallest distance is considered as the corresponding object.

Used in the
surface search

Segmented
Cloud Object
Database
Descriptor ; Match ; Recognition
Extraction Result
v J
. Location where
Keypo!nt the descriptor
Extraction will be extracted

Figure 6.2: Block diagram of the 3D recognition pipeline.

Portions of this pipeline, as well as the point clouds, are the same as presented in the
previous chapter. The major differences between these two chapters are relative to the number
of pairs of keypoint detectors/descriptors evaluated and the fact that these keypoint detectors
work directly on the point clouds and not in 2D images. Here, a total of 135 pairs (9 keypoint
detectors x 15 descriptors) are evaluated.

6.2.1 Keypoint Extraction

The keypoint detection methods have many parameters to adjust, but normally the de-
fault values in the are used. For all the keypoint detectors, the search radius is always
the same and defined to 1cm. The Susan and SIFT3D methods were those where it was nec-
essary to define more parameters. For the Susan method, there are two parameters: the
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Table 6.1: Statistics of the 3D keypoint detectors. The parameters are the same as those presented in

table B.1.

Keypoint Number of Points Time (s) Size (KB)
Detectors Mean=Std Median | Mean+Std Median Mean=+Std Median
BIK-BUS 117.43+114.74 72.00 | 6.66+9.14 3.67 5.83+1.79 5.12
Curvature 116.51+125.56 68.00 | 0.78+1.43 0.31 5.82+1.96 5.06
Harris3D 83.61+95.64 47.00 | 1.11%2.01 0.46 5.31+1.49 4.73
ISS3D 84.54+107.34 43.00 | 1.13%+2.01 0.46 5.32+1.68 4.67
KLT 96.45+109.02 54.00 | 1.16+2.12 0.46 5.51+1.70 4.84
Lowe 83.05+95.43 46.00 | 1.214+2.48 0.45 5.30+1.49 4.72
Noble 83.054+95.43 46.00 | 1.18+2.18 0.45 5.30+1.49 4.72
SIFT3D 85.11+103.97 43.00 | 2.51+3.61 1.20 5.33+1.62 4.67
SUSAN 132.52+483.05 14.00 | 1.5442.74 0.64 6.07+7.55 4.22
Average 98.01+£190.32 48.00 | 1.92+4.17 0.63 5.53+2.97 4.75
Original 5740.06+6851.42 3205 316.86+375.73  177.23

distance_threshold = 0.01cm is used to test if the nucleus is far enough from the centroid;
and the angular_threshold = 0.01cm to verify if the normals are parallel. In the SIFT3D,
the parameters defined are: min_scale = 0.002, nr_octaves = 4, nr_scales_per_octave = 4
and the min_contrast = 1. These parameters were adjusted with these values, such that all
methods present a similar average number of the keypoints (as can be seen in table b.1). Figure
6.3 presents a cloud of points where the several keypoint detectors were applied with these
parameters.

Table also presents some statistics about the keypoints extracted from the selected
point clouds. To get an idea of the reduction between the input points clouds and the keypoints,
the last row of the table contains the statistics information about the input point clouds. All
the processing time was calculated based on Intel Core 17 Extreme Edition X980 (3.3GHz), 24Gb
RAM (FSB 1066) and Fedora Core 14 operating system.

6.2.2 Descriptor Extraction

One of the goals was to evaluate the available descriptors in the current version (1.7
pre-release) [20]. There are some descriptors in which are not consider in this evaluation,
since they are not applicable to point cloud data directly or they are not object descriptors,
some of them are pose descriptors (6DoF).

It's only possible to make a fair comparison between the descriptors if they always use the
same parameters in all steps of the pipeline, shown in figure b.2. In the parametric configuration
of the descriptors, the default values defined in the were used. For the descriptors that
use normals, a radius of 1cm was used for the calculus of normal and for the normal estimation
radius search.

6.3 Experimental Evaluation and Discussion

The obtained and DEC are given in table .3, while the ROds for category and object
recognition are presented in figures b.4 and 6.5, respectively. Table .4 presents the infor-
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(a) BIK-BUS (103 keypoints) (b) Curvature (72 keypoints) (c) Harris3D (59 keypoints)

(d) I1SS3D (289 keypoints) (e) KLT (72 keypoints) (f) Lowe (59 keypoints)

(g) Noble (59 keypoints) (h) SIFT3D (304 keypoints) (i) Susan (2790 keypoints)

Figure 6.3: Keypoint detectors applied on a "food_box" point cloud. The red points are the keypoints
extracted from each detector and the number of these is presented in the legend of each sub-figure (best
viewed in color).

mation about the number of times that each keypoint detector achieved the best result in the
category and object recognition and the sums of these counts (Total column). When there is a
tie between two methods both methods score.

Analyzing the descriptors in a generic way, the best results were obtained with the
PFHRGB. It is interesting to compare it to the PFH: improvement can only be attributed to
the incorporation of color information. The same is true for the SHOTCOLOR versus the SHOT
descriptor. The two best results in terms of category and object recognition are presented in
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Table 6.2: Statistics of the evaluated descriptors in this work. The time in seconds (s) and size in kilobytes
(KB) presented are related to each cloud in the processing of the test set. To know the total time or the
total size spent by a database of one of this descriptor. To obtain the total size of the database, you need
to multiply the size presented by the number of clouds in the database.

