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Resumo

Consideramos modelos SEIRS com funcoes de incidéncia gerais dependendo dos
suscetiveis, dos infeciosos e da populagao total, e analisamos esses modelos em diver-
sos cenarios: autonomo, nao-auténomo geral e periédico. Em todas essas situagoes,
analisamos a persisténcia forte e a extincao da doenca. Além disso, abordamos os
seguintes problemas: no caso auténomo, obtemos resultados sobre a existéncia e a
estabilidade global do equilibrio livre de doenca e do equilibrio endémico; no caso
periddico, obtemos a estabilidade global da solugao periédica livre de doenga quando
o namero reprodutivo basico é inferior a um, e, usando o conhecido teorema de con-
tinuacao de Mawhin, discutimos a existéncia de solucoes periddicas endémicas; no
caso nao-auténomo geral, provamos que as nossas condicoes para persisténcia forte
e extincao sao robustas, no sentido em que se mantém inalteradas para perturbacoes
suficientemente pequenas dos parametros e das fungoes de incidéncia. Finalmente,
consideramos uma versao do nosso modelo com duas variaveis de controle, vacinagao
e tratamento, e estudamos a existéncia e unicidade da solucao do modelo de con-
trole 6timo considerado. Algumas experiéncias computacionais ilustram os nossos

resultados.
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Modelos epidemioldgicos SEIRS; nao-autonomo; periodico; persisténcia e extingao;

estabilidade; controle 6timo.
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Resumo alargado

Neste trabalho, consideramos uma familia de modelos SEIRS com incidéncia geral

em diversos cendrios. Os modelos considerados sao da forma

(

S"=A(t) — B(t) p(S, N, 1) — u(t)S + n(t) R
E" = B(t) o(S,N,I) — (u(t) + (1) E
I'=e(t)E — (u(t) + ()1
R =~()] — (u(t) +n(t)R

R

onde S, E, I, R representam, respetivamente, os compartimentos dos suscetiveis,
latentes (infetados mas nao infeciosos), infeciosos e recuperados e N é a populacao
total, A(t) representa a taxa de natalidade, 5(t) p(S, N, I) é a incidéncia da classe
latente nos individuos suscetiveis, p(t) sdo as mortes naturais, 7n(t) representa a
taxa de perda de imunidade, €(t) representa a taxa de infetividade e () ¢ a taxa

de recuperagao.

O estudo de modelos com funcoes de incidéncia gerais é importante para po-
dermos destacar as caracteristicas que sao dependentes e independentes da forma

destas funcoes. Esta foi a nossa principal motivacao para a realizacao deste estudo.

Alguns dos problemas mais importantes na epidemiologia matematica incluem
a obtencao das condicoes para a persisténcia e extincao da doenca, a existéncia de
solucoes fixas e periodicas, o estudo da estabilidade e da existéncia de bifurcacoes.
Em todos estes casos, o niimero reprodutivo bésico, geralmente denotado por Ry,
e as suas generalizacoes desempenham um papel importante, em particular, per-
mitem estabelecer uma fronteira entre a persisténcia e a extincao da doenca. Mais
precisamente, dizemos que os infeciosos se extinguem se para qualquer solucao temos
que tLiinoo I(t) = 0 e dizemos que os infeciosos sao fortemente persistentes num con-
junto A, se existir K > 0 tal que, para qualquer solucao do sistema apresentado
com condigoes iniciais em A, temos que liminf /(¢t) > K > 0. Defini¢oes similares

t——+00
podem ser feitas para os outros compartimentos.

No caso autonomo, Li, Muldowney e Driessche [20] estudaram um modelo ja
considerado em [14], onde se assume que a populagdo é constante, as taxas de mor-
talidade e de nascimento sdo iguais e a funcao de incidéncia é da forma ¢(S, N, ) =
g(I)S com g classe C! verificando [I¢'(I)| < I. Eles obtiveram a estabilidade ass-
intotica local do equilibrio livre de doenca quando Ry < 1 e a estabilidade global
do equilibrio endémico quando Ry > 1, assumindo que os parametros satisfazem

n > & — pu — 7. Recentemente, Cheng e Yang [5] melhoraram o resultado de Li,
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Muldowney e Driessche completando o estudo da estabilidade global do equilibrio
endémico para todos os parametros. No nosso contexto, as taxas de natalidade
e mortalidade nao sao consideradas constantes e as funcoes de incidéncia podem

depender da populacao total.

No capitulo 1 consideramos parametros constantes, obtendo um modelo auténomo,
e assumimos que as funcoes de incidéncia sao duas vezes continuamente diferen-
ciaveis. Este é o contexto em que mais informacoes podem ser obtidas sobre o
nosso sistema. H&, em particular, uma forma geral desenvolvida em Driessche e
Watmough [36] para obter o niimero reprodutivo bésico Ry que é apresentado na
seccao 1.2. Na secao 1.3 obtemos uma importante regiao invariante que contém
os equilibrios do sistema, que também sao calculados, e aplicamos a teoria geral
da seccao anterior ao nosso modelo, obtendo as regides de estabilidade assintética
local do equilibrio livre de doenca e a regiao de persisténcia forte da doenca. A
estabilidade global é discutida na seccao 1.4. No que respeita ao equilibrio livre
de doenca, ¢ provado nesta seccao que ¢ globalmente assintoticamente estavel se
o nimero reprodutivo basico é inferior ou igual a um e instavel no caso contrario.
Quando o numero reprodutivo basico é maior que um, para fungoes de incidéncia
da forma By (S, N,I) = BC(N)Sg(I), a estabilidade assintotica global do equilibrio
endémico é também obtida, mas apenas assumindo recuperagao permanente (n = 0).
Os resultados de estabilidade nesta seccao foram parcialmente inspirados em Safi e
Garba [33]. Alguns exemplos ilustrativos dos resultados obtidos neste capitulo sao

apresentados na seccao 1.5.

Assumirmos que os parametros sao independentes do tempo nao é muito realista
em muitas situagoes. Em particular, o caso nao-auténomo geral permite a discussao
nao so6 das flutuagoes sazonais periddicas, mas também de efeitos ambientais e de-
mograficos nao-periddicos. Como exemplo de tais efeitos, para algumas doencas,
como a colera e a febre amarela, sabe-se que o tamanho do periodo de laténcia pode
diminuir com o aquecimento global [34]. Este tipo de fenomenos justifica o estudo

de modelos com parametros nao-periédicos.

No capitulo 2, tivemos como objetivo considerar um cenario o mais geral pos-
sivel. Assim, nenhum comportamento especial foi estabelecido para os parametros,
que se supoe serem apenas funcoes continuas, limitadas e nao-negativas, e nenhuma
diferenciabilidade é assumida para as funcoes de incidéncia, que apenas se assume
satisfazerem algumas propriedades numa parte especial do seu dominio. Apesar da
generalidade assumida, na seccao 2.2 foi possivel obter condicoes para persisténcia
e extincao. Quando as nossas condi¢Oes determinam extin¢do, também obtivemos
estabilidade assintotica global das solucoes livres de doenca. Como caso particular,
temos o caso da incidéncia simples, (S, N,I) = SI, ja considerada em artigos de

Zhang e Teng [42] e de Kuniya e Nakata [30, 18|. Para a incidéncia simples, Zhang
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e Teng definem uma condi¢ao para persisténcia forte e uma condigao para extin¢ao
baseada em algumas constantes que, mesmo no caso auténomo, nao determinam a
fronteira entre permanéncia e extingdao. Para melhorar este resultado no caso per-
i6dico com incidéncia simples, Kuniya e Nakata [30] obtiveram condicoes baseadas
em resultados gerais de Wang e Zhao [38| e, no caso nao-auténomo geral com in-
cidéncia simples, o resultado de Zhang e Teng foi melhorado em [18]. Neste trabalho,
seguimos a abordagem em [18| para obtermos critérios explicitos de persisténcia
forte e extingcao no contexto nao-auténomo para o nosso modelo de incidéncia geral.
Naturalmente, o resultado de Kuniya e Nakata estd incluido como um caso partic-
ular da nossa generalizacao como se pode ver na seccao 2.3 onde varios exemplos
sao considerados. Em particular, nesta seccao analisamos modelos com parametros
nao-auténomos dados por func¢oes da forma p(t) = ¢(1 + acos(wt + ¢)). Mode-
los com este tipo de parametros foram estudados por exemplo em [2, 23, 30, 18§].
De realgar que a nossa generalizacao requer diversos argumentos adicionais nao-
triviais na prova dos resultados principais e auxiliares nas seccoes 2.1 e 2.2. Tal
como em Kuniya e Nakata [18], ndo foi possivel obter condiges limite precisas,
mesmo no caso autonomo. Noutro sentido, na seccao 2.4, para funcoes de incidéncia
diferenciaveis, provou-se que as nossas condicoes para permanéncia e extin¢ao sao
robustas. Nomeadamente, provou-se que, se as nossas condigoes determinam per-
sisténcia (respetivamente extingdo) da doenga entdo, para pequenas perturbagoes
dos parametros no espaco das func¢oes C' com a norma do supremo e pequenas
perturbacoes da funcao de incidéncia num subconjunto adequado do conjunto das
fungoes C, continuamos a ter persisténcia (respetivamente extingao). Os resultado

deste capitulo estao incluidos no artigo [27].

Devido as frequentes mudancas sazonais que ocorrem na realidade, o caso per-
iodico é muito importante. De facto, sabemos bem que varias doencas infeciosas
exibem padroes sazonais de incidéncia. Um exemplo bem conhecido ¢ suportado
por dados semanais sobre o sarampo na Inglaterra e no Pais de Gales durante o
periodo 1948-1968 [1|. Outros exemplos ocorrem em varias doengas da infancia, tais

como papeira, varicela, rubéola e tosse convulsa [26].

No capitulo 3 os parametros sao periddicos com periodo comum e assumimos
que as funcoes de incidéncia sao continuamente diferencidveis. Este é um contexto
que é menos geral do que o do capitulo 2 e mais geral do que o do capitulo 1. Tal
como no caso autonomo analisado no capitulo 1, existe um método geral para obter
o numero reprodutivo basico neste contexto. Este método desenvolvido por Wang e
Zhao [38] é apresentado na sec¢ao 3.2 juntamente com resultados relacionados sobre
persisténcia obtidos por Rebelo, Margueri e Bacaér [31]. Na sec¢do 3.3 provamos a
existéncia de uma tinica solugao livre de doenca e, aplicando a teoria geral descrita

na seccao anterior, estabelecemos nas secgoes 3.4 e 3.5 a estabilidade assintotica
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global da solugao livre de doenca, quando o niimero reprodutivo basico é menor que
um, e a persisténcia dos infeciosos quando o nimero reprodutivo basico é maior que
um. A existéncia de uma soluc¢ao endémica periddica é estabelecida na seccao 3.6,
assumindo que o nimero reprodutivo béasico ¢ maior que um e outras condicoes
adicionais. O nosso resultado baseia-se na teoria do grau, mais precisamente numa
aplicagao do teorema de continuacao de Mawhin, e generaliza o resultado principal
de Zhang, Liu e Teng [41] que considerou um modelo com fungdes de incidéncia
simples e imunidade permanente. Embora a ideia de aplicar o teorema de continu-
acao de Mawhin tenha sido retirada de [41], nos necessitamos de novos argumentos
nao triviais para lidar com o nosso caso, nao s6 porque consideramos fungoes de
incidéncia gerais, mas também porque permitimos imunidade temporaria, o que nos
obrigou a usar o modelo quadridimensional original em vez de um sistema reduzido
como em [41]. Tlustramos os resultados neste capitulo na sec¢ao 3.7 considerando
modelos com parametros periodicos da forma p(t) = ¢(1 + « cos(wt + ¢)).

Na realidade, a evolucao do niimero de suscetiveis, expostos, infeciosos e recu-
perados depende de alguns fatores que podem ser controlados. Dois dos principais
fatores sao o tratamento de infeciosos e a vacinacao de suscetiveis.

No capitulo 4, consideramos o efeito do tratamento e da vacinacao no nosso mod-
elo na forma de variaveis de controle e propomos um problema de controle 6timo
num intervalo finito com funcional de custo na forma de Lagrange. Mais especi-
ficamente, consideramos duas variaveis de controle: tratamento, T, e vacinacgao,
V. O tratamento é aplicado aos individuos infetados, movendo uma parte deles do
compartimento dos infetados para o compartimento dos recuperados. A vacinacao é
aplicada aos individuos suscetiveis, também movendo uma parte deles para a classe
dos recuperados. Portanto, adicionamos as variaveis de controle T e V ao sistema

inicial no intervalo t € [ty,tf], obtendo o modelo de controle

St = A@) =B p(S,N.I)—p(t)S+n(t)R-VS
E' = [(t)e(S,N,I) = (u(t) +e(t) E

I' = ) FE ( )+~ @) I—TI

R = W) I—p(t)R—m(t)R+TI+VS

N = S+E+I+R

\

e consideramos o funcional de custo 7, dado por
ty
j([,T,W) :/ K1]+I€2T2+I€3W2dt, 0 < K1, Ko, kg < 0Q.
0

Depois de apresentarmos o nosso problema na seccao 4.1, provamos a existén-
cia de uma solucao otima na seccao 4.2 e, depois de estabelecermos uma versao

adequada do principio méaximo de Pontryagin na seccao 4.3, obtemos a unicidade
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do controle 6timo num intervalo suficientemente pequeno na seccao 4.4. A nossa
abordagem segue os argumentos de Gaff e Schaefer [9] que consideraram um modelo
autéonomo e uma funcao de incidéncia particular. Além de considerarmos func¢oes
de incidéncia gerais, também admitimos parametros dependentes do tempo. Final-
mente, na seccao 4.5, apresentamos alguns resultados de simulacao, obtidos para

comparar um modelo auténomo com o correspondente modelo periédico.

xiil
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Abstract

We consider SEIRS models with general incidence functions depending on the sus-
ceptibles, the infectives and the total population, and we analyze this models in
several scenarios: autonomous, general non-autonomous and periodic. In all this
settings, we discuss the strong persistence and the extinction of the disease. Addi-
tionally, we address the following problems: in the autonomous setting, we obtain
results on the existence and global stability of disease-free and endemic equilibri-
ums; in the periodic setting, we obtain the global stability of disease-free periodic
solution when the basic reproductive number is less than one, and, using the well-
known Mawhin continuation theorem, we discuss the existence of endemic periodic
solutions; in the general non-autonomous setting, we prove that our conditions for
strong persistence and extinction are robust, in the sense that they are unchanged
by sufficiently small perturbations of the parameters and the incidence functions.
Finally, we consider a version of our model with two control variables, vaccination
and treatment, and study the existence and uniqueness of solution of the optimal

control model considered. Some computational experiences illustrate our results.

Keywords

Epidemiological SEIRS models; non-autonomous; periodic; persistence and extinc-

tion; stability; optimal control.
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Introduction

The study of compartmental epidemiological models has a long history that goes
back to the construction of the SIR compartmental model of Kermack and Mck-
endrick [16] in 1927. Since then, compartmental models have been widely used in
epidemiology and several different compartments have been considered, so that the
models fit the different situations described.

The SEIR/SEIRS models are among the most studied models in epidemiology.
In fact, in these models it is assumed that the population is divided in four com-
partments. Besides the infected, susceptible and recovered compartments in the
SIR models, an exposed compartment is also considered in order to split the in-
fected population in two groups: the individuals that are infected and can infect
others (the infective class) and the individuals that are infected but are not yet able
to infect others (the exposed or latent class). This division makes the model par-
ticularity suitable to include several infectious diseases like measles and, assuming
vertical transmission, rubella [21]. If there is no recovery, the model is appropriate to
describe diseases such as Chagas’ disease [35]. It is also suitable to model diseases
like hepatitis B and AIDS [21|. Although influenza can be modeled by a SEIRS
model [6], due to the short latency period it is sometimes more convenient to use
the simpler SIRS formulation [7]. Mathematically, the existence of more than one
infected compartment brings some additional difficulties to the study of the model.

In this work we will consider a family of models with general incidence in several

scenarios. Namely, we will consider models of the form

(

_B(t) ¢(S7 N7 ) (t)5+77(t)R
— (u(t) +e@) E

_l_
R =1 = (u(t) +1
(N=S+E+I+R

where S, E, I, R denote respectively the susceptible, exposed (infected but not
infective), infective and recovered compartments and N is the total population,
A(t) denotes the birth rate, 8(t) ¢(S, N, I) is the incidence into the exposed class of

susceptible individuals, p(t) are the natural deaths, n(t) represents the rate of loss

1
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of immunity, (t) represents the infectivity rate and ~y(¢) is the rate of recovery. We
should mention that the difference between SEIR and SEIRS models is related to
immunity. If immunity is permanent after recovery (n(t) = 0) then there is no flow
from the R to the S compartment and we have a SEIR model. Otherwise, if 7(t) is
not identically zero, then there is a flow from the R to the S compartment and we
have a SEIRS model.

Several different incidence functions have been considered to model the trans-
mission in the context of SEIR/SEIRS models. In particular Michaelis-Menten in-
cidence functions, that include the usual simple and standard incidence functions,
have the form f(t)¢(S, N, I) = 5(t)C(N)SI/N and were considered, just to name a
few references, in |37, 3, 11, 30, 18, 42]. The assumption that the incidence function
is bilinear is seldom too simple and it is necessary to consider some saturation effect
as well as other non-linear behaviors [24, 45]. The Holling Type II incidence, given
by 5(t)p(S,N,I) = B(t)SI/(1 + «l), is an example of an incidence function with
saturation effect and was considered for instance in |33, 43]. Another popular type of
incidence, given by B(t)p(S, N, I) = 5(t)IPS9, was considered in [17, 24, 13]. Also,
a generalization of Holling Type II incidence, 5(¢)p(S, N,I) = B(t)SI?/(1 + al9),
was considered in [14, 32].

It is important to study models with general form for the incidence functions in
order to highlight the features that are dependent and independent of the shape of
these functions. This was our main motivation to undertake this study.

Some of the most important problems in mathematical epidemiology include
the obtention of thresholds conditions for persistence and extinction of the disease,
the existence of stationary and periodic solutions, stability and bifurcation analysis.
In all these aspects the basic reproductive number, usually denoted by Ry, and its
generalizations play an important role, in particular to establish a threshold between
persistence and extinction of the disease. More precisely, we say that the infectives
go to extinction if for any solution we have tEerOO](t) = 0 and we say that the
infectives are strongly persistent in some set A if there is K > 0 such that, for any
solution of (1) with initial conditions in A, we have 1%gl+l(£lof I(t) > K > 0. Similar
definitions can be made for the others compartments.

In the autonomous situation, Li, Muldowney and Driessche [20] studied a model
already considered in [14], where the population is assumed constant, equal death
and birth rates are considered and the incidence function is of the form (S, N, I) =
g(I)S with g of class C' and verifying |I¢'(I)| < I. They obtained the local asymp-
totic stability of the disease-free equilibrium when Ry < 1 and the global stability
of the endemic equilibrium when Ry > 1, in the assumption that the parameters
satisfy n > ¢ — . — 7. Recently, Cheng and Yang [5] improved Li, Muldowney and
Driessche’s result by completing the study of the global stability of the endemic

2
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equilibrium for all the parameters. In our context, the birth and death rates are not

assumed constant and the incidence functions may depend on the total population.

In chapter 1 we consider constant parameter functions, obtaining an autonomous
model, and the incidence functions are assumed to be twice continuously differen-
tiable. This is the context where more information can be obtained about our
system. There is, in particular, a general tool developed in Driessche and Wat-
mough [36] to obtain the basic reproductive number R, that is presented in sec-
tion 1.2. In section 1.3 we obtain an important invariant region that contains the
equilibriums of the system, that are also computed, and we apply the general tool of
the previous section to our model, obtaining the regions of local asymptotic stability
of the disease-free equilibrium and the region of strong persistence of the disease.
The global stability is discussed in section 1.4. Concerning the disease-free equi-
librium, it is proved in that section that it is globally asymptotically stable if the
basic reproductive number is less or equal to one and unstable otherwise. When the
basic reproductive number is greater than one, for incidence functions of the form
Bp(S,N,I) = pC(N)Sg(I), the global asymptotic stability of the endemic equilib-
rium is also obtained but only assuming permanent recovery (n = 0). The stability
results in this section were partially inspired in Safi and Garba [33]. Some illustrative

examples of the results obtained in this chapter are considered in section 1.5.

The assumption that the parameters are independent of time is not very realistic
in many situations. In particular, the general non-autonomous setting allows the
discussion not only of periodic seasonal fluctuations but also of environmental and
demographic effects that are non periodic. As an example of such effects, for some
diseases like cholera and yellow fever, it is known that the size of the latency period
may decrease with global warming [34]. This type of phenomena leads to non-

periodic parameters.

In chapter 2, we had the objective of considering a setting as general as possible.
Thus, no special behavior was prescribed for the parameters, that are only assumed
to be continuous, bounded and non-negative functions, and no differentiability is
assumed for the incidence functions, that are only required to satisfy some properties
on a special part of their domain. In spite of the assumed generality, it was possible
in section 2.2 to obtain threshold conditions for persistence and extinction. When
our conditions prescribe extinction, we also obtained global asymptotic stability
of the disease-free solutions. A particular case of our setting is the case of mass-
action incidence, p(S,N,I) = SI, that was considered in papers by Zhang and
Teng [42] and by Kuniya and Nakata [30, 18]. For mass action incidence, Zhang
and Teng defined a condition for strong persistence and a condition for extinction
based on the sign of some constants that, even in the autonomous setting, are not

thresholds. To improve this result in the periodic mass action setting, Kuniya and
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Nakata [30| obtained conditions based in general results by Wang and Zhao [3§]
and, in the general mass action non-autonomous setting, Zhang and Teng’s result
was improved in [18]. In this work we follow the approach in [18] to obtain explicit
criteria for strong persistence and extinction in the non-autonomous setting for our
general incidence model. Naturally, the result of Kuniya and Nakata is included as a
particular case of our generalization as shown in section 2.3 where several examples
are considered. In particular, we discuss in that section models with non-autonomous

parameters given by functions of the form
p(t) = c(1 4 acos(wt + ¢)). (2)

Models with this type of parameter functions were studied for instance in [2, 23, 30,
18]. It should be emphasized that our generalization requires several nontrivial ad-
ditional arguments in the proof of the main and the auxiliary results in sections 2.1
and 2.2. Like in Kuniya and Nakata [18], it was not possible to obtain sharp thresh-
olds as in the autonomous case. In another direction, in section 2.4, for differentiable
incidence functions, it was proved that our conditions for permanence an extinction
are robust. Namely, it was proved that, if our conditions determine persistence (re-
spectively extinction) of the disease then, for small perturbations of the parameter
functions in the space of C! functions with the supremum norm and small pertur-
bations of the incidence function in some suitable subset of the set of C'! functions,
we still have persistence (respectively extinction). The results in this chapter are
included in the article [27].

Due to the frequent seasonal changes that occur in practice, the periodic case is a
very important one. In fact, it is well-known that several infectious diseases exhibit
seasonal patterns of incidence. A well-known example is given by data on weekly
measles notification in England and Wales during the period 1948-1968 [1]. Other
examples occur in several childhood diseases such as mumps, chicken-pox, rubella

and pertussis [26].

In chapter 3 the parameters are assumed periodic with a common period and the
incidence functions are assumed continuously differentiable. This is a setting that is
less general than the one in chapter 2 and more general than the one in chapter 1.
Like in the autonomous case discussed in chapter 1, there is a general tool to obtain
the basic reproductive number in this case. This tool developed by Wang and
Zhao [38] is presented in section 3.2 together with related results about persistence
obtained by Rebelo, Margueri and Bacaér [31]. In section 3.3 we prove the existence
of a unique disease-free solution and, applying the general theory developed in the
preceding section, we establish in sections 3.4 and 3.5 the global asymptotic stability

of the disease-free solution, when the basic reproductive number is less than one,

4
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and the persistence of the infectives when the basic reproductive number is greater
than one. The existence of a periodic endemic solution is obtained in section 3.6,
assuming that the basic reproductive number is greater than one and some additional
assumptions. Our result is based on degree theory, more precisely it relies on an
application of Mawhin’s continuation theorem, and generalizes the main result in
Zhang, Liu and Teng [41] that considered a model with simple incidence functions
and permanent immunity. Although the idea of applying Mawhin’s continuation
theorem was borrowed from [41], we need several nontrivial new arguments to deal
with our case, not only because we consider general incidence functions, but also
because we allow temporary immunity, which forced us to use the original four-
dimensional system instead of a reduced system like in [41]. We will illustrate the
results in this chapter in section 3.7 by considering models with periodic parameters
of the form (2).

In practice, the evolution of the number of susceptible, exposed, infectives and
recovered depends on some factors that can be controlled. Two of the main factors
are the treatment of infectives and the vaccination of susceptibles.

In chapter 4, we consider the effect of treatment and vaccination to our model
in the form of control variables and consider a free terminal point optimal control
problem in a finite interval with cost functional in Lagrange form. More specifi-
cally, we consider two control variables: treatment, T, and vaccination, V. The
treatment is applied to the infected individuals, moving a fraction of them from the
infected compartment to the recovered compartment. The vaccination is applied to
the susceptible individuals, also moving a fraction of them to the recovered class.
Therefore, we will add the control variables T and V to system (1) in the interval

t € [to,ts], obtaining the control model

(S = A(t) =B (1)

E' = ) e(S, N, I) = (u(t) +e(t) E

I' = e®E—(u@)+~y@)I-TI (3)
R = vy I-p@t)R—n{t)R+TI+VS

N = S+E+I+R

SN, I)—p(t)S+n({t)R—VS

\

and we consider the cost functional 7, given by
iy
J(, T, V)= / kil + ko T? + k3 V2dt, 0 < K1, Ko, kg < 00. (4)
0

After introducing rigorously our problem in section 4.1, we prove the existence of
an optimal solution in section 4.2 and, after stating a suitable version of Pontryagin’s
maximum principle in section 4.3, we obtain the uniqueness of the optimal control in

a sufficiently small interval in section 4.4. Our approach follow the arguments in Gaff
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and Schaefer |9 that considered an autonomous model and a particular incidence
function. In addition to considering general incidence functions, we also allow time-
dependent parameters. Finally, in section 4.5, we present some simulation results,

designed to compare an autonomous and a corresponding periodic model.
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Chapter 1

Autonomous model

In this chapter we consider the autonomous version of problem (1), i.e. we assume

that the parameter functions are constant.

1.1 Setting and Preliminaries
In this chapter we will make the following assumptions:

A1) The parameter functions are constant: A(t) = A, B(t) = B, u(t) = u, £(t) =&,
n(t) =nand y(t) =y with A, 8, 1> 0 and £,7,7 > 0;

A2) Function ¢ : (Rg)® — R is twice continuously differentiable and nonnegative;

A3) For each 0 < S < A/pand 0 < I < A/u, the function N — ¢(S,N,I) is
non-increasing, for each 0 < I < N < A/u the function S — (S, N, I) is
increasing and, for all N, S, I > 0, we have ¢(0,N,I) = ¢(S,N,0) = 0;

<
<

A4) For each 0 < S < N < A/pu, the function

I o, I
W(S,N,O) lf IIO

is non-increasing and not identically zero.

Several particular forms for ¢ for particular SEIRS or SEIR models have been
considered. For instance, in [22], for a SEIR autonomous model under different
assumption than ours, an incidence of the form ¢(S, N,I) = SI/(1+bN) with b > 0
was considered. Also for a SEIR autonomous model [20] a general incidence of the
form ¢(S,N,I) = g(I)S satisfying g € C', g(I) > 0, g(0) = 0 and A = p was

considered.
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1.2 Thresholds for General Autonomous Models

In this section we present a tool, developed by Pauline van den Driessche and James
Watmough in [36], to obtain thresholds for permanence and extinction of the disease
in autonomous epidemiological models.

Assume that some population is divided into n homogeneous compartments. To
consider a general epidemic model for such population, we assume that x;, i =
1,...,n, denotes the number of individuals in compartment ¢. We assume that
the first m compartments contain infected individuals and that the last n — m
compartments are disease-free compartments. Let X, be the set of disease-free

states:
Xo={(z1,...,2,) 01 = =2, =0and Tp41,...,7, > 0}.

We denote by F;(x) the rate of appearance of new infections in compartment i,
by V" (z) the rate of transfer of individuals into compartment 7 by all other means
and by V; (z) the rate of transfer of individuals out of compartment i. We will
write F(z) = (Fi(z),...,Fu(z)) and analogously V*(x) = (V| (z),..., V. (x)) and
V7 (z) = (V] (),...,V,

~(x)). We will consider epidemic models of the form

¥ =F(x) = V(z) = f(x), (1.1)

where © = (x1,...,2,) and V(z) = V- (x) — VT (x), and verifying the following

assumptions:

DW1) Functions F, YV~ and VT are twice continuously differentiable;
DW?2) If x > 0, then F;(z),V; (z), Vi (x) >0fori=1,... n;

DW3) For alli=1,...,n,if z; = 0 then V, (z) = 0;

DW4) If ¢ > m then F;(z) =0 ;

DW5) If x € X, then Fi(z) =0fori=1,...,m;

DW6) If x € X, then V}(z) =0fori=1,...,m;

DWT) There is at least one equilibrium point in X, denoted by z*;
DW8) All eigenvalues of d(V* —V7),« have negative real part;

Assumptions DW2), DW3), DW4), DW5) and DW6) are according with the biolog-

ical context inherent at this epidemiological model. We have the following Lemma:

8
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Lemma 1.2.1 (Lemma 1 of [36]). If (1.1) satisfies DW1) to DW8), then

F V 0

dF,- =
Js Jy

and dV,- =

where F' and V' are the m X m matrices given by

Vi, .
and V = [&rj(x )}

- [

Further, F' is non-negative, V' is a non-singular M-matrix (i.e. a square real matrix

1<ij<m 1<i,j<m

whose off-diagonal entries are non-positive and all the eigenvalues have positive real

part) and all eigenvalues of J; have positive real part.

Following [36], we define the basic reproductive ratio of (1.1), Ry, as the spectral

radius of the matrix F'V !
Ro = p(FV ') = max{|\| : X is an eigenvalue of FV '}

We have the following theorem on the permanence and extinction of the disease:

Theorem 1.2.1 (Theorem 2 in [36]). If (1.1) satisfies DW1) to DW8) then the disease-
free equilibrium x* is locally asymptotically stable if Ry < 1 and unstable if Ry > 1.

1.3 Persistence and Extinction

We now consider the autonomous SEIRS model presented in section 1.1. Define the

basic reproductive number for this model by

ep

e RS

/0 (A/p, A/, 0). (1.2)

We shall see that this number coincides with the one obtained by van den Drissche
and Watmough’s method.
Firstly we will see that there are important compact invariant sets for this model,

namely the sets
A={(S,E,I,R) € (R))*: N=S+E+I1+R=A\/u}, (1.3)

and
Ng={(S,E,I,R) e (R{)*:N=S+E+I+R<A/u}.

The next lemma shows that these sets are forward invariant and that, for any solu-

tion of system (1), the total population always tends to A/u as t — +o0.
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Lemma 1.3.1. Assume that A1) holds. Then, the sets A and A are forward invariant
and any solution, (S(t), E(t), I(t), R(t)), of (1) verifies

lim N(t)= lim S(t)+ E(t) +1(t)+ R(t) = A/p.

t—+o00 t—+o00

Proof. Adding the equations in system (1) we get the differential equation N = A —
pN that has general solution N (t) = C'e * +A/u. Letting t — +oo we immediately
conclude that tEHlooN(t) = A/p. It is also immediate that if N(ty) = A/p then
C' = 0 and thus N(t) = A/u for all t > t,. This establishes the forward invariance of
the set A. Assume now that S(tg) + E(to) + I(to) + R(to) < A/u for some t; € Ry
Then we have A/u > N(ty) = Ce "0 +A/p and then C' < 0. We conclude that
N(t) < AJp for all t >ty and that A is forward invariant. O

Note that, according to A1) and A2), the right end side of our system is continu-
ous and locally Lipschitz and thus, by Picard—Lindel6f’s theorem we have existence
and uniqueness of (local) solution for our problem. By Lemma 1.3.1, every solution
is global in the future. Next, we will discuss the existence of equilibrium points of

the system.

Theorem 1.3.1. Assuming that A1) to A4) hold and that ¢ > 0, equation

Bo((A =0/, Ay, 1) /T — (n+e)(p+7)/e =0 (1.4)

where b= p((n+n+¢e)(pw+7v) +en)/(e(e+n)), has a unique solution in |0, +o0],
I#,if Ry > 1 and no solutions in |0, +oo[ if Ry < 1. We have the following:

1. if Rp <1 then system (1) has exactly one equilibrium point, the disease-free
equilibrium e* = (A/p, 0,0,0);

2. if Ry > 1 then system (1) has exactly two equilibrium points, the disease-free
equilibrium e* = (A/p,0,0,0) and the endemic equilibrium

e = (A/p =0T [, () I* [e, I, 4 T% [ (1 + 1)),
where I# is the unique solution of (1.4).
Proof. The equilibrium points of system (1) are the solutions of
(A—ﬁcp(S,N,I) —uS+nR=0
Bo(S,N,I)—(u+e)E=0

eE—(n+~)1=0
(= +n)R=0

10
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We obtain immediately £ = (u++v)I/e and R = vI/(u+n). By the second equation
we get (S, N,I) = (u+ €)E. Therefore, using the first equation we get

1
A—(p+e)E—puS+nR=0 & S=—(A-0bl),

1
where
po wre)luty) v (1.5)
€ w+n
Finally, from the first equation
m
—Be((A=0bl)/p, A/ p, )+b[+m1—0 (1.6)

where we used the fact that, by Lemma 1.3.1, at any equilibrium point the total
population must be N = A/ p.

