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Resumo 
 
Nos últimos anos, o uso de têxteis com capacidade antimicrobiana tem vindo a aumentar 

significativamente. Compostos sintéticos antimicrobianos utilizados em artigos têxteis são 

muito eficazes face a uma grande gama de microrganismos. Mas o uso de têxteis 

antimicrobianos de forma contínua pode levar à resistência bacteriana e sensibilização dos 

utilizadores, bem como causar problemas ao meio ambiente. Para minimizar estes riscos existe 

atualmente uma grande procura de têxteis antimicrobianos produzidos com compostos naturais 

não tóxicos e amigos do ambiente. A baixa incidência de efeitos adversos com origem em 

compostos naturais relativamente aos compostos sintéticos pode ser explorada como uma 

alternativa atraente e promissora para aplicações têxteis. 

O método de funcionalização por camada sobre camada (Layer-by-Layer, LbL) pode fornecer 

novos tipos de revestimentos em materiais têxteis. Esta técnica LbL tem ganho uma grande 

aceitação na investigação académica e a nível industrial. Foi proposta por Decher e seus 

colaboradores no início dos anos 90 e desde então o seu impacto positivo pode ser comprovado 

através do crescente número de trabalhos publicados. 

Revestimentos por multicamadas de polieletrólitos naturais bioativos tornam-se num processo 

novo de funcionalização de superfícies. Esta técnica é desenvolvida em meio aquoso e envolve 

tipicamente a adsorção alternada de polieletrólitos de cargas opostas. A possibilidade de 

fabricar tais camadas, graças às interações eletrostáticas, permite a funcionalização de 

superfícies de praticamente qualquer tamanho e forma.  

Este conceito não é novo para algumas aplicações como seja a libertação de fármacos, mas é 

relativamente novo para aplicações têxteis. Na revisão da literatura foram encontrados alguns, 

mas poucos, trabalhos de investigação relativamente à aplicação do LbL em substratos têxteis 

naturais, como seja o caso do algodão. O uso de polímeros naturais para obter estas camadas 

pode auxiliar na resolução de problemas que ocorrem com os polímeros sintéticos. 

Relativamente aos polímeros naturais mais utilizados encontram-se o quitosano (CH) e o 

alginato (ALG) que são polissacarídeos bastante conhecidos por serem biocompatíveis, 

biodegradáveis, antimicrobianos e não tóxicos.  

Neste trabalho apresentam-se os resultados sobre a viabilidade e sucesso da deposição de 

camadas de polieletrólitos de CH e de ALG pela técnica do LbL em fibras de algodão. O 

revestimento do algodão por multicamadas de CH e ALG é construído através da adsorção de 

CH de carga positiva e oposta à carga da superfície do algodão, seguida pela adsorção de ALG 

de carga negativa, ou seja oposta á carga do CH. O substrato de algodão utilizado para a 

deposição das várias camadas foi pré-tratado antes da deposição dos polieletrólitos, de forma 

a ativar a sua superfície deixando-a com cargas negativas. A deposição sucessiva das 
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multicamadas de polieletrolitos foi analisada por 3 técnicas diferentes. Cálculo do ângulo de 

contacto entre uma gota de água e a superfície da amostra, coloração com um corante catiónico 

e análise por ATR-FTIR (Fourier Transform Infrared Spectroscopy with Attenuated Total 

Reflection). Estas técnicas indicaram que houve uma deposição alternada entre o CH e o ALG 

e também a presença de ligações eletrostáticas entre as camadas. Ficou assim demonstrado o 

sucesso na deposição de CH e ALG pela técnica do LbL em substrato têxtil de origem natural, 

neste caso o algodão.   

Com o fim de avaliar a atividade antibacteriana das amostras de algodão funcionalizadas, 

seguiu-se a norma Japonesa JIS L 1902:2002 para o método do halo (teste qualitativo) e método 

de absorção (teste quantitativo). Estes testes revelaram um efeito antibacteriano das amostras 

funcionalizadas, tanto para bactérias Gram-positivas (Staphylococcus aureus) como Gram-

negativas (Klebsiella pneumoniae). Com estes resultados verificou-se que era possível preparar 

estruturas com propriedades específicas. Este método permite assim a possibilidade de 

desenvolver novos produtos têxteis funcionais para aplicações biomédicas, podendo também 

com este método do LbL obter amostras que tenham um papel no desenvolvimento de um 

sistema de libertação de fármacos no local pretendido.  

As amostras anteriores foram ainda analisadas por microscopia eletrónica de varrimento 

(Scanning Electron Microscopy, SEM). Esta análise teve como objetivo visualizar o grau do dano 

sofrido na estrutura das bactérias testadas por ação do CH e ALG. A fase seguinte consistiu em 

otimizar um método para incorporação de L-cisteína (L-cys), que é um agente antimicrobiano, 

entre as camadas de CH e ALG depositadas em amostras de algodão pelo método do LbL. Entre 

os diversos métodos utilizados para incorporar a L-cys, o que melhores resultados produziu foi 

aquele onde se fez uso da propriedade do ALG em formar gel na presença de cálcio. Verificamos 

que a L-cys pode ser incorporada diretamente entre as camadas de CH e ALG sem que ocorra 

qualquer ligação covalente entre a L-cys e os polieletrólitos de CH e ALG. Desta forma o agente 

bioativo (L-cys) ficou imobilizado sem perder as suas características bioativas e tem como 

grande vantagem a possibilidade de podermos selecionar outros tipos de agentes bioativos sem 

a necessidade de nova otimização do método de incorporação. Nestas novas amostras foram 

analisadas as propriedades antibacterianas para o Staphylococcus aureus e para Klebsiella 

pneumoniae segundo a norma já referida anteriormente, e os resultados mostraram um 

aumento no efeito antibacteriano devido à presença da L-cys.  

Por último, a L-cys foi substituída por péptidos antimicrobianos (antimicrobial peptides, AMPs), 

já que são a nova geração de antimicrobianos. Foram utilizados 4 AMPs de características 

diferentes. A profundidade em que cada AMPs se encontra incorporado entre as camadas foi 

determinada por análise de energia dispersiva de raios X (Energy Dispersive X ray, EDS). Para 

estas últimas amostras foram feitos os testes antibacterianos e analisada a citotoxicidade para 

o valor das concentrações usadas. Foram também analisadas as curvas de libertação para o 

exterior dos AMPs incorporados no algodão funcionalizado. Com os resultados obtidos confirma-
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se que esta nova funcionalização de algodão revestido com camadas de CH e ALG pela técnica 

do LbL e com incorporação de AMPs, conduz a bons resultados antimicrobianos e de 

citotoxicidade, podendo assim estas amostras ser utilizadas na área da saúde, especificamente 

como compressas. 

 

Palavras-chave 
Layer-by-Layer, Agentes antimicrobianos, Têxteis bioactivos, Aplicações biomédicas, 

compressas. 
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Abstract 
 
Polyelectrolyte multilayer coatings have become a new and general way to functionalize a 

variety of materials. Particularly, the Layer-by-Layer (LbL) method is a technique developed 

for the coating of solid surfaces. The LbL technique presents a unique mean to construct surface 

coatings that can conform to a variety of biomaterial surfaces and serve as matrices enabling 

controlled delivery of bioactive molecules from surface. As the deposition process is achieved 

in aqueous medium, incorporation of active agents is possible since the coatings obtained by 

LbL are less densely packed and this is advantageous for diffusion through the coating. 

The coating is constructed by the alternate adsorption of oppositely charged polyelectrolytes 

at the surface of the material, easily obtained when it is dipped in polyelectrolyte solutions. A 

deposition cycle creates a layer, and these cycles can be repeated as often as needed. 

This study aims to obtain novel bioactive textiles with potential application as wound-dressings. 

The biopolymers chosen for the functionalization of cotton (substrate), were chitosan (CH) and 

alginate (ALG). The multilayer coating of cotton with CH and ALG is constructed by the 

adsorption of CH and ALG with opposite charge on the surface of cotton substrates. The 

successive deposition of multilayers of CH and ALG was analyzed by three different techniques. 

Contact angle between a water droplet and the surface of the sample, cationic dye staining 

method and analysis by ATR-FTIR (Fourier Transform Infrared spectroscopy with Attenuated 

Total Reflection). These techniques showed that there was alternating deposition between CH 

and ALG and the presence of electrostatic bonds between the layers. In order to evaluate the 

antibacterial activity of the functionalized cotton, the Japanese standard JIS L 1902:2002 for 

the halo method (qualitative assay), and the absorption method (quantitative test) were 

assessed. These tests revealed an antibacterial effect on the functionalized cotton for both 

Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Klebsiella 

pneumoniae). 

In addition a method was optimized for incorporating L-cysteine (L-cys) between the layers of 

CH and ALG deposited on cotton samples by the LbL, in order to obtain a better antimicrobial 

effect. Several strategies were used and the best results were obtained by the method where 

the ALG turns into a gel in the presence of calcium, since L-cys can be incorporated directly 

between the layers of CH and ALG without any covalent bond. Thus, the bioactive L-cys agent 

was immobilized without losing its bioactive characteristics. These new samples were analyzed 

for the antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae 

according with the previously used standard, and the results showed an increase in the 

antibacterial effect due to the presence of L-cys.  

This new coating method has the great advantage to able to select other types of bioactive 

agents without needing further optimization. In this way, L-Cys was replaced by antimicrobial 

peptides (AMPs). The reason for the use of AMPs is related with the continuous use of antibiotics 
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which resulted in multiresistant bacterial strains all over the world. Consequently, there is an 

urgent need to search for alternatives for antibiotics. The AMPs are the new generation of 

antimicrobials.  Four AMPs of different features were used. The depth in which each AMPs is 

incorporated between the layers was determined by energy dispersive analysis of X-rays (Energy 

Dispersive X-ray EDS). Results showed, that all AMPs used have a higher antimicrobial effect 

when compared with previous samples (with and without L-Cys) for both microorganisms and 

are non-cytotoxic to normal human dermal fibroblasts at the tested Concentrations. This 

confirms that this new functionalization approach of cotton coated with layers of CH and ALG 

by the LbL technique with incorporated AMPs leads to good antibacterial and cytotoxicity 

results, which make them suitable to be used as wound dressings. 

 

Keywords 
Layer-by-Layer, Antimicrobial agentes, Bioactive textiles, Biomedical applications, wound 

dressing 
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Thesis Overview 
 
This thesis is structured in four main chapters 

 

The first chapter includes an introduction divided in two sections. One section explains the 

importance of antimicrobial textiles, the most used antimicrobial agents (synthetic and natural 

compounds) and a review of antimicrobial activity in textile materials. The second section is 

presented as a publisher paper review form – Layer-by-Layer assembly as a promising technique 

for the biofunctionalization of cellulosic fibres with emergent antimicrobial agents. (PAPER I). 

 

The second chapter presents the main purpose and the specific goals that were established 

for the development of this research work. 

 

In the third chapter, the results obtained during this work are presented and discussed in the 

form of original research papers organized as follows: 

 

PAPER II – Layer-by-Layer Deposition of Antibacterial Polyelectrolytes on Cotton Fibres 

 

PAPER III – Assessment of bacteria-textile interactions using Scanning Electron Microscopy: A 

study on LbL chitosan/alginate coated cotton. 

 

PAPER IV – Layer-by-Layer deposition of antimicrobial polymers on cellulosic fibers: a new 

strategy to develop bioactive textiles. 

 

PAPER V – New Biomaterial Based on Cotton with Incorporated Biomolecules. 

 

PAPER VI – Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical 

applications. 

 

In the fourth chapter is made a general discussion of the results obtained over all paper, 

concluding remarks about this work and some future work are suggested to complement this 

study. 
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1. Introduction 

 
1.1 Antimicrobial Textiles 

Textiles play an important role in the daily lives of humans. Textile substrates, especially of 

natural origin, such as cotton, can easily be colonized by microorganisms because they retain 

oxygen, water, and nutrients required for their growth. The presence of microorganisms in 

fabrics affects not only the textile properties but also the wearer. These may result in offensive 

odors, color degradation, cross-infection or transmission of diseases, allergic responses and 

deterioration of textiles [1]. To combat these adversities it is highly desirable to impart 

antimicrobial properties to the textile materials. As a consequence, the number of 

biofunctional textiles with an antimicrobial activity has increased considerably over the last 

few years. 

 

Antimicrobial textiles were first created to prevent damage to textiles under adverse 

environmental conditions during their storage or use. In fact, antimicrobial textiles were first 

used during World War II [2]. Actually, their application is extended to technical cloths, 

underwear, sportswear, home furnishing and protective clothing in areas with high risk of 

pathogens infection (hospitals, schools and hotels) [3]. Moreover, the antimicrobial fabrics are 

nowadays being used as medical devices for prevention, as surgical lab coats, or therapy, as 

wound dressings [3].  

 

It is extremely important that protective clothing and hospital linen meet the demands for 

antimicrobial protection. Materials for use in surgery must ensure adequate protection against 

microorganisms, biological fluids and aerosols, i.e. impermeability for microorganisms in wet 

and dry atmospheres, and also for air-borne microorganisms. Disease transmission prevention 

is important for intracorporeal or implantable devices within the human body (vascular grafts 

and sutures) and for extracorporeal devices such as catheters and hollow fibres for dialyzers 

[4]. Furthermore, wound dressings also need to prevent infection and promote faster wound 

healing. Therefore, controlling the undesirable effects of microorganisms on textiles is 

becoming an important issue, especially within the medical textile industry. Thus, medical 

products will perhaps be the largest application of antimicrobial textiles [3, 5]. 

 

Another very important aspect is related with the abuse of antibiotics that has resulted in the 

continual emergence of resistant strains of bacteria, further complicating the clearance of 

infection in cutaneous wounds [6]. Textile materials are one of the main factors for disease 

transmission and also the need to enhance the quality of people’s life (medical staff, patients, 

and visitors) have stimulated intensive research and development of antimicrobial textiles [20]. 

Thus, it is crucial to impart antimicrobial activity to textile materials in order to protect the 
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user from microorganisms contamination. Another aspect of antimicrobial functionalization of 

textiles is to add a therapeutic value to the material, intended for example, for wound healing 

[7]. 

 

Considering the environment, new antimicrobial textiles must be based on biodegradable 

molecules, due to the interest to reduce adverse effects on the environment. Among the many 

polymeric materials available, cellulose fibres are particularly attractive, being naturally 

occurring, and easy to functionalize [8]. 

 

1.2 Antimicrobial agents for textiles 

1.2.1 Synthetic compounds 
 
A number of different antimicrobial agents have been employed to impart antimicrobial activity 

to textile materials. These antimicrobial agents include inorganic salts, organometallics, 

iodophors, phenols and thiophenols, antibiotics, heterocyclies with anionic groups, nitro 

compounds, ureas, formaldehyde derivatives, amines [9], silver salts or silver nanoparticles 

[10], quaternary ammonium salts, triclosan, dyes and regenerable N-halamine compounds [9, 

11]. The possible toxic effects produced by some of these agents on human beings are listed in 

table 1. 

 

 

Table 1 – Possible toxic effects of some commercially available synthetic antimicrobial agents 

on human being (adapted from Shahid et al., 2013 [12]).  

 

Synthetic agent Toxic effect Ref. 

Quaternary ammonium 

compounds 

Respiratory irritation, nausea, skin and eye 

irritation 

[13] 

Silver Argyria, contact dermatitis, mucous membrane 

irritation 

[14] 

Zinc pyrithione Developmental and neurotoxicity [15] 

Synthetic azo dyes Carcinogenic [16] 

Triclosan Endocrine disrupter, skin and eye irritation [17] 

 

 

Most of these agents are toxic to humans and are not environmental friendly [1, 18]. In addition, 

another big concern is that some of these agents are being increasingly resisted by microbial 

pathogens [9]. Therefore the role of antimicrobial textile has now become increasingly 
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demanding and has strengthened the interest in alternative ecofriendly and biodegradable 

antimicrobial agents.  

1.2.2 Natural compounds 
 
 
To minimize the risks listed in table 1 associated with the application of antimicrobial agents 

(synthetic compounds), there is a great demand for antimicrobial textiles based on non-toxic 

and ecofriendly bioactive compounds [19]. Due to the relative lower incidence of adverse 

reactions of natural products in comparison with synthetic pharmaceuticals, they can be 

exploited as an attractive ecofriendly alternative for textile applications [20]. 

 

Recently, the use of natural biopolymers has been preferred for textile modification, since they 

have several advantages such as abundant availability, biocompatibility, and biodegradability, 

and therefore ecological safety [21]. In textiles the incorporation of natural polysaccharides is 

a new concept which has been introduced in recent years. Table 2 show a brief list of the 

sources and important characteristics of some natural biopolymers explored on the textile 

substrates. 

 

Table 2 – Characteristics of some biopolymers used in antimicrobial finishing of textiles, 

(adapted from Shahid et al., 2013 [12]). 

 

Biopolymer Source Characteristics 

 

 

Chitosan 

 

 

Crustaceans and fungi 

Biocompatible, biodegradable, antimicrobial 

activity, antistatic activity, non-toxic, chelating 

property, deodorizing property, film forming 

ability, chemical reactivity, polyelectrolyte 

nature, dyeing improvement ability, cost-

effectiveness, thickening property, wound 

healing activity 

 

 

Cyclodextrin 

 

 

Starch 

Ecofriendly nature, inclusion complex forming 

ability, insecticidal delivery, slow release of 

fragrances, solubilizing ability, ease of 

production, cost-effectiveness, chelating 

activity, drug carrier ability 

 

Sericin 

 

Silk worm 

(Bombyxmori) 

Biocompatible, biodegradable, UV resistant, 

oxidative resistant, moisture retention capacity, 

antibacterial, gelling property, adhesion ability 
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Biopolymer Source Characteristics 

 

Alginate 

 

Brown sea weeds 

High moisture absorbing capacity, 

biocompatibility, wound healing ability, gelling 

property, antibacterial activity 

 

 

1.3 Evaluation of antimicrobial activity 

 

The antimicrobial agents, synthetic or natural, kill or inhibit the growth of microorganisms. 

Among these agents are bacteriostatic that inhibit bacterial growth, without killing them. The 

agents that kill the bacteria are named bactericidal. 

 

In recent years, the industry has grown rapidly and developed to form a new global industry, 

with Japan, the United States, Europe, China and other countries gradually establishing their 

own antibacterial standards and guidelines. There are a wide range of methods available to 

examine the interaction of microorganisms with textiles. Several testing methods are published 

on the qualitative and quantitative evaluation of antimicrobial activity of textiles. Qualitative 

test methods are used widely for evaluation of bacteriostatic activity and include procedures 

such as measurement of the zone of inhibition for evaluation of samples treated with 

antimicrobials. Quantitative test methods are used to evaluate the bactericidal activity of 

textile materials by measuring the reduction in bacterial numbers when contacted by test 

samples under defined conditions. Generally, a typical Gram positive organism, such as 

Staphylococcus aureus and a Gram negative organisms such as Klebsiella pneumoniae, are used 

in the test. 

 

The major in use qualitative tests for evaluation of antimicrobial activity of textile materials 

are [2]: 

 

• AATCC 147-1998 – antibacterial activity assessment of textile materials. 

• JIS L 1902-Halo method - testing method for antibacterial activity of textiles, 

qualitative test. 

• ISO 20645 – textile fabrics – determination of the antibacterial activity – agar plate 

test. 

 

Quantitative tests for evaluation of antimicrobial activity of textile materials more know are 

[2, 22]: 
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• ASTM E2149-01- standard test method for determining the antimicrobial activity of 

immobilized antimicrobial agents under dynamic contact conditions. 

• AATCC 100-1999 - antibacterial finishes on textile materials. 

• JIS L 1902-Absorption method - testing method for antibacterial activity of textiles, 

quantitative test. 

• ISO 20743 – textiles- determination of antibacterial activity of antibacterial finished 

products. 

 

The methods described in AATCC-100, AATCC-147 and JIS L 1902 appears to be the most 

commonly employed. In the effort to move toward global standardization, the Japanese 

Standard JIS L 1902 has been revised and harmonized with the European Standard and 

International Standard EN ISO 20743. This standardization reflects the opinions of multiple 

countries and will help to promote the development of textile products with antibacterial 

functions that can be used around the world. In the review of the literature it was found that 

for the qualitative tests antibacterial AATCC 147 and JIS L 1902-Halo method, no differences 

were observed between them. Concerning the two quantitative methods, AATCC 100 and JIS L 

1902-Absorption method, the results showed that the JIS L 1902 method is more sensitive to 

the amount of antimicrobial agent than the AATCC 100 test [2, 23]. 

 

Therefore in this thesis the antibacterial activity of cotton samples was evaluated using the 

antibacterial test JIS L 1902:2002, which is recommended by the renowned German test of 

Hohenstein institute. 

1.3.1 Antibacterial test JIS L 1902:2002 
 
 
The advantages concerning the antibacterial test JIS L 1902:2002 are as follows: the method 

parameters are more carefully spelled out than an alternative antimicrobial fabric method 

AATCC 100; this quantitative method is generally reproducible; this method tests are for both 

bacteriostatic (growth-inhibiting) and bactericidal (bacteria-killing) properties on a given 

antimicrobial fabric; microbial concentrations are standardized and bacteria are provided with 

nutrients during the incubation period, which provides them with ample opportunity to grow if 

the test fabrics are not sufficiently antimicrobial; the method stipulates triplicate 

experimentation, which helps estimate the precision of the individual tests and increases 

overall experimental accuracy and the method includes a “pass/fail” criterion for the 

calculated levels of antimicrobial activity observed in test samples, making determinations of 

antimicrobial activity less discretionary.  

JIS L 1902 was developed in Japan for testing silver-based antimicrobials. It primarily differs 

from AATCC 100 in that the nutrient level in the inoculums broth is diluted to 1:20. JIS L 1902 

also is explicit about calculating results for treated products versus those for untreated controls 
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and calls for testing in triplicate. The low nutrient level for JIS L 1902 biases testing to provide 

more positive results for antimicrobials such as silver and cationic antimicrobials, which can be 

neutralized by proteins in the nutrient [24]. 

In the qualitative method, samples of textiles are placed onto agar plates, which have been 

inoculated with bacteria and are then incubated under humid conditions at 37ºC for 24 – 48 

hours. The intention is that with intimate contact between the textile, the bacteria and the 

growth medium will result in the inhibition of growth either immediately adjacent to the textile 

or in an area around the textile. These methods are generally acknowledged as being non 

quantitative although they could potentially be employed as assays of certain antimicrobial 

products in the same manner that such techniques are used for some antibiotics. Although these 

techniques are considered to be unsuitable for quantifying the effect of the antimicrobial 

effects of treated textiles [2]. 

In addition to the qualitative tests, it can be provide quantitative data on the effect of treated 

textiles on bacteria. In this case replicate samples (6 of the control and 3 of the treated) are 

inoculated with individual bacterial species (Staphylococcus aureus and Klebsiella pneumoniae) 

suspended in a heavily diluted nutrient medium. The samples are incubated under humid 

conditions at 37ºC for a specified contact time. Activity is assessed by comparing the size of 

the initial population in the control with that present following incubation. No neutraliser is 

employed during cell recovery [2]. This method needs much time to be realized and the 

procedure is very complex. When the number of samples increases, the complexity also 

increases. 

Quantitative bacterial testing can be used for all antimicrobials. Comparisons can be made 

between different antimicrobial treatments as well as various treatment levels on the same 

textile. These methods better simulate real-world conditions than other methods. There are 

also disadvantages to quantitative tests, the disadvantages are, these tests are long, complex, 

and expensive, requiring a large number of manipulations to the sample and organisms.  

 

1.4 The potential use for antimicrobial textiles 

1.4.1 Wound dressings 
 

Wound dressings should prevent bacteria or toxic materials from entering through the wound 

site. The skin plays an important role in human body and prevents from being infected by 

microbes. Skin generally needs to be covered with a dressing immediately after it is damaged. 

Conventional wound dressings such as bandages, gauze and foam dressing just cover the surface 

of the wound and absorb tissue exudates. However they cannot provide an appropriate 

environment for tissue repair and regeneration, as they easily adhere to wound and damage 
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the new epithelial tissue leading to bleeding. Advanced dressings, including biological and 

synthetic scaffolds, can provide a physical barrier against secondary infection, as well as a 

compatible physiological environment [25]. Literature has predominantly investigated metallic 

nanoparticles, mostly silver [26], as promising antibacterial agent. Silver nanoparticles have 

historically been the leading candidate because they have a very low minimum inhibitory 

concentration for most bacteria [26], indicative of their strong antibacterial activity. However, 

the use of silver is problematic because silver resistance has already been observed in 

Pseudomonas aeruginosa and the continued use of silver as an antimicrobial agent will likely 

lead to increased silver resistance in other microorganisms. Additionally, it has been 

demonstrated that metallic nanoparticles have multiple organ toxicity [27].  

 

Wound dressings based on alginate (ALG) is well known in literature and retain exudate away 

from the wound bed, thus preventing harmful proteases from disrupting healing, whilst 

maintaining a moist environment for improved wound healing. ALG interact with the wound by 

donating calcium ions to the bed in exchange for sodium ions present in wound exudate, 

facilitating blood coagulation, thus assisting haemostasis [28]. 

 

A major problem is the tendency of dressings to adhere to the wound surface since when the 

dressing is removed, considerable damage is inflicted on the newly formed epithelium. The gel 

forming property of ALG helps in removing the dressing without much trauma and reduces the 

pain experienced by the patient during the change of dressing. It also provides a moist 

environment that leads to rapid granulation and re-epithelization. 

 

Chitosan (CH) is also known in the wound management field for its haemostatic properties. 

Further, it also possesses other biological activities and affects macrophage function that helps 

in faster wound healing [29]. Several different mechanisms for microbial inhibition by CH have 

been proposed. The most accepted one is the interaction of the positively charged CH with the 

negatively charged residues at the cell surface of many fungi and bacteria, which causes 

extensive cell surface modifications and alters cell wall permeability [29, 30]. As a result, CH 

inhibits the normal metabolism of microorganisms and finally leads to the death of these cells. 

 

Systems simultaneously composed of CH and ALG offer the advantages of both materials and 

can be tailored for several biomedical applications, such as wound dressing and drug delivery 

systems. According to Paul and Sharma (2004), skin injuries treated with CH-ALG membranes 

show a substantial decrease in the healing period and minimum scar formation when compared 

with the use of conventional covers [31]. 
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1.4.2 Wound dressing for drug delivery 
 
 
Wound infection is the major difficulty in the field of wound care management, because such 

infection can cause to form exudate, delay the wound healing and facilitate improper collagen 

deposition [32]. Polymer networks have shown the promise as a way of incorporating 

antimicrobial agent into polymer such as the antibiotic streptomycin sulphate [25] or 

tetracycline [30] where the polymer networks act as a carrier for the antibiotics delivery 

system. 

Wound dressings for drug delivery systems containing drugs and growth factors are being 

researched so that they can be used to improve for difficult wound treatments. Wound dressings 

that include biological factors, such as growth factors and drug helping wound healing, have 

been developed in various forms, including aqueous solutions, creams, and ointments [33]. 

Modern dressings, such as hydrocolloid, hydrogel, ALG, polyurethane foam/film, and silicon 

gel, are used to deliver the biological factors to the wound sites [34]. 

These dressings can deliver too therapeutic agents such as antibiotics, vitamins and mineral 

supplements to the wound site and help in improving wound healing. The polymers that are 

employed for drug delivery include poly(vinyl pyrrolidone) [35], poly(vinyl alcohol) [36], 

collagen [37, 38], CH [39, 40] and ALG [31, 41]. In modern wound care practice, drugs such as 

gentamicin [42], minocycline [43], tetracycline [30, 44, 45], streptomycin [46], silver 

sulfadiazine [41, 47] are generally used to treat wounds. 

Improved wound dressing that provide an inherent antimicrobial effect by eluting germicidal 

compounds have been developed to respond to problems associated with conventional topical 

treatments with ointments and creams, usually incorporating silver ions as the active agent. 

Wang et al. (1985) and Boosalis et al. (1987) have demonstrated significant absorption of silver 

from large burn wounds treated topically with silver sulfadiazine cream, which may increase 

the risk of cytotoxicity of the treated tissues [47-49], as already mentioned above that silver 

ions are highly toxic and may delay burn wound healing if applied indiscriminately to healing 

tissue areas.  

A variety of wound dressings that incorporate active agents are available on the market; they 

include iodine (Iodosorb by Smith & Nephew), chlorohexidime (Biopatch by J&J), and silver ions 

(Acticoat by Smith & Nephew, Actisorb by J&J, and Aquacel by ConvaTec.) [50]. 

 

Final remarks 

Accordingly, the research work presented in this thesis revealed the success of 

biofunctionalization of cotton with antimicrobial agents of CH and ALG. A durable antimicrobial 

effect over Staphylococcus aureus and Klebsiella pneumoniae was obtained without 
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cytotoxicity. In addition, due to the widespread resistance of bacteria to antibiotics, 

antimicrobial peptides were incorporated into biofunctionalized cotton, as samples candidates 

for future therapeutic use as wound dressings. 
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Abstract 

Polyelectrolyte multilayer coatings have become a new and general way to functionalize a 

variety of materials. Particularly the Layer-by-Layer (LbL) method is a technique that allows 

coating solid surfaces, giving them several functionalities, allowing as well the controlled 

release of bioactive agents starting from the surface. Presently there is a large number of 

applications of the LbL technique in various areas, however still little explored in the textile 

area. In this mini-review we present an overview of LbL on textiles, either synthetic or natural 

fibres, more specifically on cotton materials to obtain a new bioactive textile with potential 

application in medical field. We also review the recent progress in the embedding active agents 

into multilayers obtained from LbL as a novel way to have a “reservoir” where bioactive agents 

can be loaded between the multilayers for subsequent release. 

