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Resumo Alargado 
 

A recente descoberta da tecnologia do RNA de interferência tornou-se numa nova ferramenta 

que permite regular seletivamente o padrão de expressão de um ou mais genes, o que pode 

ser explorado no âmbito de aplicação terapêutica. Deste modo, os resultados promissores 

desta nova abordagem têm vindo a reforçar a investigação relacionada com o RNA, avaliando 

e compreendendo os mecanismos celulares em que está envolvido, com o objetivo de o usar 

como uma nova classe de produtos bioterapêuticos, de fácil translação e implementação para 

o âmbito clínico. Na verdade, o mecanismo celular responsável pelo silenciamento da 

expressão génica apresenta um enorme potencial terapêutico que poderá alterar os 

tratamentos atualmente disponíveis para diversas patologias, como por exemplo as doenças 

neurológicas.  

Os microRNAs (miRNAs) constituem uma classe de RNAs de baixo peso molecular e, nos 

últimos anos, têm sido cada vez mais reconhecidos como moléculas endógenas reguladoras 

em numerosos processos biológicos. Devido à sua especificidade e eficiência, os miRNAs 

tornaram-se uma das ferramentas mais utilizadas no silenciamento de genes pelo mecanismo 

de RNA de interferência, uma vez que podem bloquear a síntese de proteínas através da 

indução da degradação do RNA mensageiro. Assim, os miRNAs podem ser considerados agentes 

terapêuticos promissores. 

Durante a última década, a hipótese de que os miRNAs podem ser usados como biofármacos 

para regular e controlar várias vias envolvidas no desenvolvimento e progressão da doença de 

Alzheimer (DA) ganhou consistência, uma vez que estes apresentam um papel crucial em 

muitas funções neuronais, tais como diferenciação, plasticidade sináptica, formação da 

memória, e normalmente estão sub-expressos em doentes com esta patologia. A doença de 

Alzheimer é a forma mais comum de demência e caracteriza-se por uma perda neuronal e 

sináptica generalizada, que causa um declínio progressivo e irreversível em diversas funções 

cognitivas. Embora, as causas ainda não sejam completamente compreendidas, sabe-se que 

esta doença neurodegenerativa está associada ao aparecimento de dois tipos de agregados 

proteicos, nomeadamente placas extracelulares beta-amiloides (Aβ) e complexos 

neurofibrilares intraneuronais. 

A formação das placas de Aβ resulta da clivagem sequencial da proteína percursora amiloide 

(APP) pela BACE1 e, posteriormente, pelo complexo gama-secretase dando origem às espécies 

Aβ tóxicas. Alguns estudos têm descrito uma relação causal entre a expressão do miR-29 e a 

DA, uma vez que a diminuição dos níveis de expressão da família miR-29 tem sido associada 

ao aumento da expressão da BACE1 e, consequentemente da formação dos péptidos Aβ em 

doentes com DA. Desta forma, a utilização do miR-29 pode proporcionar uma estratégia 

terapêutica eficaz na prevenção, controlo da progressão e tratamento desta patologia.  
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As terapêuticas baseadas no uso de miRNAs recorrem, na sua maioria, à utilização de miRNAs 

sintéticos. Embora a síntese de miRNAs possa ser muito eficiente, verifica-se normalmente a 

presença de contaminantes nas amostras de RNA sintetizado o pode levar à inespecificidade 

do silenciamento génico. Além disso, por norma, no processo de preparação do RNA sintético 

é necessário recorrer à utilização de solventes tóxicos, solventes orgânicos e condições 

desnaturantes, que podem comprometer a qualidade e integridade do produto alvo. Por todos 

estes motivos, e considerando o objetivo de aplicação terapêutica destes novos produtos 

biofarmacêuticos, torna-se evidente a necessidade de desenvolver novos processos eficientes 

ou melhorar as metodologias atualmente empregues para a sua preparação. Assim, um dos 

desafios mais importantes no desenvolvimento destas estratégias terapêuticas surge com a 

necessidade de produzir miRNA com elevado grau de pureza e atividade biológica, de modo a 

satisfazer os requisitos necessários à sua aplicação. Deste modo, uma das estratégias que 

pode ser aplicada consiste na produção recombinante de biomoléculas utilizando hospedeiros 

procarióticos. 

Desta forma, o objetivo principal do presente trabalho consiste no desenvolvimento e 

implementação de uma plataforma biotecnológica para a produção e purificação de 

precursores de miRNAs, em particular o pre-miR-29b (percursor do miR-29), cuja aplicação 

visa o silenciamento seletivo de vias endógenas diretamente relacionados com DA, 

nomeadamente a BACE1 e os péptidos Aβ. Paralelamente, serão desenvolvidas e 

caracterizadas nanopartículas poliméricas para a entrega do pre-miR-29b no citoplasma de 

células neuronais de forma seletiva e eficaz, de modo a assegurar o sucesso destas 

administrações.  

O sistema de expressão recombinante utilizado permitirá, pela primeira vez, a produção e o 

isolamento do pre-miR-29b humano na bactéria Rhodovulum sulfidophilum (R. sulfidophilum) 

DSM 1374, mantendo a sua atividade biológica. A utilização deste hospedeiro bacteriano é 

inovadora e vantajosa, devido à sua capacidade invulgar de secretar os ácidos nucleicos para 

o meio de cultura, bem como devido à ausência de ribonucleases no mesmo, permitindo a 

obtenção do miRNA de interesse com baixo conteúdo de impurezas bacterianas. A fim de 

otimizar a produção e acumulação de miRNAs no espaço extracelular, as condições de 

crescimento foram estudadas, nomeadamente no que diz respeito ao efeito da temperatura e 

concentração de cloreto de sódio. Os ensaios realizados demonstraram ser possível 

desenvolver um protocolo para o crescimento aeróbio da bactéria R. sulfidophilum, na 

ausência de luz, a 30ºC, o que resulta num melhoramento do crescimento das células, seguido 

de um aumento da produção do pre-miR-29b humano. Neste trabalho foi possível atingir uma 

concentração de pre-miR-29b no meio extracelular de aproximadamente 182 µg/L, após 40 

horas de crescimento bacteriano e uma concentração de 358 µg/L de pre-miR-29b 

intracelular, após 32 horas de fermentação. 
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Para que seja possível a aplicação terapêutica do pre-miR-29b é necessário ter em conta as 

exigências estabelecidas pelas agências reguladoras internacionais, que requerem a produção 

de miRNA com elevada qualidade e atividade biológica. Para assegurar esta condição, foram 

desenvolvidas novas estratégias de purificação para o pre-miR-29b, baseadas em 

cromatografia de afinidade. A fim de alcançar a máxima seletividade e especificidade na 

separação do pre-miRNA de outras biomoléculas do hospedeiro (outras espécies de RNA e 

proteínas), foram desenvolvidos suportes de afinidade baseados nas interações biológicas que 

são estabelecidas a nível celular, usando como ligandos de afinidade, aminoácidos básicos 

como a L-lisina e a L-arginina. Na estratégia de purificação com o aminoácido de L-lisina foi 

demonstrada pela primeira vez a purificação de pre-miRNA utilizando um gradiente 

decrescente de concentração de sulfato de amónio em três passos, o que permitiu explorar 

maioritariamente interações hidrofóbicas. Contudo, a necessidade de aplicar elevadas 

concentrações de sal pode ser visto como uma desvantagem devido aos custos e ao impacto 

ambiental associado ao processo, principalmente no que diz respeito à aplicação ao nível 

industrial. De modo a ultrapassar estas limitações foi usada L-arginina como aminoácido 

imobilizado. Este estudo demonstrou a possibilidade de purificar o pre-miR-29b utilizando 

três estratégias diferentes de eluição, nomeadamente concentrações decrescentes de sulfato 

de amónio e duas condições de eluição moderadas, tais como usando um gradiente crescente 

de cloreto de sódio e a adição de um agente de competição (arginina) ao tampão de eluição. 

A versatilidade da matriz de arginina na purificação do pre-miR-29b sugeriu que o mecanismo 

de interação envolveria uma multiplicidade de interações não-covalentes, que globalmente 

resultam no bioreconhecimento do RNA de interesse. O reconhecimento bioespecífico e 

seletivo do pre-miR-29b por estes suportes cromatográficos permitiu a sua purificação e 

recuperação de forma eficiente, com elevados rendimentos, grau de pureza e integridade, a 

partir de uma mistura complexa. Além disso, a utilização da cromatografia de afinidade com 

arginina resultou na eliminação das impurezas associadas à produção recombinante, 

nomeadamente proteínas e endotoxinas, respeitando os critérios estabelecidos pelas agências 

reguladoras (por exemplo “Food and Drug Administration” – FDA). Considerando que esta 

estratégia cromatográfica requer condições suaves de eluição, torna-se um método de 

purificação mais económico do que a lisina-agarose. 

Em paralelo, a ligação do pre-miR-29b aos aminoácidos em estudo foi avaliada por biosensor. 

Este estudo também permitiu compreender as interações envolvidas entre o pre-miR-29b e as 

matrizes de lisina- e arginina-agarose, assim como determinar as melhores condições que 

favorecem o bioreconhecimento e a especificidade de ligação dos aminoácidos ao pre-miR-

29b, preservando a sua estabilidade e integridade. Os resultados obtidos neste estudo 

mostraram a existência de várias interações entre o pre-miR-29b e as matrizes de afinidade 

com os aminoácidos imobilizados, tais como interações hidrofóbicas, eletrostáticas, catião-π, 

pontes de hidrogénio e forças de “van der Waals”.  
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Tendo em conta que a estrutura dos suportes cromatográficos está em contínuo 

desenvolvimento de modo a proporcionar separações rápidas e eficientes, nomeadamente 

para a purificação de ácidos nucleicos, foi também testado um suporte monolítico na 

purificação do pre-miR-29b. Esta estratégia que associa a alta capacidade destes suportes 

com a especificidade e seletividade conferida pelo ligando de agmatina (um derivado da L-

arginina), permitiu a recuperação do pre-miR-29b com alta eficiência (95%) e com elevado 

grau de pureza (90%) para posterior aplicação nos ensaios in vitro. Além disso, este suporte 

monolítico revelou elevada capacidade de ligação para o RNA, permitindo uma rápida e 

eficiente separação do pre-miR-29b, independentemente da taxa de fluxo aplicada. No geral, 

foi possível desenvolver métodos de purificação simples, robustos, versáteis e de elevada 

reprodutibilidade, que permitiram minimizar o manuseamento das amostras e evitar o uso de 

condições desnaturantes e solventes orgânicos, contribuindo para o sucesso das aplicações 

terapêuticas do RNA. 

No entanto, o sucesso das terapêuticas baseadas em miRNAs depende também da capacidade 

de entrega do miRNA, de forma seletiva e eficiente, aos órgãos-alvo, com a mínima 

toxicidade. De facto, a entrega cerebral de fármacos é limitada por diversos fatores 

intrínsecos, nomeadamente a sua rápida degradação quando em contato com os fluidos 

corporais e a reduzida permeabilidade ao longo da barreira hematoencefálica (BHE). Para 

ultrapassar estas limitações, vários sistemas de entrega de fármacos não-virais têm sido 

desenvolvidos e caracterizados, nomeadamente os sistemas poliméricos (poliplexos) que 

possuem características intrínsecas ideais para a transfecção, proteção e libertação 

controlada e direcionada de RNA. No presente trabalho, as formulações foram preparadas 

com polímeros comerciais, tais como quitosano e polietilenimina e demonstraram elevada 

capacidade de transporte de RNA, apresentando pequenas dimensões e uma forte carga 

superficial positiva. Além disso, e considerando o campo de aplicação do presente trabalho, 

estes sistemas devem também ter a capacidade de penetrar a BHE, levando a um aumento da 

concentração do pre-miRNA no cérebro e, consequentemente uma melhoria da sua ação 

terapêutica. Deste modo, a fim de potenciar o efeito terapêutico das abordagens baseadas no 

RNAi no sistema nervoso central, os poliplexos desenvolvidos foram funcionalizados com 

ligandos específicos, tais como a lactoferrina e o ácido esteárico, os quais são reconhecidos 

pelos recetores localizados à superfície da BHE. Este estudo revelou que os sistemas de 

entrega desenvolvidos conseguem penetrar a BHE e assim entregar o pre-miR-29b no cérebro. 

Finalmente, avaliou-se a atividade biológica do pre-miR-29b recombinante através da 

verificação da sua eficiência na regulação dos níveis de expressão dos genes relacionados com 

a DA, em particular no silenciamento da BACE1 humana, utilizando modelos in vitro (linhas de 

células neuronais). O efeito da administração do pre-miR-29b recombinante foi verificado 

tanto ao nível da expressão do RNA mensageiro como ao nível da expressão da proteína 

BACE1, através de RT-qPCR, Western blot e Imunocitoquímica. Os resultados sugerem que o 
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pre-miR-29b recombinante pode funcionar como biofármaco para a modulação terapêutica 

dos níveis de BACE1, uma vez que foram atingidos elevados níveis de inibição, ou seja 80% de 

redução para a expressão da proteína BACE1 e 45% para os níveis dos péptidos beta amiloides, 

quando comparados com as células não transfectadas e células transfectadas como um RNA 

não relacionado bem como um miR-29b sintético.  

Em suma, a implementação destas metodologias terá um grande impacto na indústria 

farmacêutica e biotecnológica, fornecendo a base para a utilização de novas formas 

terapêuticas baseadas na utilização de miRNAs, não apenas para aplicação em doenças 

neurológicas, mas também para futuros alvos terapêuticos que possam ser de interesse.  
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Abstract 

 

The possibility of selectively alter the expression pattern of a particular gene has been sought 

by scientists and clinicians for a long time. Nowadays, RNA interference (RNAi)-based 

technology has become a novel tool for silencing gene expression in cells. In addition, this 

strategy encloses an enormous therapeutic potential that could change the course of the 

currently applied treatments in several life threatening pathologies and it is expected that 

this technology can be translated onto clinical applications in a near future. MicroRNA 

(miRNA) has become a commonly employed tool for gene silencing, since it prevents protein 

synthesis by inducing the messenger RNA (mRNA) degradation, with a high specificity degree. 

Consequently, in the last years, the miRNAs have emerged as biopharmaceuticals to regulate 

several pathways involved in the insurgence and progression of the Alzheimer’s disease (AD), 

since they might have key regulatory roles in many neuronal functions, such as 

differentiation, synaptic plasticity and memory formation, and typically they are down-

regulated in disease conditions. In the literature there are some studies describing a causal 

relationship between miR-29 expression and AD, since a loss of miR-29 cluster can contribute 

to increased beta-amyloid precursor protein-converting enzyme 1 (BACE1) and Amyloid-β (Aβ) 

levels in sporadic AD patients. Thus, this evidence supports the possibility to use miR-29 as a 

potential therapeutic target for AD therapy. 

In general, miRNA-based therapy relies on the use of synthetic microRNAs. However, these 

synthesized formulations typically present contaminants that can lead to non-targeted gene 

silencing, which still restricts the pre-clinical or clinical application of these RNAs. Thus, 

considering this therapeutic purpose and the global distribution of novel biopharmaceuticals 

it is necessary to develop efficient processes for their preparation. The development of new 

strategies for microRNA production with high purity degree and biologically active is 

extremely required. One of the strategies might be the use of the recombinant production of 

biomolecules using prokaryotic hosts.  

Hence, the present work intends to develop and establish an integrative biotechnological 

platform to biosynthesize and purify a recombinant miRNA precursor (pre-miR-29b) to act in 

the selective silencing of endogenous pathways directly related with AD, in particular BACE1 

and Aβ. In addition, the success of these therapies also depends upon the ability to 

selectively and efficiently deliver the pre-miR-29b in the cytoplasmic compartment of 

neuronal cells, the location where their function is exerted; therefore the development of 

miRNA delivery systems was also envisioned. 

The expression system Rhodovulum sulfidophilum (R. sulfidophilum) DSM 1374 allowed, for 

the first time, the production of human pre-miR-29b with a straightforward recuperation of 
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pre-miR-29b in a single step, maintaining its biological active form. The application of this 

recombinant bacterial microorganism is innovative and is supported by the unusual capacity 

of secreting the nucleic acids to the extracellular space and the absence of host ribonucleases 

in the culture medium. Therefore, it is expected that the secreted miRNA will be devoid of 

main bacterial associated impurities. Regarding the growth conditions, and conversely to 

what was previously described for this bacterium, our results showed to be possible to 

develop an original approach for the aerobic growth of the R. sulfidophilum, which results in 

a cell growth improvement followed by an enhanced production of human pre-miR-29b. The 

extracellular pre-miR-29b concentration was approximately 182 µg/L, after 40 hours of 

bacterial growth and the total intracellular pre-miR-29b was of about 358 μg/L, at 32 hours of 

cell growth. 

To further develop a potential therapeutic application, the major interest is not only to 

produce high quantities of RNA but also to obtain and preserve its biological active form, 

fulfilling the requirements of regulatory agencies. Hence, to assure that this prerequisite is 

met it was used a novel and effective purification strategy, based on affinity 

chromatography, to purify the pre-miR-29b. Therefore, in order to achieve the selectivity 

towards the target pre-miRNA and the maximum resolution between the pre-miR-29b and 

other host biomolecules (transfer RNAs and proteins) it was used an affinity support that 

exploits the same biological interactions that are established within the cell, by using 

immobilized amino acids (L-lysine and L-arginine), as specific ligands. The recognition of the 

pre-miR-29b achieved with these supports, allowed its selective recovery from a complex 

mixture with high efficiency and high purity. In parallel, the binding of pre-miRNA to these 

different amino acids was studied by Surface Plasmon Resonance. This information brings 

important insights concerning the characterization of the pre-miRNA binding onto 

chromatographic supports. Moreover, it was possible to determine some particular conditions 

enabling the improvement of the binding specificity of the amino acid ligands used to purify 

miRNA, preserving the RNA integrity. Taking into account that the structure of the 

chromatographic supports has been continuously developed to afford rapid and efficient 

separations, namely for the purification of nucleic acids, it was also tested a monolithic 

support to purify the pre-miR-29b. The association of the high capacity of these supports with 

the specificity conferred by the agmatine ligand (a derivative of L-arginine) represented a 

novelty and an advantage to obtain highly pure pre-miR-29b (90%) with a high recovery yield 

(95%).   

The establishment of an effective application of miRNAs is usually constrained by different 

phenomena, namely their easy degradation when in contact with the body fluids. To 

overcome this limitation, delivery systems, such as polymeric systems (polyplexes), were 

developed and characterized in order to encapsulate and protect the pre-miR-29b 

biopharmaceuticals from degradation, allowing their sustained and targeted release. The 

formulations prepared with chitosan and polyethylenimine demonstrated high loading 
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capacity, small sizes and exhibited a strong positive charge on their surface. In addition, 

considering the application field of this work, the delivery systems should also have the 

ability to penetrate the Blood-Brain Barrier (BBB), causing an increase of the pre-miRNAs 

concentration in the brain and, consequently the improvement of the therapeutic effect. 

Actually, BBB is an intrinsic barrier limiting miRNA therapeutic effect on the central nervous 

system. Thus, to improve the delivery of pre-miRNA therapeutics in the brain, the polyplexes 

were functionalized with specific ligands, namely lactoferrin and stearic acid which are 

recognized by cell surface receptors of BBB.  

Finally, it was evaluated the biological activity of the recombinant pre-miR-29b by measuring 

the efficiency on human BACE1 knockdown, using in vitro neuronal cell lines. The effect of 

recombinant pre-miR-29b administration was verified by both assessing the mRNA and protein 

human BACE1 levels, by using RT-qPCR, Western blot and Imunocytochemistry. Results 

suggest that recombinant pre-miR-29b can represent a novel biopharmaceutical product for 

the therapeutic modulation of human BACE1 levels, because high levels of inhibition were 

achieved, namely 80% of reduction for BACE1 protein expression and 45% for Aβ42 levels. 

Globally, the implementation of these cutting-edge technologies can have a great impact on 

the biopharmaceutical industry, providing the basis for the implementation of novel miRNA-

based therapeutics, not only for neurological disorders but also for future therapeutic targets 

that can be of potential interest.  
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Thesis Overview 

 

This thesis is structured in four main chapters. The first chapter is divided into three 

sections. The first section of chapter 1 provides a brief explanation concerning the 

importance and interest to apply microRNAs as biopharmaceuticals, in order to regulate 

endogenous pathways involved in the emergence and progression of the Alzheimer’s disease. 

This section presents a general introduction to the main issues detailed in sections 2 and 3. 

The second section consists in a succinct literature review about the relevance of developing 

and establishing new and integrative approaches to biosynthesize, isolate, purify and deliver 

the pre-miRNAs molecules, also discussing the main challenges and future directions for the 

development of miRNA-based therapies for neurodegenerative diseases (Paper I. Current 

progress on microRNAs-based therapeutics). Lastly, the third section discusses the main issues 

related with non-coding RNAs purification, the advantages and limitations associated to the 

current chromatographic methods, as well as the improvements that have been done lately, 

in order to obtain pure and biologically active samples. This third section is also presented in 

a paper review form (Paper II. Affinity approaches in RNAi-based therapeutics purification).  

 

The second chapter includes the main, as well as, the specific goals established for the 

development of the present research project. 

 

Afterwards, the third chapter consists in the presentation and discussion of the results 

obtained during this research work, in the form of original research papers organized as 

follows: 

 

Paper III. Advances in time-course extracellular production of human pre-miR-29b from 

Rhodovulum sulfidophilum 

 

Paper IV. Analysis of pre-miR-29b binding conditions to amino acids by Surface Plasmon 

Resonance Biosensor  

 

Paper V. New approach for purification of pre-miR-29 using lysine-affinity chromatography  

 

Paper VI. Purification of pre-miR-29 by arginine-affinity chromatography 

 

Paper VII. Pharmaceutical-grade pre-miR-29 purification using an agmatine monolithic support 

 

Paper VIII. Characterization of polyplexes involving small RNA 

 

Paper IX. Recombinant pre-miR-29b for Alzheimer´s disease therapeutics 
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Paper X. Brain-targeting study of lactoferrin-stearic acid–Chitosan/Polyethylenimine pre-miR-

29b-delivery system 

 

To finish, the fourth chapter summarizes the concluding remarks obtained during this 

research work, regarding the development and implementation of cutting-edge technologies 

to the production, bioseparation and delivery of pre-miRNAs. The impact of the findings here 

reported on biopharmaceutical industry will also be addressed, discussing the application of 

these novel approaches based on microRNAs, not only for neurological disorders but also for 

future therapeutic targets that can be of potential interest. In addition, the future trends of 

this thesis and additional research work will be also suggested to complement the important 

findings achieved with this project. 
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1. Alzheimer’s disease and microRNAs 

 

1.1. Introduction  

The discovery of RNA interference (RNAi) by Andrew Fire and Craig Mello in the late 1990s, 

allowed them to win the Nobel Prize in Physiology or Medicine in 2006, and revolutionized the 

contemporary understanding of gene regulation (Fire et al., 1998). Exogenous double-

stranded RNA (dsRNA) was identified in the nematode Caenorhabditis elegans (C. elegans) as 

an effector molecule of the RNAi pathway, since this RNA silenced the expression of a 

homologous target gene by directing degradation of its messenger RNA (mRNA). Moreover, the 

study demonstrated that the gene silencing was achieved with the administration of only few 

molecules of dsRNAs and that these molecules were more efficient than the corresponding 

antisense RNA (Fire et al., 1998). Since then, several studies have demonstrated that RNAi is 

a well-conserved, endogenous mechanism in several species, including mammals and plants 

(Chu and Rana, 2007; Lehman, 2010). In mammalian cells, the inhibitory capability of RNA 

was initially demonstrated by the introduction of shorter dsRNAs, named small interfering 

RNAs (siRNAs), with perfect sequence complementarity to target mRNA transcripts, which had 

already been discovered in plants (Chu and Rana, 2007; Dykxhoorn and Lieberman, 2006; 

Filipowicz et al., 2005; Zamore et al., 2000). 

Accordingly, the discovery that genes could be silenced by RNAs allowed the biological 

understanding of other roles of RNA, which changed from a simple intermediate molecule in 

the information flux between DNA and proteins to a dynamic and versatile molecule, 

fundamental in the regulation of genes expression, involved in essential cellular processes of 

all living systems (Burnett and Rossi, 2012; Ramachandran and Ignacimuthu, 2013). 

Currently, RNAi regulates the expression and function of individual genes, involved in 

pathways or known to be associated with diseases (harmful or unwanted genes). This 

regulation occurs at the post-transcriptional level through non-coding RNAs molecules 

(ncRNAs), via sequence-specific degradation or blocking the translation of their target mRNA 

in most eukaryotic species (Bumcrot et al., 2006; Burnett and Rossi, 2012; Deng et al., 2014; 

Ramachandran and Ignacimuthu, 2013). RNAi-based technology possesses attractive 

characteristics to be considered for therapeutic proposes, such as high specificity, efficiency, 

ability to induce a robust and potent knockdown of the targeted genes and the possibility to 

promote a long-lasting therapy (the therapeutic effect lasts from days up to weeks), reducing 

the expenses of medical treatments (Bumcrot et al., 2006; Burnett and Rossi, 2012; Deng et 

al., 2014; Milhavet et al., 2003). On the other hand, usually, the dosage required of ncRNA 

therapeutics is low, which can reduce or eliminate the occurrence of undesirable adverse 
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effects in the patients (Guzman-Villanueva et al., 2012). These breakthroughs clearly 

encouraged a variety of studies on the mechanisms of gene expression regulation, which led 

to the emergence of numerous and different types of RNA-based therapeutics that extends 

the range of targets of the existing pharmacological drugs (Burnett and Rossi, 2012). 

NcRNAs are a class of transcripts which, as the name implies, are not translated into proteins. 

Presently, ncRNAs are recognized as key regulatory molecules in a variety of cellular 

processes as diverse as development, cell viability, cell cycle regulation, stem cell self-

renewal, transposon activity control, differentiation, heterochromatin formation and 

maintenance of cell integrity by gene silencing pathways, through translational repression or 

mRNA degradation (Kim, 2005; Svoboda, 2014). A very simplistic classification based on 

ncRNAs length arbitrarily separates these biomolecules into two groups according to their 

sizes: the small (<200 nucleotides (nt)) and the long (>200 nt) ncRNAs (Dogini et al., 2014; 

Gomes et al., 2013). In turn, the small group comprises infrastructural RNAs and regulatory 

RNAs. The infrastructural RNAs include ribosomal RNA (rRNA), transfer RNA (tRNA), small 

nuclear RNA (snRNA) and small nucleolar RNA (snoRNA) that are involved in the spliceosomal 

and translational machinery. On the other hand, regulatory RNAs include microRNAs 

(miRNAs), siRNAs delivered as synthetic duplexes to the cells, short hairpin RNA (shRNA) and 

Piwi-interacting RNAs (piRNAs), among others (Chu and Rana, 2007; Dogini et al., 2014; 

Gomes et al., 2013; Matera et al., 2007). These differ significantly in their biogenesis and 

mode of action (Kim, 2005; Kim et al., 2009).  

Presently, RNAi-based therapies have major implications for basic and biomedical research 

that can lead to a number of clinical applications, for treating the vast number of human 

diseases caused by one or few genes, such as viral infections, metabolic diseases, 

cardiovascular disease, hypertension and stroke, immune dysfunction and autoimmune 

disorders, distinct types of cancers and neurodegenerative and psychiatric diseases (Gomes et 

al., 2013; Ramachandran and Ignacimuthu, 2013; Sullenger and Gilboa, 2002).  

 

1.2. Alzheimer’s disease 

Neurodegenerative diseases (NDs) are a family of disorders of central nervous system (CNS) 

characterized by a progressive loss of neuronal structure and function, resulting in a motor 

and cognitive dysfunction (Goodall et al., 2013; Maciotta et al., 2013). For that reason, these 

disorders do not have cure, once the neurons cannot regenerate on their own after cell death 

or damage. Some of the most studied NDs include Alzheimer’s disease (AD), Parkinson’s 

disease, Huntington’s disease, Amyotrophic Lateral Sclerosis and Prion diseases (Junn and 

Mouradian, 2012; Tabares-Seisdedos et al., 2011).  
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NDs constitute a serious and growing health problem for our societies because they 

collectively represent one of the leading causes of disability and mortality. Currently, it is 

estimated that NDs affect over 30 million people worldwide and that by 2030, this number 

can reach 66 million people and increase to 115 million by 2050 (Schonrock et al., 2012). As a 

result, these diseases are associated to higher health care costs, as well as, being a source of 

severe human suffering (Dunkel et al., 2012). The increased prevalence of these diseases is 

intimately related with the current trends: the aging of the population due to increased life 

expectancy which cause more people living long enough to be affected and the continuing 

lack of progress in identifying effective diagnosis and treatment modalities. All these reasons 

emphasize the necessity to study novel therapeutic interventions for these incurable diseases 

(Bertram et al., 2010; Qiu et al., 2009). 

Among all dementing disorders, AD is the most prevalent (45-60%) and devastating form of 

dementia in the elderly and leads to death within 3 to 9 years after appearance of symptoms 

(Isik, 2010). According to the National Institute on Aging (www.nia.nih.gov/alzheimers), the 

AD is clinically characterized by loss of memory and eventually by disturbances in reasoning 

(e.g. trouble handling money), planning and performing activities of daily living, language, 

and perception (e.g. loss of orientation to time and place), as well as, changes of mood, 

behavior and personality. Common behavioral symptoms of Alzheimer’s include sleeplessness, 

agitation, anxiety, and depression (Buchman et al., 2013; Sperling et al., 2011; Wilson et al., 

2013).  

In 2014, it was estimated that more than 5.4 million individuals in the USA have AD and that 

this number can nearly triplicate, from 5 million to as many as 16 million by 2050, thus 

significantly increasing social and economical burdens in industrialized countries, where the 

aging population is increasing every year (Provost, 2010b; Suehs et al., 2013). AD is commonly 

classified into two types: Sporadic Alzheimer’s disease (SAD) or Familial Alzheimer’s disease 

(FAD) (Blennow et al., 2006; Piaceri et al., 2013). SAD reports most AD cases (99%), occurs 

late in life (65 years), and it can take up to 20 years for the disease to develop. Until now, 

SAD was only associated with a genetic mutation in the ε4 allele of the apolipoprotein E 

(APOE) gene, which promotes amyloid-beta (Aβ) deposition and impairs Aβ clearance 

(Bertram et al., 2010; Bu, 2009; Genin et al., 2011; Hardy and Selkoe, 2002; Piaceri et al., 

2013). Presently, sporadic type affects 11% of the population over the age 65 and older, 32% 

of those over the age 85 and, the vast majority, 82% of the population aged 75 or older. In 

contrast, FAD typically develops before the age 65 (40-50 years), is a very rare condition (1%) 

and it is caused by autosomal, dominant mutations in three genes, namely in the amyloid 

precursor protein (APP) and in the genes of presenilin (PSEN1 and PSEN2), which are linked to 

Aβ processing by γ-secretase complexes (Blennow et al., 2006; Chen et al., 2013; Citron, 

2010; Piaceri et al., 2013). Generally, individuals are diagnosed with FAD when more than 

one member is affected in more than one generation (Piaceri et al., 2013). Hence, it is 

fundamental to found a solution to this problem as soon as possible. 
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AD involves various regions of the brain that control learning, language, thought and memory 

and results from progressive neuronal loss (death of neurons), arising from often unknown or 

insufficiently characterized risk factors and causes. Thereby, AD is a highly complex disease 

that involves hundreds of defective genes distributed across the human genome (genetic 

factors), in close interaction with other factors such as age (atrophy of certain parts of the 

brain, inflammation, production of free radicals and mitochondrial dysfunction), family 

history (heredity), lifestyle factors (education, diet, smoking, substance abuse) and 

environmental risk factors (chemical exposure) contributing to its development and 

progression (Bertram et al., 2010; Maes et al., 2009).  

Neuropathological hallmarks of AD include extracellular senile plaques (known as amyloid 

plaques) formed of aggregates of toxic Aβ peptides and intracellular neurofibrillary tangles 

(NFTs) composed by insoluble hyperphosphorylated tau, a microtubule-associated protein 

(Blennow et al., 2006; Goedert et al., 1989; Hardy and Selkoe, 2002; Mullane and Williams, 

2013). Although the mechanisms of AD remain unclear, it has been hypothesized that it can 

be associated with abnormal protein metabolism, particularly in the formation and 

accumulation of the Aβ peptides (Mullane and Williams, 2013; Provost, 2010a; Schonrock et 

al., 2012). 

Amyloid peptide is composed by 40 or 42 amino acids and is generated upon sequential 

proteolytic cleavage of APP, a transmembrane protein expressed in many tissues and involved 

in the synaptogenesis, axonal transport, transmembrane signal transduction, cell adhesion 

and calcium metabolism (Chen et al., 2013; Glenner, 1989a; Glenner, 1989b). The initial step 

in the “amyloidogenic pathway” is catalyzed by β-secretase (also known as β-site APP-

cleaving enzyme 1 (BACE1)), producing a carboxyl-terminal fragment of 99 amino acids 

(CTF99) and simultaneously the ectodomain of APP is released as soluble APPβ (sAPPβ) (see 

Figure 1) (Kim et al., 2014; De Strooper, 2010). Posteriorly, the resulting fragment of APP 

(CTF99) is cleaved by the γ-secretase complex (that is composed by at least four components, 

namely PSEN1, Nicastrin (NCSTN), Presenilin enhancer 2 (PEN2) and Anterior Pharynx-

defective 1 (APH-1)), releasing into the cytoplasm an intracellular domain of APP of 

approximately 50 amino acids (AICD), and a variety of potentially amyloidogenic Aβ peptides 

(39-42 amino acids) (Figure 1) (Chen et al., 2013; Ghiso and Frangione, 2002; Kim et al., 

2014; Provost, 2010a). In alternative, in the "non-amyloidogenic pathway", APP is initially 

cleaved by the metalloprotease α-secretase, releasing a soluble APPα ectodomain (sAPPα), 

and generating at the same time, a carboxyl-terminal fragment of 83 residues (CTF83), which 

is further processed by γ-secretase, liberating extracellular p3 and the AICD (Ghiso and 

Frangione, 2002).  
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Figure 1 - Amyloidogenic and Non-amyloidogenic pathways for proteolytic processing of APP 

by α-secretase, BACE1, and γ-secretase. 

Abbreviation: APP, amyloid precursor protein; BACE1, β-site APP-cleaving enzyme 1; CTF83/99, 

carboxyl-terminal fragment of 83/99 amino acids; sAPPα/β, soluble APPα/β. 

 

While γ-secretase produces several Aβ peptides with heterogeneous carboxyl-terminus 

ranging from 38-43 amino acids, BACE1 is a site-specific protease that cleaves exactly 

between specific amino-acids of APP. In addition, BACE1 catalyses the first and rate-limiting 

step in the pathway (Provost, 2010a; Schonrock et al., 2012; Vassar et al., 2009). Consistent 

with this hypothesis, several research groups have demonstrated that the levels and the 

activity of BACE1 are elevated in sporadic AD brain, suggesting the possibility that BACE1 

overexpression might initiate or accelerate AD. For these reasons, BACE1 has been recognized 

as a prime drug target for therapeutic inhibition of Aβ production in AD, once the BACE1 

inhibition can decrease production of all forms of Aβ peptides (Vassar et al., 2009). Within 

the variety of Aβ peptide isoforms produced in the CNS, Aβ1-40 is the most predominant form 

contributing for more than 90% of the total Aβ, whereas Aβ1-42 is the most neurotoxic form and 

is considered to be primarily responsible for neuronal damage. As mentioned above, amyloid 

plaques are formed from the gradual accumulation and aggregation of secreted Aβ peptides in 

oligomers and fibrils in the extracellular space. However, recent studies demonstrated that 

the accumulation of Aβ occur also within neurons with AD pathogenesis (De Strooper, 2010; 

Dong et al., 2012). 
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Although several molecular mechanisms have been implicated in the AD pathology, most 

evidences indicate that the intraneuronal Aβ accumulation and the amyloid plaques play a 

pivotal role in the synaptic dysfunction, neuronal death and cognitive dysfunction (Figure 2), 

which cause neurodegeneration and dementia in a first instance and then leads to AD (Delay 

et al., 2012; Feng and Feng, 2011; Iyengar et al., 2014; Maciotta et al., 2013; Tan et al., 

2013). Many processes are common features in neurodegeneration, namely cellular oxidative 

stress (overproduction of reactive oxygen species (ROS) and activation of cell death 

pathways), protein oligomerization and aggregation, deregulation of calcium homeostasis, 

mitochondrial dysfunction, neuroinflammation, DNA damage and aberrant RNA processing 

(Borgesius et al., 2011; Goodall et al., 2013; Jeppesen et al., 2011; Qiu et al., 2009). These 

events initiate pro-apoptotic cascades that activate members of the B-cell lymphoma 2 (Bcl-

2) family and lead to the rapid activation of caspases (Feng and Feng, 2011; Maciotta et al., 

2013; Van den Hove et al., 2014). In addition to plaques and tangles as histopathological 

hallmarks, other pathological changes include impaired axonal transport, neuron-glial 

interactions and reduced synaptic plasticity (Delay et al., 2012). As shown in Figure 2, 

mechanisms that affect AD pathogenesis involve dysregulation of multiple fundamental 

cellular pathways, including protein folding and clearance processes. Concluding, in order to 

develop an AD therapeutic it is essential to understand the principal features of this disease. 

 

 

Figure 2 - Alzheimer's disease pathways. 

Abbreviations: Aβ, Amyloid-beta; APH-1, Anterior Pharynx-defective 1; APP, Amyloid Precursor Protein; 

APOE, Apolipoprotein E; Cdk5, Cell division protein kinase 5; GSK3, Glycogen Synthase Kinase 3; MAPT, 

Microtubule-Associated Protein Tau; NCSTN, Nicastrin; PEN2, Presenilin Enhancer 2; PSEN1, Presenilin 1; 

ROS, Reactive Oxygen Species.  
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Many other disorders can be confused with AD, once no specific blood test or imaging test 

exists for the diagnosis of AD. Thus, AD is currently being diagnosed using a combination of 

several methods and clinical tools to reach a correct diagnosis, which includes a thorough 

general medical workup, a neurological exam based in mental status tests (such as tests of 

memory, problem solving, attention and language) and psychiatric evaluation (to assess 

mood, anxiety and clarity of thought) (Jack et al., 2011). Furthermore, the diagnosis includes 

structural imaging of the brain with computed tomography, magnetic resonance imaging, 

single-photon emission computed tomography or positron emission tomography (Albert et al., 

2011; Barthel et al., 2011; McKhann et al., 2011). Nonetheless, brain imaging is not a 

standard part of the assessment for possible AD since although these methods are good 

biomarkers, they are also quite expensive. The clinical diagnosis of AD remains difficult and, 

sometimes the definitive diagnostic is only established by post-mortem confirmation. 

 

In the last few years, several studies have been made to identify the neuropathological, 

biochemical, and genetic biomarkers of the AD so that the diagnosis could be done as early as 

possible, even in the absence of obvious symptoms, once AD patients are known to have 

neuropathology in their brains for over 10 to 20 years before any symptoms occur. Aβ 

peptides (Aβ40 and Aβ42, which are more prone to aggregation) and tau/phospho-tau (Thr 181, 

a common phospho-epitope), in cerebrospinal fluid (CSF), have been widely accepted as 

robust biomarkers in AD diagnosis (Holtzman, 2011; Tarawneh and Holtzman, 2010). However, 

the wide variability and inconsistency that exists among different studies and the invasive 

nature of the procedures required to obtain CSF have been delaying the use of more accurate 

and efficient biomarkers as a diagnostic tool for AD in the clinical setting (Holtzman, 2011; 

Ingelson et al., 1999). Finally, the biomarkers also allow following the patient response to the 

treatment, enabling to elaborate specific regimen changes if a drug is not providing the 

desired benefit.  

 

Despite the efforts to identify optimal treatment schemes containing one or more drugs, the 

majority of the currently available options are still largely ineffective due to several reasons. 

In particular, the molecular pathology of dementia is still poorly understood, the genetic and 

epigenetic component of dementia is poorly defined, and the understanding of genome-drug 

interactions is very limited (Cacabelos and Torrellas, 2014). In addition, the drug targets are 

inappropriated and most treatments are symptomatic, for instance, although patients treated 

with antipsychotic drugs experience moderate benefits in reducing aggression and psychosis, 

they are accompanied of serious adverse effects, such as sedation, stroke, movement 

difficulties (Parkinsonism), thus limiting their routinely use (Cacabelos and Torrellas, 2014). 

Presently, there are only four drugs approved by the Food and Drug Administration (FDA) 

available to treat the cognitive problems of Alzheimer's: three are acetylcholinesterase 

inhibitors (Donepezil (Aricept®), Rivastigmine (Exelon®), Galantamine (Razadyne®) 

commonly prescribed for mild-to-moderate AD) and the other one (Memantine (Namenda®)) 
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is an N-Methyl-D-Aspartate (NMDA) receptor antagonist prescribed for moderate-to-severe AD 

(Cacabelos and Torrellas, 2014). These drugs can help maintain thinking, memory, and 

communication skills and help with certain behavioral problems but they do not delay or 

interrupt AD progression. The most common adverse effects are nausea, hallucinations, 

confusion, dizziness, headache, fatigue and vomiting.  

 

Although the precise mechanisms responsible for the pathology of AD are still unclear, several 

convincing evidences suggest that the generation and accumulation of Aβ peptides, in the 

brain, plays the central role in initiating and development of a complex neurodegenerative 

cascade, which results in progressive cognitive impairment and dementia (Glenner, 1989a). 

Hence, the "amyloid cascade" is the most widely discussed and investigated pathway, to find 

the cause of AD. So the regulation of protein expression levels involved in the Aβ generation 

process has demonstrated to be important in AD progression. Consequently, the current drug 

discovery approaches have focused on preventing the formation and aggregation of the Aβ or 

to facilitate their clearance. 

 

During the past 30 years, the understanding of the genetic and molecular basis of the 

pathophysiology of this dementia has advanced dramatically; however, limited knowledge of 

the basic pathogenic mechanisms is a major hurdle in the identification of drug targets and 

development of therapeutic strategies for this yet incurable disorder. All these reasons 

highlight the need for the development of innovative and alternative therapeutic strategies to 

prevent, slow or stop the progression of this disease.  