Define, for I > 0,

90((/\—61)/M,A//M)+b+ N

P(I)=—p Ii m

and note that, for I > 0, equation (1.6) can be written in the form P(I)I = 0.

By A2) and A3) we have

Do o e A+ 0, 0) — (A p Afp,0) 0
N(A/u’ A, 0) = h1i>I(I)1+ h B hli>Hol+ h

(1.7)
and similarly g—g(A/u,A/,u, 0) =0, by Al) to A4) we obtain

iy PO =01 A 1)
I—0+ 1
B PN p Np,I) oA = b1 p A, T)
1m
-0+ I -0t (A, A, I)
— 256N =01y, Ny, I) + 55 (A pn— bl /p, A, 1)
aﬁ(A/M,A/uJ)

57 /1 A/, 0) lim

57 A1 A, )<1 % (A A/, )
and thus
Jim so(A/u—bI[/u,A/u, I) 090(1\/%/\/% 0). (18)

11
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We will now turn our attention to function P. We have, according to (1.8),

lim P(I) = lim g oAb/ A D)y
10+ 10+ 1 w+n
¢ V1
= —BZ2(A/p, A b
Bop (A A/p,0) + t oy (L9)
0
= 522 A Jp,0) 4 D)
_ (u+€)6(u+7) (1—Ry).

Letting c(I) = (A/p—0bI,A/p, I), by A3) and A4), we have 22(c(1))I —¢(c(I)) < 0

oI

and thus

OP __ =aoeUNI+ U = pleD) (L.10)

ol I? ‘ '
By (1.8) and (1.10), we conclude that there is I > 0 such that P(I) = 0 if and only
if Rop > 1 and in this case there is a unique solution of P(I) = 0. Call it I#. It is
now easy to check that if Ry > 1 then (1.6) has two solutions, I = 0 and [ = I#,
and if Ry < 1 then (1.6) has a unique solution, I = 0. Thus if Ry > 1 then (1) has

two solutions, e* and e#, and if Ry < 1 then (1) has a unique solution, e*. ]

Note that, when € = 0, we have Rg = 0 < 1 and e* is the unique equilibrium.
We have the theorem:

Theorem 1.3.2. Under assumptions A1) to A4), the disease-free equilibrium e* =
(A/1,0,0,0) is locally asymptotically stable if Ry < 1 and unstable if Ry > 1,

where R is the constant in (1.2).

Proof. To obtain our result we will use Theorem 1.2.1. Using the ordering (x1, z2, 23, 14) =
(E, 1,5, R), we have the following:

Be(S,N,I) (n+e)E 0
1 E

0 Bp(S,N,I)+ uS A+nR
0 (k+n)R vI

In our context X, = {(E,I,S,R) € (R{)*: E =1 = 0} and it is easy to see that
conditions DW1) to DW6) hold. By Theorem 1.3.1, we have a (unique) disease-free
equilibrium given by e* = (A/p,0,0,0) € X and condition DW7) is verified. Since
55N/, A/, 0) = 58 (A/p, Afp, 0) = 0, we have

—(p+e) 0 0 0
‘ 0 —B%2(A/p, A/, 0) —p 7
0 v 0 —(u+mn)

12
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We can easily compute the eigenvalues of this matrix: \y = —(u +¢), Ao = —(pu + 7),
A3 = —p and Ay = —(uu 4+ n). By Al) all eigenvalues are negative and DW8) holds.

By (1.7) we conclude that d¢/ON(A/u, A/p,0) = 0 and we can compute the matrices
F and V for our model

w+e 0
—&  u+vy

0
0 B5F A/ A/p.0)
0 0

F=

] and V =

Some simple computation yield,

(b +e)(n+7) pty

Be 0p/OI(A/p, A/1i,0) B Op/OI(A/p, A/, 0)
- |
0 0

and thus we obtain

PV = B amar (A A0
p( ) (u+v)(u+e)’ ©/01 (A/p, A/, 0)|
ef
= _9¢p/0I (A, A/, 0 (1.11)
eSS ©/0I (A/p, A/, 0)
:R()a
and the theorem follows from Theorem 1.2.1. O

1.4 Global Stability

In this section we will obtain the global stability of the disease-free equilibrium and,
under the assumption that the incidence has some special form, we obtain the global

stability of the endemic equilibrium.

Theorem 1.4.1. Assume that A1) to A4) hold. Then the disease-free equilibrium e*
is globally asymptotically stable if Ry < 1, where Ry is the constant in (1.2).

Proof. We will first establish the global stability of e* in A, the set defined in (1.3).
Assume that € > 0. From assumption A4), the function pgy : [0,A/u] — R given
by

- W(S,N,D)JI if 0<I<A/u
W( » 4V ) 1 =
is non-increasing and, according to A3), the function @y ; : [0, A/u] — R given by

Pn1(S) = (S, N, 1) is increasing. Thus, for any I € [0, A/p],

QN =01 [p, A, I) = @y (N o= b1/ 11) < By (A1) = Pajpnsu(D)1,

13
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where b is given by (1.5). Note that

> 0.

b:u(u+€)+7(u+€_ U )>u(u+€)
€ n+n €

Therefore, by A4),

- Op
(A= bl /pu, A, 1) < sup Pajpa/u(d)] =

Z2 (AN, N, O
oup 81( /1, A/, 0)

Consider the function L : A — R given by

3

L(S,E,I,R) =
wFe

E+ 1.

In the set A we have N = A/u and thus, by A3) and A4), we have for I > 0

g

L' = u+€El+]/
=~ i —(B(S, A1) = (n+2)E) + B = (v + )]
_ 6590(5:?6{%1) v+ )
< 65@(1\:,17/6\/% I) (v + )
_ (65@2/:A;u(1) B (7+M)> 7
< (2 Sr A0~ ()

= (v +u(Ro—1I <0,

since Ry < 1. Thus L is a Lyapunov function for system (1) in A and L' = 0 if and
only if I = 0. Therefore the largest compact invariant subset of A where L' = 0 is
the set {(S,E,I,R) € A: E =1 =0}. By Lemma 1.3.1, the positive orbits of (1)
are bounded and thus, by LaSalle’s invariance principle, Theorem 6.4 in Chapter 2

of [19] (see also for instance [12, 44|), we conclude that
I(t) =0 as t— +4o0. (1.12)

Given ¢ > 0 there is T5 € R such that 0 < I(t) < ¢ for all ¢ > Ts. Thus

dp

< Bop (A1 A/p, 000 — (p+e)E

—(p+e)E

14



Dynamics of Non-Autonomous SEIRS Models with General Incidence

and therefore

82(A/p, A1, 0)

Et) < ol 5 + Ce—(u—i—a)t
() < p B

and, since 0 > 0 is arbitrary, we conclude that
E()—0 as t— +oo. (1.13)

By (1.12) and (1.13), given ¢ > 0 there is T5 € R™ such that I(t), E(t) < § for all
t > Ts. By the fourth equation in system (1) we get

Ro=~I—(p+n)R <70 —(p+n)R,
for all t > Ts. Thus, by comparison we get,

R(t) < C e~ (ntn)t +’7_5‘
H+n

Since 0 > 0 is arbitrary, we conclude that

R(t)—0 as t— +oo. (1.14)

Finally by (1.12), (1.13) and (1.14) we obtain
S(t)=N(t)—E(t)—R(t)—I(t) > A/ju—0—-0—-0=A/p, (1.15)

as t — 400, and we conclude that e* = (A/u,0,0,0) is globally asymptotically
stable in A, assuming that € > 0.

On the other hand, if ¢ = 0, we can easily check that the third equation in (1)
assures that I(t) — 0 as t — +oo and thus, by a similar reasoning we can ob-
tain (1.13), (1.14) and (1.15).

Now, let ¢(t) = (S(t), E(t), I(t), R(t)) be some solution of system (1) with initial
condition gy = (S(to), E(to), I(to), R(te)) = (So, Fo, Iy, Ro) contained in (Rg)*\ A.
Since N(t) — A/p as t — 400, we conclude that the w-limit of the orbit ¢ = {q(¢) :
t > to} must be contained in A. Assume by contradiction that a € A\ {e*} is in the
w-limit of ¢. Since {e*} is the w-limit of any orbit in A, it follows that {e*} is the
w-limit of the orbit p contained in A and such that p(0) = a. By invariance of the
w-limit, we conclude that the orbit p is in the w-limit of ¢q. Since the omega limit
of pis {e*}, for any given § > 0 there must ¢5 such that ||p(t5;) — e*|| < 6/2. Since
p(ts) is in the w-limit of ¢ there must be ¢; such that ||g(t1) — p(ts)|] < §/2. Thus
for any given 0 > 0 there is ¢; > 0 such that

lg(tr) — €[l < llg(tr) — p(ts)ll + llp(ts) — €[] < 6. (1.16)

15
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But, since e* is locally asymptotically stable, by Theorem 1.3.2, we conclude that
there is some d; > 0 such that the w-limit of any orbit that enters the ball By, (e*) is
{e*}. By (1.16) the orbit ¢ enters the ball By, (¢*) and we conclude that the w-limit
of ¢ is {e*}. A contradiction. Thus, a is not in the w-limit of ¢. Since By, (e*) is
compact, ¢ is bounded and thus the w-limit of ¢ is nonempty. We conclude that it
must be equal to {e*}. We conclude that {e*} is the w-limit of any orbit in (R3)™
and thus {e*} is globally asymptotically stable in (Rg)™. O

Next, we will obtain a theorem on the global stability of the endemic equilibrium.

Theorem 1.4.2. Assume that A1) to A4) hold. Assume further that = 0 and that
©(S,N,I) = C(N)Y(I)S with I — 1 (I) increasing and [ +— 1/(I)/I non-increasing.
In these conditions, if Ry > 1, where Ry is the constant in (1.2), the endemic

equilibrium e* is globally asymptotically stable in
Ay :={(S,E,I,R) e A: E>0or >0} (1.17)
Moreover, if C(N) = 1 then e is globally asymptotically stable in
Ay :={(S,E,I,R) € (R§)*: E>0o0r >0} (1.18)

Proof. Let e# = (S# E# I# R#) and consider the function L : C — R, where
C = A or C = A,, given by
L=5-5%—5%W(S/S*)+ E — E* — E* In(E/E")

+ ”T“ [[—I* — I*In(I/I*)] .

First note that at the endemic equilibrium we have

B 4 4 4 _ Be(S* N/, IF) pt+y  E*
A=Bo(ST A p, I7) + puS™, p+e= o and ——— = —5
We have
I'=8 - S*8')S+ B — B*E'JE+ X2 [1' - r#1)1
g
G
E#
+ ¢ I#
+E = |eB = (u+ NI = (B = (4 )]

16
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and thus
# #
Dea(1-0) Cus (150 4 pgr B ND  (nte)nty),
S S S -
# #
E I -
= nS* A A —55—#90(5# A/, I7) + Bp(S*, A, I7)
S S# S ) ) 5 ;

+ Bo(ST A p, I7) = Bo(S*, N, TF)TFEJ(E*T) + Bo(S*, Afp, I7).

Adding and subtracting

(p(S#, A/, #))° IS

# #
Bp(S7, Afp, I7) and [ (5. N 1) [757

we get

/ # S* S # #
L'=pS™ 2 — — — <z | +Bo(S™, A/, I7)x
" S# (S, N, I)E# B I*E B o(S* N/, I#)IS
S e(S*F AN I#F)E  E¥I - o(S, N, I)S#I#
(0(S* A/p, I#)) 1S
o(S, N, 1) I#5%

#

— Bo(S* A 1) + 251
p(S* A p, I7)1
-y 3 .

+

e, St S . ,
L'=pST™2— 5 — oz | +B80(S™, A/, I7)x
" S*  p(S,N.DE*  I*E  o(S* AJu, I#)IS
S T P(SE AN IPE  EFI o(S.N.[)S*I*
S#, N/, I#)1S S,N,)S* I
>(_1+so( A IAIS (SN, 1) )

# s* S # #
= puST |\ 2=~ = o | +Bo(ST, A, IT)x
(4 5T SN DEF - ITE (S A/ p, IF)1S
S (8% AN I#)E  E#I  o(S,N,I)S#I#

IS
T
A e N
X 90(57]\[7])_90(3#"/\/“7]#) ¢(S7N7])S# 1
IS I#S# o(S# N/, I#)S '

17
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Using the fact that 22 + y* > 2zy (with equality if and only if z = y) we conclude

with equality if and only if S = S#. We claim that
S# o(S,N, I E# B I*E B o(S* N/, I#)IS

_2 . |
S T ASEALIPE BRI oS N, D)SEIF (1.20)

In fact we have

©(S, N, I)E* o(S*, A/, I7)IS
o(S# N/, IF)E (S, N, I)S#I#
(S, N, I E#S#I# + o(S*, A/ p, I#)*EST
B 0(S# N/, I#)p(S, N, ) S#I#E
- VE#SIT
T VS#I#E

and analogously

S# N I*E VSHIFE

— > 2
S E#I —  /E#SI

and thus

B S# (S, N,IE# B I*E B o(S* N/, I7)IS

S e(SF N p IF)E E#I (S, N,I)S#I#
VE#SI  /S#EI#E

§4_2< E#ST SIE)SO’

_.|_
VS#I#E  VE#SI

establishing (1.20).
Since ¢(S,N,I) = C(N)yY(I)S with I — 9(I) increasing and I — (I)/I non-
increasing, for (S, E, I, R) € A; we have

(@(S,NJ) w(S#,A/u,I#))( o(S, N, I)S# 1)
v

s [#5# (S#,A/p, I#)S

= C(A /) (MII) - wﬁ#)> (j’((][#)) - 1) <0.

(1.21)

By A3), Theorem 1.3.1, and since (u + v)I#* = eE#, it is easy to check that
we have equality in (1.19), (1.20) and (1.21) if and only if S = S# I = I*# and
E = E#. Therefore L is a Lyapunov function in Ay if Ry > 1 and, since I s (1) is
increasing and I — +(I)/I is non-increasing, L' = 0 if and only if S = S#  E = E#
and I = I7. Tt follows that the largest compact invariant subset of A; where L' = 0
is the set

{(S,E,I,R) € A, : S= 5% E=FE%* and I = I*}.

18
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According to Lemma 1.3.1, the positive orbits of (1) are bounded and thus, by

LaSalle’s invariance principle [19] (see also [44, 12]), we conclude that
S(t) — S*, E(t)— E* and I(t)— I (1.22)
as t — 4-00. Therefore

lim R(t)=A/p— lim (St)+ E@®)+1(t)=A/p—S* - E* —I* = R

t—+o0 t—+o00

and we conclude that e” is globally asymptotically stable in A;.
Assuming now that C(N) =1, for (S, E, I, R) € Ay we have

(SO(S,N,[) gp(S#,A/u,[#)) ( o(S, N, 1)S* )
¥

IS [#5% (S#,A/u, 1#)S (1.23)
- (W) _ wU#)) ( o) _ 1> <0 |
I 1 ) \e(# T

Reasoning like before, we conclude that e# is globally asymptotically stable in As,.
O

Note in particular that Theorem 1.4.2 shows that, when n = 0 and Ry > 1, the
endemic equilibrium is globally asymptotically stable in A, for the Michaelis-Menten

incidence functions.

1.5 Example

In this section we illustrate the obtained results in this chapter, by considering the

particular model:

;

S'=A—pBSI—puS

E' =381 — (uE +¢)FE

I'=eE— (p+7)1 : (1.24)
R =~I — uR

| N=S+E+I+R

Inspired in [30], we set A = =2, ¢ = 1, v = 0.02 and consider the following
initial conditions Sqp = Ey = [y = Ry = 0.1 (black lines). We assume that there is
no loss of immunity and let 7 = 0. On the left-hand side of figure 1.1 we considered
£ = 5.9, and we can see that all trajectories approach the disease-free equilibrium
e* = (1,0,0,0) and thus that the disease goes to extinction. In this case, we have
approximately Ro = 0.9736 < 1 and Theorem 1.4.1 confirms that, in fact, the
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disease-free equilibrium is globally asymptotically stable. On the right-hand side of
figure 1.1 we now make 5 = 6.9, and we can see that the disease persists and that all
trajectories approach the endemic equilibrium e# =~ (0.8782,0.081,0.0402, 0.0004).
In this case, we have approximately Ry = 1.1386 > 1 and Theorem 1.4.1 states that
the endemic equilibrium is globally asymptotically stable. The red and cyan lines
correspond respectively to solutions with the following initial conditions: Sy = 0.08,
Ey=0.07, I, =0.12, Ry = 0.13 and Sy = 1.99, Ey = 0.09, I, = 0.05, Ry = 0.25.

0.12 0.12
0.1
0.1
0.08

0.08
— 0.06 -

0.04 0.06

0.02
0.04

0.15

0.12
0.1

0.08
£ 006 0

Figure 1.1: Disease Free Case and Endemic Case.

In figures 1.2 and 1.3 we present the trajectories of the infectives and the sus-

ceptibles for the above situations.

Infected Susceptible
T T 2 T T
‘ 1.8
0.1 T
16
0.08 1 14}
| 1.2+
0.06 T
| S 1 o o
0.04-
0.8
0.02f { 06
0.4
0
0.2
~0.02 . . . . . . . . . 0 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

t t

Figure 1.2: Disease Free Case.
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Chapter 2

Non-Autonomous Model

In this chapter we consider a general non-autonomous model, more precisely we will
consider problem (1) assuming that the parameters are continuous bounded and

nonnegative functions.

2.1 Setting and Preliminaries

Before presenting the assumptions considered on this chapter we need to introduce

some notation. Given a continuous and bounded function i : RT — R we define

1 t+w 1 t+w
h, = liminf —/ h(s)ds and h} =limsup— / h(s) ds,
t t

t—=+oo W t—4oo W

and
h* =suph(t) and h'=infh(t).

t>0 t>0

For each § and 6 with § > 0 > 0 define the set
Ngs={(S,N,)eR?*: §<S<N<§ANOLZI<N<ZG)

We will see that there is K > 0 such that, for any given solution (S(t), E(t), I(t), R(t))
of our system, the vector (S(t), N(t),1(t)) where N(t) = S(t) + E(t) + 1(t) + R(¢)
stays in the region Ag x for every t € Ry sufficiently large.

We will now state the assumptions about our system. We assume that:

NA1) The parameter functions A, p, 8, n, € and v are continuous bounded and
nonnegative real valued functions on Ry, ¢ is a continuous and nonnegative

real valued function on (R{)? and there are w,,ws,ws > 0 such that

fey, >0, Ay, >0 and S, > 0; (2.1)

NA2) Letting D > 0 be the constant in 3) in Proposition 2.1.1 for each 0 < S < D
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and 0 < I < D, the function N — ¢(S, N, ) is non-increasing, for each
0 < I < N < D the function S — ¢(S, N, I) is non-decreasing, for each
0 < I < D the function S — ¢(S,5,I) is non-decreasing and (0, N,I) =
¢(S,N,0) = 0;

NA3) For each 0 < S < N < D, where D > 0 is the constant in 3) in Proposi-

tion 2.1.1, the limit
I—0+ I

exists and the convergence is uniform in (S, V) verifying 0 < S < N < D;

NA4) For each 0 < S < N < D, where D > 0 is the constant in 3) in Proposi-

tion 2.1.1, the function

N, T
M it 0<I<D
I~
i
zhm+M i T=0
—0

Is non-increasing;

NA5) Letting D be the constant in 3) in Proposition 2.1.1, the following holds:
given 6 > 0 there is Ky > 0 such that, for (S, N,I),(S2, N,I) € Ny p, we
have

p(S1, N, 1) — (82, N, I)| < KolS1 — Sl

and, for (S, 51,1), (S2,52,1) € Ay p, we have
lo(S1, 51, 1) — (53, S2, I)| < Ky|S1 — Sal1.

Assume also that R™ 3 0 — Kj is a continuous function.

Note that by NA3) the function in NA4) is continuous and, since it is defined in a
compact interval, it is bounded. Note also that by NA3) and NA4), there is M > 0
such that, for every 0 < S < N < D and 0 <[ < N < D, such that we have

©(S, N, 9)

<M . 2.2
I T 50t ) - < oo ( )

Additionally, if the function ¢ is differentiable and for each 6 €]0, D] there is Ky > 0
such that

for all (S,N,I) € Ay p, then NA5) holds.
As we will see, conditions NA1)-NA5) are verified in several usual examples.

We now state some simple facts about our system.
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Proposition 2.1.1. Assume that NA1) to NA5) hold. Then we have the following:

1) all solutions (S(t), E(t), I( ), R(t)) of (1) with nonnegative initial conditions,
S(0), £(0),1(0), R(0) > 0, are nonnegative for all £ > 0;

2) all solutions (S(t), E(t),1(t), R(t)) of (1) with positive initial conditions, S(0),
E(0), 1(0), R(0) > 0, are positive for all ¢ > 0;

3) There is a constant D > 0 such that, if (S(t), E(t), 1(t), R(t)) is a solution of (1)
);

with nonnegative initial conditions, S(0), £(0), 1(0), R(0) > 0, then

limsup N(t) = limsup (S(¢) + E(t) + I(t) + R(t)) < D.

t——+o00 t——+o0

Proof. Properties 1) and 2) are consequence of the direction of the flow on the

boundary of (Rg)?*. Adding the first four equations in (1) we obtain
N = A(t) — u(t)N.

By (2.1), there is T" > 0 such that ft+w” (s)ds > tpg

W
to > T we have

t hﬁ-l_%]wu
[ utsas= [ u(s) ds
to to

1 t—to

Z §Mw,LwML wu J
1 t—1t

2 S M, W ( - - 1)
2 Wy,
1

_ 1 _
= §Mwu(t —to) — e s

wy for t > T Thus, given

o and s = Sp W,
we conclude that there are uq, p2 > 0 and 7" > 0 sufficiently large such that, for all
t > to > T we have

1
where |a]| denotes the integer part of a, and, setting puy = §u

/ () ds > pua(t — to) — . (2.3

to

By (2.3) we have, for all t > T,

t & t
N(t) = e_ J;O M(S) ds NO =+ / e fu ,u,(s) ds A('LL) du

to

t
< e H(t—to)+u2 No —i—A“/ e~ mt—u)tuz g,
to
Au e:u2

M1

— e H(t=to)+p2 Ny +

(1— e -0y,
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Therefore
AU et2 AU gh2
limsup N(£) < limsup |e ¢t Ny =2 (1 = gmml—to)) | = 2%
t—+o00 t—-+o00 M1 41
and we obtain 3) setting D = A e!? /. O

By Proposition 2.1.1, for every § > 0 and every solution (S(t), E(t),(t), R(t))
of our system, (S(t), N(t),I(t)) stays in the region Ay p for all ¢ € Ry sufficiently
large, where D is given by 3) in Proposition 2.1.1. By 3) in Proposition 2.1.1, a
similar argument to the one given bellow the proof of Lemma 1.3.1 assures that

solutions are global in future.

2.2  Persistence and Extinction

To address the problem of persistence and extinction, we need to consider the fol-

lowing auxiliary differential equation
2= At) — p(t)z. (2.4)
The next result summarizes some properties of equation (2.4).
Proposition 2.2.1. Assume that NA1) holds. We have the following:

1) Given ty > 0, all solutions z(t) of equation (2.4) with initial condition z(to) > 0

are nonnegative for all ¢ > 0;

2) Given ty > 0, all solutions z(t) of equation (2.4) with initial condition z(ty) > 0

are positive for all t > 0;

3) All solutions of (2.4) are bounded and for any two solutions z, z; of (2.4) we have
|2(t) — z1(t)] = 0 as t — +o0;

4) There is L > 0 and T > 0 such that if to > T, 2(¢) is a solution of (2.4) and Z(¢)

is a solution of
2= A(t) — p(t)z + f(t) (2.5)

with f bounded and Z(to) = z(ty) then

sup |2(t) — z(t)] < L sup[f(t)];

t>to t>to
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5) There exists constants my;,ms > 0 such that, for each solution of (2.4) with

2(0) = z9 > 0, we have

my < litrg(i)?fz(t) < limsup z(t) < mo.

t—o00

Proof. Given ty > 0, the solution of (2.4) with initial condition z(tg) = z is given
by

t ¢ t
z(t) =e Jrgmrds o 4 / e~ Jut) A (u) du (2.6)

to
and thus, since A(t) > 0 for all ¢ > 0, if 2y > 0 we obtain z(¢) > 0 for all £ > ¢y and
if zp > 0 we obtain z(t) > 0 for all ¢ > to. This establishes 1) and 2).
By (2.1) (recalling (2.3)), there are py, e > 0 sufficiently small and ¢, > 0
sufficiently large such that, for all t > t;, we have

t t t
z(t) =e" Jog (s 0y / e~ Jur&ds A () du

to

t
< e H(t=to)+u2 20 —|—A“/ e~ t(t—u)tuz g,
to (2.7)

— e—#l(t—t0)+ﬂ2 20 + At el (1 _ e—ul(t—to))
1
AU oH2
S o2 20 + €
M1

and we conclude that z(¢) is bounded.
Let z and z; be solutions of (2.4) with z(tg) = 2o and z(ty) = 201. By (2.6)
and (2.1), there is ¢y > 0 such that, for ¢ > ¢, we have

|Z(t) - Zl(t)| =e fttO nls) ds |ZO - ZO,l| S e_‘ul(t—to)—’_‘u2 ’ZQ — 20,1

and thus |z(t) — 21(¢)| — 0 as ¢ — 400 and we obtain 3).
Subtracting (2.4) and (2.5) and setting w(t) = Z(t) — z(t), where Z is a solution
of (2.4) and z a solution of (2.5), with z(ty) = Z(¢o), we obtain

w' = —p(t)hw + ()

and thus, since w(ty) = Z(t9) —2(tp) = 0, we get again by (2.1) (and the computations
n (2.3)), for ty sufficiently large

t
£10) = 0] = (o) = [ & 9% | p(u ) du < sup r/ e gy
to
e:u'2

=S supf(0)] (1—e M) < S suplf(0)]
M1 t>tg M1 t>to
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for all t > to, and setting L = e#?/u,,we obtain 4).
By (2.1), for all ¢ > 0 sufficiently large there is A; > 0 such that
t

Z(t) —e f{w/\ u(s)ds % +/ .~ ﬁ u(s)ds A(u) du

t—wp

¢
> / e M A(u) du
¢

o
> Ay e Hiwa
o L . At et
and thus iminf z(¢) > Aje ™ “A. By (2.7) we have limsup z(t) < and we
t—+00 t—+o00 241
obtain 5). O
For p > 0 and t > 0, define the auxiliary functions
o(z,2,9) 1
95(p,t,2) = () ————p+7(t) = {1+ . e(t), (2.8)
1
bl t) =(6) = (143 ) o)
2,2,0
bolp.t.2) = 50 2220 ) — <o), (29)

J

Cousider also the function
Wi(p,t) =pE(t) — I(t).

For each solution z(t) of (2.4) with z(0) > 0 and A > 0,p > 0 we define

t+A
Re(A,p) = Exp {limsup/ lim b(g(p,s,z(s))ds} ) (2.10)
t—+oo Jt d—0+
t4A
R,(\, p) = Exp [l%§+110r10f t 5&1& bs(p, s, 2(s)) ds] : (2.11)
t+A E(S)
R.(\,p) = Exp [lim sup/ —= — u(s) —(s) ds] , (2.12)
t——+oo Jt P
o p) = Exp [timing [ 2 d 2.13
p( 7p)_ Xp %g_&glo ; 7_/1](8>_7(8) St ( . )
and finally
G(p) = limsup lim gs(p,t, 2(t)) (2.14)
t—+oo 0—0T
and
H(p) = l%gglof h(p,t). (2.15)
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Note that, if the incidence function is differentiable, then the equations (2.10), (2.11)
and (2.14) simplify. In fact, in this case, according to NA2) we have ¢(S, N,0) = 0,
and thus (2(0).2(0).8)

. plelt), (1), ¥
lim —————~ = — .
Jim 5 57 (#(1),2(1), 0)

The next lemma shows that the numbers R.()\, p), R,(A, p), and G(p) above do
not depend on the particular solution z(t) of (2.4) with z(0) > 0.

Lemma 2.2.1. Assume that NA1) to NA5) hold. We have the following:

1) Let p > 0, € > 0 be sufficiently small and 0 < § < D. If
a,be0,D] and a—b<eg,

then
bs(p,t,a) — bs(p,t,b) < B“Kppe. (2.16)

2) The numbers R,(A,p) and R.(\, p) and G(p) are independent of the particular
solution z(t) with z(0) > 0 of (2.4).

Proof. Assume that p > 0, ¢ > 0and 0 <0 < D, a,b €], D[ and a — b < . We
have, by NA5),
‘QO(G, a, 6) - ¢<b7 ba 5)’ < K9|a - b|6

Therefore, if a > b we have by NA2)

(a,a,d)

5l 21 L

— Bty < Bt Kola — b = B(H)Ka(a —b) < B*Koe (2.17)

and if @ < b, again by NA2),

s 2880 g P00 g ¢ e (2.18)

By (2.17) and (2.18) we have

b&(pa ta CL) - b(S(pvta b) S BUKQPE

and we obtain (2.16).
On the other side, again by NA5), assuming that p > 0, ¢ > 0, 0 < § < D,
a,b €]0,D[ and |a — b| < e we get

and thus
bé(pa t? CL) - 6uK9p€ < b5(p7 ta b) < bé(pa t? CL) + BUK9p€' (219)
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We will now show that R.(\,p) and R,(A,p) are independent of the particular
solution z(¢) of (2.4) with z(0) > 0. In fact, letting z; be some solution of (2.4) with
z1(0) > 0, by 5) in Proposition 2.2.1, we can choose #; > 0 such that z(t), 21 () > 6,
for all £ > T. On the other hand, by 3) in Proposition 2.2.1, given € > 0 there is a
T. > 0 such that |2(t) — z1(t)| < € for every t > T.. Letting a = 2(¢) and b = 2z,(?)
and computing the integral from ¢ to t + X in (2.19) we get

t+A i+
/ lim bs(p, s, 21(s)) ds —/ lim bs(p, s, 2(s)) ds| < A\3“Ky,pe,
¢ ¢

6—0t 6—0t

for every t > T,. We conclude that, for every ¢ > 0,

t4A
lim sup/ 5hm+ bs(p, s,21(8))ds — A\B"Kg,pe
t

t—+o00 —0

A
< limsup/ lim bs(p, s, z(s)) ds
t o—0t

t—-+o0

A

< lim sup/ lim bs(p, s, z1(s)) ds + AB“Ky,pe,
t—+oo Jt =0t

and thus R.(\, p) is independent of the chosen solution. Taking liminf instead of

lim sup, the same reasoning shows that R,(\, p) is also independent of the particular

solution. Similar computations imply that G(p) is also independent of the particular

chosen solution. This proves the lemma. O

We will also use the next technical lemma in the proof of Theorem 2.2.1.

Lemma 2.2.2. Assume that NA1) to NA5) hold. Let (S(t), E(t),I(t), R(t)) be some
solution of (1) with S(Tp) > 0, E(Ty) > 0, I(Tp) > 0, R(Ty) > 0 for some T > 0.
If there is a positive constant p > 0 such that G(p) < 0 or H(p) > 0 then there
exists 7" > 0 such that either W(p,t) <0 forallt > T or W(p,t) >0 forallt > T.
Additionally, if there are positive constants p, A > 0 such that G(p) < 0 or H(p) > 0,
Rp(A;p) > 1 and R5(\,p) > 1, then there exists T > 0 such that W(p,t) < 0, for
t>1T.

Proof. Let us assume first that G(p) < 0 and let (S(¢), E(t),I(t), R(t)) be some
solution of (1) with S(Tp), E(Tv), I(To), R(Ty) > 0 for some Ty > 0. Then there
is 71 > 0 such that gs(p,t, N(t)) < 0 for all ¢ > T (note that N(¢) is a solution
of (2.4)). By contradiction, assume also that there is no 75 > T3 such that W(p,t) <
0 or W(p,t) > 0 for all ¢ > T5,. Therefore there is s > 77 such that

Wi(p,s)=0 <  pE(s)=1I(s)
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and

Since s > T; we have 6lir(r)1+ gs(p, s, N(s)) < 0. By NA2), NA3), NA4) and (2.8)
—

we obtain

= [pate) ZETIIED ) 159 166) = ) +2() + (5 EC)
< |pote) i, TR ) 066)] 169 = o)+ 266)+ 5| o)

which contradicts the assumption. Thus, there is To > T3 such that W (p,¢) <0 or
W(p,t) > 0 for all t > Ts.

Assume now that H(p) > 0 and let (S(¢), E(t), I(t), R(t)) be some solution of (1)
with S(Ty), E(Ty), I(Ty), R(Ty) > 0 for some Ty > 0. Then there is T3 > 0 such that
h(p,t) > 0 for all t > T3. By contradiction, assume also that there is no T, > T3
such that W (p,t) <0 or W(p,t) > 0 for all ¢t > T,. Therefore there is s > T3 such
that

W(p,s) =0 < pE(s)=1I(s)

and
aw

a@r <0.
o (p,s) <
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Since s > T3 we have h(p,s) > 0. By NA2), NA4) and (2.8) we obtain

dw
0 Z W(pa S)
d
= a[PE(t) = I(t)]]t=s

=pE'(s) = I'(s)

- [7(5) — &(s) (1 + ;)} I(s)

=h(p,s)I(s) >0

which is a contradiction. Thus there is Ty > T3 such that W (p,t) < 0or W(p,t) > 0
for all t > T). Assuming that G(p) < 0 or H(p) > 0, Rp(\,p) > 1 and R;(A,p) > 1
for some p, A > 0, by the previous arguments, we have W(p,t) > 0 for all t > T; or
W(p,t) <0 for all t > T5. Suppose by contradiction that W (p,t) > 0 for all ¢t > Ts.
We have E(t) > I(t)/p for all t > T5. Then, by the third equation in (1) we have

S0 > O2I0) = (1(0) + 1)) = 07— u(t) =2

and thus, for all ¢ > T3, we have
I<t) > I(T2> eféz S(T)%_N(T)—W(r) dr .