Keywords: Layer by Layer; Cotton; Bioactive agents; Bioactive Textiles; 
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1. Introduction 

1.1 Antimicrobial textiles 

The number of functionalized textiles with antimicrobial activity has increased considerably 

over the last few years. Antimicrobial textiles were first created to prevent damage to textiles 

under adverse environmental conditions during their storage or use. Textiles are widely used in 

day-to-day life and there has been a growing need to develop finishes for textiles materials 

that can offer improved protection to the users from microbes (bacteria, fungi), which can 

cause numerous problems. Hence there is a pressing need to develop functionalized textiles 

that are resistant to microbes and these textile substrates can find various applications in the 

health-care area. Synthetic antimicrobial compounds used in textile articles are very effective 

against a wide range of microorganisms. But, the continuous use of antimicrobial compounds 

can lead to bacterial resistance and desensitization of users and cause environmental problems 

[1-4]. 

To minimize these risks, there are currently a high demand for antimicrobial textiles produced 

with non-toxic natural compounds and environmentally friendly. The low incidence of adverse 

effects on natural compounds in relation to synthetic drugs can be explored as an attractive 

and promising alternative for textile applications [5-7].  

Cotton is the textile substrate more used in the health sector, and is known for its versatility, 

natural comfort, softness, breathability, and ability to absorb moisture [8], being mainly 

composed of cellulose fibres [3, 4]. It’s used to make all kinds of clothes, for industrial 

purposes, as well as in biomedical applications. So due their properties, cotton becomes a 

potential to be used as wound dressing. Today cotton gauze is still the most commonly used 

textile for wound dressing in hospitals, however new products have emerged that help wound 

healing and protects from the entry of bacteria. For exudative wounds, there are a range of 

absorptive products including various hydrophilic foam dressings, hydrogels and alginates, 

which can absorb up to 20 times their weight [9]. Also, the cotton is an excellent surface for 

growth and development of microorganisms, making it an attractive material for the 

biofunctionalization with antimicrobial agents. 

 

1.2 Current functionalization processes for textile materials  

 

Coating is an important technique to add value to technical textiles and is a way to their 

functionalization. It is a process in which a polymer layer is applied directly to one or both 

surfaces of the fabric. Nanotechnology has received special attention by the textile industry 

through the application of nanotechnology in textiles to attain multifunctional [10] or special 
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functions, such as antimicrobial coating with potential use in reducing the risk of microorganism 

transmission.  There are several processes for the application of coating to the textile material 

depending upon the requirement of the end product. The most significant processes are: sol-

gel technique, which  is a wet process that is broadly employed in the textile field using a 

simple pad or dip coating; magnetron sputter coating, which is one of the physical vapour 

deposition methods, and plasma, which is a suitable technique for modifying the structure and 

topography of the surface as well as deposing of composites onto the surfaces [11]. These 

methods have a number of disadvantages, such as: the use of expensive solvents and 

equipment, several steps need to be followed which makes them relatively complex, under 

certain conditions it may be necessary to use high temperature and are dependent on the 

surface topography. With all these disadvantages, new strategies were attempted, in particular 

the LbL technique that is very attractive due to its simplicity and efficiency. LbL technique is 

nowadays used to provide coating in textiles surface and a wide range of functionalities have 

been imparted [12]. The prerequisite for the successful of LbL coating is the presence of a 

minimal surface charge in the substrate. However the LbL deposition process has not been 

extensively implemented in textile, particularly in textiles from natural fibres, maybe due to 

the unique characteristics of natural fibres including the chemical heterogeneity of their 

surfaces which complicates the application of such coatings. 

 

2. LbL Assembly Technique 

LbL is a simple and versatile method which can provide new types of coatings for textile 

materials. It was proposed by Decher and his collaborators in the early 90s [13] and since then 

its positive impact can be demonstrated by the growing number of published papers. This 

technique has been described as being able to cover many kinds of surfaces when they are 

charged [14].  

The LbL assembly is a technique of depositing multilayers with controlled architecture and 

composition performed in aqueous solutions. The electrostatic interaction is the main driving 

force within the neighbouring layers of polyelectrolyte multilayers. Generally, LbL assembly 

proceeds as follows: (1) a charged substrate is immersed in a solution of an oppositely charged 

colloid to adsorb the first monolayer, then (2) a washing cycle follows to remove unbound 

material and, finally (3) the coated substrate is submerged to deposit a second layer and the 

multilayered structure is formed [15]. A deposition cycle creates a bilayer, and these cycles 

can be repeated as often as needed. Therefore, cross-linking is often applied to convert LbL 

multilayers to surface hydrogel [16]. The number of deposition cycles and the types of 

polyelectrolytes used in the construction allows full control of the thickness and roughness of 

the multilayered film [17]. Usually, multi-layered films based on electrostatic interaction tend 
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to be affected by the environmental conditions, such as, pH, concentration of polyelectrolytes, 

nature of solvents, ionic strength and pH of solutions [14, 18, 19]. 

Depositing materials can be selected from a large variety, including small organic molecules, 

polymers, natural proteins, inorganic clusters, clay particles or colloids. It open´s new 

possibilities never tested before since it able to combine such a diversity of components in 

single devices whose architecture and features are controlled. Surface functionality can be 

controlled directly by choosing appropriate polyelectrolytes. Surface modification results in a 

multitude of new properties that were previously not associated with the native material 

(substrate). These changes include modifications of the electrical, optical, magnetic, 

physicochemical and biological properties of the materials. These multilayer coatings of 

bioactive natural polyelectrolytes become a new process for biofunctionalizing surfaces. By this 

technique it is also possible to control the required multilayer thickness, location and sequence 

of the layers. 

One advantage of LbL technique is that the process is inexpensive, relatively fast and simple, 

it does not require sophisticated equipment and precise stoichiometry, nor does rely on 

complicated chemical reactions to deposit successive layers [20]. Another advantage to the LbL 

deposition is the independence of size or shape of the substrate. It means that an LbL assembly 

can be realized not only on planar substrates, but also on substrates with different shapes. 

Caruso et al., (1998) have demonstrated LbL deposition on a spherical template. After template 

dissolution, microcapsules were obtained [21]. So, theoretically the substrate can have any 

size, shape, topography, or topology, and no stoichiometric control is necessary to maintain 

surface functionality nor propagation of defects [22]. 

Another advantage of the LbL technique is that pH can be used as a parameter to adjust the 

strength of inter-layer bonding and over the required multilayer thickness. The only 

disadvantage of this technique is the prerequisite for successful LbL coating, consisting of the 

presence of a minimal surface charge. However, charge can be induced to still facilitate the 

LbL technique [23]. 

All knowledge about the LbL was transferred to the field of drug delivery systems allowing the 

creation of sophisticated delivery systems, such as the production of capsules where the drug 

is encapsulated inside, in order to be released gradually. A major challenge in drug delivery is 

to produce controlled, sustained or triggered release systems for small encapsulated drug 

molecules. These processes can be found in a review article developed by Wohl and Engbersen 

(2012) [24]. 

Other research groups have employed the LbL technique to create multilayer coatings of 

synthetic and natural polyelectrolytes with application in the biomedical field [25]. This 

multilayers have the characteristic of low packing density, allowing easier diffusion of a 

bioactive agent through these multilayers. The bioactive agents are incorporated in most cases 

by embedding through the multilayers, being a recent area that has attracted the attention of 
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researchers, due to the advantage of controlling the incorporation and release of the bioactive 

agent. 

The release of bioactive agents can involve their diffusion from the multilayers. Various 

parameters such as pH, ionic strength, temperature, light or chemical or electrochemical 

stimuli have been used to tune release and/or retention of bioactive agents within multilayers. 

This parameter for release is able to provide the dose of drugs on demand with reduced toxicity 

and increased efficacy [16].  

Using the concept of diffusion from the multilayers, several authors immobilized more than 10 

different water soluble proteins into multilayers ensuring the inhibition of protein denaturation 

[26-28], preservation of the functional characteristics of some compounds  showed good results 

in the incorporation of proteins and drugs between the multilayers by diffusion with subsequent 

release [29-33]. 

Studies have emerged, in which bioactive proteins, peptides, hormones, growth factors or drugs 

could be directly integrated in the LbL architecture without any covalent bonding with a 

polyelectrolyte, maintaining their native structures and their activities [29, 34-41]. The 

strategy described in all these papers can be valuable for various drug/bioactive agents. This 

result opens the route for substrates functionalization by multilayers with embedded bioactive 

agents, therefore the multilayers can act as a reservoir for bioactive agents and these can be 

gradually released and controlled. 

LbL technique is not new for many applications as shown in a recent review article that analyses 

exhaustively the potential uses of LbL method in biomedical engineering [42], but it is relative 

new for textile applications. In recent years, researchers have used the LbL process to modify 

the surface of textile fabrics to impart or improve upon numerous surface properties including 

UV protection [43, 44], hydrophobicity/hydrophilicity [45, 46], flame retardancy [47-49] and 

antimicrobial activity [50-52].  

In the present mini-review, our aim is to assess the feasibility of obtaining functionalized cotton 

samples with antimicrobial properties achieved by the method of LbL with bioactive agents 

between the layers, and subsequent controlled release. This approach is supported by the work 

of Caridade et al. (2013) where they studied the production of thick membranes by LbL of 

chitosan and alginate and the membrane permeability to the bioactive agent [53].  

 

 

3. LbL in textile materials 

The LbL process has been widely used to create multilayer films on various substrates. However, 

it has not been extensively employed in textile fibres. Textile fibres has some unique challenges 

for LbL assembly including the chemical heterogeneity of their surfaces as well as their irregular 
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shapes [54]. Since LbL is a new and innovative method of functionalization of materials, there 

are presently some works applied to textile fibres, which can be divided in two categories, 

synthetic and natural fibres. 

 

3.1 LbL in textile materials of synthetic fibres 

Synthetic fibres form an important part of textile industry. There are many different kinds of 

synthetic fibres, but the most used are polyester, polyamide (nylon), polyvinyl alcohol and 

polypropylene. A great disadvantage of some synthetic fibres is their low hydrophilicity. This 

affects the processing of LbL because the fibre surface is not easily wetted. Table 1 shows a 

summary of the state of the art in the last decade referring the use of LbL in textile materials 

of made of synthetic fibres. 

Table 1 shows that the polypropylene is the synthetic textile substrate more used followed by 

polyester and polyethylene terephthalate (PET). The deposition of several layers gives to the 

textile several features, but only recent studies have appeared where the objective is to obtain 

synthetic textiles with antimicrobial properties. 
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Table 1 – State of the art - summary (LbL application in textile materials of synthetic fibres) 

Author (year) Substrate Polyelectrolytes Notes 

Polowinski, S. 

(2005) [55] 

Polypropylene PAH/PAA The dyeing technique allows the type of external layers deposited in succession to be 

identified. LbL method deposits layers of polymeric complexes, not only onto 

polypropylene, but also onto other textile materials with a smooth surface 

Dubas et al. 

 (2006) [56] 

Nylon PDADMAC/anionic scarlet dye The LbL of PDADMAC/anionic scarlet dye has a high dependence with the number of 

layers, salt concentration, and concentration of chemicals but almost independent on the 

dipping time. 

Polowinski, S. (2007) 

[57] 

Polypropylene 

Polyester 

PAH/PAA LbL method was used to deposit thin polymeric layers on textile fabrics. A necessary 

condition for using this method was a smooth surface on the fibres of the fabric. 

Jantas et al.  

(2007) [58]  

Polyester PAA/PVP The surface of fibres in the fabric becomes smoother after depositing PAA/PVP 

nanolayers. 

Polowinski, S. (2007) 

[59] 

Polypropylene PAA/PDAMA/PAH 

Nanoparticles: Au, Pt, Ag 

LbL method is a convenient way of depositing colloidal particles of silver, gold or 

platinum on textiles 

 

Stawski et al. (2009) 

[60] 

Polypropylene PAH/PAA Deposition of succeeding polyelectrolyte layers fail to provide a complete coverage of the 

modified surface. 
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Park et al.  

(2009) [61] 

Nylon 6 Alginic acid sodium salt and 

chitosan 

The morphology of polyelectrolyte multilayer coated nylon 6 fibres was uniform and 

smooth. The surface morphology, stiffness, and hydrophilicity of polyelectrolyte 

multilayer coated nylon 6 fibres can be controlled by regulating the number of 

polyelectrolyte nanocoating. 

Carosio et al. (2011) 

[48] 

PET Silica nanoparticles PET fabrics were coated with silica nanoparticles. This study demonstrates the ability to 

impart flame retardant behaviour using a water-based, environmentally-friendly protective 

coating. 

Martin et al. 

 (2013) [62] 

Non-woven PET  MB/chitosan/polyCD 

(cyclodextrin polyelectrolyte) 

The aim of this work was to develop an antibacterial multilayer coating activated with 

MB. The authors prepared two types of samples, one with MB-free and another with MB-

loaded. 

Martin et al. 

 (2013) [63] 

Non-woven PET Chitosan/polyCTR-beta CD 

(beta cyclodextrin polymer) 

In this work it was developed the formation of a multi-layered coating onto PET textile 

support in order to obtain reservoir and sustained release properties towards bioactive 

molecules. 

PAH-poly(allylamine hydrochloride)PAA-poly(acrylic acid); PDADMAC-poly(diallyldimethylammonium chloride); PVP-poly(vinyl pyrrolidone); PDAMA-
poly(diallylamine-co-maleic acid); PDDA-poly(dimethyldiammonium chloride); PET-polyethylene terephthalate;PSS-poly(sodium styrene sulfonate);MB-

methylene blu
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3.2  LbL in cellulose-based textiles 

In the field of natural fibres, cotton is one of the most commonly used for textiles and is very 

applicable for medical usage, specially wound dressings due to its high liquid absorbency and 

hygienic nature. Cotton is characterized by his heterogeneity, which will cause problems in 

conventional coatings, in this way is a good possibility to use the LbL technique. Currently there 

is some work published with LbL method applied on cotton. In this section we present the most 

important applications of functionalized cotton obtained by LbL technique. A special note for 

antimicrobial cotton obtained by LbL is referred at the end of this section.  

Hyde et al. (2005) were pioneers in application of LbL on cotton substrates. They found that 

the cationization process produces a cotton surface capable of supporting polyelectrolyte films 

via LbL deposition. They observed that the LbL deposition process is more dependent on the 

nature of the polyelectrolytes rather than on the nature of the original substrate and the 

analysis reveals conformal and uniform coating of the cotton fibres [64]. This indicates that for 

the same substrate there are various functionalities depending of the polyelectrolyte 

deposited. The LbL is a versatile method, in which it is only required to define which property 

it is intended and then select the appropriate polyelectrolyte. In the LbL, the dependency on 

the type of substrate is lower, allowing the LbL to be applied smoothly onto cotton, After this 

work, other works have emerged in which various methods of analysis of samples obtained by 

LbL are presented [65]. Studies were also carried out where the influences of variation of 

physical parameters, such as pH, concentration, ionic strength of polyelectrolytes and 

cationization level of substrate [54, 66]. The deposition process was not significantly influenced 

by the degree of cotton cationization, but the other physical parameters have influence on the 

success of LbL.    

In the last decade, some studies where the technique of LbL onto cotton to give it certain 

properties and applications, were published. One of these properties is the protection against 

UV in cotton fabrics [43, 44, 67, 68]. High UV protection factors were obtained and a good 

resistance to washing, revealing a stability of the layers obtained by LbL in cotton. In samples 

in which it is necessary a durability of the coating, the LbL is recommended. Another important 

property that textiles must have in some applications is the hydrophobicity [45, 69]. In this case 

LbL is an easy method for fabricating hydrophobic or hydrophilic cotton fabrics only by coatings. 

More recently, several authors used the LbL technique to provide a coating cotton with specific 

polymers in order to enhance their flame retardant properties. The results of all studies show 

that flame retardant coatings can be readily applied to textile fabrics for commercial and 

industrial applications. As a consequence the treated fabrics have shown a strong reduction of 

the flammability and combustion [47-49, 70].  
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Providing antimicrobial property for textiles is an effective way to prevent disease transmission 

with applications in the consumer and healthcare markets. Many textiles are treated to afford 

protections against bacteria, fungi and other related microorganisms. During the past few 

years, there have been some studies aimed at functional antimicrobial modification via LbL 

assembly process onto cotton fibres. Cotton textiles were obtained with antimicrobial 

properties and potential applications for medical textiles with N-halamine polyelectrolytes 

deposited on cotton via LbL [71, 72].  

Another approach for obtaining antimicrobial cotton is related to the use of CH nanoparticles 

[50, 51], copper based nanoparticles [73], and ZnO nanoparticles [68]. In these works, the 

nanoparticles were coated on cotton to form a nanocoating using LbL. 

The LbL technique also offers new opportunities for the preparation of functionalized 

biomaterial coatings and the possibility of incorporating bioactive molecules between the layers 

[74-76]. Peptides, proteins and active agents adsorbed or embedded in multilayer films have 

been shown to retain their biological activities [41], whereas a covalent attachment to the 

active agents can reduce or even destroy their biochemical activity [76]. So, with the LbL 

technique, active agents can be directly integrated in the architecture without any covalent 

bonding.  

Cotton fibre is the basis of many wound dressings and wound dressings containing antibiotics 

have been developed for the inhibition of wound infection [77-79]. But the continuous use of 

antibiotics has resulted in multiresistant bacterial strains all over the world. Consequently there 

is an urgent need to search for alternatives for antibiotics.  

 

4. Antimicrobials of the future – antimicrobial 

peptides 

Antibacterial resistance is a natural biological phenomenon that occurs in microorganisms and 

is potentiated by indiscriminate use of antibacterial agents. If the microorganism becomes 

resistant to a particular antibacterial agent, when an infection occurs, the effect of the 

antibacterial agent will be reduced or null. Therefore it is urgent to discover and use new 

antibacterial agents. Recently, a large group of low molecular weight natural compounds that 

exhibit antimicrobial activity have been isolated from animals and plants, thus resulting in new 

generation of antibacterial agents, the antimicrobial peptides (AMPs).  

AMPs are promising agents due to some characteristics such as, they are natural compounds 

[80, 81], have a broad spectrum of action [82, 83], exhibit high activity even with low 

concentrations [83, 84], have a low tendency to develop resistance due to its different 

mechanism of action [80, 81, 85-87], have a quick and efficient action against bacterial agents 

http://aps.unmc.edu/AP
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[83, 87] and their size is generally small and have low mammalian toxicity [83, 87]. The ability 

of these AMPs to kill multidrug-resistant microorganisms has gained considerable attention and 

clinical interest. Another approach to wound healing with AMPs is related to the function of 

AMPs in removing the destructive proteases from the wound that cause considerable destruction 

of growth factors and connective tissue proteins during the prolonged inflammatory phase of a 

chronic wound [88]. The review paper by Gouveia, 2010, is the first work in referring that AMPs 

are promising candidates as antimicrobial agents for textiles [89], so AMPs can be incorporated 

into textiles to develop non-toxic antimicrobial textiles. 

AMPs produced in bacteria, insects, plants, invertebrates and vertebrates, are an important 

component of the natural defences of most living organisms. AMPs exhibit potent killing of a 

broad range of microorganisms, including Gram-negative and Gram-positive bacteria, fungi and 

viruses [86, 90, 91].  

 

4.1 AMPs – characterization and classification 

Currently AMPs database (http://aps.unmc.edu/AP) contains over than 2400 AMPs. Their 

characterization is complicated due to the great diversity, thus the characterization is easier 

based on their secondary structure.  AMPs are mainly grouped into four classes: β-sheet, α-

helical, loop, and extended peptides [92]. There are AMPs with positive charge [93], other with 

negative charge [94], amphipathic molecules (which possess both hydrophobic and hydrophilic 

regions), some have a sequence with less than 10 amino acids, but others near 100 amino acids 

[95]. In general, the AMPs are described as small molecules constituted by 12 to 50 amino acids 

with a cationic charge between +4 and +6, due to the presence of the amino acids lysine and 

arginine [87, 96] and as anionic, that generally have a net charge in the range of -1 to -7, due 

to the presence of glutamic and aspartic acids. AMPs are mainly cationic and interact with 

membranes in a general mechanism that involves interactions between charged residues of 

peptides and anionic components of the membrane surface.  

 

4.2 Mechanisms of action 

The AMPs in bacteria can lead to the disruption of the membrane resulting in its lysis, or 

alternatively lead to pore formation, allowing efflux of essential ion and nutrients. In this case, 

the AMPs are transported into the cell and will cause inhibition of DNA and RNA synthesis, 

inhibition of ribosomal function and protein synthesis, and targeting of mitochondria [97]. Many 

models of antimicrobial action on the level of membrane have been proposed. Models that have 

greater acceptance in the scientific community are: carpet model, toroidal pore and the barrel-

stave [84]. 
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AMPs also possess anti-viral properties, inhibiting viral fusion and egress, thus preventing 

infection and viral spread via direct interactions with the viral membranous and host cell 

surface molecules [97]. These properties combined with the broad range of activity and the 

short contact time required to induce killing, have led to the consideration of AMPs as excellent 

candidates for novel therapeutic agents. 

 

4.3 Applications of AMPs 

The AMPs have many applications and are not limited in the development of new drugs, because 

there are also other medical, environmental and industrial applications. Within the potential 

medical applications of AMPs we can refer to: 

 Prevention and treatment of eye diseases and antimicrobial coating for contact lenses 

[98] 

 Through the antimicrobial coating on polymeric materials, such as implants and 

catheters for prevention of bacterial colonization and biofilm formation on the surfaces 

of the implants [84] 

 Through functionalization of textile materials, for example, application in heart valves, 

socks for diabetic feet, gauze of chronic wounds [84] 

 Wound healing, treating fibrosis, acne, Crohn's disease [86] 

Recently our research group found AMPs applications in textiles, particularly in cotton gauzes 

for wound dressings [91]. Incorporation is the most popular method for preparing immobilized 

AMPs onto a variety of surfaces and still retain their ability to kill bacteria [99, 100]. The main 

advantage of using AMPs comes from their presence in nature, thus they should be well 

tolerated by our body and low concentrations required. In addition, the synergistic biocide 

mechanism of action is more effective against multi-resistant bacteria. 

 

5. Concluding remarks and future prospect 

Successful deposition of multilayers onto textile fibre surfaces via the LbL technique can open 

the door to the development of functional textiles for a broad range of applications. In addition, 

the LbL technique in textile is entirely new and is a simple and effective method with strong 

possibility of implementation in the industry. 

Bioactive agents can be directly embedded between the layers of polyelectrolytes without any 

covalent bonding, which able the development of a new strategy to obtain antimicrobial cotton 

based on the incorporation of AMPs into polyelectrolyte multilayer films built by LbL technique 

over cotton. 
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These coatings onto cotton textiles are new and potentially useful as antibacterial fabrics in a 

wide variety of biomedical applications. In addition, LbL deposition allows the easy fabrication 

of multimaterial films, in which different layers carry different functionalities or repeat the 

same functionality several times to control the quality or the quantity of active agents. This 

mini-review lay the groundwork for scale-up and in near future open new avenues towards the 

development of non-toxic and safe biomedical textiles. One promising application of these 

functionalized cotton would be its use as external wound dressings. 
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Aims of the thesis 
 

The number of biofunctional textiles with an antimicrobial activity has increased considerably 

over the last few years. Medical products will perhaps be the largest application of 

antimicrobial textiles. So, biofunctionalized cotton with chitosan and alginate and with 

incorporated antimicrobial peptides are serious candidates for future therapeutic use as wound 

dressings. 

The main goal of this thesis is to develop a structure capable of incorporating antimicrobial 

agents without cytotoxicity with potential use as a wound dressing.  

To achive this principal purpose, the work was be developed concerning the following specific 

aims: 

• Explore the feasibility of depositing layers of chitosan and alginate by LbL technique in 

cotton fibres.  

• Design new processess for the biofunctionalization of cotton with antimicrobial agents, 

in particular, L-cysteine and antimicrobial peptides to obtain novel bioactive textile 

with potential application as wound dressings. 

  

37 
 



 

  

 38 



 

 

 

 

 

 

 

Chapter 3 

  

39 
 



 

 

 40 



Paper II 

.  

Layer-by-Layer Deposition of Antibacterial 

polyelectrolytes on Cotton Fibres 

 

 

Ana P. Gomes, João F. Mano, João A. Queiroz, Isabel C. Gouveia 

 

Journal of Polymer Environment. 2012. 20:1084-109 

  

41 
 



 

  

 42 



ORIGINAL PAPER

Layer-by-Layer Deposition of Antibacterial Polyelectrolytes
on Cotton Fibres

Ana P. Gomes • João F. Mano • João A. Queiroz •

Isabel C. Gouveia

Published online: 3 August 2012

� Springer Science+Business Media, LLC 2012

Abstract The introduction of molecules with biological

properties on textile materials is essential for a number of

biotechnological applications. With the purpose of testing

new processes applied to textiles, in this study, we present

the first results on the feasibility of using the Layer-

by-Layer (LbL) deposition process in natural fibers such as

cotton, with natural polyelectrolytes like chitosan (CH) and

alginic acid sodium salt (ALG), the durability of CH/ALG

multilayer on cotton were evaluated. The increase of neg-

ative charges to the substrate cotton was made with NaBr

and TEMPO, to ensure the success of the process of LbL.

Three characterization methods to assess electrostatic LbL

deposition were performed: the contact angle between a

liquid (water) and the sample surface, in order to charac-

terize the wettability of the samples with the different

layers of CH and ALG; dyeing of the CH/ALG assembled

cotton fabric with cationic methylene blue that shows

regular changes in terms of color depth (K/S value), which

indicate that the surface were alternately deposited with

CH and ALG layers and, finally, the analysis by infrared

spectroscopy using Fourier Transform with Attenuated

Total Reflection (ATR-FTIR), to assess the changes in the

interaction between CH and ALG deposited on cotton

samples.

Keywords Layer-by-layer � Contact angle �
ATR-FTIR � Chitosan � Alginate

Introduction

The challenges facing the textile finishing industry have

intensified during the last decade. Current awareness of the

negative environmental impact of chemical processing of

textiles, combined with increased strict legislation on

industrial effluents, has led to the search for advanced, non-

polluting processes for coating textiles. Coating on textiles

is a new way to give functionalities and properties on

textile surfaces without compromising on fabric properties

and they open a whole new vista of value-addition possi-

bilities in the textile sector. The coating can be used to give

wrinkle resistance, improve color or light fastness, flame

retardancy, water or oil repellency and antibacterial prop-

erties [1]. Newer methods of coating textiles become

possible to improve the functionality and durability of the

coating to a higher level compared to the conventional
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e-mail: igouveia@ubi.pt

123

J Polym Environ (2012) 20:1084–1094

DOI 10.1007/s10924-012-0507-5

43



coating techniques. These techniques include immobiliza-

tion of enzymes, LbL assemblies, nano coatings and use of

plasma for deposition of functional molecules. All these

techniques are distinct from conventional finishes in that

they impart special functionalities to textile surfaces by

bringing about modifications at micro or nano level,

without affecting the bulk properties. These processes add

functionality with minimum effect on the strength, feel,

handle or breathability of textiles [2]. Some of these

techniques have been tested and validated at lab scale, but

most are still in research stages. Most of the conventional

coating techniques either affect the fabric flexibility,

comfort and permeability or deteriorate the mechanical

properties of the treated fabric [3, 4].

Functional coating methods provide a flexible alterna-

tive to conventional finishing methods in that they are

independent of fabric type, require low quantities of

additives and allow combinations of different functional-

ities in a simple way [2]. Polyelectrolyte multilayer (PEM)

coatings have become a new and general way to func-

tionalize surfaces [5]. This technique has been described as

being theoretically able to cover many kinds of surfaces

when they are charged [6]. The mechanisms allowing for

film coating essentially involve electrostatic interactions,

but the assembly of such multilayer structures have also

been show on non-ionic or apolar substrates [7]. The film is

constructed by the alternate adsorption of oppositely

charged polyelectrolytes at the surface of the material,

easily obtained when the material is dipped in polyelec-

trolyte solutions. The driving force for the film construction

is related with the excess charge (alternatively positive and

negative) which appears after each new polyelectrolyte

adsorption [8, 9]. A deposition cycle creates a bilayer, and

these cycles can be repeated as often as needed. The

number of deposition cycles and the types of polyelectro-

lytes used in the construction allow for the control of

thickness and roughness of the multilayered film [10]. A

broad range of applications for these films has been con-

sidered, going from drug delivery to specific bio-applica-

tions based on surface modifications. For example, the

multilayer film technique has been used to create micro-

capsules, defined as micro and nano-containers for storage,

transport, and release of active macromolecules [11].

Martins et al. analyzed the potential and achievements of

LbL technique as a promising approach to functionalize

biomaterials surface in a controllable and facile manner.

They found that the build-up of CH/ALG system presented

a linear growth, meaning that no polymer has the ability to

diffuse ‘‘in’’ and ‘‘out’’ of the film after each deposition

step [9].