 

At present, alternative therapeutic strategies focused on the specific gene expression control 

(mRNA and protein levels) can contribute to the regulation of several neuronal functions, 

such as differentiation, synaptic plasticity and memory formation (Cacabelos and Torrellas, 

2014). Gene therapy is a highly promising therapeutic method for the treatment or prevention 

of AD, using genetic information. In addition, gene therapy can be more economical and 

convenient because it provides higher targeting and prolonged action. A possible regulatory 

mechanism of gene expression in AD is via ncRNAs, designed RNAi mechanism (Cacabelos and 

Torrellas, 2014). One important class of gene expression regulators is miRNAs. A number of 

studies, in the last decade, focused on the hypothesis of using miRNAs as biopharmaceuticals 

to regulate several pathways involved in the insurgence and progression of AD. This idea has 

gained support, because some miRNAs are differentially expressed in the human brain 

(including the spinal cord, cerebellum, hypothalamus, hippocampus and cortex) and regulate 

the expression of genes associated with specific neurodegenerative disorders (Delay et al., 

2012; Feng and Feng, 2011; Maciotta et al., 2013; Satoh, 2012; Tan et al., 2013; Tan et al., 

2015). Thus, the use of these RNAs can provide an effective therapeutic strategy for AD 

treatment and diagnosis. 
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1.3. MicroRNAs as therapeutic products 

MiRNAs (miRNAs or miRs) were discovered approximately two decades ago by Ambros and 

colleagues, when their studies revealed that a small non-coding RNA (sncRNA), lineage-4 (lin-

4) regulated the larval development timing of the C. elegans (Lee et al., 1993; Wightman et 

al., 1993). This regulation is accomplished by inhibition of the expression of a protein-coding 

gene through recognition of complementarity sites in the 3' untranslated region (3'UTR) of lin-

14 mRNA (Lee et al., 1993). Accordingly, the discovery of miRNAs has been one of the most 

fascinating breakthroughs of recent times and, now, miRNAs represent the most extensively 

studied class of evolutionarily conserved, endogenous, sncRNAs (Satoh, 2010). At present, 

1881 miRNAs have been identified in humans and its sequences are available in the official 

miRNA database (miRBase, www.mirbase.org), a repository of miRNAs from many organisms.  

MiRNAs have emerged as pivotal modulators that are directly involved in the regulation of 

gene expression at the post-transcriptional level via base-pairing interactions between the 5′ 

end of the miRNA and the 3′UTR of their target mRNA, which results in mRNA translational 

repression or degradation, depending on the degree of sequence complementarity (Bartel, 

2004; Filipowicz et al., 2005; Selbach et al., 2008).  

MiRNAs are formed in a multistep biological process involving critical endonucleases. Figure 3 

shows the miRNA biogenesis pathway. The great majority of miRNA genes are commonly 

transcribed as a long primary transcript (usually 1–4 kilobases), known as primary-miRNAs (pri-

miRNAs) by RNA polymerase II (Bartel, 2004; Lee et al., 2004). The genomic location of 

miRNAs genes varies and can be located in intra- and/or inter-genetic regions of the genome 

and at least 42% are estimated to be expressed in clusters. Like mRNAs, these pri-miRNAs are 

capped at the 5′ end and polyadenylated at the 3′ end, forming double stranded stem-loop 

structures, and can be transcribed as autonomous transcription units, or as clusters from a 

polycistronic transcription unit (Bartel, 2004; Gomes et al., 2013; Junn and Mouradian, 2012). 

In the nucleus, these primary transcripts, containing the mature miRNA sequence, are 

recognized by a microprocessor complex (composed by an enzyme ribonuclease III Drosha 

along with its regulatory subunit, the double-stranded RNA-binding protein called DiGeorge 

syndrome critical region gene 8 (DGCR8)) that cleaves the base of the stem-loop (~11 nt) (Han 

et al., 2006). This step produces a long stem-loop precursor of miRNA, with a hairpin 

secondary structure of approximately 70 to 100 nucleotides, named pre-miRNAs, with two 

nucleotides overhang at its 3′ end. After nuclear processing by a series of enzymes, the pre-

miRNAs are exported to the cytoplasm by a nuclear transport receptor complex, Exportin-5 

and its co-factor Ran (the GTP-bound form) that acts by recognizing a 2-3 base pair overhang 

of the pre-miRNA stem-loop structure (Lund et al., 2004). 

Once in the cytoplasm, the pre-miRNAs are further processed and its terminal loop is removed 

by a complex that contains the cytoplasmic protein Dicer (a ribonuclease III) and its co-
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factors TRBP (Tar RNA-binding protein) and PACT (Protein kinase R-activating protein). As a 

consequence, pre-miRNAs are converted into mature double-stranded miRNAs (miRNA-miRNA* 

duplexes) of variable length (~19–25 nt) (Nilsen, 2007). After Dicer cleavage, mature miRNAs 

are associated with Argonaute (Ago) proteins, in particular Ago1 and Ago2, which are core 

components of RNA-induced silencing complex (RISC). During loading, mature miRNA is 

unwound in two strands: a single antisense miRNA strand (or guide strand, also referred to as 

miRNA) and a sense strand (or passenger strand, also referred to as miRNA*) that is released 

and, subsequently degraded by Ago2-catalysed endonucleolytic cleavage (Figure 3) (Nilsen, 

2007). This selection might be determined by the relative thermodynamic stability of the two 

ends of miRNA duplexes and thus, the strand less stable at the 5’ end is loaded into RISC, 

although in some cases, both strands are incorporated into the RISC. 

After the selection of the antisense strand, this is loaded onto the RISC, to form miRNA 

silencing complex (miRISC) that identifies target mRNA based on sequence complementarity 

with the miRNA. In animals, the binding between the miRNA strand and their targets RNA 

transcripts occurs mainly through specific sequences, called the “seed sequence”. The “seed” 

region is composed by 2-8 nt located in 5’ end of the miRNA (Bartel, 2009; Gomes et al., 

2013). A group of miRNAs that share the same “seed sequence” but differ outside are 

frequently considered a ‘family’ of miRNAs and in most, but not all, cases might target the 

same gene. It is noteworthy that some miRNAs do not have a “seed sequence” complete, 

instead exhibit 11-12 continuous base pairs in the central region of the miRNA. 

MiRNAs usually bind with partial complementarity in the 3’UTRs of its target mRNAs, resulting 

in the cleavage, de-adenylation or translation inhibition of target mRNAs. As mentioned 

above, the regulation mechanism of the translation depends on the degree of 

complementarity between miRNA-target mRNA, resulting in direct cleavage and degradation 

of mRNA transcripts when there is perfect complementarity or inhibition of protein expression 

by blocking mRNA translation, in the case of imperfect base pairing (Bartel, 2004; Nilsen, 

2007; Selbach et al., 2008; Stark et al., 2005). 
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Figure 3 - Biogenesis of microRNAs. 

Abbreviations: 3/5′-UTR, 3/5′ Untranslated Region; AAA, poly(A) tail; Ago, Argonaute; DGCR8, DiGeorge 

syndrome Critical Region gene 8; GTP, Guanosine Triphosphate; miRISC, miRNA-Induced Silencing 

Complex; mRNA, messenger RNA; miRNA, microRNA; ORF, Open Reading Frame; PACT, Protein kinase R-

Activating Protein; pre-miRNA, precursor miRNA; pri-miRNA, primary miRNA; TRBP, Tar RNA Binding 

Protein. 
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The target mRNA is enzymatically cleaved, leading to a decrease in the corresponding protein 

expression. Regulatory subunits within the RISC complex and/or present in the mRNAs (i.e. 

cytoplasmic ribonucleoprotein complexes, mRNPs) play decisive roles in miRNA-mRNA 

localization, miRNA responsiveness to cellular signaling and mode of action. These complexes 

can be directed to polyribosomes in sub-cellular compartments, where miRNA regulates 

translation, resulting, sometimes, in truncation of the protein (Nilsen, 2007). Alternatively, 

the resulting translationally blocked mRNAs and miRNA complex can then be sequestered in 

cytoplasmic processing bodies (termed P-bodies), where untranslated mRNAs are stored and 

eventually degraded through exonuclease enzymes (Figure 3). On the other hand, specific 

miRNAs have been shown to destabilize targets by recruiting de-adenylating enzymes, poly(A) 

nucleases, to help modulate de-adenylation of mRNA and thereby prevent translation. 

Therefore, the regulation of gene expression mediated by miRNA is a complex science in 

eukaryotes and is still an evolving concept, once several molecular mechanisms have been 

reported, including translational repression, increased mRNA de-adenylation and degradation 

of the target mRNAs (Bartel, 2004; Gomes et al., 2013; Nilsen, 2007). Although these 

mechanisms are quite different, the main mode of action of mature miRNA is based on the 

recognition of specific sites (known as microRNA response elements (MRE)), typically present 

in the 3’UTRs of their target mRNAs, leading to a decrease in the production of the proteins 

by cells. Despite, of this binding occurs typically in the 3’UTR of mRNA, some miRNAs can 

bind specific sites in the 5’UTRs of the mRNA with less frequency and efficiency compared to 

3’UTR targeting (Stark et al., 2005).  

Overall, the miRNAs can regulate a large proportion of the human transcriptome (up to 60% of 

all human protein-coding genes) by targeting multiple transcripts. An important feature of 

these RNAs is that an individual miRNA can regulate up to a few hundred of different mRNA 

targets and, consequently, can induce multiple effects on the expression of several related 

gene families, suppressing the expression of multiple and diverse proteins implicated in 

biological processes (Selbach et al., 2008). On the other hand, multiple miRNAs can regulate 

the expression of a single target mRNA, and most likely synergistically acting. Despite 

advances in miRNA discovery, the role of miRNAs in pathophysiologic processes is still in early 

stages of research. The extensive research in the last decade has implicated miRNAs as 

master regulators of a variety of physiological and biological processes, including 

developmental timing, cell cycle, cell proliferation, cell adhesion, apoptosis, cell 

differentiation, stress response, metabolism, stem cell self-renewal, organ development, 

hematopoiesis, embryogenesis and neurogenesis (Alvarez-Garcia and Miska, 2005; Bartel, 

2004; Bartel, 2009; Kloosterman and Plasterk, 2006). As a result of its efficacy and potential 

to inhibit the expression of a specific mRNA, coupled with its versatility in several cellular 

processes, miRNAs might be explored as new therapeutic agents in diseases that have genetic 

origins, as is the case of AD. In fact, it is expected that miRNAs-based therapeutics will be 

one of the major classes of therapeutic molecules in the future (Delay et al., 2012; Dessy and 



 

 15 

Gorman, 2011; Kocerha et al., 2009; Kosik, 2006; Maes et al., 2009). Not surprisingly, miRNA-

targeting therapies are an area of intense interest to pharmaceutical companies, and many of 

such compounds are now being evaluated in preclinical and clinical trials for a variety of 

indications, such as cancer and cardiovascular diseases. 

 

1.4. miR-29 in Alzheimer’s disease 

As mentioned above, over the last years, a growing number of studies have been 

concentrated in the identification of deregulated proteins and protein-encoding genes 

involved in the pathogenesis of AD, and, as a result, numerous genes have been identified as 

targets for therapeutic approaches (see Table 1) (Cacabelos and Torrellas, 2014). Despite 

their relatively recent discovery, it is already clear that miRNAs might play important 

regulatory roles in the molecular control of neuronal development, synaptic plasticity (forms 

the basis of learning and memory), neurotransmission, aging of the brain, and in a variety of 

physiologically relevant processes in neurodegeneration (Fineberg et al., 2009; Grasso et al., 

2014; Klein et al., 2005; Kosik, 2006; Schratt et al., 2006). Consequently, in the past decade, 

tremendous efforts have been put mainly into identifying miRNAs that are changed in AD, 

demonstrating that an abundant and particularly diverse source of miRNAs is present in the 

brain and helping in the characterization of molecular pathways that are deregulated 

concomitantly to the formation of Tau and amyloid aggregates (Delay et al., 2012; Feng and 

Feng, 2011; Maciotta et al., 2013; Maes et al., 2009; Satoh, 2012; Tan et al., 2013; Tan et 

al., 2015; Van den Hove et al., 2014). Nevertheless, it remains difficult to predict whether 

these changes, like the abnormal expression profiles and dysfunction of brain-enriched 

miRNAs linked to AD, are a cause or a consequence of the neurodegenerative process and 

dementia (Du and Pertsemlidis, 2011; Grasso et al., 2014; Kocerha et al., 2009; Nelson et al., 

2008; Ullah et al., 2014). 

Thus, miRNAs have been intensively investigated as potential diagnostic and prognostic 

biomarkers, solely or in combination with other AD biomarkers, or also as novel therapeutic 

agents for AD (Cogswell et al., 2008; Grasso et al., 2014; Kumar et al., 2013). In Table 1 are 

described some of the de-regulated miRNAs that have been recognized as being involved in 

the pathological features of AD, as well as their target genes.  
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Table 1 - Dysregulated microRNAs in Alzheimer’s disease (adapted from (Cacabelos and Torrellas, 2014; Delay et al., 2012; Feng and Feng, 2011; 

Maciotta et al., 2013; Satoh, 2012; Tan et al., 2013; Tan et al., 2015; van den Hove et al., 2014)). 

 

miRNAs Trend Status Validated targets 

miR-15a, -16, -34 Up Bcl-2 (anti-apoptotic factor) 

miR-124 Down APP alternative splicing via PTPB1 

miR-9, -15a, -19b, -29a/b-1/c, -107, -124, -195,  

-298, -328, -485-5p 
Down BACE1 

Let-7, miR-15a, -16, -17-5p, -20a, -101, -106a/b,  

-147, -153, -323, -520c, -644, -655 
Down APP 

miR-29a/b-1 Down NAV3 (Neuron navigator 3), Bim, Bmf, Hrk, Puma 

miR-9, -181c Down TRIM2, BTBD3, TGFBI 

miR-9, -34c, -128 Down/Up SIRT1 (Sirtuin 1, a de-acetylase that interacts with Tau) 

miR-146a Up CFH (Complement factor H) and IRAK1 (IL-1 receptor-associated kinase-1) 

miR-9 Down 
REST (RE-1 silencing transcription factor), BAF53a, Tlx,  

NF-H (Neurofilament H), Aβ 

miR-9, -15, -29a/b-1, -137, -181c Down SPT (Serine palmitoyletransferase) 

miR-9 Down PSEN1 

miR-34 Up Cdk4, cyclin D1, Tau 

miR-128  ROS 

miR-107 Down CDK6, CFL1, CDK5R1, HIF-1b 

miR-132 Down FOXO3a, Tau via PTBP2 (Polypyrimidine tract-binding protein 2) 

miR-9, -15a 

miR-181c 
Down 

Hyperphosphorylation of tau via ERK1(Extracellular signal regulated kinase 1) 

Tau acetylation 
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Interestingly, several studies showed that there is a set of miRNAs (include miR-9, miR-15, 

miR-29, miR-106, miR-107 and miR-124) that seems to be specifically altered in the AD brain 

and they have been associated to different molecular pathways in AD pathogenesis. In 

particular, the regulation of these miRNAs was correlated with the modulation of the 

expression and/or processing of AD-related genes, such as APP, BACE1, Aβ peptides 

deposition, tau protein phosphorylation, SIRT1 and MAPT signaling pathway (which encodes 

for tau) (see Table 1) (Delay et al., 2012). Indeed, this can represent a significant advance for 

AD diagnosis and treatment. 

The miR-29 remains as one of the most interesting and intriguing miRNA families, once this 

miRNA has a strong impact on many processes involved in the pathogenesis of the AD 

(Cogswell et al., 2008). The miR-29 family includes four members: miR-29a, miR-29b-1, miR-

29b-2 and miR-29c, and all share identical sequences at nucleotide positions 2-8 of 5’ end and 

the same seed region (Kriegel et al., 2012; Liston et al., 2012).  

As mentioned above, the BACE1 protein levels are elevated in AD brains, suggesting that 

BACE1 dysregulation is directly implicated in AD pathogenesis through the formation of toxic 

Aβ peptides. Thus, it has been established that reducing BACE1 expression may delay or even 

reduce AD progression. On the other hand, significant alterations in the expression levels of 

miR-29 family were found in brains of AD patients, being significantly decreased and 

displaying abnormally high levels of BACE1 protein (Hebert et al., 2008; Zong et al., 2011). It 

is tempting to speculate that miR-29 might play an important role in the adult brain. 

Particularly, the work of Hebert and co-workers, in 2008, showed that the decreased levels of 

the miR-29a/b-1 cluster were correlated with increased levels of BACE1 expression in patients 

with SAD (Figure 4) and that the introduction of synthetic miR-29 reduces secretion of Aβ 

peptides (Hebert et al., 2008).  

In addition to its potential role as a major element to silence BACE1 protein expression, it 

was recently shown that miR-29b can also be used as an inhibitor of neuronal apoptosis. 

However, the miR-29b is decreased in the AD brain and therefore it loses its ability to inhibit 

apoptosis. MiR-29b has been identified to target a family of pro-apoptotic regulators, 

including Bim, Bmf, Hrk and Puma (see Table 1) (Kole et al., 2011; Zhu et al., 2006). 

These findings raised the opportunity to use pre-miR-29 in the implementation of a possible 

protective therapeutic strategy for AD and suggest that BACE1 can be a promising target in 

the therapeutic of this disease. The use of pre-miRNA instead of the mature miRNA could 

represent an advantage to the therapeutic process, because, in cellular environment the pre-

miRNA is more easily recognized and processing within the cell is more efficient (Tsutsumi et 

al., 2011). Moreover, the pre-miR-29b structural characteristics, specifically the single chain 

with approximately 80 nucleotides of which some are unpaired in the 3’overhang, will 

possibly make easier its production and purification.  
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Figure 4 - Pre-miR-29b-1 regulation of BACE1 in Alzheimer’s disease. 
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2. Current progress on microRNAs-based therapeutics  

 
 

P. Pereira, J. A. Queiroz, A. Figueiras, F. Sousa 

 
(Submitted for publication) 

 

 

 

Short description: This review provides a general idea of the currently available microRNAs-

based therapeutics. Initially, it is presented a comparative overview of the different 

strategies applied for obtaining microRNAs, either through recombinant biosynthesis from 

different biological sources or by chemical and enzymatic methods. It is also discussed the 

methodologies applied for the extraction and isolation of the produced microRNAs. 

Afterwards, it is summarized the main chromatographic strategies that have been used to 

purify microRNAs obtained from different sources. Then, the methods currently employed to 

assess the quality of the recombinant and synthetic microRNAs are also elucidated, as well as 

general guidelines to obtain microRNAs with clinical-grade quality, intactness and biological 

activity. Finally, it is also presented and discussed the latest technology for the delivery of 

microRNAs in the brain, as well as advantages and limitations for their application. 
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Abstract 

MicroRNAs-based therapy has recently emerged as a promising strategy in the treatments of 

neurodegenerative diseases. Thus, in this review, the most recent and important challenges 

and advances on the development of miRNA therapeutics for brain-targeting are discussed. In 

particular, this review highlights current knowledge and progress in the field of 

manufacturing, recovery, isolation, purification and analysis of these therapeutic 

oligonucleotides. Finally, the available miRNA delivery systems are reviewed and an analysis 

is presented in what concerns to the current challenges that have to be addressed to ensure 

their specificity and efficacy. Overall, it is intended to provide a perspective on the future of 

miRNA-based therapeutics, focusing the biotechnological approach to obtain miRNAs. 

 

Keywords  

Biotechnological platform, Delivery systems, Manufacturing, microRNAs-based therapeutics, 

Neurodegenerative diseases, Purification, Recovery, RNA interference  
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1. Introduction  

Nowadays, microRNAs (miRNAs or miRs) represent the most extensively studied class of non-

coding RNAs due their great potential for therapeutic knockdown of disease-causing genes 

(Satoh, 2010; Soifer et al., 2007). On the other hand, several evidences indicate that some 

endogenous miRNAs circulate extracellularly steadily and stable in bodily fluids (such as blood 

serum, plasma, urine, saliva and cerebrospinal fluid (CSF)) and therefore they have also been 

reported as promising biomarkers (Cogswell et al., 2008; Grasso et al., 2014; Sheinerman and 

Umansky, 2013).  

These RNAs are small, highly-conserved and act as endogenous modulators of gene expression 

at the post-transcriptional level (reviewed in (Bartel, 2004; Filipowicz et al., 2008; Guo et 

al., 2010; Selbach et al., 2008)). In a few words, miRNAs mediate the regulation of gene 

expression through a sequential process involving a long primary miRNA (pri-miRNA) that is 

cleaved producing a hairpin secondary structure called precursor of miRNA (pre-miRNA). 

Afterwards, subjected to cytoplasmic processing by a series of enzymes, the pre-miRNA is 

converted into a mature double-stranded miRNA and, subsequently, the mature miRNA is 

incorporated into RNA-induced silencing complex (RISC) to regulate the messenger RNA 

(mRNA) (Bartel, 2004; Gomes et al., 2013; He and Hannon, 2004). The main mechanism of 

action of mature miRNA is the recognition of specific sites (“seed sequence”, 2-8 

nucleotides), typically present in the 3’untranslated region (3’UTR) of their target mRNAs. 

This recognition results in the degradation of mRNA transcripts, when there is perfect 

complementarity between the 5′ end of the miRNA and selected target mRNA, or translational 

repression of protein expression by blocking mRNA translation or inducing de-adenylation of 

mRNA, if imperfect base pairing prevails (Nilsen, 2007; Selbach et al., 2008; Stark et al., 

2005). The complexity of the regulation induced by miRNA is also the result of multiple 

interactions established between miRNAs and their targets, once a single mRNA is targeted by 

multiple miRNAs, while a single miRNA (or miRNA family) can have effects in the expression 

of several hundreds of target mRNAs and consequently, is able to regulate the production of 

multiple and diverse proteins involved in a biological process (Selbach et al., 2008). 

As result of the recent and extensive research, miRNAs have been implicated as master 

regulators of a variety of physiological and cellular processes, such as cell proliferation and 

differentiation, cell cycle regulation, cellular physiology, cell adhesion, apoptosis, stress 

response, regulation of signaling pathways and metabolism (Alvarez-Garcia and Miska, 2005; 

Bartel, 2004, 2009; Kloosterman and Plasterk, 2006). Furthermore, since some miRNAs are 

expressed in high abundance in the human brain, they are also involved in the regulation of 

neurobiological functions, namely neurogenesis, aging of the brain, neuronal and dendritic 

spine development, neurotransmission, synaptic plasticity and self-renewal of neural stem 

cells (Fineberg et al., 2009; Grasso et al., 2014; Klein et al., 2005; Kosik et al., 2006; Schratt 

et al., 2006).  
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As demonstrated by a large number of studies in the last decade, dysregulation of expression 

levels of miRNAs, as well as their dysfunction in the brain have been associated with the 

pathogenesis of various diseases of the nervous system, including Alzheimer’s disease, 

Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis (Du and 

Pertsemlidis, 2011; Grasso et al., 2014; Kocerha et al., 2009; Nelson et al., 2008; Ullah et al., 

2014). The neurodegenerative diseases (NDs) constitute a serious and growing health problem 

for our societies, being one of the main causes of morbidity and healthcare costs to society. 

In general, this family of disorders is characterized by a profound and progressive loss of 

neuronal structure and function in specific parts of the nervous system (such as, cognitive, 

motor or sensory areas), culminating in a final common pathway of neuronal cell death, 

arising from often unknown or insufficiently characterized risk factors and causes (Goodall et 

al., 2013; Maciotta et al., 2013). In fact, there are increasing evidences supporting that NDs 

are caused by genetic and/or epigenetic alterations to protein-coding genes (Morris et al., 

2010; Serretti et al., 2007). The implications of this knowledge for the understanding of the 

contribution of miRNAs in NDs are the eventual generation of novel targets for therapeutic 

intervention, which are based on the specific genetic alterations which are directly involved 

in neurodegenerative pathogenesis, by inhibition of the activity of neurotoxic genes or by 

molecular activation of neuroprotective pathways (Grasso et al., 2014; Junn and Mouradian, 

2012). Thus, the characteristics of miRNAs, as well as, their expression profiling in the NDs 

has led the advance towards new diagnosis, staging, progression, prognosis/prevention, drug 

development and response to the treatments of these disorders (Kocerha et al., 2009). 

Accordingly, miRNAs have recently gained much attention for their roles in neurodegenerative 

pathogenesis, supporting their potential as targets/drug candidates for the development of 

novel therapies for application in specific NDs that currently remain very challenging and 

difficult to overcome. However, the success of these emerging therapeutic strategies depends 

on the miRNA integrity, the absence of contaminants and its biological activity. Therefore, it 

is highlighted the importance of the purification procedures in obtaining the final RNA 

products with quality and quantity compatible with the administration in humans  

In this review, it is briefly discussed the key aspects and research trends related to the use of 

miRNAs in the treatment of NDs, followed by a detailed analysis of the methodologies for 

their production, isolation, recovery, purification and delivery. Thus, the focus it will be the 

strategies presently used for miRNA therapy; it will be discussed their use and drawbacks, and 

the challenges and future directions for development of miRNA-based therapy for NDs. 

 

2. MicroRNAs as therapeutic products 

To understand the role of miRNAs in neurological processes, it is mandatory to develop tools 

to regulate their levels, once NDs may be caused by the loss- or gain-of-function of an 

individual or family miRNA. The normal function of a miRNA can be efficiently and specifically 
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restored (miRNA replacement therapy) by synthetic or in vitro transcribed mature double-

stranded miRNA-like molecules called miRNA mimics (see Figure 1 and Table 1). An 

alternative approach is the over-expression of exogenous mature miRNAs encoded by plasmids 

that are processed in eukaryotic cells, by transient or stable transfection or viral transduction 

of a pri-miRNA transgene, pre-miRNA and pre-miRNA-like short hairpins RNAs (shRNAs) (see 

Figure 1 and Table 1) (reviewed in (Bumcrot et al., 2006; Junn and Mouradian, 2012; Li and 

Rana, 2014; Magen and Hornstein, 2014; McDermott et al., 2011; Soifer et al., 2007; van Rooij 

and Kauppinen, 2014)).  

However, when the problem comes from the over-expression of a specific type of miRNA, the 

inhibition of these miRNAs (miRNA inhibition therapy) can be accomplished through injection 

of complementary RNA sequence that binds to the miRNA, inactivating and blocking its 

activity. Thus, the inhibition of miRNA activity can be achieved by the use of small miRNA 

inhibitors, oligomers, including RNA and DNA analogues, such as various modified anti-sense 

oligoribonucleotides (anti-sense “anti-miRs”), antagomirs, locked nucleic acid (LNA)-anti-

miRNAs, “miRNA sponges” and “miRNA-masks”, which are currently being evaluated in 

preclinical and clinical studies (see Table 1 and Figure 1) (reviewed in (Bumcrot et al., 2006; 

Junn and Mouradian, 2012; Li and Rana, 2014; Magen and Hornstein, 2014; McDermott et al., 

2011; Soifer et al., 2007; van Rooij and Kauppinen, 2014)).  

 

 

Figure 1 - Schematic representation of microRNA-based therapeutic approaches. 
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miRNA reinstatement Advantages Limitations 

 

miRNA mimics 

 

-Small, synthetic and chemically modified 
double-stranded miRNA that are processed 
into single-strand form inside the cells 
 

-They can be loaded into RISC to achieve the 
downstream inhibition of the target mRNAs 

 

 

-Mimics the function of endogenous mature or precursor 
miRNA molecules by direct re-introduction in the cells or 
tissues 
 

-Increases the levels of a miRNA that is lost during 
disease progression  

 

 

-Usually conjugated or encapsulated with different in vivo 
delivery system, in order to influence the stability and 
uptake 
 

-Systemic delivery can result in uptake by non-target tissues 
that normally do not express the miRNA of interest, resulting 
in potential off-target effects 
 

-Mimics can potentially induce a non-specific interferon 
response through Toll-like receptors 

 

miRNA 
expression 

vectors 

 

-Plasmid or viral expression vectors 
constructed with strong promoters that 
enable the expression of various species of 
miRNAs in specific tissues 

 

-Restoration of the expression and function of a specific 
miRNA 
 

-Viral delivery of miRNAs can be optimized to achieve a 
specific and continuous  expression level 
 

-Evidences of transduction efficiency and minimal 
toxicity 

 

-The vector-based miRNA expression systems are generally 
less efficient because it is necessary to transcribe the DNA to 
miRNA precursors by the action of RNA polymerases, which 
implies the delivery to the nucleus 
 

-Over-expression of shRNA in rats caused hepatotoxicity, 
organ failure and death 
 

-Argonaute proteins and the pre-miRNA export protein 
(exportin-5) limit the amount of exogenous miRNA that a cell 
can tolerate 

miRNA inhibiting drugs  Advantages Limitations 

 

Antisense 
oligonucleotides 
(AMOs), known 

as anti-miRs 

 
-Synthetic, single-stranded antisense RNA 
molecules designed to be complementary to 
the target miRNA 
 
-Competitive inhibition between mature 
miRNAs and their mRNA targets by Watson-
Crick binding  
 
 

 
-The targeted inhibition of a specific miRNA and 
subsequent upregulation of target mRNAs can be 
achieved, as they function by binding to miRNAs inside 
the RISC 
 
-Under physiological conditions, they are generally 
unable to distinguish between miRNAs within the same 
family, especially those with identical “seed regions” 
 
-Used in vitro and in vivo to discover gene function, and 
some AMOs are being tested in clinical trials 

 
-Unmodified anti-miRs are poorly suited to in vivo 
applications because they are incapable of penetrating 
negatively charged cell membranes and are susceptible to 
degradation by serum nucleases  
 
-Chemical modifications are required to increase resistance 
to serum nucleases, to enhance their binding affinity, 
biostability, specificity for the target miRNAs and to improve 
their entry into the cell 
 
-Most of the chemically modified AMOs show limited tissue 
distribution when administered in the absence of a carrier, 
and are taken up by the liver and kidney and rapidly excreted 
in urine 

Table 1 - Overview of the available therapeutic strategies for reinstatement or inhibition of microRNAs. 

(reviewed in (Bumcrot et al., 2006; Junn and Mouradian, 2012; Li and Rana, 2014; Magen and Hornstein, 2014, McDermott et al., 2011; Soifer et al., 2007; Zhang et al., 2013)) 

 



 

 35 

 

Antagomirs 

 

 
-A class of chemically modified 
oligonucleotides (AMOs) which are able to 
silence endogenous miRNAs 
 
-Modified to have a phosphorothioate 
backbone and a cholesterol group at the 3’-
position of the nucleic acid  

 
-Antagomirs are fully complementary to mature miRNAs – 
competitive inhibition 

 
-Antagomirs are unlikely to be used clinically because the 
dose required for in vivo inhibition is often high (~80 mg per 
kg) to achieve the same efficacy as other AMO strategies, 
which increases the risk of off-target effects 
 
-Cannot cross the blood–brain barrier, but can penetrate 
brain cells if injected directly into the brain 

 

Locked Nucleic 

Acid (LNA) anti-

miRs 

 
-Short, single-stranded LNA-modified 
oligonucleotides  
 
-The extraordinary properties of LNA-
oligonucleotides enable a reduction in anti-
miR size, from 15-16 nucleotides to 8 
nucleotides with comparable effects 
 
-Addition of an extra methylene bridge 
connecting the 2’-O atom and the 4’-C atom 
and ‘locks’ the ribose ring in a C3’-endo or 
C2’-endo conformation 

 
-Their small size together with their 
potency/stability/specificity provided by the LNA 
modifications, makes delivery possible without vehicle-
systems (in vivo naked) 
 
-Create and enhance high-affinity Watson-Crick binding 
to target mRNAs and thus exhibit higher thermal stability 
and superior hybridization with their RNA target 
molecules 

 
-Only moderate efficiency for miRNA inhibition, possibly 
because of the tendency of LNA oligonucleotides to form 
dimers with exceptional thermal stability 

 

“tiny LNAs” 
 
-Modified LNA anti-miRs that are 8 
nucleotides long and specifically bind to the 
5’-seed sequence 

 
-Can block all members of the same miRNA family or of 
several miRNAs families that share the same seed region, 
inducing a consequent upregulation of their direct 
targets 

 

 

‘miRNA 

sponges’ 

 
-RNA transcripts with multiple tandem-
repeats of miRNA binding sites to block the 
function of a given endogenous miRNA or a 
miRNA family  
 
-To reproduce the miRNA-mRNA binding, like 
in the natural setting, a bulge is introduced 
at position 9-12, which achieve better 
activity due to increased miRNA retention 

 
-Stably interact with the corresponding miRNA and 
prevent its interaction with its endogenous target mRNAs 
 
-Ability to affect all closely related miRNAs within a 
family that share overlapping targets 
 
-Can be stably integrated into chromosomes, designed to 
be drug inducible or controlled by promoters whose 
expression is restricted to a desired cell type, tissue or 
developmental stage 

 
-Although sponges have been widely used to investigate 
miRNA function in vitro, their utility in vivo has been limited 
to transgenic animals in which the sponge mRNA is over-
expressed in target tissues. Interestingly, it seems that some 
large non-coding RNAs could serve as natural sponges to 
regulate cellular miRNA availability and lead to upregulation 
of downstream target genes 

 

miR-Mask 
 
-Single-stranded 2’-O’methyl-modified 
antisense oligonucleotides with locked 5’ 
and 3’ ends that are entirely complementary 
to the miRNA binding sites in the 3’-UTR of 
the target mRNA 

 
-‘Mask’ the target mRNA from the endogenous miRNA and 
thus prevent its suppression  
 
-This specific mechanism reduces the off-target effects 
and is highly target specific 
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2.1. MicroRNA manufacturing 

As mentioned above, most miRNAs employed in the development of new therapeutic 

approaches, are manufactured either by enzymatic (in vitro transcription) or chemical (via 

phophoramidite solid-phase chemical synthesis) methods (Beckert and Masquida, 2011; Ling 

et al., 2013; Milligan et al., 1987; Ponchon and Dardel, 2011; Sherlin et al., 2001). In the last 

years, new advances in synthetic RNA chemistry were accomplished. Thereafter, the synthesis 

process has become more efficient, highly effective, and affordable for large scale production 

of RNA, however, the fidelity of the process is inversely correlated with the length of the 

oligonucleotide being synthesized (El-Sagheer and Brown, 2010; Ponchon and Dardel, 2007). 

In addition, the introduction of chemical modifications (see Table 2) in these strategies allows 

reducing the instability of RNA, as well as their degradation by cellular ribonucleases, 

increasing the RNA half-life. In turn, this advantage makes difficult to obtain the RNA highly 

pure and intact (Broderick and Zamore, 2011; Bumcrot et al., 2006; El-Sagheer and Brown, 

2010; Li and Rana, 2014; van Rooij and Kauppinen, 2014). Thus, additional purification 

protocols to remove the contaminants (linearized plasmid DNA template, enzymes, free 

nucleotides, salts or buffer, short aberrant transcripts, failure in the sequences, among 

others) derived from the synthesis process have to be employed in the final RNA product 

(Martins et al., 2014; Milligan et al., 1987). Actually, the presence of these impurities can 

lead to non-targeted gene silencing, what is commonly associated with a decrease in 

therapeutic effectiveness and still restrict the implementation of these RNAs onto pre-clinical 

or clinical applications.  

On the other hand, miRNA therapeutics can also be obtained via expression systems of 

miRNAs encoded by eukaryotic vectors. However, this alternative approach is generally less 

efficient because it is necessary to transcribe the DNA to RNA (Chen et al., 2007; Huang et 

al., 2011; Li et al., 2014; Ponchon and Dardel, 2007, 2011) and it is dependent of the action 

of the RNA polymerase. Thus, considering the rapidly growing interest on these novel 

biopharmaceuticals, as a result of its potential therapeutic application, novel technologies to 

improve their manufacturing are currently being pursued. Moreover, the success of any 

therapeutic will depend on the easy production at large scale, while maintaining maximal 

product quality and biological activity. For all these reasons, it is required the development 

of economic and efficient methods for large-scale production of miRNAs.  
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Chemical Modifications Features 

Phosphorothioate (P=S) 

-Exchanges an oxygen atom by a sulfur atom in the phosphate backbone  
-Inhibits uptake of the passenger strand into the RISC 
-Promotes binding to serum/plasma proteins, leading to longer serum retention times (half-life), which may 
induce unwanted side effects, due to reduced clearance by glomerular filtration and urinary excretion 
-Enhances the resistance to nucleases and cellular uptake  
-Keeps miRNA silencing function intact 
-Inhibits coagulation 
-Can cause cytotoxicity  
-Activates complement  
-Improves pharmacokinetic properties, facilitating their delivery into many peripheral tissues in vivo 
-Perhaps a better choice is modification boranophosphate (P=B) instead P=S substitution, which enhances 
nuclease resistance without causing cytotoxicity or damage to miRNA silencing function  

2´-O-methyl (2’-O-Me)  

-Adds a methyl group (-CH3) to the second carbon of the ribose 
-Occurs naturally in rRNA and tRNA and is safe 
-Improves in vivo stability in the cytoplasm and increases the resistance to serum nucleases (enhancing half-life) 
by the closer proximity between the 2´group and 3´phospho-group 
-Enhances cellular uptake 
-Minimizes or inhibits the innate immune system activation, as it is a competitive inhibitor of TLR7 
-Their introduction into nucleotides within the seed region, can reduce seed region mediated off-target effects 
without compromising silencing of the intended mRNA 
-When the sugars of both strands are replaced with 2′-O-methyl groups, the duplex loses its silencing ability 

2´-Fluoro 

-Adds a fluorine atom to the second carbon of the ribose 
-Increases in vivo stability and the resistance to exonucleases by the closer proximity between the 2´group and 
3´phospho-group 
-Decreases nonspecific immune stimulation and off-target effects 
-Can be introduced through endogenous transcription as opposed to chemical synthesis 

2´-O-(methoxyethyl) (2’-MOE) 
-Adds a methoxy-ethyl group (-C3H7O) to the second carbon of the ribose 
-Increases in vivo stability and the resistance against nucleases in the serum by the closer proximity between 
the 2´group and 3´phospho-group 

Cholesterol conjugation 

-Addition of cholesterol functionality at the 3’-position of the nucleic acid to generate ‘antagomirs’ 
-Enhances serum half-life by binding to serum albumin, improving stability and availability 
-Enhances the cellular uptake of the modified oligonucleotide by promoting its association with high-density 
lipoproteins (HDLs) and Low-density lipoproteins (LDL)-that can bind cell surface membrane receptors 
-Incorporation into HDLs can direct miRNAs to the liver, gut, kidney and steroidogenic organs and LDL-
incorporated RNAs are primarily targeted to the liver  

Table 2 – Chemical modifications used in miRNA modulators. 

(reviewed in (Broderick and Zamore, 2011; Bumcrot et al., 2006; El-Sagheer and Brown, 2010; Li and Rana, 2014; van Rooij and Kauppinen, 2014; Zhang et al., 2013) 
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Note: P=S, 2’-F and 2’-OMe modifications have been extensively used in clinically tested and FDA approved oligonucleotide drugs. 

2’-O-allylation  -Inhibits activity 
-Enhances serum half-life 

Antibody-conjugated  

-The high affinity and binding specificity of antibodies make them attractive vehicles for cell- or tissue-type-
specific delivery  
-Bind multiple miRNAs, creating a particle that bypasses kidney filtration and targets the miRNAs only into cells 
bearing the cell surface receptor recognized by the antibody  
-A common approach is to link an RNA-binding protein (e.g. antibody fragment-protamine fusion protein) or 
domain to Fab fragments isolated from the cell- or tissue-targeting antibody 

Locked nucleic acid (LNA) modifications 

-LNA is a bicyclic nucleic acid that uses an extra methylene bridge between the 2´-O atom and 4´-C atom also 
referred to as 2´O-4´C-methylene ‘locks’ the ribose ring in a C3’-endo or C2’-endo conformation 
-Prolongs half-life in serum  
-Inhibits nuclease activity 
-Without adverse affects on the gene-silencing activity 
-Displays higher aqueous solubility and increased metabolic stability for in vivo delivery and lower toxicity 
-Reduces the immunostimulatory effects 

Folate, various peptides and aptamers 

-Help in transport across cellular barriers  
-Target to specific cells and organs 
-Improve stability and availability  
-Frequently associated with impaired function and severe toxicities 
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These issues have spurred a novel interest for recombinant methods using prokaryotic hosts, 

which allow the production of large amounts of RNA stable structured. So far, only few 

strategies have emerged to produce stable recombinant miRNAs, namely for the biosynthesis 

of human mir-27b and human pre-miR-29b, using recombinant bacteria, such as Escherichia 

coli (E. coli) and Rhodovulum Sulfidophilum (R. sulfidophilum) as preferential hosts, 

respectively (Li et al., 2014; Pereira et al., 2014a). In general, the recombinant approaches 

comprise several steps, starting with the selection and construction of appropriate expression 

vectors (Nagao et al., 2014; Ponchon and Dardel, 2011; Suzuki et al., 2010). After the 

establishment of this step, it is possible to follow to the optimization and selection of the 

best culture conditions (dissolved oxygen, temperature, stirring speed, pH and medium 

formulation) for miRNAs production by fermentation (Ponchon and Dardel, 2011). This 

strategy is usually more cost-effective and simple than the synthesis methods, considering the 

large-scale production, allowing the costs reduction, but remaining highly efficient.  

2.2. MicroRNA isolation 

The RNA recovery, either from the recombinant production strategies using prokaryotic hosts 

or from a biological matrix (e.g. tissue samples, whole organisms, cell cultures, bodily fluids), 

requires the employment of suitable methodologies for the extraction and isolation of target 

RNAs. In general, the procedure includes harvesting of cells by centrifugation and ultimately 

cell lysis to release the molecule of interest, since miRNAs are accumulated in cytoplasmic 

space (Bernardo et al., 2012; Tan and Yiap, 2009).  

Up until now, the most commonly used methods to isolate RNA are the guanidinium 

thiocyanate-phenol-chloroform extraction and the solid-phase extraction (SPE) (Bernardo et 

al., 2012; Chomczynski and Sacchi, 2006; Tan and Yiap, 2009; Vomelova et al., 2009). The 

first method, based on chemical extraction, consists in the disruption of cells using a solution 

composed by guanidinium thiocyanate, phenol and chloroform (see Figure 2), followed by 

precipitation (Chomczynski and Sacchi, 2006). This organic extraction can also be carried out 

using commercial available reagents, such as TRIzol® (Ambion), TRI (Sigma-Aldrich), RiboZol™ 

(AMRESCO’s) and NZYol (Nzytech), which are recommended to isolate intact and pure total 

RNA with high recovery yield, once endogenous ribonucleases are inactivated by the 

chaotropic agent used (cationic detergent guanidinium thiocyanate) (Bernardo et al., 2012; 

Chomczynski and Sacchi, 2006). However, this chemical extraction is extremely toxic, 

biologically hazardous and conveys health risks, which may strongly compromise the success 

of several RNA based-procedures in basic and clinical research, due to the use of denaturing 

agents (guanidinium thiocyanate and β-mercaptoethanol) and organic solvents (alcohols) 

(Chomczynski and Sacchi, 2006; Tan and Yiap, 2009; Vomelova et al., 2009). Furthermore, 

this RNA extraction involves multiple and complex processing steps that makes it a time-

consuming and laborious protocol.  
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Figure 2 – Flowchart of the main unit operations to be considered during manufacturing 

process of microRNAs. It is shown a comparison between the most common methodologies for 

obtaining miRNA from cells, tissues or E. coli with the recombinant production methodology 

in R. sulfidophilum. It is also indicated which are the impurities eliminated in each step. 