Since R (A, p) > 1, by (2.13) we conclude that there is # > 0 and 7" > 0 such that,
for all t > T, we have

A 1
/t 5(7")1—) — u(r) —~(r)dr > 0.

Thus, for all t > max{Th, T}, we obtain I(t) > I(T)el 3"V Thus I(t) —
+o00 and this contradicts the fact that I(¢) must be bounded. Then we must have
W(p,t) <0 and the lemma is proved. ]

We now state our main theorem on the extinction and strong persistence of the

infectives in system (1).

Theorem 2.2.1. Assume that NA1) to NA5) hold. We have the following for sys-
tem (1).

1) If there are constants A > 0 and p > 0 such that R.(\,p) < 1, R:(\,p) < 1 and
G(p) < 0 then the infectives I go to extinction.
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2) If there are constants A > 0 and p > 0 such that R.(\,p) < 1, Ri(\,p) < 1 and
H(p) > 0 then the infectives I go to extinction.

3) If there are constants A > 0 and p > 0 such that R,(\,p) > 1, R;(A,p) > 1 and
G(p) < 0 then the infectives I are strongly persistent in the set A; in (1.17).

4) If there are constants A > 0 and p > 0 such that R,(\,p) > 1, R;(A,p) > 1 and
H(p) > 0 then the infectives I are strongly persistent in the set Ay in (1.17).

5) In the assumptions of 1) or 2) the disease-free solution (S(t),0,0,0) is globally
asymptotically stable.

Proof. Assume that there are constants A > 0 and p > 0 such that R.(\,p) < 1,
Ri(A,p) < 1 and G(p) < 0 or H(p) > 0 and let (S(¢), E(t),I(t), R(t)) be some
solution of (1) with S(7p), E(Ty), I(Ty), R(To) > 0 for some Ty > 0.

Since R.(A,p) < 1, by (2.10) we conclude that there is 73 > T" and « > Osuch
that

t4+A
/ lim bs(p, s, N(s))ds < —a < 0,
for all ¢t > T3.

By 3) in Proposition 2.1.1, we may assume that (S(¢), N(¢),I(t)) € Agp for
£> T

By Lemma 2.2.2 we have W(p,t) > 0 for all ¢ > Ty or W(p,t) < 0 for all
t > Ty. Assume first that W(p,t) > 0 for all t > 7). Since I(Ty) > 0, by 2) in
Proposition 2.1.1 we have that I(t) > 0 for all ¢ > T, and, by the second equation
in (1), NA2), NA4) and (2.9), there is To > T} such that

(), 1(t)) — (u(t) + (1)) E(t)
(t)a I(t))](t) — (,u(t) + €(t))E(t)

PE(t) = (u(t) + (1)) E(t) (2.20)
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for all ¢ > T5. Thus, integrating (2.20) we obtain, using (2.2),

E(t) < E(Ty) Bxp { / t i, b(g(p,s,N(s))ds}

Ty o—
T2+)\Lt—)\T2J
— B(Ty) Bxp / lim bs(p, s, N(s)) ds +
Ty 6—0Tt

—I—/t lim b(;(p,s,N(s))ds]

T2+/\|_t7AT2J 6—0t

T2+>\Lt—/\T2J
< E(T3) Exp / lim bs(p, s, N(s))ds+
T §—0t
t
. p(N(s), N(s),9)
—l—/ B(s) lim pds
T2+/\L$J ()5%0‘* )
t—1T, "
< B(Ty) Exp [—aL Ly ip MpA] ,

for all t > T5. We conclude that 0 < limsup I(t) < plimsup E(t) = 0 assuming that
t—+o00 t—+o00
W(p,t) > 0 for all t > T3.
Assume now that W(p,t) < 0 for all ¢ > T;. By the third equation in (1) we

have

I'(t) < e(®)I(t)/p— (u(t) + (@) (t) = (e(t)/p — u(t) — () 1(1) (2.21)

for all ¢ > T). Since R:(A,p) < 1, by (2.12) we conclude that there are constants
agp > 0 and T3 > T3 such that

/:Jr e(s)/p— u(s) —y(s)ds < —ap < 0, (2.22)

for all t > T3. Thus, by (2.21) and (2.22), we have

t7T3J+%

I(t) < [(Tg)efig () /p-nl) ) ds < [, gm0l |

for all ¢t > T3. We conclude that /(t) — 0 and we obtain 1) and 2) in the theorem.

Assume now that there are constants A > 0, p > 0 such that R,(\,p) > 1,
Ry(A\,p) > 1 and G(p) <0or H(p) >0 forall t > T and let (S(t), E(t), I(t), R(t))
be some fixed solution of (1) with S(7y), E(Tv), I(1y), R(Ty) > 0 for some Ty > 0.

Since R,(A,p) > 1, by (2.11) and NA3) we conclude that there are constants
0<d<D,a>0and Ty > 0 such that

/:Jr ﬁ(5>90(N(8),5N(3), ) p—u(s) —e(s)ds > a >0, (2.23)
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for all t > Ty and 0 < 0 < 69 and that gs(p,t, N(t)) < 0 for all ¢ > T5 and
0 < § < d5. By Proposition 2.1.1, we may also assume that (S(¢), N(t),1(t)) € Aop
for all ¢t > Tj.

By (2.1) we can choose g1 > 0, 0 < g9 < d3, €3 > 0 and 0 < a7 < « such that,
for all t > T}, we have

/t : B(s)Mey — (u(s) +e(s))erds < —aq (2.24)
/t v(s)ea — (p(s) +n(s))esds < —ay (2.25)
6 = % —e — [+ [“MA+~"Nea —e3>0 (2.26)

and
k= Ky, [81 + [1 + BYMM+ 7”)\]82 + 53] <

«
5 (2.27)

where M is given by (2.2), m; is given by 5) in Proposition 2.2.1 and Ky, is given
by NA5).

We will show that
limsup I(t) > e,. (2.28)

t—4o00
Assume by contradiction that it is not true. Then there exists T5 > T, such that,
for all t > T5, we have
I(t) < ey (2.29)

Suppose that E(t) > e, for all t > T5. Then, by the second equation in (1), (2.2),
NA4) and (2.24), we have for all ¢ > Tj

t

B(t) = B(Ty) + | B(s) p(S(s), N(s), I(s)) — (u(s) +=(s)) E(s) ds
N(s),

Ts

"o PS(s),

=E(T5) + | B(s)

Ts I(s)
<B(T) + | Ble)Mes — (u(s) + £(s)e1 ds
and therefore
Ts+| 505 A
E(t) < BE(Ts) + /T B(s)Mey — (u(s) +(s))er ds

+f B(s)Mea — (u(s) + e(s))en ds

Ts+ |55 A

t—T:
< E(T5) — aq | 5J—|—ﬁ“M52)\
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and thus E(t) — —oo which contradicts 2) in Proposition 2.1.1. We conclude that
there exists Tg > T5 such that E(Ts) < ;. Suppose that there exists a 77 > Tg such
that F(T7) > €1 + “MesA. Then we conclude that there must exist Ty €]T5, 77|
such that E(Tg) = &, and E(t) > ¢ for all t €]T5,T%]. Let n € Ny be such that
T; € [Ty + n\,Ts + (n 4+ 1)A]. Then, by the second equation in (1), (2.2), (2.29)
and (2.24) we have

€1+ ﬂuMa’fg)\ < E(T7)
T

= E(Ty) + . B(s)e(S(s), N(s),1(s)) — (u(s) +(s)) E(s) ds
< E(Tg) + ; 7 (s)Meg — (u(s) +e(s))er ds
Sel—aln—i—/T? 5“M€2d8

S &1+ /BuM€2>\

and this is a contradiction. We conclude that, for all t > 7% we have

Suppose that R(t) > e3 for all ¢ > Ty. Then, by the fourth equation in (1), (2.29)
and (2.25), we have for all ¢t > Ty

t

R(t) =R(T9)+/ V(s)1(s) = (u(s) +n(s))R(s) ds

Ty

< R(Ty) + / Y(8)es — (u(s) + n(s))es ds

and thus

To+A| 52

R(t) < R(Ty) + / A()ex — (u(s) + (s))es ds

4 / Y(8)ez — (u(s) + n(s))es ds

To+A[S5R2 )

t—"1Ty

< R(Tg) — @1L J + ’yqu)\

and therefore R(t) — —oo which contradicts 2) in Proposition 2.1.1. We conclude
that there exists T1p > Ty such that R(T}o) < €3. Suppose that there exists T1; > Ty
such that R(T37) > e3+7"ea\. Then we conclude that there must exist 715 €]T19, T11]
such that R(T12) = €3 and R(t) > e3 for all t €|T9,T11]. Let n € Ny be such that
Ty € [Tia + n\, Ti2 + (n + 1)A]. Then, by the fourth equation in (1), (2.29) and
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(2.25) we have

T11

e3 +7"e2A < R(Th) = R(Th2) + /T V(s)L(s) = (u(s) +n(s))R(s) ds

gR@hy+/ Y(8)es — (u(s) + n(s))es ds

T12

T
< &g —on+ / Yeg ds
Ti2+nA
<ez+ 7”62)\

and this is a contradiction. We conclude that, for all t > T}q we have

R(t) < ez + ’7“62/\. (231)

By Lemma 2.2.2 there exists T3 > Tjo such that pE(t) < I(t), for all ¢ > Tys.
According to the second equation in (1) and NA4) and recalling that by (2.29) and
the assumptions we have I(t) < g9 < dy, for all £ > T3 we get,

E'(t) = B(t)p(S(t), N (1), 1(t)) — (u(t) + (1)) E(t)
N

=52 OFOLD ) iy s cppe) o
> () EE OO 1) — () + et Bt

By (2.29), (2.30) and (2.31), we have, for all t > T},

Nit)=S{t)=E@t)+1(t)+ R(t) <e1 + 5“Mea XA + €9 + €3 + y"e2A

(2.33)
=&+ [1 + BUM)\ + 7”)\]62 + €3.

On the other side, by 5) in Proposition 2.2.1, there is T34 > T3 such that, for
all t > T4, we have N(t) > my/2. Therefore, for all ¢ > T4, we have by (2.33)
and (2.26)

S(t) 2 N(t) — &1 — [1 —f-ﬂuM/\ —f-’)/u/\]EQ — &3
T o) —[L+ B“MA+"Nes — &

37



Dynamics of Non-Autonomous SEIRS Models with General Incidence
Thus, by NA5), (2.33) and (2.27) we have

|0(S(), N(t),62) — @(N(£), N(t), 62)]
< K, [S(t) = N ()]0

(2.34)
S Kgl [81 + [1 + 5UM>\ + 7”)\]52 + 63](52
= /1(52,
and thus
©(N, N, ) — kdy < p(S, N,d3) < @(N, N, )+ Kdo. (2.35)

Therefore, by (2.35), (2.29) (2.32), (2.33), (2.27), NA5) and since pE(t) < I(t), we
obtain, for all t > T4,

p(N(t),N(t),5)
PN (@)

02
,5]2\7(15), %)) — B(tywp — ult) - 5(75)] E(t).

Therefore, integrating (2.36) an using (2.23) and (2.27), we have

E(t) > E(T14) Exp [ t B(s)sD(N(S)’N(S)’(S?)

[ R0 ) - e(s) — e ds}

t—T14

TatALSE S 5),02
= E(T4) Exp [/T 5(8)¢(N( )’5]2\[( ), 0 )p _ uls) — £(s) — Brpds +
+ /T e, 5O so(N(s),(S JQV<3>, %)) o) — es) B ds]

Thus, by (2.23) and (2.27),

E(t) > E(T14) Exp [(a — B"kpA) Lt _)\TMJ — (p* 4"+ B“/{p))\}

> E(T14) Exp [a/QLt _)\TMJ — (U 4"+ 5uﬁp)>\:|

and we conclude that E(t) — +o0. This is a contradiction with the boundedness of
E established in Proposition 2.1.1. We conclude that limsup I(t) > €2 holds.

t——+o0

Next we prove that
liminf I(¢) > ¢, (2.37)

t—+o00
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where ¢ > 0 is some constant to be determined.

Similarly to (2.24)—(2.27), letting A3 = kA > 0 with & € IN be sufficiently large
and recalling (2.1), we conclude that there is Ti5 > Tiy, 61 > 0, g9 > 0, g3 > 0
sufficiently small such that for all ¢ > T}5 we have

N(t)=S(t)+ E(t)+ R(t)+ 1(t) < 2mo, (2.38)

/t O B(s)Mes — (u(s) + =(s))er ds < —2mn, (2.39)

[0 = 06) 6zt < 2 (2.40)

/t T g £ (S)’;j ():92) () — 2(s)ds > ke, (2.41)
0, = % — ey — [L+ B MA+7"Nes — g3 > 0,

a  2pt+9Y)
20upA’ Bup

K = K91 [81 + {1 + ﬁuM)\ + ’}/u)\]c"iz + 83] < mln{

} . (2.42)

where « is the constant in (2.23).

According to (2.28) there are only two possibilities: there exists 7' > 0 such that
I(t) > ey for all t > T or I(t) oscillates about e.

In the first case we set ¢ = €5 and we obtain (2.37).

Otherwise we must have the second case. Let Ty > Ti¢ > 115 be constants
such that W(p,t) < 0, for all ¢ > T}5 (we may assume this by Lemma 2.2.2) and
that I(Tys) = I(T17) = €9 and I(t) < ey for all t € [Ti6,117]. Suppose first that
Ti7 — T < C' + 2A3 where C satisfies

c> !
Pt

(Ap" 4+ 29" 4+ 2¢") A3 +1In % ) (2.43)
From the third equation in (1) we have
I(t) > —(u" + ")) (2.44)
Therefore, we obtain for all ¢ € [Ti¢, T'7],
I(t) = I(Te) e Jryg e ds > g e (WHNCF22)

On the other hand, if 717 — T16 > C + 23 then, from (2.44) we obtain

I(t) > gpe” W H7(CH2A)

Y
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for all t € [Tg, Tig+C +2X3). Set £ = go e W HF7)(CH+2%)  We will show that [(t) > ¢
for all t € [T16 + C + 2)3, T17] and this establishes the result.

Suppose that E(t) > e; for all t € [T16, T16+ A3]. Then, from the second equation
in (1), (2.2), (2.38) and (2.39) we have

E(Ti6+ A3)
Ti6+A3
= E(T6) + /T B(s) o(S(s), N(s),1(s)) — (u(s) +(s) E(t) ds
17?16"!‘)\3
< BT+ [ Bls)Me = (u(s) + () ds

< 2m2 —2m2 = O,

which is a contradiction with 1) in Proposition 2.1.1. Therefore, there exists a
Tis € [Ti6,T16 + A3] such that E(Tis) < e;. Then, as in the proof of (2.30) and
using (2.39), we can show that E(t) < g1+ 8"“MegAg, for all t > Tig. Also proceeding
as in the proof of (2.31) and using (2.40) we may assume that R(t) < g3 + y¥e2)\3
for all ¢t > Ti5.

By (2.44) we have
[(t) 2 I<T16) e f;16 it ds = [(Tlﬁ) ei(Mqu'Yu)(tiTw) 2 E9 e,(uu+’yu)2)\3 (245)

for all ¢t € [TIG + A3, 116 + 2/\3]

Assume that there exists a Tyg > 0 such that Tyg € [T16+C+2\3, T17], I(T19) = ¢
and I(t) > ¢ for all t € [Ty, T19] (otherwise the result is established). By (2.34)
and (2.45) we have, for all t € [Tis + A3, T16 + 2X3],

p(S(t), N(t), 02)
02

> o) (BTG ) oyt ()

E'(t) > B(t) I(t) = (u" + ") E(t)

(2.46)
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where x is given by (2.27). By (2.46), (2.41) and (2.42), we get

E(Tm + 2)\3)

Ti6+2A3
> ei(ﬁl%u))\SE(Tw ) +/ +2 8 (@(N(S),N(S),(b) _ m) £aX

Ti6+A3
w e~ (B FT)2hs o= (u*+e")(Tie+2A3—5) Jg

Ti6+2X
> e‘(““ﬂum?’/ ! 36(8) (SO(N(S)’N@)’(SQ) - m) ey e~ s

Ti6+A3 52
> e—(3#”+27“+€")>\3€2 /T16+2)\3 B(S) SO(N(S)a N(S)a 52) — Bk ds
Ti6+A3 52
> e” BRI (Ra/p — BURNs)
= e B Ny (0 /p — BURN) K

> 67(3“%27”“”)’\352&]{;/(2p) _

(2.47)

On the other side, by (2.36) we obtain

(N(t), N(t), 02)
02

B(t) > [ﬂ(t) £ p— Bltysp — u(t) — <(t)| E(). (2.48)
and thus, by (2.48),

£y 0~ HINCH2N) — [(T10) > pE(Th)

> pE (T + 2A3)Exp {/T ’ N ﬁ(8>¢(N(S)’5]2V(S)’ 52)p — B(s)kp — p(s) — e(s) ds

and thus, letting n = 2 + L_TIQXSTM

62 e_ (Mu +,yu)(0+2)\3)

> pE(Ti6 + 2X3)Exp [/ o B(s) p(N(s), N(s), 52)p — B(s)kp — u(s) —e(s) ds

T16+2A3 52
Thg
©(N(s),N(s), 0
s [ e PEIER)  — pu(s) — o(s)ds
Ti6+nA3 2
and therefore, by (2.47), (2.41) and (2.42), we have
g9 e~ (') (C+223) pe—(4ﬂ'“+2w“+26“)/\35262y_k e(n=2)(ak—P"rpA3) —B"rPA3
P
> p€7(4u“+2'y“+25“))\3€2a_k e(n72)ak/2 efﬁ“/{p/\g
2p
> %6—(4p“+27“+28“))\382ak e—ﬁ“fip)\g
> %€(4u“+27“+25“)>\3€2ak e 21" ") As
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and this implies that

1
e

C <

2
(Ap" 4+ 29" 4+ 2e") A3 +In — | ,
ak

contradicting (2.43). This shows (2.37) and proves 3) and 4) in the theorem.

Now, to obtain the global asymptotic stability of the disease-free solution, we
recall that, by (2.3), there are uj,pus > 0 sufficiently small and 7' > 0 sufficiently
large such that, for all t > to > T" we have

t
—/ p(s)ds < —pui(t —to) + pio.
to

Assume that R.(\,p) < 1, RE(\,p) < 1and G(p) < 0or H(p) > 0. Let (S(¢),0,0,0)
be a disease-free solution of (1) with Sy(to) = S10 and let (Sy(t), E1(t), [1(t), Ri(t))
with Sl(t0> = So, El(to) = E(), ]1(t0) = IQ and Rl(t()) = RO be some solution of (1)

Since we are in the conditions of 1) or 2), for each € > 0 there is 7. > 0 such
that I;(t) < e for each ¢ > T.. Therefore, using the second equation in (1), we get,
fort > T,

PN (S1(t), Ni(t), 11(1))
El(t) _B(t) Il(t)

< B"Me — u(t)Ev(t)

L(t) = (u(t) + () Ex(t)

and thus, for ¢ >ty > max{T,T.}, we have
t t t
Er(t) < e fot® gy / BUMe e~ Jur®)ds gy,
to

t
< e Ha(t—to)+u2 E, +/3UM€/ et (t—u)tuz g,
to

B4 M et?
M1

— o Hi(t—to)+p2 FEy+ (1- e*ul(t*to))g

and, since € > 0 is arbitrary, we conclude that

limsup Fy(t) = 0. (2.49)

t—4o00

Again, since we are in the conditions of 1) or 2), for each € > 0 there is T, > 0
such that I;(t) < e for each ¢ > T.. Therefore, using the fourth equation in (1), we
get, for t > T,

Ri(t) = y(t) 11 (t) — (u(t) +n(t))Ri(t) <" — p(t)Ry(t)
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and thus, for ¢t > t, > max{7T,T.}, we have

t t
Ri(t) < e JorDdpoy / g e~ fun)ds gy,

to

t
< e H(t—to)+u2 Ry +'y“5/ e~ m(t—u)tuz g,
< \
fyu elJ‘Q

21

— o~ H(t—to)tu2 Ry + (1 _ e—Ml(t—to))g‘

Since € > 0 is arbitrary, we conclude that

lim sup R, (t) = 0. (2.50)
t—-+o0
Let (S1(t), Ev(t), [1(t), Ri(t)) be some solution of (1) and (S(t),0,0,0) be a dis-
ease free solution. Let Ny(t) = Si(t) + E1(t) + [1(t) + Ry (t). Since Ni(t) and S(¢)
are solutions of (2.4), we conclude by 3) in Proposition 2.2.1 that |Ny(¢t) —S(¢t)] — 0
as t — 4-o00. Therefore

lim sup |5y (t) — S(t)]

= ntnjfip |N1(t) — Ey(t) — L (t) — Ry(t) — S(1)] (2.51)
< 1itH18uP ([N1(t) = S(O) + Ex(t) + Li(t) + Ra(t) ) = 0.

By (2.49), (2.50) and (2.51) and since [,(t) — 0 as t — +o00, we obtain 5) in the

theorem. u

2.3 Examples

Example 2.3.1 (Autonomous case). Let A(t) = A >0, u(t) =p>0,nt)=n>0,
e(t)=e>0,7v(t) =~ >0and f(t) = > 01in (1) and assume that NA1) to NA4)
hold. It is easy to see that z(t) = A/ is a solution of (2.4) with positive initial

condition in this case. Letting

i PO B A, 9)

5—0t ) ’

L

oM = (2.52)

we have

G(p) = BpLonu +7v— (1+1/p)e,
H(p) =~ — (1+%> €,

Re(A,p) = Rp(A\, p) = Exp [(BpLoa, — 1 —€) Al
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and
R (A p) =R, (N\p) =Expl(e/p —pn—7) .
Define 5L
A_ _ EP Lo
(h+e)(p+7) (2:53)

Note that, when ¢ is differentiable, L, A, = 0p/0I(A/u, A/p,0) and R = Ry,
where R is the basic reproduction number in (1.2). The following result is a con-

sequence of Theorem 2.2.1 in the autonomous case.

Corollary 2.3.1. Assume that NA1) to NA5) hold. We have the following for the

autonomous system above.
1) If R4 < 1 then the infectives go to extinction;
2) If R* > 1 then the infectives are strongly persistent;

3) If R < 1 the disease free equilibrium (A/pu,0,0,0) is globally asymptotically
stable.

Proof. Assuming that R4 < 1 we have

e
(n+e)(u+7)

L%A,u <1

and thus for all p > 0 such that

_f cp< n+e
pAy BLyn,

we have

%<u+’y & ;—?—,u—’y<0 & Ri(\p) <1

and also
BpLoa, <p+e < PBpLopr,—p—e<0 < Re\p) <L

Since

€ € U e A
G = BLopy—— +y—(1+5—L)e=(R*" -1 <0
(MJW) g SQ,A,#MMJFV < + )s ( Y +e)

and G is continuous we conclude that there is p > 0 satisfying R.(\,p) < 1,
Ri(A,p) < 1 and G(p) < 0. Thus, by 1. in Theorem 2.2.1, the infectives go to

extinction and we obtain 1).
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Assuming now that R > 1 we have

e
(n+e)(p+7)

L%Aw >1

and thus, by the same reasoning, for all p > 0 such that

5 Sp> n+e
e BLory

we have R:(\,p) > 1 and R.(\,p) > 1. Since

e w+e BLy A,
(B ) = oy 1= (1 5= 0o 0-RY <0
P4\ Pl

and G is continuous we conclude that there is p > 0 satisfying R.(\,p) < 1,
Ri(A,p) < 1 and G(p) < 0. Thus, by 3. in Theorem 2.2.1, the infectives are

strongly persistent and we obtain 2).

By 5) in Theorem 2.2.1 we obtain immediatly 3). O

For the model considered in [20], where incidence is given by ¢(S, N, I) = g(I)S
with g € C1, g(I) > 0, g(0) = 0 and A = pu, we recover the threshold obtained in
that paper: R* = eBg'(0)/[(n+ €)(u +7)]-

Assuming constant parameter functions, that ¢ is twice differentiable and also
that NA1) to NA5) hold, we obtain an autonomous model satisfying A1) to A4) (with
that additional assumption that S — (S, S, I) non-decreasing for 0 < I < D). In

this setting, Corollary 2.3.1 recovers the results in Theorem 1.3.2.

Example 2.3.2 (Asymptotically autonomous case). In this example we are going
to consider the asymptotically autonomous model. That is, additionally to the
assumptions on Theorem 2.2.1, we are going to assume for system (1) that the time-
dependent parameters are asymptotically constant: u(t) — p, n(t) — n, e(t) — ¢,
~v(t) — v and B(t) — S as t — +oo. Denoting by F(¢,S, FE, I, R) the right hand
side of (1) and by Fy(S, E, I, R) the right hand side of the limiting system, i.e

lim F(¢,S,E,1,R) = Fy(S,E,I,R),

t——+o0
we also need to assume that the convergence is uniform on every compact set of
(R¢)* and we will also assume that (S, E, I, R) — F(t,S,E,I,R) and (S, E, I, R) —
Fy(S, E, I, R) are locally Lipschitz functions.

There is a general setting that will allow us to study this case. Namely, let
f:RxR"— R and fy : R — R be continuous and locally Lipschitz in R".
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Assume also that the non-autonomous system
¥ = f(t,x) (2.54)
is asymptotically autonomous with limit equation

' = fo(x), (2.55)

that is, assume that f(¢,2) — fo(z) as ¢ — 400 with uniform convergence in every
compact set of R”. The following theorem is a particular case of a result established

in [25]. Related results and applications can be found for example in [4, 29].

Theorem 2.3.1. Let ®(¢, 1o, x9) and ¢(t,tp,yo) be solutions of (2.54) and (2.55) re-
spectively. Suppose that e € R™ is a locally stable equilibrium point of (2.55) with

attractive region
Wi(e) = {y e R": lim o(t, to,y) = e}
t—-+o0

and that We N W (e) # 0, where Wy denotes the omega limit of ®(¢, ¢, xg). Then
lim ®(t,tg, ) = e.

t—+o00
Using Theorem 2.3.1 we can obtain a result relating the asymptotically au-

tonomous and the autonomous case.

Corollary 2.3.2. Assume the NA1) to NA5) hold and let R* be the basic reproductive
numbers of the limiting autonomous system, defined by (2.53). Then, if R4 < 1,

the infectives go to extinction in the limiting autonomous system.

Proof. When R# < 1, the set (Rf)? is the attractive region for the disease-free
equilibrium of system (1) and the omega limit of every orbit with initial condition
in (R4)?* of the asymptotically autonomous system is contained in (Rg)?%. Thus, by
Theorem 2.3.1 we obtain the result. O

Example 2.3.3 (Periodic model with constant A, p). Next we assume that some
model coefficients are periodic functions with the same period, namely we assume
that there is w > 0 such that, for all ¢ > 0, we have n(t) = n(t +w), e(t) = e(t + w),
v(t) = y(t + w) and B(t) = B(t + w). We also assume that p and A are constant
functions and that NA1) to NA5) hold.

We have in his case

t+w
Re(w,p) <1 & limsup/ B(s)Lgnu—(pte(s)ds <0 < [pBLopy —p—&jw <0
t

t——+o0

t+w
Ri(w,p) <1 & limsup/ e(s)/p—pu—7(s)ds<0 < (E/p—p—7)w <0,
t

t——+o0
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G(p) = max [B(t)pLoa, +v(t) — (14 1/p)e(t)],

te0,w]

H(p) = min [y(t) — (1+1/p)e(t)],

te[0,w]

Define _
per gﬁL%Avﬂ
(b +&)(n+7)
where f = L[ f(s)ds and Ly, is given by (2.52). The following result is a

consequence of Theorem 2.2.1 in this case.

Corollary 2.3.3. Assume the NA1) to NA5) hold. Then we have the following for

the periodic system with constant p and A.

1) If G(/(p+7) <0or H((u+)/(BLypu)) > 0 and RP" < 1 then the infec-

tives go to extinction;

2) It G ((n+&)/(BLpay)) < 0or H(g/(u+75)) > 0 and RP" > 1 then the infec-

tives are strongly persistent.

Proof. By the same computations as in the proof of corollary 2.3.1 we conclude that
RE" < 1 if and only if there is

€ n+e
pel= ( =, = )
p+T BLoau
such that R.(\,p) < 1 and Ri(\,p) < 1.

Moreover, by continuity of the functions G and H, if

G( 5_)<O or H(M+€)>O
B+ BLy A

then there is p € I such that G(p) < 0 or H(p) > 0 and, by theorem 2.2.1, we
obtain 1).

By similar arguments we obtain 2). O

As we will see in section 3.2, in [31] a method to obtain persistence in a general
periodic epidemiological model relying in the spectral radius of some operator was
obtained. Though our conditions are not thresholds in the periodic case, they have
the advantage that can be easily computed.

To illustrate the above corollary we consider the following family of periodic
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models )

S"=pu—B(1+bcos(2nt)) ST — uS +nR

E' = B(1+bcos(2nt)) ST — (pu + (1 + dcos(2nt))) E
I'=¢(1+dcos(2mt))E — (pu+ v(1 + kcos(2nt))) ] (2.56)
R =~(1+ kcos(2nt))] — (u+n)R

xN =S+FE+I1+R

where |b] < 1, |d| < 1 and |k] < 1. In [30] it was showed that for p = 2, ¢ = 1,
v=0.02,p=0.1, 3 =6.2and b = 0.6 and d = k£ = 0 the number RP" is not a
threshold. Our result is not applicable in this case since in this case G (¢/(n + 7)) =
G(0.49505) = 1.91089 > 0.

It is easy to check that, for the system (2.56), letting 8 and b vary and p = 2,
e=1,v=0.02,n=0.1 and d = k = 0, we have that RP*" < 1 (respectively RP*" >
1) is equivalent to 5 < 6.06 (respectively 5 > 6.06), G(¢/(u + 7)) < 0 is equivalent
to B(1+ |b]) < 6.06, G ((u+¢)/(BLpa,)) < 0 is equivalent to § > 9]b| + 6.06 and
H(e/(p+7))>0and H((u+¢e)/(BLya,)) > 0 are impossible. In the first plot in
figure 2.1 we plot the region of parameters (b, 5) where corollary 2.3.3 is applicable
and where we have extinction and permanence. In the first plot in figure 2.1, we
include also a curve obtained numerically and corresponding to the threshold Ry = 1.
This curve was obtained using the method introduced in section 3.4 of |2]. Also in [2]
(see equation (51)), it was shown that, for d = k = 0 and small b, we have

Pe Beb?/2

o= (n+e)(n+7) +4W2+(2u+6+7)2+0(b)' (2:57)

In the second plot in figure 2.1 we plotted, for b € [—1,0], the numerically obtained
threshold (full) and the approximate threshold in (2.57) (dashed).

Using the parameters in [30] but letting v and k vary, we consider = 2, n = 0.1,
e=1,0=6.2and b =d=0, we conclude that G(¢/(u + 7)) < 0 is equivalent to
(24+7) (3 —~]k]) > 6.2, G (1 +¢€)/(BLyau)) < 01is equivalent to v(1+4k|) < 0.067,
H(e/(p+7)) > 0 is impossible and H ((+¢€)/(BLya,)) > 0 is equivalent to
v(1 — |k|) > 3.067. Additionally RP*" < 1 is equivalent to v > 0.067 and RP*" > 1
is equivalent to v < 0.067. In the first plot in figure 2.2 we plot the region of
parameters (k, ) where corollary 2.3.3 is applicable and where we have extinction
and permanence, as well as the numerical approximation of the threshold, obtained
by the method introduced in [2].

Finally, letting € and d vary and setting u = 2, v = 0.02, n = 0.1, § = 6.2
and b = k = 0, we conclude that RP*" < 1 is equivalent to ¢ < 0.967, RP*" > 1 is
equivalent to € > 0.967, G(¢/(1n+7)) < 0 is equivalent to 2.069¢ — 2+ |d|(¢ +2.02) <
0, G((n+¢€)/(BLyayu)) < 0 is equivalent to (2.02 +¢)(2 +¢) — (8.2 + €)e(1 —
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|d]) < 0, H(¢/(u+~)) > 0 is equivalent to 0.02 — (¢ + 2.02)(1 + |d|) > 0 and
H((p+¢e)/(BLya,)) > 0is equivalent to 0.02—(1+6.2/(24¢))e(1+]|d|) > 0. In the
second plot in figure 2.2 we plot the region of parameters (d, ) where corollary 2.3.3
is applicable and where we have extinction and permanence. We also plot the

numerical approximation of the threshold, obtained by the method introduced in [2].

p=2c=1,v=002d=k=0

13 4 Permanence

Extinction

Figure 2.1: Regions of permanence and extinction for (b, ) and approximated
thresholds obtained numerically and given by (2.57).

p=27=0023=62b=k=0 n=27=0023=62b=k=0

3e-01 2

2.8e-01
18 o Permanence
2.6e-01
2.4e-01
2.2e-01

2e-01

1.8e-01

1.6e-01
Extinction
1.4e-01
1.2e-01

1e-01

8e-02 4

6e-02 4 0.4

se-02 4 Extinction

Permanence 0.2 o
2e-02

0e00 T T T T T T T T

Figure 2.2: Regions of permanence and extinction for (k,7) and (d, ¢).