A new method for the modification of textile fibers was

introduced by Hyde et al. [12], they demonstrated that a

polymer thin film could be deposited directly onto cotton

fabrics by following the widely studied LbL deposition

method known as PEM. The LbL method involves essen-

tially electrostatic interactions. Using transmission electron

microscopy (TEM) they have shown the uniform coating

provided by the LbL onto the cotton fabric [12]. It seems

possible that by following the same LbL deposition

method, a wide range of molecules, nanoparticles, and

other functionalized polyelectrolyte could be deposited on

textile fabric leading towards the development of new

applications for technical textile applications. So the LbL

self assembly method may provide new coatings or films

that can be constructed by the alternate adsorption of

oppositely charged polyelectrolytes at the surface of the

material, easily obtained when the material is dipped in

polyelectrolyte solutions. LbL is a simple and inexpensive

method for preparation of controlled layered structures and

it is applicable to a variety of materials. It has the advan-

tages of simplicity, low cost, ability to incorporate different

bio molecules and molecular control. LbL film structures

are less densely packed and this is advantageous for dif-

fusion through the films [13]. But certain details of the

process are still not clearly understood. The LbL deposition

process has not been extensively implemented in textile

and natural fibers, as they possess unique challenges

including the chemical heterogeneity of their surfaces as

well as their irregular shapes.

Numerous studies involving different polymer substrates

and several synthetic polyelectrolytes have been published.

But, there are very few scientific articles concerning the

deposition of alternate polyelectrolyte on natural textile

supports. During a deep revision, we found few reports

concerning the LbL method involving cotton fibres.

Hyde et al. [14], they evaluated three different levels of

cotton cationization. Variations in the cationization degree

were achieved by manipulating the ratio of 3-cloro-2-

hydroxy propyl trimethyl ammonium to NaOH. The

deposition of the polyelectrolytes was monitored using

XPS and CHNS elemental analysis. The experimental

results they obtained, indicated that the deposition process

was not significantly influenced by the degree of cotton

cationization.The build-up of further polyelectrolyte layers

was found to be less sensitive to variations in the cationic

character of the substrate once a critical number of alter-

nating layers was deposited [14].

Wang et al. [15], they have utilized two different

methods for the characterization for LbL deposition of two

polyelectrolytes poly (sodium styrene sulfonate) (PSS) and

poly (dimethyldiammonium chloride) (PDDA) on cotton

fabrics, a dyeing method and a UV absorption method.

Two types of dyes, anionic Direct Red 80 and cationic

Methylene Blue, were utilized to dye the self-assembled

cotton in order to reveal the change of surface electric

property after LbL deposition of polyelectrolytes on cotton.
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The UV absorption method could monitor the growth of

polyelectrolytes on cotton substrates in terms of UV

absorbance at characteristic absorption wavelengths [15].

Wang et al. [16], they have studied a new approach for UV

protection of cotton fabrics based on LbL self-assembly.

Three fluorescent brightening agents and polycation PDDA

were used on cationized cotton fabrics through direct LbL

deposition technique. The assembled cotton fabrics could

obtain excellent rating of UV protection when the fluorescent

brightening agents and PDDA were built up on the cotton

substrates. Good durability to washing revealed the stability

of multilayers films on the cationized cotton, which is

important for actual application of textiles [16].

Ugur et al. [17], they obtained ZnO nanoparticle-based

multilayer nanocomposite films were fabricated on

cationized woven cotton fabrics via LbL deposition pro-

cess. In this study they concluded that the process by LbL

provides a novel and simple method for nano-ZnO nano-

composite film deposition on cotton fabrics and their

application onto cotton fabrics to gain antibacterial and UV

protection functions [17].

Ali et al. [3] developed a study to evaluate the effect of

different process parameters on the amount of polyelec-

trolyte adsorbed on a cotton textile substrate via sequential

adsorption of negatively charged PSS and positively

charged poly allylamine hydrochloride (PAH) using LbL

[3].

Recently Ali et al. [18] deposited CH nanocoating onto a

cotton textile substrate using a LbL technique. PSS, was

used as the anionic polyelectrolyte, and CH was used as the

cationic polyelectrolyte. As a result, they obtained a

uniform surface deposition of bilayers, as observed by

scanning electron microscopy (SEM) and confirmed that

during the LbL deposition, the layers did not block the

fabric pores (unlike conventional coatings) [18].

As the commonly used polyelectrolytes such as PSS,

poly (acrylic acid) (PAA), PDDA, poly(allylamine hydro-

chloride) (PAH) and polyethyleneimine (PEI) have no

special functions transferred to textiles [12, 15, 16, 19–22]

non-polyelectrolytes with negative charges such as nano-

particles and dyestuffs were integrated into the LbL self-

assembled multilayers together with polyelectrolytes to

modify the surface giving antibacterial properties and

dyeability, respectively [16]. It should be noted that this

new technique is not limited to polyelectrolytes. Some

organic molecules with positive or negative charges have

also been integrated into multilayers via LbL deposition.

This opens the possibility of developing functional textiles.

Therefore, here we report the first results regarding the

feasibility of LbL deposition of nanolayers of natural bio-

active polyelectrolytes, to give antibacterial properties to

natural fibers. The purpose of this experimental work is to

determine the feasibility of using the LbL deposition

process in natural fibers with natural polyelectrolytes. To

impart higher negative charge to the substrate cotton, CH

and ALG were successfully layered over cotton fibers using

LbL technique.

The introduction of negative charges onto cotton sam-

ples is made with sodium bromide, NaBr and 2,2,6,6-tet-

ramethylpiperidinyl-1-oxy free radical (TEMPO) [23–26].

The cotton is composed for the most part of cellulose,

cellulose is a natural polymer composed of b-D-glucopyr-

anose units that are linked together by (1 ? 4)- glycosidic

bonds [23]. A cellulose molecular chain, depending on the

source of the cellulose, consists of 300–15,000 D-glucose

units. The unit has three hydroxyl groups on C2, C3 and

C6, respectively, and the hydroxyl group of C6 is much

more reactive than that of C2 and C3. TEMPO is a stable

nitroxide radical, which can catalytically oxidize primary

and secondary alcohols under aqueous condition with high

selectivity and efficiency. In this study we follow the

oxidation method that uses a mixture of sodium hypo-

chlorite, sodium bromide and TEMPO. With such reagents,

the oxidation is selective as it oxidizes exclusively the

primary hydroxyl groups while leaving untouched the

secondary ones [23, 24, 26, 27]. There are several works

where TEMPO-mediated oxidation was applied to cellu-

lose fibers under various conditions with good results

[23, 27–29].

The number of biofunctional textiles with antibacterial

activity has increased considerably over the last few years

[30–32]. Application is now extended to biomedical

products, which is perhaps the largest application of anti-

bacterial textiles [33, 34]. There is a wide range of methods

available to examine the interaction of microorganisms

with textiles. In order to evaluate the activity of antibac-

terial textiles there are several standard methods available.

The most common can be divided into two categories:

(1) qualitative methods: AATCC 147:1998 and JIS L

1902:2002—Halo method and (2) quantitative methods:

AATCC 100:1999 and JIS L 1902:2002—Absorption

method. In the qualitative method, textile samples are

placed onto agar plates, which have been inoculated with

bacteria and are then incubated under moist conditions at

37 �C for 24–48 h. The intention is that intimate contact

between the textile, the bacteria, and the growth medium

will result in the inhibition of growth either immediately

adjacent to the textile or in an area around the textile.

A new approach to evaluate the effectiveness of the anti-

bacterial activity of textile fibers as well as bacteria

adhesion on textiles by using SEM is described in a pre-

vious paper [35]. The SEM analysis revealed great poten-

tial on the evaluation and effectiveness of antibacterial

activity of textiles. Also, the bacterial adhesion and the

morphology of bacteria after exposure to antibacterial

agents, was determined using the same.
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Experimental

Layer by Layer Coating of Cotton

Cotton fabrics obtained from James H. Heal & Co. Ltd was

used as substrate, cotton samples were used with dimen-

sions of 2 cm 9 2 cm. TEMPO, NaBr, Sodium Hypo-

chlorite (NaOCl) 5 %, CH (low molecular weight), Acetic

Acid (CH3COOH), ALG, Sodium Chloride (NaCl),

Sodium Hydroxide (NaOH) and Hydrochloric acid (HCl)

were purchased from Sigma-Aldrich. All chemicals were

of analytical grade and used as received.

Antibacterial polyelectrolyte CH (1 mg/mL) and ALG

(1 mg/mL) solutions were prepared by dissolving CH and

ALG in 0.1 M CH3COOH and 0.5 M NaCl solutions,

respectively. The pH values were adjusted to 5 using 0.1 M

HCl and 1 N NaOH solutions. The pH was selected to 5, to

be approximately intermediate between the pKa of CH

(6.3) and ALG, pKa of 3.38 and 3.65 [36]. ALG and CH are

two oppositely charged natural polyelectrolyte materials

and very sensitive toward changes in external factor such

as pH. At pH 5 the carboxylate group of ALG mainly exists

in the form of COO- and the amino group of CH mainly

exists in the form of NH3
?. In this case the presence of

both COO- and NH3
? along polymer backbone could

enhance the electrostatic interaction of the network struc-

ture [37]. This value of pH 5 was used in several works in

the process of LbL with CH and ALG [38–43].

To apply LbL technique, two samples of the substrate

(cotton) were charged by immersing cotton samples in

(TEMPO ? NaBr ? NaClO 5 %, pH = 10.5) solution

under moderate stirring for 30 and 120 min, respectively,

followed by a rinse with deionized water, as described

elsewhere [26, 28]. Then, CH and ALG polyelectrolytes

multilayer films were deposited over cotton by the LbL

assembly whereas CH was used as polycation and ALG as

polyanion. For each layer deposition, the cotton substrate

was immersed into the corresponding solution at room

temperature and for 5 min, followed by rinsing with

deionized water to remove excessive polyelectrolyte. Since

cotton samples were charged negatively, the CH was

deposited as the first layer. Samples were prepared with

five layers (CH/ALG/CH/ALG/CH), six layers (CH/ALG/

CH/ALG/CH/ALG), nine layers (CH/ALG/CH/ALG/CH/

ALG/CH/ALG/CH) and ten layers (CH/ALG/CH/ALG/

CH/ALG/CH/ALG/CH/ALG), respectively in control

samples functionalized by LbL (designated by B5, B6, B9

and B10), cotton samples treated during 30 min in TEMPO

and then functionalized by LbL (designated by CT5, CT6,

CT9 and CT10) and finally cotton samples treated during

120 min in TEMPO and then functionalized by LbL

(designated by 2CT5, 2CT6, 2CT9 and 2CT10). After the

last deposition, the sample was dried in a desiccator at

room temperature overnight. Control samples were also

prepared using the same method by LbL, without pre-

treatment with TEMPO.

The functionalized samples were washed and tested the

durability of the CH/ALG multilayers. The durability to

washing of samples functionalized by LbL was determined

following the NP 1710, textiles—wash fastness test (Por-

tuguese Standard). The Fig. 1 show the SEM images of

the cotton (control), the CH/ALG/CH/ALG/CH/ALG (six

layers) sample and the sample that were washed after LbL

deposition. The functionalized samples show a large and

heterogeneous deposition of polyelectrolytes, Fig. 1b. In

contrast, the washed samples show a less but more uniform

polyelectrolytes deposition Fig. 1c.

The results indicate that the cotton assembled with CH/

ALG multilayers had good durability to washing. Good

durability to washing revealed the stability of multilayer

films on the cotton surface, which is important in various

applications of textiles, is not important for application in

disposable materials.

Control Tests

Contact Angle

The measurement of the contact angle between water and

sample surface is one of the easiest ways to characterize the

Fig. 1 SEM images. (a) Cotton sample, (b) CT6 and (c) CT6 after washed
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wettability of the material [44]. A hydrophilic or hydro-

phobic surface is defined by these contact angle values. For

values higher than 908 the surface is hydrophobic and less

than 90� it is hydrophilic [45].

The sessile drop contact angle method [46] was used to

measure the contact angles of a water drop on the func-

tionalized cotton samples with a contact angle system

Dataphysics model OCAH 200. Contact angles were

determined by placing 5 ll drops of deionized water. The

tip of the needle was removed, and then an image was

recorded. Average values were obtained from multiple

contact angle values (at least six) on each sample using an

optical system connected to a video display. The measures

presented were made at 100, 1,000 and 10,000 ms,

according to standard TAPPI T 558 pm-95 ‘‘Surface wet-

tability and absorbency of sheeted materials using an

automated contact angle tester’’.

Control Method for Evaluation of Negatively Charged

Layers

The present study attempts to evaluate the effect of dif-

ferent process parameters on the amount of polyelectrolyte

adsorbed on a cotton samples via sequential adsorption of

positively charged CH and negatively charged ALG using

LbL self—assembly process. The amount of polyelectro-

lyte adsorption on cotton fabric was evaluated by mea-

suring the color value (K/S) of methylene blue absorbed

cotton surface [15, 16, 19, 20, 47]. Methylene blue exhibit

adsorption is proportional to the amount of anionic groups

on fibers [48]. In cotton there is abundance of carbohydrate

hydroxyl groups, methods of characterization of these

groups are in constant development. Several analytical

techniques are being applied and new ones introduced and

tested, in this paper we use the adsorption of methylene

blue. This dye was extensively studied as an indicator of

the amount of anionic groups on fibers [15, 16, 19, 20, 47,

48] A dyeing method in terms of K/S values has been

proven a simple and quick means to characterize the

change of surface polarities of LbL self—assembled textile

substrates based on the attraction or repulsion between the

cationic dye and polyelectrolytes. The relative color depth

of the dyed fabrics expressed as K/S, was measured by the

light reflectance technique using the Kubelka–Munk

equation [15].

K=S ¼ ð1� RÞ2

2R

Kubelka–Munk theory describes optical characteristics

(e.g. reflectance, transmittance and absorbance) by a vari-

ety of light scattering media including paints, textiles and

paper [49, 50]. The reflectance (R) of the dyed fabrics was

measured at the maximum absorbance wavelength on a

Datacolor Spectraflash SF300. The ratio of the absorption

coefficient (K) to the scattering coefficient (S) varies with

the total light reflected according to above expression. To

determine K, it is necessary to first compute S, which

involves measurements either of the transmittance of the

thickness, or of the reflectance of the thickness against

backgrounds of known reflectance. If it could be assumed

that S was reasonably constant under a given set of

experimental conditions, then K/S values should be pro-

portional to the amount of dye and could be used in much

the same way that absorbance values were used in the

analysis of samples by transmitted light, higher dye content

leads to an increase in absorbance. Therefore, the K/S val-

ues were expected to be proportional to the amount of dye

[51] The values obtained of K/S are commonly used to

represent the amount of dye fixation or dye content of a

given textile fibers [47].

Cotton specimens with different numbers of layers were

dyed using 7.5 % owf cationic dye (methylene blue) [16].

The dyeing was performed in petri dishes without stirring

at temperature of 40� C for 15 min. After immersion in the

dye solution, the samples were soaked in deionized water

and air dried.

ATR-FTIR Analysis

The study was made using Fourier Transform Infrared

Spectroscopy in Attenuated Total Reflection mode (ATR-

FTIR) with a Vertex 70 spectrophotometer. The transmit-

tance was converted into absorbance for display.

ATR-FTIR reveals information about the molecular

structure of chemical compounds and is useful for the

characterization of biopolymers. The carbonyl vibrations of

a carboxylate and a carboxylic acid group occur at different

wave numbers, as does the N–H vibrations of amines and

protonated amines [43]. These analyses were made in order

to investigate the success of the LbL technique applied to

samples of cotton, through the existence or absence of

functional groups with specific vibrations.

Results and Discussion

Contact Angle

To identify and distinguish the wettability of each layer in

the CH/ALG multilayer film, samples were prepared as

described in Table 1. Since the last assembled layer has the

most significant effect on the surface property, according to

the outermost layer is CH or ALG [52]. The surface wet-

tability is very sensitive to the surface compositions of the

outermost layer. The sessile drop contact angle obtained on

various surfaces was shown in Table 1. This table presents
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the contact angle of cotton (sample n� 1), control samples

functionalized by LbL (samples n� 2–5, designated by: B5,

B6, B9, B10), anionic cotton treated during 30 min in

TEMPO (sample n� 6, CT), previous anionic cotton func-

tionalized by LbL (samples n� 7–10, designated by: CT5,

CT6, CT9, CT10), anionic cotton treated during 120 min in

TEMPO (sample n� 11, 2CT) and previous anionic cotton

functionalized by LbL (samples n� 12–15, designated by:

2CT5, 2CT6, 2CT9, 2CT10). Results show that for the

control samples (samples B5, B6, B9, B10) untreated with

TEMPO, the contact angle values are much lower than

those of the other samples. Cotton fibers contain abundant

hydroxyl groups, making the fiber surface highly hydro-

philic. Although cotton fibers are known to be charged

slightly negatively because of the ionization of some

hydroxyl groups [53], the TEMPO-oxidation method is

selective as it oxidizes exclusively the primary hydroxyl

group [24], so the TEMPO-oxidation makes the cotton

fibers charge enough for the electrostatic assembly. For

cotton, the initial contact angle was around 47.52�, for

sample CT and 2CT the contact angle suffered a decrease

because of the hydrophilic character of cotton when

immersed in TEMPO, due to the formation of a greater

number of negative charges on the sample surface. In

general, the water contact angle decreases as the extent of

surface charges increases and the surface becomes more

hydrophilic. For all samples functionalized by LbL, the

greatest reduction in contact angle was observed for

the samples CT6, CT10, 2CT6 and 2CT10, confirming the

presence of permanent negative charges in the polymer

chains (ALG) as a generator of a hydrophilic matrix. For

the samples CT5, CT9, 2CT5 and 2CT9, where the last

layer is CH, higher contact angles were achieved, showing

the hydrophobic character of CH. This is in accordance

with previous studies, where the CH layer deposition led to

a contact angle increase [52, 54, 55]. The different values

of contact angle according to the outermost layer is CH or

ALG which are similar to those found in literature, pure

CH membranes were more hydrophobic than ALG mem-

branes [54–60].

Figure 2 shows the contact angle (measured at 100 ms)

of the multilayer films with layer number, from 0 (cotton

sample), 5, 6, 9 and 10, for samples treated 30 min and

120 min in TEMPO. For all the conditions, the contact

angle exhibits the zigzag feature with the layer number,

indicating the alternate assembly of CH and ALG on the

surface. These observations are due to the surface

Table 1 Contact angle

Sample n� Description of sample 100 ms 1,000 ms 10,000 ms

1 Cotton 47.52 ± 11.72 – –

2 (B5) Control sample—with CH/ALG/CH/ALG/CH 86.13 ± 13.93 55.56 ± 18.33 –

3 (B6) Control sample—with CH/ALG/CH/ALG/CH/ALG – – –

4 (B9) Control sample—with CH/ALG/CH/ALG/CH/ALG/CH/ALG/CH 42.85 ± 10.14 – –

5 (B10) Control sample—with CH/ALG/CH/ALG/CH/ALG/CH/ALG/CH/ALG – – –

6 (CT) Anionic cotton (30 min TEMPO), CT 23.31 ± 4.89 – –

7 (CT5) CT—with CH/ALG/CH/ALG/CH 114.6 ± 4.46 106.17 ± 12.93 –

8 (CT6) CT—with CH/ALG/CH/ALG/CH/ALG 67.67 ± 13.10 – –

9 (CT9) CT—with CH/ALG/CH/ALG/CH/ALG/CH/ALG/CH 114.63 ± 10.13 101.53 ± 17.27 –

10 (CT10) CT—with CH/ALG/CH/ALG/CH/ALG/CH/ALG/CH/ALG 82.65 ± 12.07 38.6 ± 2.97 –

11 (2CT) Anionic cotton (120 min TEMPO), 2CT 22.25 ± 14.50 – –

12 (2CT5) 2CT- with CH/ALG/CH/ALG/CH 122.58 ± 7.76 123.08 ± 3.99 116.95 ± 10.53

13 (2CT6) 2CT- with CH/ALG/CH/ALG/CH/ALG 54.98 ± 6.20 17.35 ± 4.17 –

14 (2CT9) 2CT- with CH/ALG/CH/ALG/CH/ALG/CH/ALG/CH 112.57 ± 9.50 115.62 ± 6.97 113.23 ± 7.55

15 (2CT10) 2CT—with CH/ALG/CH/ALG/CH/ALG/CH/ALG/CH/ALG 58.4 ± 8.17 – –

Contact angle 100 ms
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Fig. 2 Contact angle of CH/ALG multilayer films with 5, 6, 9 and 10

numbers of layers. The sample without LbL functionalized is layer

zero
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composition as a result of the contact angle of CH that is

bigger than that of the ALG. Typically, the ALG layer

induced an decrease of contact angle whereas CH layer

deposition led to a contact angle increase. The wettability

of a surface depends on the nature of the outermost layer

and not on the initial substrate film [61].

Control Method for Evaluation of Negatively Charged

Layers

The electrical properties of the cotton surface would change

alternately between positively charged and negatively

charged after LbL electrostatic assembly of polyelectro-

lytes. So, it is valuable to determine the change in surface

polarity of assembled cotton to demonstrate the stepwise

buildup of CH/ALG multilayers. The cationic methylene

blue was used to dye the self-assembled cotton in order to

reveal the change of cotton surface. The increase in absor-

bance at 600 nm of the samples was monitored using a

reflectance spectrophotometer. We can use the increase of

the K/S value as a characteristic of the LbL deposition of the

dye on fibers. The growth of multilayers on the cotton

surface based on LbL self-assembly was assessed in terms

of the UV change absorbance of assembled substrates.

As shown in Fig. 3 the regular changes in color depth of

assembled cotton samples indicate that the surfaces were

alternately deposited with every CH and ALG layers. As

the outermost layer alternated between CH and ALG, the

K/S values present a regular oscillations, revealing that the

surface is covered by CH or by ALG which is enough to

change the surface polarities. The high K/S values shown in

Fig. 3 indicate a high level of adhesion of the ALG on the

sample. Moreover, the fact that the data measured at four

different locations, including both sides of the fabric, was

nearly the same demonstrates that the surface is uniformly

coated. When CH first layer is deposited on activated

cotton, a part of the NH3? groups in CH were bound with

anionic groups of cotton through ionic bonds, the remained

would make the cotton surface present net positive charges.

The newly formed positively charged surface rejects the

absorption of cationic direct dye because of the repulsion

between the same charges, resulting in a decrease of color

depth. However, when ALG was subsequently assembled

on the CH coated cotton surface, the electric properties of

cotton surface were reversed. The newly formed cotton

surface with net negative charges would attract the cationic

dye, causing the increase of K/S values. The composition of

the polyelectrolytes deposited on the surface of assembled

cotton directly relates to the linear increases in UV

absorbance. Therefore, the growth of these multilayers

could be recorded by monitoring the UV spectra of

assembled cotton specimens. The behavior observed in

Fig. 3, where the K/S value exhibits a zigzag feature

through even/odd layer numbers, indicating the alternate

assembly of CH and ALG on the surface, is consistent with

other results found in the literature [15, 16].

The electrical properties of the cotton surface changed

alternately between positively charged and negatively

charged after LbL electrostatic assembly of polyelectro-

lytes. Therefore, the change in surface polarity of assembled

cotton demonstrates the stepwise fabrication of CH/ALG

multilayers. As the outermost layer alternated between CH

and ALG the K/S values presented regular oscillations,

revealing that the surface coverage of CH by ALG and vice

versa is enough to change the surface polarities.

We initially used the method for evaluation of nega-

tively charged in samples of cotton and cotton pre-treated

with TEMPO. In Fig. 4b we found that the sample has a

more intense color than in Fig. 4a. This is due to the cotton

sample pre-treated with TEMPO get negative charges, so

there is a greater absorption to the surface of the cationic

dye methylene blue. The complexity of textile surface

makes the monitoring of the multilayers become difficult,

because the textile substrates in fabric form have a non-

planar surface. Considering the change of surface electric

property of the cotton specimen during self-assembly

procedure, which had been demonstrated by determining

the color depth of cotton surface, it can be concluded that

CH were produced on the cotton substrate via bonding with

oppositely charged ALG.

ATR-FTIR

In the current study, an LbL assembly was produced on a

cotton fabric to explore the interaction between CH and

Dyeing

9

10
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12

13

14

15

16

17

18

19

0 1 2 3 4 5 6 7 8 9 10

n° layers

K
/S

TEMPO 30 min

TEMPO 120min

Cotton

Fig. 3 Tracing of the color depth (K/S) versus the number of

monolayers in CH/ALG assembled multilayers on cotton dyed with

methylene blue. The first layer is CH and the surface layer alternates

between CH and ALG
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ALG. In order to evaluate the ability of the functionaliza-

tion process with TEMPO to produce a surface capable of

supporting polyelectrolyte films via LbL deposition, ATR-

FTIR spectrum of the received cotton, Fig. 5a, function-

alized cotton samples when immersed 30 min in TEMPO

(CT sample), Fig. 5b and functionalized cotton samples

when immersed 120 min in TEMPO (2CT sample),

Fig. 5c, were assessed. When cotton was immersed into

TEMPO, Fig. 5b, c and took new spectrum of the func-

tionalized cotton, the spectrum was almost identical to the

original. Figure 5, shows characteristic cellulose peaks

around 1,000–1,200 cm-1, which are the main components

of cotton [62–64]. As shown in Fig. 5, in the current study,

the absorbance intensity of the characteristic peak at

around 1,600 cm-1 varied. The band is absent in the cotton

sample (Fig. 5a), but can be detected in CT and 2CT

samples (Fig. 5b, c). A maximum, but not significant value

for this band is reached in the spectrum (Fig. 5c) for the

2CT sample, corresponding to the maximum oxidation

conditions. Thus, we can conclude that the TEMPO-

mediated oxidation conditions were selectively converted

to carboxylate ion ionized form (COO-), imparting a

negative surface charge to the cotton, as discussed previ-

ously [62]. The TEMPO-mediated oxidation treatment was

proven to be able of modifying a surface of samples cotton

to produce a surface capable of supporting multilayer films.

Figure 6 shows the ATR-FTIR spectra of cotton and

cotton assembled with CH/ALG multilayers. In this figure

six regions can be distinguished: first at 770–830 cm-1,

1,180–1,300 cm-1, 1,330–1,450 cm-1, 1,600–1,800 cm-1,

2,800–2,980 cm-1 and finally at 3,100–3,550 cm-1. Fig-

ure 6 showed characteristic cellulose peaks around

1,000–1,200 cm-1 [64]. Other characteristic bands related

to the chemical structure of cellulose were hydrogen—

bonded OH stretching around 3,100–3,550 cm-1, the C–H

stretching around 2,800 cm-1 and the asymmetrical COO-

stretching around 1,600 cm-1 [53, 62–64]. If the carbox-

ylate existed in ionized form (COO-), it would show two

peaks at 1,600 and 1,400 cm-1 for the asymmetric and the

symmetric stretching of COO- ion, respectively [62]. In

carboxylate ion, if it is protonated, it would become

–COOH in which double bond (C=O) and single bond

(C–OH) would exist. The C=O stretching would show at

around 1,750 cm-1 and C–OH stretching at 1,200 cm-1

[62, 64]. This was confirmed by the spectrum of samples

shown in Fig. 6. Based on several studies [41–43, 65] the

characteristic peaks of CH were detected in a region around

1,700–1,500 cm-1 corresponding to amino group. The

Fig. 4 Images for evaluation of

negatively charged layers.

a Cotton sample with methylene

blue; b cotton sample pre-

treated with TEMPO

(a)

(b)

(c)

Fig. 5 ATR-FTIR spectra of cotton and of cotton TEMPO- oxidized

with different immersion times. (a) Cotton sample, (b) immersed

30 min in TEMPO, (c) immersed 120 min in TEMPO

(a)

(b)

(c)

(d)

(e)

Fig. 6 ATR-FTIR spectra of cotton (a) and samples CT5 (b), CT6

(c), CT9 (d) and CT10 (e). Arrows indicates the six regions can be

distinguished
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ALG spectrum shows characteristic band of carboxylate

(COO-) band at 1,600 and 1,400 cm-1. The observation of

theses peaks in Fig. 6, indicated that the degree of ionic

interaction between the negatively charged carboxylic ion

group of ALG and the positively charged amino group of

CH. The study of Alves et al. and Lawrie et al. [41, 43]

present values of the characteristic stretching bands in

ATR-FTIR spectrum which correspond to CH and ALG

related to the chemical structure. When CH is the outer-

most layer in an LbL assembly (Fig. 6b, d), CT5 and CT9

samples, the amine groups extending into solution during

fabrication will become deprotonated upon washing and

drying (around 1,400 cm-1).

However, when ALG is the outermost layer (Fig. 6c, e),

CT6 and CT10 samples, the amine groups of the underlying

CH layer will be protonated to a larger degree due to

interaction with the deprotonated carboxylate groups of

ALG. It was therefore expected that a higher amount of

protonated amines will be present when ALG is the outmost

layer [41, 43]. This behavior is observed in the peak around

1,400 and 1,200 cm-1 in Fig. 6. It can be seen in Fig. 6 that

after the assembly of 5 bilayers, the absorption band around

3,300 cm-1, corresponding to the hydroxyl groups of cel-

lulose, became less evident, this result also confirms the

presence of CH/ALG multilayers on cotton. The same study

was done for samples 2CT5, 2CT6, 2CT9 and 2CT10, and it

was found that the analysis of spectra was identical to that

described previously. The fourth region in the FTIR spec-

trum at 1,680–1,800 cm-1, Fig. 7b, d the spectrum for

samples B5 and B9 have the same behavior that samples

CT5, 2CT5, CT9 and 2CT9, but for samples B6 and B10 the

behavior is the inverse of the samples CT6, 2CT6, CT10

and 2CT10. On the other hand, for this last group of sam-

ples, on the second region (1,180–1,300 cm-1) and third

region (1,330–1,450 cm-1) the band disappeared. The

behavior of ATR-FTIR spectrum of control samples is

exactly the same in the various layers, this does not happen

in samples CT5, CT6, CT9 and CT10, comparatively to

spectra of Fig. 6. This indicates that the LbL process was

not successful in these samples, because these samples were

not activated with TEMPO-oxidation. Two different levels

of TEMPO-oxidation (30 and 120 min) were used to

functionalize cotton samples substrate in order to investi-

gate the role of the supporting surface in the buildup of the

multilayer. According to the results, we found that the

activation of the substrate with TEMPO-oxidation is nec-

essary to ensure the success of the LbL technique applied to

cotton. Concerning the level of oxidation, there are no rel-

evant differences in results for of the immersion times of 30

and 120 min in TEMPO-oxidation. Be noted that some

characteristic peaks of absorption could not almost be

identified from assembled cotton, even after a (CH/ALG)

multilayer was fabricated on cotton. This might be due to

the fact that ATR-FTIR is not sensitive enough to the small

amount of the deposited materials. In addition, partial

overlapping of characteristic absorption peaks between the

functionalized cotton and the polyelectrolytes might also

result in the above phenomenon [15].