 

The SPE is an adsorption method based on the ability of RNA to create a hydrogen-binding 

interaction with specific surfaces, namely silica gel matrix or glass fiber filter (Tan and Yiap, 

2009; Vomelova et al., 2009). In general, in the solid-phase extraction, four steps are 

involved: i) cell lysis employing chemical extraction; ii) RNA adsorption to solid support (with 

the aid of high pH and salt concentration in the binding buffer); iii) washing; and iv) elution 

of the desired RNA from the column (Bernardo et al., 2012; Tan and Yiap, 2009; Vomelova et 

al., 2009). Nowadays, there is a variety of commercially available extraction kits (e.g., 

Qiagen (miRNeasy Micro Kit), Roche (High Pure miRNA Isolation Kit), Sigma–Aldrich 

(mirPremier microRNA Isolation Kit), Invitrogen (Ambion® PureLink® miRNA Isolation Kit) and 

Ambion (mirVana miRNA Isolation kit)), based on SPE or exploiting a magnetic-bead based 

extraction technology, in order to isolate RNA molecules from different biological sources 

with high quality, intactness and purity for further analytical or laboratorial applications 



 

 41 

(Mraz et al., 2009). These methods significantly reduce sample preparation time, need less 

manipulation and offer safer and simpler operations, allowing a quick and efficient 

purification of RNA compared to chemical extraction methods (Bernardo et al., 2012; Tan and 

Yiap, 2009; Vomelova et al., 2009). However, some limitations are also associated with these 

procedures, such as, low RNA yields due to the low binding capacity of the cartridges, and 

sometimes, the RNA isolation is achieved through the use of enzymes, namely DNases that are 

usually animal-derived and therefore are not accepted by the regulatory agencies due to the 

adverse effects of their pharmaceutical administrations. It is noted that throughout these 

extraction processes, several impurities are removed, such as cell debris, genomic DNA 

(gDNA) and some proteins, but it still remains a large quantity of impurities mixed with the 

target RNA, namely other small RNAs (sRNAs). 

In what concerns to the recovery of RNAs from recombinant hosts, and along with the 

aforementioned disadvantages, another major issue associated with the cell lysis of the 

prokaryotic host, E. coli, is the release of endotoxins, which can lead to the contamination of 

the RNA sample (Wei et al., 2007). The importance of removing endotoxins is related to the 

possibility of these foreign components to originate adverse effects and inflammatory 

responses to the patients (e.g. symptoms of toxic shock syndrome), if present in quantities 

higher than those acceptable (Wei et al., 2007). In addition, as E. coli expresses several 

endonucleases, in particular RNases, it can be difficult to maintain the integrity of the target 

RNA, being always necessary to establish methods to avoid degradation (Wassarman et al., 

1999). For all these reasons, an ideal bioprocess must be designed to maximize recovery 

yield, to reduce the unwanted contaminants (sRNAs, gDNA, proteins, endotoxins, salts, 

denaturing agents and organic solvents) and to minimize sample transfers. Nonetheless, and 

considering the therapeutic applications of these products, the major interest is not only to 

produce high quantities of the target RNA but also to assure its quality, stability, integrity and 

biological activity, fulfilling the requirements of regulatory agencies. 

To accomplish this, an innovative recombinant bacteria, R. sulfidophilum, has been recently 

proposed and used to produce a pre-miRNA. It is non-pathogenic and presents several 

advantages over E. coli, such as the unusual capacity of secretion of the heterologous nucleic 

acids directly into the culture medium and the absence of detectable host ribonucleases in 

the culture medium (Ando et al., 2004, 2006; Suzuki et al., 2010). This prokaryotic host can 

integrate a promising alternative technology, since it allows the recombinant biosynthesis and 

recovery from the extracellular medium of biologically active miRNAs, circumventing the 

need of cell lysis that frequently induces RNA denaturation. Besides, this strategy can be 

highly advantageous regarding the RNA product safety, as it will not stimulate innate 

immunity because the secreted miRNAs will be devoid of main bacterial associated impurities. 

Moreover, it is possible to minimize the contamination of the RNA fraction, by recovering the 

enriched-miRNA extracellular medium, in a specific stage of cell growth (see Figure 2). 

Indeed, it is expected that the application of this strategy allows suppressing the use of 
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organic and toxic solvents, and results in an increased RNA recovery yield, drastically 

reducing the amount and type of impurities present in the RNA extract, prior to purification. 

Thus, this integrative approach of recombinant production and pre-miRNAs extracellular 

recovery, is not only innovative but also presents more advantages than the conventional RNA 

isolation methods, being more economical, efficient, simple and fast in obtaining functional 

RNA. The recovery and isolation of miRNAs from fermentation broths can be performed using 

membrane filtration or concentration techniques, designed to eliminate media components 

and metabolites and recover the target RNAs (Morão et al., 2011; Nunes et al., 2014; Nunes 

et al., 2012). Figure 2 schematizes the most important steps to be considered during miRNAs 

manufacturing. It is essential to optimize and improve all unit operations involved in the 

biotechnological production and recovery of miRNAs, which will comprise a great benefit to 

the implementation of a new platform on the biopharmaceutical industry, since the primary 

isolation conditions will also greatly influence the following purification strategy.  

2.3. MicroRNA purification 

During the last decades, different methods and protocols have been extensively employed for 

the purification of RNAs obtained either by synthesis or from biological sources, such as 

preparative denaturing polyacrylamide gel electrophoresis and different chromatographic 

strategies namely reversed-phase ion-pair liquid chromatography, anion-exchange and size 

exclusion chromatography, which can be applied either as an isolated or integrated steps 

(Easton et al., 2010; Kim et al., 2007; Koubek et al., 2013; McCarthy et al., 2009; Noll et al., 

2011). Although these methods can be very efficient for the purification of RNA with high 

resolution, some of these still require time-consuming preparatory steps and are expensive on 

large scale (Martins et al., 2014). On the other hand, these purification methods can cause 

structural modifications and degradation of the RNA molecules and may even introduce some 

contaminants, e.g. acrylamide, lithium metal, ion-pairing agents and organic solvents, 

related with the method (Easton et al., 2010; Kim et al., 2007; Koubek et al., 2013; Martins 

et al., 2014; McCarthy et al., 2009; Noll et al., 2011). For these reasons, the RNA product 

purified by these strategies may require additional treatments to be suitable for the use in 

analytical and clinical applications, and therefore it is difficult to maintain the stability and 

biological activity of the target RNA. These challenges associated with RNA purification 

process, motivate the improvement of the already existing chromatographic techniques or the 

development of new purification approaches. 

In the last years, the downstream strategies based on affinity chromatography have been 

developed in an attempt to circumvent several challenges in RNA purification (reviewed in 

(Martins et al., 2014)). Most approaches described in affinity chromatography make use of 

tags (small sequences that are introduced in the RNA molecules) that bind with high affinity 

to specific molecules, used as ligands in chromatographic matrices for the selective 

purification of RNAs from cellular extracts (Di Tomasso et al., 2011, 2012; Pestourie et al., 
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2005; Ponchon and Dardel, 2011; Srisawat and Engelke, 2001, Srisawat et al., 2001). In most 

cases, the tag-RNA complexes can be released from the chromatographic support either by 

competitive elution or cleavage by a protease that recognizes a specific site that is 

incorporated along with the affinity tag (Martins et al., 2014; Srisawat and Engelke, 2001; 

Srisawat et al., 2001). Overall, although these chromatographic methods are rapid, reliable 

and efficient in obtaining the target RNA with high recovery yields and stability, they still are 

expensive on large scale and labor intensive (Martins et al., 2014). In addition, the separation 

procedures with RNA affinity tags make use of enzymes and may induce structural 

modifications in RNA by the introduction of the tag sequences, which can affect the overall 

RNA topology (Srisawat and Engelke, 2002; Walker et al., 2008). 

A promissory approach to overcome these limitations includes the recent developed affinity 

chromatographic method using amino acids as specific ligands, which simulates and exploits 

biological and reversible interactions that occur at the cellular level between amino acids and 

nucleic acids. The major advantage of this technique relies on the selectivity achieved, 

resultant from the combination of multiple non-covalent interactions (including electrostatic 

and hydrophobic interactions, van der Waals forces, cation–π interactions, dipole–dipole 

forces and hydrogen bonding) between the biospecific ligands (amino acids and derivatives, 

namely O-Phospho-L-Tyrosine, L-Arginine, L-Lysine and Agmatine) and the target RNAs. The 

interactions can be favored or disfavored by manipulating the binding/elution conditions, 

such as the temperature, pH and buffer composition (type of salt, ionic strength or presence 

of competitive agents) (Sousa et al., 2008). The use of amino acids in this chromatographic 

strategy has the singular ability of purifying nucleic acids with high-selectivity, -specificity, -

efficiency, robustness and durability (Lowe et al., 2001; Martins et al., 2014; Sousa et al., 

2008). The potential of amino acids-based affinity chromatography to obtain miRNA 

molecules, in particular the recombinant human pre-miR-29b, from a complex extract, was 

recently proved (Afonso et al., 2014; Pereira et al., 2014a, 2014b, 2014c).  

Although, amino acids immobilized in bead-packed columns showed high selectivity in the 

purification of miRNAs, these supports present certain restrictions, such as low capacity and 

flow rates (Arrua and Alvarez Igarzabal, 2011; Pfaunmiller et al., 2013; Sousa et al., 2012). 

Considering this limitation, an easier, reliable and more robust procedure for miRNA 

purification was developed, using a monolithic-based strategy, to improve the performance of 

the biotechnological strategy, while maintaining the efficiency of the method (Pereira et al., 

2014c). Overall, the separation of the target miRNA from a crude sample was achieved, with 

a good recovery yield, high purity level, good integrity and biological activity, due to the fast 

separation and consequent short contact time with the support (Pereira et al., 2014c). 

Amongst the several chromatographic strategies implemented for miRNA purification, amino 

acids-based affinity chromatography allowed an improvement of many technical issues, 

including the analysis speed, the sensitivity and the separation conditions (use of mild salt 

conditions instead of organic compounds and enzymes). Furthermore, miRNA is separated in 
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one single step, improving process economics over other less-selective and time-consuming 

multi-step procedures (Afonso et al., 2014; Pereira et al., 2014a, 2014b, 2014c).  

In accordance, different affinity ligands (amino acids and its derivatives, peptides, 

complementary oligonucleotides sequences to the target miRNAs, among others) can be 

characterized and immobilized onto different chromatographic matrices (agarose-based, 

monoliths, superporous matrices), in order to purify the RNA of interest from host 

contaminants, thus minimizing non-targeted gene silencing and immunologic responses. 

2.4. MicroRNA quality control 

RNA purification is a critical step to obtain the product with suitable quality to be applied in 

several biomedical fields. At present, none regulatory authority (such as Food and Drug 

Administration (FDA) centre for Drug Evaluation and Research, European Agency for the 

Evaluation of Medical Products (EMEA) or World Health Organization (WHO)) has formal 

guidelines available for RNA oligonucleotide products (Martins et al., 2014). Over the years, 

the scientific community is providing the guidance in the regulatory framework for RNA-based 

therapies based in the guidelines for plasmid DNA (pDNA) (Ferreira et al., 2000; Stadler et al., 

2004).  

As previously mentioned, miRNA quality depends on the manufacturing process, the cellular 

lysis step and the subsequent processes of isolation and purification, which must be carefully 

designed in order to reduce or eliminate the host impurities without loss or damage of the 

biological activity of desired RNA. To accomplish this, a strict control of the process and 

assessment of the remaining impurities on the final sample is crucial, by using several 

complementary methods (Batkai and Thum, 2014; Chen et al., 2005; McGinnis et al., 2012; 

Moreno-Moya et al., 2014; Schleef and Schmidt, 2004; Smith et al., 1999; Stadler et al., 

2004). Table 3 describes several effective techniques that are commonly applied to evaluate 

the quality and quantity of purified miRNA, and to verify if the requirements of regulatory 

authorities are fulfilled. There are also commercially available analyzers to quantify and 

simultaneously check the integrity of RNA samples (e.g. Bio-Rad Experion, Hercules, CA, or 

Agilent Bioanalyzer 2100, Santa Clara, CA). The implementation of methodologies able to 

control RNA quality will be increasingly necessary, especially when the RNA products are 

finally released to the market. To overcome this issue, convenient, sensitive and 

straightforward analytical methods have been developed and validated to detect and quantify 

specific miRNAs in unfractionated total RNA from different biological samples, namely whole 

blood, plasma, cells and some organs (such as liver, heart, brain, spleen, lungs and kidneys) 

(reviewed in (Batkai and Thum, 2014)). 
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Table 3 - Accepted levels of impurities in final pDNA preparation for clinical applications, as 

recommended by regulatory agencies (adapted from (Batkai and Thum, 2014; Chen et al., 

2005; Ferreira et al., 2000; McGinnis et al., 2012; Moreno-Moya et al., 2014; Schleef and 

Schmidt, 2004; Smith et al., 1999; Stadler et al., 2004)). 

 

3. Obstacles to effective microRNA therapeutics 

As discussed earlier in this review, the therapeutic application of miRNAs is extremely 

promising due to the specific and efficient silencing of gene expression, as well as for its 

simplicity, safety profile and ease of manufacturing. However, some problems must be 

addressed, namely the extracellular barriers, low bioavailability, rapid enzymatic degradation 

of miRNA by ubiquitous nucleases found in human serum, rapid renal clearance and 

phagocytosis by macrophages (Al-Dosari and Gao, 2009; Pathak et al., 2009; Tokatlian and 

Segura, 2010). Also, the intracellular barriers, such as inefficient cellular uptake and 

intracellular processing of endosome-targeted RNAs (escape from the endosome, vector 

unpacking and processing by the RNAi machinery) need to be surpassed before the 

therapeutic gene arrives at the cytoplasm, allowing an improvement on miRNA 

pharmacokinetic and pharmacodynamic properties (Al-Dosari and Gao, 2009; Pathak et al., 

2009; Tokatlian and Segura, 2010).  

 

Component 
Accepted level in final 

product 
Recommended Assay 

Host RNA Undetectable 

Agarose gel electrophoresis 
Polyacrylamide electrophoresis  
Analytical High-Performance Liquid Chromatography  
Spectrophotometric Method 

Proteins Undetectable 
Micro-BCA (bicinchoninic acid) protein assay  
Bradford assay 
SDS-PAGE 

Genomic DNA <2 µg/mg pDNA 
Real-time Polymerase Chain Reaction  
Southern blot 
Hybridization 

Endotoxins <0.1 EU/µg pDNA Limulus Amoebocyte Lysate (LAL) assay  

miRNA  

Polyacrylamide electrophoresis 
Electrospray ionization mass spectrometry  
TaqMan-based arrays  
Reverse-transcriptase polymerase chain reaction 
Northern blot analysis  
Nuclease protection analysis 
Primer extension assay 
Microarray analysis 
In situ hybridization assay 
Complementary DNA (cDNA) library construction  
High-Performance Liquid Chromatography 
In Vitro Translation 
LC-MS 
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3.1. Biological instability 

As previously discussed, for the systemic delivery, unmodified naked miRNAs are highly 

susceptible, due to their rapid degradation by cellular and serum nucleases, resulting in a 

short half-life in the circulatory system (from several minutes to an hour) (Deng et al., 2014; 

Gavrilov and Saltzman, 2012). Chemical modifications can increase the RNA stability but are 

also associated with certain adverse effects, such as decrease on mRNA hybridization, 

inhibition of coagulation, activation of the complement cascade and cytotoxicity (see Table 

2) (reviewed in (Broderick and Zamore, 2011; Bumcrot et al., 2006; Deng et al., 2014; El-

Sagheer and Brown, 2010; Li and Rana, 2014; van Rooij and Kauppinen, 2014). For all these 

reasons, it is still necessary to customize, optimize and/or minimize the chemical 

modifications, through the identification and modification only of the sites susceptible to 

degradation.  

3.2. Off-target effects 

The in vivo specificity of miRNAs is based on sequence homology between miRNA and target 

mRNA. Thus a major challenge in developing miRNAs-based therapeutics remains in the 

assurance of RNA purity to minimize off-target gene silencing (Deng et al., 2014). 

Nonetheless, miRNA-based therapeutics can sometimes induce non-specific side effects, i.e., 

suppression of other non-target genes, which are as critical as effectiveness and duration of 

miRNA expression or inhibition (as reviewed in (Singh et al., 2011)). The off-target effects can 

arise through the partial homology of the nucleotides involved in the “seed region” of the 

endogenous miRNAs, and by effects related with competition of exogenous vectors and/or 

RNA species and endogenous miRNAs by the incorporation and retention into RISC, resulting in 

the non-desirable gene silencing (Gavrilov and Saltzman, 2012). Another possible side effect 

is the saturation of the cellular machinery by miRNA processing, leading to aberrant 

processing of endogenous miRNAs by the accumulation of toxic precursors (pri-miRNAs, pre-

miRNAs, shRNA, stem-loop structures and high expression of miRNA mimics) (Singh et al., 

2011; Wang et al., 2011). This saturation interferes with the normal functioning of the cell, 

not allowing access of the miRNAs in the natural pathway (Ballarin-Gonzalez and Howard, 

2012). Most of these undesirable and unspecific effects can be minimized without impairing 

their silencing capability, with small changes in miRNA sequences (chemical modifications) or 

by the use of miRNA mimics that are specific enough to distinguish between similar miRNAs. 

Despite of all the progress that has been made in the miRNAs-based therapeutics, it is still 

required more basic research on miRNAs to increase the efficacy and significantly reduce and 

eventually eradicate off-target effects. 

3.2. Immune response  

Long double-stranded RNA (e.g. vector-mediated expression of shRNAs, viral dsRNAs or other 

dsRNAs), as well as, siRNAs synthesized in vitro can, in some cases, trigger an innate immune 
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response via interaction with RNA-binding proteins such as Toll-like receptors (TLRs) and 

protein kinase receptor (PKR) (Ballarin-Gonzalez and Howard, 2012; Deng et al., 2014). The 

innate immune response is mediated mainly by activation of interferon and pro-inflammatory 

cytokines, after recognition of immunostimulatory sequence in the RNAs, such as specific GU-

rich sequences (“danger motif”), in particular 5’-GUCCUUCAA-3’ and 5’-UGUGU-3’ (Deng et 

al., 2014; Gavrilov and Saltzman, 2012). In this manner, there are several parameters 

determining the stimulation of innate immunity, namely structure and sequence of RNAs, 

delivery vehicle, delivery route, cell type and species. To minimize these issues, appropriate 

chemical modifications as well as, the possibility to use miRNA delivery strategies can 

prevent, decrease and avoid the immunostimulatory properties (see Table 2). 

Understandably, immunogenicity and toxicity are grounds for concern that must be addressed 

in developing RNAi for therapeutic use. 

 

4. Delivery Strategies 

The major challenge in the development of miRNAs-based therapeutics for clinical 

applications is the establishment of an effective mode to deliver these molecules to their 

target cells, specific tissues or organs, in order to exert their function, preventing unwanted 

side effects. The physicochemical properties of naked miRNAs interfere with their ability to 

cross the cell membrane by passive diffusion due to their negative charge, hydrophilicity and 

size (7-20kDa) (Zabner et al., 1995; Zhang et al., 2013). In addition, naked miRNAs are 

preferentially accumulated by the kidneys and rapidly eliminated into urine within one hour 

because they are smaller than the size threshold for glomerular filtration.  

In the last years, a variety of different and efficient delivery approaches have been 

developed and applied in gene therapy trials to promote cellular uptake and delivery of RNAs 

into the cytoplasm of target cells, increasing the accumulation of the therapeutics in the site 

of interest, increasing the silencing potency, thereby making a given treatment dose more 

effective. In a simple way, delivery systems can be divided into two categories, viral vectors 

and non-viral vectors. However, each of these approaches has distinct advantages and 

disadvantages, which require careful consideration (see Table 4). Initial research focused on 

the use of viral vectors because these vectors displayed high efficiency at delivering miRNAs, 

both in vitro and in vivo, taking advantage of their favorable cell uptake and intracellular 

trafficking machineries, allowing long-term gene expression (see Table 4) (Mintzer and 

Simanek, 2009; Robbins et al., 1998; Walther and Stein, 2000). However, the focus has 

recently changed to the non-viral approaches because of the advantages over viral vectors, 

such as ability to deliver the exogenous biopharmaceuticals into the cell/tissue-specific, non-

immunogenicity, high biocompatibility and low cytotoxicity (De Smedt et al., 2000; Nimesh 

and Chandra, 2009; Park et al., 2006). In addition, these non-viral vectors offer other 

advantages such as relatively low production costs, high flexibility and easy quality control, 
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allowing designing carriers with well-defined structural and chemical properties on a large 

scale with high reproducibility and simplicity. Thus the potential for large-scale production 

makes these non-viral vectors increasingly attractive for gene therapy (see Table 4) (Ahn et 

al., 2002). These vectors are also relatively stable to storage, they can be administered 

repeatedly with no or little immune response and the dimension of the genetic material they 

can carry is virtually unlimited. However, they also present some limitations such as the 

reduced transfection efficiency, due to the cellular barriers and immune defense 

mechanisms, poor oral bioavailability and instability in circulation (see Table 4). 

The non-viral delivery systems include liposomes, lipoplexes, lipid-based delivery systems, 

polymers, cyclodextrins, dendrimers, polymeric micelles, pluronic block copolymers, 

exosomes and metallic core nanoparticles, allowing for RNA compacting for systemic delivery 

(see Table 4) (Chen and Xie, 2012; Cho et al., 2008; Gao and Huang, 2009; Hart, 2010; 

Kabanov et al., 2002; Mintzer and Simanek, 2009; Morille et al., 2008; Patil and Panyam, 

2009; Yin et al., 2014; Zhang et al., 2013).  

Consequently, during the last decade a number of polymeric delivery systems, nanoparticles 

with sizes between 10 and 100 nm, have been developed. These systems should contain a 

positively charged domain to efficiently bind the miRNAs molecules and facilitate the 

progression of the transmembrane transport (Al-Dosari and Gao, 2009; Gupta et al., 2005; 

Hart, 2010; Zabner et al., 1995). In these systems, the miRNAs can be loaded, adsorbed or 

chemically linked to their surface. The nanoparticle size is a critical factor for effective drug 

delivery in vivo, since nanoparticles should be big enough to avoid fast clearance through the 

kidney excretion system but small enough to penetrate the target tissue. As mentioned, to be 

effective and to be considered ideal, there are several aspects to be carefully considered 

when developing the delivery vehicles, such as, safety, specificity and efficiency of gene 

transfer; magnitude and duration of expression; immunogenicity and manufacturing (Pathak 

et al., 2009). 

After entry into the target cells, miRNAs still face a number of hurdles before they can exert 

their gene silencing activity, since non-viral delivery systems are immediately transported 

into the endocytic vesicles, initially, to the early endosomes where the pH drops to 6 

followed by trafficking to late endosomes which are acidified to pH 5-6 (see Figure 3) 

(Caracciolo et al., 2009; Dominska and Dykxhoorn, 2010; Medina-Kauwe et al., 2005). Once 

taken up into the endosome, the RNA has to escape in order to avoid subsequent degradation 

by lysosome (Caracciolo et al., 2009; Dominska and Dykxhoorn, 2010; Medina-Kauwe et al., 

2005). Even in the cell cytoplasm, miRNAs remain vulnerable to degradation by intracellular 

nucleases and still need to be incorporated into RISC with high efficiency, to exert the 

silencing function (see Figure 3) (Nguyen et al., 2009; Suh et al., 2003).  
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Non-Viral Delivery 
(Cho et al., 2008; Gao and Huang, 2009; Hart, 2010; Mintzer and Simanek, 2009; Morille et al., 2008; Patil and Panyam, 2009; Zhang et al., 2013) 

Lipid-based 
delivery 
systems 

Liposome 

-Consisting of a phospholipid bilayer with an inner aqueous core that contains RNA 
-Versatility and flexibility in structure 
-It is an attractive delivery approach because of the biocompatibility of the constituents and facile assembly of the complexes, which requires 
only mixing and incubation of components  
-Higher stability in biological fluids and against the enzymatic metabolism 
-Increase retention in the blood stream  
-The elimination half-life increased from ∼2 min to 6.5 h 
-Excellent RNA delivery efficiency in multiple cell lines in vitro as well as in mice, rats and monkeys 
-Facilitate efficient internalization of RNA via membrane fusion with the host cell 
-Are usually heterogeneous in size owing to interactions between water molecules and the hydrophobic groups of lipids 
-Traditional liposomes have low transfection efficiency into cells due to their lack of surface charges 
-Highly toxic for in vivo applications, nonspecific uptake, and unwanted immune response 

Lipoplexes 

-Liposomes that contain cationic lipids driving the interaction between the lipid bilayer and the negatively charged RNA molecules, resulting in a 
net positive charge that enable the binding to anionic cell surface molecules 
-The composition of these lipid particles can be tailored to facilitate fusion with the cytoplasm, as well as to promote endosomal release once 
inside the cell  

Neutral Lipids1 
DOPC; DOPE; DSPC 
 
Cationic lipids2  
DOTMA; DOGS; DC-Chol; 
DDAB; DMRIE and DOTAP  

-Lipid vectors are presumed to achieve endosome release of RNA through a membrane fusion mechanism 
-Neutral lipids are non-toxic and do not activate an immune response 
-Cationic lipids can complex electrostatically with RNAs, enhancing cell entry and protection against serum enzymes 
-Incorporation of positive charge to increase transfection efficiency must be carefully balanced because it can induce inflammatory effects and 
unwanted interaction with negatively charged serum proteins, which can lead to opsonization and clearance of the lipocomplex 

Biodegradable 
polymers 

 

Polyethylenimine (PEI) 

Poly(lactic acid) 

Poly(lactic-co-glycolic acid)  

Poly(butylcyanoacrylate) 

Chitosan (CS) 

Polylysine 

Poly(alkylcyanoacrylate)  

Poly(butylcyanoacrylate)  

-High delivery efficacy, biodegradable, biocompatible and non-toxic  
-Higher stability in biological fluids and protection of the RNA against degradation by RNases 
-Reduced non-specific biodistribution 
-Have capacity to encapsulate large amounts of genetic material and co-delivery 
-Facilitate the cellular uptake via endocytosis 
-Polymeric vectors commonly use the proton sponge effect to facilitate endosome escape 
-Can readily be surface-modified to enhance stability, transport properties, targeting or uptake and can be produced in relatively homogeneous 
sizes (up to 100 nm) 
-Successfully used to deliver poorly diffused drugs into the brain 
-Low toxicity and low immunogenicity  
-Successfully administered to silence target genes in vitro and in vivo, such as p-glycoprotein in brain endothelial cells  
-PEI act as a proton sponge that induces the release of RNA to the cytoplasm by osmolysis from the endosome due its high content of protonable 
amino groups  
-PEI is a highly efficient cationic polymer since it has numerous amine groups in its structure 
-PEI showed its dose-dependent cytotoxicity due to non-biodegradability inside cells that results in the formation of aggregates with negatively 

Table 4 – Barriers to successful in vivo delivery of microRNAs using non-viral vectors. 
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charged intracellular proteins 
-Use of a high-molecular-weight branched PEI leads to high transfection efficiency but to unfavorable adverse effects such as cellular toxicity 
-CS is a natural, nonallergic and has mucoadhesive properties, and nuclease resistance 
-The degradation time of PLGA can be altered from days to years by varying the molecular weight and the lactic acid to glycolic acid ratio of the 
copolymers 
-Increase the duration of drug circulation in the blood, which facilitates drug ability to interact with specific molecules expressed on the luminal 
side of BBB endothelial cells, and consequently to cross the BBB, increasing the uptake of appropriate drugs in the brain safely and effective 

Cyclodextrin 
(CD) 

Naturally cyclic oligomers of 
glucose (oligosaccharides) 
that are complexed with 

transferrin 

-CD possesses unique structural features, with hydrophilic outer surface and hydrophobic inner cavity 
-CD containing polymers (CDPs) consist of cationic polymer complexed with RNA and interdigitated with funnel-like cyclodextrin molecules, 
which, in turn, can be linked to functionalized molecules  
-CDPs have been investigated intensely in targeted delivery of small therapeutic molecules due to its non-toxicity and not producing immune 
stimulation even if the RNA cargo contains an immune stimulatory sequence 

Polymeric 
micelles 

Polymeric micelles 

-Easy to formulate and therefore exist with variable well-defined geometry where insoluble/sparingly soluble bioactive molecules can be 
incorporated at different sites in micelles 
-An ideal candidate for brain-targeting delivery  
-Small particle size that allows escaping from the reticuloendothelial system 
-Offer protective stability within their hydrophobic core 
-Flexibility of modification with targeting ligands that can effectively enhance drug solubility and improve drug pharmacokinetics and 
biodistribution 
-Require less excipients 
-High physical stability  
-Sustained drug release 
-Self-assembled nanostructures composed of amphiphilic block copolymers can be tuned for RNA delivery by grafting them with amines that can 
complex RNA 
-Can act as nanosized structures to solubilize and release hydrophobic drugs 

Dendrimers 
PAMAM Dendrimers 

Polypropylenimine Dendrimers 

-Ability to control their well-defined structure and molecular weight, shape, degree of branching, flexibility, as well as the “multivalency effect”  
-Easily modified surface groups  
-Low polydispersity and high functionality 
-Improved solubility, pharmacokinetics and biodistribution  
-High loading capacity and high transfection efficiency 
-Low toxicity and low immunogenicity 
-Can also act as a proton sponge, triggering endosomal escape and release RNA into the cytoplasm due its tertiary amine groups inside the 
repeating backbone structure 
-Offer a new length scale (~5–10 nm), with significant versatility to incorporate multiple active molecules  
-Display the ability to cross cell membrane  
-A number of biologically and pharmacokinetically desirable properties, however, controlled drug release and high drug loading still remain 
challenge 
-PAMAM dendrimers require further modifications of their peripheral end groups since the intact structure shows low transfection efficiency 
-They are cleared rapidly by the bloodstream, preventing ‘long-term’ accumulation in non-targeted organs, such as kidney, lung and liver, 
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1Neutral Lipids: 1,2-Oleoyl-sn-Glycero-3-phosphocholine (DOPC); 1,2-Dioleoyl-sn-Glycero-3-phosphoethanolamine (DOPE); 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC); 2Cationic lipids: N-[1-(2, 3-dioleoyloxy) 
propyl]-N,N,Ntrimethylammonium chloride (DOTMA), dioctadecylamido glycylspermine (DOGS); 3b[N-(N′,N′-dimethylaminoethane)-carbamoyl) cholesterol (DC-Chol); dimethyldioctadecyl-ammonium bromide (DDAB), 
dimyristyloxypropyl-3-dimethylhydroxyethyl ammonium bromide (DMRIE) and 1-oleoyl-2-[6-[(7-nitro-2-1, 3-benzoxadiazol-4-yl) amino]hexanoyl]-3-trimethylammonium propane (DOTAP) 

reducing the potential for side effects 
-The cytotoxicity of PAMAM increases proportionally with the generation number 

Pluronic block 
copolymer 

 
-Enhance the transport of drugs across in vitro models of the BBB, which it is related to the inhibition of P-glycoprotein-mediated efflux 
-The polymer may have potential as a CNS-targeted delivery system for drugs that are substrates for the P-glycoprotein efflux pump 

Exosomes 

 
 

-Endogenous nanovesicles secreted by several cells and tissues that transport the desired RNAs  
-The specific targeting of exosomes to the brain following systemic delivery 
-Ability to escape an immune response (reduced immunogenicity), thus presenting reduced toxicity 
-The possible effects of nucleic acids and proteins derived from dendritic cells and carried with the exosomes on the target cell need to be 
further explored  

Metallic core 
nanoparticles 

Gold nanoparticles (GNPs) 

-Metal cores, such as iron cobalt, iron gold, or iron nickel are coated with various peptides, proteins, antibodies and other biomolecules 
generating a core-shell structure to which RNA can be externally conjugated through linking molecules such as thiols dextran, cationic polymers 
or biotin-streptavadin 
-Ability to be synthesized at diverse sizes, their chemical stability and their unique optical properties  
-Allow the study of biodistribution upon injection using magnetic resonance imaging or targeting to specific tissues by applying external magnets 
-In vivo toxicity may limit their application 

Viral Delivery Systems 
Reviewed in (El-Aneed, 2004; Mintzer and Simanek, 2009; Robbins et al., 1998; Walther and Stein, 2000) 

Viral 

Retrovirus vectors 

Lentivirus vectors 

Adenovirus vectors 

Adeno-associated viruses 

Herpes simplex viruses 

-To express the virulent genome, the virus needs to infect the host cells, thereby inducing prolonged gene silencing 
-A single administration could lead to durable down-modulation of the targeted pathological protein 
-High efficiency in in vivo delivery because the ability to deliver the gene into the cell is an inherent capacity that they possess 
-Transient gene silencing 
-LV and AVV were the most used, as they have the best safety records 
-Easily eliminated by existing bloodstream antibodies  
-Can activate coagulation or complement factors to induce mutation in the host genome, which may lead to strong inflammatory reactions  
-Allergy and infection caused by viruses can be fatal  
-Their immunogenicity, cytotoxicity and the possibility of mutagenic effects make them risky 
-The use of these delivery vehicles is mostly moderated in what concerns to their manufacturing and scale-up procedures 
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4.1. Targeting  

In the development of miRNAs-based therapies, delivery of miRNAs for the treatment of NDs 

is intrinsically limited because the delivery of all substances into the brain is tightly regulated 

by the Blood-Brain Barrier (BBB) (Edwards, 2001). Physiologically, the BBB is a unique 

structure that separates brain from the rest of the body and their barrier function is due to 

anatomical features, namely the tight junctions formed between adjacent brain capillary 

endothelial cells in the brain tissues (see Figure 3) (Alam et al., 2010).  

 

Figure 3 – Main barriers to successful in vivo delivery of nucleic acids using non-viral vectors. 

 

This barrier prevents the transport of many harmful substances (foreign organisms, toxic 

chemicals, hydrophilic drugs and large molecules) present in the systemic blood circulation 

into the brain and restricts the movement of ions and fluid into the brain (Alam et al., 2010). 

However, the BBB allows selective access of necessary nutrients (small gaseous agents, 

glucose, amino acids and small lipophilic molecules) and chemical signaling molecules to the 

nervous system (Egleton and Davis, 1997). Thus, the BBB controls substance flow in and out of 

the brain with precision and strictness, ensuring an optimal environment for brain function, 

making the brain a site of poor permeability to various drugs as well as delivery systems. 

Another important factor that limits and control the uptake, distribution and efflux of many 
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drugs in the nervous system are the proteins presents in a variety of drug efflux transporters, 

such as P-glycoprotein (Kusuhara and Sugiyama, 2001), glucose-related transporters, 

nucleoside transporters, receptors for transferrin (Descamps et al., 1996, Visser et al., 2004), 

lactoferrin (Fillebeen et al., 1999), insulin (Frank et al., 1986), leptin, lectins, epidermal 

growth factor, insulin-like growth factors (Duffy and Pardridge, 1987; Reinhardt and Bondy, 

1994), as well as, low-density lipoprotein receptor-related protein (LRP) (Candela et al., 

2008; Dehouck et al., 1997), reinforcing BBB function by effectively removing drugs from the 

brain and pumping them back into blood. Because of this BBB transport restriction 

mechanism, more than 98% of candidate drugs have been abandoned during their 

development due to their poor permeability to cross the BBB, in sufficient quantities to 

produce a therapeutic effect (Pangalos et al., 2007; Pardridge, 2005). These findings are 

attracting the attention of the pharmaceutical and biotechnology industries.  

To accomplish this purpose of targeted delivery, nanoparticles have been modified on the 

surface with targeting molecules to improve their interactions with the BBB. As mentioned, 

the surface of the brain endothelial cells of the BBB possess several transport mechanisms 

mediated by various specific receptors that potentially can be exploited as a means to target 

drugs to the brain. Small molecules, peptides and proteins, such as angiopep-2 (van Rooy et 

al., 2011), certain apolipoproteins and lipoproteins (Candela et al., 2008; Kreuter et al., 

2002, 2007; Michaelis et al., 2006) directed to low-density lipoprotein receptor (Dehouck et 

al., 1997) and RVG (rabies virus glycoprotein) (Kim et al., 2013; Son et al., 2011) to GABA 

receptor have been extensively used as brain-targeting ligands for the development of drug 

delivery systems to the brain, trying the BBB crossing after intravenous administration. A 

common drug delivery strategy for targeting cells of interest is the conjugation with proteins, 

including lactoferrin (Fillebeen et al., 1999), TAT (transactivator of transcription) peptides 

(Santra et al., 2004) and transferrin (Descamps et al., 1996) that can effectively facilitate the 

passage of the BBB (Zhang et al., 2012). An alternative strategy to enhance drug delivery to 

the CNS is the co-administration of a pharmacological modulator or a formulation component, 

in order to enhance brain penetration of various P-glycoprotein substrates through inhibiting 

the P-glycoprotein-mediated efflux transport system of a desired therapeutic agent out of the 

brain as, for example, Pluronic P85 (Batrakova et al., 2001; Yi and Kabanov, 2013).  
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5. Conclusion and Future trends 

MiRNAs are of particular interest in understanding complex disorders, such as NDs, because 

they can potentially regulate several pathways involved in the insurgence and progression of 

the disease. Recent developments have suggested that the use of miRNAs as 

biopharmaceuticals will be possible in a near future and they will become not only important 

to treat ND, but may also be employed as biomarkers. The biopharmaceutical sector is an 

important and fast growing part of the wider global pharmaceutical industry, developing 

healthcare products. However, the development and preparation of biopharmaceuticals poses 

many technical challenges, including their production, recovery, purification and delivery into 

the brain, which need to be addressed in order to carry these molecules into clinical trials. 

Thus, it is necessary the development of effective technologies for miRNAs recombinant 

production and purification with the intent of obtaining large amounts of highly pure and 

thus, clinically suitable miRNAs, as an alternative to in vitro transcription or chemical 

synthesis. Within the biotechnological domain, we believe that the integrative approach of 

extracellular production of stable structured RNA in vivo coupled to affinity-based 

purification using amino acids as ligands will enable the target pre-miRNAs isolation with high 

efficiency, selectivity, throughput, purity and integrity. The major gain in this field is the 

possibility to use these methodologies for the preparation of other non-coding RNAs, proving 

the wide application of the technology, which may have a great impact on biopharmaceutical 

industry. Furthermore, these approaches could contribute for the establishment of reliable 

and cost-effective processes, easily adopted by biopharmaceutical industries. In general, this 

review reports the most recent improvements achieved with the preparation of recombinant 

miRNAs that meet the required criteria established for clinical application. In addition, 

another major bottleneck is to achieve a highly targeted delivery of biopharmaceuticals 

because only then it will be possible to create a significant opportunity to generate new 

health products useful for diagnosis and treatment of NDs. It is necessary to develop effective 

brain drug delivery systems that must also be non-invasive, safe, with a low-cost and easy 

route of administration, for increasing treatment efficacy and patient compliance, reducing 

societal service burden. The success of these targeted delivery systems preparation will be 

really impacting since it will open the way for the delivery of numerous drugs to the brain, 

with relevance not only in AD but also transversal to other neurodegenerative diseases. In 

fact, the surpass of all issues herein discussed, will lead to the establishment of more cost 

efficient processes that would reduce the time to application.  
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Short description: This paper is a review that summarizes the most recent and important 

achievements concerning the application of affinity procedures for the purification of non-

coding RNAs (small interfering RNA (siRNAs), PIWI-interacting RNAs (piRNAs), microRNAs 

(miRNAs) and long non-coding RNAs), considering their therapeutic application. Initially, it is 

presented an overview of the biogenesis pathways of non-coding RNAs, as well as their 

therapeutic potential. Then, it is focused the application of immobilized metal ion-affinity 

chromatography and RNA affinity tags-based chromatography. Moreover, recent investigations 

using affinity approaches based on chromatographic purification exploiting the biorecognition 

between amino acids ligands and RNA molecules are discussed. Finally, it is highlighted the 

potential contribution of these strategies to the future development of new and more robust 

bioseparation methods. 
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Abstract 

The recent investigation on RNA interference (RNAi) related mechanisms and applications led 

to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based 

technology has emerged as a potentially powerful tool for silencing gene expression, being 

exploited to develop new therapeutics for treating a vast number of human disease 

conditions, as it is expected that this technology can be translated onto clinical applications 

in a near future. This approach makes use of a large number of small (namely short 

interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), 

which are likely to have a crucial role as the next generation therapeutics. The commercial 

and biomedical interest in these RNAi-based therapy applications have fostered the need to 

develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final 

product with high purity degree, good quality and biological activity. Recently, affinity 

chromatography has been applied to ncRNAs purification, in view of the high specificity. 

Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and 

also to discuss the most significant and recent developments as well as applications of affinity 

chromatography in the challenging task of purifying ncRNAs. In addition, the importance of 

affinity chromatography in ncRNAs purification is addressed and prospects for what is 

forthcoming are presented. 
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1. Introduction 

In the late 1990s there have been significant advances in biology, in which one of the most 

important and remarkable discoveries was the new world of RNA interference (RNAi), leading 

to the use of RNA-based strategies for therapy [1,2]. Accordingly, the discovery that genes 

could be silenced by RNAs allowed the biological understanding of other roles of RNA, which 

changed from a simple intermediate molecule between DNA and proteins to a dynamic and 

versatile molecule, fundamental in the regulation of genes expression, involved in numerous 

cellular processes of all living organisms [1,3]. RNAi is defined as a highly conserved 

intracellular mechanism, involving the recognition and post-transcriptional control of specific 

messenger RNA (mRNA), mediated by non-coding RNAs (ncRNAs), that can result in the 

silencing gene [3]. NcRNAs are a class of transcripts which, as the name implies, are not 

translated into proteins, but play important roles in the cellular function. A very simplistic 

classification based on transcript size, arbitrarily separates these biomolecules into two 

major groups: the small (sncRNAs, <200 nucleotides (nt) in length) and the long (lncRNAs, 

from 200 nt to approximately 100 kilobases) non-coding RNAs [4,5]. In turn, the small group 

comprises infrastructural RNAs and regulatory RNAs. The infrastructural ncRNAs include 

ribosomal, transfer, small nuclear and small nucleolar RNAs with well-known functions that 

are involved in the spliceosomal and translational machinery [4]. On the other hand, the 

regulatory ncRNAs include small interfering RNA (siRNAs), PIWI-interacting RNAs (piRNAs) and 

microRNAs (miRNAs), among others [4,5]. In the last decade, several studies showed that 

many of these small ncRNAs have important regulatory functions influencing almost all areas 

of cellular biology with a wide variety of molecular mechanisms. Another group of ncRNAs 

comprises the lncRNAs, a highly heterogeneous group of transcripts that are the least well 

understood ncRNAs [6,7]. They have only recently emerged as a major category of regulatory 

eukaryotic transcripts and are mostly involved in trafficking of protein complexes, genes and 

chromosomes to appropriate locations. 

Considering the functions attributed to ncRNAs, presently they constitute the most promising 

class of next generation therapeutics with a great potential to exert a revolutionary effect on 

modern medicine [8]. However, enthusiasm vanished when it was realized that getting 

ncRNAs to work as drugs was not as straightforward as originally thought. In addition, the 

mRNA molecules are also an attractive option in the development of new therapeutic 

approaches and, therefore, they have emerged as a new class of therapeutics due to the 

extremely important and fundamental roles that they play in all living cells. The ongoing 

research in this field includes the creation of vaccines for the treatment of cancer or 

infectious diseases [9,10]. 