Example 2.3.4 (Michaelis-Menten contact rates). We consider the particular form for
the incidence ¢(S, N, I) = C(N)5L. We recall that these rates are called Michaelis-
Menten contact rates were considered for instance in [40] and have as particular
cases the standard incidence (C'(N) = 1) and the simple incidence (C'(N) = N).
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We will assume that A and p are constant, that
N — C(N)/N is non-increasing (2.58)
and that, for each 6 > 0,

[C(Ny) — C(Na)|| < Kol[ Ny — Nofl. (2.59)

We have

t+A
R \p) <1l & limsup/ B(s)C(A/p)p —p—e(s)ds <0

t—4o00

t4+2
< pC(A/p) limsup/ B(s)ds — (p+e,)A <0

t——+o0

& [pCA/WBY —p—ey]A<0

t+A
R:(\p) <1l < limsup/ e(s)/p—pn—"(s)ds <0
t

t—4o00
< (/p—p-71)r<0,

and analogously

Rp(\p)>1 <= [pC(A/p)By —p—e]A>0

and
RiAp)>1 <« (ex/p—p—77)A>0.
Define
ABr C(A/ ) ex By C(A/n)
RM(\) = AP d RM(\) = AP '
eV = e M BV S S D

Corollary 2.3.4. Assume that NAI1) to NA5) hold. We have the following for
the Michaelis-Menten contact-rates with constant A and p and satisfying (2.58)
and (2.59).

D) Gl /(u+7y)) <0or H((u+ey)/(C(A/p)By)) > 0 and R¥(X) < 1 for some

A > 0 then the infectives go to extinction;

2) I G((p+e3)/(C(A/p)BY)) < 0or H(el /(475 )) > 0 and R)(X) > 1 for some

A > 0 then the infectives are strongly persistent.
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Proof. We begin by noting that

G(p) = limsup [3(£)C(A/p)p —~(t) = (1 +1/p)e(t)]

i s BOCA/1P — (5(8) + =(1))p — (1)
t——+o00 Y%

thus, there is p > 0 such that G(p) < 0 if and only if there is p > 0 such that
pG(p) < 0. Since

BE)C(A/p)p® — ((t) +e(t))p — (1)

has two zeros, ag € R~ and a; € R™, and the coefficient of p? is positive, we conclude
that there is p > 0 such that G(p) < 0 if and only if there is p €]0, a;[ such that
G(p) < 0.

By similar computations to the ones in the proof of corollary 2.3.1 we conclude
that if there is A > 0 such that R ()\) < 1 then there is

el ey
pG]z( A A >
p+y C(A/ )by

such that R.(\,p) < 1 and R}(\,p) < 1. Thus, if G(sf/(x+7y)) < 0, we have
10, a1[NI # 0. Therefore if G(e{ /(u+75)) < 0 there is p > 0 such that R.(\, p) < 1,
Ri(A,p) < 1and G(p) < 0. Thus, by Theorem 2.2.1, the infectives go to extinction.
On the other hand, since H is continuous, if H((u + 5 )/(C(A/p)By)) > 0 there
is p € I such that R.(\,p) < 1, Ri(A\,p) < 1 and H(p) > 0. Therefore if H((u +
ex)/(C(A/u)BY)) > 0 there is p > 0 such that R.(\,p) < 1, Ri(\,p) < 1 and
H(p) > 0. Thus, by Theorem 2.2.1, the infectives go to extinction and we obtain 1).

By similar computations we get 2). ]

In particular, setting C'(N) = N (mass-action incidence) we get

TBYA YOVA
RM()) = 5/\_5/\ /1 — and R;W<)\): 5,\f>\ /1 _
(n+e) (e +7y) (40 +7y)
and setting C'(N) = 1 (standard incidence) we obtain
M(/\) — 51_/6; and RM<>\) — 5;5; )
‘ (4 ) (1 + ) ’ (1 +eX) (1 +3)

To illustrate the above corollary we consider the following family of nonperiodic
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models
S"=pu—B(1+0b(1+e ") cos(2nt)) ST — puS +nR

E' =3(1+b(1+e ") cos(2mt)) ST — (n+¢e)E
I'=eE— (p+7)1
R =~yI —(u+n)R
\N:S—FE—FI—I—R

It is easy to see that, in this case, 3 = 8, =  and thus

ep
(1 +e)(p+7)

R (1) =R, (1) =
The following figures show situations where we have strong persistence and extinc-
tion for the above model with different values for f and band p =2, =1, v = 0.02
and 7 = 0.1. For instance, for § = 10 and b = 0.3 we can see that R}/(1) = 1.65 > 1
and G(3/10) = —0.41 < 0 and we conclude that we have strong persistence and for
B =5 and b= 0.2 we can see that RM(1) = 0.82 < 1 and G(0.495) = —0.03 < 0

and we conclude that we have extinction (see figure 2.3).

' 7 0.0001; L

0,3:, o.ooooa:— ‘”

[ o.ooooei— U\

o2f Omi W

o o.oooozi— /\m

W MﬂJ”Jwu”g"u"m\fu\"v\qufh“qu”wM‘f‘NW"u‘”vaMﬁJWﬁi‘%’L‘UUW{WL‘W‘WWLWM“WJ"JW"wm%’u%’gM”‘JWJ”‘J”\‘M”JWU%‘WM‘ M - M -

Figure 2.3: left: § =10 and b = 0.3; right: =5 and b = 0.2.

2.4  Robustness

In this section we will discuss the robustness of the conditions R.(\, p) < 1, Ri(\,p) <
L, Ry(A,p) > 1, Riy(\,p) > 1, H(p) > 0 and G(p) < 0, i.e., roughly speaking, if for
sufficiently small perturbations of the parameters of our model in some admissible
family of functions the conditions above are preserved. We will consider differen-

tiable functions .
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Consider the family of systems

(S = A(t) = B,(8) o (S, N. 1) — pu(D)S + 1, (1) R
B = B.(8) 2(S, N, 1) — (u(t) + - (0) E
I'= e, () — (ult) + ()] , (2.60)
R = ()] = (u(t) + . (1)) R

KN =S+FE+I1+R

where 7 € [—(, (] and we assume that, making 7 = 0, we have ¢y = ¢, Sy = 5,
No =1, €9 = € and 7y = v and that, for 7 = 0 the parameters satisfy our assumptions
(i.e. for 7 = 0 we have our original system (1) with assumptions NA1) to NAbS)).
We also assume that for each 7 € [—(, (] the parameter functions G,, 1., &, and
7, are continuous and bounded in R{, that o, is differentiable in Ay p and that
©-(S,N,0) = 0.

For g : RS — R denote by | - ||o the supremum norm (given by |g|lec =
sup;q |9(t)]) and for f : (Rg)* — R denote by ||-||a, , the C'*' norm of the restriction
flaop:

Ifllaop = max |f(w)] + max fld.f].

Denote by RI(\,p), RI(\p). (R2)™ (), (R2)” (Ap). G5(A) and HI(A), re
spectively the numbers (2.10), (2.11), (2.12), (2.13) (2.14) and (2.15) with respect

to the system indexed 7 in our family of models.

We have the following result on the robustness of conditions R.(\,p) < 1,
R:(\p) <1, Rp(\,p) > 1, Riy(A\,p) > 1, H(p) > 0 and G(p) <O0.

Theorem 2.4.1. Assume that ||5: — Blloo, 177 — Mllocos |Er — €lloos |7 — V]leo and
l¢r — @llagx converge to 0 as 7 — 0. Then there is L > 0 such that, for all
T € [—L, L], the numbers

|G"(p) = G(p)|, |H (p)—HP)I, [Ri(\p)—TRe(\ D),

|R;(/\7p) - RP()\Jp)} ) |(R:)T ()\,])) - R:(/\7p)| and ‘(R;)T <>‘7P> - R;()(/\7p)’

converge to 0 as 7 — 0.

Proof. Let b denote the function in (2.9) with ¢, 3, and ¢ replaced by ¢,, 8;, and
e, respectively. Let 0 > 0. We have that there is L > 0 such that for 7 € [-L, L] we
have by assumption sup,- |3-(t) — 5(t)| < § and thus 3.(t) < 8* + 0 for all t > 0.
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Write B = % + 4. By (2.9) and (2.2) we have

|bg(p7 t Z(t)) - bd(p7 t Z(t))|

5.0 P00y ) - s

QOT(Z(t)’Z(t)J(s) — (p(Z(t),Z(t),(S) ’

p(z(t), 2(1),0)
)

p+p(t) +e(t)

< ‘ﬂT@)’p 5

+18:01) — p(a) | p 2D D)
e, 10) el o0.)

+ller — €llo

+ Mpl|Br = Blloo + ller = elloo

(2.61)

Since for 7 € [—L, L], ¢, is differentiable and ¢, (S, N,0) = ¢(S, N,0) = 0, we get

|(p.,.(2<t), Z(t>7 6) - @(Z(t)v Z<t>7 6)|

O sy O
o7 (2(1), 2(1),000 +17(8) = == (=(1), 2(1), 00 — T(5>‘ (2.62)

< ’850; (2(t), 2(t),0) — g—f(z(t),z(t),())‘ &+ [r7 ()] + |r(9)]

where 7(6)/0 — 0 and 77(9)/6 — 0 as 6 — 0. By (2.62) we obtain

|90‘r(z(t)’ Z(t)a 5) — gp(z(t), Z(t)7 5)’

5
< 'aa?(z(t),z(t),()) _ g—f(z(t),z(t),o)‘ + Wf)‘ + ‘T(;)’ (2.63)
< llor = plla,, + 5 4 110

Thus, by (2.61) and (2.63) we get, for ¢ sufficiently big,

165 (. t, 2(t)) — bs(p, £, 2(1))]

A(z(t), z(t),0) — p(z(t), z(t),d
Schﬂ(() (t) )5 p(z(t), 2(t) >‘+Mp|!57—ﬁ|!oo+\laf—8\loo
r7(6 r(d
< 8p (llor = ellaos + 2+ Tt aapls, = o+ e =l
Therefore

513(1)1 b5 (p,t, 2(t)) — bs(p, t, 2(t))]

< Bpllor = ¢llagp + MpllBr = Bllo + ller = €llco-
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Thus
t+ A
| i 65,290 = Jim b 2(5)) ds
t+A
< [ Jim 55 5(9) ~ bips. ()] ds < O(7),
t d—0t
where
(1) = ABpller — @llag, + MpA||Br — Blloo + Aller — €| co-
Thus
InRe(A, p) —O(7) <InRI(\,p) <InRc(\,p) + O(7)
and then

Re(Ap)e " <RI, p) < Re(A,p) 7
and sending 7 — 0 we get
lim RE(A, p) = Re(A,p)-
Similarly we obtain also llir(l] (R (N, p) = (RH(\,p), lig{l]R;(A,p) = R,(\,p),
lim (R})" (A, p) = (R;)(A,p). lim G"(p) = G(p) and lim H"(p) = H(p). O

The following is an immediate corollary of Theorem 2.4.1 and shows that per-
sistence, extinction and asymptotic stability of the disease free solutions persist for

small enough perturbations of 7 in our family of systems.
Corollary 2.4.1. There is L > 0 such that for all 7 € [-L, L] we have.

1) If there are constants A > 0 and p > 0 such that R.(\,p) < 1, R:(A,p) < 1 and
G(p) < 0 then the infectives I go to extinction in system (2.60).

2) If there are constants A > 0 and p > 0 such that R.(\,p) < 1, R:(\,p) < 1 and
H(p) > 0 then the infectives I go to extinction in system (2.60).

3) If there are constants A > 0 and p > 0 such that R,(\,p) > 1, R;(A,p) > 1 and
G(p) < 0 then the infectives I are strongly persistent in system (2.60).

4) If there are constants A > 0 and p > 0 such that R,(\,p) > 1, R;(A,p) > 1 and
H(p) > 0 then the infectives I are strongly persistent in system (2.60).

5) In the assumptions of 1. any disease-free solution (S;(¢),0,0, R;(¢)) is globally
asymptotically stable in system (2.60).
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Chapter 3

Periodic Model

In this chapter we consider the periodic version of problem (1), i.e. we assume that

all the parameter functions are periodic functions with the same period.

3.1 Settings and Preliminaries
We will make the following assumptions:

P1) There is w > 0 such that A, u, 8 and € are continuous and positive w-periodic
real valued functions on Rd and that 7 and 7 are continuous and nonnegative

w-periodic real valued functions on Ry ;
P2) Function ¢ : (Rg)?® — R is continuously differentiable;
P3) For S, N,I >0 we have ¢(0,N,I) = (S, N,0) = 0;
P4) For S,1>0and N € [A“/pu*, A*/pf] we have ¢; < (S, N, 1)/(SI) < ¢

P5) For 0 < I < N < A%/u®, the function Ry > S — (S, N, I) is non-decreasing,
for 0 < S < N < A%/ub, the function R > I — (S, N, I) is non-decreasing
and for 0 < S, 1 < N < A*/ut the function Ry > N — ¢(S, N, I) is non-

increasing;
P6) For0 < S < N < A*/uf, the function RT 3 I+ (S, N, I)/I is non-increasing.

We note that Proposition 2.1.1 still holds in our context.

We will consider in our periodic setting the periodic linear differential equation
2= At) — p(t)z. (3.1)

We recall that Proposition 2.2.1 furnishes some properties of this equation when
A(t) and p(t) are bounded and thus it still holds when these parameter functions

are periodic. In the present context we can add the following.
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Lemma 3.1.1. Assume that condition P1) holds. Then we have the following:
1) for each solution z(t) of (3.1) we have

A /p® < liminf z(t) < limsup z(t) < A"/ u’;

t—+oo t—+o0

2) for each solution z(t) of (3.1) with initial condition in [A*/u%, A*/ut] we have
2(t) € [AY/ e, A/ ut], for all t > to;

3) there is a unique periodic solution z*(¢) of (3.1) in R™, this solution has period

w and is given by

fow A(u) e~ f:) u(s) ds du

2*(t) = P ey

t
e~ Jo p(s)ds +/ A(u) e Junls) ds du. (32)
0

Proof. By the variation of the parameters formula we have that the unique solution
of (3.1) with z(0) = 2 is

t
Z(t, ZO) =z0€ Jo 1(s)ds _|_/ A(u) eifu u(s) ds du.
0
Therefore we have
£ ¢ 0 )
2(t, 29) < zge +A“/ e =Y gy = (zo — A“/Mé) e Ht LAY/t (3.3)
0

and thus limsup z(, o) < A*/u’. Similarly,

t—-+o0
t
2(t, z9) > zoe * t—l—A@/ e ) gy = (20 — A /p™) e A"t (3.4)
0

and thus ligﬁgof 2(t,20) > A*/u". We obtain 1).

Let 2o € [AY/u®, A*/ut]. Since zp — A%/’ < 0 and 2o — AY/u* > 0, by (3.3)
and (3.4) we obtain 2).

By the invariance of [A*/u®, A*/u*] established in 2), the map P : [AY/u*, A*/ut] —
[Af/ e A /ut] given by P(y) = z(w,y), where z(t,y) denotes the unique solution
of (3.1) with initial condition z(0) = v, is well defined. Since P is a continuous func-
tion on the convex and compact set [A?/u%, A*/u’], by Brower’s fixed point theorem,
we conclude that P has a fixed point yo. Thus z(w, yo) = yo.

By uniqueness of solution we have

2(w+t,y0) = 2(t, z2(w, yo)) = 2(t, o) (3.5)
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and we can conclude that the solution of (3.1) with z(0) = yo is a w-periodic solution.

Moreover, by (3.5) and the variation of the parameters formula, we obtain

Yo = yoe Jo H)ds +/ Au) e J#e) 45 dy
0

and thus

fow A(u)e” Ji nls) ds - gy,

| _ o i) ds (36)

Yo =

and we get (3.2). The uniqueness of the periodic solution follows from the global

asymptotic stability of solutions proved in 3) in Proposition 2.2.1. We obtain 3). [

Since we have periodicity we can add some additional information to that in

Proposition 2.1.1. In fact we have the following
Lemma 3.1.2. Assume that conditions P1) to P6) hold. Then:

1) If (S(t), E(t), 1(t), R(t)) is a periodic solution of (1) verifying S(to), E(to), I(to),
R(ty) > 0, then we have A?/u* < N(t) < A*/ut.

2) For any 6 > 0, and every solution (S(t), E(t),I(t), R(t)), there is T5 > 0 such
that (S(t), E(t),I(t), R(t)) belongs to the set

{(S,B,I,R) € (R{)" : A°/pu* =0 < S+E+1+R< A"/ +6},

for all t > Tj.

Proof. We simply note that, adding the differential equations in (1), we get the
equation N’ = A(t) — u(t)N. By Lemma 3.1.1, we obtain the result. O

By 2) in Lemma 3.1.2, a similar argument to the one given bellow, the proof of

Lemma 1.3.1 assures that solutions are global in future.

3.2 Thresholds for General Periodic Epidemiological Mod-

els

We will now present the periodic counterpart of the method presented in sec-
tion 1.2 to obtain threshold conditions for general autonomous epidemiological mod-
els. This method, applicable to periodic models, was developed by Wendi Wang and
Xiao-Qiang Zhao in [38].

Like in section 1.2, we still assume that the population is divided into n ho-

mogeneous compartments. We continue denoting by x;, ¢ = 1,...,n, the number
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of individuals in compartment ¢ with the first m compartments being infected in-
dividuals and the last n — m compartments being disease-free compartments. We
still denote by X, the set of disease-free states. By F;(t,z) we mean the rate of
appearance of new infections in compartment 4, by V}'(¢,x) the rate of transfer
of individuals into compartment ¢ by all other means and by V; (t,z) the rate of
transfer of individuals out of compartment 7. These functions will now be assumed

periodic in the first variable. We will consider an epidemic model of the form
¥ =F(t,z)—V(t,x):= f(t, ), (3.7)

where we have F(t,z) = (Fi(t,x),..., Fu(t,z)) and V(t,z) = V~ (t,x) — VT (¢, 2)
with V¥ (t,z) = (V' (t,x),..., VI (t,x)) and V= (¢t,z) = (V] (t,x),...,V, (t,7)) and

r = (x1,...,2,). We will assume the following:

WZ1) Functions F;(t,x), V; (t,z) and V" (t,z), i = 1,...,n, are nonnegative and

continuous in R X (R{)™ and continuously differentiable with respect to z;

WZ2) There is w > 0 such that functions F;(t,z), V; (t,x) and V' (t,z), i =

1,...,n, are periodic of period w in ¢;
WZ3) If ; =0 then V (t,z) =0foralli=1,...,n;
WZ4) If i > m then F;(t,z) = 0 for all ¢,
WZ5) If x € X, then Fi(t,z) =V, (t,z) =0for i =1,...,m;

WZ6) Model (3.7) has a disease-free periodic solution z* = (0,...,0,2}, ,4,...,2})

rn

with x7(t) > 0 for at least one index i € {m + 1,...,n} and all ¢

WZT) We have p(®y/(w)) < 1 where, as usual, p is the spectral radius, and ®(t)

is the monodromy matrix of the linear w-periodic system 2’ = M(t)z where

O R
J m+1<i,5<n
WZ8) We have p(®_y(w)) < 1 where ®_y(¢) is the monodromy matrix of the linear
w-periodic system 2’ = =V (t)z where
%
vio= o] 39
Ox; 1<i,j<m

Similarly to the autonomous case, we have

F(t) 0

dF,(t,z*(t)) = 0 0] and dV,(t,z*(t))
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where V(t) is given by (3.8) and F\(¢) is the m x m matrix given by

P = |Gt (0)]

1<i j<m

Furthermore, F'(t) is non-negative and —V(¢) is cooperative, i.e. the off-diagonal

elements of —V () are non-negative.

Denote by Y (t,s), t > s, the evolution operator of the linear w-periodic system

y ==Vt (3.9)

that is, for each s, the m x m matrix Y (¢, s) satisfies

d
ZY(ts) = V@)Y (ts) and Y(s;5)=1,

for all t > s, s € R, where [ is the m x m identity matrix. Thus the monodromy
matrix of (3.9), ®_y(w), equals Y (w,0).

We need to define an operator that will help us define the basic reproduction
ratio in the present context. Denote by C, the Banach space of all w-periodic
functions ¢ : R — R™ with the maximum norm || - ||». We define a linear operator

L:C, — C,, called the next infection operator, by

@@@wzlmywt—wF@—w¢@—@dm

for all £ € R and ¢ € C,. We can define now the basic reproduction ratio for the

periodic epidemic model (3.7) as the spectral radius of L:

The following theorem shows that Rg is in fact a threshold parameter for the

permanence and extinction of the disease.

Theorem 3.2.1 (Theorem 2.2 in [38]). If (3.7) satisfies WZ1) to WZ8) then the
disease-free periodic solution z* is locally asymptotically stable if Ry < 1 and un-
stable if Ry > 1. Furthermore

1) Ry = 1if and only if p(Pp_y(w)) = 1;

2) Ro < 1lif and only if p(®p_y(w)) < 1;

3) Ro > 1if and only if p(®p_y(w)) > 1.
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To characterize better Ry, we consider the space
Ch={peC,:p(t)>0, forall t € R}

and, for \ € (0, +00), the linear w-periodic equation

w = [—V(t) + @} w, (3.10)

for t € R. Let W(t,s,A), t > s, s € R, be the evolution operator of system (3.10).
We have the following result.

Theorem 3.2.2 (Theorem 2.1 in [38]). If (3.7) satisfies WZ1) to WZ8) then the

following statements hold:
1) if there is A\g > 0 that solves p(W(w,0,A)) =1 then Ry > 0;
2) if Ry > 0 then A = Ry is the unique solution of p(W(w,0,\)) = 1;
3) Ro = 0if and only if p(W(w,0,)) < 1 for all A > 0.
The next result gives conditions for persistence of the disease.

Theorem 3.2.3 (Theorem 3 in [31]). Assume that conditions WZ1) to WZ8) hold
and that Rg > 1. Fix j € {1,...,m} and assume also that:

1) there exists a compact set K C (Rg)* which is positively invariant for the flow
of system (1) and which is also an absorbing set for that flow, i.e., given zq € K
and sy € R, we have x(t, (g, s9)) € K for all t > s, and for any zy € (RJ)?* and
sp € R there exists t; > sg such that for each t > ¢, we have x(t, (z¢, 0)) € K

2) there exists 7 € [0,w) such that F(7)—V/(7) is irreducible and there exists £* > 0,
A1 (0,e*) = RT and Ay : (0,¢%) — RT, with lim A\i(e) = 0 and lim Ay(e) = 1,
e—0t e—0t
such that

a) forall e € (0,e*), for any solution x(t) of (1) with initial condition x(s) = x5 €
K, if there exists ¢ty > sy such that x; (t) < e for each t > ¢, then there exists
t1 > to such that xx(t) < \i(e), forallt > ¢y and all k€ {1,...,m}\ {j};

b) for all ¢ € (0,e*), for any solution x(t) of (1) with initial condition z(s) =
xs € K, if there exists tg > so such that ||y(t)|| < e, y(t) = (z1(t), ..., zm(t)),
for each t > ¢, then there exists t; > to, such that ¢’ > (F(t)/X2(e) — V(1)) v,
for all t > ;.

Then, system (1) is uniformly persistent with respect to ;.
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3.3 Existence and Stability of Disease-Free Periodic Solu-

tions

Theorem 3.3.1. Assume that conditions P1) to P6) hold. Then system (1) admits
a unique disease-free periodic solution given by z* = (5S*(¢),0,0,0), where S* is the

unique periodic solution of (3.1). This solution has period w.

Proof. By Lemma 3.1.1, equation
S"=A(t) — p(t)S

with initial condition S(0) = Sy > 0 admits a unique positive periodic solution
S*(t), which is globally attractive. Since R’ = —(u(t) + n(t)) R has general solution
R(t) =Ce~ Jo n(s)+n() ds e conclude that for any periodic solution we must have
C' = 0. Thus system (1) admits an unique disease-free periodic solution given by
(S*(t),0,0,0). Since S*(t) is w-periodic, it follows that (S*(¢),0,0,0) is w-periodic.

m

To apply the results in the previous section to our model we let © = (x4, x2, 3, 24) =

(E,1,S,R) and we can write system (1) in the form
' = Fs(t,z) — (Vg (t,2) = Vi (t x))

where

Bt)e(S, N, I)

fs(t, QZ) = ,

and

e(t)E
A(t) +n(t)R

(1
It is easy to see that conditions WZ1) to WZ5) are consequence of conditions P1)
to P6). By Theorem 3.3.1, condition WZ6) holds.

Vit z) =
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Letting z* = (0,0,.5*(¢),0) be the unique positive w-periodic solution given by
Theorem 3.3.1, by P2) and P3) we have g—]f,(S*(t), S*(t),0)=0 and therefore

0 B(t)22(S*(t), S*(t),0

Fott) = [O BRI 0,570 >]

and

Valt) = [ () + £(t) 0 ] |

—e(t)  pt)+(@)
Let Ys(t,s), t > s, be the evolution operator of the linear w-periodic system y' =
=V (t)y, i.e. Ys(t,s) satisfies

d

E{YSQ? 8)] = [ YS(tv 5) (311)

e(t) —(u(t) +~(t))

for t > s, s € R. The next infection operator Lg : C, — C,, becomes in our context

(Lsp)(t) = [ Vslt.t = st - a)plt = @) da
and we define the basic reproduction ratio in our context by
Ro = p(Lg).
By Theorem 3.2.1 we get the following result.

Theorem 3.3.2. Assume that conditions P1) to P6) hold. Then, for system (1),
the disease-free periodic solution z* is locally asymptotically stable if Ry < 1 and
unstable if Ry > 1. Furthermore

1) Ry =1if and only if p(Ppy_vy(w)) = 1;
2) Ro < 1if and only if p(®Pp,_v, (w)) < 1;
3) Ro > 1if and only if p(®p,_v, (w)) > 1,
where ®p,_y,(t) is the fundamental matrix solution of the linear system

o = (Fs(t) — Vs(t)).

3.4 Global Stability of Disease-Free Periodic Solutions
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We begin by defining some concepts. Let A be an square matrix. We say that A
is cooperative if all its off-diagonal elements are non-negative and we say that A is
irreducible if it can not be placed into block upper-triangular form by simultaneous
row /column permutations. To obtain the global stability of the disease-free periodic

solution we need an auxiliary result.

Lemma 3.4.1 (Lemma 2.1 in [30]). Let A(t) be a continuous, cooperative, irreducible

and w-periodic matrix function, let ®4(¢) be the fundamental matrix solution of
¥ = A(t)x (3.12)

and let p = L In(p(P4(w))), where p denotes the spectral radius. Then, there exists

a positive w-periodic function v(t) such that e’ v(t) is a solution of (3.12).

We are now in conditions to state a result about the persistence of the infectives

in our context.

Theorem 3.4.1. If conditions P1) to P6) hold, the disease-free w-periodic solution
= (5*(t),0,0,0) of system (1) is globally asymptotically stable if Ry < 1.

Proof. By Theorem 3.3.2, if Ry < 1, then z*(t) = (S*(¢),0,0,0), the disease-free
w-periodic solution, is locally asymptotically stable. On the other hand, by 3) in
Proposition 2.2.1, for any €; > 0 there exists 77 > 0 such that

S*(t) —e1 < N(t) < §*(t) + &1 (3.13)

fort > T). Thus S(t) < N(t) < S*(t)+e; and N(t) > S*(t) —e1. By conditions P2),
P5) and P6) there is a function ¢ such that (§) — 0 as £ — 0 and

@(S(t), N (1), I(t)) < @(S*(t) 4 €1, S*(t) — &1, I(¢))

QO(S (t) + €1, *<t) — <1 (t>>

1(t)

Sl(t)&h]%l+ p(S (t)+51755*( ) —€1,0)
Oy

ol
< (S5 0500+ ve) 10,

1(t)

~

o7 (57(t) + €1, 57(1) — €1,0) (1)

for t > Ty. Therefore, by the second and third equations in (1), we have

B 5(0) | 5545050001 + (=1 | = (uto) + )

I'=e(t)E — (u(t) + ()1
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Let

My(t) = [8 ﬂé” ] |

By Theorem 3.3.2 we conclude that p(®p,_y,(w)) < 1. Choose €1 > 0 such that
P(Prg—vg+p(enms (w)) < 1 and consider the system

dp

o = B(1) [§<s*<t>, 5*(1), 0)u + w<al>v] ~(ult) + ()

v =e(t)u — (u(t) +~(t))v

)

or, in matrix language,

u/
,U/

By Lemma 3.4.1 and the standard comparison principle, there are w-periodic func-

= (Fs(t) + Vs(t) + ¥(e1) Ma(t)) [ Z ] .

tions v; and vy such that
E(t) <wvi(t)e? and I(t) < wy(t)e?,

where p = LIn(p(®p_v iy )m(w))). We conclude that I(f) — 0 and E(t) — 0 as
t — +oo. It follows that R(t) — 0 as t — +oo. Thus, since N(t) — S*(t) — 0 as
t — 400 we conclude that

S(t) — S*(t) = N(t) — S*(t) — E(t) — I(t) — R(t) — 0,

as t — —+oo. Hence the disease-free periodic solution is globally asymptotically
stable. The result follows. m

3.5 Persistence of the Infectives

Theorem 3.5.1. Assume that conditions P1) to P6) hold and that Ry > 1. Then

system (1) is persistent with respect to I.

Proof. To prove the theorem we will use Theorem 3.2.3. It follows from Lemma 3.1.2
that condition 1) in Theorem 3.2.3 holds, letting the compact set K be the set

K={(S,E,I,R) € R{)*: A/u* < S+ E+T+R<A/u'}
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if A or p are not constant functions and
K={(S, E,I,R) € (R))*: A/u* —6 < S+ E+T+R<A/u’ +5},

for some 0 < 6 < A/p, if A and p are constant functions.

Let (S*(¢),0,0,0) be the disease free periodic solution of system (1). If there is
d > 0 and tg € R such that I(t) < ¢ for ¢t > ¢, then, using P3) and P4), we have

R <A"6 — (u+n)'R,
(S =57) < =B(t)p(S, N, I) = p(t)(S = 57) + "R < —p(t)(S — S°) + "R,
E' < B"0(S,N,I) — (n+¢)'E < BcS6 — (n+¢)'F
and

(57 =8) < BM)e(S, N, 1) = u(t)(S" = &) = n*R < B*c256 — u(t)(S™ — 5)

Thus, for ¢ sufficiently large, we have

U

"
R(t) < 25 = o). (3.14)
S() = §*() < 2k1(5)Z—: — ka(6), (3.15)
2" (ka2(0) +5)"
B(1) < 52D k(o) (3.16)
and
5*(t) — S(1) < 262 RO ES)T ) (3.17)

0

Also, according to (3.13), we also have, for ¢ sufficiently large,
|[S7(2) = N(8)] < ks (), (3.18)

with k5(6) — 0 as § — 0.

Now, we will check assumption 2a) in Theorem 3.2.3. Assume that there exists
to € R such that I(t) < § for each ¢ > ty. From (3.16), there exists t3 > to such that
for each t > t5 we have E(t) < k3(d). So we obtain 2a) in Theorem 3.2.3 setting
A1(8) = k3(0). Let us now check assumption 2b) in Theorem 3.2.3. Choose 6; > 0

such that k4(0) < H[loin) S*(t) for all 0 < 0 < 6;. Take § € (0,6;) and suppose that
te|0,w

there exists ¢y € R such that ||(E(t), I(t))|| < 6 for each t > ty. Then (3.17) shows
that there exists t4 > ¢y such that S(t) > S*(t) — k4(0) for t > ¢4 and (3.18) shows
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that N(t) < S*(t) + ks(5). Therefore, by P5), we get

E" = B(t)p(S™(t) — ka(0), 5™(t) + k5(9), I) — (u(t) + (1)) E
I'Ze(M)E — (u(t) + ()1

and assumption 2b) holds with

Ao(8) = max /I (S*(t), 5*(t),0)
2 tel0w] o(S*(t) — ka(0), S*(t) + k5(6),0) /8"

By Theorem 3.2.3 the result follows. O]

3.6 Existence of Endemic Periodic Solutions

We need to define the numbers

~ ZZL - uguJ
R— Pl and Ri= ke (3.19)
(e 4e) (p+v)" (4 e)(u+1)
where L o g
90 * *
L, == | ZZ(2*(t).2*(1),0) dt
=5 aI(Z(),Z(),O)

and z*(t) is the w-periodic solution given by 3) in Lemma 3.1.1.

Note that, when our parameter functions are constant, we obtain

~ 55 a_go
RO_ <M+€)<N+7) a](A/M’A/M70)>

which is the basic reproductive number in (1.11) obtained for the autonomous case.

We need the following auxiliary result that will be used to show the existence
and uniqueness of the solution of some algebraic equations in the proof of our main
result. We will use the notation f =L [ f(s) ds.