. Time (s) Size (KB)

Descriptors

Mean+Std Median Mean=+Std Median
3DSC 9181.56+21135.49 1138.86 | 725.28+830.02 408.02
CVFH 0.32+0.47 0.17 5.26+0.30 5.20
ESF 3.15+2.55 2.68 6.50+0.00 6.50
FPFH 25.21+32.82 13.79 15.97+13.77 10.70
OUR-CVFH 0.32+0.59 0.25 5.47+0.71 5.20
PCE 1.23+2.02 0.45 5.81+2.09 5.02
PFH 4157.63+7911.99  1129.62 49.33+52.16 29.39
PFHRGB 8077.11+£15432.91 2188.16 | 95.47+104.70 55.76
PPF 1.26+2.96 0.42 398.50+953.27  57.69
PPFRGB 4.07+5.25 2.22 7.09+3.71 5.56
SHOT 1.60+2.06 0.94 134.85+150.65 77.33
SHOTCOLOR 1.88+3.04 1.01 494.41+564.62 278.83
SHOTLRF 0.72+0.80 0.49 7.26+3.75 5.83
usc 9125.88+20892.66 1135.20 | 728.12+831.69 408.02
VFH 0.24+0.43 0.03 5.20+0.00 5.20
Average | 2362.27+10257.14  2.23 | 187.81+504.45 13.22 |

the descriptors that use color information. The ROGs, in figures 6.4 and 6.5, also show the
superiority of these two descriptors (that use color) versus the remaining. FPFH is an extension
of PFH and it has a performance slightly worst than the original descriptor, but it is faster to
extract and uses about half the space (shown in table b.2), as the authors of the descriptor
suggested. An interesting result is the one obtained by PPFRGB which is an color extension of
PPF: in this case the none color version is better than the color version.

The USC was proposed as an upgrade to the 3DSC and our results confirm that in fact it
improves the 3DSC results. Only when, the SUSAN keypoint detector was used in both recognition
tasks, the 3DSC beats the USC in most of the cases.

Considering OUR-CVFH an upgrade of CVFH and this one an extension of VFH, it is not able
to see where are improvements because both have lower scores and the processing times are
slightly higher than the original descriptor.

In terms of computational time and space, the descriptor's requirements varies a lot.
If the application needs real-time performance or when using embedded devices with limited
resources there are some descriptors that cannot be considered.

Considering only the accuracy, the best combination for the category recognition is
/PFHRGB, closely followed by BIK-BUS/SHOTCOLOR, |SS30/PFHRGB and [SS30/SHOTCOLOR both
in terms of and DEC. The pairs BIK-BUJ/PFHRGB and /SHOTCOLOR have exactly the
same AUC, the difference is in the DEC where it is slightly higher in the case of PFHRGB.
turns out again the best performer among detectors: FPFH, PPH, BHOT|, SHOTCOLOR, and
VFH. In relation to the 3DSC and SHOTLRF descriptors, our keypoint detector obtains the best
DEC while the is better when using Curvature keypoint detector in both descriptors.
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Table 6.3: AUC and DEC values for the category and object recognition for each pair keypoint detec-
tor/descriptor. We also present the mean time (in seconds) required for the keypoints and descriptors
extraction. BOLD indicates the best (bigger) results in terms of AUC and DEC for each pair.

Descriptors  Keypoints Category Object Time (s)
AUC DEC AUC DEC
BIK-BUS 0.711  0.519 | 0.749 0.612 | 11166.25
Curvature | 0.712 0.491 | 0.756 0.602 | 10406.55
Harris3D 0.706 0.472 | 0.740 0.539 | 8402.61
ISS3D 0.706 0.504 | 0.746 0.603 | 9581.85
KLT 0.709 0.486 | 0.748 0.579 | 9208.83
0S¢ Lowe 0.705 0.468 | 0.746 0.560 | 8027.55
Noble 0.707 0.477 | 0.749 0.573 | 7894.47
SIFT3D 0.700 0.511 | 0.727 0.568 | 8745.17
SUSAN 0.656 0.399 | 0.682 0.466 | 12934.55
Average 0.701 0.483 | 0.738 0.567 | 9596.43
BIK-BUS 0.605 0.241 | 0.633 0.286 6.90
Curvature | 0.604 0.258 | 0.633 0.283 1.02
Harris3D 0.606 0.249 | 0.632 0.256 1.33
ISS3D 0.608 0.235 | 0.637 0.253 1.34
KLT 0.606 0.252 | 0.633 0.270 1.38
CVFH
Lowe 0.606 0.248 | 0.634 0.253 1.42
Noble 0.604 0.241 | 0.626 0.243 1.39
SIFT3D 0.594 0.170 | 0.635 0.255 2.73
SUSAN 0.560 0.020 | 0.573 0.038 2.00
Average 0.599 0.213 | 0.626 0.179 2.17
BIK-BUS 0.748 0.843 | 0.821  1.151 9.85
Curvature | 0.746 0.817 | 0.817 1.109 3.83
Harris3D 0.747 0.821 | 0.822 1.133 4.35
ISS3D 0.747 0.827 | 0.818 1.130 4.30
KLT 0.745 0.811 | 0.818 1.110 4.30
=F Lowe 0.746 0.815 | 0.818 1.110 4.32
Noble 0.748 0.827 | 0.819 1.114 4.34
SIFT3D 0.750 0.847 | 0.823 1.166 5.63
SUSAN 0.751 0.854 | 0.826 1.184 4.67
Average 0.748 0.829 | 0.820 1.257 5.07
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Table 6.3: AUC and DEC values for the category and object recognition for each pair keypoint detec-
tor/descriptor. We also present the mean time (in seconds) required for the keypoints and descriptors
extraction. BOLD indicates the best (bigger) results in terms of AUC and DEC for each pair.