Synthesized RNAs have become an indispensable tool for biological sciences, namely in 

structural, biochemical and biophysical studies, as well as in the development of new 

therapeutic approaches using RNAi technology [11-13]. To date, ncRNAs used for therapeutic 
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purposes have mostly been produced by chemical or enzymatic (in vitro transcription) 

synthesis [14]. Chemical synthesis is normally used for the generation of short 

oligoribonucleotides (<50 nt) while in vitro transcription can produce longer RNAs. Although 

these processes can be very efficient, the final RNA products typically present a maximum 

purity of 90%, what means that, depending on the application objective, additional 

purification protocols to remove the impurities derived from the synthesis process have to be 

employed. Most impurities, often referred to as failure sequences, may lead to non-targeted 

gene silencing, what is commonly associated with a decrease in therapeutic effectiveness and 

still restrict the implementation of these oligonucleotides onto pre-clinical and clinical 

applications [14,15].  

On the other hand, along with the RNAs obtained from chemical or enzymatic synthesis, the 

RNAi therapy can also be based in recombinant RNAs obtained after biosynthesis using 

prokaryotic hosts such as Escherichia coli or Rhodovulum Sulfidophilum which is usually more 

cost-effective than the chemical or enzymatic synthesis, considering the large-scale 

production [14,16-20]. Moreover, most of the biological RNAs have post-transcriptional 

modifications that may not be reproduced under chemical or enzymatic synthesis and some of 

the modifications are quite important for their function and structure [21]. However, in this 

strategy, together with the target RNA that is being heterologous produced, other host RNA 

species are also produced, highlighting the need for an effective purification protocol to 

isolate the RNA of interest from other contaminants, thus minimizing non-targeted gene 

silencing and immunologic responses [14]. 

Thus, a major challenge in developing RNAi-based therapeutics remains the assurance of RNA 

purity to minimize off-target gene silencing. During the last decades, different methods have 

been extensively employed to isolate and/or purify of small RNAs obtained either by in vitro 

transcription or from biological sources, such as denaturing polyacrylamide gel 

electrophoresis, and some chromatographic techniques namely ion-pairing, reversed-phase, 

anion-exchange as well as size exclusion chromatography [22-28]. Overall, with these 

methods, the purification of RNA still remains rather time-consuming, expensive, tedious, 

difficult to scale up and can cause degradation of the RNA molecules (requirement of toxic 

solvents and denaturing conditions) [22]. On the other hand, affinity chromatography 

purification represents a highly efficient strategy for RNA purification because it is very rapid, 

facilitates the maintenance of RNA stability and can be easily adapted to any molecular 

weight RNA as well as high-throughput applications [22].  

Therefore, the aim of this review is an overview of the current knowledge in the field of 

affinity purification techniques for ncRNAs purification. Finally, it will bring to discussion the 

importance to recover pure ncRNAs, in accordance to the guidelines of the regulatory 

agencies for therapeutic application, with an emphasis on new experimental approaches, 

using different affinity ligands, such as amino acids and amino acids derivatives. 
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2. Biogenesis of regulatory non-coding RNAs 

The most important mechanistic features of RNAi will be briefly presented here to provide 

information regarding the physicochemical and molecular characteristics of RNA molecules 

involved and the type of interaction that is established along the processing.  

 

2.1. Small interfering RNAs  

siRNAs are short mediators of RNAi that are originated from repetitive sequences, either 

sense-antisense pairs or long double-stranded RNAs (dsRNAs) precursors designed specifically 

to silence expression of target genes (see Table 1) [29]. They can be introduced exogenously 

into the cell in short form (e.g., synthetic siRNAs) or in the form of long dsRNA molecules 

[3,30]. After introduction into the cytoplasm, long dsRNAs are recognized and processed by a 

combination of proteins including Dicer enzyme, ribonuclease (RNase) III, Tar RNA binding 

protein (TRBP), and PACT into a short dsRNA (siRNA), with phosphate groups at both the 5′ 

ends along with hydroxyl groups and two nucleotide overhangs at both the 3′ ends [3,5,30,31]. 

After processing, the siRNA consists of a sense strand and a complementary antisense strand. 

siRNA duplex is then incorporated into the holoenzymatic complex, RISC (RNA-induced 

silencing complex), where the strands are separated into the complementary antisense strand 

(or the guide strand) and the sense strand (or the passenger strand). The sense strand is 

subsequently degraded and expelled by Argonaute-2 (AGO2) protein, a component of the RISC 

(as shown in Figure 1) [29,32,33]. Posteriorly, the antisense strand of the siRNA molecule, 

which is in the RISC complex, serves as a template to recognize a complementary region of 

the target mRNA sequence, with a fully perfect complementarity. The resulting interaction 

suppresses the gene expression, leading to the endonucleolytic cleavage of the mRNA, which 

in-turn inhibits translation to the corresponding protein. After the silencing process, the 

fragments of the mRNA are released and the RISC is free to bind to another mRNA target and 

to start a new round of cleavage [5,31,32,34].  

As previously mentioned, it is also possible to silence gene expression via the siRNA pathway 

by direct introduction of chemically synthesized siRNAs or dsRNAs (see Figure 1). When 

synthetic siRNAs are introduced into cells, they can directly engage with the RNAi machinery, 

without any processing steps, thus avoiding the Dicer catalyzed reaction [3,30]. However, 

since the half-life of siRNA is short, a number of methodologies exist to take advantage of 

using the Dicer machinery to produce siRNA within the cell from precursor siRNA molecules 

[29,31]. In fact, alternative RNA molecules such as plasmid expressed short hairpin RNAs 

(shRNA) are the most common (see Table 1) [29,30]. Generally, shRNA is transcribed in the 

nucleus from an external expression DNA vector (see Figure 1). The hairpin loop is 

spontaneously formed due to the complementary region, by RNA polymerase II or III. Then, 

the shRNA transcript is processed by Drosha, an RNase III endonuclease.[3] The resulting pre-

shRNA is exported to cytoplasm, where it is recognized by the cellular RNAi machinery and is 
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processed to form active siRNA by Dicer and incorporated into RISC [30]. In comparison to 

siRNA, these shRNAs are constantly synthesized in host cells and have many advantages like 

long-lasting silencing effects as well as easy delivery methods. Moreover, the preparation of a 

shRNA expression vector costs less than the bulk manufacturing of siRNA [3,29].  

 

 

 

 

Figure 1 - RNA silencing pathways and their essential components: siRNA; miRNA; piRNA. 
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2.2. MicroRNAs  

MiRNAs are a class of RNAi inducers, codified in the genome that can regulate gene expression 

at post-transcriptional level by mRNA degradation, translational repression or both 

mechanisms (see Figure 1) [4,35]. This regulation occurs through a sequential process 

involving a miRNA precursor (pre-miRNA) and, subsequently, a mature miRNA that is 

incorporated into RISC to regulate the target mRNA. Thus, most miRNAs are processed from 

endogenously expressed transcripts [34,36]. RNA polymerase II produces long primary miRNAs 

transcripts (pri-miRNAs, approximately >100 nt) containing the mature miRNA sequence, 

which possess a characteristic stem-loop structure and are afterward subjected to processing 

mechanisms [3,5,33,34]. In the nucleus, these pri-miRNAs transcripts are cleaved by a 

complex containing both the RNase III endonucleases Drosha and DiGeorge syndrome critical 

region gene 8 (DGCR8), leading to generation of a corresponding precursor of miRNA (pre-

miRNA) [5,36]. The resulting product is RNA of 70-100 ntucleotides in length containing the 

long hairpin like structure and a two nucleotide overhang at its 3′end [32,33]. The pre-miRNA 

is then actively transported to the cytoplasm by Exportin-5, a nuclear transport receptor 

complex. Once in the cytoplasm, the pre-miRNA is further processed, where its loop is 

removed by a complex that contains the enzyme Dicer, TRBP and PACT [34]. As a 

consequence, pre-miRNAs are converted into mature miRNAs duplexes (miRNA-miRNA* 

duplexes, where miRNA is the antisense, or guide strand, and miRNA* is the sense, or 

passenger strand) (see Table 1) [3,5,32,36,37].  

Subsequently, mature miRNAs are associated to Argonaute proteins, in particular AGO1 and 

AGO2, within the RISC complex. During loading, the sense strand, termed miRNA* is stripped 

away and targeted for degradation by Argonaute protein [34-36]. In turn, the miRNA antisense 

strand, called mature miRNA strand, binds to the 3' untranslated regions (3’UTR) of the target 

mRNA. Hence, the main mode of action of mature miRNA strand is the recognition of specific 

sites, typically present in the 3’UTR of target mRNA [32,34,35]. This binding results in 

degradation of mRNA transcripts when perfect base-pairing is present or induction of 

translational repression by blocking mRNA translation, when not perfectly base pairing 

prevails [3,5,35,36]. The general processing miRNA pathway is shown in Figure 1. 

Indeed, siRNAs and miRNAs are both processed by essentially the same RNAi machinery 

(Figure 1) due to their similarity in terms of the physicochemical and molecular 

characteristics (see Table 1). Nevertheless, they differ in the way that they recognize their 

targets and interact to trigger RNAi. Typically, miRNAs have internal mismatches, creating so-

called bulges in the secondary structure, whereas siRNAs usually have complete internal base 

pairing and no bulging. On the other hand, siRNAs are directed to a particular mRNA target 

via perfect complementarity, whereas single miRNA can regulate multiple mRNA targets via 

binding with a number of mismatches [5].  
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Table 1 - General properties of non-coding RNAs therapeutics. 

Class Mean Size (bp) Origin Structure Biogenesis Action mechanism [Ref.] 

miRNA 21-25 Endogenous  

Double stranded 

Two-step cleavage of hairpin precursors 

by Drosha and Dicer 

Induce translation 

repression or mRNA 

degradation 

[3,5,33,34] 

siRNA 19-25 
Exogenous or 

endogenous  

Double stranded 

Cleavage of long endogenous dsRNAs by 

Dicer 
Induce mRNA degradation [3,5,30,31] 

shRNA 19-29 Exogenous 

 

 

Single stranded 

Processed by Dicer to produce siRNA, 

transcribed by RNA polymerase III 
Induce mRNA degradation [29,30] 

piRNA 24-31 Endogenous  

Single stranded 

Transcribed from specific genomic loci 

in primary piRNAs that associate with 

the PIWI proteins 

Can lead to the target RNA 

molecules degradation  
[5,32,34] 

lncRNAs 200 to >100 Kb Endogenous   

Double stranded 

Transcribed of primary long non-coding 

transcripts by RNA polymerase II into 

smaller non-coding RNAs  

Induce translation 

repression or mRNA 

degradation 

[5,7,38] 
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2.3. PIWI-interacting RNAs 

The piRNAs are a class of sncRNAs widely expressed in different tissues and cell types, in 

particular in germ line cells of mammals (see Table 1). The name of these ncRNAs results 

from the fact they associate to the PIWI family of proteins [5,32,34]. However, the 

intervening factors involved in the piRNAs biogenesis and transcription regulation mechanisms 

remain to be discovered [5]. Until now, it is only well known that the piRNA biogenesis 

pathway is very different from that of miRNA and siRNA since it is generated by RNase III-

independent pathways that do not involve dsRNA precursors, neither Drosha nor Dicer (Figure 

1) [5,32,34]. Mostly, the piRNAs arise from long and single-stranded RNA precursors, derived 

from intergenic repetitive elements, transposons or large piRNA clusters, which are 

transported via an unknown mechanism to the cytoplasm [30]. Once in the cytoplasm, they 

are associated with PIWI subfamily proteins, forming RNA-protein complexes (piRNP 

complexes) [32,34]. PIWI proteins are responsible for generating the 5′ end of the piRNA, but 

the nuclease that creates the 3′ end has yet to be identified (Figure 1) [5,32]. On the other 

hand, these antisense piRNAs can undergo a cycle of amplification, called ping-pong cycle, to 

generate secondary piRNAs in the cytoplasm [34]. Specifically, in mouse, piRNA-mediated 

transposon repression, predominantly, happens via DNA methylation [5,32].  

2.4. Long non-coding RNAs  

LncRNAs represent the most recent breakthrough in the field of RNAi, as pivotal molecules for 

the regulation of gene expression, since they bind to the mRNA with little or no protein-

coding capacity (see Table 1). LncRNAs form a significant part of the eukaryotic 

transcriptome, regulating the expression of up to 70% of genes, although they are among the 

least well understood ncRNAs. Many identified lncRNAs are transcribed of primary long non-

coding transcripts by RNA polymerase II into sncRNAs [5-7]. Nonetheless, according to their 

positional location with relation to protein-coding genes, the lncRNAs can be placed into 

diverse categories, namely sense, antisense, bidirectional, intronic and intergenic. In 

addition, some studies demonstrated that lncRNAs might also be produced by transcriptional 

active pseudogenes [5,6,38]. Despite all the efforts, the origins of lncRNAs are not yet clearly 

defined and understood. Thus, another classification have been used to establish the classes 

of lncRNA, according with the transcriptional origins, such as promoter-associated long RNAs 

(lpaRNAs), natural antisense transcripts (NATs), large intervening non-coding RNA (lincRNA), 

and enhancer associated RNAs (eRNA) [5,7]. The cellular location of lncRNA is also varied and 

may imply its function, since they can be found in nucleus, cytoplasm, or into specific sub-

cellular compartments (p.e. mitochondria) [5,7,38].  

The majority of lncRNAs are transcribed from the nuclear genome but some can be generated 

from mitochondrial genomes. LncRNAs typically have the same structural features as mRNA, 

including 5’capping, polyadenylated 3’ tails and undergo alternative splicing to give rise to 

the final product. In general, the lncRNAs may be located within nuclear or cytosolic fractions 
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and may be polyadenylated or non-polyadenylated [5-7,38]. In 2013, it was demonstrated 

that several lncRNAs can be spliced at their 5’ and 3’-ends to give stable circular RNAs 

(circRNAs) [39]. These circRNAs form an important class of post-transcriptional regulators 

with unknown function. However, recent data indicated that circRNAs compete with other 

RNAs for binding by RNA binding proteins (RBPs) or miRNAs, and have function as negative 

regulators of miRNAs [39]. Therefore, their targets can be either coding or non-coding RNAs, 

and can positively (concordant regulation) or negatively (discordant regulation) modify the 

expression or processing of their target genes.  

 

3. Therapeutic potential of regulatory non-coding RNAs  

Over the past ten years, a growing number of studies have shown that many of the ncRNAs 

play important roles in the cellular function, establishing ncRNAs as a promising next-

generation therapeutic drug [5,8]. In fact, RNAi-based technology possesses attractive 

characteristics such as high specificity, efficiency and ability to induce a robust and potent 

knockdown of the targeted genes. In addition, another advantage of RNAi over other 

therapies is the possibility to promote a long-lasting therapy (the therapeutic effect lasts 

from days up to weeks), reducing the expenses of medical treatments. Usually, the dosage 

required of ncRNA therapeutics is low, which can reduce or eliminate the occurrence of 

undesirable adverse effects in the patient [33].  

For all these reasons, RNAi has become one of the most powerful and widely used tools for 

the study of gene function/expression. Furthermore, RNAi has also been used to develop new 

alternative approaches, in order to regulate several pathways involved in the origin and 

progression of many gene-related diseases [3,5,7,8]. Presently, this biomedical approach is 

being considered in numerous clinical trials focusing distinct types of cancers, viral infections, 

metabolic diseases, cardiovascular disease, hypertension and stroke, immune dysfunction and 

auto-immunity, neurodegenerative and psychiatric diseases [3,5,7,29]. These novel therapies 

focused on the specific gene expression control can contribute to the regulation of a variety 

of physiological and biological/cellular processes as diverse as development, cell cycle 

regulation (DNA repair), proliferation, differentiation, cell adhesion, apoptosis, stress 

response, metabolism, stem cell self-renewal, embryogenesis and neurogenesis [5-7,38]. The 

main functions of ncRNAs are summarized in Table 2. 
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Table 2 – Biological Functions regulated by regulatory non-coding RNAs [5-7,38]. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function lncRNAs siRNAs miRNAs piRNAs 

Genetic Imprinting      

Genome Rearrangement      

Alternative Splicing      

RNA Editing      

Nuclear and cytoplasmic trafficking      

Formation of endogenous siRNAs by NATs      

Protection of the cell/genome against viruses       

mRNA deadenylation / sequestration       

Heterochromatin Formation        

Genome Integrity and Stability        

Drug resistance        

Developmental Robustness      

Evolution      

Transposon activity Regulation      

Genome Reorganization      

Telomere Protection Complex      

Germ line development      

Epigenetic Regulation        

Chromatin Remodeling        

Histone and DNA methylation        

Protein synthesis inhibition        

RNA stability        

Biomarkers        

Maintenance of cell integrity         

Transcriptional inhibition (mRNA decay)         

Post-transcriptional RNA processing         
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4. RNAi affinity-chromatography  

The promising and successful results of these novel therapeutic approaches reinforced the 

interest on RNA investigation, which led to an increase in the number of structural, 

biochemical, biophysical and biomedical studies, allowing the emergence of RNA as a new 

class of biopharmaceuticals [8,40]. Nowadays, and considering the therapeutic application of 

these biomolecules, the major interest is not only to produce high quantities of ncRNAs but 

also to obtain and preserve its good quality and biological activity, fulfilling the requirements 

of regulatory agencies, such as Food and Drug Administration (FDA), European Medicines 

Agency (EMA) and World Health Organization (WHO) [22]. 

In general, purification protocols used for RNA isolation have a number of common 

requirements, due to the high risk of RNA degradation during the procedure. RNA is an 

unstable molecule and has a very short half-life once extracted due to the ubiquitous 

presence of RNA-degrading enzymes (RNases) which are present in biological samples, 

aqueous buffers, on labware and can be introduced via human handling [41]. Consequently, 

one of the most important concerns when working on purification of RNA is the adjustment of 

all working conditions in order to improve the performance of the biotechnological strategy, 

but always guaranteeing the structural and functional stability of ncRNAs to maintain their 

biological activity. 

Thus, in the last years, the downstream strategies based on affinity chromatography evolved 

and now represent a highly efficient strategy for RNA purification and have been 

implemented in order to increase the yields and the selectivity, contributing for the 

establishment of reliable and economical processes to assure a strict quality in production of 

therapeutic biomolecules [22,42,43]. In general, these strategies are time-efficient, occur 

under non-denaturing conditions and can be easily adapted to any molecular weight RNA as 

well as high-throughput applications. However, they also do present some limitations, 

particularly in regard to the biological origin of the ligands [44] (see Table 3).  

Affinity chromatography is a powerful technique in the development of therapeutically useful 

products that uses biological agents as specific ligands to analyze, identify and purify RNA on 

the basis of their biological function or individual chemical structure [22,42,45]. The binding 

between the target biomolecules and the affinity ligand is specific, selective and reversible. 

Thereby, this approach simulates and exploits natural biological multiple non-covalent 

interactions occurring at the cellular level and involved in the molecular recognition of many 

biological phenomena, for the selective and efficient purification of the target biomolecules 

[45,46]. Hence, the binding mechanism inherent on the specific biorecognition of the target 

biomolecule by the specific ligand results from the combination of multiple intermolecular 

forces, such as electrostatic and hydrophobic interactions, hydrogen bonds and cation–π 

interactions, as well as van der Waals forces and dipole–dipole forces [43,45,47]. However, 
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depending on the environmental conditions used, some interactions can be preferentially 

established than other, becoming more evidenced. This distinctive capacity to establish 

different types of interactions is a major advantage of this kind of chromatography, resulting 

in a technique with extremely high selectivity and resolution [22,43,45]. On the other hand, 

the exploitation of the affinity interactions can trigger new insights not only in isolation 

strategies but also in many other RNA research fields owing to its implication in molecular 

recognition phenomena. 

In affinity chromatography, the choice of the matrix and conditions to be used will depend on 

the molecular properties of the target biomolecules and the physicochemical and 

thermodynamic nature of their molecular interactions. Moreover, the elution of a target 

biomolecule that is bound to the affinity ligands can be achieved either specifically, using a 

competitive ligand, or non-specifically, by changing the pH, ionic strength or polarity 

depending on the matrix used and the chemical characteristics of the biomolecules [22,48]. 

The addition of a competing agent in the elution buffer, known as biospecific elution, is 

commonly employed in order to improve the selectivity as well as to get higher elution 

efficiency [16,49]. The competing agent can bind to the retained target or to the immobilized 

ligand, depending on their characteristics, thus allowing predicting the interactions that can 

be involved.  

Most ligands used in affinity chromatography such as amino acids, peptides and proteins are 

of biological origin, although they tend to be fragile, showing low binding capacities. 

Currently, to address this issue, new strategies have been developed focusing on the search 

and design of new synthetic molecules to be further employed as affinity ligands [44]. This 

approach intends to combine the selectivity of natural ligands, with high capacity, 

robustness, durability and reproducibility of synthetic systems for the purification of 

biomolecules. Another issue to take into account is the materials typically employed into 

chromatographic matrices, namely beads, gels or membranes manufactured from raw 

materials [48,50]. Therefore, the ideal support for the separation and purification of RNA 

must present diverse characteristics namely high selectivity/specificity and binding capacity, 

mechanical and chemical stability and low cost. The design of selective ligands and matrices 

for RNA purification can be complex, time-consuming and expensive, though their 

implementation into affinity chromatography processes result in significant economic 

benefits, such as reduction of downstream steps and the improvement of the product quality, 

therefore justifying the initial investments [43,45,51].  

Affinity chromatography can have a widespread application in ncRNAs preparation in view of 

RNA structural properties (size, charge, hydrophobicity) and versatility in biological function 

that includes interaction with many molecules in the cell. The stranded nature of RNA (single 

and double), which is normally involved in RNA recognition due to the high nucleotide bases 

exposure and accessibility for interactions also influences the purification process [52]. These 
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properties and features continue to make affinity chromatography a popular method and a 

useful and important tool in the development of biopharmaceuticals and/or clinical testing. 

Below it will be discussed different types of affinity chromatography that have been utilized 

for the purification of ncRNAs. The advantages and limitations of these methodologies applied 

for the affinity isolation of RNA molecules are discussed in Table 3. 

4.1. Boronate affinity chromatography 

Since the 1970s, one of the most commonly used affinity techniques in the isolation of RNA 

molecules is the boronate affinity chromatography (Table 3) [53]. In this affinity technique is 

exploited one of the few chemical differences between RNA and DNA, the presence of cis-diol 

groups of ribose sugar at the 3' end of the RNA molecule and their absence in the deoxyribose 

backbone of DNA [54-57]. Thus, RNA molecules are specifically purified from the mixture of 

nucleic acids (DNA and RNA) and other biomolecules due to the specific and reversible 

interaction between diol moieties which are in a cis configuration and the boronate ligands 

[54-57]. This interaction is dependent on acidic and basic experimental conditions. However, 

other interactions can also play an important role in the separation of nucleic acids in the 

boronate affinity methods, namely hydrophobic (due to the phenyl ring present in aromatic 

boronate ligands), π-π (can also occur with phenyl groups), ionic (due to the negative charge 

of the active tetrahedral boronate), hydrogen bonding (due to the presence of two hydroxyl 

groups) and coordination (because the boron atom has an empty orbital, it can serve as an 

electron receptor for charge transfer interaction) interactions [58]. Several boronate 

functionalized packed column systems have been developed for the selective separation of 

RNA from the nucleic acids mixture, including dextran and cellulose derived bipolar 2-[(4-

boromophenyl)-methyl]-ethylammonium] ethyl solution polymer system [59], thermo-

responsive poly(N-isopropylacrylamide)-co-(vinylphenylboronic acid) [poly(NiPAAm-co-VPBA)] 

latex particles [60], aminophenyl boronic acid (APBA) modified hydrogel beads [61], 

monolithic ‘cryogel’ matrices [62] and monolithic silica columns [63]. 

4.2. RNA affinity tags 

In last years, RNA affinity tags have emerged as useful tools for the isolation of RNAs, 

allowing the development of easy, reliable, fast and more robust procedures for native RNA 

purification of long constructs produced by in vitro transcription methods, providing highly 

pure RNA preparations (Table 3) [64]. The selection of several oligoribonucleotides sequences 

functioning as tags for RNA affinity purification (such as, RNA aptamers) with the desired 

properties and ability to bind specifically and with high affinity to a specific ligand has been 

performed using the Systematic Evolution of Ligands by Exponential enrichment (SELEX) 

method [64,65].  

To date, a limited number of highly specific RNA affinity tags have already been successfully 

used for the purification and selective recovery of the tagged RNAs. RNA affinity tags are 
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based on RNA-protein interactions found in nature and are inserted in the target RNAs 

molecules, during in vitro transcription [14]. Moreover, the tags should bind with high affinity 

to a ligand that can either be immobilized on a chromatographic matrix or be conjugated to 

an antibody detection system [14,64]. Thus, the purification of RNAs from cellular extracts is 

then achieved using an affinity column with a specific RNA-binding protein immobilized, in 

such a way that the formed complex can be selectively and gently dissociated afterwards (see 

Figure 2). The protein affinity tags include polyhistidine [66], myc epitope [67], the tandem 

affinity protein (TAP) tag [68], protein A [69], MS2 coat protein [70], glutathione S-

transferase [71], Streptavidin-tag [72-73] and the FLAG epitope [74]. In these strategies, in 

order to recover the bound RNA of interest it can be used competitive elution (with biotin or 

dextran) or cleavage by a protease with a recognition site that is incorporated along with the 

affinity tag [75-78]. In addition, some tagged RNAs do not cleave even after prolonged 

incubation, presumably due to alternate and unpredictable secondary structures at the 

cleavage site. Thus, in general, these methods can induce structural modifications in RNA 

molecules, which can affect the overall topology of the RNA construct, as well as significantly 

degrade the target biomolecule and compromise the final purification. Generally, the limiting 

step when is used a known RNA-protein interaction as part of the affinity purification is the 

inability to efficiently elute or release the purified complex under native conditions since the 

binding affinity of the known RNA-protein interaction is usually high [73,79,80].  

In line with previous expectations, several alternative schemes have been developed for fast 

non-denaturing purification of RNA transcribed in vitro. In 2007, Batey and Kieft developed an 

affinity-based method that utilizes a MS2 coat protein binding stem–loops as affinity tags at 

the 3’end of the RNA transcript, which bind to the nickel-affinity matrix via interaction with 

the hexahistidine-tagged MBP(maltose binding protein)-MS2 coat protein fusion for native RNA 

purification produced by in vitro transcription methods [81]. This RNA tag is preceded by the 

glmS ribozyme sequence which is activated by glucosamine-6-phosphate, removing the tag 

used at the end of the RNA transcript, to induce the specific elution of the desired RNA [81]. 

This affinity purification methodology for native RNA purification is robust, rapid and broadly 

applicable to any RNA of interest, being easily accessible to a wide range of researchers with 

minimal difficulty. On the other hand, in a recent report, a quick affinity purification 

procedure was developed for RNAs transcribed with a 3¢-ARiBo tag and shown to provide RNA 

with exceptionally high purity and yield [82-85]. The ARiBo tag contains the λ boxB RNA and 

the glmS ribozyme, allowing immobilization on glutathione-Sepharose resin via a λ N-GST 

fusion protein and elution by activation of the glmS ribozyme with glucosamine-6-phosphate 

[84]. The use of RNA tags containing ribozymes has been shown to substantially simplify the 

procedure, since no additional purification steps other than a buffer exchange are required 

after the RNA elution. After several matrix washes to remove impurities from the 

transcription reaction, the RNA of interest is eluted by activation of the self-cleaving 

ribozyme (see Figure 2) [82-85].  
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Overall, although these robust affinity purification methodologies can be very efficient for 

recovering RNA with high quality and quantity, they still are expensive on large scale and 

labor intensive. Besides, the purification of RNA produced by in vitro transcription requires in 

some cases more than one purification step or the application of denaturing conditions in 

order to achieve higher RNA enrichments (Table 3) [64,76,86]. Therefore, the challenges 

associated with RNA purification motivate the improvement of the already existing 

chromatographic techniques or the development of new purification approaches. 

 

 

Figure 2 – The general scheme for the native purification of the desired sequence (RNA X) 

and the amino acids-based affinity chromatography of the recombinant RNA. 
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Table 3 – Overview of available affinity chromatography methods used in bioseparation of non-coding RNAs therapeutics.  

Methods Target RNA Advantages Limitations [Ref] 

Boronate affinity 

chromatography 
tRNAs 

-Isolation of RNA molecules from crude cell extracts; 

-Requires no sample pre-treatment; 

-High purity and quality of purified RNA, since the steps 

involved are very fast; 

-Efficient elimination from genomic DNA; 

-It is less sensitive to quantitative errors caused by minor 

fluctuations in reagent pH and ionic strength. 

-Non-specific interaction can be avoided by using inert 

hydrophilic polymers for matrix synthesis; 

-In some cases, stepwise or gradient elution can give better 

results; 

-Sometimes, the column must be washed with 6 M urea prior to 

washing with the regeneration buffer. 

[54-63] 

RNA affinity tags 

lincRNA 

shRNA 

miRNA 

miRNA-mRNA complex 

RNA oligonucleotides 

-Reliable, rapid and robust methodologies for native RNA 

purification using affinity tags on inherent biologic 

interactions; 

-Broadly applicability to any RNA of interest, making this a 

useful method to a broad spectrum of the RNA research 

community; 

-Allow the production of milligram quantities 

-Stability of affinity tags; 

-High recovery and purity due to the specific selection of 

the tags with high affinities for the resins (high-quality 

RNA). 

-Elution of the complex can be achieved under denaturing 

conditions or through the use of a competitor oligonucleotide 

to release the RNP under native conditions, in order to achieve 

higher RNA enrichments. In addition, in some cases, use of 

proteases requires additional purification steps to remove the 

co-eluting enzyme; 

-Need of several design issues and binding the affinity tags into 

RNA, which may lead to longer optimization processes (cost 

and time-demanding); 

-Requires the screening of appropriate affinity resins to assure 

the binding only the RNA tags to the matrix; 

-In some cases, contamination of the target RNA with tag, since 

the tag is released from the column during the wash and 

elution steps;  

-The attached rybozyme may induce the formation of 

alternative structures on RNA and thus disrupt the correct 

folding of the ribozyme, with its self-cleaving power disabled; 

-During the purification process, chemical modifications can 

lead to structural perturbations that can inhibit complex 

[53,64,7
0,73,75-
82,103,1
04] 
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formation or can significantly degrade RNA, an undesirable 

feature. 

Amino acid-based 

affinity 

chromatography 

Precursor miRNA 

rRNAs 

tRNAs 

6S RNA 

Total RNA 

-Isolation of target RNA from crude cell extracts in a single 

chromatographic step; 

-Robust methodologies using natural small molecular 

ligands; 

-High purity and quality of purified RNA, since the steps 

involved are very fast; 

-Purification with high reproducibility;  

-Efficient elimination of endotoxin, proteins, genomic DNA 

and single/double-stranded RNAs; 

-Simplified the workflow integration and miniaturizes 

sample handling process; 

-Occur under non-denaturing conditions and can be easily 

adapted to any molecular weight RNA as well as high-

throughput applications. 

-The high salt concentrations (namely tyrosine, histidine and 

lysine amino acids) required for elution of the targets RNAs are 

the main drawbacks of this approach, especially with regard to 

biotechnological application since the use of salt is associated 

with higher costs and environmental impact; 

-Low recovery yields; 

-Lower durability of supports. 

 

[16,17,2

2,87-91] 
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4.3. Amino acid-based affinity chromatography  

In the past few years, a new affinity methodology called amino acid-based affinity 

chromatography has been successfully developed to efficiently purify different RNA species 

[22]. Indeed, several studies are already available demonstrating the applicability of amino 

acids (namely L-Arginine, L-Histidine, L-Lysine and O-Phospho-L-Tyrosine), as specific affinity 

chromatographic ligands, in the purification/separation of diverse RNA molecules, such as 

total RNA, ribosomal RNA, tRNA, 6S RNA and pre-miRNAs (in particular, pre-miR-29b), using 

conventional particle-based columns (amino acids-agarose matrices) [16,17,87-91]. These 

results demonstrated the versatility, exceptional ability and the potential of the amino acids 

to strongly interact with all functional classes of RNA, despite their structural diversity and 

different folding states, as they are in their native state. Amino acid-based affinity 

chromatography is a powerful technique that has been used as an improved, very specific and 

effective bioseparation methodology for the purification of RNA molecules that exploits 

natural affinity interactions occurring between amino acids and RNA [22,45]. These studies 

were based on the fact that many several specific interactions exist between proteins and 

nucleic acids in biological systems, involving particularly basic amino acids [22,45,92,93]. For 

example, Calnan and co-workers demonstrated that arginine residues are important for 

specific RNA recognition, even with different conformational rearrangements and that 

arginine-base interactions have been recognized as the most prevalent interactions in several 

protein-RNA complexes [93]. Thus, this type of selectivity can be explained on the basis of 

the biological function or chemical structure of the RNA, which favors the interaction.  

In general, the RNA structural features (namely, negative charge of the RNA backbone and 

single-stranded nature) seem to be relevant for the specific interactions established between 

the RNA and the amino acids used as immobilized ligands [92,94]. Nonetheless, the high base 

exposure on RNA species was also suggested to have a crucial role in the RNA recognition and 

on its distinct retention behavior. Recently, the structural diversity of RNAs was described to 

be of significant importance in RNA-protein interactions because RNA can exhibit different 

moieties according to its folding state, for example RNA hairpins and bulges form stable 

tertiary structures that contributes substantially to their recognition [47,95,96]. On the other 

hand, the salts used in the chromatographic conditions can also have a profound positive 

effect on RNA folding as well as on the stability of non-covalent RNA-amino acid interactions 

during the course of purification, once the salt allows that single-stranded nucleic acid 

molecules form stable hydrogen bonds between their complementary bases [96,97].  

Additionally, this type of selectivity can also be explained in light of the atomic and 

molecular recognition studies performed on RNA-protein complex structures have predicted 

preferential interactions/contacts occurring between particular amino acids side chains and 

specific nucleotides either involving the RNA bases or through a defined conformation of the 

RNA backbone phosphates (e.g. arginine fork is defined as an interaction between a arginine 



 

 88 

and a pair of adjacent phosphates, which mediates specific recognition of RNA structure) 

[93,98-100]. For instance, several studies have shown that some amino acids, in particular 

arginine has strongly favored interaction with guanines bases along the bulge and through the 

continuous stem sequences of the RNA, involving H-bonding [92,93]. In general, these 

evidences showed that the specific interaction that lead to a biorecognition of different RNA 

molecules by the amino acids seem to be dependent on the base composition, RNA backbone 

and RNA conformational rearrangement. Globally, the development of this isolation 

methodology allowed recovery and efficiently separate of the target RNA while the quality 

control analysis showed a high efficiency, selectivity and integrity in RNA preparations as well 

as good purity in what concerns to host RNAs, proteins, genomic DNA and endotoxins (Table 3) 

[16,17,87-91]. Overall, in a single step, affinity purification can offer several advantages over 

other less-selective and time-consuming multi-step procedures (see Figure 2). 

Although, amino acid ligands immobilized in conventional chromatographic columns of 

agarose showed high selectivity for RNA purification but a faster and more robust purification 

method will benefit ncRNAs isolation since it will possibly have important implications in RNA 

stability. In addition, available conventional columns (particle-based supports) present 

certain restrictions, namely limitations with the mass transfer, low capacity, gel 

compressibility and poor pore diffusion leading to high pressure drops and low flow rates 

application - all of which incur process time and cost [50]. These disadvantages have driven 

researchers to develop alternative chromatographic supports capable of maintaining the 

efficiency of the established processes while improving their limitations. One of these new 

generations is the monolithic supports whose application has been increasing owing to their 

structural properties [48,50,101,102]. 

Indeed, monolithic supports present several advantages, namely a huge quantity of accessible 

binding sites (high binding capacity), high external porosity, high sample distribution and 

excellent mass transfer properties [48,101]. Moreover, monoliths allow the application of 

higher flow rates, a very fast separation, short analysis times and purification with high 

reproducibility both at small and large scales, which reduces the biomolecules degradation 

due to the shorter contact time with the chromatographic support. Thus, due to their 

excellent morphological, physicochemical and mechanical properties, monolithic supports 

have attracted attention for the use in high-throughput separations, coupled to a variety of 

affinity ligands, both at research and industrial scales. In 2014, our research group showed 

the possibility of exploring and characterizing the interactions occurring between pre-miR-

29b and an agmatine amino acid derivative immobilized into a monolithic disk [49]. As a 

matter of fact, for the first time, the selectivity, specificity and biorecognition of agmatine 

ligands was combined with the structural versatility and capacity provided by monolithic 

supports, as a promising strategy for miRNA purification [49]. Additionally, this monolithic-

based strategy represents an advantageous alternative to conventional supports due to the 

fast separation and consequent short contact time with the chromatographic matrix, ensuring 
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structural stability of the target molecule (reduces RNA degradation). The successful results 

obtained in the isolation of several RNA species revealed an efficient affinity methodology to 

obtain RNA with high purity and good integrity, with potential applicability in several RNA 

based-procedures in basic and clinical research. 

 

5. Conclusions and Future perspectives  

In this review, it was emphasized the potential of affinity chromatography in the RNA 

purification. As discussed above, in the RNA affinity tags-based chromatography, different 

tags are introduced into RNA molecules and since they need to be removed before further 

RNA application, conformational changes can be induced in the target RNAs. In general, these 

methods are mostly time-consuming, expensive, tedious and the usage of synthetic RNAs also 

represents a limitation. Thus, there is still an urgent need for high-selectivity, -specificity, -

capacity, -reliability and –throughput purification processes, to obtain high quantities of 

ncRNAs with the demand quality. 

From our point of view, amino acid-based affinity chromatography emerges as a particularly 

promising approach for RNA purification, once it combines the selectivity of a naturally 

occurring biological interaction with the simplicity of RNA molecule. Thus, in order to achieve 

the maximum resolution and selectivity between the target RNAs and other host sRNA 

species, it should be used an affinity support that relies on the same biological interactions 

that are established within the cell, i.e., by using immobilized amino acids, its derivates, 

peptides or complementary nucleotide sequences to the target RNAs, as specific ligands. The 

nucleotide bases complementarity can also be effectively used for ncRNAs trapping onto the 

column which facilitates their separation. Indeed, since synthetic oligonucleotides can be 

covalently bound to chromatographic matrices, ncRNAs can be easily captured when the 

appropriated oligonucleotides is attached to the matrix. Therefore, these new affinity 

protocols for miRNA isolation can offer advantages over other less-selective and time-

consuming multistep procedures and can improve process economics. Moreover, some 

improvements over other chromatographic techniques are expected because RNA recovery 

can be achieved under mild elution conditions, rather than using organic or toxic compounds, 

and the use of enzymes is not necessary. In addition, exploiting the specific and natural 

affinity interactions between miRNA and the amino acids/peptides/sequences of nucleotides, 

it is not necessary to modify the recombinant ncRNA in order to bind it to the matrix. Indeed, 

it is expected that this strategy will allow the recovery of RNAs under their native state and 

with high integrity, efficiency and purity level. Furthermore, coupling an affinity based 

bioseparation methodology to its recombinant biosynthesis onto prokaryotic hosts represents 

an interesting integrated strategy that can be used for ncRNA biosynthesis and purification for 

further medical or biotechnological applications without the need of using in vitro transcribed 

RNAs. Actually, there are several tools available with some success for producing a large 
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variety of recombinant RNA using Escherichia coli as a host, including cloning vectors and 

fusion tags (RNA is masked within a stable RNA scaffold, such as tRNA fusions and 5S 

ribosomal RNA) [14,105]. In order to further develop a therapeutic product based on this 

approach, the ncRNAs must possess unquestionable biocompatibility features for the potential 

application in future studies in several RNA research fields, namely in RNA structural and 

functional studies as well as for application in medical therapies. 
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Aims of the thesis 

 
Up until now, microRNAs-based gene therapy applications are mainly performed through 

enzymatically and chemically synthesized microRNAs. However, the presence of contaminants 

in these synthesized formulations can lead to non-targeted gene silencing, frequently 

associated with a decrease in therapeutic effectiveness and can still restrict the 

implementation of these oligoribonucleotides onto pre-clinical and clinical applications. In 

addition, these current techniques present various limitations in the preparation, isolation 

and purification of microRNAs, namely by the use of chemical solvents and denaturing 

conditions.  

Thus, the global aim of this work is the development and establishment of an innovative 

biotechnological platform for the biosynthesis, recovery and purification of the recombinant 

human pre-miR-29b, to be delivered to neuronal cells using suitable non-viral delivery 

systems, in order to assure a more effective biological effect in the selective silencing of 

endogenous pathways involved in the insurgence and progression of the Alzheimer’s disease. 

In particular, this work intends to explore pre-miR-29b as a novel biopharmaceutical to 

decrease the APP, BACE1 and Aβ expression levels, which could represent a significant 

advance in terms of treatment of AD. With this work, it is believed that the integrative 

approach of extracellular production, using Rhodovulum sulfidophilum host, and affinity-

based purification will enable the preparation of the target pre-miRNA with high efficiency, 

selectivity, throughput, purity, integrity and biological activity, to be applied in RNA research 

or RNA therapeutic areas. The high gain in this field is the possibility to use these 

methodologies for the preparation of other ncRNAs, proving the wideness application of the 

technology, which may have a great impact on industry, improving workload, process time 

and economics. 

To accomplish the main scope of this thesis, the experimental work will be developed 

concerning the following tasks: 

 

1. Cloning the human pre-miR-29b sequence in a prokaryotic expression vector, pBHSR1-

RM and transformation of the Rhodovulum sulfidophilum DSM 1374 host. Development 

and establishment of the innovative biosynthesis strategy of extracellular pre-miR-29b, 

testing different growth conditions. Characterization of the intra and extracellular pre-

miR-29b production. 

2. Characterization of the specificity of the interactions occurring between the amino 

acids-affinity ligands and microRNA molecules, as well as determination of the 

influence of several chromatographic conditions in the structure and stability of RNA. 
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3. Study of the ability of amino acids-based affinity supports, such as lysine-agarose, 

arginine-agarose and agmatine monolith, in the specific recognition of the intracellular 

pre-miR-29b. The adequate binding/elution conditions will result from the 

manipulation of temperature, flow rate and buffer composition (pH, ionic strength, 

type of salt and presence of competitive agents). These studies will allow the 

implementation of new methodologies for miRNA purification. 

 

4. Development and characterization of non-viral delivery systems composed by 

biodegradable polymers, for human pre-miR-29b protection and stabilization, allowing 

their sustained delivery to the cells. It will be also performed the functionalization of 

these delivery systems with specific ligands, to be recognized by cell surface receptors 

of Blood-Brain Barrier, and mediate the delivery of pre-miR-29b to the target cells. 