The samples used in this study have been tested on the

antibacterial properties on a previous study [35]. Antibac-

terial activity of functionalized cotton samples was deter-

mined in terms of inhibition zone formed around the

sample and analyzed by SEM. Control samples showed

low antibacterial activity and bacterial growth on the sur-

face of control samples analyzed by SEM indicated the

presence of colonies. LbL functionalized cotton sample

presented a clear area around it with no bacterial growth

(zone of inhibition). Analyzing these samples by SEM, we

observed damaged bacteria under and around them.

Conclusions

The LbL deposition process was used to deposit alternate

layers of CH and ALG on cotton substrates. Treatment of

the cotton samples with TEMPO was proven to be an

effective procedure to create a substrate able to support

multilayer films. This result was confirmed by various

methods of analysis used in this work. The activation of the

substrate with TEMPO-oxidation is necessary to ensure the

success of the LbL technique applied to cotton.

The surface wettability is very sensitive to the surface

compositions of the outermost layer. Using the contact angle

method it was found that differently functionalized samples

presented different values. Samples where the last layer was

CH had a higher value of contact angle compared to samples

having ALG on the last layer. This result is consistent with

the considerations found in the literature, classifying CH has

having hydrophobic character and ALG has having hydro-

philic character. This fact demonstrated the formation of

alternating layers of CH and ALG, indicating that the process

of LbL was successfully applied in cotton samples.

(a)

(b)

(c)

(d)

(e)

Fig. 7 ATR-FTIR spectra of cotton (a) and control samples (b–e)
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Dyeing of the CH/ALG assembled cotton samples with

cationic methylene blue shows regular and observable

‘‘odd–even’’ changes in terms of color depth (K/S value),

indicating the variation of surface composition of the cot-

ton substrates due to the alternate deposition of CH and

ALG on them.

ATR-FTIR provided direct and indirect evidence of the

efficacy of the deposition process. It was possible to follow

the formation of the multilayers of CH/ALG on cotton

samples, analyzing the chemical changes in each layer.

These experimental results validate the feasibility of using

the LbL self-assembled deposition of natural polyelectro-

lytes on cotton substrates as a novel processing method for

textile functionalization.

The LbL of CH/ALG on cotton textile has potent

antibacterial activity toward both Gram-positive and Gram-

negative bacteria. These coating cotton textiles are poten-

tially useful as antibacterial fabrics in a wide variety of

biomedical and general use applications.

Overall, the results showed a promising eco-friendly and

simple technique to give functionalized textiles with anti-

bacterial properties using natural polyelectrolytes with

antibacterial agents. This method can open new avenues

towards the development of non-toxic and safe biomedical

textiles.

Excellent durability to washing of the CH/ALG multi-

layers was obtained, which indicates good adhesion

between the multilayer coatings and the cotton surfaces.
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In order to evaluate the activity of antimicrobial textiles there are several standard methods available. The most common 

can be divided in two categories: (1) qualitative methods: AATCC 147:1998, and JIS L 1902:2002 – Halo method and (2) 

quantitative methods: AATCC 100:1999 and JIS L 1902:2002 – Absorption method. However, these standard methods are 

time consuming and require appropriate facilities with respect to microbiology. Despite their ability to restrict bacteria 

growth, the textile samples could be colonized with bacteria that may develop a suitable environment for future 

colonization. In this case, the standard methods normally used to measure antimicrobial activity of textiles are rendered 

ineffective concerning the assessment of bacterial adhesion.   

As a result, this paper presents a new approach in evaluating the effectiveness of the antibacterial activity of textile fibers 

as well as bacteria adhesion on textiles by using Scanning Electron Microscopy (SEM). Antibacterial efficacy of cotton 

substrates functionalized via Layer-by-Layer (LbL) deposition of antibacterial polyelectrolytes (chitosan, CH and alginate, 

ALG) was assessed using Gram-positive and Gram-negative bacteria, Staphylococcus aureus and Klebsiella pneumoniae 

respectively.  

The experimental results showed that the functionalized cotton samples exhibit different but ambiguous antibacterial 

properties, as confirmed by the different appearance of a very thin halo around the samples (JIS L 1902:2002). In addition, 

SEM analysis of the surfaces of the functionalized cotton samples able to identify bacterial populations. In this way, the 

antibacterial efficacy of the CH/ALG multilayer’s was evaluated by assessing the reduction in bacteria attachment and 

growth on the cotton substrates.  

SEM analysis is able to show the effectiveness of the several functionalized samples in preventing bacterial adhesion 

besides bacteria growth. 

Keywords SEM; LbL; antibacterial textiles; antibacterial assays for textiles 

1. Introduction 

The number of biofunctional textiles with antimicrobial activity has increased considerably over the last few years [1- 

3]. Application is now extended to biomedical products, which is perhaps the largest application of antimicrobial 

textiles [4, 5]. Antimicrobial textiles were first created to prevent damage to textiles under adverse environmental 

conditions during their storage or use. In fact, antimicrobial textiles were first used during World War II [6].  

 Textiles are widely used in day-to-day life and there has been a growing need to develop finishes for textiles 

materials that can offer improved protection, to the users, from microbes (bacteria, fungi), which can cause numerous 

problems. Hence there is a pressing need to develop functionalized textiles that are resistant to microbes as the textile 

substrates find various applications such as masks, hospital textiles, and surgical gowns as well as the conventional 

apparel usage. 

 The number of different antimicrobial agents suitable for textile application on the market has increased drastically in 

recent years. Several different types of antimicrobial agents, such as oxidizing agents, coagulants, diphenyl ether (bis-

phenyl) derivatives, heavy metals and metallic compounds, chitosan and quaternary ammonium compounds are used in 

the textile industry to confer antimicrobial properties [7]. The selection of the antimicrobial agent depends on the 

mechanism of antimicrobial activity (bacteria and fungi), toxicity, application method and cost. 

  Polysaccharide biopolymers including alginate (ALG) and chitosan (CH) have been the focus of an expanding 

number of studies reporting their potential use in biomedical research applications such as cell encapsulation, drug 

delivery, and tissue engineering, then multilayered films containing both polysaccharides could be useful in the coating 

of substrates for different biomedical applications [8, 9].  

 Moreover, there is a wide range of methods available to examine the interaction of microorganisms with textiles. In 

order to evaluate the activity of antimicrobial textiles there are several standard methods available. The most common 

can be divided into two categories: (1) qualitative methods: AATCC 147:1998 and JIS L 1902:2002 – Halo method and 

(2) quantitative methods: AATCC 100:1999 and JIS L 1902:2002 – Absorption method. In the qualitative method, 

textile samples are placed onto agar plates, which have been inoculated with bacteria and are then incubated under 
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moist conditions at 37ºC for 24 – 48 hours. The intention is that intimate contact between the textile, the bacteria, and 

the growth medium will result in the inhibition of growth either immediately adjacent to the textile or in an area around 

the textile. These methods are generally acknowledged as being non-quantitative, although they could potentially be 

employed as assays of certain antimicrobial products in the same manner that such techniques are used for some 

antibiotics. However these techniques are considered unsuitable for quantifying the effect of the antimicrobial effect of 

treated textiles [6]. 

     In addition to the qualitative tests, quantitative data can be provided on the effect of treated textiles on bacteria. In 

this case replicate samples (6 of the control and 3 of the treated) are inoculated with individual bacterial species 

(Staphylococcus aureus and Klebsiella pneumoniae) suspended in a heavily diluted nutrient medium. The samples are 

incubated under humid conditions at 37ºC for a specified contact time. Activity is assessed by comparing the size of the 

initial population in the control with that present following incubation. No neutralizer is employed during cell recovery 

[6]. This method requires a lengthy period of time to be realized and the procedure is very complex. When the number 

of samples increases, the complexity also increases. Moreover you cannot assess the adherence of bacteria to a sample 

and analyze their distribution on the surface of the textile. Consequently, a new approach to evaluate the effectiveness 

of the antimicrobial activity of textile fibers as well as bacteria adhesion on textiles by using a Scanning Electron 

Microscopy (SEM) is described in this paper. 

     SEM is a powerful instrument that permits the observation and characterization of heterogeneous organic and 

inorganic materials and surfaces. The area to be examined or the micro volume to be analyzed is irradiated with a finely 

focused electron beam, which may be static or swept in a raster across the surface of the specimen. In the SEM, the 

signals of greatest interest are the secondary and backscattered electrons, since these vary according to differences in 

surface topography as the electron beam sweeps across the specimen. The secondary electron emission is confined to a 

volume near the beams impact area, permitting images to be obtained at relatively high resolution 

     SEM offers a relatively simple method of studying the surface morphology of samples at high magnification under 

optimal conditions. Another important feature of SEM is the three dimensional appearance of the specimen image, a 

direct result of the large depth of field, as well as to the shadow relief effect of the secondary and backscattered electron 

contrast. The greater depth of field of SEM provides much more information about the specimen. The basic components 

of the SEM are the lens system, electron gun, electron collector, visual and recording cathode ray tubes, and the 

electronics associated with them [10].  

     In addition, one of the potentials of the SEM, which remains largely unexplored, is the evaluation of the 

effectiveness of the antimicrobial activity of textiles, as well as bacteria adhesion on textiles as well as the 

morphological consequences of exposure of bacteria to antimicrobial agents.  

     Numerous studies that use SEM to characterize different microorganisms and different antimicrobial agents have 

been published [11-17]. Most studies are related with SEM observations of the different morphological changes caused 

in the microorganism by antibiotic; however there aren’t any scientific articles concerning the SEM surface observation 

of functionalized textiles aiming to assess antimicrobial activity. Nor are there direct observations on clear zone 

surrounding the sample (antimicrobial test) and analysis of microbial inhibition under the sample. 

     Therefore, here we report the potential of SEM in the assessment of antibacterial activity, by analyzing the 

morphological changes in Staphylococcus aureus and Klebsiella pneumoniae induced by Layer by Layer (LbL) 

functionalized cotton fabrics. 

2. Experimental 

2.1 Layer by Layer coating of cotton  

To apply the LbL technique cotton substrates should be charged. Anionic cotton was prepared by using 2,2,6,6,-

tetramethylpiperidinyl-1-oxy free radical (TEMPO) and NaBr [18]. Chitosan (CH, 1 mg/mL), antimicrobial 

polyelectrolyte, and Alginic acid sodium salt (ALG, 1 mg/mL) solutions were prepared by dissolving CH and ALG in 

0.1 M CH3COOH and 0.5M NaCl solutions, respectively. The pH values were adjusted to 5 using 0,1M HCl and 1 N 

NaOH solutions. cotton samples were charged negatively by immersing cotton samples in TEMPO solution under 

moderate stirring, followed by a rinse with deionized water, as described elsewhere [19,20]. Then, CH and ALG 

polyelectrolytes multilayer films were deposited over cotton by the LbL assembly where CH was used as polycation 

and ALG as polyanion. The layer sequence can be designed to be (CH/ALG)n. For each layer deposition, the cotton 

substrate was immersed into the corresponding solution at room temperature for 5 minutes, followed by rinsing with 

deionized water to remove the excess of polyelectrolyte. Since the cotton samples were charged negatively, the CH was 

deposited as the first layer. After the last deposition, samples were dried in a desiccator at room temperature overnight. 

All chemicals were obtained from Sigma-Aldrich, were of analytical grade, and were used as received. 
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 2.2 Assessment of antibacterial activity by the JIS L 1902:2002 method 

The culture medium Brain Heart Infusion (BIH) used for the cultivation of the bacterial strains deployed in this work, 

were prepared according to the instructions of the manufacturer. Culture media were dissolved directly after being 

weighed in deionized distilled water, and then sterilized by autoclaving for 15 min at 121 ºC. Agar was used to solidify 

the media before autoclaving. The strains of Staphylococcus aureus and Klebsiella pneumoniae used were obtained 

from the American Type Culture Collection, ATCC 25923 and ATCC 13883 respectively. The cell density of bacterial 

suspensions was determined by measuring the optical density (OD) of appropriately diluted samples using a 

spectrophotometer at a wavelength of 640 nm [OD640] The number of viable cells in a bacterial suspension was 

estimated and diluted in physiological saline (0.9%  wt/vol, NaCl). 100 µL aliquots of the appropriate dilutions were 

plated onto the surface of agar plates with a Mueller-Hinton medium, and after approximately 10 min the functionalized 

cotton samples were placed on top of agar plates and incubated for 24h at 37 ºC. 

2.3 Assessment of antibacterial activity with Scanning Electron Microscopy 

After completing the previous procedure, samples were removed from agar plates and fixed with 3% glutaraldehyde at 

4ºC overnight. Dehydration of the samples was then conducted by a series of 10, 25, 50, 70, 100 % ethanol solutions. 

Using a Critical Point Dryer the samples were dried further (CPD, Emitech). These samples were mounted on 

aluminum stubs and then coated with gold using a Sputter Coater (Emitech). Finally the samples were examined using a 

Hitachi (S 2700) SEM. Samples of culture medium Mueller – Hinton (agar plates) were also prepared to observe in the 

SEM, by the same method described previously. 

3. Results and Discussion 

3.1   Antibacterial activity 

The antibacterial efficacy of the CH/ALG multilayer’s was evaluated by assessing the reduction in bacterial attachment 

and growth on the functionalized cotton substrates.  

 SEM analysis revealed that on the CH/ALG functionalized cotton, the densities of attached bacteria decreased when 

compared with that of the control. It appears that the effectiveness in preventing bacterial adhesion is high regardless of 

whether CH/ALG is deposited as the outermost layer. This is in accordance with the expected. The use of CH as an 

anti-biofilm coating for medical applications has recently been suggested, as coating surfaces with CH are highly 

effective at restricting or preventing the formation Staphylococcus aureus and Klebsiella pneumoniae biofilms [21].  

 Likewise, the results of the JIS L 1902:2002 – qualitative method were used to assess the antibacterial activity of 

textile specimens.  

In fig. 1 a positive control (sample known to have antimicrobial activity) presents a halo around the sample. Halo 

size provides some indication of the potency of the antimicrobial activity of textile samples. 

 

 

 

Fig.1 Image of a halo formation of a positive control (analysed using the standard 

method JIS L 1902:2002 - Halo method, against Staphylococcus aureus). 

 

 

     In contrast, the results of the functionalized cotton (fig. 2) showed an ambiguous inhibitory effect against 

Staphylococcus aureus and Klebsiella pneumoniae, although in terms of the surrounding clearing zone the different 

samples did not show the same inhibitory effect against the tested microorganisms. In fig. 2 (b), (c), (e) and (f), the 

functionalized samples showed a small but clear inhibitory zone for Staphylococcus aureus and a smaller halo for the 

Klebsiella pneumoniae. However, control sample against Klebsiella pneumoniae also presented a very thin inhibition 

line in the edges of the fabric. Due to these ambiguous results concerning a clear halo formation and in order to give 

more conclusive results  the samples were removed from the Petri dishes used for testing JIS L 1902:2002 – Halo 

method, allowing the analysis of bacteria inhibition under the sample. This can be observed in fig. 3. It is interesting to 

note, that for both bacteria, Staphylococcus aureus and Klebsiella pneumoniae, the control sample (without LbL) 

showed little microbial growth inhibition. In contrast, the inhibition was more significant in the presence of CH/ALG. 
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 a)  b)  c)  

 d)  e)  f) 

Fig. 2   Images of samples tested according with the standard method JIS L 1902:2002-Halo method. a), b), c), inhibition zone 

against Staphylococcus aureus for control sample, sample (CH/ALG)3 and sample (CH/ALG)5 respectively. d), e), f), inhibition zone 

against Klebsiella pneumoniae for control sample, sample (CH/ALG)3 and sample (CH/ALG)5 respectively. 

 

     In addition, the results also showed that the antibacterial effect of CH/ALG occurred without migration of the active 

agents. As CH/ALG layers are in a solid form, only microorganisms in direct contact with the active sites of CH/ALG 

are inhibited because CH/ALG layers are incapable of diffusing through the adjacent agar medium, as discussed 

elsewhere [22]. As a result, and as described previously, the possible mechanisms for antibacterial activity are: (1) the 

CH/ALG on the surface of the cell can form a polymer membrane, which prevents nutrients from entering the cell. (2) 

CH/ALG entered the cell through pervasion. Since CH could absorb the electronegative substance in the cell and 

flocculate them, it disturbs the physiological activities of the bacteria [23]. 

 

 a)  b)  c)  

 d)  e)  f) 

Fig. 3   Analysis of bacteria inhibition under the sample. a), b), c) control sample, sample (CH/ALG)3 and sample (CH/ALG)5 

respectively, against Staphylococcus aureus. d), e), f), control sample, sample (CH/ALG)3 and sample (CH/ALG)5 respectively 

against Klebsiella pneumoniae. 

3.2 Scanning Electron Microscopy 

SEM analysis was used to examine the minor changes in cell morphology of the strains Staphylococcus aureus and 

Klebsiella pneumoniae. Figs. 4 and 5 represent the evolution of bacterial damage caused by CH/ALG multilayers. In the 

presence of CH/ALG the bacteria suffered alterations in their morphology, as it can be seen in figs. 4 e), f) and 5 e), f). 

In contrary, in the absence of CH/ALG, the bacteria cell morphology was apparently normal (figs. 4 d) and 5 d)).The 

morphological changes observed in bacterial cells after exposure to CH/ALG are similar to those found in literature [11-

17]. In all these works, the authors found significant morphology changes and disorders in the bacterial surface 

structures when in contact with antimicrobial agents due to bacterial death. Comparing the images presented in those 

works with the images undertaken in this investigation, the appearance of bacteria Staphylococcus aureus exposed to 
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CH/ALG is very similar. Typically, all SEM micrographs show distorted cells with small surface depressions, bleb 

formations, and cell fragments (fig 4 f)). In extreme conditions, total collapse of bacteria when exposed to antimicrobial 

agents can also be found. 

In the case of Klebsiella pneumoniae healthy cells have an oval-like shape with a regular and smooth surface. 

Damaged cells induced by antimicrobial agent show irregular and bleb-like protrusions on their surfaces. The cells 

remain swollen or shrunken after biocide action (fig. 5 f)).  

Generally, bacteria exposed to antimicrobial agents show significant morphological changes, presenting variations 

in size and shape, many being smaller than usual, others being abnormally large. 

 

 a)  b)  c) 

 d)  e)  f) 

Fig. 4   SEM images of samples tested against Staphylococcus aureus, a) and d) control samples; b) and e) (CH/ALG)3; c) and f) 

(CH/ALG)5. Images a), b) and c) show the zone under functionalized cotton, and images d), e) and f) show the upper zone of the 

functionalized cotton samples. Magnifications are x2000 for a), b) and c) and x10000 for d), e) and f). 

 

     The SEM analysis of the strains under investigation clearly put in evidence the antibacterial activity of the 

functionalized cotton. SEM analysis was very valuable in the assessment of this antibacterial activity whereas standard 

tests (JIS L 1902:2002) gave ambiguous results.  

     However, more information can be addressed using SEM analysis. In this way, samples prepared from culture 

medium Mueller – Hinton, after the removal of functionalized cotton, were also analyzed under SEM. The results 

showed a high density and uniformity of growth of Staphylococcus aureus and Klebsiella pneumoniae by all culture 

mediums removed from a zone without any contact with the functionalized cotton samples and far from the halo 

formation (fig. 6 a) and d)). In addition, the area that was previously covered by the functionalized cotton specimen, 

revealed a complete inhibition of Staphylococcus aureus and Klebsiella pneumoniae, as shown in fig. 6 ( c) and f)). It is 

also possible to observe moderate and increased growth inhibition in the zone in the edges of the functionalized cotton 

(fig. 6 b) and e)). 
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 a)  b)  c) 

 d)  e)  f) 

Fig. 5   SEM images of samples tested against Klebsiella pneumonia, a) and d) control sample; b) and e) (CH/ALG)3; c) and f) 

(CH/ALG)5. Images a), b) and c) show the zone under functionalized cotton, and images d), e) and f) show the upper zone of the 

functionalized cotton samples. Magnifications are x2000 for a), b) and c) and x10000 for d), e) and f). 

 

     According to the review of literature, structural changes in the cells of antibiotic resistant bacterial strains are more 

pronounced under the effect of antibiotics in bacteriostatic doses than under the effect of CH. This does not diminish the 

significance of CH as an antibacterial agent, as bacteria do not develop CH resistance. This is particularly important in 

the treatment of infections caused by bacterial strains with multiple antibiotic resistance, in wounds, and in burn 

infections, when the adhesive effect of CH is fully pronounced.  

 

 a)  b)  c) 

 d)  e)  f) 

Fig. 6   SEM images of culture medium Mueller-Hinton. a) density and uniformity of growth against Staphylococcus aureus by 

culture medium (x10000), b) zone of inhibition (x5000) and c) zone under the functionalized cotton (x5000). d) density and 

uniformity of growth against Klebsiella pneumoniae by culture medium (x10000), b) zone of inhibition (x5000) and c) zone under 

the functionalized cotton (x5000). 

4. Conclusions 

The antibacterial qualitative tests fulfilled a need for a relatively quick and easy way to determine antibacterial activity 

of textiles. In the standard method JIS L 1902:2002 – Halo method, the samples clearly show antibacterial activity when 

a halo is formed. However, even if no halo appears, the samples may have antibacterial activity by direct contact when 

there is also no bacteria growth under the samples. 
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 The results reported in this investigation showed the value of the SEM in studying the effect of CH/ALG on 

Staphylococcus aureus and Klebsiella pneumoniae. Information about the mode of action is not obtained, as in the case 

of the qualitative and quantitative standards to assess antibacterial activity of textiles, but direct observation of 

morphological changes following antibacterial action can be observed. These changes cannot be evaluated by those 

standards and are not adequately seen in the light microscope, while the high magnifications and three-dimensional 

effect obtained with the SEM make it ideal for this purpose. 

 SEM analysis is able to show the effectiveness of the several functionalized samples in preventing bacterial adhesion 

besides bacteria growth. 
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Layer-by-layer deposition of antimicrobial
polymers on cellulosic fibers: a new strategy to
develop bioactive textiles
Ana P. Gomesa*, João F. Manob,c, João A. Queirozd and Isabel C. Gouveiaa

In recent years, there has been an increase of infectious diseases caused by different microorganisms and the
development of antibiotic resistance. In this way, the search for new and efficient antibacterial materials is imperative.
The main polysaccharides currently used in the biomedical and pharmaceutical domains are chitin and its derivative
chitosan (CH) and alginates (ALG). In this study, a simple technique of Layer by Layer (LbL) of applying polycation CH
and polyanion ALG was used to prepare CH/ALG multilayers on cotton samples via the electrostatic assembly with
success. The CH/ALG cotton samples (functionalized) were investigated for their antibacterial properties towards
Staphylococcus aureus and Klebsiella pneumonia using the international standard method JIS L 1902:2002. The
antibacterial activity of the functionalized samples was tested in terms of bacteriostatic and bactericidal activity, and
results showed that the samples exhibited a bacteriostatic effect on the two bacteria tested, as expected. In addition,
samples with five layers (CH/ALG/CH/ALG/CH) were more effective in inhibiting bacterial growth. This new coating for
cellulosic fibers is a new strategy and may open new avenues for the development of antimicrobial polymers with
potential application in health-care field. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: chitosan; alginate; cotton; LbL; JIS L 1902

INTRODUCTION

The number of different antimicrobial agents suitable for textile
application on the market has increased drastically in recent
years. Several different types of antimicrobial agents, such as
oxidizing agents, coagulants, diphenyl ether (bis-phenyl) deriva-
tives, heavy metals and metallic compounds and quaternary
ammonium compounds are used in the textile industry to confer
antimicrobial properties.[1] The selection of the antimicrobial
agent depends on the mechanism of antimicrobial activity
(bacteria and fungi), toxicity, application method and cost.[1]

Nowadays, the textile manufactures prefer eco-friendly chemicals
to impart antimicrobial finishing on textiles.
Polysaccharide biopolymers including ALG and CH have been

the focus of an expanding number of studies reporting their
potential use in biomedical research applications such as cell
encapsulation, drug delivery and tissue engineering. Therefore,
multilayered films containing both biopolymers could be useful
in the coating of substrates for different biomedical applications,
in particular in the development of new wound dressings.[2,3]

CH, a natural biopolymer, has a combination of many unique
properties such as biodegradability, non-toxicity, cationic nature,
antitumor, immunostimulatory[4] and antimicrobial activity.[5,6]

CH is also known in the wound management field for its
hemostatic properties.[7]

ALG is a natural biopolymer, and it is non-toxic, biocompatible,
biodegradable, less expensive and freely available.[8,9] ALG is
known to exhibit minimum cytotoxic effects and reduced
hemolysis when in contact with blood.[8]

Electrostatic LbL assembly is a versatile method of fabricating
multilayer films and coating from materials in solution, notably,
oppositely charged polyelectrolytes in solution. Polyelectrolytes

are polymers with ionizable groups along the chain, classified
into anionic and cationic according to their functional group.
An advantage of LbL is that the film is fabricated directly on
the surface of interest. The method is based on the successive
deposition of oppositely charged polymers onto solid sur-
faces.[10,11] A deposition cycle creates a bilayer, and these cycles
can be repeated as often as needed according to previous
work.[12] The number of deposition cycles and the types of
polyelectrolytes used in the construction allow for the control
of thickness and roughness of the multilayered film.[13] Figure 1
can illustrate this method.

Numerous studies involving different polymer substrates and
several synthetic polyelectrolytes have been published. But,
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there are very few studies concerning the deposition of alternate
polyelectrolyte on natural textile supports. Hyde et al. (2005)
reported a pioneering application of self-assembly technique
on cotton substrates by LbL deposition of poly (styrene sulfonate)
(PSS) and poly (allylamine hydrochloride) on cotton fibers.[15]

Dubas et al. (2006) have immobilized antimicrobial silver
nanoparticles on nylon and silk fibers by LbL depositionmethod.[16]

More recently, Iamphaojeen et al. (2012), in this study,
immobilized ZnO nanoparticles on cotton fabrics using PSS,
through the LbL technique. As a result, they obtained a high
UV protection factor and inhibition of the growth of Staphylococcus
aureus.[17]

Based on literature review, the aim of this study was to design
a new process for the bio-functionalization of cellulosic fibers
with an antimicrobial effect with potential application as a new
substrate for wound dressings. For this purpose, natural antimi-
crobial ingredients (CH and ALG) were deposited on cotton
samples by LbL and investigated as a new potential antibacterial
coating for cellulose-based textiles with a broad range of
application in hospital, medical and hygienic products where
antimicrobial activity is of the utmost importance

EXPERIMENTAL

LbL coating of cotton

To apply the LbL technique, anionic cotton was prepared by
using 2,2,6,6,-tetramethylpiperidinyl-1-oxy free radical (TEMPO)
and NaBr, in order to give higher surface charge for polyelectro-
lyte deposition, as described elsewhere.[18] Cotton samples were
charged negatively by immersing cotton samples in TEMPO solu-
tion under moderate stirring, followed by a rinse with deionized
water, according with literature.[19,20] Chitosan of low molecular
weight and 80% degree of deacetylation (CH, 1mg/ml), a natural
antimicrobial polyelectrolyte, and Alginic acid sodium salt (ALG,
1mg/ml) solutions were prepared by dissolving CH and ALG
in 0.1M CH3COOH and 0.5M NaCl solutions, respectively.
The pH values were adjusted to 5 using 0,1M HCl and 1 N
NaOH solutions.

The pH was selected to 5, to be approximately intermediate
between the pKa of CH (6.3) and ALG, pKa of 3.38 and 3.65, as

previously reported by other authors.[12,21] ALG and CH are two
oppositely charged natural polyelectrolyte materials and very
sensitive toward changes in external factor such as pH. At pH 5,
the carboxylate group of ALG mainly exists in the form of COO�,
and the amino group of CH mainly exists in the form of NH3

+. In
this case, the presence of both COO� and NH3

+ along polymer
backbone could enhance the electrostatic interaction of the
network structure[22] (see Fig. 2).
Then, CH and ALG polyelectrolyte multilayer films were depos-

ited over cotton by the LbL assembly, where CH was used as
polycation and ALG as polyanion (see Fig. 2). For each layer de-
position, the cotton substrate was immersed into the corre-
sponding solution at room temperature for 5min, followed by
rinsing with deionized water to remove the excess of polyelec-
trolyte. Since the cotton samples were charged negatively, the
CH was deposited as the first layer. Cotton samples treated
during 30min in TEMPO (designated by CT) and samples then
functionalized by LbL were prepared with five layers (CH/ALG/
CH/ALG/CH), six layers (CH/ALG/CH/ALG/CH/ALG), nine layers
(CH/ALG/CH/ALG/CH/ALG/CH/ALG/CH) and ten layers (CH/ALG/
CH/ALG/CH/ALG/CH/ALG/CH/ALG), designated, respectively, by

Figure 1. (a) The sequence of layer-by-layer electrostatic in negatively charged substrate, dipping into polycationic solution (CH), polycation layer
deposited, dipping into polyanion solution (ALG), and the polyanion layer deposited. (b) Design of structure of the sample functionalized, adapted from
Nabok, 2005.[14]

Figure 2. Schematic representation of the electrostatic interactions
between the carboxylic groups of the ALG and the amine groups of
the CH, adapted from Mi et al., 2002.[23]
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CT5, CT6, CT9 and CT10. After the last deposition, samples were
dried in a desiccator at room temperature overnight. All
chemicals were obtained from Sigma–Aldrich, are of analytical
grade and were used as received.