Descriptors  Keypoints Category Object Time (s)
AUC DEC AUC DEC
BIK-BUS 0.844 1.434 | 0.900 1.833 32.67
Curvature | 0.844 1.433 | 0.899 1.829 25.93
Harris3D 0.836 1.375 | 0.889 1.730 26.63
ISS3D 0.843 1.429 | 0.900 1.841 26.39
FPEH KLT 0.840 1.395 | 0.892 1.746 26.06
Lowe 0.839 1.391 | 0.892 1.752 26.00
Noble 0.840 1.397 | 0.893 1.753 26.14
SIFT3D 0.837 1.377 | 0.897 1.806 27.60
SUSAN 0.809 1.236 | 0.864 1.575 26.04
Average 0.837 1.385 | 0.892 1.763 27.05
BIK-BUS 0.600 0.222 | 0.629 0.274 6.91
Curvature | 0.605 0.254 | 0.626 0.253 1.04
Harris3D 0.604 0.233 | 0.636 0.262 1.33
ISS3D 0.606 0.224 | 0.635 0.241 1.36
OUR-CVFH KLT 0.606 0.248 | 0.634 0.265 1.41
Lowe 0.604 0.236 | 0.634 0.264 1.44
Noble 0.602 0.225 | 0.635 0.271 1.39
SIFT3D 0.593 0.159 | 0.626 0.218 2.73
SUSAN 0.556 0.009 | 0.571 0.035 1.89
Average 0.597 0.201 | 0.625 0.231 2.17
BIK-BUS 0.614 0.393 | 0.639 0.470 8.01
Curvature | 0.618 0.407 | 0.636 0.460 2.06
Harris3D 0.619 0.411 | 0.639 0.474 2.18
ISS3D 0.623  0.427 | 0.645 0.495 2.28
KLT 0.625 0.432 | 0.646 0.503 2.28
PeE Lowe 0.621 0.420 | 0.642 0.485 2.21
Noble 0.621 0.419 | 0.647 0.508 2.23
SIFT3D 0.619 0.412 | 0.640 0.479 3.58
SUSAN 0.596 0.336 | 0.618 0.412 2.80
Average 0.617 0.406 | 0.611 0.476 3.07
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Table 6.3: AUC and DEC values for the category and object recognition for each pair keypoint detec-
tor/descriptor. We also present the mean time (in seconds) required for the keypoints and descriptors

extraction. BOLD indicates the best (bigger) results in terms of AUC and DEC for each pair.

Descriptors  Keypoints Category Object Time (s)
AUC DEC AUC DEC
BIK-BUS 0.848 1.488 | 0.893 1.832 | 4948.23
Curvature | 0.848 1.489 | 0.893 1.831 | 4816.54
Harris3D 0.849 1.491 | 0.894 1.843 | 3722.78
ISS3D 0.848 1.489 | 0.895 1.855 | 4367.38
KLT 0.848 1.489 | 0.891 1.811 | 4202.21
o Lowe 0.847 1.483 | 0.896 1.854 | 3626.09
Noble 0.846 1.474 | 0.894 1.840 | 3651.77
SIFT3D 0.843 1.458 | 0.890 1.801 | 3920.08
SUSAN 0.828 1.363 | 0.866 1.625 | 6642.93
Average 0.845 1.469 | 0.890 1.810 | 4433.11
BIK-BUS 0.867 1.586 | 0.948 2.397 | 9567.81
Curvature | 0.859 1.535 | 0.938 2.267 | 9315.20
Harris3D 0.859 1.533 | 0.941 2.303 | 7233.37
ISS3D 0.866 1.585 | 0.948 2.394 | 8488.44
PEHRGB KLT 0.859 1.536 | 0.941 2.302 | 8206.08
Lowe 0.860 1.539 | 0.942 2.314 | 7047.42
Noble 0.861 1.548 | 0.939 2.275 | 7116.42
SIFT3D 0.861 1.546 | 0.946 2.373 | 7628.79
SUSAN 0.845 1.445 | 0.934 2.205 | 12815.49
Average 0.860 1.539 | 0.942 2.314 | 8602.11
BIK-BUS 0.646 0.475 | 0.673 0.552 8.01
Curvature | 0.555 0.016 | 0.579 0.008 2.09
Harris3D 0.561 0.020 | 0.580 0.008 1.98
ISS3D 0.640 0.405 | 0.667 0.479 2.00
KLT 0.549 0.012 | 0.570 0.012 2.13
gl Lowe 0.574 0.013 | 0.592 0.028 2.00
Noble 0.576 ~ 0.021 | 0.592 0.007 1.92
SIFT3D 0.641 0.434 | 0.666 0.510 3.51
SUSAN 0.599 0.297 | 0.602 0.316 11.40
Average 0.593 0.188 | 0.613 0.213 3.89
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Table 6.3: AUC and DEC values for the category and object recognition for each pair keypoint detec-
tor/descriptor. We also present the mean time (in seconds) required for the keypoints and descriptors
extraction. BOLD indicates the best (bigger) results in terms of AUC and DEC for each pair.