 

5. Evaluation of the biological activity and efficiency of the pure recombinant pre-miR-29b 

to regulate the expression of the AD related-genes, namely by inducing the BACE1 

knockdown, using in vitro neuronal cells lines. These results will be compared with 

those obtained with the commercially available miR-29b. 
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Short description: This paper introduces a novel prokaryotic system for biosynthesis and 

recovery of recombinant human pre-miR-29b. First, in order to transfer the pre-miR-29b 

encoding plasmid to Rhodovulum sulfidophilum host, the transformation conditions were 

established. The expression of the human pre-miR-29b was carried out at small-scale in 

shake-flasks by Rhodovulum sulfidophilum cultures. Then, in order to attain high quantities of 

pre-miR-29b, several fermentation variables (culture media, sodium chloride concentration, 

aerobic conditions and temperature) were optimized, allowing the establishment of improved 

growth conditions. Finally, the expression of both intracellular and extracellular recombinant 

pre-miR-29b was monitored during different fermentation periods, as well as genomic DNA 

and proteins, major host contaminants that influence the purity of the target biomolecule.  

 

 

 

 



 

 108 



 

 109 

 

 

 

 

Advances in time-course extracellular production of human pre-

miR-29b from Rhodovulum sulfidophilum 

 

 

P. Pereira1, A. Q. Pedro1, J. Tomás1, C. J. Maia1, J. A. Queiroz1, A. 

Figueiras1,2, F. Sousa1* 

 

 

1 CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. 

Henrique, 6200-506 Covilhã, Portugal;  

2 CNC - Center of Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de 

Pombal, 3004-517 Coimbra, Portugal  

 

 

 

 

*Corresponding author: 

Dr. Fani Sousa 

Phone: +351 275 329 074 

Fax: +351 275 329 099 

E-mail address: fani.sousa@fcsaude.ubi.pt  

Postal address: Health Sciences Research Centre, Universidade da Beira Interior, Avenida 

Infante D. Henrique, 6200-506 Covilhã, Portugal 

 

 



 

 110 



 

 111 

Abstract  

The present study reports the successful production of human pre-miR-29b both intra and 

extracellularly in the marine phototrophic bacterium Rhodovulum sulfidophilum using 

recombinant RNA technology. In a first stage, the optimal transformation conditions (0.1 µg of 

plasmid DNA, with a heat-shock of 2 min at 35ºC) were established, in order to transfer the 

pre-miR-29b encoding plasmid to Rhodovulum sulfidophilum host. Furthermore, the 

extracellular recovery of this RNA product from the culture medium was greatly improved, 

achieving quantities that are compatible with the majority of applications, namely for in vitro 

or in vivo studies. Using this system, the extracellular human pre-miR-29b concentration was 

approximately 182 µg/L, after 40 h of bacterial growth, and the total intracellular pre-miR-

29b was of about 358 μg/L, at 32 h. At the end of the fermentation it was verified that almost 

87% of cells were viable, indicating that cell lysis is minimized and that the extracellular 

medium is not highly contaminated with the host intracellular RNases and endotoxins, which 

is a critical parameter to guarantee the miRNA integrity. These findings demonstrate that 

pre-miRNAs can be produced by recombinant RNA technology, offering novel clues for the 

production of natural pre-miRNA agents for functional studies and RNAi-based therapeutics. 

 

Keywords 

Extracellular production; Recombinant human pre-miR-29b; Rhodovulum sulfidophilum; RNAi 

technology; Transformation efficiency 
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Introduction  

In the last couple of decades, RNA interference (RNAi)-based technology has become a novel 

tool for regulating gene expression in eukaryotic cells, since many small RNAs (sRNAs) act as 

regulators of messenger RNA (mRNA) expression and have shown great potential for 

therapeutic knockdown of disease-causing genes (Fire et al. 1998; Ramachandran and 

Ignacimuthu 2013). This discovery led to the expectation that RNA molecules, such as 

ribozymes, small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs), microRNAs (miRNAs) 

and long non-coding RNAs (lncRNAs) will be major classes of new therapeutic molecules in the 

near future (Dogini et al. 2014; Gomes et al. 2013). Amongst RNAi-based therapeutics, 

miRNAs have recently gained much attention, being investigated as potential drug candidates 

for application in several disease scenarios that currently remain very challenging and 

difficult to overcome (Sullenger and Gilboa 2002). In particular, their therapeutic potential 

can be exploited in gene expression regulation at post-transcriptional level, through 

degradation/de-adenylation of selected target mRNAs, translational repression or both 

mechanisms (Nilsen 2007). Briefly, miRNAs mediate post-transcriptional regulation through a 

sequential process involving a miRNA precursor (pre-miRNA) and, subsequently, a mature 

miRNA that is incorporated into RNA-induced silencing complex (RISC) to regulate the mRNA 

translation. Due to the rapidly growing demand for these biopharmaceuticals, various 

strategies are currently being pursued to improve production in order to achieve higher 

product titers while maintaining maximal product quality (Ponchon and Dardel 2007; Ponchon 

and Dardel 2011). Furthermore, economically efficient methods for large-scale production are 

also required. 

Currently, miRNAs-mediated gene silencing is mainly performed through chemically 

synthesized RNAs, by phosphoamidite chemistry, normally used for the generation of short 

oligoribonucleotides (Ling et al. 2013). In addition to chemical synthesis, RNAs can also be 

obtained by enzymatic synthesis, for example longer RNAs can be produced by in vitro 

transcription using T7 RNA polymerase (Beckert and Masquida 2011; Milligan et al. 1987). 

Although these methods can be very efficient in producing miRNA, in general, several 

purification protocols to remove the contaminants (impurities of plasmid DNA template, 

enzymes, nucleotides, chemicals, salts or buffers, which are indispensable for in vitro 

transcription or chemical synthesis of RNAs) have to be employed (Martins et al. 2014; 

Milligan et al. 1987). The presence of these impurities can lead to non-targeted gene 

silencing, what is commonly associated with a decrease in therapeutic effectiveness and still 

restrict the implementation of these RNAs onto pre-clinical or clinical trials. On the other 

hand, the purification methods usually employed can cause degradation of RNA molecules due 

to the requirement of toxic solvents and the use of denaturing conditions (Martins et al. 

2014). MiRNA-based therapeutic applications can also be performed via the endogenous 

expression of miRNAs encoded by viral vectors or plasmids in eukaryotic cells. However, this 
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alternative approach is generally less efficient because it is necessary to transcribe the DNA 

to miRNA precursors (Chen et al. 2007; Huang et al. 2011; Li et al. 2014; Ponchon and Dardel 

2007; Ponchon and Dardel 2011). Considering the potential therapeutic applications and the 

mandatory global distribution of these novel therapeutics, it is crucial to develop efficient 

methods for their preparation. One of the most promising strategies might be the use of 

recombinant microorganisms to produce the target biomolecules. This approach can reduce 

the costs and remains highly efficient.  

At present, few strategies have emerged to produce stable RNAs, namely a circular RNA 

aptamer (Umekage and Kikuchi 2009), a “tRNA scaffold” (Ponchon and Dardel 2007) and hsa-

mir-27b, using recombinant bacteria, mainly Escherichia coli (E. coli) as preferential host (Li 

et al. 2014). Occasionally, modifications of RNA products are required to efficiently obtain 

the product, such as the addition of flanking sequences in the case of tRNA scaffold, which 

are then removed by ribonuclease (RNase) H treatment, making the process unsuitable for 

industrial RNA drug production (Ponchon and Dardel 2007). Moreover, in what concerns to the 

use of E. coli for RNA production, it demands the completion of cell lysis and extraction of 

nucleic acids, which can be laborious and time-consuming due to the number and complexity 

of the processing steps (Wassarman et al. 1999). Along with the aforementioned 

disadvantages, another major issue associated with the cell lysis is the release of endotoxins, 

which can lead to the contamination of the target RNA sample, and, in a last analysis, 

produce symptoms of toxic shock syndrome if present in sufficient quantities in vivo (Wei et 

al. 2007). In addition, as E. coli expresses several endonucleases, it can be difficult to 

maintain the integrity of the target RNA, being always necessary to establish methods to 

avoid its degradation.  

Very recently, the marine phototrophic bacterium Rhodovulum sulfidophilum (R. 

sulfidophilum) was also described as an attractive host for the recombinant production of an 

artificial RNA model (streptavidin RNA aptamer) (Suzuki et al. 2010; Suzuki et al. 2011) and 

shRNAs (Nagao et al. 2014). In particular, this bacterium is non-pathogenic and presents 

several advantages over E. coli, such as the capacity of secretion of nucleic acids directly to 

the culture medium and the absence of detectable host RNases in the extracellular medium 

(Suzuki et al. 2009a; Ando et al. 2004; Ando et al. 2006). The endogenous RNAs released by 

R. sulfidophilum to the extracellular medium are mainly nonaminoacylated fully mature 

transfer RNAs (tRNAs) and fragments of 16S and 23S ribosomal RNAs (rRNAs) (Ando et al. 

2006; Suzuki et al. 2009b). In fact, previous works described that both recombinant RNAs 

(streptavidin RNA aptamer and shRNAs) produced in R. sulfidophilum were found not only 

inside the cells but also in the culture medium (Nagao et al. 2014; Suzuki et al. 2010; Suzuki 

et al. 2011). 

In the present study, for the first time, an alternative strategy for the recombinant 

biosynthesis and extracellular recovery of biologically active human pre-miR-29b (hsa-pre-
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mir-29b) is proposed. The pre-miR-29 target was chosen because it belongs to one of the most 

interesting miRNA families in humans to date, once this miRNA is involved in several 

regulatory pathways associated with neurodegenerative diseases and also presenting tumor-

suppressing and immune-modulating properties (Alvarez-Garcia and Miska 2005; Du and 

Pertsemlidis 2011; Hebert et al. 2008; Nelson et al. 2008). It is expected that this strategy 

can be highly advantageous regarding the RNA product safety, since it will not stimulate 

innate immunity, as the secreted miRNAs will be devoid of main bacterial associated 

impurities. Moreover, after the application of an appropriated purification flowsheet (Fig. 1), 

the isolation and purification of the target pre-miRNA will be easier and successful. The 

recovery of miRNAs from the fermentation broth will be performed using membrane filtration 

or concentration techniques. In fact, the application of this approach can be a promising 

technology since it suppresses the use of salts and solvents typically used in conventional RNA 

isolation processes. Overall, an economical and fast method for the production of functional 

RNA molecules with clinical-grade quality and biological activity is described, which can be 

applied in basic studies or in therapeutic strategies based on RNAi technology. From this 

stand point, it seems clear that the establishment of a robust and reliable miRNA 

extracellular production technology can indeed unlock the possibility of further developing 

effective therapeutic strategies that rely on the intrinsic gene silencing capacity of these 

oligonucleotides, presenting major advantages over the currently existing practices.  

 

Figure 1 - Schematics of the integrative platform that allows the biosynthesis and 

extracellular recovery of the recombinant hsa-pre-miR-29b. 
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Materials and Methods 

Materials and Chemicals 

Restriction enzymes including EcoRI, EcoT22I, AatI and StuI were purchased from Thermo 

Fisher Scientific Inc. (Waltham, MA) and XbaI was purchased from New England BioLabs 

(Ipswich, MA). T4 DNA ligase and pGEM-T easy vector were used as recommended by the 

manufactures (Promega). DreamTaq DNA polymerase was purchased from Fermentas (Beijing, 

China). Hyper Ladder I (Bioline, London, UK) was used as DNA molecular weight marker. 

Primers were synthesized by StabVida (Caparica, Lisbon). The sequence of pre-miRNA was 

obtained from the miRBase (http://www.mirbase.org/index.shtml).  

Bacterial strains and growth conditions 

The R. sulfidophilum DSM 1374 strain (BCCM/LMG, Belgium) modified with plasmid pBHSR1-

RM containing the sequence of human pre-miR-29b was used in this study for pre-miR-29b 

production. One Shot® TOP10 Chemically Competent E. coli (Invitrogen) was used for the 

propagation of the recombinant plasmid DNA (pDNA). The pGEM-T easy vector was applied for 

DNA manipulations and the plasmid pBHSR1-RM (a generous gift from Dr. Yo Kikuchi) was used 

as the expression vector (Nagao et al. 2014; Suzuki et al. 2011). E. coli TOP10 was grown in 

Luria-Bertani (LB) medium (10.0 g/L tryptone, 5.0 g/L yeast extract and 5.0 g/L sodium 

chloride (NaCl)) and LB-Agar. In the preliminary results, R. sulfidophilum was tested in 

Nutrient Agar (g per liter of deionized water: beef extract, 1.5; yeast extract, 1.5; peptidic 

digest of animal tissue, 5.0; NaCl, 5.0 and agar, 15.0), Tryptone Soya Agar (g per liter of 

deionized water: casein peptone (pancreatic), 15.0; soya peptone, 5.0; NaCl, 5.0 and agar, 

15.0) and Mueller Hinton Agar (g per liter of deionized water: beef, dehydrated infusion from, 

30.0; casein hydrolysate, 17.5; starch, 1.5 and agar 17.0). R. sulfidophilum cells were 

cultivated in a semi-defined medium, developed in this work, containing (per L of water) 

tryptone, 10.0 g; polypeptone, 5.0 g; yeast extract, 0.5 g; NaCl, 30.0 g; K2HPO4, 4.0 g; 

KH2PO4, 1.0 g; glucose, 50.0 g; MgSO4.7H2O, 0.2 g; CaCl2.2H2O, 0.05 g; (NH4)2SO4, 1.0 g and 1 

mL of trace elements solution (TES). The TES composition was as follows: (5.56 g/L 

FeSO4.7H2O, 3.96 g/L MnCl2.4H2O, 5.62 g/L CoSO4.7H2O, 0.34 g/L CuCl2.2H2O, 0.58 g/L 

ZnSO4.7H2O, 0.6 g/L H3BO3, 0.04 g/L NiCl2.6H2O and 0.06 g/L Na2MoO4.2H2O in 0.5 N HCl) (Kim 

et al. 2000; Silva et al. 2009). For solid media, the MT medium was used (10.0 g/L glucose, 

10.0 g/L peptone, 5.0 g/L yeast extract, 20.0 g/L NaCl, 10.0 mg/L FeSO4.7H2O, 10.0 mg/L 

MnSO4.4H2O, 1.0 mg/L ZnSO4.7H2O, 4.1 g/L MgCl2 and 15.0 g/L agar) (Pedro et al. 2011). The 

medium pH was adjusted to 7.0, with 0.1 M NaOH before autoclaving. When appropriated, 

media were supplemented with the following antibiotics: for E. coli, ampicillin and 

kanamycin were used with final concentrations of 100 and 20 µg/mL, respectively, while for 

R. sulfidophilum, kanamycin was used at a concentration of 30 µg/mL. Unless otherwise 

stated, E. coli cells were grown at 37ºC and R. sulfidophilum growth was carried out at 30ºC 

under dark-aerobic conditions. Cell growth was monitored by measuring the optical density 
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(OD) of the culture medium at a wavelength of 600 nm (OD600). Posteriorly, cells were 

recovered by centrifugation and stored at -20ºC.  

Construction of pBHSR1-RM-pre-miR-29b plasmid 

Using the plasmid pBHSR1-RM as template (Suzuki et al. 2011), a DNA fragment containing the 

rrn promoter, the streptavidin RNA aptamer sequence with flanker ribozyme sequences and 

puf terminator region was amplified by PCR. The sequence primers pBHSR1_Fw and 

pBHSR1_Rv are shown in Table S1, Supporting Information. The amplified DNA fragment of the 

pBHSR1-RM was purified and cloned into pGEM-T easy vector. Then, the vector was digested 

with StuI and XbaI, releasing a fragment containing the streptavidin RNA aptamer sequence 

with flanker ribozyme sequences, and the pGEM-T easy vector was purified from agarose gel 

with NucleoSpin Gel and PCR Clean-up (Macherey-Nagel). Using the pBHSR1-RM plasmid as 

template in a PCR reaction, specific primers (pBHSR1-RM_StuI_premiR_511Fw and pBHSR1-

RM_XbaI820Rv) flanking the second sequence of hammer head ribozyme and the puf 

terminator region were used to insert and amplify the pre-miR-29b sequence, which was 

digested by StuI and XbaI and cloned into pGEM-T easy vector previously digested. The StuI 

and XbaI sites in the primers are underlined and the pre-miR-29b sequence is a bold 

(Supporting Information, Table S1). In order to obtain the sequence of pre-miR-29b flanked by 

hammer ribozymes and puf terminator region, the pGEM-T easy vector was digested with 

EcoRI and XbaI restriction enzymes and cloned into pBHSR-RM previously digested with the 

same restriction enzymes. After E. coli TOP10 transformation with the vector, several 

colonies were screened by PCR for the presence of the recombinant plasmid pBHSR1-RM 

containing the pre-miR-29b sequence, being designated by pBHSR1-RM-pre-miR-29b 

(Supporting Information, Fig. S1). Therefore, some colonies were inoculated in LB medium 

and grown at 37ºC and 250 rpm, overnight. From these bacterial cultures, the plasmid 

pBHSR1-RM-pre-miR-29b was isolated and purified using the NZYMiniprep Kit (NZYtech, 

Lisbon, Portugal) and digested with EcoT22I and AatI to confirm the presence of the pre-miR-

29b sequence. Plasmid DNA concentrations were determined by NanoPhotometer (Implen) 

and sequenced in order to confirm the identity and orientation of the amplicon.  

Preparation and Transformation of competent Rhodovulum sulfidophilum cells 

Growth of R. sulfidophilum strain was carried out in 500 mL shake flasks containing 100 mL of 

semi-defined medium, in a rotary shaker at 30ºC and 250 rpm under aerobic-dark conditions, 

until the cell suspension reached an OD600 of 0.4 and 0.8. These cells were used to prepare 

competent cells for heat shock method. For this purpose, 50 mL aliquots of cell suspension 

were centrifuged at 5000 rpm for 10 min at 4ºC. The medium was decanted from the cell 

pellets and each one was ressuspended in 12.5 mL of ice-cold 100 mM MgCl2. The cells were 

recovered again at 4000 rpm for 10 min at 4ºC and ressuspended in 50 mL of ice-cold 100 mM 

CaCl2. The cell suspension was maintained on ice for at least 20-30 min. After this, the 

bacterial culture was centrifuged at 4000 rpm for 10 min at 4ºC and the pellet was 
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ressuspended in 1 mL of ice-cold 85 mM CaCl2 containing ice-cold 15% (w/v) glycerol for each 

50 mL of original culture. Then, the plasmid pBHSR1-RM-pre-miR-29b was introduced into R. 

sulfidophilum cells by the method of heat shock. To this end, different quantities of plasmid 

pBHSR1-RM-pre-miR-29b (0.1, 0.5, 1 and 5 µg) were immediately added to 0.1 mL of 

competent cells (the suspension was left on ice for 10 min), and the heat shock was 

performed at different temperatures (35 and 42ºC) and incubation periods (1 and 2 min), in 

order to determine the best conditions. After the heat shock, 200 µL of semi-defined medium 

was added to the transformation mixture and it was incubated at 30ºC, 250 rpm for 2 h under 

aerobic-dark conditions to allow the expression of antibiotic resistance gene. The culture was 

then plated on MT agar plates with kanamycin and incubated aerobically at 30ºC for at least 2 

days until the appearance of colonies. For each different condition tested, three independent 

fermentation runs were performed.  

Production of pre-miR-29b in Rhodovulum sulfidophilum 

Unless otherwise stated, recombinant pre-miR-29b biosynthesis was carried out according to 

the following protocol. Cells containing the expression construct were grown at 30ºC in MT 

plates containing kanamycin. Then, colonies were used to inoculate 100 mL of the semi-

defined medium, on 500 mL shake flasks. Cells were grown at 30ºC and 250 rpm under dark-

aerobic conditions, until the OD600 typically reached 2.6. Subsequently, in order to start the 

fermentation with an initial OD600 of 0.3, an aliquot of the pre-fermentation medium was 

added to 500 mL shake flasks to a total volume of 100 mL. The fermentations were carried 

out during 72 h. Finally, the cells were harvested by centrifugation (1500 g, 10 min, 4ºC) and 

stored at -20ºC until use. 

Isolation of intracellular and extracellular human pre-miR-29b 

The isolation of extracellular nucleic acids was based on the method described by Martins and 

co-workers (2010) with some modifications (Martins et al. 2010). Cultivated cells of R. 

sulfidophilum DSM 1374 were recovered by centrifugation at 10000 g for 10 min at 4ºC, and 

the supernatant was carefully transferred to an autoclaved tube. The nucleic acids fraction of 

the supernatant was precipitated by adding 3 volumes of 100% ethanol, 1/20th of 3 M sodium 

acetate (pH 5.0) and 20 µL of glycogen (30 µg/mL). After incubation overnight, nucleic acids 

were recovered by centrifugation at 10000 g for 10 min at 4ºC and washed with 75% ethanol. 

The nucleic acids pellets were air-dried for 10 min at room temperature and solubilized in 

0.05% DEPC-treated water and incubated with DNase I (Sigma-Aldrich, St Louis, MO, USA). For 

the intracellular RNAs recovery, the total RNA was extracted from the collected cells using 

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and chloroform, according to the protocol 

provided by the manufacturer. After centrifugation, the aqueous phase was transferred to 

new tubes, and the RNA was precipitated with isopropanol and washed with 75% of ethanol. 

The air-dried total RNA pellet was solubilized in 0.05% DEPC-treated water.  
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Assessment of recombinant human pre-miR-29b production 

RNA samples were quantified and evaluated regarding their purity (260/280 nm ratio) using a 

NANOPhotometer. The integrity and quality of RNA was assessed by agarose gel 

electrophoresis. A total of 1 µg of RNA was reverse transcribed into complementary DNA 

(cDNA) in 20 µL final volume using RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher 

Scientific Inc.), according to the protocol provided by the manufacturer. For quantitative 

analysis, the amount of pre-miR-29b produced was determined by reverse transcription-

quantitative real-time polymerase chain reaction (RT-qPCR) through amplification of cDNA 

using a specific probe (Roche, Table 1) on a CFX Connect™ Real-Time PCR Detection System 

from BioRad. RT-qPCR efficiencies were calculated from the given slopes with MyIQ 2.0 

software (BioRad). The calibration curve to determine the pre-miR-29b concentration was 

constructed by serial dilutions of the pre-miR-29b synthetic sample (Stabvida) in the range of 

0.00001 to 0.01 pmol/µL. The quantification of the pre-miR-29b expression was calculated by 

applying the comparative threshold cycle (CT) method. A list of primers used for RT-qPCR 

analysis can be seen in Table 1. RT-qPCRs were performed in a 20 μL mixture containing 5 μL 

cDNA, 400 nM Fw and Rv primers (Roche), 1× FastStart TaqMan® Probe Master (Roche), 200 nM 

of UPL Probe (Roche, Table S1, Supporting Information) and water, under the following 

conditions: 95ºC for 10 min for initial denaturation followed by 40 cycles at 95ºC for 10 s, 

60ºC for 30 s and 72ºC for 15 s. Due to the small space between the primers it is only possible 

to design a probe with a sufficient melting temperature if few Locked Nucleic Acid (LNA) 

bases are added into the probes sequence. Each sample was run in triplicate, and CT values 

were averaged from the triplicates. The final data were averaged from three independent 

experiments. 

Protein analysis 

Protein content in each sample was measured by the Pierce BCA Protein Assay Kit (Thermo 

Fisher Scientific Inc.), according to manufacturer’s instructions. Reducing sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed, according to the 

method of Laemmli on a 10% polyacrylamide gel (Laemmli 1970). Samples were denatured by 

the addition of loading dye followed by incubation at 95ºC for 10 min. Gel was stained by 

BlueSafe (NZYtech, Lisbon, Portugal). Low molecular weight protein marker (NZYtech, Lisbon, 

Portugal) was used as a molecular weight standard. 

Genomic DNA quantification 

The concentration of genomic DNA (gDNA) was obtained by real-time qPCR in an iQ5 

Multicolor Real-Time PCR Detection System (BioRad). The primers used in these experiments 

were 5’-ACACGGTCCAGAACTCCTACG-3’ (forward) and 5’-

CCGGTGCTTCTTCTGCGGGTAACGTCA-3’ (reverse) for the amplification of a 181 bp fragment 

of the 16S rRNA gene. PCR amplicons were quantified by following changes in fluorescence of 

the DNA binding dye Maxima® SYBR Green/Fluorescein qPCR Master Mix (Thermo Fisher 
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Scientific Inc.). The calibration curve to achieve the gDNA concentration was constructed by 

serial dilutions of the R. sulfidophilum gDNA sample (purified with the Wizard® Genomic DNA 

Purification kit, Promega) in the range of 0.005 to 50 ng/mL. Each sample was run in 

triplicate, and CT values were averaged from the triplicate. The final data were averaged 

from three independent experiments. 

Cell viability 

At different time points of the culture growth, the cellular cytotoxicity was assessed by the in 

vitro toxicology assay kit using the resazurin dye (Sigma-Aldrich, St Louis, MO, USA), 

conducted according to the manufacturer’s instructions. Briefly, cells were incubated at 37ºC 

during 2 h with a resazurin dye solution. Following incubation, the resulting pink product was 

transferred to a 96-well black clear bottom fluorescence plates (Corning® Costar®) and 

quantified in a spectrofluorometer (Spectramax Gemini XS, Molecular Devices LLC, US), using 

an excitation/emission wavelength of λex = 560 nm and λem = 590 nm. As a positive control for 

cytotoxicity, death cells were used after incubation at 75ºC during 30 min, while a blank 

analysis was performed with complete medium without cells. Each value represents the mean 

of three independent experiments. 
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Results  

pBHSR1-RM-pre-miR-29b expression vector construction 

Hsa-pre-miR-29b was already identified as a target in several diseases, and its sequence was 

selected in the miRBase, which is the official repository of miRNAs. In this study, the 

production of the pre-miRNA instead of the mature miRNA is described, since the recognition 

and processing in the cell are more efficient. Moreover, its structural characteristics, 

specifically the single chain with ~80 nucleotides of which some are unpaired in the 

3’overhang, will possibly facilitate the purification of the target miRNAs (Tsutsumi et al. 

2011). The hsa-pre-miR-29b sequence was amplified by PCR using specific primers (Supporting 

Information, Table S1) containing two restrictions sites for StuI and XbaI and cloned into the 

plasmid pBHSR1-RM, previously digested with the same restriction enzymes. For the 

construction of pBHSR1-RM-pre-miR-29b, the target sequence was cloned in the pBHSR1-RM 

vector, as it presents two self-cleaving hammerhead ribozyme sequences flanking the target 

pre-miRNA, allowing its release. As can be observed in Figure S1A, Supporting Information, 

the electrophoretic analysis of the PCR products obtained from the amplification with the 

specific primers for hsa-pre-miR-29b shows one band corresponding to the size of the gene of 

interest cloned into pBHSR1-RM-pre-miR-29b. The recombinant plasmid pBHSR1-RM-pre-miR-

29b was also digested with restriction enzymes, namely EcoT22I and AatI, to confirm the 

presence of the cloned hsa-pre-miR-29b sequence. In this electrophoresis, one band 

corresponding to the size of the gene of interest it is also visible (Supporting Information, Fig. 

S1B). In addition, the vector was sequenced to confirm the identity and orientation of the 

target gene produced, being identified as the hsa-pre-miR-29b (Supporting Information, Fig. 

S1C). After confirming that the isolated positive clone contained the hsa-pre-miR-29b, it was 

introduced into freshly made competent R. sulfidophilum cells by heat shock. Thus, in this 

work, the recombinant hsa-pre-miR-29b was produced in a genetically modified organism, R. 

sulfidophilum DSM 1374, harboring the plasmid pBHSR1-RM-pre-miR-29b. 

Improvement of Rhodovulum sulfidophilum transformation conditions 

Bacterial transformation is of utmost importance in all aspects of genetic engineering. A small 

number of chemical and physical methods have been established to introduce exogenous DNA 

into R. sulfidophilum cells, including heat shock with polyethylene glycol 6000 and 

conjugation with the mobilizing strain E. coli S17-1 (Donohue and Kaplan 1991; Nagao et al. 

2014; Suzuki et al. 2010; Suzuki et al. 2011). Although these two methods have been tested 

for R. sulfidophilum transformation, so far the Rhodovulum genus has not been characterized 

concerning its optimal transformation conditions. In laboratory, the most widely used 

methods for artificial bacterial transformation are based on the treatment of the cells with 

CaCl2 or, alternatively, the electroporation (Donohue and Kaplan 1991). Therefore, in this 

study, an effective method using CaCl2 for the preparation of competent R. sulfidophilum 

cells it is described. As it is known, there are several factors that affect the bacterial 
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transformation efficiency, namely the incubation time (1 and 2 min) of bacteria with DNA, 

the plasmid DNA concentration (0.1 to 5 µg/mL) used in the transformation mixture, the 

temperature of incubation (35 and 42ºC), and growth phase (OD=0.4 and 0.8). To estimate 

the effect of the growth phase on the transformation efficiency, R. sulfidophilum cells 

cultured to mid-lag (OD=0.4) and late-lag (OD=0.8) phases were subjected to heat shock. As 

depicted in Figure 2, when the cells were collected in the mid-lag phase for preparation of 

competent cells, higher transformation efficiencies were obtained, in comparison to that 

achieved with the cells collected in late-lag phase. Therefore, as the transformation 

efficiency of mid-lag recovered bacteria are higher than late-lag phase, this was the condition 

used for the preparation of competent R. sulfidophilum cells. The effect of the plasmid 

concentration was also evaluated, since it also influences the process transformation 

efficiency. Thus, different plasmid DNA amounts (from 0.1 up to 5 µg/mL) were employed and 

the transformation efficiency was determined, as represented in Figure 2. In fact, it is 

possible to observe that the optimum amount of plasmid DNA was 0.1 µg, since it corresponds 

to the higher transformation efficiency achieved, 8.22x103 transformants/µg plasmid (Fig. 

2A). When the plasmid DNA was increased to 5 µg, the transformation efficiency drastically 

decreased, because this concentration can be toxic for the bacteria. In general, from all the 

conditions tested, the highest R. sulfidophilum transformation efficiency was obtained using 

the following conditions: 0.1 µg of plasmid DNA, with a heat-shock of 2 min at 35ºC (Fig. 2). 

The increase in temperature from 35 to 42ºC also played an important role in the 

transformation efficiency resulting in a decrease of the transformation efficiency from 

8.22x103 to 3.85x103 transformants/µg plasmid (Fig. 2B).  

 

Figure 2 – Effects of growth phase, time incubation, amount of plasmid DNA (A) at 35ºC and 

(B) at 42ºC on the transformation efficiency of R. sulfidophilum cells. Data shown are mean ± 

s.d. from triplicate runs. 
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The effect of temperature and sodium chloride concentration on Rhodovulum 

sulfidophilum growth 

In general, the media formulation for culturing R. sulfidophilum cells seems to require 

specific components for the development of a sustainable and successfully upstream stage. 

Initially, R. sulfidophilum growth was tested in aerobic conditions, using different solid 

culture media commonly applied for bacterial growth, namely Nutrient Agar, Tryptone Soya 

Agar and Mueller Hinton Agar (see Materials and Methods section). R. sulfidophilum growth 

was only detected with Nutrient Agar medium, indicating that specific components such as 

sodium chloride and yeast extract are required for R. sulfidophilum growth and recombinant 

hsa-pre-miR-29b biosynthesis (data not shown). Then, in order to define the optimum 

conditions for bacterial growth and over-expression of the target RNA, several experiments 

varying the temperature (25 and 30ºC) and sodium chloride concentration (10, 20, 30 and 50 

g/L), were carried out, under aerobic conditions. In what concerns to the effect of sodium 

chloride concentration using Nutrient Broth medium, our results demonstrated that the 

bacteria hardly grow with 10 g/L NaCl (Fig. 3A), highlighting the requirement of a higher salt 

concentration for R. sulfidophilum growth. On the other hand, using sodium chloride 

concentrations of 20, 30 and 50 g/L, higher growth rates were achieved. In general, the ideal 

sodium chloride concentration for higher R. sulfidophilum growth was 30 g/L NaCl (Fig. 3A).  

Although the optimized concentration of sodium chloride improved the R. sulfidophilum 

growth profile, under aerobic conditions, its growth was not yet optimal, indicating that 

other compounds such as glucose or polypeptone can be required. Thus, several experiments 

were performed and the composition of the semi-defined medium adapted from Sankhla and 

co-workers (Sankhla et al. 2010) was evaluated for maximizing R. sulfidophilum growth rates 

(see Materials and Methods section). Considering that the main objective of this work is to 

produce a microRNA, it is important to mention that the yeast extract, one of the minor 

components added to the medium, presents RNA traces, which can constitute a contaminant 

of the target product. Furthermore, after the optimization of the culture medium, it was also 

evaluated the effect of the temperature (25 and 30ºC) on R. sulfidophilum DSM 1374 growth 

profile, using the semi-defined medium supplemented with 30 g/L of NaCl under aerobic 

conditions. The time course profiles are shown in Figure 3B, where it is possible to observe 

that bacterial growth was slightly lower at 25ºC than at 30ºC. Furthermore, Figure 3B shows 

an initial lag phase of 18 h, followed by a rapid increase in the growth rates at 30ºC where 

6.86±0.09 units of OD600 was obtained. The temperature selected is within the range of 

optimum R. sulfidophilum growth (30 to 35ºC) as previously reported by other authors 

(Hansen and Veldkamp 1973). In general, the experiments performed with the aim of 

understanding the effect of temperature and NaCl concentration on the growth profile of DSM 

1374 strain demonstrated that the optimal conditions are 30ºC in semi-defined medium, pH 

6.8 (Fig. 3B). In addition, our results suggest that these conditions enable a shorter 

cultivation time and higher optical densities are achieved (Fig. 3B).  
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Figure 3 – (A) Effect of sodium chloride concentrations (10, 20, 30 and 50 g/L) on growth of 

the photosynthetic bacterium Rhodovulum sulfidophilum DSM 1374 in Nutrient Broth medium 

under aerobic conditions, in the dark. The data are the average of three repeats of duplicate 

cultivations. Bars indicate standard deviation. (B) Effect of temperature (25 and 30ºC) on 

growth of the photosynthetic bacterium Rhodovulum sulfidophilum DSM 1374. R. 

sulfidophilum was cultivated in semi-defined medium supplemented with 30 g/L NaCl under 

aerobic conditions, in the dark. The data are the average of three repeats of duplicate 

cultivations. Bars indicate standard deviation. 

 

Time course profile of hsa-pre-miR-29b biosynthesis 

The cells transformed with the recombinant plasmid expressing the hsa-pre-miR-29b were 

cultivated under aerobic dark conditions, to clarify the relationship between cell growth and 

the production of intra and extracellular nucleic acids. First of all, the presence of pre-miR-

29b inside the cells was confirmed. Therefore, at various time points of the culture, the cells 

were recovered by centrifugation and the total RNA was extracted and collected using the 

phenol/chloroform extraction. The concentration of the intracellular total RNA was estimated 

by spectrophotometric analysis, measuring the absorbance at 260 and 280 nm. The 260/280 

ratio was also determined, which is an indication of the purity of each sample, being 

achieved a ratio of 2.0, which is often characteristic of a pure RNA preparation (RE 2005). By 

RT-qPCR using a specific probe, the maximum amount of intracellular pre-miR-29b 

determined was 358.47±5.48 µg/L of culture, at 32 h of cultivation. On the other hand, to 

elucidate the relationship between cell growth and the production of extracellular pre-miR-

29b, the total extracellular nucleic acids were isolated from the culture medium and 

analyzed by agarose gel electrophoresis during different periods of cultivation. Figure 4A 

shows that the nucleic acids profile of the clarified precipitates recovered along the R. 

sulfidophilum cultivation contained different RNA species and fragments of gDNA. The 

analysis of the electrophoresis (Fig. 4A) revealed the presence of bands with high molecular 

weight, corresponding to fragments of gDNA (higher than 10000 bp). The 23S and 16S rRNA 
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bands are also present, with molecular weights between 750 and 1500 bp. In addition, sRNAs 

are present in sharp bands of low molecular weight (about 200 bp). The results show different 

contents of extracellular nucleic acids during bacteria growth (Fig. 4A). In order to identify 

and quantify specifically the pre-miR-29, during 72 h of cultivation (until the stationary 

phase), the nucleic acids in the culture medium were collected by ethanol precipitation and 

the resulting fraction was treated with DNase I. The cDNA of the RNA fraction was prepared 

and subjected to RT-qPCR analysis to detect the pre-miR-29b sequence at various time points 

of the bacterial growth (Fig. 4B). These results indicated that in fact the self-processed 

precursor form of the miR-29 (pre-miR-29b) was present in the culture medium. In particular, 

it was found that the maximum level of extracellular pre-miR-29b obtained in the present 

study was 181.64±35.78 µg/L of culture (Fig. 4B), and the maximum level of production was 

observed at 40 h of cultivation (late log phase).  

 

Figure 4 – Extracellular production and release of the human pre-miR-29b, gDNA and proteins 

into the culture medium. (A) Electrophoretic analysis of extracellular nucleic acids. Lanes 0–

72 h, cultivation times. Lane M, DNA molecular weight marker. (B) The time course of 

extracellular production of the hsa-pre-miR-29b from the bacteria harboring pBHSR1-RM-pre-

miR-29b is shown. The amounts of hsa-pre-miR-29b were measured by quantitative RT-PCR 

using a specific probe, as described in Materials and Methods (see Table S1, Supporting 

Information). Error bars indicate the respective standard deviations which were calculated 

from the results of three independent experiments. (C) Production of extracellular gDNA and 

proteins. (D) Electrophoretic analysis of extracellular proteins. Lanes 0–72 h, cultivation 

times. Lane M, protein molecular weight marker. 
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As can be seen by Figure 4B, the extracellular pre-miR-29b production increased until 40 h, 

after which a significant decrease in yield was observed. The time course profile obtained is 

very similar to the curve of the streptavidin RNA aptamer production which was published by 

Suzuki and collaborators (Nagao et al. 2014; Suzuki et al. 2010; Suzuki et al. 2011). 

Detection of extracellular genomic DNA and proteins 

Regarding the potential applicability of this method to obtain recombinant pre-miRNAs, along 

with the time-course profile of the target RNA biosynthesis, it is also important to evaluate 

its purity during the fermentation time. Therefore, the levels of gDNA and proteins in the 

extracellular medium were evaluated during the fermentation period. As discussed above, the 

purity of the sample is commonly evaluated by the 260/280 nm ratio because it is an indirect 

method to verify the contamination of nucleic acids with proteins. Nevertheless, a more 

accurate method was used to verify the protein contamination level. Thus, the protein level 

in RNA samples was quantified by the micro-BCA method during the cultivation because 

contaminating protein can be overlooked by spectrophotometric analysis. Figure 4C shows the 

results for protein quantification in the extracellular RNA fraction, resultant from a culture at 

30ºC, 30 g/L NaCl concentration assay. The findings revealed that the proteins level in the 

extracellular medium was high during the first 32 h of cultivation, with a maximum value of 

114.65±6.64 µg/mL at 16h (Fig. 4C). Considering this profile, it is suggested that the initial 

proteins content can be associated to the presence of complex components in the medium, 

which can contain residual proteins. Therefore, the proteins of the medium (without bacterial 

inoculation) were also quantified using the BCA method and a concentration of 93.04±1.43 

µg/mL was obtained. As the fermentation time increases, the medium components start to be 

metabolized by the bacterium and the contribution of the medium to the global protein 

content slows down. In addition, to identify the profile of the proteins quantified by BCA 

assay, a SDS-PAGE electrophoresis was also performed (Fig. 4D). These results obtained with 

SDS-PAGE are in agreement with the results obtained with BCA assay because in the lanes 

corresponding to 24 h of cultivation, there are no protein bands, indicating that the secretion 

of proteins by the bacteria is not significant at this point (Fig. 4D). However, it is possible to 

visualize faint protein bands with molecular weights between 48 and 63 KDa in the samples 

obtained after 32 h of growth, where the secretion starts to be more significant (Fig. 4D). The 

time course profile of extracellular gDNA production and secretion to the culture medium at 

various time points in culture was also determined by quantitative real-time PCR (Fig. 4C). 

The production of extracellular gDNA showed a similar pattern to bacterial cell growth except 

that the rapid increase of gDNA production is noticed after 24 h (Fig. 4C).  

Cytotoxic profile 

Finally, the cellular cytotoxicity during the R. sulfidophilum growth was evaluated by 

resazurin dye and compared with cells treated with heat (positive control). As presented in 

Figure 5, at 72 h, end of the fermentation, more than 87% of viable cells were obtained, a 
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value that is acceptable. Thus, as the majority of the cells remain viable, they are 

contributing to the newly synthesized product and as the cell lysis is minimized, the 

extracellular medium is not significantly contaminated with the host RNases and other host 

components.  

 

Figure 5 – Cell viability assays during the fermentation time. Heat treated cells were used as 

positive controls to induce toxicity. Mean percentage values relative to the untreated cells 

and standard error of the mean in three independent experiments are shown. 

 

Discussion 

MicroRNAs have been produced using either prokaryotic or eukaryotic hosts, with eukaryotic 

expression vectors (Chen et al. 2007; Huang et al. 2011; Li et al. 2014). Although these 

systems have had complete success, the development of a system capable of producing 

recombinant miRNAs with increased stability and quality for further applications, such as 

structural studies or clinical applications, remains a hurdle to overcome. Recent studies have 

pointed out that R. sulfidophilum DSM 1374 has great potential in the production of 

extracellular RNAs, which can be further applied in structural and biophysical studies and as 

therapeutic agents in a broad range of diseases (Nagao et al. 2014; Suzuki et al. 2011). In 

fact, the use of R. sulfidophilum as an alternative host presents a number of advantages over 

other prokaryotic hosts for obtaining RNAs, namely the unusual ability to secrete heterologous 

nucleic acids during cell growth and the characteristic of not secrete host RNases to the 

culture medium, maintaining the integrity and activity of the RNA product. (Ando et al. 2004; 

Ando et al. 2006; Nagao et al. 2014; Suzuki et al. 2010; Suzuki et al. 2009b; Suzuki et al. 

2011). As a result, this strategy allows avoiding time-consuming and laborious RNA extraction 

methods.  

Hence, in this work and for the first time, R. sulfidophilum DSM 1374 was successfully applied 

for the recombinant biosynthesis and isolation of hsa-pre-miR-29b from both the intra and 

extracellular species. Initially, the optimal conditions (0.1 µg of plasmid DNA, with a heat-

shock of 2 min at 35ºC) for transforming R. sulfidophilum were determined. The 
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transformation method developed is advantageous because of its simplicity, low cost, high 

transformation efficiency (103 transformants per µg of plasmid DNA) achieved and the 

possibility to transfer relatively large segments of DNA. In addition, bacteria prepared by this 

method can be frozen and stored for future use.  