Lemma 3.6.1. Assume that condition P1) to P6) hold and R’ > 1. Then there is a

unique 7 > 0 that solves equation

l_ff? o (A — dr,Afa,r) fr— (i + &) = 0, (3.20)

where e
@A) (p+7) =&

(
1= e+ 1)

(3.21)

This unique solution belongs to the interval ]0, A/jil.
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Proof. According to conditions P2), P3) and P6), the function ¢ : [0,A/ji] — R
given by

B sO(A/ﬂ—dUa/_\/ﬂ?“)_(ﬂJrg) if 0<v<A/R

Yoy = 1T v
do - _
ﬂfﬁﬁ(A/M7A/M,O>—(M+€) if v=0

is continuous and non-increasing and we have

[
(B +7)(n+¢2) ol

¥(0) = (A/, A/, 0) — 1} (B+&)=(Ro—1)(a+2) >0
By P3), for the unique dy €]0, A/fi] satisfying A /i — ddy = 0, we get

56 ¥ (07]\//17d0)
(B +7) (1 +¢) do

U (do) = —1|(p+8)=—(p+2) <0,

Thus, by Bolzano’s theorem, there is 7 €]0, do[C]0, A/ that solves (3.20). Since

) — B [AEe0) + S2e@)] v = plelw)
W) = s

where c¢(v) = (A/fi — dv, A/ i, v) (note that, by P6) we have g—f(c(v))v —(c(v)) <0
and by P5) we have 52(c(v)) > 0), we conclude that the solution is unique and the

proof is complete. O

We also need to consider the matrix

—pu— Ko —Kowg/p —Kour/p (=Ko +1n)s/p

K K K K
M = 110p/q 010 0117’/(1 0103/Q (3'22)
0 pty  —(p+7) 0
0 0 p+n —(p+mn)

where r is the unique solution of (3.20),

q=(f+7)r/&, s =7r/(ji+7) and

I P oo, do, —,_
Kabc_ﬁ (l@(]?,/\//ub,r)+ba—N(p,A/M,T)+Cal<p,A/M7T) .

In the following result, we obtain conditions for the existence of endemic periodic
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orbits. For each A € (0,1), we need to consider the system

(5, = MA(t) — B() @(Sx, Na, 1) — u(t)S5 + (1) Ry)
B\ = AB(t) ¢(Sx, N, In) — (u(t) + (1)) Er)

I = M) By — (u(t) + (1)) (3.23)
Ry = Av(8)1 — (u(t) + 1(8)) Ry)

(Vo= Sx+ Ex+ I\ + Ry

Consider the following condition:

P7) We have np = 0 or or there is &’ > 0 such that lim inf I(t) > K*forall A € (0,1)
—+00
and t € [0,w] in system (3.23).

Theorem 3.6.1. Assume that conditions P1) to P6) and P7) hold. Assume also that
1) Ro>1;

) B> 1L/ (N

3) det M # 0.

Then system (1) has an endemic w-periodic solution.

To obtain Theorem 3.6.1 we will use a well known result in degree theory, the

Mawhin continuation theorem [10, 28].

Proof. If n = 0, using the estimates that we will obtain, the theorem can be proved
in a similar way to the main theorem in [41]. We will assume that 7 is not identically
zero. To prove theorem 3.6.1 we first need to give some definitions and state some

well known facts. Let X and Z be Banach spaces.

Definition 1. A linear mapping £ : D C X — Z is called a Fredholm mapping of

index zero if
1. dimker £ = codimIm £ < oc;
2. Im L is closed in ~Z.

Given a Fredholm mapping of index zero, L : D C X — Z , it is well known
that there are continuous projectors P : X — X and @) : Z — Z such that

1. Im P =ker L;
2. ker@Q =Im L =Im (I — Q);
3. X =ker L @ ker P;
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4. Z =Im L & Im Q.

It follows that L|pakerp : (I — P)X — Im L is invertible. We denote the inverse of
that map by K.

Definition 2. A continuous mapping N : X — Z is called L-compact on U C X,

where U is an open bounded set, if
1. QN(U) is bounded:;
2. K,(I — Q)N :U — X is compact.

Since Im (@ is isomorphic to ker £, there exists an isomorphism 7 : Im ) — ker L.
We are now prepared to state the theorem that will allow us to prove theo-

rem 3.6.1: Mawhin’s continuation theorem [28].

Theorem 3.6.2. (Mawhin’s continuation theorem) Let X and Z be Banach spaces,
let U C X be an open and bounded set, let L: D C X — Z be a Fredholm mapping
of index zero and let N : X — Z be L-compact on U. Assume that

1) for each A € (0,1) and z € OU N D we have Lx # M x;

2) for each x € U Nker £ we have QN'z # 0;

3) deg(JQN,U Nker L,0) # 0.

Then the operator equation £z = Nz has at least one solution in D N U.

With the change of variables S(t) = ew® E(t) = e®2® [(t) = e®® and
R(t) = e®® system (1) becomes

\

= A(0) e = (1) (e w, ) e —p(t) + n(t) et

uy = f(t) (e, w,e) e —(u(t) + (1))

= () €7 —(pu(t) + (1)) (3.24)
uy = (1) e —(u(t) +n(t))

w = e +e"2 4 e"3 4 ™

\

and if (vy(t),va(t),v3(t),v4(t)) is a periodic solution of period w of system (3.24)

then (et ev2() evs() ev4(M) is a periodic solution of period w of system (1). For
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A € (0,1) consider the system

(

up = A(A(E) e =p(t)p(e™, w,e") e™ —pu(t) +n(t) e ™)
uy = A (B(t)e(e", w, e®) e™ —(u(t) + £(t)))
ug = A(e(t) e —( () +7(1))) - (329)
wy = A(y() e =(ult) + (1))
(W= el 4 e"2 4-e"3 4 e

By 1) in Lemma 3.1.1, if (uy (%), ua(t), us(t), us(t)) is periodic then

<w(t) < A—Z (3.26)

We will now prepare the setting where we will apply Mawhin’s theorem. We will
consider the Banach spaces (X, || - ||) and (Z, || - ||) where

X =7 ={u= (uy,us,us,us) € C(R,R*) : u(t) = u(t +w)}

and

ol = mae g (8] + mae s (8)] -+ mmae s (1) -+ e [ (1)

Let £L: D C X — Z, where D = X N CY(R, R?), be defined by

du(t)

Lu(t) = o

and NV : X — Z be defined by

Consider also the projectors P: X — X and ) : Z7 — Z given by

1 ¢ 1 ¢
u /o u(t) dt an Qz /o z(t) dt

W w

Note that Im P = ker £ = R*, that

1 w
kerQ=ImL=Im (I -Q)= {ZGZ:;/O z(t)dt:()},
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that £ is a Fredholm mapping of index zero (since dim ker £ = codimIm £ = 4) and

that Im £ is closed in X.

Consider the generalized inverse of £, K, : Im £ — D N ker P, given by

K,= (1) :/Otz@) ds—é/ow /Orz(s) ds dr,

the operator QN : X — Z given by

[ 1 ¢ A<t) uy uz\ o—u1(t) n(t) eU4(t) =
-/ o~ AR w o) e+ T e
— [ Bt)p(e™,w,e")e 2D dt — (i + &)
QNu(t> = W Jo 1 w
w Ow
L / () e dt — (i + 1)
L w Jo i
and the mapping IC,(I — Q)N : X — D Nker P given by
KT — QN u(t) = Ar(t) — As(t) — As(t)
where
[ AGs) n(s) e '
o U1 us 7U1(S) —
/ oty ~ Plh ) S~ hls) ds
[ Bpten w0 ~(uls) +=(s)) ds
Al(t) - 0 t )
[ e0)e7 — u(s) 1 () ds
0
t
s ) 4 ) s
L 0 .
_ l/w /t A(S) _6( ) ( u u3) —u1(s) 7](8) eu4(8) B ( )d M -
o)) e“l(s)t s)p(e' w,e") e —on@ Ms)ds
[ [ aeeten e e —(u(s) + () s
As(t) = 0 1 Yot
S| ) 4 (s) ds
wJo Jo
w t
S| [rwene —u) +n()dsds
w 0 0 a
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and
_ / eAufZ)) — B(s)ple", w, ") e +L€<>() - uls)ds |
As(t) = [3 — %] /ow 5(3}%7(6“%@0,6“3) e 2 —(u(s) + (s)) ds
w /0 e(s) ")) _(14(s) + 4(s)) ds
_ (va@ﬁgwkmwk%uw)+n@»d8 ]

It is immediate that QA and KC,(I — Q)N are continuous. An application of Ascoli-
Arzela’s theorem shows that KC,(I — Q)N (Q2) is compact for any bounded set Q C X.
Since QN(Q) is bounded, we conclude that A is L-compact on € for any bounded
set Q) C X.

Let (u1,ug,us,us) € X be some solution of (3.25) for some A € (0,1) and, for
1 =1,2,3,4 define

wi(&) = tg[loig] w;(t) and wi(xi) = tgﬁi{] w;(t).

From the third equation in (3.25) we get,

euz(Ez)—us(ﬁs) < eu2(§3)—u3(53) — M(&%) + 7(53) < ('u + 7)“ (3.27)
- £(&3) - ¢t
and ¢
20 () > uato)ustn) — HOX8) 70s) o () (3.28)
- £(xs) e

From the second equation in (3.25), P4), (3.19) and (3.27), we obtain

eu() < qui(€) — (n+e)" eu (§2)+us(€2) quz(€2)us(€2)
- Bt Sp(eul &), w(&s), cus(é2) )
_ (uto)" @) ()"
TP plen®w(g) en®@)) g (3.29)
ot ptq)"
B Clﬁeﬁz
- Lw/(clég)-
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and, by the second equation in (3.25), P4), (3.19) and (3.28), we get

V4 u Us
eul(X1) > eu1(X2) _ (,u + 5) e 1(x2)+us(x2) eu2(X2)—u3(X2)
- e (o0, w(x), o)
. (:U/"”S)E u1(£2)+u3(§2) (M_'_,y)é
T B pleml@) w(Ey),eus)) v (3.30)
o (At (p+)
- Coflet
= Lw/(C2R8)-
Define
A = L,/(ciR}) and Ay, = L,/(caRRY). (3.31)

From the fourth equation in (3.25) we get

eus(68) < guaxa)—wa(xa)Hua(xa) — 10c) + 100 s < {utn)” +€77)u eulxa) (3.32)
7(x4) g

and

0
eus(xa) > eus(€a)—ua(bs) qua(és) — —’u(&) (54) eua(éa) > —(M + 77) eual8a) (3.33)
v(&4) v

Thus we obtain

eua(és) < 7" eus(x3) and cua(xa) _r eus(és) (3.34)

(14 m)™

v

From the first equation in (3.25) we have

BOa)e (e w(xy), e ) = Axa) — p(xa) e 4 () e
Using (3.30) and (3.26), the right hand expression can be bounded by

Alxa) = nlxa) €0 1p(xa) @00 < A — pf e 0 gyt gua)

Av 3.35
BV (3:5)

and, by (3.30), we obtain

B(x1)e (e“l(XI),w(xl),eug(Xl)) > ﬁecl out (x1)+us(x1)

_ (3.36)
> ,BgclL@/(CQRg) eus(8s)
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By (3.35) and (3.36) we get

eus(és) < iy (3.37)
BferLy /(e Rp)
Define \ oy
3= — AW (3.38)
BterLy/(c2Ry)
Again from the first equation in (3.25)
B&)p (€ w(&y), e @) = A(&r) — u(&r) @) (&) e @)
Since, by (3.29),
A(&) — p(&r) e @) (&) ems®) > AL — g e (&) gyt gualéa)
> A — "L,/ (1 R)
and
B&r)p (€60 w(gy), e @) < By em @) Tus(&)
< "Ly, (c1 RE) e300)
we get
V4 u ~g
st > A= Lo/ (1 Fs) (3.39)

C2BuL¢/(Cléé)
By hypothesis 2) we conclude that the right hand side of (3.39) is positive. Define

A’ — p*L,/(ci RY)

3 = —. (3.40)
Y Breale/ (e RY)
By hypothesis P7), there is K* > 0 such that
liminf I(t) > K*. (3.41)

t—-+o00

Using (3.41), (3.26) and (3.34) we obtain bounds for ¢“4®) namely

U U 4 L
eua(és) < i A_ and eta(xa) > _ T cuslés) > _ 0 gt

(4 mn)t pt (n+mn) (14 mn)®
Define A .
Ap=—" 2 and A, =—" K 3.492
T ()l T () (3.42)
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By the third equation in (1), (3.37) and (3.39) we get

eu2(€2) « qu2(€s)—us(és) qus(és) <« (M +£/7)uA3€
- - €

and

l
(1200) > qua(xn)—us(s) quats) > (A1) As,.
> >

Using (3.38) and (3.40), we can establish bounds for e*2(*), In fact, we have e¥2(€2) <

Age and et2(x2) > As,, where

(4 7)" (A + 7"/ )
e'Bler L/ (coRY)

Age =

and B
(1 +7) (A = L/ (1 ) )
e'fucrLy/(eR))

2x

By (3.31), (3.38), (3.40), (3.42), (3.43), (3.44) we obtain, for i =1,...

u; (&) < In Age and wi(x;) > In A,y

Integrating in [0, w] the last three equations in (3.25) we obtain

/ B(t) o (10, w(t), O 2O gt = (7 + ),

/ e(t) e2W=u® gt — (74 3)w
0

and "
/ y(t) e D7) = (i + fw.
0

By (3.45) and (3.46) and using the fact that A € (0,1), we get

us(t) = ws(6) + /tu2<>ds<u252 + [ o)

ws(6s) + A / 18(t) (), @ ®) e _(u(t) + ¢

<In AQE —+ 2/ B(t) SD eu1 t)’ UJ(t),euB(t)) efug(t) dt
0

<In Ay + 2(ft + €)w,

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

t))| dt
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and also

us(t) > ua(x2) — /Ld lub(t)] dt
/’ﬁ qw(t), ) e —(u(t) + £ (1) dt

>1nA2X—2M+€

By (3.45) and (3.47) and using the fact that A € (0,1), we obtain

zmwSW@Q+AW%@Wﬁ:m@@+AAWaw&2%—wm+v@ww

<In Ase + 2/ e(t)e" ™ dt <lInAse + 2(f + 7)w,
0
(3.49)

and also
(t) > Us X3 / |u3 ’dt = Usg X3 / } eu2—us _ (t) _1_7(15))‘ dt
ZMAM—Q/)dﬂyr%dﬂzmAw—2W+ﬁw.
0

Similarly, by (3.45) and (3.48) and using the fact that A € (0,1), we conclude that

udwSW@@+AWM@Wﬁ—m@n+AAWWﬂwSM—m@+nmﬂﬁ

<lInAg +2 /W y(t)e"* " dt <In Ay + 2(p + N)w
0
and also that
ug(t) > ug(xs) / luly (8)| dt = ug(xs) / |y () "™ —(u(t) + n(t))| dt
> In Ay — 2 /Ow Y(t) e dt > In Ay, — 2(fi + 7)w.

Finally, integrating the first equation of (3.25) in [0, w] and using (3.45) and (3.49),

we obtain
/ A(t) ! —|—77(t> eUd=UL Jt — / 5@) ) (em(t)’ w(t), eus(t)) —u1(t) —i—/L(t) dt
0 0

w w1 (t) t uz(t)
- / Bt~ (e, wt), ) 2™ pu(t) dt
0

eu (t)+us(t)

(5021436 e~ 27w +M)
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and thus

1M®§m@n+AWM@Mt

=uy (&) + /\/
0

<In A +2 / A(t) e™™ 4n(t) e™ ™™ dt
0

(p (QUI ) w7 euS)
eul +us

At)e ™ =p5(t)

<InA+2 (BCQAgg e 27w —i—/fb) w

and also

IMﬂzmuo—AW%@Mt

:u1(X1)_)\/0w

>InA;, —2 A(t)e ™ +n(t)e™ " dt
* 0

(p (eUI ) w? eFUIB)
eul +us

At)e ™ —p5(t)

Z In Alx -2 (BCQAgﬁ 8_2('H+ﬁ)w +/1) w.

Consider the algebraic system

( _ _
Ret —Bip(e", w, %) e~ —fi + 7" =0

Bo(et,w,e')e 2 —1 — & =

e —pu(t) + n(t)e" 1| dt

e —u(t) + n(t)e™ | dt

(3.50)

Multiplying the first equation by e"!, the second by e“2, the third by e"® and the

fourth equation by e and adding the equations we conclude that any solution of

this equation verifies

(3.51)

A
w = —.
i
Moreover, we conclude by simple computations that the solution of system (3.50)
verifies o S
ouz = P s _ (u+72§u+77) s
5 3
and also _ o
qu oA (AN @E+ENE+D) — T
I e+ 1)

Thus, by the second equation in (3.50) we get

36} . -
—— v (A/n—de" A/p,e®) e —(h+8) =0,
s e (M /Ae) e —(p+€)

(3.52)

(3.53)

79



Dynamics of Non-Autonomous SEIRS Models with General Incidence

where

d— (ﬁ“‘w(ﬂi‘?(ﬂfﬁ)—@ﬁ. (3.54)
e+ 1)
By Lemma 3.6.1, (3.53) has a unique solution. Therefore, by (3.51) and (3.52)
we conclude that the algebraic system (3.50) has a unique solution. Denote this
solution by p* = (p}, ps, p5, p;). Let My > 0 be such that |p}|+ |ps| + [pi| + |pi] < Mo
and let

M1 = max{] In Al& +2 (BCQA:}&‘ 6_2(ﬂ+:Y)w -l-ﬂ) w\, ‘ In Alx -2 <602A3§ 6_2(ﬂ+’7)w +,L_L> w|},

My = max{[In Age + 2(i + &)wl, | In Apy — 2(i2 + E)w|},
M3z = max{|In Az + 2(2 + V)wl, | In A3y — 2(5 + ¥)w|},

and
My = max{|In Ase + 2(i + N)w|, | In Ay, — 2(2 + N)w|}.

Define
M = My + My + My + M3 + My.

We will apply Mawhin’s Theorem in the open set
Q= {(ul,UQ,U3,U4) cX: ||(U1,UQ,U3,U4)|| < M}

Let u € 90 Nker £ = 00 NR*. Then u is a constant function that we can identify with

the vector (u1,ug, us, uqs) € R* with ||ul = M and

I (U) A e _Bw(eul y W,y GUB) e —u+n 4~ U1
QNu := By(u) | _ B@(eu: w,e"s) ejw jﬂ —€ # 0.
F3(u) Zel2—us3 -
F4(U) ,.—yeug Ug _/1 _ 77
We conclude that
deg(IdQN, dQ Nker L, (0,0,0,0)) = Z sign det du(1d OA')
z€(1dQN)~1(0,0,0,0)

= sign det dp- (Id QN)
= sign det M,

where M is the matrix in (3.22). By hypothesis 3) we have det M # 0. Thus
deg(Id QNwu, 02 Nker L, (0,0,0,0)) # 0.

According to Mawhin’s continuation theorem, we conclude that equation Lz = Nx has at

least one solution in D N U. Therefore, in the hypothesis of the theorem, we conclude that
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system (1) has at least one w-periodic solution and the result follows. O

Before presenting some corollaries of Theorem 3.6.1, we have to define the fol-

lowing number:

IS N LU
Ro = (/1+€‘)(/1+f‘y)w/0 B(t)a[( (t),2"(t),0)dt. (3.55)

We have the corollary:

Corollary 3.6.1 (Michaelis-Menten incidence functions). Assuming that P7) holds,
let (S, N, I) = C(N)SI/N where Rf > N — C(N) is a continuously differentiable
real valued function and R* 5 N — C(NN)/N is a non-increasing function. If Ry > 1

and
Loy A

(A /A"

then system (1) has an endemic periodic solution of period w.

5%
Ry > (3.56)

Proof. It is easy to see that the incidence functions considered satisfy hypothesis
P2) to P6) with

o1 = C(A* /")’ /A" and ¢ = (A /)" /A"

We are assuming that Ry > 1 and thus we have condition (1) in Theorem 3.6.1.
Condition (3.56) corresponds to condition 2) in Theorem 3.6.1. It remains to verify

condition 3). Some computations yield

sign det M = sign (aBe(i+ 7)C(A/f) (1 — 1/Ry)) = 1.
Note that 1 — 1/Rg > 1—1/R > 0 because

SN 1 POE)
%>CMWMMMwA SO

o pAt CAYp)
— C(A /)Nt At

AJpt =1.

Therefore, the result follows from Theorem 3.6.1. O
The following is an immediate corollary of the previous one.

Corollary 3.6.2 (Simple incidence functions). Assuming that P7) holds, let ¢(S, N, ) =
SI. If Ry > 1 and
Bl AL
(1 + &) (p +7)

then system (1) has an endemic periodic solution of period w.

(3.57)
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Proof. Simply note that in this case we can take ¢; = 1 and use Corollary 3.6.1. [

Condition (3.57) in Corollary 3.6.2 is the same as the condition in Theorem 3.1
in [41] where it is discussed the existence of periodic orbits for a model with mass-
action incidence and no disease induced mortality. When the disease induced mor-
tality is set to zero (letting a = 0), the model considered in [41] becomes a particular
case of ours, correspondig to set n = 0 and (S, N,I) = SI in our model. For the

no disease induced mortality case, Corollary 3.6.2 recovers the main result in [41].

3.7 Example

In this section we illutrate the obtained results in this chapter, by considering

the particular model:

(

S"= A — B[l 4+ beos(2nt + )] ST — uS

E' = B[l +bcos(2nt + @)] ST — (n+¢e)E

I'=c¢cE—(n+7)1 : (3.58)
R =~I — uR

(N=S+E+I+R

We begin by obtaining an estimate for Ry in this case. We have in this case

p+e 0
- pty

_ |0 B[1 + beos(2mt + )|/

Fs(t) 0 0

] and VS (t) =

Since Vs(t) is a constant and diagonal matrix, it is easy to check that, for v < e, we

have
e_(#+€)(t_s) O
Ys(s,t) = €

v —¢€

Thus, we can compute Yg(t,t — a)Fs(t — a). Namely we have

(e*(quE)(t*S) — e*(uﬂ)(t*é’)) e~ (u+7)(t—s)

0 e~ (h+e)a BI1 + beos(2m(t — a) + p)|A/u

Ys(t,t—a)Fs(t—a) = 0 N(iﬁi\g) (e—(u+a)a _ef(quv)a) 1+ beos(2m(t — a) + )]
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Therefore, writing ¢(t) = (¢1(t), ¢2(t)) for some ¢ € C,, with w = 1, we obtain

(Lo)(t) = /;OO Ys(t,t —a)Fs(t —a)o(t — a)da

— /;oo (/;/B ~(pte)a M4 beos(2m(t — a) + )]P2(t — a),

eBA

=gy (T e [t beos(n(t — a) + @) ea(t - a>) da.

Using the fact that, for £ > 0, we have

+o0 2
/0 e " cos(27(t — a) + p)da = 121 4n? (COS(QW +¢) + % sin(2mt + SO)) ’

we obtain

+oo
(26 < o o:(0) ma | [ (Aﬁ 4991 1 beos(2n(t — a) + o),

te(0,1] te(0,1] o
efA —(p+te) —(u+7) '
— (e7 W —¢ V1 +bcos(2m(t —a)+ )] | da
ply —¢) ( )|
AB Aef
< ol ma | (220 2% ato - 5|
tefo] ||\ p pu(y =€)
where
1 1w+ 2T
At) = b 2rt 2rt
(1) u+€+ e (Cos(ﬂ—i-go)—l-lu_i_gsm(w—l-go))
and
1 w4y 2T
B(t) = 2mt 4+ ) + 2t + .
© pty o (pty)? 4 (COS(W 7 u+vsm(ﬂ S0))

Finally we get

Aep
ply — el

1261 < ol mae max {221,221 ae) - B0

and thus, since the norm of the operator is an upper bound for the spectral radius

we obtain:

A A
Ro = p(2) < 21 £ s wax { LAl 2L - Bl (39

Like in section 1.5, we set A = u =2, ¢ = 1, v = 0.02 and consider the following
initial conditions Sy = Ey = [y = Ry = 0.1 (black lines). We assume that there is

no loss of immunity and let n = 0. To consider a periodic case, we begin by setting
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b=0.1, =59 and ¢ =0 in (3.58).
Using (3.59) we can see that in this case Ry < 0.98644 < 1 and we conclude that

the disease goes to extinction. We can see this in the right-hand side of figure 3.1.

0.08
— 0.06 -
\
\ \

Figure 3.1: Disease-free case and endemic case for b = 0.1.

If we now consider a larger value for b, for instance if we set b = 0.6, esti-
mate (3.59) gives Ry < 1.05114 not allowing any conclusion. As we will see, the
disease still goes to extinction. In fact, a plot for this case can be seen on the left-
hand side of figure 3.2 where we can see that all trajectories approach the disease-free
equilibrium e* = (1,0, 0,0) and thus that the disease goes to extinction. In this case,
the approximate formula (2.57) gives Ry ~ 0.990017 and we can see, according to
Theorem 3.4.1, that in fact the disease goes to extinction.

On the right-hand side of figure 3.1, we let b = 0.1 and # = 6.9. We can see that
the disease persists and that all trajectories approach an endemic periodic orbit.
In this case, the approximate formula (2.57), gives Ry = 1.13915 > 1 and we have
BN/ (1 + &) (p + ) u*) = 1.02475 > 1 confirming the existence of an endemic
periodic orbit, according to Corollary 3.6.2.

If we increase the oscillations and set b = 0.6, the approximate formula (2.57),
gives Rg = 1.15782 > 1. In this case Corollary 3.6.2 does not allow us to conclude
that there is an endemic periodic orbit because S°c‘A’/((u + &)“(p + 7)*u®) =
0.455446 < 1. In spite of this, in the right-hand side of figure 3.2 we can see that the
disease persists and that all trajectories approach an endemic periodic orbit. Note
that the red and cyan lines correspond respectively to solutions with the following
initial conditions: Sy = 0.08, Ey = 0.07, I, = 0.12, Ry = 0.13 and Sy, = 1.99,
Ey=0.09, I, = 0.05, Ry = 0.25.

In figures 3.3 and 3.4 we present the trajectories of the infectives and the sus-

ceptibles for the situations described in figure 3.2.
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Chapter 4

Control Model

In this chapter we will add to our SEIRS model two control variables, vaccination

and treatment, and discuss the obtained control model (3).

4.1 Setting and Preliminaries

We consider in this chapter problem (3) in the interval [0,¢] with 0 < ¢y < 0.

We assume that

C1) The parameter functions A, 3, u, a, n and v are w-periodic and continuous on
[0, £4];

C2) Function ¢ is twice continuously differentiable;
C3) We have ¢(0,N,I) = ¢(S,N,0) = 0.

Before stating our optimal control problem we will define in abstract what we
mean by optimal control problem. This will allow us to introduce some notation
and clarify our setting. We will follow [8].

Let f: RxR"xR™ — R", f(t,x,u), be a continuous function with continuous
first partial derivatives with respect to  and let ® : R x R x R® x R* — RF,
®(to,t1, T, 1), be a function of class C.

Let U C R™ be a closed set and U be a set of Lebesgue integrable functions u
with values in U and defined on some interval [tg,¢;], which may differ for different
elements of U. A function u € U will be called a control. For a control u defined on

[to, t1] the solution z(t) of the differential equation
' = f(t,z,u) (4.1)

on the interval [tg,¢;] with initial condition x(ty) = x¢ will be called the trajectory

corresponding to the control u and the initial condition x.
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Notice that, in our context, by solution of (4.1) we mean an absolutely continuous
function x : [to,t1] — U such that

z(t) = x(to) —i—/t f(s,z(s),u(s)) ds, to<t<t.

The value of x(t) at time t is called the state of the system at time ¢. If x(t)
appears without mention in a formula it is always understood that a control u and
initial condition zy have been specified and that z(t) is the trajectory corresponding
to u and xg.

The first component of & evaluated at (o, 1, zo,x1), where x(t) is a solution
of (4.1),

Dy (to, t1, 20, 21), (4.2)

is called the performance index or performance criterion of the system and will be
denoted by J(zg,u) to emphasize the dependence on the initial state zy and control
u:

J(xg,u) = Py (to, t1, xo, T1). (4.3)

The next £k — 1 components of ® define end conditions for the trajectories of the
system:
P (to, t1, 0, x1) = 0, (4.4)

Jj=2,..., k. A pair (zo,u), consisting of an initial condition z and a control u, will
be called feasible if there is a solution z(¢) of (4.1) on [to,¢;] with initial condition
x(tg) = xo satisfying the end conditions (4.4). Let F denote the class of feasible
pairs (g, u).

We are now in conditions to say that the optimal control problem is to find in
the class F an element (o, u) such that the corresponding performance index (4.2)
is minimized. A pair (zo,u) € F for which J achieves this minimum will be called
an optimal initial condition and an optimal control.

The formulation of optimal control problem given above is usually called the
Mayer formulation taking into account the form of the cost functional. When the

cost functional has the form

t1

Hao.w) = [ Lita(t)u(t) dr (45)
to

then we say that we have a Lagrange formulation for the optimal control problem.

In our context, we will consider a free terminal point problem, i.e. we will

consider fixed initial and final times and fixed initial state. There will be no end

conditions (and thus ® reduces to ®1) and we will consider the Lagrange formulation.

In the Lagrange formulation, the optimal control problem that we will consider
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corresponds to find an element u that minimizes (4). In this formulation the function
f:R x R*x R? — R*is given by

f(ta W7 Y) = (fS(ta W7 Y),fE(t,VV,Y),f](t,VV,Y),fR(t,VV,Y)),
where W = (S, E,I,R), Y = (T, V),
fS(t7W7Y> = A(t) _ﬂ(t)()&(‘g?NvI) —/J,(t)S—i—?](t)R—WS,

fet,W,Y) = B(t) o(S,N,I) = (u(t) + (1) E,
fit, WY) =e(t) E— (u(t) +~ ()1 - TI

and
fTREWY) =~ ()1 —p(@)R—n(t) R+ TI+ VS,
and the function ® : R x R x R* x R* — R is given by
ty

@(O,tf,Wo,Wl):j(T,\/):/ ral + ko T? + k3 V2dL.
0

In our context we set F = {((So, Fo, I, Ro), (T, V)) : (T, V) € Q} where

Q= {(r,v) € L'(0,t) : (7(¢),v(t)) € [0, Trmaz] X [0, Vimaz], for all t € [0,%¢]}.
4.2 Existence of Solution

To establish the existence of solutions for our free terminal point optimal control
problem, we will follow the third chapter in [8]. We consider the general optimal
control problem in section 4.1 in Lagrange formulation and thus the cost functional

is given by

(0, 1) = / Lt (1), u(t) dt.

to

The following result is contained in Theorem II1.4.1 and Corollary I11.4.1 in [8].

Theorem 4.2.1 (Existence of solutions for control problems). Suppose that f and
L are continuous and that there exist positive constants C; and Cs such that, for
teR, z,z1,20 € R” and u € R™ we have

a) [tz u)|| < Cr(1+ (]| + [lul)];
b) [If(t, 21, u) = f(t, 2, u)|| < Collwy — o[ (L + [Jul]).
¢) F is non-empty;
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d) U is closed;

e) Letting S = {(to,t1,20,7) : € R"}, there is py > inf.J(xo,u) and a compact
set S” C S such that if e € S and J(xg,u) < py then e € 5,

f) U is convex, f(t,z,u) = a(t,z) + 5(t,z)u and L(t,x,-) is convex on U;
g) L(t,x,u) > ci|ul? —co, 1 >0, B> 1.
Then there exist (zf, «*) minimizing J on F.

We will apply Theorem 4.2.1 to our problem in order to obtain an existence

theorem. Namely, we have the following result:

Theorem 4.2.2. There exists an optimal control pair (T*, V*) and a corresponding
solution of the initial value problem (3), (S*, E*, I*, R*), that minimizes the cost

functional 7 in (4) over €.

Proof. We will check that we are in the conditions of Theorem 4.2.1. Using C2) and

C3), we immediately obtain a) and b). Conditions c¢) and d) are immediate from

the definition of F and since U = [0, Tynaz| X [0, Vimaz]- Condition e) is immediate.
Since the state equations are linearly dependent on the controls, we obtain f).

Finally, L is convex in the controls since is quadratic in the controls. Moreover,
L = kI 4 koT? + ks V2 > min{ky, ks } (T2 4+ V?) > min{ky, ks}|| (T, V) |?

and we establish g).
Thus the result follows from Theorem 4.2.1. O

4.3 Pontryagin’s Maximum Principle

In this section we apply a version of Pontryagin’s maximum principle for bounded
controls to a slightly distinct version of our problem where the control space will be
a smaller space. To do this it is necessary to replace the set U defined in section 4.1
by the set )V consisting of left continuous piecewise continuous functions defined in
[to, t1] and with values in U.

To state a result that will help us characterize the optimal controls for our
problem, we need to define the Hamiltonian for the Free Terminal Point Problem in

Lagrange formulation:

H(t7 Z, uvp) = pOL(t7 Z, u) + Zpi<t)fi(tv €, u)a (46)

=1
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where p = (p1,...,pn). The following result is a version of Pontryagin’s Maximum

Principle for the Free Terminal Point Problem given in Kamien and Schwartz [15].

Theorem 4.3.1 (Pontryagin’s Minimum Principle). Let L, f, 0L/0z; and 0f/0x; be
continuous for ¢ = 1,...,n and let u* be an optimal control for the free terminal
point problem in the Lagrange formulation.

Then there exists a constant p, and a continuous vector valued function p :
[t07t1] - Rn} p(t> = (pl(t)a s apn(t))7 such that

1) (po, p(t)) # (0,0), for all ¢ € [to, t1];
2) H(t,x*(t),u*(t),p(t)) < H(t,x*(t),u(t),p(t)) for all t € [to, t1];

3) pi(t) = —OH )0z (t,x*(t),u*(t),p(t)) forall i = 1,... ,n and all ¢ € [ty, ;] that is

a continuity point of u*(t);
4) pi(ty) =0foralli=1,...,n
In our setting the Hamiltonian is given by

H(t,(S,E,I,R),(T,V),p)
=pi[A@) =B ) (S, N I) = p(t)S+n(t)R—-VS]
+p2[B () (S, N I) — (u(t) +e(t)) E]
+psle(t) E— () +~ ()1 —TI]
sy )T —p(t)R—n )R+ TI+ VS + kil + kT2 + k3 V2,

Applying Theorem 4.3.1 to our problem we get the following result.