Descriptors  Keypoints Category Object Time (s)
AUC DEC AUC DEC
BIK-BUS 0.493 0.042 | 0.506 0.077 15.12
Curvature | 0.513 0.048 | 0.526 0.058 5.77
Harris3D 0.522 0.015 | 0.527 0.084 5.35
ISS3D 0.480 0.004 | 0.508 0.024 6.07
PPFRGE KLT 0.501 0.103 | 0.543 0.106 5.72
Lowe 0.509 0.033 | 0.529 0.020 5.65
Noble 0.510 0.108 | 0.480 0.066 5.09
SIFT3D 0.501 0.076 | 0.510 0.201 8.28
SUSAN 0.537 0.003 | 0.543 0.051 17.37
Average 0.507 0.048 | 0.519 0.076 8.27
BIK-BUS 0.827 1.281 | 0.863 1.513 8.78
Curvature | 0.823 1.255 | 0.866 1.532 2.50
Harris3D 0.817 1.224 | 0.858 1.490 2.58
ISS3D 0.812 1.168 | 0.852 1.413 2.69
KLT 0.820 1.235 | 0.855 1.448 2.77
SHOT
Lowe 0.818 1.229 | 0.855 1.462 2.66
Noble 0.819 1.235 | 0.860 1.494 2.62
SIFT3D 0.814 1.207 | 0.848 1.409 3.94
SUSAN 0.749 0.892 | 0.790 1.075 3.06
Average 0.811  1.192 | 0.850 1.426 3.51
BIK-BUS 0.867 1.571 | 0.916 2.012 9.70
Curvature | 0.865 1.557 | 0.912 1.972 2.74
Harris3D 0.858 1.519 | 0.906 1.918 2.72
ISS3D 0.852 1.465 | 0.902 1.873 2.92
KLT 0.861 1.542 | 0.908 1.935 2.95
SHOTCOLOR
Lowe 0.860 1.532 | 0.903 1.903 2.78
Noble 0.859 1.530 | 0.907 1.930 2.80
SIFT3D 0.839 1.394 | 0.896 1.792 4.18
SUSAN 0.783 1.099 | 0.839 1.397 3.30
Average 0.849 1.468 | 0.899 1.859 3.79
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Table 6.3: AUC and DEC values for the category and object recognition for each pair keypoint detec-
tor/descriptor. We also present the mean time (in seconds) required for the keypoints and descriptors

extraction. BOLD indicates the best (bigger) results in terms of AUC and DEC for each pair.

Descriptors  Keypoints Category Object Time (s)
AUC DEC AUC DEC
BIK-BUS 0.789 1.096 | 0.822 1.265 7.45
Curvature | 0.790 1.062 | 0.814 1.188 1.54
Harris3D 0.784 1.013 | 0.810 1.138 1.80
ISS3D 0.788 1.003 | 0.817 1.139 1.86
SHOTLRF KLT 0.785 1.003 | 0.815 1.154 1.87
Lowe 0.784 1.017 | 0.812 1.146 1.87
Noble 0.785 1.021 | 0.811 1.142 1.88
SIFT3D 0.770 0.924 | 0.805 1.086 3.20
SUSAN 0.676 0.561 | 0.710 0.684 2.24
Average 0.772 0.967 | 0.802 1.105 2.63
BIK-BUS 0.739 0.651 | 0.789 0.812 | 11041.82
Curvature | 0.736 0.631 | 0.786 0.778 | 10147.67
Harris3D 0.728 0.599 | 0.778 0.743 | 8380.70
ISS3D 0.727 0.630 | 0.777 0.790 | 9556.12
KLT 0.731  0.609 | 0.784 0.774 | 9173.02
U Lowe 0.729 0.604 | 0.781 0.765 | 7987.03
Noble 0.727 0.597 | 0.777 0.740 | 7970.97
SIFT3D 0.727 0.647 | 0.774 0.797 | 8725.92
SUSAN 0.681 0.506 | 0.717 0.623 | 11458.16
Average 0.725 0.597 | 0.774 0.758 | 9382.38
BIK-BUS 0.647 0.517 | 0.705 0.745 6.82
Curvature | 0.644 0.502 | 0.703 0.732 0.94
Harris3D 0.638 0.483 | 0.680 0.638 1.27
ISS3D 0.643 0.514 | 0.687 0.671 1.28
KLT 0.644 0.507 | 0.691 0.680 1.32
v Lowe 0.638 0.481 | 0.687 0.670 1.37
Noble 0.638 0.480 | 0.682 0.649 1.32
SIFT3D 0.636 0.469 | 0.686 0.651 2.66
SUSAN 0.584 0.295 | 0.615 0.404 1.70
Average 0.635 0.472 | 0.835 0.649 2.37
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Table 6.4: Counting the number of times a keypoint detector has the best result in table .3. In case of a
tie both methods score.

Keypoint Category Object Total
AUC DEC | AUC DEC

BIK-BUS 7 9 7 9 32
Curvature 2 2 2 1 7
Harris3D 1 1 1 0 3
ISS3D 2 0 3 2 7
KLT 2 1 1 0 4
Lowe 0 0 1 0 1
Noble 0 1 1 1 3
SIFT3D 0 0 0 1 1
SUSAN 2 1 2 1 6

If a threshold is considered for the AUC t4 ¢ and another for the DEC tpe¢ only two original
descriptors (PFH and SHOT) and four of its variants (FPFH, PFHRGB, SHOTCOLOR and SHOTLRF).
In the case SUSAN/SHOT both thresholds fail and for SHOTLRF only the threshold tpg is satisfied
in seven keypoint detectors. In these descriptors, our detector only in a single case does not
have the best results in both measures, and this in the case of PFH where only has a difference
of 0.1%. In the other four descriptors, the recognition accuracy varies between 2.2% and 8.4%.

In terms of object recognition, the best pair is BIK-BUJ/PFHRGB, but only beats the second
best combination, [SS30/PFHRGB, because it presents a better DEC. For SHOT and SHOTCOLOR
descriptors if we compare our keypoint detector with the ISS3D we obtain improvements for
both of 1.5% in the case of category recognition, and 1.1% and 1.4% in object recognition, re-
spectively. The only point against our keypoint detector is relation to the processing time, since
it is approximately 6 times slower than ISS3D. The processing time can be reduce by a paral-
lel implementation or by an implementation in GPU. The architecture of the BIK-BUS, shown
in figure .1, shows that the parallel implementation would be a good strategy to solve this
problem.

6.4 Summary

In this chapter,a novel 3D keypoint detector biologically motivated by the behavior and
the neuronal architecture of the early primate visual system was presented. We also made a
comparative evaluation of several keypoint detectors plus descriptors on public available data
with real 3D objects. This new method and the presented results were published in [28, 29].