Additionally, the influence of the temperature and sodium chloride concentration in the 

growth profile of R. sulfidophilum cells under aerobic conditions was also addressed. In 

general, according to the results described in this study, the R. sulfidophilum DSM 1374 

aerobic cultivation should be performed at 30ºC using semi-defined medium, supplemented 

with 30 g/L NaCl, under dark-aerobic conditions, since these conditions allowed relatively 

rapid growth with higher optical densities. In fact, our results showed that cultivation under 

aerobic conditions was similar to that achieved in anaerobic conditions, previously described 

in other works (Ando et al. 2004; Ando et al. 2006; Suzuki et al. 2010; Suzuki et al. 2009a; 

Suzuki et al. 2009b; Suzuki et al. 2011), being possible to reach higher growth rates, higher 

optical densities and a shorter cultivation time. These results can be explained by the fact 

that R. sulfidophilum DSM 1374 being a facultative phototroph, which is able to grow 

anaerobically in the presence of light or aerobically in the dark. Despite this feature, this is 

the first description of RNA production using this bacterium on aerobic conditions. 

Therefore, the main purpose of this study was to evaluate the time-course profile of the 

production of intra and extracellular hsa-pre-miR-29b using R. sulfidophilum DSM 1374. The 

total yield of the pre-miR-29b inside the cells was 358 µg/L of culture at 32 h, which is a 

quantity almost 17.9 times higher than the value obtained (about 20 μg from 1 L of culture) 

by Suzuki and co-workers for streptavidin RNA aptamer (Suzuki et al. 2010; Suzuki et al. 

2011). On the other hand, the maximum production of extracellular pre-miR-29b achieved 

was approximately 182 µg/L of culture. Furthermore, in order to obtain a high production of 

the extracellular human pre-miR-29b while minimizing the impurities (genomic DNA and 

proteins), R. sulfidophilum DSM 1374 should be cultivated up to 40 h. 

The value obtained (182 µg/L) is more than 100 fold higher than those reported in the 

literature for the production of RNA aptamer and shRNA using this bacterium (Nagao et al. 

2014; Suzuki et al. 2010; Suzuki et al. 2011). In accordance to what has been described by 

other authors, the yield obtained for extracellular streptavidin RNA aptamer was 195 ng/L of 

culture and 200 ng/L of shRNA, after 70 h of cultivation (stationary phase), using the 

mutated-rrn promoter (Table 1). In another study, a yield of 100 ng/L of culture was obtained 

under aerobic conditions in the dark. This result can be explained, because the mutated-rrn 

promoter is independent of the FIS protein activation, which is expressed only in early log 

phase, and allows the transcription even during the late log and stationary phases (Dryden 

and Kaplan 1993; Suzuki et al. 2011). In addition, because the production was observed in the 

log phase but not in the stationary or the post-stationary phase, it is suggested that the 

nucleic acids do not originate from the cell autolysis but from active production.  
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Table 1 - Comparison of growth rates and RNA production yields in R. sulfidophilum DSM 1374 

under different growth conditions. 

 

Globally, the bioprocess optimization here described using R. sulfidophilum allows the 

production and isolation of recombinant extracellular pre-miRNA molecules with high yields 

as a way to simplify the current extraction methodologies, because this method requires only 

the cultivation of the bacterium for the product biosynthesis. Thus, the RNAs secretion 

already represents a significant advantage for the recovery and purification processes, 

circumventing the need of the lysis procedure that frequently induces RNA denaturation. In 

addition, it is expected that the application of this strategy allows suppressing the use of 

organic solvents and extremely toxic chemicals which are employed in conventional RNA 

isolation techniques and that are biologically hazardous, representing a simplification of the 

process and allowing an increase in the RNA recovery yield and stability (Fig. 1). The 

extracellular production is thought to be very beneficial for the future development of an 

efficient process engineering system for industrial production of RNA drugs. Moreover, the 

culture volume can be scaled up easily, which is necessary for large-scale industrial 

preparation. Therefore, it was described a novel, fast and simple process, economically 

feasible and highly efficient for pre-miRNA isolation. For all these reasons, the approach here 

proposed for recombinant production of extracellular pre-miRNAs is not only innovative but 

also presents more advantages in the point-of-view of the potential biological application of 

miRNAs. Furthermore, it is believed that the pre-miRNAs obtained using this protocol, can be 

applied in many molecular biology subjects and RNAi-based therapeutics. 
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Growth Conditions 
Intracellular RNA 

(µg/L) 

Extracellular RNA 
(µg/L) 

Target RNA Reference 

Anaerobically (25ºC) 7 0.045 RNA aptamer (Suzuki et al. 2010) 

Anaerobically (25ºC) 20 0.195 RNA aptamer (Suzuki et al. 2011) 

Anaerobically (30ºC)  0.2 shRNA (Nagao et al. 2014) 

Aerobically (30ºC) 358 182 pre-miRNA This study 
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Supporting Information 

Figure S1 – (A) Amplification of the hsa-pre-miR-29b DNA sequence from R. sulfidophilum 

harboring pBHSR1-RM-pre-miR-29b, using specific primers (M - DNA maker; Lane 1 – Negative 

control and Lane 2 - PCR product); (B) Characterization of the recombinant plasmid after 

double digestion with restriction enzymes (M - DNA maker; Lane 1 - pBHSR1-RM-pre-miR-29b 

digested by AatI and EcoT22I); (C) Sequencing of the recombinant plasmid pBHSR1-RM-pre-

miR-29b. 
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Table S1 – Primers used in this study. 

Note: The underlined letters indicate the restriction enzyme recognition sites. 

 

 

 

 

 

  

 

Primer Sequence (5'–3') 

pBHSR1-RM_Fw TGT GTG TTC TTT GGG CGT AA 

pBHSR1-RM_Rv TGT GGA ATT GTG AGC GGA TA 

pBHSR1-RM_StuI_premiR_511 Fw 

CGA GGC CTA GGA AGC TGG TTT CAT ATG GTG GTT TAG ATT TAA 

ATA GTG ATT GTC TAG CAC CAT TTG AAA TCA GTG TTC TTG GGG 

GAT CAT ACC GCT GTC AGC CGT GCA AG 

pBHSR1-RM_XbaI_820Rv CAT CTA GAG CTC ATG CCC TTG AGA TCG GCC 

pre-miR-29b_Fw GGA AGC TGG TTT CAT ATG GTG 

pre-miR-29b_Rv CCC CCA AGA ACA CTG ATT TC 

Pre-miR-29b_synthetic 
CTT CAG GAA GCT GGT TTC ATA TGG TGG TTT AGA TTT AAA TAG 

TGA TTG TCT AGC ACC ATT TGA AAT CAG TGT TCT TGG GGG 

Probe Sequence (5'–3') 

pre-miR-29b_Fw AGG AAG CTG GTT TCA TAT GGT GG 

pre-miR-29b_Rv CAA GAA CAC TGA TTT CAA ATG GTG C 

miR-29b_TM FAM - AGA CAA TCA CTA TTT AAA - BBQ 
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Short description: This paper characterizes the binding affinity of pre-miR-29b to L-arginine 

and L-lysine by Surface Plasmon Resonance. Indeed, this information was obtained under 

different experimental conditions, in order to mimic the experimental conditions used in 

chromatographic assays using these amino acids as specific ligands. These results provide 

relevant information regarding the set of buffers as well as temperature conditions that 

induce pre-miRNA binding, thereby increasing the selectivity and improving efficient 

microRNA separation. In addition, in order to verify the effect of these conditions on the 

interactions and the maintenance of the integrity and stability of the pre-miR-29b molecules, 

circular dichroism analysis was performed. This study showed the importance of Surface 

Plasmon Resonance as a technique to assess the most appropriated experimental conditions in 

future chromatographic experiments. 
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Abstract 

The aim of this work was to provide binding information between the recombinant pre-miR-

29b and L-arginine/L-lysine by surface plasmon resonance (SPR) and circular dichroism (CD). 

This information brings important insights concerning the characterization of the microRNA 

binding onto chromatographic supports using these amino acids as specific ligands. Moreover, 

it is possible to determine some particular conditions enabling the improvement of the 

binding specificity of the amino acid ligands used to purify microRNA, preserving their 

integrity. The binding responses were detectable and reproducible and allowed the 

determination of the equilibrium dissociation constant (KD). Considering the binding affinities, 

it was verified that the pre-miR-29b binds more strongly to L-arginine (KD between 10-6 and 

10-7M) than to L-lysine (KD between 10-5 and 10-7M). Remarkably, the results revealed that the 

ligands possess high affinity to RNA molecules using buffers with low salt concentration and 

no binding responses were detected with high salt concentrations, suggesting that 

electrostatic interactions are mainly responsible for ligand-analyte interaction. Above all, this 

study showed the importance of SPR for future screening of other ligands that, like the ones 

described herein, can be used to design novel microRNA purification platforms which will 

have a significant impact in biopharmaceutical-based therapeutics.  

 

Keywords 

Amino acid-microRNA interactions; Binding affinities; Circular Dichroism; Recombinant pre-

miR-29b; Surface Plasmon Resonance  
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Introduction 

Over the past decade, several hundred small non-coding RNA molecules, known as microRNAs 

(miRNAs) have emerged as potential biomarkers and drug targets, appearing to be promising 

to the next generation of diagnostic and therapeutic tools.1-3 These RNA molecules play 

important roles in modulating various biological and cellular functions and have potential to 

treat several pathologies such as cancer, cardiovascular and neurodegenerative diseases. This 

suggests the use of miRNA as a promising approach in a therapeutic point of view.4-6 Human 

pre-miR-29b was chosen for this work because it belongs to one of the most interesting miRNA 

families identified in humans, being involved in several regulatory actions, namely in tumor-

suppressing and immune-modulating processes, as well as in the regulation of pathways of 

neurodegenerative diseases.5-7 

Hence, considering the potential therapeutic application and the mandatory global 

distribution of these novel therapeutics, it is crucial to develop efficient methods for isolation 

of pharmaceutical grade miRNAs, with high purity degree and biological activity, envisioning 

their application in gene therapy. Several strategies are available to isolate and purify miRNA 

molecules chemically synthesized or derived from various biological sources.8,9 However, 

these methods make use of denaturing conditions and structural modifications in the RNA 

molecule can occur, by introduction of tag-sequences. Consequently, these changes can 

induce RNA conformational alterations which may compromise their activity, in addition, 

these procedures are expensive and time-consuming.10,11 More recently, our research group 

developed an affinity chromatographic method with amino acids as specific ligands, named 

amino acid–affinity chromatography, applied to efficiently purify different RNA species (total 

RNA, ribosomal RNA, small RNA, 6S RNA and recombinant pre-miR-29b), on the basis of their 

biological function or individual chemical structure.12-17 For these reasons, this 

chromatographic method can be an attractive approach for the miRNA purification, since it 

can be successfully employed in the purification of a wide range of biomolecules, based on 

specific and reversible interactions, simulating natural biological processes that are 

established within the cell. In addition, affinity chromatography is a selective and reliable 

technique, offering reduced processing time, and capable of preparing therapeutic 

biomolecules with the strict quality assurance.18 However, the problem of finding a suitable 

ligand in affinity chromatography is not restricted to specificity, but concerns also to the 

binding strength and the kinetics of the ligand–miRNA interaction. This implies that a ligand 

with an optimized dissociation constant will facilitate the successful operation of affinity 

chromatography for miRNA purification. 

In the past recent years, Cruz and collaborators applied surface plasmon resonance (SPR) for 

the analysis of the interaction between plasmid DNA and amino acids ligands.19-22 This 

technique provides both equilibrium and kinetic information about intermolecular 

interactions and is a powerful tool to study the dynamics of nucleic acids–amino acids 
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interactions and, consequently, to apply this important structural data in the optimization of 

chromatographic systems.23-26 According to these considerations, a comparative study was 

performed to characterize and understand the interactions established between pre-miR-29b 

and L-arginine and L-lysine amino acids. For this purpose, we have studied the affinity and the 

binding responses between pre-miR-29b and L-arginine and L-lysine immobilized on a surface 

to mimic the affinity support under different experimental conditions, such as, the 

composition and ionic strength of the elution, buffer and temperature. This study revealed 

several interesting characteristics of RNA molecules, including natural affinity interactions 

that can occur between L-arginine and L-lysine and pre-miRNA, providing important 

information that can be further applied in unveiling the miRNA chromatographic behavior in 

these systems. Furthermore, the experimental data allowed to get binding information to 

improve pre-miR-29b purification with low sample consumption, using a rapid and automated 

analysis. Moreover, circular dichroism (CD) was used to evaluate the conformational changes 

that pre-miR-29b may suffer when exposed to certain experimental conditions. In particular, 

experimental conditions can influence the interactions established between pre-miRNA and 

amino acids, as well as the structure of RNA, leading repulsion or neutralization of the 

biomolecules, or even inducing stabilization or denaturation of the target RNA.  

The present work evaluates the conformational changes of pre-miR-29b when exposed to 

different experimental conditions by circular dichroism (CD) and the binding between the 

recombinant pre-miR-29b and L-arginine/L-lysine by surface plasmon resonance (SPR) in 

different buffers, salt conditions, pH and temperature to achieve the best binding/elution 

conditions. 
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Materials and Methods 

Materials 

L-arginine–Sepharose 4B gel was acquired from Amersham Biosciences (Uppsala, Sweden) and 

Lysine-Sepharose 4B was obtained from GE Healthcare Biosciences (Uppsala, Sweden). The 

guanidinium salt and all the chemicals used in the lysis buffer were obtained from Sigma-

Aldrich (St Louis, MO, USA). All buffers used for the chromatographic experiments were 

freshly prepared with sterilized water pre-treated with 0.05% diethyl pyrocarbonate (DEPC; 

Sigma-Aldrich, St Louis, MO, USA), filtered through a 0.20 µm pore size membrane (Schleicher 

Schuell, Dassel, Germany) and degassed ultrasonically. The sodium chloride (NaCl) used was 

purchased from Panreac (Barcelona, Spain), tris(hydroxymethyl) aminomethane (Tris), HEPES 

sodium salt and L-arginine were from Sigma-Aldrich (St Louis, MO, USA). L-lysine 

Hydrochloride was from USB, Acide morpholinopropanesulfonique (MOPS) from Fisher 

Scientific and, finally, potassium dihydrogen phosphate from Chem-Lab NV (Zedelgem, 

Belgium). All the materials used in the experiments were RNase-free. 

Pre-miR-29b biosynthesis and isolation 

The pre-miR-29b used in the experiments was produced by a cell culture of Rhodovulum 

sulfidophilum DSM 1374 strain (BCCM/LMG, Belgium) modified with the pBHSR1-RM plasmid 

containing the sequence of pre-miR-29b.27 Growth was carried out at 30ºC under dark-aerobic 

conditions, using Nutrient Broth medium (1 g/L beef extract; 2 g/L yeast extract; 5 g/L 

peptone and 30 g/L sodium chloride) supplemented with 30 µg/mL kanamycin. Cells were 

recovered by centrifugation and stored at -20ºC. Small RNA was extracted using the acid 

guanidinium thiocyanate-phenol-chloroform extraction method based on the protocol 

described by Chomczynski and co-workers.28 Briefly, cells were lysed by adding 5 mL of 

denaturing cell lysis solution (4 M guanidinium thiocyanate; 25 mM sodium citrate, pH 4.0; 

0.5% N-laurosylsarcosine and 0.1 M β-mercaptoethanol). After incubating on ice for 10 min, 

cellular debris, genomic DNA and proteins were precipitated by gently adding and mixing 5 

mL of water-saturated phenol and 0.5 mL of 2 M sodium acetate (pH 4.0). The RNA isolation 

was achieved by adding 1 mL of chloroform/isoamyl alcohol (49:1), and by mixing vigorously 

until two immiscible phases were obtained. The upper aqueous phase, which contained 

mostly RNA, was recovered and concentrated by the addition of 5 mL of ice-cold isopropanol. 

Precipitated molecules were recovered by centrifugation at 10 000 g for 20 min at 4ºC and 

resuspended in 1.5 mL of lysis solution. It was concentrated again with 1.5 mL of ice-cold 

isopropanol. After centrifuging for 10 min at 10 000 g (4ºC), the RNA pellet was washed with 

7.5 mL of 75% ethanol and incubated at room temperature for 10 min, followed by a 5 min 

centrifugation at 10 000 g (4ºC). The air-dried RNA pellet was solubilized in 1 mL of 0.05% 

DEPC-treated water. Finally, 260 and 280 nm absorbance of the samples was measured using 

Nanodrop spectrophotometer in order to assess RNA quantity and an agarose gel 

electrophoresis was performed to assess purity. 
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Pre-miR-29b Purification 

Chromatographic experiments were performed in an ÄKTA Avant system with UNICORN 6.1 

software (GE Healthcare). A 10 mm diameter x 20 mm long (about 2 mL) column was packed 

with commercial L-arginine–Sepharose 4B gel. This support is characterized by the 

manufacturer as a cross-linked 4% beaded agarose matrix with a 12-atom spacer and an 

extent of labeling between 14 and 20 µmoL/mL. The column was first equilibrated with 0.28 

M of NaCl in 10 mM Tris-HCl buffer (pH 8.0). Small RNAs samples (30 µg) were applied onto 

the column using a 100 µL loop at a flow-rate of 1 mL/min. After the elution of unbound 

species with 0.28 M of NaCl in 10 mM Tris-HCl buffer (pH 8.0), the ionic strength of the buffer 

was increased to 0.36 M NaCl in order to elute the pre-miR-29b. The most retained species 

were finally eluted with 0.5 M NaCl in 10 mM Tris-HCl buffer (pH 8.0), as previously 

described.14 The absorbance of the eluate was continuously monitored at 260 nm. All 

chromatographic runs were performed at 20ºC, by using a specific column containing a water 

jacket tube connected to a circulating water bath to maintain the temperature. Pre-miR-29b 

fractions were pooled according to the chromatograms obtained, and were concentrated and 

desalted with Vivaspin concentrators. Posteriorly, the integrity and purity of pre-miR-29b 

samples isolated from R. sulfidophilum were also analyzed by vertical electrophoresis using 

an Amersham Biosciences system (GE Healthcare) with 10% polyacrylamide gel supplemented 

with 8 M urea. Electrophoresis was performed at a running voltage of 125 V for 90 min in TBE 

buffer, pH 8.3, and samples were previously denatured with 97.5% formamide. Gels were 

visualized using a UV transilluminator (UVItec, Cambridge) after staining with GreenSafe 

Premium (NZYTech, Lisbon, Portugal).  

 

SPR measurements  

All SPR experiments were performed on a Biacore T200 Biosensor software v 1.0 (Biacore, GE 

Healthcare, Sweden) using carboxymethylated dextran-coated sensor chips (CM5 research 

grade). L-arginine and L-lysine (0.2 M in 0.1 M borate buffer, pH 8.5) were immobilized on the 

CM5 sensor chip surface, to mimic immobilized ligands in affinity chromatographic supports, 

based on the protocol described by Cruz and co-workers.19 Briefly, the immobilization of L-

arginine and L-lysine was performed through amine coupling chemistry using HBS and 1-ethyl-

3-(3-dimethylaminopropyl) carbodiimide (EDC) as a running buffer (7 min, 5 μL/min) in the 

flow cells 2 and 3, respectively. Flow cell 1 was used as reference control for all experiments, 

which was treated as the other cells, without amino acids. After immobilization, the surfaces 

of all flow cells were blocked with 1 M ethanolamine-HCl (pH 8.5), followed by HBS-EP 

injection to stabilize the baseline. The immobilized density averaging for L-arginine was 245.6 

RU and for L-lysine was 242.2 RU. Human pre-miR-29b samples used to collect affinity binding 

data were prepared by serial dilutions to obtain the desired concentration range (2.5 to 

0.0195 μM) with adequate buffers, for each experiment. Duplicate injections of each pre-miR-

29b sample were analyzed in random order and a buffer blank was flowed over the L-arginine 

and L-lysine surface, as well as over the reference surface, at a flow rate of 2 μL/min for 7 
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min. No regeneration solution was required since all pre-miR-29b solutions were removed 

from the surface chip during the dissociation time. Thus, equilibrium binding experiments 

were performed under similar conditions to those used in the affinity chromatography assays 

(temperature, pH, ionic strength of the buffer and competitive ligand), in order to 

understand the biomolecular interactions occurring between ligands and pre-miR-29b. Several 

buffers were studied to determine which are suitable to be used with RNA allowing the 

establishment of interactions involved in miRNA purification, namely (i) 10 mM Tris-HCl, pH 

8.0; (ii) 10 mM and 100 mM HEPES buffer, pH 7.4; (iii) 10 mM and 50 mM phosphate buffer, pH 

8.0; (iv) 10 mM MOPS, pH 8.0; (v) 280 mM and 500 mM NaCl in 10 mM Tris-HCl, pH 8.0; (vi) 

200 mM NaCl supplemented with 8 mM L-arginine in 10 mM Tris-HCl, pH 8.0 and, finally, (vii) 

200 mM NaCl supplemented with 10 mM L-lysine in 10 mM Tris-HCl, pH 8.0. As previously 

mentioned, two different temperatures, 4 and 20ºC, were also investigated to address their 

influence on the interactions. To correct the bulk refractive index background, the signal 

obtained for the reference surface was subtracted from sensorgrams for the amino acid 

immobilized on cell surfaces. In addition, subtraction of the blank injection responses 

(running buffer without pre-miR-29b) was performed prior to each collection of binding data 

following exactly the same time course as the runs with pre-miR-29b. The equilibrium 

dissociation constants (KD) were determined by averaging of the resonance unit values (RU) in 

the plateau region of the sensorgrams (300 to 400 sec) to an affinity model, [Req]=Rmax−(1/(1+ 

KD/[A]), where Req represents the amount of analyte complexed with the ligand on the 

surface, [A] is the analyte concentration, and Rmax is the maximum binding capacity of the 

surface. Rmax was also determined by the previous mathematical model. All data processing 

and analyses were performed in BIAevaluation software v.4.1. 

 

Structural analysis of pre-miR-29b samples by Circular Dichroism (CD) 

CD was used to monitor the structural behavior of pre-miR-29b (50 μg/mL) when subjected at 

different buffer conditions. CD spectra were obtained using a quartz rectangular cell with an 

optical path length of 0.1 cm at a constant temperature of 25ºC, in a Jasco J-1850 

Spectrophotometer (Jasco, Easton, MD, USA). Spectra were recorded from 320 to 215 nm at a 

scan speed of 10 nm/min and a spectral bandwidth of 1 nm. All measurements were 

conducted under a constant nitrogen gas flow, to purge the ozone generated by the light 

source of the instrument. The data were collected in triplicate and the average spectra are 

presented for each sample after subtraction of the buffer contribution. The CD signal was 

converted to molar ellipticity. Noise in the data was smoothed using Jasco J-1850 software, 

including the Fast Fourier transform algorithm, which allows enhancement of most noisy 

spectra without distorting their peak shape.  
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Results and Discussion  

MiRNAs represents an important target of a wide analysis, particularly relevant, in the 

diagnostic of several disorders, as well as in basic and applied science research. For this 

reason, the preparation of highly purified miRNAs in large quantity arises as one of the most 

important challenges in the development of therapeutic strategies based on the use of 

miRNAs.29 In this study, pre-miR-29b biosynthesis was obtained from a cell culture of 

recombinant Rhodovulum sulfidophilum DSM 1374 strain in a standard bacterial culture.15 

However, the RNAs obtained from this culture need to be further purified in order to isolate 

the target pre-miR-29b from other host sRNAs. Thus, pre-miR-29b isolation was achieved 

using an increasing sodium chloride gradient in L-arginine-affinity chromatography, as 

described by Pereira and co-workers.14 The quality of the pure pre-miR-29b stock solution was 

examined by polyacrylamide gel electrophoresis, as shown in Fig. 1. In affinity 

chromatography, elution strategy can be performed either specifically, using a competitive 

agent, or non-specifically, by changing the pH, ionic strength or polarity of the buffer.  

 

Figure 1 – Polyacrylamide gel electrophoresis analysis of pure pre-miR-29b samples. Lane S, 

Initial sample; Lanes 1, transfer RNAs; Lane 2, pre-miR-29b; Lane 3, pre-miR-29b plus transfer 

RNAs. 

 

Hence, this SPR study was developed in order to characterize the interactions between pre-

miR-29b and L-arginine and L-lysine as biospecific ligands. For this purpose, changes in the 

elution buffer composition, ionic strength or temperature were performed in order to observe 

their effects on biomolecular interactions. The amino acids L-arginine and L-lysine were 

chosen because they are conserved amino acids in the active center of the Argonaute protein, 

which is part of the RNA-induced silencing complex (RISC), suggesting that they have an 

important role in the cellular recognition of the 3' overhang of the pre-miRNA.30,31 So, it is 

expected that this biorecognition can be exploited to implement a chromatographic 

purification methodology for pre-miR-29b. Initially, L-arginine and L-lysine were immobilized 

on CM5 sensor chip via amine coupling chemistry at pH 8.5 (below their isoelectric point), as 
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described by Cruz and collaborators.19 This protocol of immobilization ensures that the 

guanidine functional groups (ε-amino group) of L-arginine and L-lysine are positively charged 

and the α-NH2 group is attached to the reactive ester groups of the chip. All SPR equilibrium 

data were fitted to a steady state bimolecular interaction model. The SPR binding profile 

(square-shaped) was identical for all complexes and some were exemplified in Fig. 2. 

 

 

Figure 2 - SPR analysis of pre-miR-29b interaction with L-lysine ligands in different buffers, at 

4 and 20ºC. Sensorgrams and equilibrium-binding analysis: (a) 10 mM Tris-HCl buffer (4ºC), (b) 

10 mM MOPS (20ºC) and (c) 10 mM HEPES (20ºC). 

 

Biomolecular Interactions between pre-miR-29b and L-arginine  

Recently, our research group has demonstrated the potential of the arginine amino acid in 

the purification of RNA, suggesting that the binding mechanism involves multiple non-

covalent interactions with RNA, due to its ability to interact in different conformation 

arrangements, the length of its side chain, the guanidine functional group and its ability to 

produce hydrogen bond geometries.12,17,32 Thereby, since RNA is negatively charged due to the 

phosphate groups in the backbone, it is easy to predict favorable electrostatic interactions 

between RNA phosphate groups and L-arginine. 

Interestingly, the SPR sensorgrams obtained with L-arginine ligand, present response profiles 

in shaped of square, indicating rapid dissociation (450 sec), i.e., the binding assays suggest 

that pre-miR-29b biomolecules interact with the immobilized L-arginine, and that these 

interactions are reversible. The KD values are listed in Table 1. At 20ºC, in the range of 

concentrations tested, SPR responses for L-arginine-pre-miR-29b were obtained in Tris-HCl, 

NaCl and NaCl supplemented with L-lysine buffers. The equilibrium dissociation constants 

demonstrate that Tris-HCl (10 mM) promote lower ligand−analyte affinity (KD = 
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5.11x10−6±4.4x10−7 M) when compared with the values obtained for NaCl (KD = 4.06x10-

7±3.5x10−8 M). In fact, in chromatography, the Tris-HCl buffer can be used to promote the 

retention of total small RNAs onto the L-arginine support, but the application of NaCl in the 

binding buffer is responsible for the higher selectivity towards the target miRNA. On the other 

hand, negligible (≤ 5 RU) non-specific binding was detected when using the following buffers: 

phosphate (10 and 50 mM), HEPES (10 and 100 mM) and MOPS (10 mM), regardless of their 

concentration, indicating that L-arginine do not interact with pre-miR-29b under these 

conditions (data not shown). 

In contrast, the ionic strength of buffer (10 mM Tris-HCl supplemented with NaCl) has a 

significant effect on the binding of pre-miR-29b. The SPR response to the pre-miR-29b 

solution in 500 mM NaCl was very low (< 5 RU), implying that the chromatographic binding 

and elution of pre-miR-29b may be manipulated with this parameter. In the sensorgrams was 

notorious the dissociation in the first 100 sec using 500 mM NaCl (data not shown), indicating 

that the high content of NaCl results in the loss of pre-miR-29b binding. Our results also 

revealed that when a moderate salt concentration (280 mM NaCl) is used, high binding 

responses were obtained (KD = 4.06x10-7±3.5x10−8 M). In general, the affinity of the pre-miR-

29b with the L-arginine surface was high (KD ≥ 10−6 M) at 20ºC. These results may be 

correlated with the chromatographic experiments, where the total retention of pre-miR-29b 

could be achieved using a low concentration of NaCl (280 mM) and high concentrations (500 

mM NaCl) lead to its elution.14 Besides, the salt concentration can also have a positive effect 

on RNA folding as well as on the stabilization of non-covalent RNA–amino acid interactions 

during the purification, once the salt allows the single-stranded nucleic acid molecules to 

form stable hydrogen bonds between their complementary bases. In this case, the 

chromatographic interaction was promoted by using a low ionic strength buffer and the 

selective elution of the bound species was achieved by increasing the NaCl concentration.14 

Moreover, it was verified that the pre-miR-29b was eluted at a higher ionic strength, 

indicating a stronger interaction than other contaminants. We also evaluated the influence of 

a competing agent (L-arginine and L-lysine) in the buffer, as a way to conclude about the use 

of these amino acids to promote binding or elution of the pre-miR-29b to the L-arginine 

ligand. The experiments were carried out using different concentrations, from 8 to 19 mM of 

L-arginine and 10 to 16 mM of L-lysine in the 200 mM NaCl buffer. However, for the highest 

concentrations it was not verified the binding of pre-miR-29b to the L-arginine ligand (results 

not shown). In these experiments, it was only obtained a binding response for the condition of 

10 mM of L-lysine in 200 mM NaCl (KD = 3.53x10-6±1.9x10-7 M), while 8 mM of L-arginine 

resulted in a negligible (≤ 5 RU) sensor response to the pre-miR-29b solution. This result is in 

accordance with some evidences obtained in L-arginine-affinity chromatography, once this 

condition can be used to the pre-miR-29b elution, as it functions as a competitive agent. This 

behavior can be due to the positive character of these amino acids that promotes the binding 

of pre-miR-29b to the free amino acid present in the buffer by electrostatic interactions, 
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inducing the elution of bound pre-miR-29b. Moreover, the results suggest that the elution of 

bound pre-miR-29b can be more effective when using L-lysine in the buffer. As demonstrated 

in Table 1, the KD value for 10 mM L-lysine is higher than the value obtained at 280 mM NaCl, 

indicating that the affinity of pre-miR-29b to the L-arginine ligand is higher for the 280 mM 

NaCl condition, and lysine is expected to weaken the interaction.  

Considering that RNA is an unstable molecule and has a very short half-life once extracted, 

the effect of temperature in the miRNA-arginine binding is a critical parameter in RNA 

purification.33 In contrary to the results achieved for the temperature of 20ºC, at 4ºC it was 

only found SPR response for L-arginine and pre-miR-29b using 10 mM Tris-HCl buffer. The 

dissociation constants for Tris-HCl are of the same order of magnitude at 20 and 4ºC (KD = 

1.34x10-6±2.3x10-7 M), but a slightly higher affinity was found for 4ºC, suggesting stronger 

interactions at lower temperatures. Non-specific binding (≤ 5 RU) was detected when using 

the other buffers, regardless their concentration, indicating that no significant interactions 

occur between pre-miR-29b and L-arginine ligand in these conditions (data not shown). The KD 

values obtained are consistent with the chromatographic results previously reported by 

Pereira and collaborators14, where the pre-miR-29b retention in the L-arginine-agarose 

support was higher for the lowest temperature studied (4ºC), suggesting that the temperature 

is a critical factor in the binding pre-miR-29b.  

Summarizing, the affinity order of pre-miR-29b to L-arginine was 280 mM NaCl > 10 mM Tris-

HCl ≈ 10 mM L-lysine in 200 mM NaCl, with NaCl promoting the highest affinity for the pre-

miR-29b to the L-arginine surface. Hence, this comparative study reinforces the idea that the 

binding mechanism inherent to the biorecognition between the L-arginine amino acid and pre-

miR-29b molecules can result from the combination of several phenomenological interactions 

such as electrostatic interactions, multiple hydrogen bond and van der Waals forces.17 Thus, 

it is reasonable to suggest that the retention of RNA in L-arginine is due to its side chain, 

which can promote multi contacts with RNA backbone or bases, according to RNA 

folding.32,34,35 Additionally, recent studies with saturation transfer difference-nuclear 

magnetic resonance spectroscopy and SPR reported that guanine polynucleotides interact 

preferably with L-arginine through the sugar-phosphate backbone.18,19 Thus, another 

explanation for these findings is related with pre-miR-29 structural features that seem to be 

relevant on its distinct retention behavior in the arginine ligand. Pre-miR-29b is a small RNA 

molecule with a stem-loop shape consisting of two long irregular double-stranded stem 

regions, which are interrupted by a largely single-stranded internal loop. In addition, along 

the bulge of pre-miR-29b and through the continuous stem sequences there are several 

guanines, which were described to interact preferably with arginine. Hence, the nucleotide 

bases composition and exposure can also favor other biomolecular interactions, responsible 

for the specificity and biorecognition found in the L-arginine ligand. 

 

 



 

 150 

Table 1 – Equilibrium analysis of the pre-miR-29.

    Buffers    

  
Tris-HCl 
(10 mM) 

MOPS 
(10 mM) 

HEPES 
(10 mM) 

NaCl 
(280 mM) 

L-arginine 
(8 mM) 

L-lysine 
(10 mM) 

L-arginine 

20ºC 5.11×10-6±4.4×10-7 - - 4.06×10-7±3.5×10-8 - 3.53×10-6±1.9×10-7 

4ºC 1.34×10-6±2.3×10-7 - - - - - 

L-lysine 

20ºC 3.24×10-7±4.6×10-8 1.74×10-5±4.1×10-6 2.47×10-5±6.6×10-6 9.96×10-7±3.5×10-8 2.08×10-6±4.4×10-7 2.28×10-6±6.3×10-7 

4ºC 8.76×10-6±6.8×10-7 2.31×10-5±3.1×10-6 3.95×10-6±1.5×10-7 - - - 
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Biomolecular Interactions between pre-miR-29b and L-lysine 

Previous studies have shown that the main interactions occurring between nucleic acids and 

the L-lysine amino acid are electrostatic, because of its amine groups.36-38 Moreover, L-lysine 

has also some characteristics, such as the lateral side chain with significant length and ability 

to interact with several RNA classes even in different conformational rearrangements, which 

may produce hydrogen bond geometries, reinforcing the establishment of multiple non-

covalent interactions involved in the specific recognition mechanism of nucleic acids.38 

Indeed, besides the multiple interactions (electrostatic interactions, van de Waals forces and 

hydrogen bonds) that L-lysine can establish with the RNA backbone or with the more exposed 

bases, several sRNAs can also interact and be recognized by the presence of hydrophobic 

interactions with the aliphatic portion of L-lysine side chain.15 Considering this complex 

biorecognition mechanism, it is important to study the influence of experimental conditions 

on the interaction occurring between pre-miR-29b and L-lysine amino acid, resulting in 

different binding affinities. It was verified that pre-miR-29b binds more strongly to L-lysine in 

10 mM Tris-HCl and 280 mM NaCl at 20ºC (KD = 3.24x10-7±4.6x10-8 M and KD = 9.96x10-7±3.5x10-8 

M, respectively) than in 10 mM HEPES (KD = 2.47×10−5±6.6×10−6 M) or 10 mM MOPS buffers (KD = 

1.74×10−5±4.1×10−6 M). In fact, these findings are in agreement with the results reported in 

the literature, where Tris-HCl buffer is commonly used to promote the binding of RNA to L-

lysine. Negligible binding (≤ 5 RU) was detected when the following buffers were used: 

phosphate (10 mM and 50 mM) and HEPES (100 mM), indicating that pre-miR-29b has no 

affinity to L-lysine under these conditions. Similarly to the results obtained to L-arginine, the 

ionic strength of buffer (10 mM Tris-HCl supplemented with NaCl or with amino acids) has an 

effect on the binding of pre-miR-29b to L-lysine. Our findings demonstrate that when high 

concentrations of salt (500 mM NaCl) or amino acids are used, no binding responses of pre-

miR-29b are observed and, consequently, these conditions can be used for the elution of the 

target biomolecule in chromatography. The addition of 10 mM of L-lysine in 200 mM NaCl 

resulted in a binding response characterized by KD = 2.28x10-6±6.3×10−7 M and the 

supplementation with 8 mM of L-arginine in 200 mM NaCl resulted in a KD = 2.08x10-6±4.4×10−7 

M. Although these concentrations of competing agents induce binding of pre-miR-29b, the 

interaction is weaker when compared with Tris-HCl. Briefly, the affinity order for pre-miR-

29b binding to L-lysine was 10 mM Tris-HCl ≈ 280 mM NaCl > 10 mM L-lysine ≈ 8 mM L-arginine 

in 200 mM NaCl > 10 mM HEPES ≈ 10 mM MOPS, thus Tris-HCl and NaCl buffers induced the 

greater affinity to L-lysine surface, followed by HEPES and MOPS (Table 1).  

In this study it was also evaluated the effect of decreasing the temperature to 4ºC on the 

binding of pre-miR-29b to the L-lysine surface, comparing with the binding at 20ºC. The 

binding responses is similar to that obtained at 20ºC, illustrating that the interactions 

between L-lysine and pre-miR-29b also occur under these conditions. However, some 

differences were found in KD values determined at 4ºC (3.24x10-7 M to 8.76x10−6 M for 10 mM 

Tris-HCl; 2.47x10-5 M to 3.95x10−6 M for 10 mM HEPES and 1.74x10−5 to 2.31x10−5 M for 10 mM 
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MOPS, at 20 and 4ºC, respectively). In general, the KD values obtained are consistent with the 

chromatographic results, which the lowest temperature studied induced higher pre-miR-29b 

retention onto the L-lysine-agarose support (data not shown). Globally, these results can also 

be related with the pre-miRNA structure, which presents continuous stem sequences mostly 

containing guanines that are described to preferentially interact with L-lysine due to hydrogen 

bonds that are established with one of the donor atoms.39,40  

Briefly, to compare the salt influence on the binding of pre-miR-29b to the L-arginine and L-

lysine surfaces, several buffers were analyzed. In general, the maximum RU signal was higher 

for the L-lysine than for the L-arginine surface (Fig. 3).  

 

 

Figure 3 - Relative resonance response (RU) with different running buffers at 450 s after 

injection of pre-miR-29b at a concentration of 1.25 μM, at 20ºC, in L-arginine and L-lysine 

surfaces. 

 

The experiments showed a low resonance response level with both surfaces (normalized 

signal). It was found that the maximum binding between pre-miR-29b and immobilized L-

arginine and L-lysine was observed in 280 mM NaCl, followed by 10 mM Tris-HCl, whereas the 

lowest binding was observed in 200 mM NaCl supplemented with 8 mM L-arginine or 10 mM L-

lysine, 10 mM HEPES and 10 mM MOPS (Fig. 3). Thus, our affinity data show that Tris-HCl and 

NaCl are optimal buffers for interaction assays and distinct buffer environments such as MOPS 

or HEPES did not enhanced the binding to L-arginine and L-lysine. Overall, these results 

provide suitable conditions to induce pre-miRNA binding, thereby increasing the selectivity 

and improving efficient microRNA separation. It was also proved that under these conditions 

(ionic strength and buffer composition) the electrostatic interactions are favored between 

the amino positive groups of the L-arginine and L-lysine and the negative phosphate groups of 

the pre-miR-29b, mainly with guanosine.  

These results demonstrated that SPR allows making a screening of ligands that, like the ones 

described herein, can be used to design and implement novel miRNA purification methods. 
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Pre-miR-29b structural analysis  

Both ligands promoted the biorecognition of pre-miR-29b as well as an effective interaction 

for most conditions studied. To select the buffer that is able to enhance the pre-miR-29b 

binding to the amino acids ligands and to evaluate the effect of the different conditions in 

the pre-miR-29b structural stability, four buffers were analyzed (Tris-HCl, HEPES buffer, 

MOPS, phosphate buffer) by circular dichroism (CD) spectroscopy. Thus, structural 

characterization of the pre-miR-29b under different experimental conditions give additional 

information about the interactions with the ligands and also about the suitable conditions 

that must be used in chromatographic procedures to purify the target biomolecules while 

maintaining its stability and biological activity. CD technique offers good resolution, provides 

sensitive spectra and it has been widely used in structural determination of biomolecules 

(proteins, nucleic acids, etc.). Quantitative analysis of CD spectra is possible, but, as with any 

assay, the correct and proper interpretation of the results depends on an accurate 

understanding of the procedure. The spectra in Figure 4 are given in terms of molar ellipticity 

thus making it possible to directly compare the intensity of the bands obtained for different 

samples. CD spectra of the pre-miR-29b show characteristic peaks around 210 nm (negative 

maximum signal) and 265 nm (positive maximum signal). The comparison with the CD 

spectrum of established nucleic acids structures confirms that the pre-miRNA possesses a 

stem-loop structure because the CD spectral pattern typically indicates the B-form RNA 

duplex.15,41 Although, CD is not sensible to detect the contamination of other cytosol 

containing miRNAs, it is sensible to detect the contamination of other biomolecules. 

However, the pre-miR-29 subjected to this analysis has a purity of 98%, and it is unlikely that 

the sample is contaminated, being not expected changes in the CD spectra resulting from 

contamination. 

In Figure 4 are shown the CD spectra resulting from the evaluation of pre-miR-29b in four 

buffers, after an initial 15 min incubation in Tris-HCl buffer (10 mM) and HEPES (10 mM). The 

CD spectra of the pre-miRNA sample in Tris-HCl and HEPES show typical CD spectrum of RNA, 

with a positive band at 265 nm and a negative band at 210 nm, similar to the obtained with 

DEPC water. However, a significant difference in the bands magnitude of the pre-miR-29b 

spectra was found (Figure 4). 
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Figure 4 - Circular Dichroism spectra of the pre-miR-29b. 