Theorem 4.3.2. Assuming that there is an optimal control pair (T*, V*) and corre-
sponding trajectory (S*, E*, I*, R*) that minimizes the cost functional J in (4) over

V, there are functions py, ps, p3 and py satisfying

pr=(p1 = p2)B () (10 (S, N, 1) + Oop (S, N 1)) + p1 (1 (t) + V) = psV (4.7)

py=p2 (p(t) +(t) —pse(t), (4.8)
Py =p3 () + () +T) + (p1 — p2) B () (Oop (S, N, I) + 93 (S, N, I)) (4.9)
—pa (v () +T) = 1,
Py =p(t)ps—n () p1+n(t)ps, (4.10)
with transversality conditions
pi(ty) = pa(ty) = ps(ty) = palty) = 0. (4.11)
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Furthermore, the optimal control pair is given by

I* —
T* = min { max O,M , Trmag (4.12)
2k

and

V* = min < max O,M s Unaz ¢ - (4.13)
2ks

Proof. We consider the Lagrange formulation of our problem and apply Theo-
rem 4.3.1. Immediate computations show that equations (4.7) to (4.10) are con-
sequence of 3) in Theorem 4.3.1 and that equation (4.11) is consequence of 4) in
Theorem 4.3.1.

We will now characterize the controls. The general form for the optimality

conditions on the set
{t €[0,tf] : 0 < V*(t) < Vpaz and 0 < T*(t) < Tpnaa }

are

= ggf* = —p1S +psS+2k3V* and 0= il = —psl + pal + 2k T,

0
oT+

and thus on this set

(ps - p4)—7
d T = ————,
s an e

V* — (P1 —p4)5

If t € int{t € [0,t7] : V*(t) = Vs }, then the necessary condition for optimal

control is

oM . — S
0 Z OV* = _pIS +p4S + 2]”{73\/ ~ % 2 Vmaz-

Analogously, if t € int{t € [0,t¢] : T*(t) = Tinaz}, then the necessary condition for
optimal control is
oH (ps —pa)!

0> = —psl I +2kT" & —————— > Thuw
= 9T P3l + pal + 2k Sy 2T

If t € int{t € [0,t7] : V*(¢) = 0}, then the necessary condition for optimal

control is

Analogously, if ¢ € int{t € [0,tf] : T*(t) = 0}, then the necessary condition for
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optimal control is

—pg)l
= —pg[ +p4] + 2k2T* ~ % < 0.
2

0<
— OT*

Therefore we obtain (4.12) and (4.13). O

4.4 Uniqueness of the Optimal Control

In this section we will show that the optimality system, defined by the state
equations, the initial conditions, the adjoint equations and the transversality condi-
tions, is unique. The proof of this result is inspired on Gaff and Schaefer [9]. In this

section 0; denotes the partial derivative with respect to the i-th variable.
Theorem 4.4.1. For T' > 0 sufficiently small, the optimality system is unique.

Proof. We assume that we have two optimality systems corresponding to trajectories
and state equations (Sa E7 I? R)7 (p17p27p37p4) and (S, E7 ja R)7 (ﬁ17ﬁ27p37ﬁ4) and we
will show that the two are the same, at least in some small interval. To achieve this

we make the change of variables

and

pit) = e Mu(t), pat) = e Mha(t), ps(t) =e s(t), palt) = e Yu(t).
Naturally, setting n(t) = s(t) + e(t) +i(t) + r(t), we have

N(t) = S(t) + E(t) + I(t) + R(t) = D n(t).

By Proposition 2.1.1, we can assume that the trajectories lie in a compact set I

Using the differentiability assumption C2) we get

p(A, B,C) = 9(A, B,O)|

< [p(A, B,C) = (A, B,C)| + |¢(A, B,C) — (A, B, O)]
+1¢(A, B,C) — (A, B,C)

< M{|A — A|+ MY|B — B| + M¥|C — C|,

(4.14)
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where, since I' is compact, we have

M} :=sup|0ip| < +o0, i=1,2,3. (4.15)
zel

Considering the first equation in (3) we get
ae®s + e = A — Byp(e*s, e*n, i) — pe®s + ne®'r — Ve™'s

and thus
B

- at at at -
as—i—s-;—;gp(e s, e€Yn, i) — pus +nr — Vs.

Subtracting from the above equation the corresponding barred equation we obtain

a(s —5) + (5 = 5) = ——(p(es, e*n, e™i) — p(e™'5, e*'n, e'i)) — p(s — 3)
e()[

+n(r—7)— (Vs — Vs).
Multiplying by (s — §), integrating from 0 to 7" and noting that s(0) = 5(0) we have
1 T
E(S(T) —5(T))* + a/ (s — 3)%dt
T 6 ’ 3
= —/ @(S —3)(p(e®s, en, e™i) — (™5, e n, ™)) dt
o T T B
— / w(s — 3)%dt + / n(s —8)(r —r)dt — / (Vs —V3)(s — 5)dt
0 0 0
and by (4.14) we obtain
1 T
§(S(T) —35(T))* + a/ (s — 5)2dt
T ﬁ ’ 3
< /0 @LS — 5|(Mj|e™s — e*5| + My|e*n — e*n| + MY |e*i — e*i])dt
T T T B
— / (s — 3)%dt + / n(s —38)(r —r)dt — / (Vs —V5)(s — 5)dt
/0 0 0_
_ / Bls — 5|(MP]s — 5| + MP|n — 7l + MYJi — 7))dt
T T T B
—/ (s — §)th+/ n(s — 5)(r — F)dt —/ (Vs — V3)(s — 5)dt
T s ’ T )
= / BM (s — 5)*dt +/ LMy |s — §||n — n|dt +/ LM |s — §||i — i|dt
0 0 0
T T T B
—/ (s — §)th+/ n(s — 8)(r — F)dt —/ (Vs — Vs)(s — 5)dt
0 0 0
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and finally

1

60 =5+ [ s = 5t

T T
< 5“M1“/0 (s — 5)%dt + BUM;/O (s —5)* + (n —n)dt
+ B“Ms" /T(s — 82+ (i —1)%dt +n" /T(s —5)2 + (r —7)%dt
0 0

+ /T K[(V = V)2 +2(s — 5)2dt

< /OT(s—s)2+(z‘—i)2+(e—e)2+(r—r)2dt+K1 /OT(W—W)th,

where K, depends on the bounds for 5§ and V and C) = M + 28“ M3 + M3 +
n* 4+ 2K, (recall that M is given by (4.15)).

We will use some estimates for (V — V)2 and (T — T)? that will be obtained

later. Namely, we have

(V =V)? < Col(s = 5)* + (¢1 — ¢1)° + (ds — b4)7), (4.16)
where Cy depends on bounds for s, ¢; and ¢4, and
(T = T)* < Ciol(i = 9)* + (¢3 — ¢3)° + (1 — 04)7], (4.17)

where Cjo depends on bounds for i, ¢3 and ¢, (see equations (4.33) and (4.34)).

By (4.16) we obtain

1

60 =5 +a [ s

gcl/o (s— 824 (i— 1) + (e — &) + (r — 7)dt

T
— g 2 — h1)? - b1)?
+K109/0 (s =8)"+ (91— ¢1)" + (¢4 — ¢4)7dl (4.18)

< (01+K109)/0 (s— 824 (i— i)+ (c—e) + (r— )
+ (1 — 61)* + (¢4 — ¢4)*dt
< (Cy + K1Cy) / " B(t) + Dty
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From the second equation in (3) we have

1 T
§(e(T) —e(T))* + a/ (e —e)%dt
T 5 ’ 3 T
< / — e —el|p(e™s, e*'n, i) — p(e's, e*'n, e'i)|dt — / (n+e)(e—e)dt
o € 0

T
< /0 £|e —e|(M{"]e®s — e™5| + My'|e*n — e + My |e™i — e*i])dt

- /0 (n+e)(e—e)dt
(4.19)

and thus
1 - 2 ’ —\2
ST —el) +a | (e—e)dt
0
T 3 T
g/ /8|e—e|(M}‘|s—s|—I—M§‘|n—n|+M§‘|i—i|)dt—/ (n+e)(e—e)dt
0 0
T T T 3
:/ ﬁMf|e—e||s—s|dt+/ BM;|e—e||n—n|dt+/ BMle —él|li — i|dt
0 0 0

—/0 (n+e)(e—e)dt

(4.20)
Using the fact that xy < 2% + y? we get
1 T
§(e(T) —e(T))* + a/ (e —&)dt
T " T
< 5“Mf/ (e —€)* + (s — 8)dt + B“M;/ (e —e)* + (n—n)dt
0 0
T
+ BUM;/ (e —€)* + (i —1)%dt (4.21)
0

T
SCQ/ (s =5+ (i —1)* + (e — &) + (r — 7)*dt
0
T
<Cy [ o)+ i
0
where Cy = "M} + 28% M3 + "My
Recalling that
(wy — 2)(w — @) < C((z = 2)* + (y — §)* + (w — 0)*),
with C' > 0 depending on the bounds for Z and y, from the third equation in (3) we
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conclude that

1

SG(T) ~ A1) + a/OT(z' PPt
:/OTa(i—z’)(e—é)dt—/OT(u+’y)(i—i)2dt—/OT(Ti—Ti)(i—i)dt
< et /OT(Z'—Z')Z—l—(e—é)zdt—i—/OTKg[(T—T)2—|—2(i—z’)2]dt

< Oy /OT(Z'—z')2+(e—é)2dt+K2/oT(T—T)2dt,

where K, depends on the bounds for i and T and C3 = &* + 2K,. Thus, by (4.17)

we have
SGT) (1)) + a/o (i —0)%dt
<0 /0 (i =) + (e — )2t + KrCho /0 (i =32 + (65 — Gs) + (64 — ba)2dt
< (Cs + K5Chy) /0 (s =82+ (i—1)*+(e—e)? +(r—7)+ (o3 — ¢3)°
+ (g — ¢u)dt
< (Cs + KyChp) /T ®(t) + U(t)dt.
(4.22)

From the fourth equation in (3) we conclude that
1 T
S(r(T) = (1)) + a/ (r—7)%dt
0
T B T T o
= / (@ =) (r —r)dt — / (1 +n)(r —7)%dt + / (Ti — T9)(r — F)dt
0 0 0

+ /OT(VS — V3)(r — 7)dt
< “/T (
A

r—v dt+/ K3l(T = T)2 + (i — )2 + (r — 7)?dt

(i—1)* +
Ky[(V

+ (s —3)* + (r — 7)?dt

§C4/ (s—s)2~|—(Z—Z)2+(r—r)2dt+K3/

T
(T — T)%dt + K4/ (V — V)2dt,
0 0 0

where K3 and K, depends on the bounds for 4, 5, T and V and Cy = 4%+ K3 + K.

97



Dynamics of Non-Autonomous SEIRS Models with General Incidence

Therefore, by (4.16) and (4.17) we obtain

%(’I‘(T) —7(T))* + a/OT(T —7)%dt

< 04/0 (s —35)%4 (i —1)*+ (r — 7)%dt + K3010/0 (i — 1) + (¢35 — ¢3)?

T
+ (¢a — 0a)?dt + K4O9/ (s =382+ (1 — ¢1)> + (¢ — ¢a)’dt (4.23)
0 .

T —
< (Cy + K3C19 + K4Cy) / (s—58)2+(—1)+(e—e)’+(r—7)?
+ (D1 = ¢1)" + (93 — 63) + (¢4 — ¢a)dlt

T
< (O + K3Cho + KCo) / B(t) + W(t)dt.
0

By equation (4.7) we get

—ae "y + e_atél = €_at(¢1 — ¢2)8 (3190 (eat& e*'n, eati) + oy (eat& e'n, €ati))
+ e*"‘tcﬁl (/JJ + W) — e*at@\/

and thus

—agy + ¢ = (¢1 — $2)f8 (D1 (e™s,e™n, e®i) + Dapp (e™'s, €', ™))

(4.24)
+¢1(n+V) — g, V.

Using C2) we get

9,00 (e™'s,e%"n, i) — ¢;0;p (€3, €' 11, ™7) |
< [¢;0ip (e*'s, e¥n, i) — ¢;0;0 (e™'5, €7, €9) |
+ |90 (€5, ', %) — 90,0 (€5, €7, *%F) |
= ¢;]0:p (e's,e%n, i) — Do (€5, e, %) | + |§; — &5]|0sp (€5, 'R, 7% |
= ¢; [|0ip (e™s,e%"n, e™1) — Do (e™'5, €™ n, e™i) | + |Dip (™5, €¥'n, e™'5)
—0;p (6 5,en, e” 2) | + [0:p (e 5,en, e” z) — O0;p (e 5,en, e” z) H
+|0; — 0,110 (€25, €', €2 |
< ¢j[MY]e*s — e5| + Mis|e®n — e®'i| + M|e™i — el
+ |95 — ;1|05 (€5, 'R, *%) |
< ¢ [Miie®|s — 3] + Mipe™|n — il + Mize™|i — il] + M}'|¢; — oy

where, by C2) and since I' is compact, we have
My = sup |0;0ip(x)] < +oo, 4, € {1,2,3}. (4.25)
xe

98



Dynamics of Non-Autonomous SEIRS Models with General Incidence

Subtracting from equation (4.24) the corresponding barred equation we conclude
that

—agy+ b1 + ady — 61
= B(d1 — ¢2) (010 (™5, €% n, ™) + Dotp (€5, €%n, e™1)) + ¢1 (u+ V) — sV

— B(¢1 — @) (01g0 (eat§, e'n, eatf) + Oy (eo‘t§, e*'n, eaﬁ)) — (,u + \_/) + psV
=0 [gbl (8190 (eo‘ts, e, eo‘ti) + Oyp (e“ts, e, eati))

—¢1 (O1p (€5, €', ') + Oagp ('3, ™', ') )|

-0 [qbg (81<p (eo‘ts, e, eo‘ti) + 0o (eo‘ts, e, eo‘ti))

— o (8190 (eaté, e, eatg) + Osp (e"‘t§, e™n, e"‘%))}

+ u(dp1 — ¢1) + 11V — 91V — 44V + ¢, V.

Multiplying by ¢; — ¢ and integrating from 0 to 7" we obtain

1 - T _
- 5@ - a0 ~a [ (61— 6%
0
T
= / B(or — ¢1) [01 (D1 (€5, €¥n, e7%) + agp (e*'s, €¥'n, €'1))
0
—¢1 (01 (€5, €', €*'0) + Dot (e'5, €', e'1) )] di
T
- / B(or — ¢1) [02 (01 (€*'s, €, %) + Oapp (e™'s, €¥'n, €7'1)) (4.26)
0
— s (01 (e™'5, €', €*'0) + Dagp (€15, €', e"1) )] dt
T T
[t =+ 60— e e
0 0
T
- [ o= a0 - ot
0
Multiplying (4.26) by —1, we obtain
1 - T _
5610 = 5100 +a [ (o1 - arar
0
T
S ﬁu/ |¢1 . &1‘ [|¢181§0 (eonfsjecytn7 eati) _ &18190 (eadfg7 €at’f_l,€atg) |
0
+‘¢182¢ (eat87 eatn7 eati) - &182S0 (eatgv eat,ﬁﬂ eat%) H dt
T
+ Bu/ |¢1 . le| UQSQalSO (GatS, €at7’L, 6at2~) . QZ_)281S0 (eoztg7 eatﬁ’ eat%) |
0
+|¢2@290 (eozts7 ecvtn7 eati) o &282@ (eoztg7 @O‘tﬁ7@aﬁ) |] dt

T

T
- / (61 — o) (A V — g V)dt + | (1 — 61) (s V — ¢4 V)dt
0

0
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and thus, by (4.15) and (4.25), we conclude that

1 - T _
5(61(0) = 5 (0)? +a / (61 — 612t
<Bu/ |¢1 ¢1 [¢u( u at|8—8|+ u oct|n n[+M13eat|i—f|)
—|—MU|¢1 ¢1|+¢u( 21€at|s_§|_|_ u at|n_n|+ 236at|l~_g|)
+ M| d1 — ¢ dt+5“/ |1 — &1] [@5 (M e™|s — 5| + Miye™|n — nl)+
+ M{e™|i — i]) + M| ¢y — o] + ¢ (M31e™|s — 5| + Mzye™|n — 1
M at‘z_z‘)"‘Mu’@—@H dt—/ (1 — 1) (1 V — 1 V)dt
T —_ — —
+/ (1 — 01)(PaV — 94 V)dt
0

Finally we have

1 - T _
3(010) =310 +a [ (o= Gu2a
T
< fUore” ((M{a + M) /0 (61— ¢1)” + (s — 5)%dt + (M + M)
T ~ T - -
X / (b1 — ¢1)* + (n — n)%dt + (M3 + M23)“/ (b1 — ¢1)* + (i — z’)zdt>
0 . _ 0 . _
O+ M) [ (01— e + e ((Mﬁ #05) [ (00— a0y’
0 0
T
+(s — 5)dt + (M, + M3h) / (¢1 — ¢1)° + (n — n)?dt + (Myg + Mag)* x
T B _ : T B 3
X / (o1 — ¢1)* + (i — i)th> + B (M + M;)/ (f1 — 01)° + (2 — ¢o)?dlt
0 0
T B B T 3 B
b [ RV =P 4 20— 607+ [ Kal(V =T+ (01 )
0 0
+ (91 — 031)2](115
T — — —_
<o [ (=9 e (=0 (= 1 (01— 61+ (62— )
0
T
(64 — 6)2dt + (K5 + Ko) / (V — V)2dt,
0
where K5 and Kg depends on the bounds for ¢y, ¢, and V and

= BUoie® (M} + Myy) + 2(Myy + Ms) + (Miz + Mas)*)
+ BUpye™ (M7 + Myy) + 2(Miy 4+ Msy) 4 (Mg + Mas)")
+ 268" ( M} + MY) + 2K;5 + K.
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By (4.16) and (4.17) we obtain

56n0) = 5,07 +a [ (- b
< 05/OT(3—3)2+(6—6)2+(z‘—%)2+(r—r)2+(gz51 — ¢1)°

+ (g2 — 02)" + (01 — da)dt

+ (K + K4)Cy /0 T(s =8+ (d1 — d1)* + (d1 — pa)’dt (4.27)
< (Cs + (K5 + Kg)Cy) /OT(s —8)?2+(e—e)+(i—i)2+(r—7)°

+ (¢ = 01)° + (92 — 62) + (¢a — ¢a) dlt

< (C5 + (K5 + Kg)Cy) /T O(t) + W(t)dt.

From equation (4.8) we have —ae ¢y + e gy = e gy (u+¢) — e e
and thus —agy + ¢ = ¢ (14 ) — ¢3e. Subtracting from the above equation the

corresponding barred equation one gets
—a¢2+¢32+a¢32—$2 = (¢2—¢32) (p+e)— (¢3—¢33)5a
and multiplying by ¢, — ¢, and integrating from 0 to T we obtain
T
= 5(020) = 620 — o [ (02— e
T L T - -
= [ @) eyt — [ (02 ) (on = ) e

Multiplying by —1, we have, letting Cs = €%,
1 B T
50:0) = 6.0+ [ 6= it < [ (02 8+ (03— b

T
cﬁ/cp
0

(4.28)

From equation (4.9) we conclude that

ae o+ e hs = e o5 (+ v+ T) + e *(p1 — ¢2)B(Dap (™5, €', ™)
+ O3 (eo‘ts, e, eo‘ti)) —e Py +T) -,y
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and thus
—ads + ¢3 = b3 (n+ 7+ T) + (¢1 — 62) (020 (e*'s, e*'n, i)
+ 050 (e™'s,€%n, e™0)) — da(y + T) — €™k
Subtracting from the above equation the corresponding barred equation we obtain
—a¢3+¢33+@¢33—€g3
= ¢3 (M + Y + T) + (gbl - ¢2>B (8290 (eatsa eatnv eati) + 8390 (eat87 eatn7 eati))
—¢a(y+T) — ks — 3 (n+ 7+ T)
— (o1 — o) ((%gp (eats, e“'n, eatz‘) + O3 (eo‘ts, e, eo‘ti)) + da(y + T) + ek
=0 [gbl (82g0 (eats, e®n, eati) + O3 (eats, e®n, eati))
—¢1 (020 (e™'5, €7, 1) + D3¢ (€5, ™', e'1) )]
-0 [9252 (aggo (eo‘ts, e®'n, eati) + O3 (eats, e®n, eati))
— (32g0 (eo‘tg, e, eatg) + O3 (eatE, e®n, eatf))}
+ (¢35 — @3) (L +7) + 3T — ¢3T — (¢4 — ¢a)y — (64T — ¢4 T).
Multiplying by ¢5 — ¢5 and integrating from 0 to 7' we get
1 . T .
= 56500~ 0~ a [ (63 G
0
T
= / B(¢3 _ &3) [¢1 (8290 (eatS, eatn7 eati) + 834,0 (eat& 6atn, €ati))
0
—¢1 (02 (e™'5, €', €*'0) + O3 (€5, €', e'1) )] dt
T
- / B(gs — d3) [0 (o0 (™5, €% n, ™) + O3 (€5, €¥'n, e'1)) (4.29)
0
— o ((92(,0 (eo‘tE, e®'n, e"‘tg) + O3 (eo‘t§, e, eo‘tf))} dt

[ )@= arde s [ (60 ot - aiDi

_ /0 V(3 — b3)(pa — da)dt — /0 (63 — 63) (64T — G4 T)dt.
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Multiplying (4.29) by —1, we obtain
1 . T .
5640 = 3007+ [ (on = dnat
0
T
< B"/ |03 — @ [|0102¢ (€5, en, €*'i) — 10agp (€5, e, €10 |
0
+|p1050 (eats, e®n, eat@') — 01050 (eatE, e'n, eatg) H dt
T
+ ﬁ“/ |3 — @3] [|¢282g0 (eats, e, eo‘tz') — (090 (eo‘t.§, e'n, eo‘ti) |
0
+| 2050 (eo‘ts, e®'n, eati) — (o030 (eat§, e*'n, eatg) H dt
T T
0 [ o= dullon = it — [ (6n— ) (65T — Gy T
0 0
T — — —
+ [ o= T - 6my
0
T ~ _
< 5“/ |65 — @3] @1 (Maie™'[s — 5] + Mype™|n — @] + Maze™'|i — i)
0
+ My|¢1 — 1]
+01 (Mg1e™|s — 5] + Mzpe™|n — 0| + Mgze®'|i — if) + Mg'|¢1 — ¢n|] dt
T - _
45 [ lon - Gol B (036 — 5 + M — i + Mt ~ 1)
0

+ M| Py — 2|
(M5 — 8| + Mibe™|n — 7 + Mye?li — i) + M| ba — of] dt
T 3 B T B o
T / (63— B3) + (65 — Bt — / (d5 — B5)(&sT — G5T)ds
0 0

+ /0 (93 — ¢3) (AT — ¢4 T)dt
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and therefore
T
3(050) = 30 + 0 [ (on = G
T
< BUgret ((M;a #005) [ (65— 697 + (s - 5
T 0_ T _
+ (M, + M) / (p1— ¢1)* + (n— n)*dt + (Mas + M33)u/ (3 — B3)?
0 0
T
(i = i)2dt) + BH(ME + M) / (63— Ba)* + (61 — )2t
T
4 FrgneT ((M;a w015) [ (05— 697 + (s - 5
. ) 0
(M + M) / (63— B)* + (n — n)?dt
T
+(Maz + Ms3)" / (¢3 (i — @)2dt>
T
oMy M) [ (s — )+ (60— Go)d
0
e / (63— Ba)* + (b4 — Ga)Pdt + / (T — T))? + 2(s — 3a)%)dt
0
/ Ks[(T = T)2 + (s — 6a)? + (65 — 63)?dt

§o7/0 (s—5)2+(e—e)+(i—0) + (r — )
+(d1 = &) + (d2 — d2)" + (¢3 — 93)" + (d — Pa)’dl
+ (K7 + Ks) /OT(T — T2t
(4.30)

where K7 and Ky depends on the bounds for ¢3, ¢, and T and

Cr = B¢ie or ((M3y + Mgy) + 2(Mgy + Mgy) + (Maz + Mss)")
+ 5u¢u or ((Mﬁﬁ + Mfﬁ) + Q(M;Q + Mi??) + (M23 + MSS)U)
+ 26" (M3 + Mg') + 4" + 2K7 + K.

Now, by (4.30) and (4.17) we obtain
3620 = 80P +a [ (on =P < Cr [ (s =57 4 (e~ o)
F (i =)+ (r =7+ (91— 01)* + (92 — d2)” + (5 — b3)°
+ (¢4 — ¢a)?dt + (K7 + Ks)Clo/ (i —0)* + (3 — ¢3)* + (¢a — Pa)dt
0

104



Dynamics of Non-Autonomous SEIRS Models with General Incidence

and thus

1 R T .,

3(00) = 3202+ [ (on =

< (C7 + (K7 + Kg)Cho) /O (s—58)°+(e—e)P+(i—i)+ (r—7) (431)
+ (1 — ¢1)> 4 (2 — B2)> + (3 — B3)° + (Pa — ¢a)°dt

< (Cr + (K7 + Ks)Cho) /T O(t) + U(t)dt.

From equation (4.10) we conclude that —ae ¢, + e g, = ey (u+1n) —
e~ p1m and thus —ags+ oy = ¢4 (1t + n)—@1n. Subtracting from the above equation

the corresponding barred equation, we obtain

—Oé¢4+<254+06<54—954: (¢4—<Z_54) (1 +m) — (¢1 —<231)77~
Multiplying by ¢, — ¢4 and integrating from 0 to T we get
T
~ 5010 =50 —a [ (01—
T . T B -
= / (s — ¢a)” (4 m)dt — / (¢a — ¢4) (¢1 — 1) mdt.
0 0
Multiplying by —1, we obtain
1 - T - T - -
3010 =GP +a [ (o= tde < [ loi=dler - it
T
< 08/ (01 — &1)? + (¢4 — ¢a)?dt  (4.32)
0

< Cy /T O(t) 4 W(t)dt,

where Cg = n".

We will now obtain the bounds for (V — \7)2 and (T — T_F)Q announced in (4.16)
and (4.17). We have

(V - \7)2 = (620,;5 (efatd)l - efat@) - e;;j(ea%l - efat@))Q
= ﬁ(&ﬁl — S¢4 — 81 + 5¢4)°
3
1 _ _ _ _
= 4—52(5((/51 — 1) + (5 — 8)b1 + (s — ¢a) + (—5 + 5)a)?
3
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and thus

(561 = 61) + (s = 5)01)” + 2(s(d1 — 1) + (5 — 5)d1) X

X (8(¢a — ¢a) + (5= 8)da) + (5(ds — ¢4) + (5 — 5)94)?)
= 4%&%(52(@ — 01)? +25¢1(s — 5) (1 — d1) + P1(s — 5)* + 25 (1 — ¢1)(Pa — Pa)
+ 2501 (s — 8)(P1 — d1) + 2045(s — 5)(d1 — ¢1) — 20104(s — 5)°
+ 5% (04 — ¢1)” + 2045(Ps — d4) (5 — 5) + ¢3(5 — 5)°)

= é((%él + @1 + 450y + 03)(s — 5)° + (35 + 251 + 2504) (1 — ¢1)°
3

+ (35 + 2501 + 25¢4) (¢4 — ¢4)°)
< Col(s —5)* + (o1 — ¢1)* + (s — ¢4)?]
(4.33)

where

Cy = 41 (4 max{s} max{p1, ¢4} + max{p; }* + max{p4}> + 3 max{s}?).

Analogously we obtain

(T~ T)°
— (;_Hz(e—atqsg . €_at¢4) o Z_ﬁj(e—atés - e—at$4))2

= L(i% — iy — i3 + i)’
( (63 — @3) + (i — 1)ps + i(Ps — 4) + (—i 4 i) ¢s)”

4/12

4; ((i(p3 — @3) + (i — 1)d3)* + 2(i(d3 — b3) + (i — 1) P3) (i (Pa — ¢a) + (1 — i) P4)
( (¢4 — ¢a) + (1 — 0)4)?)
P 2( 2(ps — ¢3)> + 2id3(i — 1) (P53 — ¢3) + ¢5(1 — 1)* + 2i*(¢3 — P3)(Ps — Pa)
+ 2ip3(i — 1) (Pa — Pa) + 2041 (i — 1) (3 — b3) — 20304 (i — i)’
+ % (Ps — ¢4)* + 204i(ds — ¢a) (1 — 7) + ¢3(i — 1))
< é((‘liés G2+ iy + G2 (i — 1) + (3i% + 2ihs + 2ids) (¢3 — P3)?
+ (3i% + 205 + 2i04) (ds — ¢4)?)
< Chol(i —9)* + (¢35 — ¢3)* + (s — 0a)?],
(4.34)
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where

Cho = —— (A max{i} max{ds, s} + max{ds}? + max{ds}? + 3max{i}?).

2
4Ks

We have finally all the bounds needed to prove our result. Define

and

D(t) = (o1(t) — 1(1))* + (d2(t) — d2(t)) + (¢3(t) — @3(1))* + (Pa(t) — Pa(t))>.

and observe that W(¢) > 0 and ®(t) > 0 for all ¢.
Adding equations (4.18), (4.21), (4.22), (4.23), (4.27), (4.28), (4.31) and (4.32),

we obtain for the sum of left-hand sides

%\II(T) + %@(0) +a /OT W(T) + &(T)dt

and thus
%[\II(T) +3(0)] +a /T W(T) + &(T)dt
< C*/T U(T) + (T)dt + Ce” /T U(T) + ®(T)dt

which is equivalent to

~ A

%[\I}(T) +0(0)] + (o — C — Ce°T) / ' W(T) + &(T)dt < 0. (4.35)

We now choose a so that
o > C’ + C’

and note that % > 1. Subsequently, we choose T" such that

T<lln(ajc).
o C

ol < In a_AC = eO‘T<Oé_AC.
C C

Then,

It follows that o — C — Ce®T > 0, so inequality (4.35) can hold if and only if, for
all t € [0, 7], we have s(t) = 5(t), e(t) = &(t), i(t) = i(t), 7(t) = 7(t), ¢1(t) = ¢ (1),
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S(1),

Po(t) = da(t), p3(t) = P3(t) and P4(t) = ¢4(t). But this is equivalent to S(t) =
1(t) = p1(t), p2(t) = P2(t), ps(t) = ps(t) and

E(t) = E(t), I(t) = I(t), R(t) = R(t), p
pa(t) = pa(t).
With this, the uniqueness of the optimal control is established. O

4.5 Numerical Simulation

In what follows, the incidence into the exposed class of susceptible individuals and
the birth function A (t) are

B(t)p(S,N,I) = 0.56(1 — per cos(2mt + 0.26))ST

and
A (t) = 0.05 + 0.05 per cos(27t),

with per € [0,1[. The remaining parameter functions — u (t), 7 (¢), € (¢t) and ~ (¢)
— are assumed constant. The values for the several parameters in this section were
taken from [39] and [41] and are presented in Table 4.1. As mentioned before,
the optimal control system consists in the states equations (the first four equations
on system (3)), the initial conditions, the adjoint equations (4.7) to (4.10) and
the transversality conditions (4.11) with the optimal equations (4.12) and (4.13)
substituted into the state and adjoint equations. The state equations system and
the adjoint equations system were solved numerically using the solver ode45 of
MATLAB, an explicit 4" and 5" order Runge-Kutta method. The state system is
solved with the initial conditions of Table 4.1. The adjoint system is solved, as the

previous system, after making the following change of variable:
t'=t;—t. (4.36)

The procedure can be described by the following algorithm:
Step 1: Let : =0, V;, =0 and T; = 0;

Step 2: Let ¢« = ¢+ 1. The variables S;, F;, I; and R; are determined using the initial

conditions and the vectors V,_; and T;_q;

Step 3: i) Apply change of variable (4.36) to the adjoint system, to the state vari-

ables and to the control variables;

ii) The adjoint variables p;;, p2;, ps; and ps,; are computed solving the

resulting adjoint system:;
Step 4: Variables V;, T; are updated according with formulas (4.12) and (4.13);
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Step 5: If the relative error is smaller than a given tolerance (< 1%) for all the vari-
ables, the algorithm stops.
Otherwise go to Step 2.

In table 4.1 we presents the values for the parameters of our system:

Table 4.1: Values of parameters used

Name Description Value
So Initial susceptible population 0.98
FEo Initial exposed population 0

Io Initial infective population 0.01
Ro Initial recovered population 0.01
I natural deaths 0.05
€ infectivity rate 0.03
~ rate of recovery 0.05
n rate of loss of immunity 0.041
k1 weight for number infected 1

ko weight for treatment 0.01
ks weight for vaccination 0.01
Tmaw maximum rate of treatment 0.1

VUmaz maximum rate of vaccination 0.4

In each one of the figures 4.1 to 4.5, we present two plots side by side in order
to be able to compare the controlled and uncontrolled situations as well as the
autonomous and the periodic situations.

The behavior of our optimal control model with per = 0 (autonomous case)
and per = 0.8, in both the controlled and the uncontrolled case, is represented in
figure 4.1 and figure 4.2. We can observe that, if we apply treatment and vaccination
(controlled case), the number of exposed and infected individuals is significatively
lower, as expected. It can be seen that the susceptible and recovered classes have very
different behavior in the controlled and uncontrolled situations. Additionally, we
observe that the variation of both classes in the uncontrolled case is not significant.

In figure 4.3 and figure 4.4, we have the same trajectories as in figure 4.1 and
figure 4.2. In these figures we can observe the effect of the periodicity of A(¢) and
B(t) in the different classes. The effect is perceptible in susceptible and exposed
classes, since the periodic functions are present in these classes. With these results,
we conjecture that the periodicity effect is "softened" in the transition between
classes.