Assessment of antibacterial activity – JIS L 1902:2002 - halo
method

In order to evaluate the activity of antibacterial textiles, there are
several standard methods available. The method used in this
study and described in JIS L 1902 (Japanese Standard) appears
to be the most commonly employed.
The culture medium Brain Heart Infusion used for the cultiva-

tion of the bacterial strains deployed in this work were prepared
according with the instructions of the manufacturer. Culture
media was dissolved directly after being weighed in deionized
distilled water and then sterilized by autoclaving for 15min at
121 °C. Agar was used to solidify the media before autoclaving.
The strains of S. aureus and Klebsiella pneumoniae used were
obtained from the American Type Culture Collection, ATCC
25923 and ATCC 13883, respectively. These strains were selected
because they are indicated in several standards to evaluate
antibacterial activity of textiles.[24]

The cell density of bacterial suspensions was determined by
measuring the optical density (OD) of appropriately diluted
samples using a spectrophotometer at a wavelength of 640 nm
[OD640]. 100μl aliquots of the appropriate dilutions were plated
onto the surface of agar plates with a Mueller–Hinton medium,
and after approximately 10min, the functionalized cotton sam-
ples were placed on the top of agar plates and incubated for
24 h at 37 °C.[25]

Assessment of antibacterial activity – JIS L 1902:2002 -
absorption method

The JIS L 1902:2002 - absorption method is designed to quanti-
tatively test the ability of textiles that have been treated with
antibacterial agents to prevent bacterial growth and to kill
bacteria, over an 18 h period of contact. This method is based
on the quantitative determination of the potential effect and
activity of functionalized samples, by the direct contact with a
suspension of bacterial cells.
Textile samples with approximately 0.4 g, six control samples

(without CH and ALG) and six samples functionalized with CH
and ALG, previously sterilized in an autoclave at 121 °C for
15min were tested for each bacterial strain. In order to calcu-
late growth reduction rate, three samples were used to mea-
sure the number of live bacteria after inoculation (T0h) and
the other three to measure the number of live bacteria after
incubation (T18h).
Bacterial cell suspensions were collected from an overnight

liquid culture in Nutrient Broth. After that, the bacterial concen-
tration is adjusted to 1–2×108 cel/ml (equivalent to 0.5
McFarland), with the necessary dilutions to adjust the final
bacterial concentration to 1 ± 0.3×105 cel/ml.
Each textile sample was placed in a 50ml Falcon tube, soaked

with 200μl of the inoculum previously prepared, and T18h tubes
were incubated for 18 h at 37 °C. For the release of bacterial cells
from the textile samples, before and after the 18 h incubation
period, 20ml of 0.85% NaCl with surfactant Tween 80 (0.2%)
was added to the samples in 50ml Falcon tubes and vortexed.
The resulting suspensions were used for the determination of

viable counts using serial dilutions prepared in sterile 0.85%
sodium chloride solution and plated. The plates were incubated
at 37 °C for 18 h, and the number of colonies was counted
visually using a microscope. This procedure was performed in
triplicate.[25] The growth reduction rate of the bacteria was calcu-
lated using the equation:

T0h � T18h
T0h

� 100% ¼ reduction rate %ð Þ

where, T0h is the CFU/ml (CFU= colony forming units) of bacterial
colonies at the initial stage (0 h), and T18h is the CFU/ml of
bacterial colonies after 18 h incubation.[24]

In order to carry out the judgement of test effectiveness, the
growth value was calculated according to the following equation:

F ¼ Mb–Ma

When the growth value is more than 1.5, the test is judged to
be effective, and when the growth value is 1.5 or less, the test is
judged to be not effective. When the test is not effective, a retest
is necessary.

When the quantitative test has been effective, the bacterio-
static activity value should be calculated in accordance with
the following equation:

S ¼ Mb �Mc

and the bactericidal activity according to:

L ¼ Ma �Mc

Where, F is the growth value, and S and L are the bacterio-
static and bactericidal activity values, respectively. Ma is the
average of common logarithm of number of living bacteria of
three test pieces immediately after inoculation of inoculum on
standard cloth. Mb is the average of common logarithm of
number of living bacteria of three test pieces after 18 h incuba-
tion on standard cloth. Mc is the average of common logarithm
of number of living bacteria of three test pieces after 18 h incu-
bation on antibacterial treated sample.[25] Traditionally, bacterio-
static means prevention of multiplication of bacteria without
destroying them, whereas bactericidal effect implies forthright
killing of the organisms[26]

RESULTS AND DISCUSSION

Assessment of antibacterial activity – JIS L 1902:2002 - halo
method

The antibacterial efficacy of the CH/ALG multilayers was evalu-
ated by assessing the reduction in bacterial growth on the
functionalized cotton substrates. Antibacterial activity analysis
revealed that on the CH/ALG functionalized cotton, the densities
of attached bacteria decreased when compared with that of the
control (cotton), as can be observed in Fig. 4 by the formation of
a small halo on the functionalized samples. It appears that the
effectiveness in preventing bacterial adhesion is high regardless
of whether CH/ALG is deposited on cotton samples. This is in
accordance with the expected. The use of CH as an anti-biofilm
coating for medical applications has been suggested, as coating
surfaces with CH is highly effective at restricting or preventing
the formation S. aureus and K. pneumoniae biofilms.[27]
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Cationic polyelectrolytes, as well as other molecules with a net
positive charge, are capable of killing microorganisms. The
mechanism of antibacterial action of cationic polyelectrolytes is
not completely understood, but it has been suggested that these
polymers can interact electrostatically with anionic groups at the
bacterial cell walls causing an increase of membrane permeabil-
ity and subsequent leakage of cellular proteins which ultimately
leads to cell death.[28] In the context of this research, the
observed antibacterial action of the polyelectrolytes is an inter-
esting finding because in principle the antimicrobial activity of
the functionalized samples can be adjusted using favorable
layers number of polyelectrolytes on top of cotton.

On the other hand, according with several authors, the pH
value affects the antibacterial effect, where an increase in pH
leads to a decrease of the antibacterial action. In the case of
CH, the high pH few amino groups in CH molecules will be free,
but at pH below 6, the amino groups become ionized.[4] In this
study, we use pH 5; this implies a higher number of side amino
groups available.

Likewise, the results of the JIS L 1902:2002 - qualitative
method were used to assess the antibacterial activity of textile
specimens.

In Fig. 3, a positive control (sample known to have antimicro-
bial activity) presents a halo around the sample. Halo size
provides some indication of the potency of the antimicrobial
activity of textile samples and also that the antimicrobial agent
is released from the textile. In contrast, the results of the func-
tionalized cotton (Fig. 4) showed an ambiguous inhibitory effect
against S. aureus and K. pneumoniae, although in terms of the
surrounding clearing zone, the different samples show the same
inhibitory effect against all tested microorganisms.

Figure 4 (a) sample CT5, (b) samples CT6, CT9 and CT10,
showed a small but clear inhibitory zone for S. aureus. Figure 4
(c) sample CT5, (d) samples CT6, CT9 and CT10, showed a smaller
halo for the K. pneumonia. However, Fig. 4 (a) samples CO
(cotton) and CT, and Fig. 4 (c) samples CO and CT, showed a very
thin inhibition line in the edges of the sample for both tested
microorganisms. As a result, we conclude that for the S. aureus
and K. pneumonia, the control samples (CO and CT) showed little
microbial growth inhibition. In contrast, the inhibition was more
significant in the presence of CH/ALG in samples CT5, CT6, CT9
and CT10.

From the little defined zone of inhibition obtained, it is appar-
ent that the functionalized samples are bacteriostatic and not
bactericidal. In addition, the results also showed that the
antibacterial effect of CH/ALG occurred without migration of
the active agents. As CH/ALG are in a solid form, only microor-
ganisms in direct contact with the active sites of CH/ALG are
inhibited because CH/ALG layers are incapable of diffusing
through the adjacent agar medium, as discussed elsewhere.[29]

As a result, and as described previously, the possible mecha-
nisms for antibacterial activity are: (1) the CH/ALG on the surface
of the cell can form a polymer membrane, which prevents nutri-
ents from entering the cell. (2) CH/ALG entered the cell through
pervasion, since CH could absorb the electronegative substance
in the cell and flocculate them; it disturbs the physiological
activities of the bacteria.[30]

Assessment of antibacterial activity – JIS L 1902:2002 -
absorption method

The antibacterial effect of functionalized samples was tested
according to the Japanese Industrial Standard JIS L Standard
1902:2002. Thismethod is based on the quantitative determination
of the potential effect and activity of functionalized samples, by the
direct contact with a suspension of bacterial cells. The results of the
bioactivity investigations are presented in Table 1.
All samples (CT, CT5, CT6, CT9 and CT10) showed a bacterio-

static activity and no bactericidal activity found against S. aureus
and K. pneumonia, being in accordance with the results for
antibacterial activity by the halo method. CT5 is the sample that
has the highest value of bacteriostatic activity (1.9 for S. aureus
and 1.5 for K. pneumonia), followed by the sample CT9 (1.8 for
S. aureus and 1.3 for K. pneumonia). These samples have in
common the last layer is composed for CH, suggesting more free
amino groups from CT5 and CT9 and lower free amino groups
from the CT6 and CT10, which are bonded with carboxylic
groups of the ALG thus, reducing the activity. The experimental
results provide tangible evidence in support of the hypothesis
that the amino group on CH is a source of bacteriostatic activity.

Figure 4. Images of samples tested according with the standard
method JIS L 1902:2002 - halo method. a) and b), inhibition zone against
Staphylococcus aureus for CO, CT, CT5, CT6, CT9 and CT10 samples. c) and
d), inhibition zone against Klebsiella pneumonia for CO, CT, CT5, CT6, CT9
and CT10 samples.

Figure 3. Image of a halo formation of a positive control (analysed
using the standard method JIS L 1902:2002 - halo method, against
Staphylococcus aureus).
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In literature, normally the CH exhibits a stronger bioactivity
effect upon Gram-positive than Gram-negative bacteria. This
observation may be explained by the higher deacetylation
degree of CH used in this work (80%), which implies a higher
number of side amine groups available for reaction.[4,27] On
the other hand, the bioactivity effect also depends on the
molecular weight; the inhibitory effect decrease slightly as
the molecular weight increase. In this study, it was used CH
of low molecular weight (420 kDa). CH is a cation that attracts
the negative charges of the cell walls of bacteria, as claimed
by several authors, being the cause for CH antibacterial
action.[31–34] The surface of S. aureus includes the negatively
charged teichoic acid within a thick peptidoglycan layer that
lacks an outer membrane.[35] This should render the bacterial
cell more attractive to and easier to be damaged through
electrostatic-mediated contact-inhibition mechanisms when
exposed to the positively charged CH layer (CT5 and CT9) than
the negatively charged ALG layer (CT6 and CT10).
The lower bacteriostatic activity of the samples against K.

pneumonia than that against S. aureus may be explained as a
result of the different bacterial membrane structures. In contrast
to that of S. aureus, K. pneumonia has a double protective layer,
the outer lipopolysaccharide layer embedded with a number of
small channels of porins and the inner peptidoglycan layer. The
fact that it does not contain the negatively charged (teichoic
acid) entities that can interact with positively charged molecules
would potentially make it less sensitive to electrostatic binding
with positively charged molecules like CH.[35]

The work on the effect of CH in strains of K. pneumonia and S.
aureus found that CH promotes aggregation of bacterial cells
and disorganization of bacterial cell wall and cytoplasmic
membrane, which leads to the release of bacterial contents
into the environment. These structural changes result in
bacterial death.[36] These results suggest that the apparent
difference action upon Gram-positive and Gram-negative
microorganisms probably results from the intrinsic difference
in their cell wall structure.
All functionalized samples (CT5, CT6, CT9 and CT10) showed

antibacterial activity against S. aureus and K. pneumonia in
solution. Figure. 5 shows the growth inhibition (cell reduction)
of the S. aureus and K. pneumonia by the antibacterial activity
of the functionalized samples with CH/ALG.

Analyzing the results, (Fig. 5) there is a reduction of
65–80% in bacterial growth on CT5 and CT9 samples, respec-
tively, and a reduction of 60–75% in bacterial growth is
achieved by CT6 and CT10 samples. An interesting observa-
tion is that all functionalized samples exhibit a high reduc-
tion of bacterial growth in solution although without a
clear zone of inhibition assessed by the halo method. This
may be because the concentration of CH and ALG on cotton
samples is not sufficient enough for bactericidal activity as
described elsewhere.[37] Singh and co-workers found that
antimicrobial efficacy of a compound will vary when it is
present in solution and when it is held intimately by a textile
substrate.[37]

All of these results suggest that the functionalized samples
with five numbers of layers (CH/ALG/CH/ALG/CH) are more
active against S. aureus and K. pneumonia microorganisms.

Structurally, the cationic nature of CH is expected to interact
strongly by ionic bonds with the anionic ALG, and the combina-
tion of ALG with CH has become quite commonplace for the
development of potential wound healing materials as they
showed no toxic effects to mammalian cells.[38] A recent study
has shown that ALG/CH-based wound dressing films accelerated
burn healing by modulating the epithelization, blood vessels
formation and collagenization process.[39]

CONCLUSION

The results obtained confirm the possibility of using the LbL
method for modification of the surfaces of cotton fabric in order
to impart antibacterial properties to them. The most important
potential application of these materials could be their use as
external wound dressings. Their advantage toward the existing
materials is that they are fully biocompatible and inexpensive.

Many applications are proposed based on this CH/ALG, which
is the most investigated polyelectrolyte complex, especially for
biomedical applications. Note that this technique (LbL) in textile
is entirely new and is a simple and effective method with strong
possibility of industrial application.

This new coating for cellulosic fibers is a new strategy and may
open new avenues for the development of antimicrobial polymers
with potential application in health-care field.

Table 1. Antibacterial activity (bacteriostatic and bactericidal
activity)

Sample S. aureus K. pneumoniae

Mb � Mc Ma � Mc Mb � Mc Ma � Mc

CO 0 �1.5 0 �1.8
CT 0.3 �1.1 0.2 �1.0
CT5 1.9 �0.5 1.5 �0.4
CT6 1.3 �1.0 1.1 �0.9
CT9 1.8 �0.6 1.3 �0.6
CT10 1.4 �0.7 1.1 �0.8

A-number of inoculated bacteria. B-number of bacteria on
the standard sample contacted for 18 h. C-number of
bacteria on the functionalized sample after incubation for
18 h. Ma = log A, Mb = log B, Mc = log C. Bacteriostatic
activity level, Mb � Mc; bactericidal activity level, Ma � Mc.

Figure 5. Reduction rate (%) of Staphylococcus aureus and Klebsiella
pneumoniae in functionalized samples.
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ABSTRACT: The aim of this study was to investigate a method of embedding L-cysteine (L-cys), an antimicrobial agent, between layers

of chitosan (CH) and sodium alginate (ALG) onto cotton samples obtained via a layer-by-layer electrostatic deposition technique via

several embedding methods. The results show that the best way to incorporate L-cys into the layers was the one that used the prop-

erty of gelling ALG. To monitor the L-cys embedding into the CH/ALG multilayer film, different methods were used: energy-

dispersive X-ray spectrometry analysis to assess the presence of sulfur on the sample, Ellman’s reagent method to analyze L-cys release

from the sample, and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) to compare the ATR–FTIR

spectra of the pure L-cys and L-cys embedded in the CH/ALG multilayer film to study the interaction between the L-cys and the CH/

ALG multilayer films. Functionalized CH/ALG cotton samples were also investigated for their antibacterial properties toward Staphy-

lococcus aureus and Klebsiella pneumonia with the Japanese Industrial Standard method JIS L 1902:2002, and the results show an

enhancement of the antibacterial effect due to the presence of L-cys. VC 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40519.
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INTRODUCTION

The continuous use of antibiotics has resulted in multiresistant

bacterial strains all over the world. Consequently, there is an

urgent need to search for alternatives for antibiotics. For this

purpose, a new strategy is proposed here: to use natural bioac-

tive agents as potential antibacterial agents for textiles for medi-

cal applications, such as wound dressings. In this way, L-cysteine

(L-cys) was used as a model to find the best strategy to intro-

duce active agents between the layers of chitosan (CH) and

sodium alginate (ALG) because L-cys is an important biomole-

cule, which has been extensively used in pharmaceuticals, chem-

ical synthesis, and so on.1 L-Cys can be used for the conjugation

of biomolecules, and this allows it to be used for biotechnologi-

cal applications.2

To deposit several layers of CH and ALG on cotton samples, a

layer-by-layer (LbL) technique was used. The LbL technique

offers new opportunities for the preparation of functionalized

biomaterial coatings and the incorporation of bioactive mole-

cules between the layers.3–5 This technique allows the prepara-

tion of nanoarchitectures exhibiting specific properties.

Peptides, proteins, and active agents adsorbed or embedded in

multilayer films have been shown to retain their biological

activities,6 whereas a covalent attachment to the biomaterial can

reduce or even destroy their biochemical activity.5 So, with the

LbL technique, active agents can be directly integrated in the

architecture without any covalent bonding with a biomaterial.6,7

The use of active agents coupled with polyelectrolytes consti-

tutes a major advantage in comparison with direct chemical

immobilization methods. On the other hand, the direct immo-

bilization of active agents on a surface needs to be optimized

for every individual agent/surface pair; thus, the resulting surfa-

ces structures are much more difficult to characterize, and side

reactions are detected.

An advantage of LbL is that the film can be assembled directly

on the desired surface. The basic character of LbL, however,

depends neither on the surface area of the support nor its shape

but on the charge properties of the surface and assembling spe-

cies. The layering process in LbL is repetitive and can be auto-

mated; this makes it suitable for commercial prospects in

applications of technology.8

VC 2014 Wiley Periodicals, Inc.
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The LbL method is based on the successive deposition of oppo-

sitely charged polymers onto solid surfaces,9,10 as illustrated in

Figure 1 (adapted from Nabok11).

The purpose of this study was to investigate the best method

for the functionalization of cotton with polyelectrolyte multi-

layer films (CH and ALG) with incorporated L-cys. Our strategy

was based on the use of multilayer films as reservoirs of active

molecules. Nothing has been found in the literature concerning

the aim of this study; therefore, all of the results were compared

with works based on drug-delivery systems. These kinds of sam-

ples are promising examples for use in wound dressings. Natural

cellulose (cotton) fiber is the basis of many wound dressings,12

and wound dressings containing antibiotics have been developed

for the inhibition of wound infection.13–15 A variety of wound

dressings that incorporate active agents is available on the mar-

ket; they include iodine (Iodosorb by Smith & Nephew), chlor-

ohexidime (Biopatch by J&J), and silver ions (Acticoat by Smith

& Nephew, Actisorb by J&J, and Aquacel by ConvaTec).16

CH and ALG were selected to embed L-cys because these are

natural biopolymers that are finding applications in food, cos-

metics, biomedicals, and pharmaceuticals because they are bio-

compatible, biodegradable, and nontoxic. CH is widely used in

wound dressings and has been shown to have mucoadhesive

properties, a cationic nature, and antibacterial and hemostatic

properties.17,18 ALG is known to be nontoxic; it has hemostatic

action and biocompatibility with a variety of cells. Because of

these properties, ALG has been studied for application in bio-

materials and wound dressings.19 These natural polymers are

now playing a significant role in the research field for skin,

bone, vascular, nerve, and liver regeneration because of their

demonstrated biocompatibility, relative abundance, and ease of

processing.

ALG has the ability to form gels by reactions with divalent cati-

ons, such as Ca21. When in contact with calcium ions, ALG

forms a reticulated structure that can be used to entrap drugs.

ALG–RCOOA groups can bind with Ca21 to form an undis-

solved gel. The gelling and crosslinking of the polymers are

mainly achieved by the exchange of sodium ions from the

guluronic acids with the divalent cations and the stacking of

these guluronic groups to form the characteristic egg-box struc-

ture, as shown in Figure 2 (adapted from Shilpa et al.20).

Biodegradable dressings made of natural polymers, such as

CH21,22 and ALG,23 are already available on the market. Specifi-

cally, biological materials such as CH and ALG have been

reported to perform better than conventional and synthetic

dressings in accelerating granulation tissue formation and epi-

thelialization.22–24 In this context, a new biomaterial based on

cotton with incorporated active agents would be advantageous

for the progressive delivery of associated active agents.

EXPERIMENTAL

LbL Coating of Cotton

Cotton fabric obtained from James H. Heal & Co., Ltd., was used as

a substrate. (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO)-

mediated oxidation, sodium bromide (NaBr), sodium hypochlorite

(NaOCl) 5%, CH (low molecular weight, 420 kDa), acetic acid

(CH3COOH), ALG, sodium chloride (NaCl), sodium hydroxide

(NaOH), and hydrochloric acid (HCl) were purchased from Sigma-

Aldrich. All of the chemicals were of analytical grade and were used

as received. Polyelectrolyte CH (1 mg/mL) and ALG (1 mg/mL) solu-

tions were prepared by the dissolution of CH and ALG in 0.1M

CH3COOH and 0.5M NaCl solutions, respectively. To apply the LbL

technique, samples of the substrate (cotton) were charged by immer-

sion in a TEMPO 1 NaBr 1 5% NaClO (pH 10.5) solution under

Figure 1. (a) Sequence of LbL electrostatic method in the negatively charged substrate with dipping into the polycationic solution (CH), deposited poly-

cation layer, dipping into the polyanion solution (ALG), and deposited polyanion layer. (b) Structure of the functionalized sample.
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moderate stirring for 30 min; this was followed by a rinse with deion-

ized water, as described elsewhere.25–28

The samples were manually prepared by the immersion of the

cotton substrate alternately in polycation and polyanion solu-

tions for 5 min. Between each polyelectrolyte exposure, the

samples were rinsed with deionized water. For the CH and ALG

polyelectrolyte layers, a pH of 5.0 was selected as an approxi-

mately intermediate value between the pKa of CH (6.3) and the

pKa of ALG (3.38 and 3.65 for different residues).29

Embedding of L-Cys between Layers

The aim of this study was to investigate a method of embedding

L-cys between layers of CH and ALG deposited on cotton

obtained via an LbL technique.

L-Cys was incorporated into layers of CH and ALG by different

methods:

Method 1. The use of L-cys as a polyelectrolyte.

Method 2. The use of L-cys by dissolution in the polyelectrolyte.

Method 3. The introduction of L-cys by direct microspray.

Method 4. Calcium–ALG gel entrapment of L-cys.

Method 4.1. Gelling of ALG followed by immersion in the L-cys

solution.

Method 4.2. Immersion in the L-cys solution followed by the

gelling of ALG.

Method 4.3. Dissolution of L-cys in the gelling solution.

Method 4.4. Method 4.2 with the gelling of ALG replaced by

washing with deionized water containing calcium.

Method 4.5. Method 4.4 followed by coating with CH.

Method 5. Immersion in the L-cys solution without the gelling

of ALG.

Method 1: The Use of L-Cys as a Polyelectrolyte. The pK1

(ACOOH), pK2 (thiol or sulfhydryl), and pK3 (NH3
1) values

of L-cys were 1.92, 8.37, and 10.70, respectively. Within a

medium with a zwitterionic pH value of 5.02, there was no net

charge on the molecule.3 At pH values below and above 5.02,

the molecule showed predominant cationic or anionic proper-

ties, respectively. With various solution pH values, the net

charge could be changed from net positive at solution pH val-

ues more acidic than the isoelectric point to net negative at

solution pH values more basic than the isoelectric point. At

high pH values, the sulfhydryl group was also ionized and

acquired a negative charge.

L-Cys was positively charged at pH 4, and this allowed it to be

adsorbed onto a negative layer like a polycation. At pH 8 L-cys

was negatively charged and could then be adsorbed onto a posi-

tive layer like a polyanion. Two embedding protocols were

tested with the insertion of L-cys at the beginning and the end

of the layer sequence considered.

Method 2: The Use of L-Cys by Dissolution in the Polyelectro-

lyte. In this method, a small amount of L-cys (1 mg/mL) was

stirred together with the anionic polyelectrolyte (ALG) and

together with the cationic polyelectrolyte (CH) to keep global

negative and positive charges, respectively, after dissolution.

Method 3: Introduction of L-Cys by Direct Microspray. In this

method, L-cys was introduced between the layers of the polye-

lectrolyte with a microspray during the process of the LbL

method to ensure the use of a very small amount of L-cys to

prevent any interference with the LbL process. Two solutions of

L-cys (1% w/v) were used in the microspray, one with a pH of

1 and another with a pH of 12, to ensure positive and negative

charges, respectively.

Method 4: Calcium–ALG Gel Entrapment of L-Cys. This

method consists of the immobilization of L-cys in calcium–ALG

gel by entrapment. ALG has a unique ability for gel formation

in the presence of divalent cations, such as calcium ions. When

sodium ALG is put into a solution of calcium ions, the calcium

ions replace the sodium ions in the polymer. Hydrogels based

on calcium-crosslinked ALG have been widely investigated for

protein drug delivery. The crosslinking between sodium ALG

and calcium ions leads to the gelling and entrapment of L-cys,

which are dependent on the concentrations of both of these

constituents. The ALG gel showed a positive degree of swelling

at low calcium concentrations and a negative degree of swelling

Figure 2. Schematic representation of an egg-box model showing the

mechanism of the reaction between calcium ions and ALG that leads to

gelation.
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at higher calcium concentrations.30 Therefore, the concentration

of ALG and the immersion time was optimized.

Calcium carbonate [CaCO3 (5%)] was suspended in deionized

water, and the CaCO3 particles were dispersed ultrasonically for 10

min to form a homogeneous suspension.31–33 The ALG hydrogel

was prepared with a CaCO3 solution, and glacial CH3COOH was

added to permit CaCO3 solubilization. Acetic acid/CaCO3 with a

molar ratio of 2.5 was used.33 The pH reduction (caused by pro-

ton diffusion into the aqueous phase) released Ca21 ions from the

insoluble calcium complex [eq. (1)] and caused gelling [eq. (2)]:34

2H 11CaCO 3 ! Ca 211H2O1CO 2 (1)

Ca 2112Na 1ALG 2 ! Ca 21ðALG 2Þ212Na 1 (2)

Taking into consideration the reaction between acetic acid and

CaCO3, each mole of CaCO3 reacts with 2 mol of acetic acid. A

CH3COOH/CaCO3 molar ratio slightly higher than the stoichi-

ometric proportion (2.5/1) resulted in high encapsulation effi-

ciencies.33 Two different methods were applied.

Method 4.1: Gelling of ALG Followed by Immersion in the

L-Cys Solution. After the gelling of ALG (last layer), the func-

tionalized cotton (cotton with CH/ALG by the LbL technique)

was immersed in a solution of L-cys (1% w/v) for 120 min.

Method 4.2: Immersion in the L-Cys Solution Followed by the

Gelling of ALG. In this method, functionalized cotton was

immersed in the L-cys (1% w/v) solution for 120 min, and

then, the gelling of ALG was performed.

Method 4.3: Dissolution of L-Cys in the Gelling Solution. The

functionalized cotton was immersed in a solution of (CaCO3 1

L-cys) to make the gelling and embedding of L-cys between the

layers of CH/ALG occur simultaneously.

Method 4.4: Method 4.2 with the Gelling of ALG Replaced by

Washing with Deionized Water Containing Calcium. The gel-

ling process was replaced by washing with deionized water,

where calcium was added. Longer exposure of ALG to the

CaCO3 solution induced a higher crosslinking degree, and the

ALG-Ca21 network limited the repulsion of the ALG chains

and, hence, decreased the maximum L-cys uptake.

Crosslinking is an effective way to stabilize three-dimensional

polymer networks for a variety of applications. Different types

of crosslinking are used for different applications. Covalent

crosslinking has been used in hydrogel formation with perma-

nent three-dimensional structures, such as absorbents, lubri-

cious coatings, and even some controlled release matrices,

wound dressings, and cell culture substrates.35 The covalent

crosslinking reagents are usually toxic to cells. In this study, we

used an ionic crosslinking system without any toxic chemicals

to form homogeneous ALG gels. The calcium ions had only an

instant crosslinking contact with ALG to form a gel and prevent

the release of L-cys.

Method 4.5: Method 4.4 Followed by Coating with CH.

According to studies from various authors concerning the

encapsulation of active agents within ALG microspheres and

crosslinked CH to reinforce the microspheres,36,37 we prepared

samples with method 4.4, where a final CH layer was added.

Method 5: Immersion in the L-Cys Solution without the Gel-

ling of ALG. CH/ALG-functionalized cotton was immersed in a

solution of L-cys (1% w/v) for 120 min.

Morphological and Structural Characterization of the

Oxidized Cotton

Untreated cotton and TEMPO oxidized cotton samples were

observed with scanning electron microscopy (SEM; Hitachi

S-2700). To provide surface electrical conductivity, the samples

were coated with a thin Au layer, which was applied by sputtering.