The is a keypoint detector to determine visual attention, which are also known as
saliency maps. The saliency maps are determined by sets of features in a bottom-up and data-
driven manner. The fusion of these sets produced the saliency map and the focus of attention
is sequentially directed to the most salient points in this map, representing a keypoint location.

In the evaluation, the 3D keypoint detectors and the 3D descriptors available in the
library were used. The main conclusions of this chapter are: 1) a descriptor that uses color
information should be used instead of a similar one that uses only shape information; 2) the
descriptor should be matched to the desired task, since there are differences in terms of recog-
nition performance, size and time requirements; 3) in terms of keypoint detectors, to obtain an
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Figure 6.4: ROCs for the category recognition experiments (best viewed in color).
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Figure 6.5: ROCs for the object recognition experiments (best viewed in color).
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accurate recognition system is recommended the use of the BIK-BUS, since its performance was
better in 32 tests, in a total of 60 tests. When the second best detector only obtained the best
performance 8 times (see table b.4); 4) for a real-time system, the ISS3D or Curvature detec-
tors are good choices, since they have a performance that is only surpassed by and are
faster; 5) in terms of descriptors, if the focus is on accuracy the use of PFHRGB is recommended
and for real-time a good choice is the SHOTCOLOR because it presents a good balance between
recognition performance and time complexity.
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Chapter 7

A 3D Keypoint Application for Tracking

In this chapter, a robust detection and tracking method for 3D objects by using keypoint
information in a particle filter is proposed. Our method consists of three distinct steps: Seg-
mentation, Tracking Initialization and Tracking. The segmentation is made in order to remove
all the background information, in order to reduce the number of points for further processing.
In the initialization, a keypoint detector with biological inspiration is used. The information of
the followed object is given by the extracted keypoints. The particle filter does the tracking of
the keypoints, so with that you can predict where the keypoints will be in the next frame. In a
recognition system, one of the problems is the computational cost of keypoint detectors. This
approach aims to solve this problem.

The experiments with the proposed method are done indoors in an office/home environ-
ment, where personal robots are expected to operate. The Tracking Error evaluate the stability
of the general tracking method. We also evaluate quantitatively this method using a "Tracking
Error”. Our evaluation is done by the computation of the keypoint and particle centroid.

7.1 Particle Filter with Bio-Inspired Keypoints Tracking

This section will focus on the Particle Filter with Bio-Inspired Keypoints Tracking (PFBIK-Trackind)
block presented in the figure 7.1. This method is composed by two main steps: Segmentation
and Tracking, which will be described in detail below.

The Recognition block is presented in this work only in a illustrative way and it will not
be discussed in this chapter. But in [22,23,27,29] and the last two chapters (5 and ) give us
a good perspective on how to solve the issue of object recognition. In [22], the focus is on the
descriptors available in (Feature Extraction step). We briefly explain how they work and
made a comparative evaluation on publicly available data.

7.1.1 Segmentation

The segmentation starts with the Pass Through Filter (PTH). This filter removes depth
regions that are not contained on the desired working distances [din. dnax], Where d ;. is the
minimum distance at which the system should work and d,,,, the maximum distance. Depth
regions that are not included between these distances are considered background and are dis-
carded by the tracking system. By removing these regions (shown in figure F.2(b)), which do
not have interesting information for the object tracking system, a considerable reduction in the
processing time is obtained.

The second step of the segmentation is the Planar Segmentation (P9), which is based on
the Random Sample Consensus (RANSAQ) algorithm [f125]. It is an iterative method to estimate
parameters of a mathematical model from a set of observed data which contains outliers. Ba-
sically, the data consists of "inliers” and "outliers”. The distribution of the inlier's data can be
explained by some set of model parameters, but may be subject to noise and outliers, which
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Figure 7.1: Setup of the recognition system. The diagram presents a complete object recognition system
in order to understand better how the communication between the different stages is processed.

Figure 7.2: Representation of the segmentation steps. Figure [a) represents a cloud captured by the kinect
camera. Figure [b) is the output of the pass through filter with d,,;, = 0.0 m and dynax = 1.6 m, and in
the result of the removal of planar regions. Figure [d) are the clusters of the objects, wherein each object
is represented by a different color.

are data that do not fit the model. The outliers can come from extreme values of the noise or
from erroneous measurements or incorrect hypotheses about the interpretation of data.
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Let w be the probability of choosing an inlier each time a single point is selected, that
is, w = ﬁz;f{‘ﬁ’é Using n points, selected independently, for estimating the model, w" is the
probability that all n points are inlier's and 1 — w” is the probability that at least one of the n
points is an outlier. That probability to the power of k (number of iterations) is the probability
that the algorithm never selects a set of n points which all are inlier's and this must be the same
as 1 — p. Where p is the probability that the algorithm in some iteration selects only
inlier's from the input cloud set when it chooses the n points from which the model parameters

are estimated. Consequently,

1—p=(1-w"* (7.1)

which, after taking the logarithm of both sides, leads to

_ log(1 —p)
= Tog(T —wi’ (7.2)

Given the planar region estimated by algorithm, it is possible to remove the
planar regions from the cloud, keeping only the remaining objects (shown in figure 7.2(c)).

7.1.2 Tracking Initialization

In the first frame captured, to initialize the tracking, the third step of segmentation is
performed, the Cluster Extraction (CH). Clustering is the process of examining a collection of
"points”, and grouping the points into "clusters” according to some distance measure. That is,
the goal is that points in the same cluster have a small distance from one another, while points
in different clusters are at a large distance from one another. This step will return a list of the
clusters (shown in figure 7.2(d)), where each one contains the information of an object present
in the cloud scene. In this work, Euclidean Clustering method is used. As the name implies, the
distance between two points p1, p, is given by the Euclidean distance:

D(p1,pa) =/ (p1, = p2)? + (p1, = pa, 2+ (p1, — p2.)?. (7.3)

This implementation is explained in [3453].