In figure 4.5 are represented the trajectories of treated individuals (left side) and
of vaccinated individuals (right side). According to the optimal conditions, both
trajectories go to zero when t — ¢4, = 25. The periodicity effect is perceptible in
the vaccinated variable, consequence of the fact that vaccination takes place in the

susceptible class. Treatment occurs in the infective class and, as we have seen, in
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Figure 4.1: SEIRS model with per = 0: controlled and uncontrolled case.
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Figure 4.2: SEIRS model with per = 0.8: controlled and uncontrolled case.

this class the periodicity is not perceptible. As a consequence, periodicity it is only
slightly perceptible in the treatment variable.

From figure 4.6 to figure 4.9, we present the behavior of infected, treated and
vaccinated classes when we varied the parameters p, 7y, € and 7, respectively, main-
taining, in each case, the initial values and the other parameters. In all figures we
varied the respective parameter (u, v, € and 1 ) from 0 to 0.1 in steps of length 0.01.

Referring to figure 4.6, where the variation of p is analysed, we can say that
the effect of periodicity is more perceptible in the vaccinated variable than in the
treatment variable for the reasons explained above. In the infected class, for low
values of 1 (low mortality) we can observe that the infected class increases. This is
justified by the difference between birth and death.

Concerning figure 4.7, where we can observe the effect of the variation of v, the
effect of periodicity is analogous to the previous situation. The bigger the value of
~ the more the infected individuals recover and thus the faster the infected class
decreases.

In figure 4.8, one can see the effect of the variation of €. The effect of periodicity

in this case is analogous to the effect of periodicity in the previous situations. When
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Figure 4.3: SEIRS model for controlled case: per = 0 and per = 0.8.
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Figure 4.4: SEIRS model for uncontrolled case: per = 0 and per = 0.8.

we have a high value of €, we have a faster transition of exposed individuals to the
infected class and this is the reason why we can observe in figure 4.8 that increasing
the value of € leads to an increase in the infected class.

Finally, in figure 4.9 the variation of 7 is highlighted. We can conclude that the
periodicity effect is similar to the previous considered scenarios, more perceptible in
some situations that in others. The variation of 7 is the one that less influences the
behavior of the three variables considered in figure 4.9.

It is worth noting that, in the situations considered and range of parameters
considered the experiments, maintaining all other parameters constant, the variation

of per has a very small effect on the obtained cost. Namely, we saw numerically that

‘j(I,T,\/) | =T (LT, V) | ‘ < 0.000329537,

per=uv per=uvy

for vy, ve € {0,0.8}, where J (I, T, V) |p6r:v_, i =1,2, is the obtained total cost for

two of our control problems differing only in the parameter per.
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Figure 4.5: Treated and Vaccinated: per = 0 and per = 0.8.
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Figure 4.6: Infected, Treated and Vaccinated with the variation of p from 0 to 0.1
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Figure 4.7: Infected, Treated and Vaccinated with the variation of v from 0 to 0.1
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Figure 4.8: Infected, Treated and Vaccinated with the variation of ¢ from 0 to 0.1
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Figure 4.9: Infected, Treated and Vaccinated with the variation of n from 0 to 0.1
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Appendix A

Attachments

A.1 Matlab Code for Figures in Chapter 1

Figures 1.1, 1.2 and 1.3
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clear all

global L B a u eta e g

format short

t=0

L= 2;
B=5.9;
a=0;

u= 2;
eta= 0;
e= 1;
g= 0.02;
S0=.1
EO=.1
I0=.1
RO=.1

OPTIONS=odeset ('AbsTol"',1le-10);
w0=[S0,E0,I0,R0];

[t,w]=0dell3('sistema', [0,400],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S1=S; El=E; Il=I; R1=R;

tl=t;

for j=1 : length(t)
aux_1(3J)=0;
aux_s(Jj)=1;

end

50=.08
E0=.07
I0=.12
R0=.13

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,I0,RO];

[t,w]=0dell3('sistema', [0,400],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S2=S; E2=E; I2=1I; R2=R;

t2=t;

S50=1.99

E0=.09

I0=.05

R0=.25

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,IO0,RO];

[t,w]=0dell3('sistema', [0,400],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S3=S; E3=E; I3=I; R3=R;

t3=t;

figure

plot(tl,S81,'k',tl,ELl, "k--"',t1,I1,'k.")
axis ([0,5,0,2])

xlabel ('t');

legend ('S(t)','E(L)','I()")

hold on



plot(t2,82,'r',t2,E2,'r--",t2,I2,'x.")
hold on
plot (t3,83,'c',t3,E3,"'c——",t3,I3,"'c.")

figure

plot (E1,I1,'k")
xlabel ('E(t)
hold on

plot (E2,I2,'x")
hold on

plot (E3,I3,'c")

figure

plot (S1,I1,'k")
xlabel ('S (t)
hold on
plot(sS2,I2,'r")
hold on

plot (S3,I3,'c")

figure

plot3(S1,E1,I1,'k")

axis ([0,2,0,.15,0,.12])

xlabel ('S'); ylabel ('E'); zlabel ('I1I")
box on

hold on

plot3(S2,E2,I2,'r")

hold on

plot3(S3,E3,I3,'c")

figure

plot(tl,S1,'k")

title ('Susceptible')
xlabel ('t');

ylabel ('S','Rotation',0.0)
axis ([0,50,0,2])

hold on

plot (t2,82,'r")

hold on

plot (t3,83,'c")

hold on
plot(tl,aux s,'--"', 'Color',[.75 .75 .75])

figure

plot(tl,I1,'k")

title ('Infected')

xlabel ('t"')

ylabel ('I','Rotation',0.0)
axis ([0,50,-0.02,0.12])
hold on

plot(t2,I2,'r")

hold on

plot (t3,I3,'c")

hold on

plot(tl,aux i,'--','Color',[.75 .75 .75])

'y, ylabel ('I(t)','Rotation',0.0)

'); ylabel ('I(t)','Rotation',0.0)



clear all

global L B a u eta e g

format short

t=0

L= 2;
B=6.9;
a=0;;
u= 2;
eta= 0;
e= 1;
g= 0.02;
S0=.1
EO=.1
I0=.1
RO=.1

OPTIONS=odeset ('AbsTol"',1le-10);
w0=[S0,E0,I0,R0];

[t,w]=0dell3('sistema', [0,100],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S1=S; El=E; Il=I; R1=R;

tl=t;

for j=1 : length(t)
aux_1(3j)=.0402;
aux_s(j)=.8782;

end

50=.08
E0=.07
I0=.12
R0=.13

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,I0,RO];

[t,w]=0dell3('sistema', [0,100],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S2=S; E2=E; I2=1I; R2=R;

t2=t;

S50=1.99

E0=.09

I0=.05

R0=.25

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,IO0,RO];

[t,w]=0dell3('sistema', [0,100],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S3=S; E3=E; I3=I; R3=R;

t3=t;

figure

plot(tl,S81,'k',tl,ELl, "k--"',t1,I1,'k.")
axis ([0,5,0,2])

xlabel ('t');

legend ('S(t)','E(L)','I()")

hold on



plot(t2,82,'r',t2,E2,'r--",t2,I2,'x.")
hold on
plot (t3,83,'c',t3,E3,"'c——",t3,I3,"'c.")

figure

plot (E1,I1,'k")
xlabel ('E(t)
hold on

plot (E2,I2,'x")
hold on

plot (E3,I3,'c")

figure

plot (S1,I1,'k")
xlabel ('S (t)
hold on
plot(sS2,I2,'r")
hold on

plot (S3,I3,'c")

figure

plot3(S1,E1,I1,'k")

axis ([0,2,0.06,.18,0.03,.12])

xlabel ('S'); ylabel ('E'); zlabel ('I1I")
box on

hold on

plot3(S2,E2,I2,'r")

hold on

plot3(S3,E3,I3,'c")

figure

plot(tl,S1,'k")

title ('Susceptible')
xlabel ('t');

ylabel ('S','Rotation',0.0)
axis ([0,50,0,2])

hold on

plot (t2,82,'r")

hold on

plot (t3,83,'c")

hold on
plot(tl,aux s,'--"', 'Color',[.75 .75 .75])

figure

plot(tl,I1,'k")

title ('Infected')

xlabel ('t"')

ylabel ('I','Rotation',0.0)
axis ([0,50,0.03,0.12])
hold on

plot(t2,I2,'r")

hold on

plot (t3,I3,'c")

hold on

plot(tl,aux i,'--','Color',[.75 .75 .75])

'y, ylabel ('I(t)','Rotation',0.0)

'); ylabel ('I(t)','Rotation',0.0)



function wprime=de4 rhs(t,w)
global L B a u eta e g

wprime=[L-B* (1l+a*cos (2*pi*t))*w(l)*w(3)-u*w(l)+teta*w(4)
B* (1+a*cos (2*pi*t)) *w(l) *w(3) - (ute) *w(2)
e*w (2) - (ut+g) *w(3)
g*w (3) - (uteta) *w(4)] ;
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A.2  Scilab Code for Figures in Chapter 2

Figures 2.1 and 2.2
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0001
0002
0001
0002
0003
0004
0005
0006
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054

z)

clear ;

mu=2; epsi =1; gamm=0.02 ; d =0; k =0;
function [dzdt]=f(t,

E=z(1)

1=2(2)

dzdt (1) =bet *( 1+b*cos (2*%pi*t)) *I - (mutepsi *( 1+d*cos (2*%pi*t))) *E
dzdt (2) =epsi *(1+d*cos (2*%pi*t)) *E- (murgamni ( 1+k* cos ( 2* %pi*t))) *I

endfunction

time =[0: 0.01 : 1];
n=length (time );

blist =[-1:0.05:1];

for i=1:length (blist )
b=blist (i);

betmin =0.1 ;

betmax =10;

while  betmax - betmin >0.000001

bet =( betmax +betmin )/ 2;

soll =ode([ 1;0], O,time,f
columnl =soll (:,n);
sol2 =ode([ 0; 1], O,time,f
column2 =sol2 (:,n);

)
)

MonodromyMatrix =[ columnl column2 ];

FloguetMultiplier =max(real (spec ([ MonodromyMatrix 1)) ;
if  FloguetMultiplier >1 then

betmax =bet;

else

betmin =bet;

end;

end;

threshold (i) =bet;

end;

plot2d ( blist,threshold,rect

t =linspace (-1, 1, 1000)
s=linspace (0, 15, 1000)

function z=epsi_ext (x,

1

=[ min ( blist

contour (t,s,epsi_ext ,[0,0]) ;

function w=epsi_per (X,

contour (ts,epsi_per ,[0,0]) ;

xstring (0, 2, "Extinction”
t=get ("hdl" ) /1 get
t . font_foreground =1;

t. font_size =3;

t . font_style =5;

t. text_ box_mode = 'centered'
t . alignment = 'center' ;

xstring (0, 13, "Permanence"

t=get ("hdl" ) /I get
t . font_foreground =1;
. font_size =3;

. font_style =5;

- - - -

.alignment = 'center'

1 0,0)

) 0 max(blist ) 15]) ;

y), z=y*(1+abs(x)) - 6.06 , endfunction

y), w=y- 9% abs ( x) - 6.06 , endfunction

the handl e of the newly created object

/1 change font

»0,0)

/1 the text

properties

is now centered on [0,0.3].

the handl e of the newy created object

/'l change font

. text_box_mode = 'centered'

/1 the text

properties

is now centered on [0, 1.8].



0001 clear;

0002 nu=2; epsi=1; ganm=0.02; d=0; k=0;

0001 function [dzdt]=f(t, 2z)

0002 E=z(1)

0003 1=z(2)

0004 dzdt(1)=bet*(1+b*cos(2*%i*t))*I-(mu+epsi*(1l+d*cos(2*%i*t)))*E
0005 dzdt (2)=epsi*(1+d*cos(2*%i *t))*E- (mu+gamm ( 1+k*cos(2*%i *t)))*I
0006 endfunction

0009 time=[0:0.01:1];

0010 n=length(tine);

0011 blist=[-1:0.02:0];

0012 for i=1:length(blist),

0013 b=blist(i);

0014 betm n=6;

0015 bet max=6. 4;

0016 while betmax-betm n>0. 0001,

0017 bet=(bet max+betmn)/2;

0018 sol 1=ode([1;0],0,tine, f);

0019 columl=sol 1(:,n);

0020 sol 2=ode([0;1],0,tine, f);

0021 colum2=sol 2(:,n);

0022 MonodronyMatri x=[ col uml col um2];

0023 Fl oquet Mul tiplier=nmax(real (spec([MnodronyMatrix])));
0024 if FloquetMultiplier>1 then

0025 bet nax=bet;

0026 el se

0027 betm n=bet;

0028 end;

0029 end;

0030 threshol d(i)=bet;

0031 end;

0032 plot2d(blist,threshold,rect=[mn(blist) 6.05 nmax(blist) 6.4]);
0033 appr=0. 16501650-blist.” 2/ 129. 3576;

0034 for j=1:length(blist),

0035 approxi mate_beta_th(j)=1/appr(j);

0036 end;

0037 plot2d(blist,approxi mate_beta_th, styl e=5);



0001
0002
0001
0002
0003
0004
0005
0006
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054

clear ;
mu=2; epsi

function

E=
| =

z(1)
z(2)

z)

=1; bet =6.2 ; d =0; b =0;
[dzdt]=f(t,

dzdt (1) =bet *( 1+b*cos (2*%pi*t)) *I - (mutepsi *( 1+d*cos (2*%pi*t))) *E
dzdt (2) =epsi *(1+d*cos (2*%pi*t)) *E- (murgamni ( 1+k* cos ( 2* %pi*t))) *I
endfunction
time =[ 0: 0.001 : 1];
n=length (time );

galist =[-1:0.001 :1];
for i=1:length (galist
k=galist (i);
gammmin=0;

gammmax0.1 ;

while

columnl =soll (:,n);

sol2 =ode([ 0; 1], O,time,f

column2 =sol2 (:,n);
MonodromyMatrix
FloguetMultiplier

FloguetMultiplier
gammmin=gamm;
else
gammmaxgamm;
end;
end;

if

threshold

end;
plot2d  ( galist,threshold,rect

t=
S:

function
contour
function

xstring
t =get ("hdl"

t.

—, - .-

t.

- - - -

linspace
linspace

font_foreground
. font_size
. font_style
. text_box_mode
. alignment
xstring
t=get ("hdl"
font_foreground
. font_size
. font_style
. text_box_mode
. alignment

)

=3;

=[ columnl column2 ];

)

gammmax gammmir>0.001
gamns( gammmaxgammmin) / 2;
soll =ode([ 1;0], O,timef );

)

=max(real (spec ([ MonodromyMatrix 1)) ;

(i)=gamm;

(-1,1,100);
(0,0.3,100);
z=gamm_ext( X,
(t,s,gamm_ext
w=gamm_perny X,
contour (t,s,gamm_perm , [ O, 0])

/1 get
:]_;

=5;

)

=3;

= 'centered'

‘center’

/1 get
:1;

=5;

= 'centered'

‘center’

>1 then

(0, 0.15 , "Extinction"

=[ min ( galist

»0,0)

) 0 max(galist ) 03] ;

y), z=(2+y)*(3-y*abs(x)) - 6.2, endfunction
, 10,00
y), w=y* (1+abs(x)) -0.067 , endfunction

the handl e of the newly created object

/1 change font

(0, 0.03 , "Permanence"

11

»0,0)

the text

properties

is now centered on [0,0.3].

the handl e of the newy created object

/'l change font

11

the text

properties

is now centered on [0, 1.8].



0001 clear ;

0002 mu=2; gamm=0.02 ; bet =6.2 ; k =0; b =0;
0001  function [dzdt]=f(t, 2z)

0002 E=z(1)

0003 1=z(2)

0004  dzdt(1)=bet *(1+b*cos (2*%pi*t)) *I-(murepsi *( 1+d*cos (2*%pi*t))) *E
0005 dzdt (2)=epsi *( 1+d*cos (2*%pi*t)) * E- (mutgamni( 1+k*cos (2* %pi*t))) *I
0006  endfunction

0009 time =[0:0.01 : 1];

0010 n=length (time );

0011 elist =[-1:0.01 :1];

0012 for i=1:length (elist ),

0013 d=elist (i);

0014  epsimin =05 ;

0015 epsimax =15 ;

0016  while epsimax - epsimin >0.001 ,

0017 epsi =(epsimax +epsimin )/ 2;

0018 soll =ode([ 1;0], Otimef );

0019 columnl =soll (:,n);

0020 sol2 =ode([ 0; 1], Otimef );

0021  column2 =sol2 (:,n);

0022  MonodromyMatrix =[ columnl column2 1];

0023  FloquetMultiplier =max(real (spec ([ MonodromyMatrix 1)) ;
0024 if  FloquetMultiplier >1 then

0025  epsimax =epsi;

0026 else

0027  epsimin =epsi;

0028 end;

0029 end;

0030 threshold (i) =epsi;

0031 end;

0032 plot2d ( elist,threshold,rect =[min(elist ) 0 max(elist ) 2]) ;
0033

0034 t=linspace (-1,1,1000);

0035 s=linspace (0, 2,1000);

0036  function z=epsi_ext (x, y),z=2.0693 *y-2+(2.02 +y)*abs(x), endfunction

0037  contour (t,s,epsi_ext ,[0,0]) ;

0038  function w=epsi_per (X, Yy),w=(2.02 +y)*(2+y)- (8.2 +y)*y*(1-abs(x)) , endfunction
0039  contour (t,s,epsi_per ,[0,0]) ;

0040

0041 «xstring (0, 0.3, "Extinction" ,0,0)

0042 t=get ("hdl" ) //get the handl e of the newy created object

0043 t. font_foreground =1; // change font properties

0044 t.font_size =3;

0045 t. font_style =5;

0046 t.text_box _mode = 'centered' ; /] the text is now centered on [0,0.3].
0047 t. alignment = 'center' ;

0048 xstring (0, 1.8, "Permanence" , 0, 0)
0049 t=get ("hdl" ) //get the handl e of the newy created object
0050 t. font_foreground =1; // change font properties

0051 t.font size =3;

0052 t. font_style =5;

0053 t.text box_mode = 'centered' ; [/ the text is now centered on [O,1.8].
0054 t. alignment = 'center' :
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A.3 Matlab Code for Figures in Chapter 3

Figures 3.1, 3.2, 3.3 and 3.4
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clear all

global L B a u eta e g

format short

t=0

L= 2;
B=5.9;
a=0.1;
u= 2;
eta= 0;
e= 1;
g= 0.02;
S0=.1
EO=.1
I0=.1
RO=.1

OPTIONS=odeset ('AbsTol"',1le-10);
w0=[S0,E0,I0,R0];

[t,w]=0dell3('sistema', [0,400],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S1=S; El=E; Il=I; R1=R;

tl=t;

for j=1 : length(t)
aux_1(3J)=0;
aux_s(Jj)=1;

end

50=.08
E0=.07
I0=.12
R0=.13

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,I0,RO];

[t,w]=0dell3('sistema', [0,400],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S2=S; E2=E; I2=1I; R2=R;

t2=t;

S50=1.99

E0=.09

I0=.05

R0=.25

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,IO0,RO];

[t,w]=0dell3('sistema', [0,400],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S3=S; E3=E; I3=I; R3=R;

t3=t;

figure

plot(tl,S81,'k',tl,ELl, "k--"',t1,I1,'k.")
axis ([0,5,0,2])

xlabel ('t');

legend ('S(t)','E(L)','I()")

hold on



plot(t2,82,'r',t2,E2,'r--",t2,I2,'x.")
hold on
plot (t3,83,'c',t3,E3,"'c——",t3,I3,"'c.")

figure

plot (E1,I1,'k")
xlabel ('E(t)
hold on

plot (E2,I2,'x")
hold on

plot (E3,I3,'c")

figure

plot (S1,I1,'k")
xlabel ('S (t)
hold on
plot(sS2,I2,'r")
hold on

plot (S3,I3,'c")

figure

plot3(S1,E1,I1,'k")

axis ([0,2,0,.17,0,.12])

xlabel ('S'); ylabel ('E'); zlabel ('I1I")
box on

hold on

plot3(S2,E2,I2,'r")

hold on

plot3(S3,E3,I3,'c")

figure

plot(tl,S1,'k")

title ('Susceptible')
xlabel ('t');

ylabel ('S','Rotation',0.0)
axis ([0,50,0,2])

hold on

plot (t2,82,'r")

hold on

plot (t3,83,'c")

hold on
plot(tl,aux s,'--"', 'Color',[.75 .75 .75])

figure

plot(tl,I1,'k")

title ('Infected')

xlabel ('t"')

ylabel ('I','Rotation',0.0)
axis ([0,50,-0.02,0.12])
hold on

plot(t2,I2,'r")

hold on

plot (t3,I3,'c")

hold on

plot(tl,aux i,'--','Color',[.75 .75 .75])

'y, ylabel ('I(t)','Rotation',0.0)

'); ylabel ('I(t)','Rotation',0.0)



clear all

global L B a u eta e g

format short

t=0

L= 2;
B=6.9;
a=0.1;
u= 2;
eta= 0;
e= 1;
g= 0.02;
S0=.1
EO=.1
I0=.1
RO=.1

OPTIONS=odeset ('AbsTol"'

w0=[S0,E0,I0,R0];

[t,w]=0dell3('sistema', [0,1000],w0,O0PTIONS) ;
S=w(length(w(:,1))-1000:1length(w(:,1)),1);
E=w(length(w(:,2))-1000:1length(w(:,2)),2)
I=w(length (w(: ,3))—1000:length(w( ,3)),3);
R=w (length(w(:,4))-1000:1length(w(:,4)),4);
S1=S; El=E; I1=I; R1=R;

tl=t (length(t)-1000:1length(t));

SO=w (length(w(:,1)),1);

EO=w (length(w(:,2)),2);
I0=w(length(w(:,3)),3);

RO=w (length(w(:,4)),4);

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,IO0,R0];

[t,w]=0dell3('sistema', [0,50],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S11=S; El11=E; I11l=I; R1l1l=R;

tll=t;

S0=.08

E0=.07

I0=.12

R0O=.13

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,IO0,RO];

[t,w]=0dell3('sistema', [0,15],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S2=S; E2=E; I2=I; R2=R;

t2=t;

S50=1.99

E0=.09

I0=.05

R0=.25

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,IO0,R0];

[t,w]=0dell3('sistema', [0,15],w0,OPTIONS) ;

,1e-10);



S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S3=S; E3=E; I3=I; R3=R;
t3=t;

figure

plot(t2,82,'r',t2,E2, 'r-=-",t2,1I2,'r.")
axis ([0,5,0,21)

xlabel ('t');

legend ('S(L)','E(L)','"I()")

hold on

plot (t3,83,'c',t3,E3,"'c--",t3,I3,"'c.")
hold on

plot(tl,s81,'k',tl,ELl, "k--"',t1,I1,'k.")

figure

plot (E1,I1,'k")
xlabel ('E(t)'"'); ylabel ('I(t)', 'Rotation',0.0)
hold on

plot (E2,I2,'r")

hold on

plot (E3,I3,'c")

figure

plot(S2,I2,'r")

xlabel ('S(t)'); ylabel ('I(t)', 'Rotation',0.0)
hold on

plot (S3,I3,'c")

hold on

plot(S1,I1,'k")

figure

plot3(S2,E2,I2,'x")

axis ([0,2,.07,.17,.03,.12])

xlabel ('S'"); ylabel ('E'); zlabel ('I'")
box on

hold on

plot3(S3,E3,I3,'c")

hold on

plot3(S1,E1,I1,'k")

figure

plot(tll,S11,'k")

title ('Susceptible')
xlabel ('t');

ylabel ('S','Rotation',0.0)
axis ([0,50,0,2])

hold on

plot (t2,82,'r")

hold on

plot (t3,83,'c")

figure

plot(tll,I11,'k")

title ('Infected')

xlabel ('t')

ylabel ('I','Rotation',0.0)
axis ([0,50,.03,0.12])

hold on

plot (t2,I2,'x")

hold on



plot (t3,I3,'c")



clear all

global L B a u eta e g

format short

t=0

L= 2;
B=5.9;
a=0.6;
u= 2;
eta= 0;
e= 1;
g= 0.02;
S0=.1
EO=.1
I0=.1
RO=.1

OPTIONS=odeset ('AbsTol"',1le-10);
w0=[S0,E0,I0,R0];

[t,w]=0dell3('sistema', [0,400],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S1=S; El=E; Il=I; R1=R;

tl=t;

for j=1 : length(t)
aux_1(3J)=0;
aux_s(Jj)=1;

end

50=.08
E0=.07
I0=.12
R0=.13

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,I0,RO];

[t,w]=0dell3('sistema', [0,400],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S2=S; E2=E; I2=1I; R2=R;

t2=t;

S50=1.99

E0=.09

I0=.05

R0=.25

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,IO0,RO];

[t,w]=0dell3('sistema', [0,400],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S3=S; E3=E; I3=I; R3=R;

t3=t;

figure

plot(tl,S81,'k',tl,ELl, "k--"',t1,I1,'k.")
axis ([0,5,0,2])

xlabel ('t');

legend ('S(t)','E(L)','I()")

hold on



plot(t2,82,'r',t2,E2,'r--",t2,I2,'x.")
hold on
plot (t3,83,'c',t3,E3,"'c——",t3,I3,"'c.")

figure

plot (E1,I1,'k")
xlabel ('E(t)
hold on

plot (E2,I2,'x")
hold on

plot (E3,I3,'c")

figure

plot (S1,I1,'k")
xlabel ('S (t)
hold on
plot(sS2,I2,'r")
hold on

plot (S3,I3,'c")

figure

plot3(S1,E1,I1,'k")

axis ([0,2,0,.17,0,.12])

xlabel ('S'); ylabel ('E'); zlabel ('I1I")
box on

hold on

plot3(S2,E2,I2,'r")

hold on

plot3(S3,E3,I3,'c")

figure

plot(tl,S1,'k")

title ('Susceptible')
xlabel ('t');

ylabel ('S','Rotation',0.0)
axis ([0,50,0,2])

hold on

plot (t2,82,'r")

hold on

plot (t3,83,'c")

hold on
plot(tl,aux s,'--"', 'Color',[.75 .75 .75])

figure

plot(tl,I1,'k")

title ('Infected')

xlabel ('t"')

ylabel ('I','Rotation',0.0)
axis ([0,50,-0.02,0.12])
hold on

plot(t2,I2,'r")

hold on

plot (t3,I3,'c")

hold on

plot(tl,aux i,'--','Color',[.75 .75 .75])

'y, ylabel ('I(t)','Rotation',0.0)

'); ylabel ('I(t)','Rotation',0.0)



clear all

global L B a u eta e g

format short

t=0

L= 2;
B=6.9;
a=0.6;
u= 2;
eta= 0;
e= 1;
g= 0.02;
S0=.1
EO=.1
I0=.1
RO=.1

OPTIONS=odeset ('AbsTol"',1le-10);
w0=[S0,E0,I0,R0];
[t,w]=0dell3('sistema', [0,1000],w0,O0PTIONS) ;
S=w (length (w 1))-10000:1ength(w(:,1)),1);
E=w (length (w 2))-10000:1length (w( ) ) ) ;
I=w(length(w ))—-10000:1length(w(:,3)),3);
R=w (length (w ))—-10000:1length(w(:,4)) )
S1=S; El=E; R1=R;

tl=t (length ( 0000:1ength(t));

4

.7 4 ’

II‘

(
w(:
w(:
(: 3
(:,4
I1=I;
t)-1

SO0=w(length(w(:,1
EO0=w (length(w(:,2
I0=w(length(w(:,3
RO=w (length(w(:,4)),4);

OPTIONS:odeset( AbsTol',1e-10);
w0=[S0,E0,IO0,R0];

[t,w]=0dell3('sistema', [0,50],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S11=S; El11=E; I11l=I; R1l1l=R;

)y
)y
)

4

) 4
) 4
)i

’

w N

)
)
)

4

tll=t;
S0=.08
EO0=.07
I0=.12
R0=.13

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,IO0,RO];

[t,w]=0dell3('sistema', [0,15],w0,OPTIONS) ;
S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S2=S; E2=E; I2=I; R2=R;

t2=t;

S50=1.99

E0=.09

I0=.05

R0=.25

OPTIONS=odeset ('AbsTol',1le-10);
w0=[S0,E0,IO0,R0];

[t,w]=0dell3('sistema', [0,15],w0,OPTIONS) ;



S=w(:,1); E=w(:,2); I=w(:,3); R=w(:,4);
S3=S; E3=E; I3=I; R3=R;
t3=t;

figure

plot(t2,82,'r',t2,E2, 'r-=-",t2,1I2,'r.")
axis ([0,5,0,21)

xlabel ('t');

legend ('S(L)','E(L)','"I()")

hold on

plot (t3,83,'c',t3,E3,"'c--",t3,I3,"'c.")
hold on

plot(tl,s81,'k',tl,ELl, "k--"',t1,I1,'k.")

figure

plot (E1,I1,'k")
xlabel ('E(t)'"'); ylabel ('I(t)', 'Rotation',0.0)
hold on

plot (E2,I2,'r")

hold on

plot (E3,I3,'c")

figure

plot(S2,I2,'r")

xlabel ('S(t)'); ylabel ('I(t)', 'Rotation',0.0)
hold on

plot (S3,I3,'c")

hold on

plot(S1,I1,'k")

figure

plot3(S2,E2,I2,'x")

axis ([0,2,.0,.2,.03,.12])

xlabel ('S'"); ylabel ('E'); zlabel ('I'")
box on

hold on

plot3(S3,E3,I3,'c")

hold on

plot3(S1,E1,I1,'k")

figure

plot(tll,S11,'k")

title ('Susceptible')
xlabel ('t');

ylabel ('S','Rotation',0.0)
axis ([0,50,0,2])

hold on

plot (t2,82,'r")

hold on

plot (t3,83,'c")

figure

plot(tll,I11,'k")

title ('Infected')

xlabel ('t')

ylabel ('I','Rotation',0.0)
axis ([0,50,.03,0.12])

hold on

plot (t2,I2,'x")

hold on



plot (t3,I3,'c")



function wprime=de4 rhs(t,w)
global L B a u eta e g

wprime=[L-B* (1l+a*cos (2*pi*t))*w(l)*w(3)-u*w(l)+teta*w(4)
B* (1+a*cos (2*pi*t)) *w(l) *w(3) - (ute) *w(2)
e*w (2) - (ut+g) *w(3)
g*w (3) - (uteta) *w(4)] ;
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A.4 Matlab Code for Figures in Chapter 4

Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9
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function main

format long e

clear; close
clear all;

global per mu
n=200;
j = 0;

tfinal = 25;

$mu variation

gama = .05;
epsilon = .03;
alpha = 0;

eta = 0.041;

all

eps

ilon gama eta tfinal n alpha k1 k2 k3;

SEIR bvp control bounds;

y; % ss = S(t)
); % se = E(t)
); % si = I(t)
); % sr = R(t)
) $Treatment

x=linspace(0,tfinal,n);

vs=interpl
ve=interpl
vi=interpl

vT=interpl
vV=interpl
vpl=interpl (t,spl,x,'spline’
vp2=interpl (
vp3=interpl (t,sp3,x, ' 'spline’
vpd=interpl (

( )
( )
( )
vr=interpl (t,sr,x,'spline');
( )
( )

] .
’

t,ss,x, 'spline

t,se,x,'spline');

t,si,x, 'spline');

t,sT,x, 'spline');
t,sV,x,'spline’

’

’

’

)
t,sp2,x%x, "'spline');

)

)

t,sp4,x, "'spline’

mu;
matriz p0O (j, 1l:n) = vi;

matrizT pO0 (j, 1:n) = vT;

matrizv p0 (j, 1:n) = vV;

aux _mu _pO0 (j) = trapz (t,kl*si+k2*sT."2+k3*sV."2);

end

SEIR bvp control bounds;



ss = y(l,:); % ss = S(t)
se = y(2,:); % se = E(t)
si=y(3,:); % si = I(t)
sr = y(4,:); % sr = R(t)
sT = yv(9,:); %$Treatment

sV = y(10,:); %Vaccination
spl = y(5,:);

sp2 = y(6,:);

sp3 = y(7,:);

sp4 = y(8,:);

x=linspace(0,tfinal,n);

vs=interpl (t,ss,x,'spline');
ve=interpl (t,se,x,'spline');

vi=interpl (t,si,x,'spline');

vr=interpl (t,sr,x,'spline');

(
(
(
(
vT=interpl (t,sT,x,'spline');
vV=interpl (t,sV,x,'spline');

vpl=interpl (t,spl,x,'spline');
vp2=interpl (t,sp2,x,'spline');

’

)
( )

vp3=interpl (t,sp3,x,'spline');
( ) ;

vpé4=interpl (t,sp4,x,'spline');

mu;
vetor p0 s = vs;
vetor p0 e = ve;
vetor p0 1 = vi;
vetor p0 r = vr;

vetorT p0 = vT;
vetorV _p0 = vV;

mu = .05

[t, y] = SEIR bvp control bounds_u;
ss = y(l,:); % ss = S(t)

se = y(2,:); % se = E(t)

si =v(3,:); % si = I(t)

sr = y(4,:); % sr = R(t)

x=linspace(0,tfinal,n);

vs=interpl (t,ss,x,'spline');
ve=interpl (t,se,x,'spline');

’

( )

( )
vi=interpl (t,si,x,'spline');

( )

vr=interpl (t,sr,x,'spline'’

mu;
vetor p0 s u = vs;
vetor p0 e u = ve;
vetor p0 i u = vi;
vetor p0 r u = vr;
j = 0;
for mu = 0:.01:.1
per = .8;
[t, y] = SEIR bvp control bounds;
Jjo= 3+
ss = y(l,:); % ss = S(t)
se = y(2,:); % se = (t)
si=vy(3,:); % si = I(t)



sr = R(t)
Treatment

sr =y S
sT = vy )%
Y

sV = %$Vaccination

(
( 4
(10,:);
spl = y(5,:);
sp2 = y(6,:);
y(7,:);
y(8,:)

’

sp3 =

’

sp4
x=linspace(0,tfinal,n);
vs=interpl (t,ss,x,'spline');
ve=interpl (t,se,x,'spline');
vi=interpl (t,si,x,'spline’);
vr=interpl (t,sr,x,'spline');

vT=interpl (t,sT,x,'spline');

(
(
(
(
(
vV=interpl (t,sV,x,'spline');
vpl=interpl (t,spl,x,'spline');
vp2=interpl (t,sp2,x,'spline');
vp3=interpl (t,sp3,x,'spline');
vpé4=interpl (t,sp4,x,'spline');
mu;
matriz p08 (j, 1l:n) = vi;
matrizT p08 (j, 1l:n) = VvT;
matrizv p08 (j, 1l:n) = vV;

aux mu p08 (j) = trapz (t,kl*si+k2*sT."2+k3*sV."2);
end

mu = .05

[t, y] = SEIR bvp control bounds;

ss = y(l,:); % ss = S(t)

se = y(2,:); % se = E(t)

si=y(3,:); % si = I(t)

sr = y(4,:); % sr = R(t)

sT = y(9,:); %$Treatment

sV = y(10,:); %Vaccination

spl = y(5,:);

sp2 = y(6,:);

sp3 = y(7,:);

sp4 = y(8,:);

x=linspace (0,tfinal,n);

vs=interpl (t,ss,x,'spline');

ve=interpl (t,se,x,'spline');

vi=interpl

vr=interpl (t,sr,x,'spline');

vT=interpl ;

)
)

t,si,x,'spline');
)
t,sT,x, 'spline')
)

vV=interpl (t,sV,x,'spline'

’

vpl=interpl (t,spl,x,'spline');
vp2=interpl (t,sp2,x,'spline');

’

)
( )

vp3=interpl (t,sp3,x,'spline');
( ) ;

vpd4=interpl (t,sp4,x, " 'spline’);

mu;
vetor p08 s = vs;
vetor p08 e = ve;
vetor p08 i = vi;

vetor p08 r = vr;



vetorT p08 vT;

vetorV p08 = vV;

mu = .05

[t, y] = SEIR bvp control bounds u;
ss = y(l,:); % ss = S(t)

se = y(2,:); % se = E(t)

si = v(3,:); % si = I(t)

sr = y(4,:); % sr = R(t)

x=linspace(0,tfinal,n);

vs=interpl (t,ss,x,'spline');
ve=interpl (t,se,x,'spline');

’

vi=interpl (t,si,x,'spline');

( )
( )
( )
( )

vr=interpl (t,sr,x,'spline');

mu;
vetor p08 s u = vs;
vetor p08 e u = ve;
vetor p08 i u = vi;
vetor p08 r u = vr;
for 3 = 1:1:11
max_aux mu (Jj) = abs(aux mu pO(j)-aux mu p08(j));
end
max mu = max (max aux mu);
figure;

plot (x, vetor pO s,'b', x, vetor p0O e,'g',....
x, vetor p0 i,'r', x, vetor pO0 r,'c',...
] )

--g',...
--r', x, vetor p0 r u,'--c'");

x, vetor p0 s u,'--b', x, vetor p0 e u,

x, vetor p0 i u,’'

title ('SEIRS')

xlabel ('time')

legend ('S-per=0', 'E-per=0"', 'I-per=0"', 'R-per=0"',...
'S-per=0-u', 'E-per=0-u', 'I-per=0-u', 'R-per=0-u')

figure;

plot (x, vetor pO0 s,'b', x, vetor pO0 r,'c',.
x, vetor p0O s u,'--b', x, vetor pO r u,'--c'");
title ('Susceptible and Recovered')

xlabel ('time')

legend ('S-per=0', 'R-per=0"', ...
'S-per=0-u', 'R-per=0-u')

figure;
plot (x, vetor pO e,'g', x, vetor pO i,'r',...
x, vetor p0 e u,'--g', x, vetor p0 i u,'--r'");
title ('Exposed and Infected')
xlabel ('time')
legend ('E-per=0','I-per=0"', ...