The same samples were also analyzed by X-ray diffraction.

A Rigaku DMAX III/C instrument was used to make a 5–50�

2h scan with the reflection method with an operation voltage of

30 kV and a current of 20 mA. The relative crystallinity was cal-

culated according to eq. (3).

Relative crystallinity 5 Icrystalline 2Iamorphous

� �
3100%=Icrystalline (3)

where Icrystalline is the intensity at 22.5� and Iamorphous is the

intensity at 18.6�.38,39

Energy-Dispersive X-Ray Spectrometry (EDS) Analysis

To monitor the L-cys embedding on the CH/ALG multilayer

film, EDS analysis was used to reveal the presence of sulfur (the

chemical element only present in L-cys).

Ellman’s Reagent

The amount of L-cys released from the functionalized cotton was

measured by an Ellman’s reagent assay. The degree of thiolation of

functionalized cotton was determined by an Ellman’s reagent [5,5-

dithiobis(2-nitrobenzoic acid)] reaction, where 5,5-dithiobis(2-

nitrobenzoic acid) reacted with thiol groups to release TNB2 ions.

This further ionized to TNB22. This last ion showed a yellow

color that could be detected by visible light at 405 nm.30,40

Attenuated Total Reflectance (ATR)–Fourier transform

infrared (FTIR) Spectra

ATR–FTIR spectra of samples were acquired on a Thermo-

Nicolet is10 FTIR spectrophotometer with OMNIC software

with wavelengths of 500–4000 cm21. The spectra were collected

at a resolution of 4 cm21 with 64 scans per spectrum. A back-

ground spectrum was acquired and assigned for use on subse-

quent spectral acquisitions for each sample.

Assessment of Antibacterial Activity

The antibacterial effect of functionalized cotton was tested accord-

ing to the Japanese Industrial Standard JIS L 1902:2002,41 which is

the most employed method. This method is designed to quantita-

tively test the ability of textiles that have been treated with antibac-

terial agents to prevent bacterial growth and to kill bacterial over an

18 h period of contact. This method is based on the quantitative

determination of the potential effect and the activity of functional-

ized cotton by direct contact with a suspension of bacterial cells.

To judge the test effectiveness, the growth value (F) was calcu-

lated according to eq. (4):

F5Mb2Ma (4)

When F is more than 1.5, the test is judged to be effective, and

when F is 1.5 or lower, the test is judged to be ineffective.

When the test is ineffective, a retest is necessary.
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When the quantitative test has been effective, the bacteriostatic

activity (S) value can be calculated in accordance with eq. (5):

S5Mb2Mc (5)

The bactericidal activity (L) was calculated according to eq. (6).

L5Ma2Mc (6)

where Ma is the average common logarithm of the number of

living bacteria of three test pieces immediately after the inocula-

tion of the inoculum on standard cloth, Mb is the average com-

mon logarithm of the number of living bacteria of three test

pieces after 18 h of incubation on standard cloth, and Mc is the

average common logarithm of the number of living bacteria of

three test pieces after 18 h of incubation on the antibacterial

treated sample.41 Traditionally, bacteriostatic means the preven-

tion of multiplication of bacteria without their destruction,

whereas a bactericidal effect implies the forthright killing of the

organisms.42

The growth reduction rate of the bacteria was calculated with

eq. (7):

T0h2T18h

T0h

3100% 5 Reduction rate ð%Þ (7)

where T0h is the concentration (cfu/mL) of bacterial colonies at

the initial stage (0 h) and T18h is the concentration (cfu/mL) of

bacterial colonies after 18 h incubation.43

RESULTS AND DISCUSSION

Morphological and Structural Characterization of the

Oxidized Cotton

SEM images of the untreated cotton and oxidized cotton are

shown in Figure 3. Figure 3(a) illustrates the original cotton

sample, and the TEMPO-mediated oxidized cotton is shown in

Figure 3(b).

A comparison between the SEM images of the original cotton

and oxidized cotton showed that the used TEMPO-mediated

oxidation conditions did not lead to any morphological change

in the cotton samples.

Figure 3(c,d) illustrates the X-ray diffraction spectra of the ini-

tial cotton and oxidized cotton, respectively. Spectra are nearly

identical, both in the sharpness and intensity of the diffraction.

The comparison of the diffraction diagrams before and after

surface oxidation indicated that the sample crystallinity was not

affected by the oxidation treatment.

Comparing the original cotton samples [Figure 3(c)] with the

oxidized cotton samples [Figure 3(d)], we observed that their

polymorph type and crystalline degree did not show significant

evolution upon the oxidation treatment. Such results agree with

previously reported work.44–46 The crystallinity degree of cotton

was 88.06%, and the crystallinity degree of oxidized cotton was

88.50% and remained nearly constant during oxidation; this

indicated that the fiber retained its crystal morphology. Gener-

ally, like other authors, we found that the process of oxidation

with TEMPO did not reach the inside of the crystalline

region.38,39,44

EDS Analysis

EDS analysis obtained from the different methods of embedding

L-cys between layers of CH/ALG in functionalized cotton is

shown in Table I.

The existence of L-cys on the functionalized cotton samples

were determined by the amount of sulfur. Samples where sulfur

was not detected had no L-cys embedded between the layers; in

other words, the method used did not work. As shown in

Table I, methods 1, 2, and 3 did not work because L-cys was

not retained between the layers. That is, there were no

Figure 3. SEM images of the cotton sample (a) before and (b) after TEMPO-mediated oxidation and the corresponding X-ray diffraction patterns

(c) before and (d) after TEMPO-mediated oxidation, Materials Data Inc (MDI).
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electrostatic interactions between L-cys and CH and ALG. L-Cys

is free and comes out easily during the LbL process. The result

obtained by method 2 was in accordance with the results of the

literature for drugs incorporated in biodegradable ALG.47 The

dissolution of the drug in polyelectrolyte led to good results

when the drug was insoluble in water. Water-soluble drugs (in

the case of L-cys) are not suitable for this technique because of

the rapid loss of the external phase.48

In methods 4.1, 4.2, 4.3, 4.4, and 4.5, the presence of sulfur

was detected. It was clear that the best result occurred when

there was gelling. In method 4.3, there was less incorporation

of L-cys compared with methods 4.1, 4.2, 4.4, and 4.5. The dis-

solution of L-cys (method 4.3) in the gelling solution inter-

fered with the gelling process, and this resulted in lower values

of incorporation of L-cys. The decrease in the L-cys content

was a result of L-cys diffusion through the crosslinked ALG gel

into the CaCO3 solution. Comparing the results between

methods 4.1 and 4.2 and methods 4.4 and 4.5, we observed

that the process of gelling was not necessary because the addi-

tion of calcium in the wash water solution was enough to

obtain desirable entrapment. Longer exposure of the ALG to

the CaCO3 solution induced a higher crosslinking degree, and

the ALG-Ca21 network limited the repulsion of the ALG

chains and decreased the maximum L-cys uptake capacity. This

evidence agreed with the results reported by Smrdel et al.,49

where after 1 min of hardening, only the surface was cross-

linked, whereas the interior of the beads was still liquid. On

the other hand, a higher concentration of CaCO3 resulted in a

denser network; this prevented the ALG from eroding out of

the film and delayed the kinetics of L-cys release.50

Method 4.4 led to better results with the greatest amount of

detected sulfur; this meant that there was a larger amount of

L-cys embedded between the CH/ALG layers.

In method 5, a very low amount of sulfur was detected. This

indicated that a very small amount of L-cys was embedded

between the layers of CH/ALG. In this method, gelling was not

used, and a very low amount of L-cys between the layers was

detected. This suggested that the gelling process was essential

for the incorporation of L-cys between the layers of CH/ALG.

Ellman’s Reagent

Samples 16 and 17 (samples with better results of L-cys incorpo-

ration, see Table I) were immersed in deionized water. Small

amounts of liquid solution were collected and replenished by

fresh deionized water and analyzed for different immersion

times. The results for the absorbance obtained by the method

of Ellman’s reagent are show in Figure 4.

After immersion for 90 min in deionized water, the result of

EDS analysis by weight percentage for sample 16 was 0.40% in

sulfur and for sample 17 was 0.37% in sulfur. There was a

reduction of 50% in the content of sulfur in each sample; this

suggested that there was a release of 50% of L-cys for an immer-

sion time of 90 min.

Table I. Results of the Embedding of L-Cys

Methoda Sample Sequence
L-Cys
pH

Sulfur
(wt %)

1 1 Cotton-CH-ALG-(L-cys)-ALG-CH-ALG 4 —

1 2 Cotton-CH-ALG-CH-ALG-(L-cys)-ALG 4 —

1 3 Cotton-CH-(L-cys)-CH-ALG-CH-ALG 8 —

1 4 Cotton- CH-ALG-CH-(L-cys)-CH-ALG 8 —

2 5 Cotton-CH-(ALG1L-cys)-CH-ALG-CH-ALG — —

2 6 Cotton-CH-ALG-CH-(ALG1L-cys)-CH-ALG — —

2 7 Cotton-(CH1L-cys)-ALG-CH-ALG-CH-ALG — —

2 8 Cotton-CH-ALG-(CH1L-cys)-ALG-CH-ALG — —

3 9 Cotton-CH-ALG-(spray L-cys)-CH-ALG-CH-ALG 1 —

3 10 Cotton-CH-(spray L-cys)-ALG-CH-ALG-CH-ALG 12 —

3 11 Cotton-CH-ALG-CH-ALG-CH-(spray L-cys)-ALG 12 —

3 12 Cotton-CH-ALG-CH-ALG-(spray L-cys)-CH-ALG 1 —

4.1 13 Cotton-CH-ALG-gelation-L-cys (1%w/v, 120 min) — 0.42

4.2 14 Cotton-CH-ALG-L-cys (1%w/v, 120 min)- gelation — 0.70

4.3 15 Cotton-CH-ALG- gelation (CaCO31L-cys) — 0.18

4.4 16 Cotton-CH-ALG- L-cys (1% w/v, 120 min)-wash (water with CaCO3) — 0.90

4.5 17 Cotton-CH-ALG-L-cys (1% w/v, 120 min)-wash (water with CaCO3)-CH — 0.85

5 18 Cotton-CH-ALG-L-cys (1% w/v, 120 min) — 0.09

a 1, With L-cys as the polyelectrolyte; 2, with L-cys by dissolution in the polyelectrolyte; 3, introduction of L-cys by direct microspray; 4.1, gelation of
ALG followed by immersion in an L-cys solution; 4.2, immersion in L-cys solution followed by the gelation of ALG; 4.3, dissolution of L-cys in the gela-
tion solution; 4.4, method 4.2 with the gelation of ALG replaced by washing with deionized water containing calcium; 4.5, method 4.4 followed by
coating with CH; 5, immersion in L-cys solution without the gelation of ALG.
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ATR–FTIR Spectra

Figure 5(a,b) shows characteristic cellulose peaks around 1000–

1200 cm21, which were those of the main components of

cotton. Other characteristic bands related to the chemical struc-

ture of cellulose were hydrogen- bonded OH stretching around

3100–3550 cm21, CAH stretching around 2800 cm21, and

asymmetrical COO2 stretching around 1600 cm21.51–53 The

characteristic peaks of CH were detected in the region around

1700–1500 cm21 and corresponded to amino groups. The ALG

spectrum showed the characteristic bands of carboxylate

(COO2) at 1600 and 1400 cm21.54

Pure L-cys showed bands at 1575 and 1390 cm21 corresponding

to the asymmetric and symmetric stretching of COO2.55 Char-

acteristic peaks for L-cys resulting from amine bending vibra-

tions modes were observed at 1523 and 1420 cm21.55 The peak

at 2551 cm21 corresponded to the ASH group (thiol group of

L-cys).56 Figure 5(b) shows the spectrum of the functionalized

cotton sample with L-cys, where the absence of the ASH band

at 2551 cm21. This indicated sulfur–hydrogen bond breakage,

and a new sulfur-sulfur bond appeared at 558 cm21.2,57

Comparing Figure 5(a) and 5(b), we observed that the curves

were similar and had no displacement in the appearance of peaks.

This indicated that there was no chemical bond between CH/ALG

and L-cys. The absence of chemical bonds suggested that L-cys

may have been coordinated with the nitrogen of the amino group

of CH and the oxygen of the carboxylate group of ALG.

Best Configuration for the Samples

Considering all the results obtained in this study and the results

reported in an already published article,58 we found that five

layers was the best setting for functionalized cotton with CH

and ALG. So, the best settings in the preparation of the func-

tionalized cotton were

Sample 19: Cotton–CH–ALG–CH–ALG–L-cys (1% w/v, 120

min)–wash (water with CaCO3).

Sample 20: Cotton–CH–ALG–CH–ALG–L-cys (1% w/v, 120

min)–wash (water with CaCO3)–CH.

Assessment of Antibacterial Activity

Table II presents the values of bacteriostatic and bactericidal

activity levels for samples 19, 19 control, 20, and 20 control.

The control samples had the same configuration of samples 19

and 20 but without immersion in the L-cys solution.

All samples (19, 19 control, 20, and 20 control) showed bacter-

iostatic activity and no bactericidal activity against Staphylococ-

cus aureus and Klebsiella pneumonia.

For S. aureus, the bacteriostatic activity level in sample 19 (with

L-cys) increased approximately 70% relative to the sample 19

control (without L-cys). Similarly, the bacteriostatic activity level

in sample 20 (with L-cys) increased approximately 60% relative

to the sample 20 control (without L-cys). For the K. pneumonia,

the behavior was similar to the previous one, so the bacterio-

static activity level in sample 19 (with L-cys) increased approxi-

mately 90% relative to the sample 19 control (without L-cys).

For sample 20 (with L-cys), the bacteriostatic activity level

increased approximately 80% relative to the sample 20 control

(without L-cys). By analyzing these results, we found that the

presence of L-cys in the sample significantly increased the bac-

teriostatic activity level.

Sample 20 presented the highest values of bacteriostatic activity

(2.9 for S. aureus and 2.2 for K. pneumonia). The last layer in

this sample was composed of CH. Normally, CH exhibits a

stronger bioactivity effect upon Gram-positive (S. aureus) and

Gram-negative (K. pneumonia) bacteria.59,60 This fact may be

explained by the number of amine groups available for reaction.

CH is a cation that will attract the negative charges of the cell

Figure 4. Ellman’s reagent.

Figure 5. ATR–FTIR spectra of (a) a functionalized cotton sample with

CH/ALG and without L-cys, (b) a functionalized cotton sample with CH/

ALG and L-cys incorporated, and (c) L-cys.

Table II. Bacteriostatic and Bactericidal Activity

Sample

S. aureus K. pneumoniae

Mb 2 Mc Ma 2 Mc Mb 2 Mc Ma 2 Mc

19 2.1 20.2 1.9 20.3

19 control 1.2 20.6 1.0 20.6

20 2.9 20.1 2.2 20.2

20 control 1.8 20.4 1.2 20.8

A, number of inoculated bacteria; B, number of bacteria on the standard
sample contacted for 18 h; C, number of bacteria on the functionalized
sample after incubation for 18 h. Ma 5 log A, Mb 5 log B, Mc 5 log C. Bac-
teriostatic activity level 5 Mb 2 Mc. Bactericidal activity level 5 Ma 2 Mc.
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walls of bacteria and cause damage and sometimes even

death.61–64

The sample 20 control presented lower values of bacteriostatic

activity (1.8 for S. aureus and 1.2 for K. pneumonia) with

respect to sample 20. These values were due to the layers of CH

and ALG, which had antibacterial properties, but otherwise,

there was no L-cys in this sample. This suggested that L-cys con-

ferred a greater antibacterial effect to the samples.

Sample 19 presented values of bacteriostatic activity of 2.1 for

S. aureus and 1.9 for K. pneumonia. As expected, the sample 19

control had lower values for bacteriostatic activity (1.2 for

S. aureus and 1.0 for K. pneumonia) because it had no L-cys.

Figure 6 shows the growth inhibition (cell reduction) of

S. aureus and K. pneumonia by antibacterial activity of the func-

tionalized cotton with L-cys incorporated.

Analyzing the results (Figure 6) for S. aureus, we found a reduc-

tion of 90% in bacterial growth on sample 19 and a reduction

of 95% on sample 20. For K. pneumonia, there was a reduction

of 84% in bacterial growth on sample 19 and a reduction of

87% on sample 20.

For the 19 and 20 control samples for S. aureus, there were

reductions of 72 and 80% in bacterial growth, respectively. For

K. pneumonia, there were reductions of 60 and 70% in bacterial

growth on the 19 and 20 control samples, respectively.

Sample 20 presented a greater reduction in bacterial growth

than sample 19. This difference was due to the presence of CH

in the last layer of sample 20. As discussed in an article already

published58 and based on the literature, CH exhibited a stronger

bioactivity effect upon S. aureus and K. pneumonia bacteria.

From Figure 6, the difference in values was explained by the

presence of L-cys in samples 19 and 20. The presence of L-cys

gave a higher antibacterial activity to the functionalized cotton

samples.

CONCLUSIONS

L-Cys, a bioactive agent, could be directly embedded between the

layers of CH/ALG without any covalent bonding with a polyelec-

trolyte. With the results obtained taken into account, method 4.4

or 4.5 would be the most appropriate for that purpose. This

method has many advantages; in particular, the bioactive agent

was immobilized between layers (no chemical bond) without the

necessary optimization for each bioactive agent because the agent

could be embedded by methods 4.4 or 4.5.

In addition, LbL deposition allows the easy fabrication of multi-

material films, in which different layers carry different function-

alities or repeat the same functionality several times to control

the quality or the quantity of active agents.

Our results strongly suggest that biofunctionalized polyelectrolyte

multilayered films containing L-cys represent a promising area for

development in biomaterials and biotechnology. Thus, these

unique structures are potentially very useful as wound dressings.
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Abstract:  

A large group of low molecular weight natural compounds that exhibit antimicrobial activity 

has been isolated from animals and plants during the past two decades. Among them, peptides 

are the most widespread resulting in a new generation of antimicrobial agents with higher 

specific activity. In the present study we have developed a new strategy to obtain antimicrobial 

wound-dressings based on the incorporation of antimicrobial peptides into polyelectrolyte 

multilayer films built by the alternate deposition of polycation (chitosan) and polyanion (alginic 

acid sodium salt) over cotton gauzes. Energy dispersive X ray microanalysis technique was used 
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to determine the depth at which the antimicrobial peptides penetrated within the films. FTIR 

analysis was performed to assess the chemical linkages, and antimicrobial assays were 

performed with two strains: Staphylococcus aureus (Gram-positive bacterium) and Klebsiella 

pneumonia (Gram-negative bacterium). Results showed that all antimicrobial peptides used in 

this work have provided a higher antimicrobial effect (in the range of 4 log-6 log reduction) for 

both microorganisms, in comparison with the controls, and are non-cytotoxic to normal human 

dermal fibroblasts at the concentrations tested. 

 

 

Keywords: Antimicrobial peptides; hBD-1, β-Defensin-1, Human; Dermaseptin; Cys-LC-

LL-37; Magainin 1; biocompatibility; wound-dressing. 
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1. Introduction 

Several authors found that there was a significant absorption of antibiotic, when it is placed 

directly on the wound as a cream, which may increase the risk of cytotoxicity of the treated 

tissues, because in this case easily excessive amounts that can be used and it is difficult to 

control the optimal amount of cream. (Boosalis, McCall, Ahrenholz, Solem & McClain, 1987; Mi 

et al., 2002; Wang, Wang, Zhang, Zapatasirvent & Davies, 1985). Likewise, it is important to 

develop a method to control the release of antimicrobial agents.  

It also has been reported that higher concentrations of some compounds are toxic to tissue and 

may be a burden to organs or lead to the development of antibiotic resistance (Boateng, 

Matthews, Stevens & Eccleston, 2008; Dave, Joshi & Venugopalan, 2012; Hidalgo & Dominguez, 

1998). Compounds most commonly incorporated into dressings to control or prevent infection 

are silver (Boateng, Matthews, Stevens & Eccleston, 2008), povidone-iodine (Misra & Nanchahal, 

2003) and polyhexamethylene biguanide (Motta, Milne & Corbett, 2004). On the other hand, 

semi-solid preparations such as silver sulphadiazine cream (Hudspith & Rayatt, 2004) and silver 

nitrate ointment (Moir & Serra, 2012) are used to treat bacterial infection on the surface of the 

wound but direct application onto open wounds can be very painful (Thakoersing, Gooris, 

Mulder, Rietveld, El Ghalbzouri & Bouwstra, 2012) and the scientific evidence for the efficacy 

of these agents in wounds is scarce. Common topical antibiotics also include mupirocin (Rode, 

Hanslo, Dewet, Millar & Cywes, 1989), neosporin (Sinha, Agarwal & Agarwal, 1997) and 

tetracycline (Kumar, Bai & Krishnan, 2004). However, these antibiotics are ineffective when 

resistant bacteria colonize the wound (Cookson, 1998; Hetem & Bonten, 2013). Moreover, it is 

important that slow release of antimicrobial agent from wound dressing have the advantage of 

treating infected wounds in a mild way (Elsner, Berdicevsky & Zilberman, 2011; Kostenko, 

Lyczak, Turner & Martinuzzi, 2010). 

Since the beginning of the antibiotic era in the 1940s, the use of antibiotics has resulted in the 

continual emergence of resistant strains of bacteria, further complicating the clearance of 

infection in cutaneous wounds (Gibson et al., 2012). Therefore, a new and innovative strategy 

is needed to combat infected cutaneous wounds. For this purpose a new strategy foresees the 
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use of antimicrobial peptides (AMPs) as potential antibacterial for wound dressing application 

(Boateng, Matthews, Stevens & Eccleston, 2008). AMPs are a potential therapeutic compounds, 

they are essential components of the human innate immune system and as such contribute to 

the first line of defence against infections (Nizet et al., 2001; Zasloff, 2002). 

AMPs produced in bacteria, insects, plants, invertebrates and vertebrates, are an important 

component of the natural defences of most living organisms. AMPs exhibit potent killing of a 

broad range of microorganisms, including Gram-negative and Gram-positive bacteria, fungi and 

viruses (Dai, Huang, Sharma, Hashmi, Kurup & Hamblin, 2010; Leguen, Chassepot, Decher, 

Schaaf, Voegel & Jessel, 2007; Marshall & Arenas, 2003). AMPs are diverse in their sequence 

and structures. They are generally small (10-50 aminoacids) and have at least two positive 

charges (da Silva & Machado, 2012). Besides antibacterial and antifungal activities, some of 

AMPs also possess antiviral or anticancer properties. AMPs exert their antifungal or antibacterial 

effects by interacting and destabilizing the microbial membrane, leading to cell death (Sato & 

Feix, 2006; Wimley & Hristova, 2011). The exact mechanism by which AMPs exert their 

antimicrobial properties is yet unknown, but it is generally accepted that cationic AMPs interact 

by electrostatic forces with the negatively charged phospholipid head groups on the bacterial 

membrane and cause disruption, resulting in bacterial killing (da Silva & Machado, 2012; 

Zasloff, 2002).  

There are different methods based on physical or chemical immobilization of AMPs to develop 

antibacterial surfaces. In covalent immobilization the AMPs chemically react with a given 

surface to form stable antimicrobial coatings (Onaizi & Leong, 2011). Surfaces that are not 

reactive towards AMPs can undergo some surface treatment to introduce the desired functional 

groups that will allow the grafting of AMPs in a further step (Banerjee, Pangule & Kane, 2011). 

Among the physical immobilization methods Layer by Layer (LbL) can be a promising technique 

to immobilize AMPs on materials surfaces. This method is based on the alternate adsorption of 

polycations and polyanions on a solid substratum (Ariga, Hill & Ji, 2007). In this work AMPs can 

be simply embedded in the multilayer structure to prepare functional cotton gauzes. 
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From reports in the scientific literature, a group of 4 AMPs was selected for the present study: 

hBD-1, β-Defensin-1, Human; Dermaseptin; Cys-LC-LL-37 and Magainin 1. All of these AMPs have 

been described to have an antimicrobial activity against different microorganisms (Guani-

Guerra, Santos-Mendoza, Lugo-Reyes & Teran, 2010; Jiang et al., 2012; Nascimento, Franco, 

Oliveira & Andrade, 2012; Nicolas & El Amri, 2009). Another important factor of these AMPs 

there are cysteine residues, which promote the formation of disulfide bonds in the molecular 

structure, making them resistant to proteases, temperature and pH (Bulet, Stocklin & Menin, 

2004). 

Defensins are cysteine-rich cationic antimicrobial peptides that play an important role in innate 

immunity they are known to contribute to the regulation of host adaptive immunity and 

capacity of re-epithelialisation of healing skin (Sakamoto et al., 2005).  

Dermaseptin is a linear polyatomic peptide, composed of 34-residue anionic, which are 

structured in amphipathic α-helices in apolar solvents. Several Dermaseptins have been 

reported to inhibit the activity of microbial cells, rapidly, efficiently and irreversibly without 

toxic effects on mammalian cells (Marshall & Arenas, 2003).  

LL-37 induces keratinocyte migration required for re-epithelialization of the wound. LL-37 is 

also an important factor in the proliferation and formation of vessel-like structures, and induces 

functional angiogenesis important for cutaneous wound neovascularization. LL-37 has 

antimicrobial activity against both Gram-positive and Gram-negative bacteria, stimulates 

wound vascularization and re-epithelialization of healing skin and has antitumor activity. The 

human cathelicidin LL-37 also has been associated with host stimulatory events important to 

the wound repair process (Izadpanah & Gallo, 2005). 

In this work we used a new line of LL-37 from AnaSpec, Inc., Cys-LC-LL-37. This is a new AMP 

like the LL-37, but has a broad range antimicrobial activity. This new AMP was obtained with 

one cysteine, where LC is a 6-carbon linker. 

Magainin 1 is a 23-amino acid cationic AMP, which has a α-helical structure and is characterized 

by being a cationic and amphipathic molecule. Magainin 1 reveals multiple functions related to 
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membrane interactions, being active toward multiple pathogens. This peptide also carries a 

positive net charge at a neutral pH level and has hydrophobic residues that are essential for 

antimicrobial activity (Nascimento, Franco, Oliveira & Andrade, 2012; Speranza, Taddei & 

Ovidi, 2007). This AMP has broad-spectrum, nonspecific activity against a wide range of 

microorganisms, including viruses, Gram-positive and Gram-negative bacteria, protozoa and 

fungi, may also be haemolytic and cytotoxic to cancer cells and is a bactericide (Zairi, Tangy, 

Bouassida & Hani, 2009). These observations suggest AMPs serve a dual role in wound healing: 

killing bacteria and stimulating complex host repair phenomena. 

The biomaterials chosen for the functionalization of cotton gauze were chitosan (CH) and 

alginic acid sodium salt (ALG), both known as biodegradable, nontoxic and biocompatible 

polymers. CH is widely used as wound dressings and has been shown to have mucoadhesive 

properties, cationic nature, anti-bacterial and haemostatic properties (Alves, Picart & Mano, 

2009; Jayakumar, Chennazhi, Muzzarelli, Tamura, Nair & Selvamurugan, 2010). 

ALG is known to be nontoxic, having hemostatic action and biocompatible with a variety of 

cells, ALG has been studied for application as biomaterials and as wound dressings (de Moraes 

& Beppu, 2013). Due to its properties CH and ALG are already widely used in biomedical 

applications (Caridade, Monge, Gilde, Boudou, Mano & Picart, 2013; Lee & Mooney, 2012; 

Martins, Merino, Mano & Alves, 2010) 

An ideal wound dressing can restore the milieu required for the healing process, while 

simultaneously protecting the wound bed against bacteria. This has encouraged the 

development of improved wound dressings that provide an antimicrobial effect by eluting 

germicidal compounds such as iodine or most frequently silver ions. Such dressings are designed 

to provide controlled release of the active agent through a slow but sustained release 

mechanism which helps to avoid toxicity and yet ensures delivery of a therapeutic dose to the 

wound (Peles, Binderman, Berdicevsky & Zilberman, 2013). 

Based on the previous concept, in this study, we have incorporated AMPs onto a substrate of 

cotton gauze functionalized with layers of CH and ALG. Functionalized cotton gauzes with CH 

and ALG were obtained via LbL electrostatic deposition, as described in a work already 
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published (Gomes, Mano, Queiroz & Gouveia, 2012). The aim of this work is to incorporate AMPs 

between the layers of CH and ALG. These layers are based on the alternate deposition of 

oppositely charged polyelectrolyte layers (CH is a polycation and ALG is a polyanion), this 

deposition was made on cotton gauze.  

The embedding of active agents by LbL is a very recent area of research receiving great interest 

due to the advantage of obtaining control over drug release. Not so recent and with a large 

number of published papers, LbL was developed for drug delivery systems through 

microcapsules (Johnston, Cortez, Angelatos & Caruso, 2006; Quinn, Johnston, Such, Zelikin & 

Caruso, 2007; Sukhishvili, 2005; Tang, Wang, Podsiadlo & Kotov, 2006; Wang, Angelatos & 

Caruso, 2008). LbL deposited thin films were first developed by Decher and co-workers (Decher, 

1997). They proposed a protocol for the preparation of thin films based on alternate and 

repeated adsorption of polycations and polyanions on the surface of a solid substrate from 

solution. A diversity of materials have been employed as building blocks for LbL films, including 

synthetic polymers, biopolymers, inorganic nanoparticles, etc (Ariga, Hill & Ji, 2007). 

Consequently, a variety of components and functionality can be incorporated into LbL films, 

which forms the basis for the development of stimuli-sensitive LbL films for drug delivery. 