 

These results are consistent with the responses obtained with SPR, suggesting that Tris-HCl is 

a valuable choice for promoting pre-miRNA−L-arginine/lysine binding interactions in future 

applications. In the presence of HEPES or MOPS, the electrostatic interaction between the L-

arginine and L-lysine surface and the pre-miR-29b backbone could be more favored, since 

these buffers at neutral pH are a zwitterionic molecule with a positive charge on one of the 

protonated nitrogens. This can reduce the repulsive electrostatic interaction between 

charged phosphate groups of pre-miR-29b, stabilizing the pre-miRNA molecule and favoring 

the interaction with the amino acids. By analyzing the CD spectra of pre-miR-29b in MOPS (10 

mM), it is visible a decrease of intensity of the positive band as well as the negative band. By 

the CD spectra analysis of Figure 4, it is evident a strong modification in the RNA structure for 

the phosphate buffer. This data can also justify why pre-miR-29b molecules don’t interact 

with the L-arginine or L-lysine supports in the presence of phosphate buffer due to the 

increase of the repulsions with the pre-miR-29b backbone. In contrast, in the presence of salt 

(280 mM NaCl), phosphate groups of the pre-miR-29b backbone are effectively screened by 

the salt counterions resulting in a more compact and less regular structure. The data 

obtained from SPR can play an important role in the optimization of chromatographic-based 

purification processes since it allows the determination of which buffers favor interactions of 

the target biomolecule with the chromatographic support. Moreover, the conjugation with 

the CD technique allows the confirmation of which buffers are able to maintain the stability 

of the miRNA. 
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Conclusions 

The binding affinity quantification between pre-miR-29b and L-arginine and L-lysine surfaces 

was examined by SPR technique, under different conditions, in order to mimic the 

immobilized ligand onto an affinity chromatographic support, and to verify the effect of these 

conditions on the interactions and stability of the molecule. Therefore, several experimental 

conditions for amino acids ligands-pre-miR-29b binding were characterized, and an optimal 

set of buffers as well as temperature conditions were defined. Distinct buffers affected the 

interaction strength with an increased response in presence of Tris-HCl and NaCl. These 

results provide suitable conditions to induce pre-miRNA binding, thereby increasing the 

selectivity and improving efficient miRNA separation. The predominant interactions of pre-

miR-29b with L-arginine and L-lysine ligands are ionic between the amino positive groups of 

the L-arginine and L-lysine and the negative phosphate groups of the pre-miR-29b and 

hydrogen bonds with the more exposed bases, mainly with guanosine. Overall, the present 

study showed that SPR can be used as a first technique to screen, manipulate, determine and 

establish the best binding/elution conditions that can lead to an improved performance and 

selectivity of the chromatographic process. In addition, it was demonstrated that although 

some conditions used in chromatographic experiments favor multiple interactions between 

the pre-miR-29b and the respective ligand (L-arginine and L-lysine), these conditions can 

affect the structural stability of the target molecule. From CD, it was possible to conclude 

that the biorecognition observed by the pre-miR-29b can be related to the higher availability 

and base exposition, which confers a different conformational structure of this molecule. 

Moreover, the highest equilibrium dissociation constants determined by SPR ranged from 10−6 

to 10−7 M to L-arginine and from 10−5 to 10−7 M to L-lysine, indicating that pre-miR-29b showed 

high binding affinity on these surfaces. In addition, the results obtained in this study, provide 

valuable and relevant information that can be further applied in unveiling the miRNA 

chromatographic behavior in these systems, in order to improve the binding of the pre-miR-

29b onto the amino acids-based supports, preserving their structural stability, integrity and 

activity. In conclusion, it was proved that the association of these two techniques might be a 

powerful strategy to define the best conditions to be applied in the miRNA purification. 
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Short description: This article describes a new strategy employing a lysine-agarose support to 

efficiently separate recombinant pre-miR-29b from a complex mixture containing small RNAs. 

Besides this novelty, it is further described for the first time the use of ammonium sulfate in 

this matrix for the purification of nucleic acids. Overall, it was verified that lysine ligand can 

promote a specific interaction with the pre-miR-29b, thus favoring its isolation and 

purification. 
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a  b  s  t  r  a  c  t

miRNA-based  gene  therapy  applications  require  microRNA  with  high  purity  degree,  good  quality  and
biologically  active.  Owing  to the  commercial  interest  in  these  approaches,  there  is a  growing  interest  in
the  development  of innovative  procedures  to easily  and  efficiently  purify  the RNA.  Thus,  several  chro-
matographic  and non-chromatographic  methods  have  been  reported  to  accomplish  this  purpose,  but  not
all  of these  strategies  allow  the  efficient  separation  of miRNAs.  The  present  study  describes  a  new strategy
that  uses  a  lysine  ligand  in  affinity  chromatography  to  efficiently  separate  pre-miR-29  from  a small  RNAs
mixture.  The  interest  on  this  biomolecule  is  related  to the  fact that  pre-miR-29  deficiencies  or  excesses
have  been  associated  to a number  of  clinically  important  diseases.  The  retention  behaviour  of  pre-miR-29
was  characterized  and adjusted  to  achieve  higher  specificity  in this  chromatographic  operation,  using  an
ammonium  sulfate  stepwise  gradient.  Overall,  it was  verified  that  lysine-agarose  support  can  promote  a
specific  interaction  with  the  pre-miR-29  favouring  its  total  separation.  The  results  also  suggest  that  the
underlying  mechanism  involves  biorecognition  of  pre-miR-29  by  the lysine  ligands,  resulting  from  the
occurrence  of  different  elementary  interactions,  including  hydrogen  and  hydrophobic  interactions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Currently, microRNA (miRNA) is considered a powerful biolog-
ical material that is directly involved in performing or controlling
many biological functions [1]. Thus, understanding the role of sev-
eral miRNAs present in cellular processes is critical to develop
new diagnosis methods or drugs for comprising and treating ill-
ness. Recently, differential expression of miRNAs, in patients with
Alzheimer’s disease (AD) suggests that they might have key reg-
ulatory roles in this neurodegenerative disease [2]. Hebert and
collaborators showed that miR-29 is potentially involved in the
regulation of �-amyloid precursor protein-converting enzyme 1
(BACE1) expression because in vitro studies revealed that miR-
29 cluster was significantly decreased in AD patients displaying
abnormally high BACE1 protein levels, leading the generation and
subsequent accumulation of �-amyloid [3]. These findings raised
the possibility to use miR-29 as a potential therapeutic target for
AD therapy. In fact, miRNAs play a prominent role in the posttran-
scriptional regulation of gene expression, since it prevents protein
synthesis by inducing the messenger RNA degradation, with a high
specificity degree [3]. Nevertheless, to get pre-miR-29 as a suitable

∗ Corresponding author. Tel.: +351 275 329 074; fax: +351 275 329 099.
E-mail address: fani.sousa@fcsaude.ubi.pt (F. Sousa).

product for therapeutic applications it is necessary to guarantee
its purity, stability and integrity. Regardless of the principle of
RNA isolation used, purification protocols have a number of com-
mon requirements, because it is a critical process due to the high
risk of RNA degradation during the procedure, by the presence of
RNA degrading enzymes, once RNA molecule is very susceptible to
chemical and enzymatic degradation [4].

Hence, several kits are commercially available for miRNA iso-
lation from a diverse variety of samples; these methods allow the
separation of miRNAs from high molecular weight RNA [4]. Further-
more, there are several chromatographic methods reported in the
literature for the purification of the RNAs [5,6]. In these methods,
different tags are introduced into RNA molecules, which subse-
quently have to be released from the chromatographic support by
competitive elution or cleaved off by a protease [5,6], which may
induce conformational changes in RNA and are expensive proce-
dures. The approach to overcome these limitations includes the
recent development, by our research group, of an affinity chro-
matographic (AC) method with amino acids as specific ligands,
applied for plasmid DNA [7–9] and RNA [10] purification allowing
an improvement in the purification technologies since this tech-
nique exploits natural biological processes of specific recognition
of the target biomolecules [11].

In this study, a lysine-agarose support was  tested to purify pre-
miR-29 from a complex mixture containing small RNAs (sRNAs)

0021-9673/$ – see front matter ©  2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.chroma.2014.01.033

161



130 P. Pereira et al. / J. Chromatogr. A 1331 (2014) 129– 132

of Rhodovulum sulfidophilum. In 1978, Jones et al. [12] employed
the lysine ligand to separate RNA species with different molecular
weights, using a linear gradient of sodium chloride (NaCl). Building
on these considerations, it is interesting to verify if the lysine matrix
may contribute to the separation of pre-miR-29 and to understand
the interaction mechanism underlying the specificity of the sup-
port that allowed a biorecognition of the pre-miR-29. Therefore,
this matrix allowed the efficient isolation and purification of pre-
miR-29 from the other sRNAs. These findings will strengthen the
possibility of using lysine-affinity chromatography as a potential
enabling technology in the downstream process of pre-miRNA for
therapeutic applications.

2.  Materials and methods

2.1.  Pre-miR-29 production and purification

The pre-miR-29 used in the experiments was produced by a cell
culture of Rhodovulum sulfidophilum DSM 1374 strain (BCCM/LMG)
modified with the plasmid pBHSR1-RM [13] containing the
sequence of pre-miR-29. Growth was carried out at 30 ◦C, using
Nutrient Broth medium (1 g/L beef extract; 2 g/L yeast extract; 5 g/L
peptone and 5 g/L NaCl) supplemented with 30 �g/mL kanamycin.
sRNA was extracted using the acid guanidinium thiocyanate-
phenol-chloroform method based on the protocol described by
Martins et al. [10]. Chromatographic experiments were performed
in an ÄKTA Avant system with UNICORN 6 software (GE Health-
care). A 10 mm diameter × 20 mm long (about 2 mL)  column was
packed with Lysine-agarose matrix (GE Healthcare). All solutions
were freshly prepared using 0.05% diethyl pyrocarbonate (DEPC)-
treated water and were filtered through a 0.20 �m pore size
membrane. Chromatographic runs were performed at 20 ◦C. The
column was first equilibrated with 2.0 M of (NH4)2SO4 in 10 mM
Tris buffer (pH 8.0). sRNAs samples (40 �g) were applied onto the
column using a 100 �L loop at a flow-rate of 1 mL/min. After the
elution of unbound species, the ionic strength of the buffer was
decreased to 1.5 and 1.1 M of (NH4)2SO4 and then to 10 mM Tris
buffer (pH 8.0). The absorbance of the eluate was continuously
monitored at 260 nm.  Fractions were pooled according to the chro-
matograms obtained, and following concentration and desalting
with Vivaspin concentrators. The integrity of pre-miR-29 samples
was analyzed by vertical electrophoresis with 10% polyacrylamide
gel [10].

2.2. PCR analysis

Pre-miR-29 identification was assessed using polymerase chain
reaction (PCR). cDNAs synthesis was performed using RevertAid
First Strand cDNA Synthesis Kit (Fermentas), according to manu-
facturer’s instructions. A total of 0.5 �g of RNA samples collected
from the chromatographic purification process with lysine–agarose
column was used to initiate cDNA synthesis, which was  denatured
for 5 min  at 65 ◦C with 20 pmol of gene-specific primer (5′ GAC
AGC GGT ATG ATC CCC CAA 3′). Then, PCR reactions were carried
out using 1 �L of cDNA in a 25 �L reaction containing 0.125 U of
Supreme DNA polymerase (NZYtech) and 150 nM of each primer.
Specific primers for cDNA, designed from RNA database informa-
tion, were used to amplify a fragment of 145 bp (Fw – GGA AGC
TGG TTT CAT ATG GTG and Rv – CCC CCA AGA ACA CTG ATT TC).
PCR was conducted as follows: denaturation at 95 ◦C for 5 min, fol-
lowed by 40 cycles at 95 ◦C for 30 s, 63 ◦C for 30 s and 72 ◦C for 15 s,
and a final elongation step at 72 ◦C for 5 min. To confirm the pres-
ence and purity of amplicons, PCR products were analyzed using 1%
agarose gel electrophoresis [14]. The DNA molecular weight marker
was obtained from Vivantis Technologies.

3.  Results and discussion

In  the present study, the applicability of lysine-affinity chro-
matography in the RNA downstream process was  exploited, to
purify pre-miR-29 from a sRNA complex mixture. The lysine amino
acid was  studied due to the fact of being conserved in the active cen-
tre of the PAZ domains of the Argonaute proteins, suggesting that it
has an important role in the specific recognition of the pre-miRNA
after which occurs the degradation of mRNA [15]. In this work, it
was produced a pre-miRNA instead of the mature miRNA consid-
ering their structural characteristics, specifically the single chain
with ∼100 nucleotides, being some unpaired in the 3′ overhang,
which will possibly facilitate the purification, due to the higher
bases exposure [16]. Previous published studies, have shown that
the main interactions between nucleic acids [12,17] and the lysine
amino acid are ionic, because of its amine groups. Thus, initial
experiments were performed to choose the best binding/elution
strategy for pre-miR-29 using a gradient of NaCl. However, under
these conditions the RNA binding was not effective and the selec-
tive purification of pre-miRNA was not possible to be achieved (data
not shown). Therefore, a different strategy was  used to promote the
RNA binding. In a first step, lysine-agarose column was  equilibrated
with 2 M (NH4)2SO4 in 10 mM Tris buffer (pH 8.0). After injection of
the 40 �g of pre-miR-29 containing mixture, was obtained a peak
(Fig. 1A) where pre-miR-29 was  not detected (data not shown).
This can result either from the elution of unbound material that
presents a lower affinity to the matrix or by the alteration in the
ionic strength since the injected RNA sample is dissolved in H2O.
The ionic strength of the buffer was decreased to 1.5 and 1.1 M
(NH4)2SO4 in 10 mM Tris buffer (pH 8.0) in order to elute specific
molecules in a peak 2. The chromatographic run was  concluded
with a final elution step, using 10 mM Tris buffer (pH 8.0), to recover
the strongly bound species. The polyacrylamide gel electrophore-
sis was used to detect and identify different sRNAs species eluted
in each peak and assess of RNA integrity and purity (Fig. 1B). The
analysis of electrophoresis revealed that the peak 1 mostly cor-
responds to the transfer RNA (tRNA) (lane 1), while pre-miR-29
remained bound under the same conditions, being identified in the
peak 2 (lane 2). The electrophoretic evaluation of fractions recov-
ered from the peak 3 revealed the presence of other tRNAs (lane
3). Thus, the electrophoresis of all fractions pooled from the chro-
matographic experiment indicated that the pre-miR-29 eluted in
the peak 2 is pure. These findings suggest that the lysine ligand
distinguishes and differentially interacts with several RNA species
(Fig. 1) further suggesting a specific recognition of the pre-miR-29.
Moreover, the pores of the lysine-support are characterized with an
exclusion limit of >2 × 107 (∼872 base pairs), allowing the access
of sRNAs molecules (<150 nucleotides and M.W. ∼4.8 × 104) to the
immobilized ligands at the beads surface and inside the pores. pre-
miR-29 presents the shape of a stem-loop consisting of two  long
irregular double-stranded stem regions, which are interrupted by
a largely single-stranded internal loop. Along the bulge and through
the continuous stem sequences there are mostly guanines, which
are described to preferentially interact with lysine [18–20] due to
hydrogen bonds that are established with one of the donor atoms
of the lysine [19]. Thus, an increased retention of pre-miRNA with
inserts mainly constituted by guanine will be expected. Likewise,
the lysine amino acid has some characteristics, such as the lat-
eral side chain with significant length and ability to interact with
several RNA classes even with different conformational rearrange-
ments producing good hydrogen bond geometries, which reinforce
the specific recognition mechanism [19]. Between multiple interac-
tions (electrostatic interactions, van de Waals forces and hydrogen
bonds) that the lysine can promote with the RNA backbone or with
the more exposed bases, several sRNAs can also be recognized by
the presence of hydrophobic interactions [18] with the aliphatic
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Fig. 1. (A) Chromatographic profile of the pre-miR-29 purification from a sRNA mixture by lysine–agarose chromatography. Elution was performed at 1.0 mL/min by
decreasing (NH4)2SO4 stepwise gradient from 2 M (NH4)2SO4 to 10 mM Tris buffer (pH 8.0), as represented by the arrows. (B) Polyacrylamide gel electrophoresis of samples
collected at the column outlet. Fractions corresponding to peaks (1), (2) and (3) are shown in lanes 1-3, respectively. Lane S, sRNA sample injected onto the column.

portion of side chain [17], which can be intensified by the pres-
ence of (NH4)2SO4. Moreover, the salt concentration can also have
a profound positive effect on RNA folding as well as on the stabil-
ity of non-covalent RNA–amino acid interactions during the course
of purification [19,20], once the salt allows that single-stranded
nucleic acid molecules form stable hydrogen bonds between their
complementary bases.

The  conformational stability of the pre-miR-29 secondary struc-
ture was assessed using Circular Dichroism (CD) protocol described
by Pereira et al. [14] (data not shown). CD spectra of the pre-
miR-29 shows characteristic peaks around 210 (negative signal)
and 265 nm (positive signal), which, when compared with the
CD spectrum of established nucleic acids structures confirm that
the pre-miRNA possesses a stem-loop structure that is an intra-
molecular variant of the B-form and also contains a single-stranded
[21]. While the CD spectra of the sRNA shows characteristic fea-
tures of the A-RNA, a positive band around 260 nm was observed,
and a negative signal at 220 nm,  with approximately the same
intensity. Due to single-stranded, the duplex to stem-loop tran-
sition is usually accompanied by CD amplitude reduction when
compared with sRNA spectrum. Our results demonstrate that
isolation steps involved in the affinity procedure allowed the main-
tenance of the pre-miRNA stability. Considering the relevance of
obtaining pharmaceutical-grade pre-miR-29 is required further
characterization of quality parameters by spectrophotometry anal-
ysis, estimating the pre-miR-29 concentration (absorbance values
at 260 nm)  and purity (calculating the 260/280 ratio). The chro-
matographic process demonstrates an excellent performance in the
pre-miR-29 isolation, attaining a significant yield (11.80 ± 0.50 �g)
in the peak 2. In addition, pre-miR-29 pure has shown 260/280
ratio of 2.00 ± 0.01, which is often characteristic of a pure RNA
preparation [10]. The protein contamination level was  assessed by
micro-BCA assay (Thermo Fisher Scientific Inc.) in the RNA fractions
collected from the chromatographic peaks. This chromatographic
strategy provides a reduction of protein level present in the final
pre-miR-29 samples (2.613 ± 0.006 ng/�L). As it can be observed
from the electrophoretic analysis of the PCR products (Fig. 2), the
PCR reaction allowed the amplification of pre-miR-29 cDNA frag-
ments. No further amplification was seen in the control (lane C) or
in the peaks 1 (lane 1). The control was made of PCR reaction solu-
tions without cDNA. Therefore, it was verified that the identity of
the sRNA isolated from the original population was the pre-miR-29.

Fig. 2. pre-miR-29 identification by PCR. The agarose gel electrophoretic analysis
of  PCR products shows amplification of pre-miR-29 cDNA fragments. Lane M,  DNA
molecular weight marker; lanes C, negative control; lane 1, 2 and 3 corresponding
to  the three chromatographic peaks, respectively.

These analyses allowed the assessment of RNA quality, indi-
cating that the developed pre-miR-29 isolation methodology can
purify the target RNA from different RNA species with high yield,
purity and good integrity. Thus, the present data show the develop-
ment of an AC approach based on natural occurrence interactions,
between lysine and RNA species, resulting in the selective purifi-
cation of pre-miR-29 molecules, in the required conditions for
therapeutic applications. These results also demonstrate the ver-
satility of the lysine ligand in the RNA purification, since the
pre-miRNA can be purified with (NH4)2SO4 but classes of RNAs can
also be separated with NaCl [12]. The successful isolation of miRNA
species with high purity and quality is a step forward in RNA isola-
tion methodologies and can widely contribute to studies in several
RNA research fields.
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Short description: The lysine-affinity methodology reported in paper V for recombinant pre-

miR-29b purification was successfully developed and implemented. As a matter of fact, 

although pre-miR-29b was recovered with high purity, it is not compatible with clinical 

applications, reinforcing the need of implementing more selective methods for the 

purification of this biomolecule. Thus, in this paper, it is described a new affinity 

chromatography method using an arginine support to specifically and efficiently purify pre-

miR-29b from other small RNA species. Initially, it was characterized the behavior of pre-miR-

29b under the influence of different binding/elution conditions, such as increased sodium 

chloride, arginine or decreased ammonium sulfate stepwise gradients, in order to achieve 

higher efficiency and selectivity. The results obtained suggest that the underlying mechanism 

involves biorecognition of pre-miR-29b by the arginine ligand, resulting from the occurrence 

of different elementary interactions. In the elution strategies using sodium chloride or 

arginine, an improvement in the final pre-miR-29b yields was obtained, as well as high 

integrity and purity. Moreover, in this strategy the recovery of the pre-miR-29b was achieved 

under mild elution conditions in comparison with the ligand lysine. 
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a  b  s  t  r  a  c  t

Recently,  differential  expression  of microRNAs,  in  patients  with  Alzheimer’s  disease  (AD)  suggests  that
they  might  have  key  regulatory  roles  in this  neurodegenerative  disease.  Taking  into  account  this  fact,
several  studies  demonstrated  that the  miR-29  is  significantly  decreased  in AD patients,  also  displaying
abnormally  high  levels  of �-site  APP-cleaving  enzyme  1.  Thus,  RNA  biochemical  or  structural  studies
often  require  a RNA  sample  that  is chemically  pure  and  biologically  active.  The  present  work  describes
a  new  affinity  chromatography  method  using  an  arginine  support  to specifically  purify  pre-miR-29  from
other  Rhodovulum  sulfidophilum  small  RNA species.  Nevertheless,  in  order  to  achieve  higher  efficiency  and
selectivity,  it  is  essential  to characterize  the  behavior  of  pre-miR-29  binding/elution.  Thus,  three  different
strategies  based  on  increased  sodium  chloride  (280–500  mM),  arginine  (25 mM)  or  decreased  ammonium
sulfate  (2–0.1  M)  stepwise  gradients  are described  to purify  pre-miR-29.  In  this  way,  it was  proved  that
well-defined  binding/elution  conditions  are  crucial  to  enhance  the  purification  performance.  As a matter
of  fact,  by  employing  elution  strategies  using  sodium  chloride  or arginine,  an  improvement  in  the  final
pre-miR-29  yields  (96.5  and  56.7%,  respectively)  was  obtained.  Moreover,  the quality  control  analysis
revealed  high  integrity  in pre-miR-29  preparations  as well  as  high  purity  (90  and  98%,  respectively),
demonstrated  by  the  scarce  detection  of  proteins.  This  improved  method  takes  advantage  of  its  simplicity,
significant  cost  reduction,  due  to the elimination  of some  complex  operations,  and  speed  for  large-scale
purification  of  pre-miRNAs  suitable  for biochemical  and  structural  studies.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

MicroRNAs (miRNAs) constitute a class of small non-coding reg-
ulatory RNAs that act as key regulators of gene expression through
a highly conserved intracellular mechanism termed RNA interfer-
ence, involving the recognition and translational control of specific
messenger RNA (mRNA) [1]. MiRNAs are initially transcribed as
pri-miRNAs that are processed by Drosha into pre-miRNAs stem-
loop. Pre-miRNAs are then exported to the cytoplasm, where their
loops are removed by Dicer resulting into mature miRNAs. Finally,

Abbreviations: miRNA, microRNA; RNA, ribonucleic acid; mRNA, messenger
RNA;  RISC, RNA-induced silencing complex; AD, Alzheimer’s disease; A�, �-
amyloid; APP, �-amyloid precursor protein; BACE1, �-site APP-cleaving enzyme
1;  SPE, silica-based solid-phase extraction; PCR, polymerase chain reaction;
cDNA,  complementary DNA; AC, affinity chromatography; RNases, RNA degrading
enzymes;  tRNA, transfer RNA; sRNA, small RNA.
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miRNA is loaded onto the RNA-induced silencing complex (RISC)
toward the target mRNA, resulting primarily in degradation of
mRNA transcripts or repression of protein translation, depending
on the degree of sequence complementarity [2].

Several studies, over the last decade, have been published con-
cerning the expression of miRNAs in patients with Alzheimer’s
disease (AD), suggesting that these can play an important role in
the regulation of neurodegeneration. One major hallmark of AD is
the generation and subsequent accumulation of �-amyloid (A�)
through sequential cleavage of the �-amyloid precursor protein
(APP) by �-site APP-cleaving enzyme 1 (BACE1) and �-secretase
[3,4]. The regulation of the expression levels of proteins involved
in this A� generation process has demonstrated to be important in
AD. Hebert and collaborators showed that the miR-29 is potentially
involved in the regulation of APP and BACE1/�-secretase expression
because in vitro studies revealed that miR-29 cluster was signifi-
cantly decreased in AD patients displaying abnormally high BACE1
protein levels [5]. These findings raised the possibility to use miR-
29 as a potential therapeutic weapon for AD therapy.

For this reason, RNA represents an important target of a wide
collection of laboratory analyses, relevant, particularly, in the

1570-0232/$ – see front matter ©  2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jchromb.2014.01.020
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diagnostic of several disorders, as well as in basic research. As
a result, RNA purification is a critical first step of a multitude of
analytical techniques including real-time quantitative polymerase
chain reaction (PCR), microarray analysis, Northern blotting, in situ
hybridization, in vitro translation and cDNA library construction [6].
To provide relevant and reliable results, molecular biology tech-
niques used for such purposes require pure and intact molecules of
purified RNA. Consequently, there is a growing demand for com-
mercially available kits (e.g., Exiqon’s, Qiagen, Ambion, Promega
and Stratagene), which are designed to isolate miRNA molecules
from different biological sources with high quality, intactness and
purity for further analytical application or scientific need [6]. Most
of the existing kits use either silica-based solid-phase extraction
(SPE) technology or a magnetic-bead based extraction technol-
ogy whereby small RNAs (sRNAs) are separated from large RNAs
through their capacity to bind to the column [7,8]. Furthermore,
there are some chromatographic methods reported in the literature
for the purification of the sRNA molecules from high-molecular-
weight RNA [9–11] in attempting to overcome the limitations on
RNA purification. In these methods, diverse natural or in vitro
selected RNA aptamers sequences are inserted in RNA molecules
[8], which subsequently have to be released from the chromato-
graphic support by competitive elution or cleaved off by a protease,
which can affect the overall topology of the recombinant RNA con-
struct [12].

Commonly, miRNA-based therapy applications rely on the use
of synthetic miRNAs obtained by in vitro transcription and chemical
synthesis. Although these methods can be very efficient, they are
still expensive to be produced in large scale, limited with respect
to the length of oligonucleotides that can be synthesized and labor
intensive [12]. In addition, issues associated with the presence of
contaminants arising from synthesis still restrict the implemen-
tation of these oligonucleotides onto clinical applications, mostly
because the presence of impurities may  lead to non-targeted gene
silencing and are often associated with a decrease in therapeu-
tic effectiveness. Therefore, the requirement for the production
of highly purified and clinically suitable miRNAs in large quantity
arises as one of the most important challenges in the development
of therapeutic strategies based on this technology.

The pursue of highly selective, reliable and economical pro-
cesses capable of preparing therapeutic biomolecules with the
strict quality assurance has been accompanied by an improve-
ment in the downstream strategies that are based on affinity
chromatography (AC) [13]. Thus, the development of an affinity-
based methodology using amino acids as specific ligands have
recently led to an improvement in purification technologies, since
this technique exploits natural biological processes such as molec-
ular recognition for the selective purification of target biomolecules
[14–18].

Hence, the main goal of this work is to develop new method-
ologies for the RNA isolation that enable the pre-miR-29 recovery
with high integrity and purity, in view of the application in molec-
ular biology procedures, namely for gene expression analysis. To
accomplish this purpose, it was explored the possibility of using
arginine-AC to selectively isolate the pre-miRNA from Rhodovu-
lum sulfidophilum. This bacteria was selected as recombinant host
to biosynthesize the pre-miR-29, once it does not produce any
detectable ribonucleases (RNases) in the culture medium, main-
taining the stability of the RNA produced [19]. Thus, this fact
constitutes a great advantage since RNA is an instable molecule due
to its susceptibility to nucleases mediated degradation. The method
based on arginine-AC can be an attractive approach for the miRNA
purification process, since previous results from our research group
have demonstrated the potential of this amino acid in the purifi-
cation of RNA [20] and plasmid DNA [21–23], suggesting that the
binding mechanism involves phenomenological interactions like

biorecognition between arginine and nucleic acids. In addition,
arginine was chosen because it is a conserved amino acid in the
active center of the Argonaute protein [24], which is part of the
RISC complex. The binding/elution behavior of pre-miR-29 under
the influence of different environmental conditions, such as the
composition, the ionic strength of the elution buffer, and the tem-
perature were investigated. The study revealed several interesting
characteristics of RNA molecules, including their chromatographic
behavior and natural interactions that can occur between the argi-
nine support and pre-miRNA. These results support the interest in
applying amino acid-based AC to develop new pre-miRNA isolation
and purification processes. Therefore, this new affinity protocol for
miRNA isolation can offer advantages over other less-selective and
time-consuming multistep procedures and can improve process
economics. Moreover, some improvements over other chromato-
graphic techniques are expected because RNA recovery can be
achieved under mild elution conditions, suggesting the feasibility
of exploiting different affinity interactions between amino acids
and miRNA to develop an interesting bioseparation methodology.

2.  Materials and methods

2.1.  Materials

Arginine–Sepharose 4B gel was  acquired from Amersham Bio-
sciences, the guanidinium salt and all the chemicals used in the
lysis buffer were obtained from Sigma-Aldrich. Other compounds
used in the elution buffer were ammonium sulfate ((NH4)2SO4)
and sodium chloride (NaCl) purchased from Panreac and Tris from
Merck. All solutions were freshly prepared using 0.05% diethyl
pyrocarbonate (DEPC; Sigma-Aldrich) treated water and the elu-
tion buffers were filtered through a 0.20 �m pore size membrane
and degassed ultrasonically. The DNA molecular weight marker
was obtained from Vivantis Technologies. All the materials used
in the experiments were RNase-free.

2.2. Bacterial strain and growth conditions

The pre-miR-29 used in this study was  obtained from a cell
culture of R. sulfidophilum DSM 1374 strain (BCCM/LMG, Belgium)
modified with plasmid pBHSR1-RM [19] containing the sequence
of pre-miR-29. Growth was carried out in shaker flasks containing
100 mL  of Nutrient Broth medium (g per liter of deionized water:
beef extract, 1; yeast extract, 2; peptone, 5 and sodium chloride, 5)
supplemented with 30 �g/mL kanamycin in a rotary shaker at 30 ◦C
and 250 rpm under dark-aerobic conditions. Cell growth was  eval-
uated by measuring the optical density of the culture medium at
a wavelength of 600 nm after dispersing cell flocs by vortexing for
30 s. Cells were recovered by centrifugation and stored at −20 ◦C.

2.3. Lysis and small RNA isolation

Cells were lyzed and sRNA was extracted using the acid
guanidinium thiocyanate-phenol-chloroform method based on the
protocol described by Chomczynski and co-workers [25]. Bacterial
pellets were resuspended in 5 mL  of denaturing cell lysis solu-
tion (4 M guanidinium thiocyanate; 25 mM  sodium citrate, pH 4.0;
0.5% (m/v) N-laurosylsarcosine and 0.1 M �-mercaptoethanol) to
perform lysis. After incubating on ice for 10 min, cellular debris,
genomic DNA and proteins were precipitated by gently adding
and mixing 5 mL  of water-saturated phenol and 0.5 mL of 2 M
sodium acetate (pH 4.0). The sRNA isolation was  achieved by adding
1 mL  of chloroform/isoamyl alcohol (49:1), and by mixing vig-
orously until two  immiscible phases were obtained. The upper
aqueous phase, which contained mostly RNA, was recovered and
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concentrated by the addition of 5 mL  of ice-cold isopropanol. Pre-
cipitated molecules were recovered by centrifugation at 10,000 × g,
for 20 min, at 4 ◦C and resuspended in 1.5 mL  of lysis solution.
Molecules were concentrated again with 1.5 mL  of ice-cold iso-
propanol. After centrifuging for 10 min, at 10,000 × g (4 ◦C), the
sRNA pellet was washed with 7.5 mL  of 75% ethanol and incubated
at room temperature for 10 min, followed by a 5 min  centrifugation
at 10 000 g (4 ◦C). The air-dried sRNA pellet was solubilized in 1 mL
of 0.05% DEPC-treated water. Finally, 260 and 280 nm absorbance
of the samples was measured using Nanodrop spectrophotometer
in order to assess sRNA quantity and purity.

2.4. Affinity chromatography

Chromatography was performed in an ÄKTA Avant system with
UNICORN 6 software (GE Healthcare). A 10 mm diameter × 20 mm
long (about 2 mL)  column was packed with commercial L-
arginine–Sepharose 4B gel. This support is characterized by the
manufacturer as a cross-linked 4% beaded agarose matrix with a 12-
atom spacer and an extent of labeling between 14 and 20 �moL/mL.
pre-miR-29 was purified applying three elution strategies, namely
by using NaCl, (NH4)2SO4 and arginine as competition agent. In the
experiments with sodium chloride, after washing out the unbound
material with 280 mM NaCl in 10 mM Tris buffer (pH 8.0), the ionic
strength of the buffer was stepwise increased to 360 and 500 mM
NaCl in 10 mM Tris buffer (pH 8.0). On the other hand, in the exper-
iments with ammonium sulfate, the column was equilibrated with
2.0 M of (NH4)2SO4 in 10 mM Tris buffer (pH 8.0). After the elution
of unbound species with this condition, the ionic strength of the
buffer was stepwise decreased to 1.55 M (NH4)2SO4 in 10 mM Tris
buffer (pH 8.0). Finally, tightly bound sRNA species were removed
by changing the ionic strength to 100 mM of (NH4)2SO4 in 10 mM
Tris buffer (pH 8.0). The experiments performed with arginine to
purify pre-miR-29 molecules were initiated with the equilibra-
tion of the column with 280 mM NaCl in 10 mM Tris buffer (pH
8.0) to promote the total retention of pre-miR-29 and then the
elution was accomplished by changing to 280 mM NaCl supple-
mented with 25 mM arginine in 10 mM Tris buffer (pH 8.0). The
most retained species were finally eluted with 500 mM NaCl. In the
three sets of experiments, sRNAs samples (30 �g) were injected
onto the column using a 100 �L loop at a flow-rate of 1 mL/min,
which contains 6S RNA, pre-miR-29 and other sRNA, including
transfer RNAs. The absorbance of the eluate was continuously mon-
itored at 260 nm.  All experiments were performed at 20 ◦C using a
circulating water bath. Fractions were pooled according to the chro-
matograms obtained, and following concentration and desalting
with Vivaspin concentrators, the pools were kept for quantification
and further analysis.

2.5.  Polyacrylamide electrophoresis

Fractions  recovered from the sRNA chromatographic exper-
iment were also analyzed by vertical electrophoresis using an
Amersham Biosciences system (GE Healthcare) with 10% polyac-
rylamide gel. Electrophoresis was carried out at 125 V for 90 min
with TBE buffer. sRNA samples were previously denatured with
97.5% formamide and denatured conditions were kept in the gel
owing to the presence of 8 M urea. sRNA molecules were stained
with ethidium bromide (0.5 mg/mL).

2.6. Protein analysis

Protein  residual contamination in pre-miR-29 samples collected
from the purification with arginine-agarose support, was mea-
sured by using the micro-BCA assay (Thermo Fisher Scientific Inc.),
according to manufacturer’s instructions. Briefly, the calibration

curve  was  prepared using BSA standards (0.01–0.25 mg/mL). A total
of 25 �L of each standard or pre-miR-29 samples were added to
200 �L of BCA reagent in a microplate and incubated for 30 min
at 60 ◦C. The absorbance was  measured at 570 nm in a microplate
reader.

2.7. PCR analysis

Pre-miR-29 identification was assessed using polymerase chain
reaction (PCR) (Biometra). cDNAs synthesis was  performed using
RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scien-
tific Inc.), according to manufacturer’s instructions. A total of 0.5 �g
of RNA samples collected after the chromatographic purification
process with arginine–agarose column was  used to initiate cDNA
synthesis, which was  denatured for 5 min  at 65 ◦C with 20 pmol
of gene-specific primer (Supplementary data). Then, PCR reactions
were carried out using 1 �L of synthesized cDNAs in a 25 �L reac-
tion containing 0.125 U of Supreme DNA polymerase (NZYtech),
50 mM of magnesium chloride (NZYtech) and 150 nM of each
primer. Specific primers for cDNA, whose design was based on a
RNA database, were used to amplify a fragment of 145 bp (Supple-
mentary data). The PCR program was  carried out as follows: after an
initial denaturation at 95 ◦C for 5 min, 40 cycles consisting of dena-
turation at 95 ◦C for 30 s, annealing at 63 ◦C for 30 s and extension
at 72 ◦C for 15 s, and a final elongation step at 72 ◦C for 5 min. To
confirm the presence and purity of amplicons, PCR products were
analyzed by 1% agarose gel electrophoresis (120 V for 35 min) in
TAE buffer in the presence of 0.5 �g/mL greensafe (NZYtech).

3.  Results

3.1. Effect of ionic strength, elution buffer composition and
temperature on pre-miR-29 binding

This study was developed to explore the phenomenological
interactions like biorecognition between pre-miR-29 and arginine
as a biospecific ligand in AC. In order to establish our method, we
changed the elution buffer composition and ionic strength or the
experimental temperature and, therefore, evaluated different kinds
of interactions between the biospecific ligand and the pre-miR-29.
Since RNA is negatively charged due to the phosphate groups in the
backbone, it is easy to predict favorable electrostatic interactions
between RNA phosphate groups and arginine ligands. However,
depending on environmental conditions used, some interactions
can be more preferential than other, becoming more evident under
specific conditions.

In  the studies performed to mainly favor ionic interactions, after
binding, the pre-miR-29 elution was  achieved with the application
of a stepwise gradient increasing the NaCl concentration to 280,
360 and 500 mM,  after several optimizations. This strategy is based
on previously studied elution pattern of plasmid DNA, in the NaCl
concentration range of 200–300 mM,  described by our research
group [23]. In addition, the potential application of arginine-based
chromatography to purify total RNA directly from a clarified lysate
has been recently described also by our group [20]. In this case,
arginine ligands were able to distinguish and, therefore, interacted
differentially with various sRNAs molecules, suggesting a specific
recognition for the pre-miR-29. During these experiments, there
was a need to strictly control the chromatographic conditions in
order to maintain the reproducibility, since a slightly variation in
conductivity (salt concentration and/or temperature) affected the
sRNA retention. The chromatographic assays initially performed
were intended to test the ionic strength effect on sRNA retention.
Therefore, Fig. 1A shows the chromatographic profile obtained after
the injection of sRNA preparation in the arginine-agarose support.
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Fig. 1. (A) Chromatographic profile of the pre-miR-29 purification from a sRNA mixture extract by arginine–agarose chromatography. Elution was  performed at 1.0 mL/min
by  stepwise increasing NaCl concentration in the eluent from 280, 360 and 500 mM,  as represented by the arrows. (B) Polyacrylamide gel electrophoresis of samples collected
at  the column outlet. Fractions corresponding to peaks (1), (2) and (3) are shown in lanes 1-3, respectively. Lane S, impure sRNA preparation injected onto the column.

The chromatographic run was initiated at low ionic strength with
280 mM NaCl in 10 mM Tris buffer (pH 8.0). Under these condi-
tions, a first peak of unbound species was obtained. As shown in
Fig. 1A, the pre-miR-29 was obtained when the elution step was
performed with 360 mM NaCl, being recovered nearly 96.5% of pre-
miR-29. The elution of highly bound species was then achieved by
increasing the ionic strength of the buffer to 500 mM NaCl. The
polyacrylamide gel electrophoresis was used to detect and identify
different RNAs species eluting in each peak (Fig. 1B). In Fig. 1B, the
electrophoretic profile presented in lanes 1, 2 and 3 corresponds to
the samples pooled from the respective peaks in the chromatogram.
Hence, the electrophoretic analysis showed that the first peak of
unbound species corresponds to the elution of transfer RNA (tRNA)
species (Fig. 1B, lane 1), while the second peak mainly refers to
pre-miR-29 (Fig. 1B, lane 2) and, finally, the third peak mainly
refers to 6S RNA and tRNA species (Fig. 1B, lane 3). These results
suggest that pre-miR-29 presents a stronger interaction with the
arginine matrix than the majority of tRNA species. The salt con-
centration (360 mM NaCl) needed to elute bound pre-miR-29 from
arginine–agarose matrix (Fig. 1A) is considerably lower than those
typically used in different chromatographic techniques, namely in
anion-exchange chromatographic supports (higher than 500 mM
NaCl) [22] which is an important process advantage.

In order to mainly exploit hydrophobic interactions, a
decreasing ammonium sulfate stepwise gradient between 2 and
0.1 M was applied, allowing pre-miR-29 separation. The retention
behavior of sRNA molecules in this strategy is in accordance with
the results previously described to purify total RNA directly from
a clarified lysate [16] or to isolate 6S RNA from a sRNA mixture
[17] using histidine as ligand. Fig. 2A shows the chromatographic
profile obtained after injection of the sRNA sample. The presence of
different peaks in the chromatogram indicates that RNAs present in
the sRNA population interact differently with the arginine–agarose
support. The higher salt concentration promoted total pre-miR-29
retention. It was observed that tRNA molecules eluted immediately
with 1.55 M (NH4)2SO4 in 10 mM Tris buffer (pH 8.0). The elution
of pre-miR-29 was achieved with 1.1 M (NH4)2SO4 in 10 mM Tris
buffer (pH 8.0). These results were important to understand the
binding behavior of the sRNA mixture and to develop the best
purification strategy for pre-miR-29. In fact, the higher salt con-
centration plays a key role on the pre-miR-29 binding to arginine

ligand.  Again, a polyacrylamide electrophoresis was used to detect
and identify different species eluting in each chromatographic peak
(Fig. 2B).

The  electrophoretic analysis indicates that the first chromato-
graphic peak (Fig. 2A, peak 1) corresponds to the elution of tRNA
(Fig. 2B, lane 1). However, the elution of pre-miR-29 was  mainly
achieved in the second peak, following the reduction of the ionic
strength of the elution buffer (peak 2 and lane 2). Finally, the
6S RNA, pre-miR-29 and other tRNAs species were eluted with
100 mM (NH4)2SO4 in 10 mM Tris buffer (pH 8.0), as it was observed
in the third chromatographic peak (peak 3 and lane 3).

After  identifying the pre-miR-29 retention behavior on the argi-
nine matrix with both elution strategies addressed in this study
(NaCl and (NH4)2SO4)), the temperature effect on pre-miR-29
stability was also evaluated. In fact, this parameter could also
significantly influence pre-miR-29 interactions with the immobi-
lized arginine. Thus, several chromatographic experiments were
designed to analyze how the temperature affects the adsorp-
tion of pre-miR-29, as well as the other R. sulfidophilum sRNA
species. Therefore, the water-jacketed column was  connected to
a circulating water bath to maintain the appropriate temperature
(temperature extremes, 4 and 20 ◦C) in each experiment. As a mat-
ter of fact, the results showed an increased retention of all sRNAs
species studied with the temperature increase, suggesting that
higher temperatures favors the involvement of hydrophobic inter-
actions [26]. This stronger interaction might be due to the fact that
bases of the tRNAs are more available to interact with immobilized
ligands, because of its single-stranded structure. On the other hand,
the pre-miR-29 shows low binding affinity since it has a structure
stem-loop. Moreover, for the lowest temperature studied (4 ◦C), it
is observed that the isolated pre-miR-29 retention time is similar
to that from the isolated tRNAs (data not shown).