As mentioned earlier, in [26], we presented an evaluation of the keypoint detectors avail-
able on PCL. The keypoint detector was proposed in [9]. The BIFT] features are vectors that
represent local cloud measurements. The 3D implementation of SIFT3D keypoint detector was
presented in [[102]. It uses a 3D version of the Hessian to select such interest points.

The performance of human vision is obviously far superior to that of current computer
vision systems, so there is potentially much to be gained by emulating biological processes.
Fortunately, there have been dramatic improvements within the past few years in understanding
how object recognition is accomplished in animals and humans [99]. Some features found in |T]
cortex are composed by neurons that respond to various moderately complex object features,
and those that cluster in a columnar region that runs perpendicular to the cortical surface
respond to similar features [346]. These neurons maintain highly specific responses to shape
features that appear anywhere within a large portion of the visual field and over a several octave
range of scales [347]. The complexity of many of these features appears to be roughly the same
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as for the BIFT]. The DoG clouds are also similar to the "Place cells", which are pyramidal cells
in the hippo-campus which exhibit strongly increased firing in specific spatial locations [348].
The feature responses have been shown to depend on previous visual learning from exposure
to specific objects containing these features [349]. These features appear to be derived in
the brain by a highly computation-intensive parallel process, which is quite different from the
staged filtering given by this method. A retinotopic organization, parallel processing, feed-
forward, feedback and lateral connection are a complex composition of the human visual system
[350]. However, the results are much the same: an image is transformed into a large set of
local features that each match a small fraction of potential objects yet are largely invariant to
common viewing transformations.

7.1.3 Tracking

The Tracking block presented in figure is the Particle Filter. For this, an adaptive
particle filter presented in [[126,127] is used. They presented a statistical approach to adapting
the sample set size of particle filters on-the-fly. The number of the particles changes adaptively
based on KLU distance sampling [[128], where they bind the error introduced by sample-based
representation of the particle filter. The samples are generated iteratively until their number
is large enough to ensure that the KL distance between the maximum likelihood estimate and the
underlying posterior does not exceed a pre-specified bound. This method will choose different
numbers of samples depending on the density of the 3D point cloud. If selects a small number
of samples, the density is focused in a small subspace and it selects a larger number of samples,
the samples have to cover most of the state space.

7.2 Results

To evaluate the performance of the method, the Euclidean distance (equation 7.3) be-
tween the centroid of the keypoints and result of the method will be used, which is the "Tracking
Error". The purpose of performing this comparison is to evaluate whether a system is able to
track the keypoints of an object. The tracking is done in order to remove the necessity of apply-
ing a keypoint detector in all frames. In a real-time system is not feasible to apply a keypoint
detector in each frame, due to the computational time spent on their calculation.

The centroid of a finite set of p points pq, p2, ..., px in R" is given by

Zf: Pi
C= 71 (7.4)
This point minimizes the sum of squared Euclidean distances between itself and each point in
the set.

In order to properly evaluate the performance of the method, it will be compared with the
sample-based method OpenniTracker available in 1.7 (from the trunk). The segmentation
step is applied in this tracker, where the output of this step is shown in figure 7.3. Thus, exactly
the same data is given as input to both methods.

The difference between the two methods is the initialization of the particle filter. Whereas
it is initialized with the results of the keypoint detector, the OpenniTracker only makes a sub-
sampling. This is a very important difference in the object recognition frameworks, because the
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(e) Plate.

Figure 7.3: Segmented point cloud sequences of the dataset. These point clouds are the inputs of the
presented tracking methods, and these have already been segmented.

sub-sampling only reduces the number of points in a linear manner, while the keypoint detector
is reducing the number of points based on the object characteristics.

The results presented in table 7.1, 7.2 and 7.3 are obtained using a dataset collected by
us (shown in figure 7.3). This dataset contains 10 different moving objects in a total of 3300
point clouds.

In table .1, we can observe that method performed the tracking with a significantly
lower number of points. Since the goal is to make the recognition of each object in the scene,
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Table 7.1: Mean and standard deviation nhumber of keypoints and particles resulting from the tracker. In
the OpenniTracker case, the column keypoints represents the sub-sampled cloud.

Number of Points
Keypoints Particles

PFBIK-Tracking
OpenniTracker

116.973 + 76.251 102.107 + 92.102
2502.536 + 1325.807 2132.124 + 1987.516

Table 7.2: Euclidean distance between the output of the tracker and the expected result.

Distance between Centroids
X axis Y axis Z axis All axis

PFBIK-Tracking
OpenniTracker

0.036 +=0.032 0.013 +£0.012 0.019 +0.019 0.045 + 0.036
0.038 +0.023 0.013 +£0.011 0.027 +0.015 0.052 + 0.022

Table 7.3: Mean and standard deviation of the Computational time (in seconds) of the evaluated methods.
Here, the time of the segmentation step is discarded, because it is the same in both methods.

Tracking .
Tracking
Initialization

PFBIK-Tracking
OpenniTracker

0.203 = 0.162  0.081 + 0.057
0.173 £ 0.187 0.186 + 0.170

the method has a stable performance with fewer points. With this number of points it is possible
to think of making recognition in real time. On the other hand, with the number of points shown
by the OpenniTracker this is very difficult to archive.

In table 7.2}, the distance between the cloud of keypoints (‘what we expect’) are presented
and the resulting cloud of points produced by the tracker (‘what we estimate’). As already
mentioned, the Euclidean distance is calculated based on the centroid of what was estimated
and what we really are looking. In this table, we can see that even with a large decline in the
number of points (around 50 times), this method has better performance than OpenniTracker.