 

2. Materials and methods 

2.1 AMPs 

Sequence of the AMPs used is shown in table 1. The lots containing lyophilized powder of hBD-

1, β-Defensin-1, Human (ANASPEC); Dermaseptin (ANASPEC); Cys-LC-LL-37 (ANASPEC) and 

Magainin 1 (ANASPEC) were stored at -20ºC. When the AMPs solution was prepared the content 

present in the lots (1 mg) was dissolved in 1 mL of sterile water and a stock solution of AMPs of 

10 μg/mL was prepared. 
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Table 1 - Structure for AMPs 

 

Peptide Size 
(kDa) 

Amino acid sequence 

hBD-1, β-Defensin-
1, Human 

3.9 DHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK (Disulfide 
bridge: 5-34, 12-27, 17-35) 

Dermaseptin 3.4 ALWKTMLKKLGTMALHAGKAALGAAADTISQGTQ 
Cys-LC-LL-37 4.7 C-LC-LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES 
Magainin 1 2.4 GIGKFLHSAGKFGKAFVGEIMKS 

 

2.2 Determination of minimal inhibitory concentration (MIC) 

By definition MIC is the lowest concentration of antimicrobial agent that prevents the visible 

growth of a microorganism on susceptibility testing. MICs were determined using the broth 

microdilution method, as described by CLSI M7-A7 standard method for bacterial strains 

Staphylococcus aureus (ATCC 25923)  and  Klebsiella pneumonia (ATCC 13883) (Matthew A. 

Wikler, 2006). According to the guidelines, the MIC was determined by serial dilution (1:2) in 

Mueller-Hinton Broth (MHB). The inoculum was prepared from fresh overnight liquid cultures 

and the turbidity was adjusted to obtain turbidity to 0.5 McFarland (approximately 1x108 

CFU/ml, CFU=colony forming units) with 0.85 % NaCl and microorganisms, and then diluted to 

give a final concentration of 1x105 CFU/ml. For this 10μL of bacterial suspension, 990 μL of MHB 

were added. After the preparation of the bacterial suspension, a solution of AMPs of the initial 

concentration 10 μg/mL was used as starting point to perform the successive volumetric 

dilutions in a ratio of 1:2. To each well of the microdilution, 50 μL of the work suspension was 

added with 50 μL of AMPs in different dilutions. Inoculated microdilution was incubated at 35º 

C for 16-20 hours. 

2.3 Polyelectrolyte multilayer film preparation and AMPs 

incorporation 

Sterile cotton gauzes obtained from Albino Dias de Andrade, Lda (www.ADA.pt) were used as 

substrate. (2,2,6,6– tetramethylpiperidin–1–yl)oxyl designated by TEMPO, Sodium Bromide 

(NaBr), Sodium Hypochlorite (NaOCl) 5%, CH (low molecular weight, 50-190 kDa and 80% degree 
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of deacetylation), Acetic Acid (CH3COOH), ALG (molecular weight 120-190 kDa, ratio of 

mannuronic acid to guluronic acid is 1.56 and viscosity 15-20 cP, 1% in H2O), Sodium Chloride 

(NaCl), Sodium Hydroxide (NaOH) and Hydrochloric acid (HCl) were purchased from Sigma-

Aldrich. All chemicals were of analytical grade and used as received. Polyelectrolyte CH 

(1mg/mL) and ALG (1mg/mL) solutions were prepared by dissolving CH and ALG in 0.1M 

CH3COOH and 0.5M NaCl solutions, respectively. To apply LbL technique, cotton gauzes were 

charged by immersing in (TEMPO + NaBr + NaClO 5%, pH=10.5) solution under moderate stirring, 

for 30 minutes, followed by a rinse with deionized water, as described elsewhere (Dang, Zhang 

& Ragauskas, 2007; Diez, Eronen, Osterberg, Linder, Ikkala & Ras, 2011; Gomes, Mano, Queiroz 

& Gouveia, 2012; Saito, Okita, Nge, Sugiyama & Isogai, 2006). 

Samples were manually prepared by immersing the cotton gauze substrate alternately in 

polycation and polyanion solutions, for 5 minutes. Between each polyelectrolyte exposure, the 

sample was rinsed with deionized water. For the CH and ALG polyelectrolyte layers, a pH of 

5.0 was selected, to be approximately an intermediate value between the pKa of CH (6.3) and 

ALG (3.38 and 3.65 for different residues) (Maurstad, Morch, Bausch & Stokke, 2008). 

Functionalization of cotton gauzes was prepared with four layers (cotton 

gauze/CH/ALG/CH/ALG), according with the optimization made in our previous work (Gomes, 

2010; Gomes, Mano, Queiroz & Gouveia, 2012, 2013; Gomes, Mano, Queiroz & Gouveia, 2014). 

In these published papers, we have shown that there was an exponential growth of the layers, 

resulting in a coating thickness in range of 0.6 -1µm (four layers), as we can see in the TEM 

image of figure 1. The samples were examined using a HITACHI HT 7700 TEM. 

Note that previous work reported by Deng et al, 2010, where the LbL method was assembled 

on cellulose (main constituent of cotton) nanofiber highly compact and crystalline surface 

obtained by electrospinning, the estimated thickness of CH/ALG bilayer formed on fibers was 

in the range of 8-15 nm. For the same polyelectrolytes (CH and ALG), a study on polypropylene 

substrate showed the thickness of 160 nm (Caridade, Monge, Gilde, Boudou, Mano & Picart, 

2013) and in quartz substrate the thickness of CH/ALG was found to be 15 nm (Martins, Mano 

& Alves, 2010).  
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Actually, in linearly growth of layer thickness each bilayer interacts only with bilayers that 

directly neighbor it (above or below) with very little inter-penetration. However, there are 

systems that showed exponential increases in film thickness with each deposition cycle, this 

type of growth was attributed to a diffusion of polyelectrolyte “in” and “out” of the film during 

each bilayer step (Foster & DeRosa, 2014), which is the case of cotton porous fibers whereas 

polyelectrolyte diffusion is expected. The typical thickness of a linearly growing film 

constituted of 20 bilayers is of the order of 100 nm but the thickness of exponentially growing 

films can reach 10 µm or more after the deposition of a similar number of layers (Richert et 

al., 2004) which is the case of the coating obtained in this study. 

 

 

Figure 1 – TEM image of sample cotton/CH/ALG/CH/ALG 

Then, the functionalized cotton gauze were immersed in a solution of AMPs in concentration 

higher than the MIC values, 10μg/mL for 24 hours. The selected concentration aimed to ensure 

that a significant amount would be absorb, giving the expected antimicrobial activity. 

Absorption rates of the AMPs were monitored after 6, 12, 18 and 24 hours through the Bradford 

method described in 2.8 sub-section. The functionalized samples of cotton gauzes were washed 

with deionized water containing calcium in order to occur the ALG gel formation, finally a final 
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CH layer was added. With this procedure we were able to obtain the expected coating with 

embed AMPs.  

 

2.4 Energy dispersive X ray microanalysis technique 

Energy dispersive X ray microanalysis technique (EDS) has been a common elemental analysis 

method used to determine the composition of particles and thin films in sample analysis. EDS 

technique is based on volume analysis, and as such, the electron penetration of the specimen 

is a direct function of acceleration beam voltage and sample density. The accelerating voltage 

determines the force of the electron beam. In general, one can see that as the electron beam 

voltage increases, the penetration depth increases. Higher accelerating voltages, which apply 

more force to the electrons in the beam, can allow them to penetrate deeper into the sample. 

For example, using 5 kV, 10 kV, 15 kV, 20 kV, 25 kV and 30 kV acceleration voltages for carbon 

sample, penetration depth is about 0.34 µm, 1.20µm, 2.2 µm, 4.10 µm, 6.1 µm and 8.5 µm 

respectively (Hua, 2004; Lee, Hua, Zhao & Mo, 2006).  

In this study, Scanning Electron Microscopy (SEM) and EDS analyses were carried out on a Hitachi 

S 2700 using different electron beam accelerating voltages and 12 mm working distance. 

2.5 ATR-FTIR spectra 

All samples were analyzed in absorption mode using a Nicolet iS 10 FT-IR spectrometer (Thermo 

Scientific) accommodated with a smart ITR accessory for ATR sampling. The smart ITR accessory 

is equipped with a single bounce diamond crystal. Prior to spectrum recording the sample was 

pressed directly on the diamond crystal by usage of the smart, ITR high pressure clamp. Each 

spectrum was measured at a spectral resolution of 4 cm-1 with 64 scans per spectrum. Spectrum 

recording was performed in the range of 4000 to 600 cm-1. A spectrum was obtained in three 

different locations for each sample to ensure even chemical composition. Before each sample 

a blank was measured to check the crystal for contamination. Every hour a background 

spectrum was measured against air using identical instrumental conditions as the samples. 
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Spectral data were obtained using the OMNIC Software (Thermo Scientific). After each 

measurement, the crystal was cleaned using a soft tissue soaked with ethanol and left to dry 

in ambient air. 

ATR-FTIR reveals information about the molecular structure of chemical compounds and is 

useful for the characterization of biopolymers. These analyses were made in order to 

investigate the way the AMPs were incorporated between the layers of CH/ALG of 

functionalized cotton gauzes. 

2.6 Assessment of antibacterial activity 

The AMPs antibacterial effect of functionalized cotton gauzes with CH/ALG was tested 

according to the Japanese Industrial Standard JIS L 1902:2002 (Standard, 2002), which is the 

most employed method. This method is designed to quantitatively test the ability of textiles 

that have been treated with antibacterial agents to prevent bacterial growth and to kill 

bacteria, over an 18 hour period of contact. This method is based on the quantitative 

determination of the potential effect and activity of functionalized samples, by the direct 

contact with a suspension of bacterial cells. 

The cotton gauze sample sizes are approximately 18x18 mm. We prepared 6 control samples 

with CH/ALG and without AMPs and 6 functionalized samples with CH/ALG and AMPs, these 

samples were tested for each bacterial strain. In order to calculate growth reduction rate, 

three samples were used to measure the number of live bacteria after inoculation (T0h) and the 

other three to measure the number of live bacteria after incubation (T18h). 

 

Bacterial cell suspensions were collected from an overnight liquid culture in Nutrient Broth. 

After that, the bacterial concentration is adjusted to 1-2x108 cel/mL (equivalent to 0.5 

McFarland), with the necessary dilutions to adjust the final bacterial concentration to 1±0.3 

x105 cel/mL. 

 

Each sample was placed in a 50 mL Falcon tube, soaked with 200 μL of the inoculum previously 

prepared, T18h tubes were incubated for 18 h at 37 ºC. For the release of bacterial cells from 
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the cotton gauze samples, before and after the 18 h incubation period, 20 mL of 0.85 % NaCl 

with surfactant Tween 80 (0.2 %) was added to the samples in 50 mL Falcon tubes and vortexed. 

The resulting suspensions were used for the determination of viable counts using serial dilutions 

prepared in sterile 0.85 % sodium chloride solution and plated. The plates were incubated at 

37 ºC for 18 h, and the number of colonies was counted visually using a microscope. This 

procedure was performed in triplicate (Standard, 2002). The growth reduction rate of the 

bacteria was calculated using the equation: 

(%)%100
0

180 ratereduction
T

TT

h

hh 


 

where, T0h is the CFU/mL of bacterial colonies at the initial stage (0h) and T18h is the CFU/mL 

of bacterial colonies after 18 h incubation (Park & Park, 2010). 

 

2.7 Cytotoxicity assay 

The possibility of application of these functionalized samples as wound dressings is also 

evaluated by cytotoxicity test. Cytotoxicity of the AMPs was evaluated by an MTT (3-[4,5- 

dimethyl-thiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay (Freshney, 2005)  using 

normal human dermal fibroblasts (NHDF), since the textile material is intended to be in contact 

with the human skin. Cells were routinely maintained at 37ºC in a humidified atmosphere 

containing 5% CO2 and cultured in RPMI medium supplemented with 10% fetal bovine serum 

(FBS), HEPES (0.01 M), l-glutamine (0.02 M) and sodium pyruvate (0.001 M) and 1% 

antibiotic/antimycotic (10,000 units/mL penicillin, 10 mg/mL streptomycin and 25 µg/mL 

amphotericin B). Experiments were performed in 24-well tissue culture plates with 2×104 

cells/well. Cells were used on the 20th passage. 

 

Briefly, cells were seeded in 24-well plates (2×104 cells/well) in culture medium containing FBS 

and after 48 hours adherence, some wells were treated with concentrations of hBD-1, β-

Defensin1; Dermaseptin and Cys-LC-LL-37 of 5.00 µg/mL, and Magainin 1 with two 

concentrations of 0.20 and 4.17 µg/mL and incubated at 37ºC, in a 5% CO2 atmosphere, for 48 

hours. The concentrations chosen were the MIC values against S. aureus and K. pneumoniae. 
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Untreated cells were used as control. Afterwards the liquid content of the wells was removed 

and it was replaced with 200 µL of MTT solution of 1mg/mL in PBS. The multi-well plates were 

incubated for 4 hours, at 37ºC, with a 5% CO2 atmosphere, in the dark.  Next, the content of 

the wells was removed and it was added 200 µL of DMSO and 20 µL of Glicil-Glicin buffer to 

dissolve the formazan cristals and to stabilize the colour, respectively. The absorbance of each 

well was measured at 570 nm using a Biochrom Anthos 2020 microplate reader. The extent of 

cell viability was expressed as the percentage of viable treated cells in comparison with control 

cells. All experiments were done in triplicate. 

 

The cytotoxicity results were submitted to a Student’s t-test in 95% confidence interval, using 

the computer software, IBM SPSS Statistics for Windows (version 19.0). p-Values < 0.05 were 

considered statistically significant. 

 

2.8 Absorption/desorption rates of the AMPs (Bradford Reagent)  

 

The absorption and release of the AMPs into and from samples was determined using the 

colorimetric assay of Bradford reagent. The procedure is based on the formation of a complex 

between the dye, Coomassie Brilliant Blue G, and proteins (AMPs) in solution. The protein-dye 

complex causes a shift in the absorption maximum of the dye from 465 to 595 nm. The amount 

of absorption/desorption is proportional to the protein present (Bradford, 1976).  

The Bradford method is the most commonly used in quantitative protein determination. This 

method is popular because it uses a single addition of the dye reagent to the sample, it is rapid 

and it is done at room temperature. However, it is still an open question how reliable this 

method is if the formulation also involves polymer excipients. Carlsson et al. 2011, 

demonstrated the potential perturbations in the Bradford assay by chitosan which can interact 

directly with the anionic Coomassie Blue dye and perturbs its absorption spectrum. They also 

found that above 5 µg/mL chitosan is not as critical as at chitosan concentrations below 5 

µg/mL (Carlsson, Borde, Wolfel, Akerman & Larsson, 2011).  
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To overcome this problem in this work two standards curves are prepared. Firstly a calibration 

curve was made using bovine serum albumin (BSA) with selected concentrations (0, 2.5, 5, 7.5, 

10 µg/mL). Secondly a calibration curve was made with the same substrate (cotton/CH/ALG) 

as the final samples. So, cotton/CH/ALG samples were used with various concentrations of BSA 

as standards. The Bradford reagent was then added and to each tube containing 1 mL of the 

sample it was added 1 mL of dye and mixed thoroughly. After 15 min incubation, the absorbance 

of each sample was read at 595 nm wavelength, and for each concentration of BSA three 

independent measurements were made and the best estimate taken as their mean. The 

concentration of AMPs in the solution was determined by a calibration curve using standard 

protein BSA. The absorption rate concentrations were estimated through the difference of the 

amount of AMPs in the solution before (10 µg/mL) and after the sample immersion. For the 

release assay, absorbance was monitored for 1, 2, 3, 4, 6, 12 and 24 hours, directly on a solution 

containing the functionalized cotton gauzes immersed in a 20 mL of 0.85 % NaCl, in order to 

establish the release profile for each AMPs incorporated. 

3. Results and Discussion 

3.1 Determination of minimal inhibitory concentration (MIC) 

MIC is important to confirm resistance of microorganisms to an antimicrobial agent and also to 

monitor the activity of new antimicrobial agents. Table 2 shows the calculated values of the 

MICs of AMPs for Staphylococcus aureus and Klebsiella pneumonia. The data indicate that MIC 

values for hBD-1, β-Defensin-1, Human; Dermaseptin and Cys-LC-LL-37 are identical for the two 

microorganisms, being 5.00 µg/ml to Staphylococcus aureus and 5.00 µg/ml to Klebsiella 

pneumonia. For Magainin 1 the MIC value was 0.20 µg/ml for Staphylococcus aureus while for 

Klebsiella pneumonia was 4.17 µg/ml. Thus, is visible that all AMPs exhibit MIC values very low, 

which is a major benefit in comparison with other antimicrobial agents for wound dressings.  

 

 



 102 

Table 2 - MICs of AMPs for Staphylococcus aureus and Klebsiella pneumoniae 

 

MIC (μg/ml) Staphylococc
us aureus 

Klebsiella 
pneumonia
e 

hBD-1, β-Defensin-1, 
Human 

5.00 5.00 

Dermaseptin 5.00 5.00 
Cys-LC-LL-37 5.00 5.00 
Magainin 1 0.20 4.17 

 

The MIC value found in the literature for β-Defensin and Dermaseptin was a value of 10 μg/mL 

for Gram-positive and Gram-negative bacteria (Li, Zhao, Song, Huang & Zhao, 2013; Zairi, 

Tangy, Ducos-Galand, Alonso & Hani, 2007), twice high to that found by us. In previous works, 

LL-37 showed a MIC value of 3.6 μg/mL for Staphylococcus aureus and MIC values between 0.4 

and 5.7 μg/mL for Gram-negative bacteria (De Smet & Contreras, 2005).  

Among the different AMPs tested, we found that Magainin 1 was the more potent to inhibit 

Staphylococcus aureus growth with the lowest MIC value of 0.20 μg/mL. 

3.2 Energy dispersive X ray microanalysis technique 

The functionalized samples of cotton gauze were analyzed by different values of beam 

acceleration voltages (5, 10, 15, 20, 25 and 30 kV) to determine how deep each AMPs diffuses 

between the layers of CH and ALG. This analysis was performed by determining the elemental 

percentage of sulfur, because sulfur is the only chemical element that is present in each AMPs 

and is not present in cotton gauze, CH and ALG. These values are summarized into table 3, 

from this table it can understand the diffusion depths of the different AMPs in the functionalized 

cotton gauzes through the different values of mass percentage of sulfur according to the 

different electron beam acceleration voltage. 
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Table 3 - EDS analysis (beam accelerating voltages, Kv vs. percentage elemental of       sulfur, 
wt%) for the functionalized cotton gauzes in AMPs solutions , overtime (18 h and 24 h). 
 

18 h of absorption of the 
AMPs 

%Sulfur 
(5 kV) 

%Sulfur 
(10 kV) 

%Sulfur 
(15 kV) 

%Sulfur 
(20 kV) 

%Sulfur 
(25 kV) 

%Sulfur 
(30 kV) 

hBD-1, β-Defensin-1, 
Human 

0 0 0.51 
±0.10 

0.19 
±0.10 

0 0 

Dermaseptin 0 0.20 
±0.07 

0.09 
±0.06 

0 0 0 

Cys-LC-LL-37 0 0 0.22 
±0.05 

0.09 
±0.06 

0 0 

Magainin 1 0 0 0.10 
±0.05 

0.27 
±0.10 

0.08 
±0.08 

0 

Control 0 0 0 0 0 0 
 
24 h of absorption of the 
AMPs 

 
%Sulfur 
(5 kV) 

 
%Sulfur 
(10 kV) 

 
%Sulfur 
(15 kV) 

 
%Sulfur 
(20 kV) 

 
%Sulfur 
(25 kV) 

 
%Sulfur 
(30 kV) 

hBD-1, β-Defensin-1, 
Human 

0 0 0.54 
±0.10 

0.25 
±0.09 

0 0 

Dermaseptin 0 0.25 
±0.08 

0.10 
±0.05 

0 0 0 

Cys-LC-LL-37 0 0 0.28 
±0.07 

0.10 
±0.04 

0 0 

Magainin 1 0 0 0.12 
±0.04 

0.30 
±0.10 

0.10 
±0.05 

0 

Control 0 0 0 0 0 0 

Note: At each point with the highest value of beam accelerating voltage, was subtracted the 

value obtained in the previous point of less beam accelerating voltage. 

Figure 5 a) show the absorption kinetic of AMPs into functionalized cotton gauze, where it can 

be seen that the equilibrium phase is between 18-24 hours, being therefore the selected time 

for the EDS analysis. Analyzing the values in table 3 it can be seen that for immersion times of 

18 h and 24 h there are no differences on the AMPs diffusion depth, only a slight increase in 

the % of sulfur from 18 to 24 hours, due to higher amount absorbed overtime. 

Results show that Magainin 1 had a higher diffusion between the layers of the functionalized 

cotton gauzes, because sulfur was detected to a higher value of acceleration beam voltage. 

This is due to the small size of the Magainin 1 (2.4 kDa) and the electrostatic attractive forces 

between Magainin 1 (cationic peptide) and ALG (anionic polyelectrolyte). 

Dermaseptin have a lower diffusion, in other words, it is incorporated in the surface of the 

functionalized cotton gauzes. Dermaseptin is an anionic peptide then there will be electrostatic 
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repulsive forces between ALG and the Dermaseptin, so Dermaseptin will not penetrate deep 

inside the layers of CH/ALG.  

Cys-LC-LL-37 and hBD-1, β-Defensin-1, Human had an intermediate diffusion through the layers 

of CH/ALG. In this way, it can be concluded that the depth diffusion of AMPs into the CH/ALG 

layers of the cotton gauzes is dependent of their structural features, ionic charges and size. 

With this analysis we can know if the AMPs are on the surface or inside the layers of the 

functionalized cotton gauzes. 

This method constitutes a starting point for determining the conditions for optimizing the 

process of incorporation of the AMP for a particular application and to monitor the diffusion 

and attachment of the AMPs into the CH/ALG layers with success. This analysis is in agreement 

with other published works by Hua, Y. (2004) that used the technique of analysis by EDS in 

various materials, to know the depth of penetration of the electron beam, for example the 

study of semiconductor and analysis of thin film layers (Si3N4 , SiO2 and TiW) in wafer fabrication 

(Hua, 2004; Lee, Hua, Zhao & Mo, 2006). 

3.3 ATR-FTIR spectra 

Figure 2, shows characteristic cellulose peaks around 1000 – 1200 cm-1, which are the main 

components of cotton (Chung, Lee & Choe, 2004; Wang, Fan, Gao & Chen, 2006; Yan, Hua, 

Qian, Wang, Du & Chen, 2009). Other characteristic bands related to the chemical structure of 

cellulose were hydrogen – bonded OH stretching around 3100 – 3550 cm-1, the C-H stretching 

around 2800 cm-1 and the asymmetrical COO- stretching around 1600 cm-1, if the carboxylate 

existed in ionized form (COO-), it would show two peaks at 1600 and 1400 cm-1 for the 

asymmetric and the symmetric stretching of COO- ion, respectively (Chung, Lee & Choe, 2004; 
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Wang, Fan, Gao & Chen, 2006; Yan, Hua, Qian, Wang, Du & Chen, 2009; Zhao, Tang, Wang & 

Lin, 2010). 

 

 

Figure 2 – ATR – FTIR (a) functionalized cotton gauze with CH/ALG, (b) hBD-1, β-Defensin-1, 

Human incorporated in functionalized cotton gauze, (c) Dermaseptin incorporated in 

functionalized cotton gauze, (d) Cys-LC-LL-37 incorporated in functionalized cotton gauze, (e) 

Magainin 1 incorporated in functionalized cotton gauze. 

 

Absorptions in the region 3200-2700 cm-1 , if the main absorption is below 3000 cm-1 , the 

compound is probably aliphatic and probably contains a long linear aliphatic chain (Coates, 

2000). In figure 2 (b), (c), (d) and (e) it is found that this band decreases in intensity relatively 

the same band in figure 2 (a), maybe due to the breaking of long aliphatic chain during the 

AMPs embedding. 

 

Absorptions in the region 1850-1650 cm-1 more specifically in the range of 1750-1700 cm-1 , 

means that the compound is probably a simple carbonyl compound or a carboxylic acid (Coates, 

2000). It was observed in figure 2 (b), (c), (d) and (e) that this peak is slightly shifted to lower 

values, meaning that there is a conjugation with another carbonyl group or aromatic ring, 

indicating the presence of AMPs. 
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In figure 2 (b), (c), (d) and (e) it can be noted the presence of peaks at 1558 and 1600 cm-1 

(marked with an arrow in figure 2). In figure 2 (a) the peak around 1600 cm-1 is typical of the 

antisymmetric stretching of COO- group of ALG. In figure 2 (b), (c), (d) and (e) in addition of 

1600 cm-1 there is a peak around 1558 cm-1 corresponding the NH amide group of AMPs because 

the peak around 1420 cm-1 is characteristic for CH amide (Mocanu, Nichifor, Mihai & Oproiu, 

2013). Note that the peak around 1558 cm-1 is also due to aromatic ring (AMPs). 

Finally, it can also be observed that the AMPs are not bound to CH and ALG, so the AMPs are 

able to be released, which can be an important issue as a requirement of antimicrobial activity 

for a wound-dressing. 

3.4 Assessment of antibacterial activity 

 
Figure 3 show the growth inhibition (cell reduction) of the Staphylococcus aureus and Klebsiella 

pneumonia by the antibacterial activity of the cotton gauzes, designated CO (without CH/ALG 

and AMPs); functionalized sample of cotton gauzes with CH/ALG, designated control; and 

functionalized cotton gauzes with CH/ALG and AMPs. The incorporation of each AMPs was 

performed by incubation for 24 hours on solution by functionalized cotton gauzes with CH/ALG.  
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Figure 3 – Reduction rate (%) of S. aureus and K. pneumoniae in functionalized cotton gauzes 

with AMPs. 

CO: cotton gauze; Control: cotton gauze/CH/ALG/CH/ALG/CH; Hbd-1, β-Defensin-1, Human 

incorporated in Control; Dermaseptin incorporated in Control: Cys-LC-LL-37 incorporated in 

Control; Magainin 1 incorporated in Control 

 

Analyzing the results (fig. 3), it appears that cotton gauze (CO) have some reduction of growth 

inhibition (20%) of Staphylococcus aureus and Klebsiella pneumonia, this is because cotton in 

solution has a negative charge. We can see in figure 3 that functionalized cotton gauzes with 

hBD-1, β-Defensin 1; Cys-LC-LL-37 and Magainin 1 have growth inhibition similar for the two 

microorganisms (95-100%), these values show the bactericidal power of AMPs. These samples 

have an increase about 20-30% in growth inhibition for two bacteria relatively samples without 

AMPs. Despite the fact that AMPs cause an increase of 20-30% in reduction of bacterial growth, 

it is important to achieve a 100% reduction (6 log reduction = 99.9999% reduction) to be consider 

a very good antimicrobial textile material. In addition, there are several benefits in use AMPs 

in wound healing. The continuous use of antibiotics has resulted in multi-resistant bacterial 
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strains all over the world. Consequently, there is an urgent need to search for alternatives to 

synthetic antibiotics. AMPs are an effective alternative because until today it was not been 

proven that AMPs induce resistance. Other advantages of AMPs in wound dressings include pain 

relief, reduction of inflammation, angiogenesis and acceleration of the healing process 

 

Functionalized cotton gauzes with Dermaseptin has lower growth inhibition rate for the two 

microorganisms (79-80%). In this case there is a minor increase in growth inhibition for 

Klebsiella pneumonia and no increase in growth inhibition for Staphylococcus aureus, possibly 

is due to Dermaseptin is an anionic peptide, giving him low antibacterial activity, and due to 

repulsion between negative charge of Dermaseptin and negative charge of ALG (layer directly 

involved in the process of incorporating AMPs), which led to the entrance of a small amount of 

Dermaseptin between multilayers of CH and ALG. 

The indications of US FDA and their European counterparts consider that exist antibacterial 

properties in the case of bacterial reduction to be at least ≥ 99.99% (4 log reduction). Analyzing 

the results of figure 3, cotton gauzes with Cys-LC-LL-37 and cotton gauzes with Magainin 1 there 

is 100% reduction (6 log reduction) against Staphylococcus aureus, but the other samples have 

values below 99.99 %. (< 4 log reduction), while cotton gauzes with CH/ALG and without AMPs 

have growth inhibition rates of 70-80%). Incorporation of AMPs is also important due to several 

properties, such as: 

 AMPs show broad spectrum antimicrobial activities against various microorganisms, 

including Gram-positive and Gram-negative bacteria, fungi and viruses (Zasloff, 2002), 

and have rapid onset of activity.  

 Low amounts of AMPs are needed, as can be seen by the values of MIC.  

 Many AMPs are effective against multi drug resistant bacteria and possess low 

propensity for developing resistance (Marr, Gooderham & Hancock, 2006; Mygind et al., 

2005), probably due to their distinguished mode of action.  

The problems caused by drug resistant bacteria have created an urgent need for the 

development of alternative therapeutics. In this respect, AMPs are considered as promising 

antimicrobial agents for producing new generation antibiotics. However, with all published 
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work in the last two decades, there is no AMPs agent currently approved by FDA (Fjell, Hiss, 

Hancock & Schneider, 2012) 

 

3.5 Cytotoxicity assay 

To complement our bacterial growth inhibition studies, we performed a simple set of 

experiments to evaluate AMPs-loaded functionalized cotton gauzes toxicity against mammalian 

cell. The purpose of these experiments was to evaluate whether AMPs-loaded functionalized 

cotton gauzes could have utility in wound healing where they would be in contact with human 

or animal tissue. MTT viability assay was used to determine the AMPs cytotoxicity on NHDF. 