'E-per=0-u', 'I-per=0-u')

g S e

figure;
plot (x, vetor p08 s,'b', x, vetor p08 e,'g’',...
x, vetor p08 i,'r', x, vetor p08 r,'c',...

x, vetor p08 s u,'--b', x, vetor p08 e u,'--g', ...



x, vetor p08 i u,'--r', x, vetor p08 r u,'--c');
title ('SEIRS')
xlabel ('time')
legend ('S-per=.8'"','E-per=.8"','I-per=.8"', 'R-per=.8"', ...
'S-per=.8-u', 'E-per=.8-u', 'I-per=.8-u', 'R-per=.8-u')

figure;
plot (x, vetor p08 s,'b', x, vetor p08 r,'c',...
x, vetor p08 s u,'--b', x, vetor p08 r u,'--c');
title ('Susceptible and Recovered')
xlabel ('time')
legend ('S-per=.8'"','R-per=.8",...

'S-per=.8-u', 'R-per=.8-u')

figure;
plot (x, vetor p08 e,'g', x, vetor p08 i,'r',...
x, vetor p08 e u,'--g', x, vetor p08 i u,'--r');
title ('Exposed and Infected')
xlabel ('time')
legend ('E-per=.8'"','I-per=.8",...

'E-per=.8-u', 'I-per=.8-u')

figure;
plot (x, vetor p0 s, x, vetor p08 s,...
x, vetor p0 s u, x, vetor p08 s u);
title ('Susceptible')
xlabel ('time')
legend ('per=0', 'per=.8", 'per=0-u', 'per=.8-u"')

figure;
plot (x, vetor p0 e, x, vetor p08 e,...
x, vetor p0 e u, x, vetor p08 e u);
title ('Exposed')
xlabel ('time')
legend ('per=0', 'per=.8", 'per=0-u', 'per=.8-u')

figure;

plot (x, vetor p0 i, x, vetor p08 i, x,...
vetor p0 i u, x, vetor p08 i u);

title ('Infected')

xlabel ('time')

legend ('per=0', 'per=.8", 'per=0-u', 'per=.8-u"')

figure;

plot (x, vetor pO r, x, vetor p08 r, x,...
vetor p0 r u, x, vetor p08 r u);

title ('Recovered')

xlabel ('time')

legend ('per=0', 'per=.8", 'per=0-u', 'per=.8-u')

figure;
plot (x, vetor p0 s, x, vetor p08 s,...
x, vetor p0 r, x, vetor p08 r);
title ('Susceptible and Recovered')
xlabel ('time')
legend ('S-per=0','S-per=.8", 'R-per=0"', 'R-per=.8")

figure;



plot (x, vetor p0O s u, x, vetor p08 s u,...
x, vetor p0 r u, x, vetor p08 r u);
title ('Susceptible and Recovered')
xlabel ('time')
legend ('S-per=0-u','S-per=.8-u', 'R-per=0-u', 'R-per=.8-u')

figure;
plot (x, vetor p0 e, x, vetor p08 e,...
x, vetor p0 i, x, vetor p08 1i);
title ('Exposed and Infected')
xlabel ('time')
legend ('E-per=0', 'E-per=.8",'"'I-per=0"', 'I-per=.8")

figure;
plot (x, vetor p0 e u, x, vetor p08 e u,...
x, vetor pO i u, x, vetor p08 i u);
title ('Exposed and Infected')
xlabel ('time')
legend ('E-per=0-u','E-per=.8-u', 'I-per=0-u', 'I-per=.8-u')

figure;

plot (x, vetorT p0, x, vetorT p08);
title ('Treated')

xlabel ('time')

legend ('per=0', 'per=.8")

figure;

plot (x, vetorV p0, x, vetorV p08);
title ('Vaccinated')

xlabel ('time')

legend ('per=0', 'per=.8")

S ©

figure;
[xt,yd]=meshgrid(0:tfinal/ (n-1) :tfinal,0:0.01:0.1);

subplot (3,2,1);

contourf (xt,yd, matriz p0);
title('Infected - per=0")
xlabel ('time')

ylabel ('\mu')

subplot (3,2,2);

contourf (xt,yd, matriz p08);

title('Infected - per=.8")

xlabel ('time')

hp4 = get (subplot(3,2,2),'Position');

colorbar ('Position', [hp4(1l)+hpd4(3)+0.01 hp4(2) 0.02 hp4(4)])

subplot (3,2,3);

contourf (xt,yd, matrizT p0);
title('Treated - per=0")
xlabel ('time')

ylabel ('\mu')

subplot (3,2,4);

contourf (xt,yd, matrizT p08);
title('Treated - per=.8")
xlabel ('time')



hpd =
colorbar ('Position',

get (subplot(3,2,4), 'Position');
[hp4 (1) +hp4 (3)+0.01 hp4 (2) 0.02
(3121 5);

contourf (xt,yd, matrizV p0);

subplot

title('Vaccinated - per=0")
xlabel
ylabel

("time'")
("\mu")

subplot (3,2,6);
contourf (xt,yd, matrizV p08);
title('Vaccinated - per=.8")
xlabel
hp4d =
colorbar ('Position',

("time'")
get (subplot(3,2,6), 'Position');
[hp4 (1) +hp4 (3)+0.01 hp4(2) 0.02

%gama variation

j = 0;

mu = .05;
epsilon = .03;
alpha = 0;

eta = 0.041;

for gama = 0:.01:.1

per = 0;

[t, y] = SEIR bvp control bounds;
j = j+1;

ss = y(l,:); % ss = S(t)
se = y(2,:); % se = E(t)
si = y(3,:); % si = I(t)
sr = y(4,:); % sr = R(t)
sT = y(9,:); $Treatment

sV = y(10,:); %Vaccination
spl = y(5,:);

sp2 = y(6,:);

sp3 = y(7,:);

spd = y(8,:);

x=linspace(0,tfinal,n);
vs=interpl (t,ss,x,'spline’
ve=interpl (t,se,x, 'spline’
vi=interpl
vr=interpl (t,sr,x,'spline'’
vT=interpl (t,sT,x, 'spline’

(
(
(
(
(
(t,sV,x,"

)
)
t,si,x,'spline');
)
)
)

vV=interpl

vpl=interpl
vp2=interpl
vp3=interpl
vpd=interpl

(t,spl,x, 'spline
(t,sp2,x,'spline’
(t,sp3,x, 'spline’
(t,spd,x, 'spline’

gama;
matriz p0O (j, 1l:n) = vi;

matrizT pO (j, 1l:n) = vT;

matrizV pO0 (j, 1l:n) = vV;

aux_gama p0 (j) = trapz (t,kl*si+k2*sT."2+k3*sV."2);

end

hp4 (4) ])

hp4 (4)1])



end

= 0:.01:.1

per = .8;

[t, y] = SEIR bvp control bounds;
j = j+1;

ss = y(l,:); % ss = S(t)
se = y(2,:); % se = E(t)
si=y(3,:); % si = I(t)
sr = y(4,:); % sr = R(t)
sT = y(9,:); $Treatment

sV = y(10,:); %Vaccination
spl = y(5,:);

sp2 = y(6,:);

sp3 = y(7,:);

spd = y(8,:);

x=linspace (0,tfinal,n);

vs=interpl (t,ss,x,'spline');

ve=interpl (t,se,x,'spline');

vi=interpl

vr=interpl (t,sr,x,'spline');

vT=interpl (t,sT,x,'spline');

(
(
(
(
(
(

)
)
t,si,x,'spline');
)
)

vV=interpl (t,sV,x,'spline');
vpl=interpl (t,spl,x,'spline');

vp2=interpl (t,sp2,x,'spline');

)
( )

vp3=interpl (t,sp3,x,'spline');
( ) 7

vpd4=interpl (t,sp4,x,'spline');

gama;
matriz p08 (j, 1l:n) = vi;

matrizT p08 (j, 1l:n) = vT;

matrizv p08 (j, 1l:n) = vV;

aux_gama_p08 (j) = trapz (t,kl*si+k2*sT."2+k3*sV."2);

for j = 1:1:11

max_ aux gama (Jj) =abs(aux _gama pO0(J)-aux gama p08(Jj));
end
max gama = max (max_ aux _gama);
figure;

[xt,yd]=meshgrid(0:tfinal/ (n-1) :tfinal,0:0.01:0.1);

subplot (3,2,1);

contourf (xt,yd, matriz pO0);
title('Infected - per=0")
xlabel ('time')

ylabel ('\gamma')

subplot (3,2,2);

contourf (xt,yd, matriz p08);
title('Infected
xlabel ('time')
hp4 = get (subplot(3,2,2), 'Position');
[hpd (1) +hp4 (3)+0.01

- per=.8")

colorbar ('Position', hp4 (2) 0.02

subplot (3,2,3);
contourf (xt,yd, matrizT p0);

hp4 (4)1])



title('Treated - per=0")
xlabel ('time')
ylabel ('\gamma')

subplot (3,2,4);

contourf (xt,yd, matrizT p08);

title('Treated - per=.8")

xlabel ('time')

hp4 = get (subplot(3,2,4), 'Position');

colorbar ('Position', [hp4(1l)+hp4(3)+0.01 hp4(2) 0.02

subplot (3,2,5);

contourf (xt,yd, matrizV p0);
title('Vaccinated - per=0")
xlabel ('time'")

ylabel ('\gamma')

subplot (3,2,6);

contourf (xt,yd, matrizV p08);

title('Vaccinated - per=.8")

xlabel ('time')

hp4 = get (subplot(3,2,6),''Position');

colorbar ('Position', [hp4(1l)+hp4(3)+0.01 hp4(2) 0.02

%epsilon variation

j = 0;

mu = .05;
gama = .05;
alpha = 0;

eta = 0.041;

for epsilon = 0:.01:.1

per = 0;

[t, y] = SEIR bvp control bounds;
j o= J+1;

ss = y(l,:); % ss = S(t)
se = y(2,:); % se = E(t)
si = y(3,:); % si = I(t)
sr = y(4,:); % sr = R(t)
sT = yv(9,:); %Treatment

sV = y(10,:); %Vaccination
spl = y(5,:);

sp2 = y(6,:);

sp3 = y(7,:);

spd4 = y(8,1:);

x=linspace (0,tfinal,n);

vs=interpl (t,ss,x,'spline');

ve=interpl (t,se,x,'spline');
vi=interpl (t,si,x,'spline');
vr=interpl (t,sr,x,'spline');
vI=interpl
vV=interpl
vpl=interpl (t,spl,x, 'spline’

t,sp2,x%x,'spline’

(
(
(
(
(t,sT,x, "'spline');
(t,sV,x, "'spline');

’

vp2=interpl ( ;
vp3=interpl (t,sp3,x, ' 'spline’
(

t,sp4d,x, ' 'spline’

’

’

)
)
)
)

vp4=interpl

hp4 (4)1])

hp4 (4) ])



epsilon;

matriz pO (j, l:n) = vi;
matrizT p0 (j, 1:n) = vT;
matrizv p0 (j, 1:n) = vV;

aux_epsilon p0 (j) = trapz (t,kl*si+k2*sT."2+k3*sV."2);
end
J = 0;
for epsilon = 0:.01:.1
per = .8;
[t, y] = SEIR bvp control bounds;
Jj o= J3+1;
ss = y(l,:); % ss = S(t)
se = y(2,:); % se = E(t)
si = vy(3,:); % si = I(t)
sr = y(4,:); % sr = R(t)
sT = yv(9,:); %Treatment
sV = y(10,:); %Vaccination
spl = y(5,:);
sp2 = y(6,:);
sp3 = y(7,:);
spd = y(8,:);
x=linspace (0,tfinal,n);
vs=interpl (t,ss,x,'spline');
ve=interpl (t,se,x,'spline');
vi=interpl (t,si,x,'spline');
vr=interpl (t,sr,x,'spline');
vI=interpl (t,sT,x,'spline');
vV=interpl (t,sV,x, 'spline')
vpl=interpl (t,spl,x,'spline');
vp2=interpl (t,sp2,x,'spline');
vp3=interpl (t,sp3,x,'spline');
vpd=interpl (t,sp4,x,'spline');
epsilon;
matriz p08 (j, 1l:n) = vi;
matrizT p08 (j, 1l:n) = vT;
matrizv p08 (j, 1l:n) = vV;
aux_epsilon p08 (j) = trapz (t,kl*si+k2*sT.”2+k3*sV."2);
end

for 3 = 1:1:11

max_aux_epsilon(j) = abs(aux_epsilon pO(J)-aux_epsilon p08(j));
end
max_epsilon = max (max_aux epsilon);
figure;

[xt, yd]=meshgrid(0:tfinal/ (n-1) :tfinal,0:0.01:0.1);

subplot (3,2,1);

contourf (xt,yd, matriz pO0);
title('Infected - per=0")
xlabel ('time')

ylabel ('\epsilon')

subplot (3,2,2);



contourf (xt,yd, matriz p08);

title('Infected - per=.8")

xlabel ('time')

hp4 = get (subplot(3,2,2),'Position');

colorbar ('Position', [hp4(1l)+hp4(3)+0.01 hp4d(2)

subplot (3,2,3);

contourf (xt,yd, matrizT p0);
title('Treated - per=0")
xlabel ('time')

ylabel ('\epsilon')

subplot (3,2,4);

contourf (xt,yd, matrizT p08);

title('Treated - per=.8")

xlabel ('time')

hp4 = get (subplot(3,2,4),'Position');

colorbar ('Position', [hp4(1)+hp4(3)+0.01 hp4(2)

subplot (3,2,5);

contourf (xt,yd, matrizV_p0);
title('Vaccinated - per=0")
xlabel ('time')

ylabel ('\epsilon')

subplot (3,2,6);

contourf (xt,yd, matrizV p08);

title('Vaccinated - per=.8")

xlabel ('time')

hp4 = get (subplot(3,2,6),'Position');

colorbar ('Position', [hp4(l)+hp4(3)+0.01 hp4(2)

$eta variation

j = 0;

mu = .05;

epsilon = .03;

gama = .05;

alpha = 0;

for eta = 0:.01:.1
per = Uy
[t, y] = SEIR bvp control bounds;
j = j+1;
ss = y(l,:); % ss = S(t)
se = y(2,:); % se = E(t)
si=y(3,:); % si = I(t)
sr = y(4,:); % sr = R(t)
sT = y(9,:); %Treatment
sV = y(10,:); %Vaccination
spl = y(5,:);
sp2 = y(6,:);
sp3 = y(7,:);
spd = y(8,:);

x=linspace(0,tfinal,n);

vs=interpl (t,ss,x,'spline');
ve=interpl (t,se,x,'spline');

0.

0.

0.

02

02

02

hp4 (4) 1)

hp4 (4)1])

hp4 (4) 1)



end

j = 0;
for eta

end

vi=interpl
vr=interpl
vT=interpl
vV=interpl
vpl=interpl
vp2=interpl
vp3=interpl
vp4=interpl
etay;

matriz pO0
matrizT p0
matrizv_p0

aux_eta p0

se
si
sr
sT
sV
spl
sp2
sp3
sp4

(3,

’

t,si,x, 'spline’

’

( )
(t,sr,x,'spline');
(t,sT,x, "'spline')
(t,sV,x,'spline')
(t,spl,x, 'spline'’
(t,sp2,x, 'spline'’
(t,sp3,x, 'spline’
(

t,sp4,x, 'spline’

l:n) =
(3, 1
(3, 1

vi;

in) vT;

in) vV;

(j) = trapz

o\
<
o]
Q
Q
'_l -
o]
8]
art
'_l -
©]
=]

x=linspace(0,tfinal,n);

vs=interpl (t,ss,x,'spline');
ve=interpl (t,se,x,'spline');
vi=interpl (t,si,x,'spline');
vr=interpl (t,sr,x,'spline');
vT=interpl (t,sT,x,'spline');
vV=interpl (t,sV,x,'spline');
vpl=interpl (t,spl,x, 'spline’
vp2=interpl (t,sp2,x,'spline’
vp3=interpl (t,sp3,x, ' 'spline’
vpé4=interpl (t,sp4,x,'spline’
eta;
matriz p08 (j, 1l:n) = vi;
matrizT p08 (j, 1l:n) = VvT;
matrizv p08 (j, 1l:n) = vV;
aux_eta p08 (j) = trapz
for j = 1:1:11

max_ aux eta (j) =
end
max_eta = max (max_aux_eta);
max_error = max
disp (sprintf

)
)
)
)

)
)
)
)

’

’

’

’

(t,kl*si+k2*sT."2+k3*sV."2);

’
’

’

’

(t,kl1*si+k2*sT."2+k3*sV."2);

abs (aux_eta p0(j)-aux _eta p08(j));

([max mu max gama max_epsilon max_etal);
("maximum error= %g',max error));



end

figure;

[xt,yd]=meshgrid(0:tfinal/ (n-1) :tfinal,0:0.01:0.1);

subplot (3,2,1);

contourf (xt,yd, matriz pO0);
title('Infected - per=0")
xlabel ('time')

ylabel ('\eta')

subplot (3,2,2);

contourf (xt,yd, matriz p08);
title('Infected - per=.8")

xlabel ('time')

hp4 = get (subplot(3,2,2),'Position');
colorbar ('Position', [hp4(1l)+hp4(3)+0.01

subplot (3,2,3);

contourf (xt,yd, matrizT pO0);
title('Treated - per=0")
xlabel ('time')

ylabel ('\eta')

subplot (3,2,4);

contourf (xt,yd, matrizT p08);
title('Treated - per=.8")

xlabel ('time')

hp4 = get (subplot(3,2,4),'Position');
colorbar ('Position', [hp4(1l)+hp4(3)+0.01

subplot (3,2,5);

contourf (xt,yd, matrizV p0);
title('Vaccinated - per=0")
xlabel ('time')

ylabel ('\eta')

subplot (3,2,6);

contourf (xt,yd, matrizV p08);
title('Vaccinated - per=.8")

xlabel ('time')

hp4 = get (subplot(3,2,6), ' 'Position');
colorbar ('Position', [hp4(1l)+hp4(3)+0.01

hp4 (2) 0.02

hp4 (2) 0.02

hp4 (2) 0.02

hp4 (4)1])

hp4 (4) 1)

hp4 (4) ])



function [t, y] = SEIR bvp control bounds
format long e

global n tfinal mu gama epsilon alpha eta per k1l k2 k3 SO EO IO RO

vcmax trmax;

vcmax = 0.1;

trmax = 0.4;

ft = linspace (0, tfinal, n); % Generate t for Va and for Ta
Va = 0.0+0.*ft;

Ta = 0.0+0.*ft;

% Resolution of Boundary Value Problem (BVP)

options = odeset('RelTol',10"(-6), 'AbsTol',10"(-6), 'Stats', 'on',
'MaxStep',1/4);

k1 = 1;
k2 = 0.01;
k3 = 0.01;
SO0 = .98;
EO = 0;
I0 = .01;
RO = .01;
ssa = Va; sea = Va; sia = Va; sra = Va;
pla = Va; p2a = Va; p3a = Va; pda = Va;
tspan = linspace(0,tfinal,n);
nn = 0; tol = 0.99; aux = 10;
y00 = [0 O O O]
while aux>tol && nn<50,
nn = nn + 1; fprintf('iter = %g\n',nn);
y0O = [S0O EO I0 RO];
soll = ode45(@(t,y) odes(t,y,ft,Va,Ta),tspan,y0,options);
[y]l] = deval(soll, tspan);
disp(' ")
ss = y(l,:); se = vy(2,:); si = vy(3,:); sr = vy(4,:);
fprintf(' = = = = = = = = = = = = = = - - \n');

sol2 = ode45(@(t,y) odes2(t,vy,ft,ss(end:-1:1),si(end:-1:1),...
Va(end:-1:1),Ta(end:-1:1)),tspan,y00,options);

[y2] = deval(sol2, tspan);
y2=[y2(l,end:-1:1);y2(2,end:-1:1);vy2(3,end:-1:1);y2(4,end:-1:1)1];

Yy = y2;

fprintf('- = = = = = = = = = - - - - - - - - - - - - - - - - - - \n');

Tax = Ta; Vax = Va;

pl = y(1,:); p2 = v(2,:); P3 = y(3,:); pd = y(4,:);
(
(

Va = (pl-pd).*ss/(2*k3); %$Vaccination
Ta = (p3-p4).*si/(2*k2); %$Treatment

[Va, Ta] = apara(Va,Ta);



auxl = max (abs (Vax-Va))
aux?2 = max (abs (Tax-Ta))
aux = max( auxl, aux2 );

/ (max
/(

(abs (Va)))*100;
(abs (Ta)))*100;

format short g
[max (abs (ss-ssa) )/ (max (abs(ss))),
max (abs (se-sea) )/ (max (abs (se))), max(abs(si-sia))/ (max(abs(si))), ...
max (abs (sr-sra))/ (max (abs (sr))), max(abs(pl-pla))/ (max(abs(pl))),...
max (abs (p2-p2a) )/ (max (abs (p2))), max(abs(p3-p3a))/(max(abs(p3))),...
max (abs (p4-p4a)) / (max (abs (p4)))1*100
format long e
ssa = sSS; sSea = se; sia = si; sra = sr;
pla = pl; p2a = p2; p3a = p3; pda = p4;
fprintf (' norma vac = %g \n',auxl);
fprintf (' norma trat = %$g \n',aux2);
fprintf (' tol = %g \n',tol);
disp(' ")
forintf('----—————-—H—--------------"-"\-"—-—--""—— (=
if nn>1 && aux>tol,
Ta = ( Ta + Tax ) / 2;
Va = ( Va + Vax ) / 2;
fprintf('******** get average *********V)
end
end
t = tspan;

y=[ss;se;si;sr;pl;p2;p3;p4;Ta;Vval;

function yp = odes(t,vy,ft,V0,T

[

% Definition of ODEs System

0)

global mu eta gama epsilon alpha;

Va = interpl (ft, V0O, t,'spline'’

o

% Interpolate the data set (ft,
Ta = interpl (ft, TO, t,'spline'

% Interpolate the data set (ft,

);

Va)

)i

Ta)

at times t

at times t

yvp(l) = lambda(t)-beta(t)*S*I-mu*St+eta*R-Va*S;
yp(2) = beta(t)*S*I - (mutepsilon)*E;

yp(3) = epsilon*E- (mu+alpha+gama)*I-Ta*I;
yp(4) = gama*I-mu*R-eta*R+Ta*I+Va*S;

yp = lyp(1); yp(2); yp(3); yp(4)];

end

function yp = odes2(t,vy,ft,S,I,V0,T0)

[

% Definition of ODEs System

global mu gama alpha epsilon eta kl;



S = interpl (ft, S, t,'spline');

I = interpl (ft, I, t,'spline');

Va = interpl (ft, V0, t,'spline');

% Interpolate the data set (ft, Va) at times t
Ta = interpl (ft, TO, t,'spline');

% Interpolate the data set (ft, Ta) at times t

yp(l) = pl*(mu + beta(t)*I) - beta(t)*I*p2 + (pl-p4)*Va;

yp(2) = p2* (mutepsilon)-p3*epsilon;

yp(3) = p3* (mutgamatalpha)-gama*p4 +(pl-p2) *beta(t)*S
+(p3-p4) *Ta-k1;

yp(4) = mu*pd-eta*pl+teta*p4d;

yp = [-yp(1l); -yp(2); -yp(3); -yp(4)];

end

function [v1l, v2] = apara(auxl,aux?)

global vcmax trmax

nl = size (auxl, 2);
vl = zeros(l, nl); v2 = vl;
for 1 =1 : nl

if auxl (i) < 0,
vli(i) = 0.0;
elseif auxl (i) > vcmax,
vl(i) = vcmax;
else
vl(i) = auxl(i);
end
if aux2 (i) < 0,
v2(i) = 0;
elseif aux2 (i) > trmax,

v2 (i) = trmax;
else
v2 (1) = aux2(i);
end
end
end
function beta = beta( t )

global per;
beta = .56 * (1 - per * cos( 2 * pi * t + 0.26 ) ) ;
end

function lambda = lambda( t )

global per;

lambda = 0.05+0.05*per * cos( 2 * pi * t ) ;
end






function [t, y] = SEIR bvp control bounds u
format long e

global n tfinal mu gama epsilon alpha eta per k1l k2 k3 SO EO IO RO
vcmax trmax;

disp (=== —— - ")
vcmax = 0;
trmax = 0;

[

ft = linspace (0, tfinal, n); % Generate t for Va and for Ta
Va = 0.0+0.*ft;
Ta 0.0+0.*ft;

[}

% Resolution of Boundary Value Problem (BVP)

options = odeset('RelTol',10"(-6), 'AbsTol',10"(-6), 'Stats', 'on',
'MaxStep',1/4);

k1 = 1;

k2 = 0.01;

k3 = 0.01;

SO0 = .98;

EO = 0;

I0 = .01;

RO = .01;

ssa = Va; sea = Va; sia = Va; sra = Va;
pla = Va; p2a = Va; p3a = Va; pda = Va;
tspan = linspace(0,tfinal,n);

nn = 0; tol = 0.99; aux = 10;

y00 = [0 O O O]
nn = nn + 1; fprintf('iter = %$g\n',nn);
y0 = [SO EO IO RO];
soll = ode45(Q@(t,y) odes(t,y,ft,Va,Ta),tspan,y0,options);
[y]l] = deval(soll, tspan);
disp(' ")
ss = vy(l,:); se = vy(2,:); si =vy(3,:); sr = vy(4,:);
fprintf(' - - - - - - - - - - - - - - - - \n'");

sol2 = ode45(Q@(t,y) odes2(t,vy,ft,ss(end:-1:1),si(end:-1:1),...
Va(end:-1:1),Ta(end:-1:1)),tspan,y00,options);

[y2] = deval(sol2, tspan);
y2=[y2(l,end:-1:1);y2(2,end:-1:1);y2(3,end:-1:1);y2(4,end:-1:1)];

Yy = Y2;

fprintf('- = = = = = = = = = - - - - - - - - - - - - - - - - - - \n');

Tax = Ta; Vax = Va;

pl = y(1,:); p2 = y(2,:); p3 = y(3,:); pd = y(4,:);
auxl = max (abs (Vax-Va))/ (max (abs (Va)))*100;
aux?2 = max (abs (Tax-Ta))/ (max (abs(Ta)))*100;

aux = max( auxl, aux2 );



format short g
[max (abs (ss—-ssa) )/ (max (abs ( ),
max (abs (se-sea) )/ (max (abs (s
max (abs (sr-sra) )/ (max (abs (
max (abs (p2-p2a) )/ (max (abs (p ,
max (abs (p4-pda) )/ (max (abs (p 1*%100
format long e
ssa = ss; sea = se; sia = si; sra = sr;

pla = pl; p2a = p2; p3a p3; pda = p4;

fprintf (' norma vac = %g \n',auxl);
fprintf (' norma trat = $g \n',aux2);
fprintf (' tol = %g \n',tol);
disp(' ")
fprintf('-------—-—-------——----- =
if nn>1 && aux>tol,
Ta = ( Ta + Tax ) / 2;
Va = ( Va + Vax ) / 2;
fprintf('******** get average *********')
end
t = tspan;

y=[ss;se;si;sr;pl;p2;p3;p4;Ta;Vval;
end

function yp = odes(t,y,ft,Vv0,TO0)

% Definition of ODEs System
global mu eta gama epsilon alpha;

Va = interpl (ft, V0O, t,'spline');

o

Ta = interpl (ft, TO, t,'spline');

% Interpolate the data set (ft, Ta) at times t

yp(l) = lambda(t)-beta(t)*S*I-mu*S+eta*R-Va*S;
yp(2) = beta(t)*S*I - (mutepsilon) *E;

yp(3) = epsilon*E- (mutalpha+gama)*I-Ta*I;

yp (4) = gama*I-mu*R-eta*R+Ta*I+Va*S;

yp = [yp(1); yp(2); yp(3); yp(4)];

end

function yp = odes2(t,y,ft,S,I,V0,T0)

% Definition of ODEs System
global mu gama alpha epsilon eta kl;

S = interpl (ft, S, t,'spline');

I interpl (ft, I, t,'spline');

Va = interpl (ft, VO, t,'spline');

% Interpolate the data set (ft, Va) at times
Ta = interpl (ft, TO, t,'spline');

% Interpolate the data set (ft, Va) at times t

, max(abs(si-sia))/(max(abs(si))),...

ss))

e)))
sr))), max(abs(pl-pla))/ (max(abs(pl))), ...
2))), max(abs(p3-p3a))/ (max(abs(p3))), ...
4)))



% Interpolate the data set (ft, Ta) at times t

yp(l) = pl*(mu + beta(t)*I) - beta(t)*I*p2 + (pl-p4)*Va;

yp(2) = p2* (mutepsilon)-p3*epsilon;

yp(3) = p3* (mutgamat+talpha)-gama*p4d +(pl-p2)*beta(t)*S
+(p3-p4) *Ta-k1;

yp (4) = mu*pd-eta*pl+eta*p4d;

yp = [-yp(1l); -yp(2); -yp(3); -yp(4)];

end

function beta = beta( t )

global per;
beta = .56 * (1 - per * cos( 2 * pi * t + 0.26 ) ) ;
end

function lambda = lambda( t )

global per;

lambda = 0.05+0.05*per * cos( 2 * pi * t ) ;
end
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