In table [7.3, the mean processing time of the two evaluated methods is presented. These
times were obtained on a computer with Intel®Core™2 Quad Processor Q9300 2.5GHz with 4 GB
of RAM memory. Our method takes longer to initialize the tracking, but then the tracking
system becomes 2.3 times faster than the other method presented. The initialization time is
not a problem since this is only done once. The initialization is slower due to the fact that
the keypoints are extracted, instead of the sub-sampling process used by the other method. In
summary, the presented method obtains better results in terms of tracking (increased robustness
to occlusion), while using less points and resulting in an improvement in terms of processing
speed.

7.3 Summary

In this work, a system to perform the tracking of keypoints is presented and published
in [30]. The goal is to remove the necessity of applying a keypoint detector in all frames that are
analyzed. When this kind of approach is performed, the systems spend a lot of computational

88



time and they can not operate in real time. We intend to make the tracking of keypoints
because the main goal is to extract the descriptors of a particular object in the scene in order
to perform the recognition. In order to do this, several segmentation steps are presented, so
that the system can remove all the background and objects become isolated. When the objects
are segmented, a clustering method and the SIFT3D keypoint detector are applied, which is
used to initialize the particle filter. We use the SIFT3D keypoint detector because it has similar
features to those in IT [99]. Once it is initialized with the intended object, it is only necessary
to give as input the output of the segmentation.

With this approach, better results were obtained than using the OpenniTracker: a faster
and more robust method. For future work, we will intend to do the tracking of multiple objects
simultaneously and use keypoint detector instead of SIFT3D.

89



90

Biologically Motivated Keypoint Detection for RGB-D Data



Chapter 8

Conclusions and Further Work

This chapter presents the main conclusions that result from the research work described
in this thesis. Furthermore, it discusses a few research topics related with the work developed
that may be addressed in the future.

8.1 Main Conclusions

This thesis focused systems based on the human visual attention and HVY. The devel-
oped methods have characteristics that were obtained from studies in the field of neuroscience
and psychology. To understand those characteristics, an overview of the (chapter fJ) and a
review of computational methods that attempt to model visual attention (chapter ) was pro-
vided. The focus was mostly on bottom-up attention, although some top-down models were also
discussed in [129--133].

Visual attention is a highly interdisciplinary field with researchers coming from differ-
ent backgrounds. For psychologists, research conducted in human behavior is performed by
isolating certain specific tasks, so that the internal processes of the brain, often resulting in
psychophysical theories or models [134]. Neurobiologists observe the brain's response to cer-
tain stimuli [[135], using techniques such as fMRI, having therefore a direct view of the brain
areas that are active under certain conditions [45,[136,137]. Finally, engineers use the discov-
eries made in those areas attempting to reproduce them in computational models, so that the
processing time in some applications can be reduced [42--44]. In recent years, those differ-
ent areas have profited considerably from each other, psychologists use research conducted by
neurobiologists, to improve their attention models, while neurobiologists consider psychological
experiments to interpret their data [[134]. Additionally, psychologists began to implement com-
puter models or use computer models previously developed, to verify that they have a similar
behavior to that of human perception. Thus, psychologists tend to improve the understanding
of the mechanisms and help the development of better computational models.

Computational attention has gained a significant popularity in the last decade. One of
the contributors to the increase in popularity was the improvement in computational resources.
Another contribution was the performance gains obtained from the inclusion of visual attention
(or saliency detection) modules in object recognition systems [[131,138,139].

Most of the research presented in this thesis, was focused on the bottom-up component of
visual attention. While previous efforts are appreciated, the field of visual attention still lacks
computational principles for task-driven attention. A promising direction for future research
is the development of models that take into account time varying task demands, especially
in interactive, complex, and dynamic environments. In addition, there is not yet a principled
computational understanding of the visual attention. The solution is beyond the scope of a single
area. To obtain a solution it is necessary to have the cooperation of the several areas, from the
machine learning community, computer vision and the biological fields as well as neurology and
psychology.
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Table B.2 shows some areas where the saliency maps were applied, but with no refer-
ences to whether these can be used to extract directly keypoint locations, the most nearly
being the one of Rodrigues and du Buf [104]. The work of Ardizzone et al [[140] compared if
a particular method extracts the keypoints in salient regions. With this, an analysis was per-
formed on the top popular keypoint detectors and presented in chapter |, especially the ones
using RGB-D information. Furthermore, a description of the 3D descriptors and an evaluation of
3D keypoint detectors, on public available data with real 3D objects, were made. The exper-
imental comparison proposed in this work has outlined aspects of state-of-art methods for 3D
keypoint detectors. This analysis allowed to evaluate the best performance in terms of multiple
transformations (rotation, scaling and translation).

The novelties of this work, when compared with the work of Schmid et al. [17] and Salti
et al. [19] are: we are using a real database instead of an artificial, the large number of point
clouds and different keypoint detectors. The benefit of using a real database is that our ob-
jects have "occlusion”, this is because some materials do not reflect the infrared or from the
segmentation method. This does not happen when dealing with artificial objects, causing the
keypoint methods to display better results, but our experiments reflect what can happen in real
life, such as, with robot vision. Overall, SIFT3D and ISS3D yielded the best scores in terms of
repeatability and I1SS3D demonstrated to be the more invariant.