Figure 4 shows the levels of cytotoxicity exhibited by the four AMPs used in this work toward 

NHDF. hBD-1, β-Defensin-1 and Cys-LC-LL-37 did not exhibit cytotoxicity to NHDF at 

concentrations of MIC values (5.00 µg/mL). Such as indicated in the introduction hBD-1, β-

Defensin-1 and Cys-LC-LL-37 stimulates wound vascularization and reepithelialization of healing 

skin, because of this the cytotoxicity have a little value above 100%. Dermaseptin at 

concentration of 5.00 µg/mL and Magainin 1 at concentration of 0.20 and 4.17 µg/mL, there 

was a decrease of 5% in NHDF viability.  
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Figure 4 – Fibroblasts viability when in contact with to functionalized cotton gauzes with AMPs 

and with the control (functionalized cotton gauzes without AMPs) 

 

These results mean that none of the Dermaseptin and Magainin 1 concentrations caused 

cytotoxic effect in NHDF, since according to Gouveia et al., 2012 (Gouveia, Sa & Henriques, 

2012), only an alteration above 30% in comparison with control is considered cell-toxic 

(Gouveia, Sa & Henriques, 2012). Consequently, these AMPs were considered safe to be applied 

as antimicrobial agents to contact with the human skin without causing any cutaneous adverse 

reaction in the tested concentrations. The results were statistically significant for a p-value < 

0.05, according to a Student´s t-test with a 95% confidence interval. The analysis of the results 

(figure 3 and 4) showed that only cotton gauze with Cys-LC-LL-37 and with Magainin 1 have a 

100 % growth inhibition for Staphylococcus aureus and lower cytotoxicity. These results suggest 

that cotton gauze with Cys-LC-LL-37 and with Magainin 1 can be successfully incorporated into 

layers of CH/ALG and could be used for wound healing applications with minimal cytotoxicity 

to the surrounding tissue. 
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3.6 Absorption/desorption rates of AMPs (Bradford Reagent)  

The AMPs concentration in solution was calculated by comparison to a standard curve 

(calibration curve), formed by known concentrations of BSA. Analysis of AMPs concentrations 

was carried out in the solution of the incubation bath, before and after the AMPs incorporation 

on functionalized cotton gauzes by measuring the absorbance of the solutions. 

 

Figure 5 – Results of the assay of Bradford reagent in solution. (a) absorption of  the AMPs into 

functionalized cotton gauzes, (b) release of the AMPs from functionalized cotton gauzes. 

 

Results showed after 6 hours of immersion, there are higher levels of diffusion of the AMPs 

within functionalized cotton gauzes (figure 5a). Figure 5a also shows that the diffusion of the 

Dermaseptin in the sample is slower, most probably due to electrostatic repulsion between the 

Dermaseptin and ALG, both negatively charged. After 24 hour of incubation (immersion of 

functionalized cotton gauzes in the AMPs solution) the absorption rate is completed for all the 

peptides and the higher value is approximately 8µg/mL. Figure 5b shows the variation in the 

release of AMPs over 24 hours. It is noted that the Dermaseptin has a level of faster release. In 

contrary, Magainin 1 has a slower release. hBD-1, β-Defensin 1, and Cys-LC-LL-37 both have a 

gradual level of release over time. We also observed that there was a release of AMPs in solution 

from 5-6 µg/mL. These values are higher than the values of MIC, which is an advantage, because 

AMPs quantities high than the MIC values should be released in order to eradicate all bacteria 

and prevent infection.  
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For the AMPs release profile, the samples were immersed in phosphate buffered saline (PBS, 

pH=7.0) at 37 ºC in order to determine the AMPs release from cotton gauze functionalized with 

CH and ALG. The medium was completely removed periodically, at each sampling time (1, 2, 

3, 4, 6, 12 and 24 h) and fresh medium was introduced. The results are given in cumulative 

release data. 

The AMPs release profiles obtained from the functionalized cotton gauze showed a moderate 

burst effect (45-67%) during the first 6 h, accompanied by a stage of continuous decrease in 

release rate during the next 18h. The obtained release profile can be beneficial for our 

application of AMPs-eluting wound dressings. 

According to the work of Harrison-Balestra et al. 2003, the onset of an infection, it is crucial 

to immediately respond to the presence of large numbers of bacteria (Harrison-Balestra, 

Cazzaniga, Davis & Mertz, 2003). The goal of prophylactic topical antimicrobial therapy is to 

control microbial colonization and prevent wound infection. Unprotected burn wounds are 

colonized by bacteria within 12-24 h with microbial levels reported to reach 100 million 

microbes per gram of tissue within 48h (Loke, Lau, Yong, Khor & Sum, 2000). So, during the 

first hours of the wound, it is essential to release a relatively high amount of antibacterial 

compound in order to eliminate various infections that were not eliminated during wound 

cleansing and might create a resistant biofilm. This work overcomes one of the major limitation 

regarding the delivery of antimicrobial in a biomaterial model: the effect of burst-release. 

Burst-release is consistent with an initial high and rapid release of the antimicrobial. It is one 

of the major challenges of modern drug delivery but after the first hours should continue a low 

release of the antimicrobial agent to healing wound.  

In this work we found that during the first 6 hours there is a high release of AMPs. From figure 

5 (a), the absorption of AMPs is approximately 8 µg/mL and from figure 5 (b) the releasing of 

AMPs is in the range of 5-6 µg/Ml. This implied that about 25% of the absorbed AMPs still 

remained in the functionalized cotton gauze after 24 hours. 

Another important issue is the effect of ionic strength on the releasing of AMPs from the 

functionalized cotton gauze. LbL film structures are low densely packed so it allows an easy 
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diffusion of materials through the films. In LbL multilayers constituted of weak polyelectrolytes 

(like chitosan and alginate) charge ratio changes drastically around their pKa. Furthermore, 

electrostatically assembled layers are usually destabilized to a certain pH and ionic strength 

(Sato, Yoshida, Takahashi & Anzai, 2011). Several works in the area of delivery drugs systems 

using chitosan/alginate as substrate, showed that if ionic strength increased, the difference in 

concentration of mobile active agent between multilayers of chitosan/alginate and the 

surrounding media was reduced (Chen, Wu, Mi, Lin, Yu & Sung, 2004; Yang, Chen, Pan, Wan & 

Wang, 2013; Zhang, Wei, Lv, Wang & Ma, 2011). However, at pH 7.4 (near to pH of wound) the 

carboxylic acid groups of alginate hydrogel became ionized and the hydrogel can swell more 

significantly. The amount of active agent released at low pH was relatively low, while that 

released at high pH increased significantly. As the cotton-based bioactive gauzes are expected 

to be applied as wound-dressings, the phenomena above described will help in peptide release 

when infections are higher (higher pH). 

 

In the present work LbL cotton AMPs dressings proved to be able to decrease bacterial presence 

and are expected to have a similar behavior in the wound bed, thus preventing and treating 

infection. Consequently, in one application in which is important to have a rapid release 

Dermaseptin should be chosen. In order to have a gradual release, it should be used the hBD-

1, β-Defensin 1 or  Cys-LC-LL-37. 

Considering the emerging need for new classes of antimicrobial agents, the AMPs represent a 

new alternative and may present great advantages: are usually small, have a broad spectrum 

of action and typically high affinity for membranes of microorganisms, they are generally 

protease-resistant, they have fast action and limiting the development of resistance by 

microorganisms. 

4. Conclusions 

We found that Magainin 1 is the AMP more potent to inhibit Staphylococcus aureus growth, 

because have a lowest MIC value. This AMP have a higher diffusion between the layers of 
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CH/ALG, probably is due to the small size and the electrostatic attractive forces. On the other 

hand Dermaseptin has a lower diffusion, so, is incorporated in the surface of sample.  

By ATR-FTIR analysis, we found that the AMPs are not bound to CH and ALG, so the AMPs are 

able to be released, which can be an important issue as a requirement of antimicrobial activity 

for a wound-dressing. 

This study demonstrates that cotton gauze with Cys-LC-LL-37 and with Magainin 1 have a 100 % 

growth inhibition for Staphylococcus aureus and lower cytotoxicity. These results suggest that 

cotton gauze with Cys-LC-LL-37 and Magainin 1 can be successfully incorporated into layers of 

CH/ALG and could be used for wound healing applications with minimal cytotoxicity to the 

surrounding tissue. The AMPs release profile exhibited a fast effect, followed by a decreasing 

release rate. The release mechanism is based mainly on diffusion through the layers of CH/ALG. 

Samples prepared in this study are expected to be useful in biomedicine specially in wound 

healing. These dressings proved to be able to decrease bacterial presence without cytotoxicity 

and at very low concentrations and are expected to have a similar behavior in the wound bed, 

thus preventing and treating infection. 
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General discussion of the results 

 

Coating is an important way to functionalize textiles in order to achieve an antibacterial activity 

with potential application on medical products. There are several coating processes to obtain 

bioactive textiles. LbL technique is a simple and versatile method for coating various surfaces 

by alternate deposition of polyelectrolytes with opposite electrical charges, but LbL is a 

technique with few applications in textile materials, especially by using natural 

polyelectrolytes and biomolecules to give bioactive function to natural fibres as cotton.  

In this work cotton was selected as substrate, CH and ALG as cationic and anionic 

polyelectrolytes respectively. In addition, L-cys and four different AMPs were incorporated 

between layers of CH and ALG obtained by LbL over the cotton, to increase antimicrobial 

activity. 

To ensure the success of LbL technique application onto cotton materials, some procedures 

have to be carried out, in particular: 

 Activation of the substrate with TEMPO-oxidation is required to impart negative charges 

onto cotton surface for LbL assembly application. 

 When polyelectrolytes are weak (which is the case of CH and ALG), there are two 

important parameters to control, in the deposition process: the pH and concentration 

of polyelectrolyte. 

 

CH and ALG are two oppositely charged natural polyelectrolyte materials and are very sensitive 

toward changes in pH. The pH was selected to 5, because is approximately intermediate 

between the pKa of CH (6.3) and ALG, pKa of 3.38 and 3.65. At pH 5 the carboxylate group of 

ALG mainly exists in the form of COO- and the amino group of CH mainly exists in the form of 

NH3
+ . In this case the presence of both COO- and NH3

+ along polymer backbone can enhance the 

electrostatic interaction of the network structure. The CH polyelectrolyte concentration was 

(1mg/ml) in 0.1 M CH3COOH solution and for ALG was (1mg/ml) in 0.5 M NaCl. These values of 

pH and concentration were selected after some preliminary experiments and also because they 

have been used in several other works, being extensively tested. 

 

Figure 1a shows a SEM image of cotton and figure 1b shows a SEM image of functionalized cotton 

with six layers of deposition (Cotton/CH/ALG/CH/ALG/CH/ALG). Looking at the two images it 

can be seen that the functionalized cotton sample shows a large deposition of polyelectrolytes. 
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(a) 

 
(b) 

Figure 1 – SEM images. (a) Cotton sample, (b) Cotton/CH/ALG/CH/ALG/CH/ALG (6 layers of 

deposition over cotton) 

 

 

In addition, a cationic dye, methylene blue, was used to evaluate the negative charges on the 

cotton surface sample and cotton pre-treated with TEMPO. Figure 2a shows an image of cotton 

sample dyed with methylene blue and figure 2b show an image of cotton sample pre-treated 

with TEMPO and subsequently dyed with methylene blue. It was found that TEMPO activated 

cotton has a deeper more intense blue color, as it can be seen in figure 2b. This is due to the 

cotton sample pre-treated with TEMPO get additional negative charges, so there is a greater 

absorption of the cationic dye, methylene blue. This would also explain the larger deposition 

of polyelectrolyte, as show in fig.1b. 

 

 

(a) 

 

(b) 

 

Figure 2 – Methylene blue test. (a) Cotton, (b) Cotton pre-treated with TEMPO. 
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In the LbL technique the adsorption process is typically dominated by electrostatic attraction. 

When polyelectrolyte concentration is low, adsorption of polyelectrolytes from a solution onto 

a solid surface can be considered as a polyelectrolyte interaction with the charged surface. The 

polyelectrolyte is adsorbed on the charged surface in order to have a compensation of surface 

charge. In these conditions, the adsorbed amount is large and the layer is dense. Cotton pre-

treated with TEMPO is negatively charged, so, when in contact with CH (cationic 

polyelectrolyte), it adsorbs sufficient quantity, so the cotton surface becomes positively 

charged. This charge is then reversed when in contact with ALG (anionic polyelectrolyte), the 

charge is compensated and the cotton surface becomes negatively charged.  

 

Three characterization methods were tested to assess electrostatic LbL deposition. The first 

was contact angle between a liquid (water) and the sample surface in order to determine the 

wettability of the sample with different layers of CH and ALG. We found out that the surface 

wettability is very sensitive to the surface composition of the outermost layer.  

Table 1 presents the contact angle of cotton with 5, 6, 9 and 10 layers. Samples where the last 

layer is CH, a higher contact angle was achieved, showing the higher hydrophobic character of 

CH, in comparation with ALG, being these results in agreement with the literature.  

 

Table 1 Contact angle 

Sample Description of sample Contact angle (º) 

CT5 Cotton/CH/ALG/CH/ALG/CH 114.6 ± 4.46 

CT6 Cotton/CH/ALG/CH/ALG/CH/ALG 67.67 ± 13.10 

CT9 Cotton/CH/ALG/CH/ALG/CH/ALG/CH/ALG/CH 114.63 ± 10.13 

CT10 Cotton/CH/ALG/CH/ALG/CH/ALG/CH/ALG/CH/ALG 82.65 ± 12.07 

Contact angle changes according to the polyelectrolyte of the outermost layer (CH or ALG) (measured at 
100 ms). 

CT means that cotton was pre-activated with TEMPO 

 

For all samples (see table 1), the contact angle exhibits zigzag feature relatively with last layer 

indicating the alternate assembly of CH and ALG on the cotton surface. This result indicates 

the successful application of LbL technique onto cotton. It is also interesting to note that the 

contact angle value of CT10 is near the contact angle value of CT9, revealing the sequential 

continuity of LbL process thus showing a small interpenetration of layers. 

The successful of LbL application onto cotton was also confirmed by the methylene blue test, 

as described before, and by ATR-FTIR. LbL technique theoretically covers any surface when it 

is charged, as widely described in literature, but is still emergent in textile materials. This work 
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proves the applicability of LbL on cotton samples, besides inherent characteristics related with 

porosity and fiber heterogeneity. 

It was also found that the TEMPO-oxidation can be used on cotton to give negative charge to 

ensure the success of LbL technique, without introducing changes in cotton fibers. 

The functionalized cotton samples with CH/ALG were tested for their antibacterial activity 

towards Staphylococcus aureus and Klebsiella pneumoniae using the international standard 

method JIS L 1902:2002. Figure 3 shows the images of samples tested according with the 

standard method JIS L 1902:2002 – halo method.  

The samples showed a small but clear inhibitory zone for Staphylococcus aureus and a smaller 

halo for the Klebsiella pneumonia. However, halo size is not possible to quantify through the 

images of figure 3. It is interesting to note, that for both bacteria, the control sample (cotton 

without CH/ALG, designated by CO) showed little bacterial growth inhibition, but significant 

bacterial growth inhibition is show in the presence of CH/ALG, as expected, since cotton is not 

an antimicrobial material. The results showed that the antibacterial effect of CH/ALG occurred 

without migration of CH and ALG, because only bacteria in direct contact with the CH/ALG are 

inhibited, (discussed in paper III and IV). 

In paper IV it was found that the functionalized samples with five layers (CH/ALG/CH/ALG/CH) 

are more active against S. aureus and K. pneumoniae microorganisms through the assessment 

of the bacteriostatic activity. 

CH is known in the wound management field for its haemostatic properties and other biological 

activities that helps in faster wound healing. Wound dressings based on ALG are well described 

in literature and have an important property in retaining exudate away from the wound bed, a 

problem in the wound healing since there is a tendency for dressing adherence to the wound 

surface, and when the dressing is removed, considerable damage is inflicted on the newly 

formed epithelium. To resolve this problem the ALG gel helps in removing the dressing without 

much trauma and reduces the pain experienced by the patient during the change of dressing. 

It also provides a moist environment that leads to rapid granulation and re-epithelization. 

Systems simultaneously composed of CH and ALG offer the advantages of both materials to 

wound dressing.  

In this context a new method is proposed to improve the performance of the functionalized 

cotton. L-cys, an antimicrobial agent, was embedded between layers of CH and ALG onto cotton 

obtained by LbL technique. In this technique, functionalized cotton (cotton/CH/ALG/CH/ALG) 

was immersed in the L-cys solution and then washed with deionized water, where calcium was 

added for ALG gelling and finally CH layer was added: 

Cotton/CH/ALG/CH/ALG-L-cys-wash (water with CaCO3)/CH,  

designated by       LbLCotton-L-cys   (sample 20 in paper V) 
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Figure 3 – Images of samples tested according with the standard method JIS L 1902:2002 – halo 

method. a) and b), inhibition zone against Staphylococcus aureus for CO (Cotton), CT5, CT6, 

CT9 and CT10 samples. c) and d), inhibition zone against Klebsiella pneumoniae for CO 

(Cotton), CT5, CT6, CT9 and CT1O samples. CT is cotton treated with TEMPO and NaBr. 

 

In order to quantify the antibacterial activity JIS L 1902:2002 – absorption method, was used 

because it allows to assess the bacteriostatic and bactericidal activity level. 

Table 2 presents the values of bacteriostatic and bactericidal activity levels for samples 

without/with L-cys. 
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Table 2 – Bacteriostatic and bactericidal activity 

Sample 

S. aureus K. pneumoniae 

    
Mb – Mc Ma – Mc Mb – Mc Ma – Mc 

Cotton 0 -1.5 0 -1.8 

LbLCotton 1.9 -0.5 1.5 -0.4 

LbLCotton-L-cys 2.9 -0.1 2.2 -0.2 

A-number of inoculated bacteria. B-number of bacteria on the standard sample contacted 
for 18h. C-number of bacteria on the functionalized sample after incubation for 18h. Ma = 
log A, Mb = log B, Mc = log C. Bacteriostatic activity level, Mb – Mc; bactericidal activity 
level, Ma – Mc. 

 

All samples (except cotton) showed a bacteriostatic activity and no bactericidal activity against 

Staphylococcus aureus and Klebsiella pneumoniae. This is in accordance with the results for 

antibacterial activity by the halo method. In addition, and as expected, LbLCotton-L-cys is the 

sample that has the highest value of bacteriostatic activity, 2.9 for S. aureus and 2.2 for K. 

pneumoniae. 

The LbLCotton sample has small bacteriostatic activity level, because this sample has no 

incorporated biomolecules, as L-cys. Analyzing the results of table 2, it can also be found that 

the presence of L-cys in the samples increases significantly the bacteriostatic activity level for 

both strains.  

The L-cys molecular structure exhibits biofunctional terminal groups on each side: the thiol (-

SH) group on one side and the amino (-NH2) and carboxyl (-COOH) groups on the other side. L-

cys is a highly reactive compound, which in the presence of oxygen oxidize to Cystine. Cystine 

is the amino acid dimmer formed when a pair of L-cys molecules are joined by a disulfide bond 

through oxidation. Both L-cys and Cistine are important for cell survival and growth.  

ATR-FTIR of functionalized cotton with L-cys (paper V) shows the sulfur-hydrogen bond 

breakage of L-cys, and a new sulfur-sulfur bond appeared (cystine). Depending on the 

conditions of the medium, dry sample or in solution there is always L-cys and/or Cistine 

between the layers of CH/ALG.  

Wound dressings containing antibiotics have been developed for the inhibition of wound 

infection. But, during the last decades, the availability of a wide variety of antibiotics and its 

extensive use to combat infections resulted in a progressive increase in the resistance of strains 

of pathogenic microorganisms to these compounds, limiting its use. Consequently there is an 

urgent need to search for alternatives for antibiotics. The AMPs are molecules of the immune 

system present in most living organisms, which may have potent antimicrobial activity against 

a broad spectrum of microorganisms and at the same time low or no toxicity to animal cells. 
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Moreover, in general, the acquisition of resistance of a microorganism to a specific AMPs seems 

to be very small. 

Major infection in skin wounds arise from introduction of bacteria into deep tissue sections. 

These infections are particularly dangerous, which makes AMPs a great selection due to their 

diffusivity ability to move into wound deep tissue. Another important property of these AMPs 

is related to cysteine residues, which promote the formation of disulfide bonds in the molecular 

structure, making AMPs resistant to proteases, temperature and pH.    

Considering AMPs the new antimicrobial agents, and the results from incorporation L-cys (paper 

V), we have develop antimicrobial textiles based on the incorporation of AMPs into multilayers 

of CH/ALG, using cotton gauzes as substrate. hBD-1, β-Defensin-1, Human; Dermaseptin; Cys-

LC-LL-37 and Magainin 1 were selected based on the broad spectrum of antimicrobial activity 

and all properties mentioned above. Each AMPs was incorporated between multilayers of 

CH/ALG by embedding the functionalized cotton gauze in AMPs solution by the same process of 

embedding L-cys. 

Figure 4 show the growth inhibition (cell reduction) of the Staphylococcus aureus and Klebsiella 

pneumoniae by the antibacterial activity of the functionalized cotton gauze 

(cotton/CH/ALG/CH/ALG/CH) designated LbLCotton; functionalized cotton gauze with L-cys 

designated LbLCotton-L-cys; and functionalized cotton gauze with AMPs designated LbLCotton-

AMPs. 

 

Figure 4 – Reduction rate (%) of S. aureus and K. pneumoniae 
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Analyzing the results (fig. 4), LbLCotton sample has the lowest reduction of growth inhibition 

against the two bacteria. The antibacterial activity is due the CH and ALG, as these are well-

known biopolymer with good antibacterial activity. The increase in growth inhibition for sample 

LbLCotton-L-cys is due to incorporation of L-cys between multilayers. Samples with embedded 

AMPs: hBD-1, β-Defensin-1, Human; Cys-LC-LL-37 and Magainin 1, have the highest values of 

growth inhibition rates, reaching 100%, showing the excellent bactericidal character of the 

AMPs. An interesting result is seen in sample with Dermaseptin, in which the growth inhibition 

rate is between the values for control sample (LbLCotton) and samples with others AMPs. This 

is probably due to repulsion between negative charge of Dermaseptin and negative charge of 

ALG, which led to the entrance of a less amount of Dermaseptin between multilayers of CH and 

ALG. 

To complete bacterial growth inhibition we have evaluated samples cytotoxicity against 

mammalian cell. The results (paper VI – Cytotoxicity assay) demonstrated that the selected 

AMPs can be considered safe to be applied as antimicrobial agents to be in contact with human 

skin without causing any cutaneous adverse reaction in the concentrations tested (MIC values). 

To complete the study and taking into account the potential application of this research work 

as novel wound-dressings, the release profile of the AMPs was studied over 24 hours. 

Dermaseptin has a faster level of release, most probably because this AMPs is located on the 

surface of cotton. Magainin 1 has a slower level of release because it is deeper incorporated  

into multilayers, as shown by the results (paper VI). In contrast, Cys-LC-LL-37 and hBD-1, β-

Defensin-1 Human have a gradual level of release over time. The AMPs release profiles obtained 

in solution showed a moderate burst effect (45-65%) during the first 6h, accompanied by a stage 

of continuous decrease in release rate during the further 18h. This is important, because in the 

onset of an infection it is crucial an immediately respond to the presence of large numbers of 

bacteria and subsequent continuous release for several hours. With these functionalized 

samples, it is ensured that during the first 6 hours a high release is obtained and a continuous 

release is ensured through the subsequent 24 hours. 

Table 3 shows a summary of AMPs characteristics and results. 

Hbd-1, β-Defensin-1, Human; Cys-LC-LL-37 and Magainin 1 have higher % of growth inhibition 

against the two bacteria, most probably because they are cationic AMPs. It is know that the 

positive charge of AMPs interact electrostatically with anionic groups at the bacterial cell walls, 

causing an increase of membrane permeability and subsequent leakage of cellular proteins 

which ultimately leads to cell death.  
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Table 3 – Characteristics of AMPs 

 Hbd-1, β-
Defensin-1, 

Human 

 

Dermaseptin 

 

Cys-LC-LL-37 

 

Magainin 1 

Level of 
realese 

gradual faster gradual slower 

Growth 
inhibition of 
bacteria (%) 

99% S. 
aureus 

95% K. 
pneumoniae 

80% S.  
aureus 

79%K. 
pneumoniae 

100% S. 
aureus 

98% K. 
pneumoniae 

100% S.  
aureus 

95% K. 
pneumoniae 

cytotoxicity 
(%) 

106 94 110 95 

 

Observation 

 

cationic 

 

anionic 

 

cationic 

Cationic, more 
potent to inhibit 
S. aureus growth 

 

It is also very interesting to observe that the values 106% and 110% for cytotoxicity results of 

Hbd-1, β-Defensin-1, Human and Cys-LC-LL-37, respectively, clearly indicates that the 

incorporation of these AMPs will able to stimulate wound vascularization and re-

epithelialization of healing skin. 

Analyzing the results and characteristics presented in table 3 it can be concluded that all the 

AMPs have high growth inhibition rates for the two tested bacteria and low cytotoxicity. Thus, 

AMPs serve a dual role in wound healing: killing bacteria and stimulating complex host repair 

phenomena with the inherent advantage of the rapidly ability to destroy the target cells. AMPs 

are characterized by amphipathic molecules, having both a hydrophobic region that interacts 

with lipids, as a hydrophilic positively charged region, capable of interacting with anionic 

residues.   

 

The general purpose of this work was achieved, and a new process for the bio-functionalization 

of cotton with an antimicrobial effect was identified. In addition, the results obtained are very 

promising for potential application as wound dressings.  

Wound infections are caused by the deposition and multiplication of microorganisms in the 

surgical site of a susceptible host. There are a number of ways microorganisms can get into 

wounds.  

The microorganisms that typically infect wounds and the skin depend on what is present in the 

environment, the state of the person immune system, and the depth of the wound. The most 
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common causative organisms associated with wound infections include: Staphylococcus aureus, 

Streptococcus pyogenes, Enterococci, E. coli, Klesiella pneumoniae and Pseudomonas 

aeruginosa.  

Generally wounds have alkaline pH and ALG gel structure opens for alkaline pH, therefore this 

type of functionalized cotton when in contact with the wound causes the ALG gel structure 

opening and release of the AMPs to the outside. This is an important property because there is 

an interaction between the wound and the wound-dressing. 

 

It is imperative that modern wound dressings undergo another revolution with the view of 

becoming more interactive and smart in nature, whereby they not only absorb exudates, but 

also interact with the wound to encourage healing and thus a reduction in exudate will ensue.  
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Conclusion 

 

The first part of this work was dedicated to validate the feasibility of using LbL assembly 

deposition of natural polyelectrolytes onto cotton, as a novel technique for textile bio-

functionalization.  It was found that the pre-treatment of the cotton samples with TEMPO is 

required to create a substrate that is able to support the multilayer films. The successful of 

application of LbL onto cotton was confirmed by several analysis, in particular by the contact 

angle between a liquid (water) and the sample surface, dyeing test with methylene blue and 

ATR-FTIR. 

These results abled to confirm the deposition of alternate layers of CH and ALG, indicating the 

success of LbL technique onto cotton as a novel process to obtain bioactive textiles with 

potential medical application. 

The second part was devoted to find a strategy to have a “reservoir” where it can be loaded 

bioactive agents for subsequent release. Therefore, a new method was optimized for 

embedding a bioactive agent between layers of CH and ALG, with success. Moreover, the new 

method allows to embed the active agents by exposing the functionalized cotton with CH/ALG 

to an active agent solution to incorporate the bioactive agent into layers of CH and ALG,using 

the ability of ALG for gelling. In this way, Lcys and AMPs were embedded between multilayers 

without any covalent bonding with CH and/or ALG with success.  

The last part of this thesis was dedicated to evaluate the antimicrobial activity and to assess 

the biological characterization of this new bio-functional textile. Antibacterial assays were 

performed against two strains Staphylococcus aureus (Gram-positive bacterium) and Klebsiella 

pneumoniae (Gram-negative bacterium) using the international standard method JIS L 

1902:2002. Results showed that all AMPs used in this work have shown an antibacterial effect 

toward both microorganisms and no cytotoxicity to normal human dermal fibroblasts (NHDF) at 

Minimal Inhibitory Concentration was found. The AMPs release profiles obtained in solution 

showed a moderate burst effect (45-65%) during the first 6 hours, accompanied by a stage of 

continuous decrease in release rate during the next 18 hours. 

The results showed a promising eco-friendly and simple technique to give bioactive function to 

textiles with antimicrobial properties using natural polyelectrolytes and bioactive agents. This 

method can open new avenues towards the development of non-toxic and safe biomedical 

textiles being highly promising for potential application as wound dressings. 
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Future perspectives 

 

This thesis describes a new process for the biofunctionalization of cotton-based materials. Some 

of the suggestions that should be taken into consideration for further investigations are given 

below. 

 The in vitro antimicrobial and cytotoxicity of biofunctionalized cotton were evaluate, 

the next step is to perform in vivo tests of biofunctionalized cotton. 

 In order to implement this process in the industry and to put this kind of samples in the 

market it is necessary to request Infarmed authorization. 

 As an alternative approach, the LbL technique, should be tested in other natural fibres, 

such as, wool, silk and bamboo. 
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