Another part of this research work was described in chapter 5 and encompassed the study
of a 2D keypoint detector in a recognition framework. The proposal of a novel keypoint detection
method is also made, called BMMSKD, that uses the retinal color information. The retinal color
information was applied as an extension to the method so that color information could
be used. The recognition evaluation of the proposed approach was made on public available
data with real 3D objects. For this evaluation, the keypoint detectors were developed using the
library and the 2D keypoint locations were projected to the 3D space to use available
3D descriptors on the library. It was possible to verify that the keypoint locations can
either help or degrade the recognition process and descriptors that uses color information should
be used instead of a similar one with shape information alone. Differences are big in terms
of recognition performance, size and time requirements, and thus the descriptor should be
matched to the desired task. If we want to recognize the category of an object or a real-time
system, the recommendation is to use the SHOTCOLOR method, since it presents a recognition
rate of 7% below of the PFHRGB but with a much lower computational cost. On the other hand, to
perform object recognition, the recommendation is to use PFHRGB, as it presents a recognition
rate 12.9% higher than SHOTCOLOR.

A novel 3D keypoint detector biologically motivated by the behavior and the neuronal
architecture of the early primate visual system was presented in chapter f. Similarly to chapter
B, a comparative evaluation was made where several keypoint detectors and descriptors were
compared on public available data with real 3D objects. is a keypoint detector to deter-
mine visual attention, which is also known as saliency maps. The saliency maps are determined
by sets of features in a bottom-up and data-driven manner. The saliency map is then produced
by the fusion of those sets, being the focus os attention sequentially directed to the most salient
point of the map, that represent a keypoint location. In the evaluation, the 3D keypoint de-
tectors and the 3D descriptors available in the library were used. With a similar average
number of keypoints, the proposed 3D keypoint detector outperforms all the 3D keypoint de-
tectors evaluated, achiving the best result in 32 of the evaluated metrics in the category and
object recognition experiments, while the second best detector obtained only the best result in
8 of these metrics (see table .4), in a total of 60 tests. The unique drawback we identified is
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the computational time, since BIK-BUS is slower than the other detectors. For a real-time sys-
tem, the ISS3D or Curvature detectors are more advisable choices, since theyare faster and their
performance is only surpassed by BIK-BUS. Finally, in terms of descriptors the recommendation
goes to either PFHRGB or SHOTCOLOR. PFHRGB should be used when one wants an accurate
recognition system, while for real-time the most advisable choice is the SHOTCOLOR, since it
presents a good balance between recognition performance and time complexity.

In this research work, an application for 3D keypoint detectors was also presented, called
PFBIK-Tracking, consisting on a system to perform the tracking of keypoints. The goal was to
remove the necessity of applying a keypoint detector in all the frames we wanted to analyze.
This is caused by the keypoint detectors being applied to all the frames, and therefore the system
would not be able to operate in real time. To solve this, a keypoint tracker was developed to
simulate the application of keypoint detectors to all the frames, since the main propose would
be to extract the descriptors of a particular object in the scene to perform the recognition.
For that propose, several segmentation steps were presented, so that we can remove all the
background and objects become isolated. Further to object segmentation, a clustering method
and the SIFT3D keypoint detector were applied, which was used to initialize the particle filter.
SIFT3D keypoint detector was used because it has similar features to those in IT [99]. Once it was
initialized with the intended object, it only needs to be fed with the output of the segmentation.
This approach obtained better results than when the OpenniTracker was used, and thereby a
faster and more robust method was presented.

The main objectives of this thesis were accomplished by the presentation of the three
methods. Together, the proposed methods allow the incorporation of characteristics with bio-
logical inspiration in recognition systems. Here, the experiments were done only in an object
recognition system, but it can be applied to other types, such as biometrics signal (e.g. 3D
face).

8.2 Future Work

Future work that could be developed should fall into three main focuses. The first line
of further research would be to reduce the computational cost of the two keypoints detectors
presented. Fot that purpose, we can consider a code parallelization or an implementation on the
General-Purpose Computation on Graphics Processing Unit (GPGPU) to reduce the computational
time of BMMSKD and BIK-BUS. The architecture of the methods makes the code parallelization
possible, as shown in figures .1 and b.1].

Secondly, it would be a good idea to seek further insights on why one keypoint detector
or a combination of a descriptor type and keypoint detector works better than others for a
specific test. This can be accomplished by selecting a small number of top keypoint detectors
and descriptors (based on the results presented in this research work) and analyze which are the
best pairs on the recognition of a particular type of category or object. In this work, an analysis
to cover the whole dataset and not focus on specific cases was made. A more complex analysis
was not performed for two reasons: 1) the dataset used in this work is very large, it consists of
300 objects and these are divided into 51 categories; 2) were also evaluate 135 pairs of keypoint
detector/descriptor and this analysis would render unfeasible using all these methods.

Finally, future work will focus on the proposed keypoint tracking system, where several
possibilities are still open and can be exploited. The first possibility is the replacement of the
keypoint detector to use the instead of SIFT3D. The reasoning behind this proposal is
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that the showed better results than SIFT3D in the object recognition framework.

Another point to explore that could improve this research work would be the dataset:
adding more objects and the way in which they move in the scene. This new dataset has al-
ready been captured, containing 46 different objects, organized into 24 categories and with long
periods of occlusion (such as out of the camera range and behind boxes). The acquisition of ob-
jects was made using a Kinect camera placed in several locations of a room, with the objects
over a remote controlled car, so that they could move around the room. To use this dataset is
would be necessary to segment the objects that are moving in the scene, so that several exper-
iments and comparisons could be performed. The first experiments should take into account
the evaluation made in chapters f and . This will allow to consolidate the results presented
in those chapters. With the segmented objects, it is also possible to propose a 3D CLEAR MOT
Metric [[141] to the 3D tracking approaches. This measure is only available for 2D methods and
does not consider the depth of the object. The difference to the measure proposed in chapter
7 is that it also makes the evaluation of the overlap between the position of the real object and
the approximation obtained by the tracking method. Finally, category and object recognition
using particle information and descriptors can be compared to the recognition process of using
keypoint detectors and descriptors.
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