In AC, the elution of a target solute that is bound to the affinity
ligands can be achieved through addition of a competing agent in
the elution buffer rather than changing the ionic strength, pH, or
polarity. Moreover, this methodology is also commonly employed
in order to make the elution strategy more selective and biospecific
as well as to get higher elution efficiency. The competing agent can
bind to the retained target or to the immobilized ligand, depending
of their characteristics, thus allowing to predict the interactions
that can be involved. In this work, competitive studies were
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Fig. 2. (A) Chromatogram showing the purification of pre-miR-29 from sRNA population by arginine–agarose chromatography. Elution was performed at 1 mL/min by
stepwise decreasing (NH4)2SO4 concentration in the eluent from 2 to 0.1 M (NH4)2SO4 in 10 mM Tris buffer (pH 8.0). (B) Polyacrylamide gel electrophoresis analysis of
samples collected at the column outlet. Fractions corresponding to peaks (1), (2) and (3) are shown in lanes 1–3, respectively. Lane S, impure sRNA sample injected onto the
column.

performed by adding 250 mM of arginine to the elution buffer in
a stepwise gradient, to exploit specific elution of pre-miR-29 from
the column and therefore to evaluate the possibility of reaching
higher purification factors, according to the procedure described
by Sousa and co-workers for the purification of plasmid DNA [23].
The elution gradients applied were adapted to ensure that the
RNA sample is on ideal conditions to bind to the matrix ligands,
and to elute only due to the competing agent addition. Thus, the
characterization of binding/elution behavior of pre-miR-29 in the
arginine–agarose matrix upon addition of arginine is essential. The
arginine column was first equilibrated with 280 mM NaCl in 10 mM
Tris buffer (pH 8.0) to promote the total retention of pre-miR-29.
After sample binding, elution could be carried out by increasing
the ionic strength upon NaCl addition. The chromatographic pro-
file presented in Fig. 3A gives an interesting suggestion about the
nature of interactions involved in the pre-miR-29 retention to
arginine–agarose matrix. Fig. 3A shows the result obtained in an
experiment in which pre-miR-29 was first bound to the column
with 280 mM NaCl and then eluted by changing to a 280 mM NaCl
supplemented with 25 mM arginine (positively charged). In fact,

pre-miR-29  recovery was  only achieved when the elution buffer
containing the arginine amino acid was  applied. Summarizing, from
the results obtained with this first screening of the pre-miR-29
retention pattern in arginine-based matrix (Fig. 3), it was found that
the pre-miR-29 presents a great ability to bind to the matrix, sug-
gesting the establishment of a strong interaction with the support.
However, the elution is not difficult to perform and the pre-miR-29
recovery is achieved by using low salt or arginine concentrations.
Some experiments were also carried out using other concentra-
tions, from 5 to 30 mM of arginine in the elution buffer but all of
the tRNAs species were eluted together with pre-miR-29 (results
not shown).

3.2. Pre-miR-29 quality characterization

To ensure the success of the purification methodologies here
described, the quality of pre-miRNA preparations was assessed
using parameters that are commonly considered, namely spec-
trophotometry analysis, polyacrylamide gel electrophoresis and
total protein quantification [27,28]. Since, the RNA preparations

Fig. 3. (A) Separation of pre-miR-29 by arginine–agarose chromatography. Elution was performed at 1 mL/min by stepwise increasing of arginine concentration in the eluent
from  25 mM,  beginning with 280–500 mM NaCl as represented by the arrows. (B) Polyacrylamide gel electrophoresis analysis of each peak in both experiments is represented
in  the respective figure. Fractions corresponding to peaks (1), (2) and (3) are shown in lanes 1–3, respectively. Lane S, sRNA sample injected onto the column.

171



P. Pereira et al. / J. Chromatogr. B 951– 952 (2014) 16– 23 21

Table  1
Quantitative analysis of purity and yield of pre-miR-29 isolated (peak 2) by arginine–agarose chromatography.

Elution strategy sRNA sample (�g) pre-miR-29 (peak 2) (�g) Pre-miR-29 Purity (%) Pre-miR-29 yield (%) Proteins (ng/�L)

1 NaCl 30 12.40 ± 0.40 90 96.5 4.548 ± 0.007
2  (NH4)2SO4 30 8.35 ± 0.61 33 52.8 6.806 ± 0.003
3  Arginine 30 9.33 ± 0.83 98 56.7 ND

should be free of proteins, should maintain the structural integrity,
free of enzymatic inhibitors for RT and PCR reactions and free of
nucleases [29]. The spectrophotometry analysis allows the esti-
mation of RNA concentration using the absorbance values at 260
and 280 nm,  while the purity of each sample was evaluated by
calculating the 260/280 ratio. Thus, a ratio of 2.00 ± 0.01 is often
characteristic of a pure RNA preparation [27]. However, the pro-
tein content is a common impurity in RNA preparations that usually
can be omitted in spectrophotometry analysis since it is required
a relatively large amount of protein contamination to significantly
affect the 260/280 ratio in an RNA solution [27]. Thus, the total pro-
tein content was assessed by micro-BCA assay in the RNA fractions
collected from the chromatographic peaks. As a result, the protein
contamination level was  negligible in pre-miR-29 samples (Peak 2
in Fig. 1A, 2A and 3A). The analysis of protein content in the frac-
tions collected along the pre-miR-29 purification gradient revealed
that proteins tend to elute more in the first chromatographic steps
(data not shown). Therefore, the chromatographic strategies used
in these new pre-miRNA isolation methods also provide a reduction
of protein contamination in RNA samples, specifically in the com-
petition studies where the proteins were not detected (as shown
in Table 1).

Moreover, the electrophoretic analysis (Fig. 1B, 2B and 3B) is an
important complementary technique that enables the assessment
of RNA integrity. RNA is one of the most difficult materials to sepa-
rate under chromatographic conditions because it is degraded very
quickly in nature and its stabilization is very difficult. Hence, the
final RNA integrity is a key factor for the overall success and fur-
ther application and will depend on maintaining the stability of the
sample before separation, throughout the purification process, and
also during the recovery of RNA fractions when the separation has
been completed. The results demonstrate that the isolation steps
involved in the affinity procedure allowed maintaining the pre-
miR-29 stability (chemically intact and biologically competent).
The application of arginine AC can also be strongly associated with
the preserved integrity observed in RNA samples since arginine,
owing to its multiplicity of interactions, has been largely associated
with stabilizing effects on RNA conformations [26,30,31]. More-
over, electrophoretic analysis allows the visualization of the several
sRNA species of a sample in which RNA bands are sharp and clear
with a characteristic banding profile, which is crucial to guarantee
RNA quality.

The  Phoretix 1D software (Nonlinear Dynamics, Newcastle,
United Kingdom) was also used as an auxiliary of the electrophore-
sis polyacrylamide analysis, allowing to control the purity of
pre-miR-29 preparations and to determine the yield through the
evaluation of the intensity of electrophoresis bands. The quan-
titative analysis of pre-miR-29 purity throughout the isolation
procedure is summarized in Table 1 that presents the concentration
of sRNA samples, which were applied in arginine chromatogra-
phy. Thus, the quality control analysis revealed a high purity (90%)
in the final pre-miR-29 RNA preparations obtained with the NaCl
elution strategy. Moreover, in the arginine and (NH4)2SO4 elution
strategies, they were obtained the following purities 98 and 33%,
respectively. The chromatographic process demonstrates an excel-
lent performance in the isolation of pre-miR-29, attaining a higher
pre-miR-29 yield with the NaCl strategy (96.5%) and a significant
recovery with (NH4)2SO4 (52.8%) as well as in the competition

studies (56.7%), beginning with 30 �g of sRNA (see Table 1). A more
accurate identification of pre-miR-29 molecules purified from the
sRNA populations with the arginine–agarose matrix was performed
by PCR. As it can be observed from the electrophoretic analysis of
the PCR products (Fig. 4), by using specific primers for pre-miR-29
cDNA, the PCR reaction allowed the amplification of pre-miR-29. No
further amplification was  seen in the control (lane 1). The negative
control was made of PCR reaction solutions without cDNA. There-
fore, it was verified that the identity of the sRNA isolated from the
original population was the pre-miR-29.

4. Discussion

In this work, we describe an alternative method to purify miRNA
from a complex mixture of total RNA based in the AC, which is
the unique technique that simulates and exploits biological inter-
actions allowing the separation of biomolecules on the basis of a
specific and reversible contact between the target biomolecules
and the specific ligand, which is coupled to a chromatographic
matrix  [13]. The choice of the matrix and elution conditions to be
used will depend on molecular properties of biomolecules and the
physicochemical and thermodynamic nature of their molecular
interactions [32]. As previously mentioned, elution steps can
be performed either specifically, using a competitive ligand, or
non-specifically, by changing the pH, ionic strength or polarity
of the buffer depending on the matrix used and the chemical
characteristics of biomolecules [32]. Our choice was  the arginine
amino acid because it is considered an excellent ligand since it
presents several characteristics that allow the establishment of
multiple interactions between itself and nucleic acid molecules,
namely its ability to interact in different conformations, the length
of its side chain and its ability to produce good hydrogen bond
geometries [33]. Furthermore, recent studies emphasized that
arginine can be studied as a ligand in AC for RNA purification,
since this amino acid is conserved in the active center of the
PAZ domains of the Argonaute proteins, suggesting that they
have an important role in the specific recognition of the 3′ over-
hang of the pre-miRNA after which occurs the degradation of the

Fig. 4. pre-miR-29 identification by reverse-transcription PCR. The agarose-gel-
electrophoretic  analysis of PCR products shows amplification of pre-miR-29 cDNA
fragments. The negative control had no band intensification. Lane M,  DNA molecular
weight  marker; lanes 1, negative control; lane 2, 3 and 4, second peaks of the three
strategies studied (sodium chloride, ammonium sulfate and arginine), respectively.
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mRNA [24]. The sequence of pre-miR-29 was sought in the miRBase
(http://www.mirbase.org/cgi-bin/mirna entry.pl?acc=MI0000105)
that is the official repository of miRNAs, where known miRNAs
are named and stored. However, pre-miRNAs are not described
for real sequences, since the predicted stem-loop sequences in
the database are not strictly pre-miRNAs, but rather include
the pre-miRNA and some flanking sequence from the presumed
primary transcript. In this study it was chosen to produce a
pre-miRNA instead of the mature miRNA, because of its structural
characteristics, specifically the single chain with ∼100 nt of which
some are unpaired in the 3′ overhang, which will possibly facilitate
the purification [34].

In  fact, beyond the potential application of arginine-based
chromatography to purify pre-miR-29 from R. sulfidophilum sRNA
mixture described here, this study also demonstrates the possibility
of using three different strategies to conduct the pre-miRNA purifi-
cation. This advantageous methodology reduced the complexity of
the general procedure, and examined the applications and selec-
tivity that these elution strategies can have in promote under
different environmental conditions. Thus, this purification could
be achieved either using an increased NaCl (360 mM),  decreased
(NH4)2SO4 (1.1 M)  or arginine (25 mM)  stepwise gradients. Com-
paring the two best elution strategies, using NaCl or arginine to
elute bound pre-miR-29 biomolecules, it was verified that the
arginine concentration needed to promote elution is lower than
the NaCl concentrations. This fact is in accordance with what has
been previously described by other authors, because as arginine
is monovalent at the pH used, it is equivalent to NaCl in terms of
valency; however the conductivity is much lower than for NaCl at
identical concentrations [35]. The lower concentration of arginine
suggests that its effectiveness is due to other factors than electro-
static effects, involving affinity interactions, although whether the
lower conductivity of arginine plays any role in effectiveness as
an eluent is not clear [35]. Moreover, this behavior can be due to
the positive character of this amino acid that promotes a preferen-
tial binding of pre-miR-29 to free arginine present in the buffer by
electrostatic interactions, inducing its elution. In a general way, the
competition study has shown that the free arginine present in the
elution buffer could interact with the pre-miR-29, promoting its
biospecific elution of the arginine column, due to the competition
with the ligand.

In  a general point of view, the strategy with NaCl showed to
be ideal for pre-miR-29 purification using a low salt concentra-
tion (90% of purity and 96.5% of yield), whereas the strategy with
(NH4)2SO4 requires high salt concentrations to partially purify pre-
miR-29 (33% of purity). On the other hand, the competition studies
also demonstrated the possibility of purifying pre-miR-29 with
higher purity (98% of purity and 56.7% of yield) when compared
with other strategies, even though some pre-miRNA is lost in the
next elution step. Thus, if larger amounts of pure pre-miRNA are
desired, the strategy that employs NaCl can be used, while if higher
purity levels are necessary, the competition strategy is more appro-
priate. Hence, this comparative study brings more evidences that
the binding mechanism inherent on the biorecognition between
the arginine amino acid and pre-miR-29 molecules, can result from
the combination of several phenomenological interactions such
as electrostatic interactions, hydrophobic interactions, (multiple)
hydrogen bond interactions, van der Waals forces, dipole–dipole
forces, cation–� interactions, etc. [36]. However, depending on
environmental conditions established and the amino acid ligands
used, some interactions can be more favored than other, becoming
more evident under these conditions. In fact, in some molecular
recognition studies, arginine is reported as a preferential amino
acid to contact with RNA, when the overall negative charge of
RNA is considered [36,37]. Additionally, recent studies with satura-
tion transfer difference-nuclear magnetic resonance spectroscopy

and surface plasmon resonance biosensor reported that adenine,
cytosine, and guanine polynucleotides bind to arginine–agarose
support mainly through the sugar-phosphate backbone [38,39].
According to the authors, the negative charge of the biomolecules
is important for their interaction with arginine-agarose, nonethe-
less the base exposure on RNA species was also suggested to have
a crucial role in nucleic acid retention [22,23]. Furthermore, the
structural diversity of RNAs was  recently described to be of sig-
nificant importance in protein–RNA interactions because RNA can
exhibit different moieties according to its folding state [40]. Hence,
pre-miR-29 structural features seem to be relevant on its distinct
retention behavior with the arginine–agarose matrix. The main
explanation for the specific interactions occurring between the pre-
miR-29 and the immobilized arginine is the single-stranded nature
of RNA, which is normally involved in RNA recognition, due to the
high base exposure and availability for interactions. Pre-miR-29
is a sRNA molecule in the shape of a stem-loop or hairpin con-
sisting of two long irregular double-stranded stem regions, which
are interrupted by a largely single-stranded internal loop. Along
the bulge and through the continuous stem sequences there are
mostly guanines, which were described to interact preferably with
arginine [13]. Moreover, the arginine support has shown the ability
to interact with all RNA classes even with different conformational
rearrangements [31]. The multiposition interaction of arginine with
RNA sites [26,41] can explain this result. This phenomenon can
occur because arginine has two different polar centers with which
RNA can strongly associate: at �-carbon group and the guanidinium
side chain [36]. Thus, it is reasonable to suppose that the reten-
tion of all functional classes of RNA in arginine–agarose matrix is
due to arginine side chain, which can promote multicontacts with
RNA backbone or RNA bases, according to RNA folding. Overall, it
is suggested that although electrostatic interactions could play an
important role on RNA retention, the base contact is also involved
and modulate some favored interaction and specificity found in
arginine–agarose chromatography.

Previous  analysis allowed the assessment of RNA quality, indi-
cating that the developed pre-miR-29 isolation methodology can
purify the target RNA of different RNA species with high recovery
yield, purity and good integrity. In a single step, arginine affinity
chromatography offered the pre-miRNA purification from a com-
plex biological mixture, making use of low salt concentrations,
rather than organic or toxic compounds, and the use of enzymes
is not necessary. The chemical lysis with guanidinium buffers used
in this method is extensively described in literature for RNA extrac-
tion, including in many commercial kit and reagents, with no
significant implications in downstream applications. In conclusion,
the present data shows the development of an affinity chromatog-
raphy approach based on natural occurrence interactions, between
arginine and RNA species, aiming the purification of pre-miR-29
molecules. The exploitation of these affinity interactions can trigger
new insights not only in isolation strategies but also in many other
RNA research fields owing to its implication in molecular recogni-
tion phenomena. The successful results obtained with this support
reveal an efficient technique to obtain a reproducible and appro-
priate RNA quality with potential applicability for RNA structural
and functional studies and gene therapy.
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a  b  s  t  r  a  c  t

MicroRNA-based  therapeutic  applications  have  fostered  a  growing  interest  in the  development  of  microR-
NAs  purification  processes  in order  to obtain  the  final  product  with  high  purity  degree,  good  quality  and
biologically  active.  The  pre-miR-29  deficiency  or overexpression  has  been  associated  to  a  number  of clini-
cally  important  diseases,  and  its therapeutic  application  can  be considered.  Monolithic  columns  emerged
as  a new  class  of chromatographic  supports  used  in  the  plasmid  DNA  purification  platforms,  being  an
interesting  alternative  to  the  conventional  particle-based  columns.  Thus,  the  current  work  describes,  for
the  first  time,  a new  affinity  chromatography  method  that  combines  the high  selectivity  of agmatine  lig-
ands  with  the  versatility  of  monoliths  to specifically  and  efficiently  purify  pre-miR-29  from  other  small
RNA  species  and  Rhodovulum  sulfidophilum  impurities.  The  effect  of  different  flow  rates  on  pre-miR-29
separation  was  also  evaluated.  Moreover,  breakthrough  experiments  were  designed  to  study the effect
of  different  RNA  concentrations  on the  modified  monolithic  support  binding  capacity,  being  verified
that  the  dynamic  binding  capacity  for RNA  molecules  is dependent  of the  feed concentration.  In order  to
achieve  higher  efficiency  and  selectivity,  three  different  binding  and  elution  strategies  based  on increased
sodium  chloride  (1.75–3  M)  or arginine  (100  mM)  and  decreased  ammonium  sulfate  (2.4–0  M)  stepwise
gradients  are  described  to purify  pre-miR-29.  As a matter  of  fact, by  employing  elution  strategies  using
sodium  chloride  or arginine,  an  improvement  in the  final  pre-miR-29  yields  (97.33  and  94.88%,  respec-
tively)  as well  as purity (75.21  and  90.11%,  respectively)  were  obtained.  Moreover,  the  quality  control
analysis  revealed  that  the level  of impurities  (proteins,  endotoxins,  sRNA)  in  the  final  pre-miR-29  sample
was  negligible.  In fact,  this  new  monolithic  support  arises  as  a powerful  instrument  on  the  microRNA
purification  to be used  in further  clinical  applications,  providing  a more  rapid  and  economical  purification
platform.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In the past decade, countless species of non-coding RNA, namely
ribosomal RNA (rRNA), transfer RNA (tRNA) and a range of smaller
like microRNA (miRNA) molecules, have been discovered and
deeply studied. Of these, miRNAs molecules attract particular inter-
est due to their essential roles in most cellular processes, as
potential biomarkers and drug targets [1,2]. For this reason, RNA
represents an important target of a wide range of laboratory analy-
sis, being particularly relevant in the diagnosis of several disorders,
as well as in basic and applied research. Hence, RNA quality and

∗ Corresponding author at: Centro de Investigaç ão em Ciências da Saúde, Univer-
sidade  da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
Tel.:  +351 275 329 074; fax: +351 275 329 099.

E-mail address: fani.sousa@fcsaude.ubi.pt (F. Sousa).

purity are prerequisites of a multitude of molecular biology and
therapeutic applications [3]. Thereby, RNA purification is impor-
tant to achieve pure, stable and intact RNA, free from contaminants,
including genomic DNA, proteins and organic solvents, once these
impurities greatly affect the pharmaceutical and clinical applica-
tions [3,4]. This fact greatly contributes to the need to develop novel
methods for the rapid and inexpensive isolation and purification of
microRNAs.

RNA is an unstable molecule and has a very short half-life
once extracted due to the ubiquitous presence of RNA-degrading
enzymes (RNases) which are present in biological samples, aque-
ous buffers, on labware and can be introduced via human handling
[5]. To overcome the problems associated with RNA isolation, sev-
eral strategies are available to isolate and purify miRNA molecules
chemically synthesized or derived from various biological sources
[3,6]. The purification of RNA molecules is already reported by using
preparative denaturing polyacrylamide gel electrophoresis (PAGE),

http://dx.doi.org/10.1016/j.chroma.2014.09.080
0021-9673/© 2014 Elsevier B.V. All rights reserved.
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affinity tag-based purification, anion-exchange and size exclusion
chromatography [7–11]. These methods make use of enzymes and
structural modifications in the RNA molecule by the introduction
of tags sequences, which can affect the overall topology of the RNA.
In addition, the application of this methodology and RNA modifi-
cations is typically limited to sRNAs, smaller than 40 nucleotides
[4,12,13]. Overall, and although these purification methods can be
very efficient for the recovery of RNA with high quality and quan-
tity, they still are expensive on large scale, labor intensive and only
allow the separation of small RNAs (sRNAs) from rRNA. In addition,
in most cases the isolation of pure RNA is achieved by a secondary
enrichment, either through enzymatic removal of DNA or by a sec-
ond set of columns specific to miRNA [14].

In the last years, our research group developed a new affinity
chromatography approach, named amino acid-affinity chromatog-
raphy to efficiently purify different RNA species (total RNA, rRNA,
sRNA and 6S RNA) [15–17]. This powerful technique is based on
the application of amino acids as specific ligands to purify RNA on
the basis of their biological function or individual chemical struc-
ture [18]. More recently, lysine, tyrosine and arginine amino acids
have been successfully applied as affinity ligands for microRNAs
purification, particularly in pre-miR-29 isolation, in conventional
particle-based columns [19–21]. Amino acid ligands described
above showed high selectivity, however a faster and more robust
purification method is required due to the structural characteristics
of the RNA molecule, including their stability. Monolithic supports
have been largely explored in recent years for the separation of
large biomolecules owing to their structural properties compared
with conventional columns, namely high binding capacity, excel-
lent mass transfer properties and a huge quantity of accessible
binding sites [22,23]. Moreover, monoliths allow a very fast sepa-
ration and purification with high reproducibility both at small and
large scales, support higher flow rates and reduced biomolecules
degradation due to the shorter contact times with the chromato-
graphic matrix [24].

This  work has the purpose of exploring the possibility of using
agmatine amino acid derivative as ligand, combined with the
multi-functionality of the monolithic support [25–27] to selec-
tively isolate the pre-miRNA from the recombinant Rhodovulum
sulfidophilum host. Knowing that an agarose based matrix with
immobilized arginine amino acid allows an efficient separation
of pre-miR-29 [21], it becomes interesting to study a new mono-
lith with agmatine immobilized. Agmatine is a neurotransmitter
derived from the decarboxylation of arginine and plays the role
of agonist or antagonist of different enzymes involved in several
biological mechanisms [28–30]. This study demonstrates for the
first time, the use of this amino acid derivative as a chromato-
graphic ligand to purify microRNA. In this way, the aim of the
present study is to develop new methodologies for RNA isolation,
enabling the pre-miRNA-29 purification with high integrity and
purity using monoliths, in view of the application in molecular
biology or therapeutic procedures in a short time. Additional chro-
matographic characterization based on breakthrough experiments
is also designed to study the dynamic binding capacity for RNA. The
binding behavior of pre-miR-29 under the influence of different
environmental conditions, such as the elution buffer composition,
or using different flow-rates is also investigated.

2. Materials and methods

2.1.  Materials

All  buffers used for the chromatographic experiments were
freshly prepared with sterilized water pre-treated with 0.05%
diethyl pyrocarbonate (DEPC; Sigma–Aldrich, St Louis, MO, USA),

filtered  through a 0.20 �m pore size membrane (Schleicher Schuell,
Dassel, Germany) and degassed ultrasonically. The ammonium sul-
fate and sodium chloride salts used in these buffers were purchased
to Panreac (Barcelona, Spain), tris(hydroxymethyl) aminomethane
(Tris) to Merck (Darmstadt, Germany) and agmatine sulfate was
from Sigma–Aldrich (St. Louis, MO,  USA). Chromatographic exper-
iments were carried out in the 0.34 mL  bed volume (average pore
size of 1500 nm in diameter) carbonyldiimidazole (CDI) monolith
modified with agmatine amino acid derivative, kindly provided
by BIA Separations (Ajdovščina,  Slovenia). The guanidinium salt
and all the chemicals used in the lysis buffer were obtained from
Sigma–Aldrich (St Louis, MO,  USA). All the materials used in the
experiments were RNase-free. The DNA molecular weight marker,
Hyper Ladder I, was obtained from Bioline (London, UK) and Green-
Safe Premium was purchased to NZYTech (Lisbon, Portugal).

2.2.  Pre-miR-29 production and isolation

The pre-miR-29 was  obtained from the culture of Rhodovu-
lum sulfidophilum DSM 1374 strain (BCCM/LMG, Belgium) modified
with the plasmid pBHSR1-RM containing the sequence of pre-
miR-29 [31]. Growth was  carried out in shaker flasks with
capacity of 500 mL  containing 100 mL  of Nutrient Broth medium
(1 g/L beef extract; 2 g/L yeast extract; 5 g/L peptone and 5 g/L
sodium chloride) supplemented with 30 �g/mL kanamycin, in
a rotary shaker at 30 ◦C and 250 rpm under dark-aerobic con-
ditions. The small RNA fraction was extracted from bacterial
pellets of Rhodovulum sulfidophilum by a modified acid guani-
dinium thiocyanate–phenol–chloroform extraction method, as
described by Pereira and co-workers [21]. Briefly, cells were lysed
and the small RNA fraction obtained was precipitated with iso-
propanol. Precipitated molecules were recovered by centrifugation
at 15,000 × g for 20 min  at 4 ◦C. After centrifuging, the small RNA
pellet was  washed with 75% ethanol and incubated at room temper-
ature for 10 min, followed by a 5 min  centrifugation at 15,000 × g
(4 ◦C). The air-dried small RNA pellet was  solubilized in 1 mL of
DEPC-treated water. Finally, 260 and 280 nm absorbance of the
samples was  measured using a nanophotometer in order to assess
small RNA quantity and purity.

2.3. Chromatographic experiments

The chromatographic experiments were performed in an ÄKTA
Avant system with UNICORN 6 software (GE Healthcare, Sweden).
For the experiments, agmatine monolithic disk was equilibrated
with appropriate loading buffer, as described below, at a flow rate
of 1 mL/min. The pre-miR-29 was  purified by exploiting three dif-
ferent elution strategies, namely by using sodium chloride (NaCl),
ammonium sulfate ((NH4)2SO4) and arginine as competition agent.
In experiments with ammonium sulfate, the monolith was equili-
brated with 2.4 M of (NH4)2SO4 in 10 mM Tris–HCl buffer (pH 8).
After the elution of unbound species, the ionic strength of the buffer
was stepwise decreased to reach the 0 M (NH4)2SO4 in 10 mM
Tris–HCl buffer (pH 8), to elute of pre-miR-29. On the other hand, in
experiments with sodium chloride, after washing out the unbound
material with 1.75 M NaCl in 10 mM Tris–HCl buffer (pH 9.5), the
ionic strength of the buffer was increased to 3 M NaCl in 10 mM
Tris–HCl buffer (pH 9.5). The experiments performed with argi-
nine as a competition agent to purify pre-miR-29 molecules were
initiated with the equilibration of the monolith with 1.75 M NaCl
in 10 mM Tris–HCl buffer (pH 9.5) to promote the total retention
of pre-miR-29 and then the elution was  accomplished by chang-
ing to 1.75 M NaCl supplemented with 100 mM arginine in 10 mM
Tris–HCl buffer (pH 9.5). The most retained species were finally
eluted with 3 M NaCl. In the three sets of experiments, sRNAs
extracts (30 �g), containing 6S RNA, pre-miR-29 and other sRNA,
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including transfer RNAs, were injected onto the column using a
100 �L loop at the same flow-rate. The absorbance of the elu-
ate was continuously monitored at 260 nm.  All experiments were
performed at room temperature. Fractions were pooled accord-
ing to the chromatograms obtained, and following concentration
and desalting with Vivaspin concentrators (Vivascience), the pools
were kept for quantification and further analysis. A posterior study
was performed to analyze the effect of different flow-rates (0.5, 1,
2 and 3 mL/min) in the pre-miR-29 purification efficiency using the
agmatine monolith.

2.4.  Dynamic binding capacity measurement for sRNA

Agmatine monolithic disk was used for the determination of
the dynamic binding capacity (DBC) for RNA. These experiments
were performed with 1 mL/min of flow rate using different con-
centrations of the feedstock (0.025, 0.05, 0.075, 0.1, 0.15, 0.20 and
0.25 mg/mL). The support was equilibrated with 10 mM Tris–HCl
buffer (pH 8) and thereafter, it was overloaded with the RNA solu-
tion under the same equilibrium conditions. DBC was  determined
by the breakthrough area integration method [32]. Briefly, each
breakthrough experiment was derived from a 100% of saturated
monolith. Then, the sample volume corresponding to the adsorbed
amount of RNA was calculated by numerical integration of the
detector response. The area obtained from the filled monolith was
subtracted from that for the empty monolith. In this step, the void
volume was discounted from the DBC determination. This area is
equivalent to the sample volume, which was required to saturate
the monolithic support, and can be related with RNA mass that
remained bound per milliliter of the support, reflecting the sup-
port capacity. Normally, the capacity values are represented at 10,
50 and 100% of the breakthrough that corresponds to 10, 50 and
100% of the column saturation, being calculated in the same way.
Finally, the elution of the bound RNA was achieved by increasing
the sodium chloride concentration in the mobile phase to 3 M in a
stepwise manner.

2.5.  Polyacrylamide electrophoresis

Fractions  recovered from the sRNA chromatographic exper-
iments were analyzed by vertical electrophoresis using an
Amersham Biosciences system (GE Healthcare, Sweden) with 10%
polyacrylamide gel. Electrophoresis was carried out at 125 V for
90 min  with TBE buffer (0.84 M Tris base, 0.89 M boric acid and
0.01 M EDTA, pH 8.3). sRNA samples were previously denatured
with 97.5% formamide and denatured conditions were kept in the
gel owing to the presence of 8 M urea. sRNA molecules were visu-
alized in the gel by using the Vilber Lourmat system after staining
with ethidium bromide (0.5 mg/mL).

2.6. Protein analysis

Proteins  contamination in pre-miR-29 samples collected from
the purification with agmatine monolithic support, was measured
by using the micro-BCA (bicinchoninic acid) assay (Thermo Fisher
Scientific Inc., Rockford, IL, USA), according to manufacturer’s
instructions. Briefly, the calibration curve was prepared using BSA
standards (0.01–0.25 mg/mL). A total of 25 �L of each standard
or pre-miR-29 samples was added to 200 �L of BCA reagent in
a microplate and incubated for 30 min  at 60 ◦C. Absorbance was
measured at 570 nm in a microplate reader.

2.7.  Pre-miR-29 identification analysis

Pre-miR-29 identification was confirmed using reverse-
transcriptase polymerase chain reaction (RT-PCR). Thus, cDNA

synthesis  was  performed using RevertAid First Strand cDNA Syn-
thesis Kit (Fermentas, Thermo Fisher Scientific Inc.), according to
the manufacturer’s instructions. A total of 0.5 �g of RNA sam-
ples collected after the chromatographic purification process with
agmatine monolith was used to initiate cDNA synthesis, which
was denatured for 5 min  at 65 ◦C with 20 pmol of gene-specific
primers (5′-GACAGC GGT ATG ATC CCC CAA-3′). Then, PCR reac-
tions were carried out using 1 �L of synthesized cDNA in a 25 �L
reaction containing 0.125 U of Supreme DNA polymerase (NZYtech,
Lisbon, Portugal), 50 mM of magnesium chloride (NZYtech, Lisbon,
Portugal) and 150 nM of each primer. Sense (5′-GGA AGCTGG TTT
CAT ATG GTG-3′) and antisense (5′-CCC CCA AGA ACA CTG ATT
TC-3′) primers were used to amplify a fragment of 145 bp. The
PCR program was  carried out as follows: denaturation at 95 ◦C for
5 min, followed by 40 cycles at 95 ◦C for 30 s, 63 ◦C for 30 s and 72 ◦C
for 15 s, and a final elongation step at 72 ◦C for 5 min. To confirm
the presence and purity of amplicons, PCR products were analyzed
using 1% agarose gel [21].

3.  Results and discussion

The  purification methods developed to purify microRNAs
envisioning therapeutic applications require the use of a chro-
matographic support able to eliminate impurities, maintaining
the structural integrity of the biomolecule. Hence, the present
study aims to explore and characterize the interactions occur-
ring between pre-miR-29 and agmatine amino acid derivative
immobilized into a monolithic disk, combining, for the first time,
the selectivity, specificity and biorecognition of agmatine ligands
with the structural versatility and capacity provided by mono-
lithic supports. These supports offer several potential advantages
over conventional supports, including higher selectivity and repro-
ducibility and good capacity [17,26,33,34]. The miR-29 target was
chosen because it belongs to one of the most interesting miRNA
families in humans to date, once this miRNA is involved in several
regulatory pathways associated with neurodegenerative diseases
and also presenting tumor-suppressing and immune-modulating
properties [35–37]. Therefore, the purpose of this work is to
describe an alternative method to purify pre-miRNA from a com-
plex mixture of total RNA by affinity chromatography, exploiting
the multiple biological interactions which occur between the pre-
miR-29 and the agmatine ligand immobilized in monoliths.

3.1.  Agmatine monolithic disk

Non-grafted CDI monolith was properly modified with agmatine
ligand by BIA Separation (Ajdovščina,  Slovenia), and the suitable
agmatine ligand immobilization was  confirmed through a compar-
ison of the different chromatographic profiles of the new support
and the non-grafted CDI monolith (data not shown). Recently, our
research group has demonstrated the possibility of using the non-
grafted CDI monolith to purify plasmid DNA by using a decreasing
stepwise gradient of ammonium sulfate but not using sodium
chloride (NaCl) [25,26]. Thereby, the two  monolithic disks were
equilibrated with 10 mM Tris–HCl buffer (pH 8) at 1 mL/min, and
after the injection of 30 �g of sRNA sample, a 15-min linear gradient
up to 3 M of NaCl in 10 mM Tris–HCl buffer (pH 8) was established.
In the non-grafted CDI monolith, a single peak was  rapidly attained
in the flow through due to the elution of species with lower affin-
ity. Afterwards, the NaCl linear gradient was  established but no
species were eluted (data not shown). These results indicated that
the non-grafted CDI monolith did not interact with sRNA molecules
under the conditions used. The same experiment was conducted in
the monolith modified with agmatine ligand. The total retention of
sRNA was obtained at 10 mM Tris–HCl buffer (pH 8) and the total
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Table 1
Effect  of sRNA concentration on 10%, 50% and total dynamic binding capacity of
agmatine monolithic disk. The breakthrough experiments were performed on a sin-
gle monolithic disk, at flow rate of 1 mL/min. The loading sample was  sRNA dissolved
in  10 mM Tris–HCl buffer (pH 8).

sRNA concentration (mg/mL) DBC (mg/mL)

10% 50% Total

0.025 0.24 1.04 3.51
0.05 0.71 1.37 4.74
0.075 0.88 1.46 5.90
0.10 1.28 1.63 6.92
0.15 1.98 2.71 7.09
0.20 2.38 3.07 7.59
0.25 2.91 3.22 8.08

elution was verified during the linear gradient by increasing the
NaCl concentration in the buffer from 0 to 3 M (data not shown).
These results confirmed that the agmatine monolith is chemically
different from the non-grafted CDI disk and the agmatine ligands
immobilized on the monolith are the ones responsible for sRNA
interaction with the support.

3.2.  Effect of feed concentration on dynamic binding capacity of
sRNA

For a complete characterization of the agmatine monolithic
disk, the dynamic binding capacity (DBC) was evaluated, once
this parameter is a critical factor for the chromatographic per-
formance. For this purpose, several breakthrough experiments
were performed at 1 mL/min, with different sRNA concentrations
(0.025–0.25 mg/mL). The results summarized in Table 1 indicate
that the total capacity of the agmatine monolithic disk to bind
sRNA was higher for the feed concentration of 0.25 mg/mL, where
it was found a total capacity of 8.08 mg/mL. By analyzing the data
in Table 1, it appears that at 10, 50 and 100% of the breakthrough,
the DBC increases with increasing RNA concentrations, thus, it can
be argued that the binding capacity is dependent of the RNA con-
centration. The profile obtained with agmatine monolithic disk is in
concordance with other RNA binding profiles described for mono-
liths, such as CIM IDA monolithic column [38]. Furthermore, these
DBC results found for agmatine monolith are very good when com-
pared with other values described for purified baker’s yeast RNA,
where the CIM IDA monolithic column presented a binding capac-
ity of 1.20 mg/mL, using 1 mg/mL  of feed RNA [38]. This comparison
suggests that the immobilized agmatine ligand can be responsible
for the improvement on the DBC of the monolithic support through
the enhancement of the interaction ligand–sRNAs, although the
sRNA concentrations used are significantly lower than in the pre-
vious study (0.5–2 mg/mL) [38]. These findings can be due to the
fact that RNA has a size of 100 nm to over 300 nm in diameter, and
monoliths present a larger channel size of 1000–5000 nm allow-
ing full availability of the ligands on the chromatographic support
even at low feed concentration of sRNA. Thus, these results indi-
cate that the DBC is dependent of sRNA feed concentration [39].
Overall, these results suggest that a very efficient chromatographic
performance for RNA purification using monolithic columns can be
achieved if using low RNA feed concentration.

Through the analysis of the isotherm profile, it can be seen
that, in the sRNA concentration range studied, the DBC increases
from 3 mg/mL  to a plateau region, as the RNA concentration
(CRNA) increases. Considering the equilibrium binding isotherm
data, Fig. 1, it is possible to define a linear and a plateau region. Thus,
it is suggested that our data follow the Langmuir model, assuming
that the adsorbed molecules have a fixed number of sites on the
adsorbent where interactions can occur, and that every adsorp-
tion site is energetically equivalent and accepts only one molecule

Fig. 1. Adsorption isotherm of sRNA on agmatine monolith.

[40]. At low concentrations (0.025–0.075 mg/mL), RNA is well dis-
tributed at the agmatine ligands and the orientation is determined
by agmatine ligand–RNA interactions, resulting in a linear shaped
curve between RNA adsorbed amounts and mobile phase concen-
trations. At high concentrations (0.1–0.25 mg/mL), the adsorption
sites may  become saturated, leading to a curvature of the isotherm
into an asymptote. Concentration values of sRNA absorbed above
7 mg/mL  are considered in the overloaded zone of the isotherm.

In addition, the dissociation constant (Kd) from adsorption
isotherm, which represents the interaction between the sRNA
and agmatine monolithic support was also calculated by frontal
analysis chromatography, according to what is described by
Ruta and co-workers [41]. Through the values at 50% of break-
through experiments obtained with agmatine monolith at different
sRNA concentrations, the Kd value was 2.6 × 10−7 M.  A Kd value
between 10−4 and 10−8 M indicates that the risks of irreversible
biomolecules adsorption and denaturation are minimized [40]. So,
the Kd value obtained, reveals a good affinity interaction between
the ligand and RNA, which indicates that agmatine monolith is a
good affinity support.

3.3.  Effect of elution buffer composition and pH manipulation on
pre-miR-29  binding

In  affinity chromatography the elution of a target biomolecule
can be performed either specifically, through addition of a compet-
ing agent in the elution buffer or non-specifically, through changes
in the elution buffer composition, namely in type of salt and ionic
strength, and pH manipulation depending on the matrix used and
the chemical characteristics of target biomolecule [18]. As previ-
ously mentioned, in this study the chromatographic behavior of the
agmatine monolith interacting with RNA, was  evaluated according
to the type and salt concentration and pH manipulation. Before-
hand, several binding/elution studies were performed in order to
determine the best salt concentration range to achieve the binding
and elution of the pre-miR-29 (data not shown). Linear and step-
wise gradients were tested, and it was  determined that the stepwise
elution is more suitable to obtain the pre-miR-29 separation, once
this strategy allows greater selectivity between the biomolecule
in study and contaminants. Moreover, it was  verified the possibil-
ity to establish an increased NaCl gradient to bind and recover the
pre-miR-29. After this preliminary characterization of the pre-miR-
29 retention behavior on the agmatine monolith it was evaluated
the pH effect on pre-miR-29 stability, in order to determine which
pH value should be used in the purification process. In addition,
the pH could also significantly influence pre-miR-29 interactions
with the immobilized agmatine, given the versatility of this ligand.
Thus, several chromatographic experiments, based on ionic-based
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Table  2
Effect  of pH of mobile phase in the tRNA and pre-miR-29 retention, using 10 mM
Tris buffer as loading condition.

pH of mobile phase tRNA retention pre-miR-29 retention

6.5 ++ ++
8.0 + ++
9.5 − ++

From (−) no retention to (++) total retention.

elution conditions, were designed to analyze how the pH ranging
between 6.5 and 9.5 affects the retention of pre-miR-29 and other R.
sulfidophilum sRNA species, considering the pKa of 13 of this ligand
[42].

Table 2 summarizes several chromatographic runs performed
at different loading conditions (pH and NaCl manipulation), and
the relative effect of these conditions on tRNA and pre-miR-29
retention ((−) no retention to (++) total retention). As a matter
of fact, the results showed an increased retention of all sRNAs
species when the pH of the mobile phase is lower (pH 6.5), sug-
gesting that the decreased pH favors the establishment of stronger
electrostatic interactions but also the involvement of multiple
non-covalent interactions, namely cation–� interactions, hydrogen
bonds, hydrogen � interactions and water mediated bonds. These
different types of interaction established between the pre-miR-29
and agmatine ligands can be related with the positive charge (the
effective surface charge) of agmatine, considering the fact that at
the working pH (between 6.5.and 9.5), agmatine is protonated. In
addition, the agmatine is a derivative of arginine amino acid, con-
taining basic guanidinium group and the lack of the carboxyl group,
so that both amino acids have very similar structures. Thus, the
multiplicity of interactions can also occur because agmatine has
one polar center with which RNA can strongly associate. It is rea-
sonable to suppose that the retention of all functional classes of
RNA in agmatine monolith is due to the length of agmatine side
chain and its ability to produce good hydrogen bond geometries
[43,44], which can promote multicontact with RNA backbone or
RNA bases, according to RNA folding (RNA conformations) [45–47].
The cation–� interactions can be due to interactions between pos-
itive guanidinium group of agmatine and aromatic rings of the
nitrogen bases of RNA [17].

Moreover, for the highest pH studied (pH 9.5), it was observed
that the pre-miR-29 was more retained than other species from
tRNA, because some interactions described above are less favored

and  therefore only some RNA species bound to the support, as pre-
miR-29, whereas other species do not bind. Thus, the pH used for
the study, using sodium chloride as elution strategy, was pH 9.5,
due to a higher retention of pre-miR-29 and a more pronounced
difference between the pre-miR-29 retention and the binding of
other RNA species, which allowed exploring the selectivity of the
agmatine ligand.

To  investigate the retention behavior of the target miRNA in
the agmatine monolith, after binding, the pre-miR-29 elution was
achieved with the application of a stepwise gradient increasing
the NaCl concentration up to 3 M in 10 mM Tris–HCl buffer (pH
9.5). The chromatographic profile of the pre-miR-29 purification
from a complex mixture of R. sulfidophilum sRNA, using the agma-
tine monolithic disk, is presented in Fig. 2A. The chromatographic
run was initiated with an ionic strength of 1.75 M NaCl in 10 mM
Tris–HCl buffer (pH 9.5). After injection of the complex mixture of
sRNA, a first peak was obtained with the same salt concentration
of the equilibrium buffer, resulting from the elution of unbound
species. As shown in Fig. 2A, the ionic strength of elution buffer
was increased to 2.5 M of NaCl to elute the pre-miR-29 in a second
peak. The elution of highly bound species, mostly tRNAs, was then
achieved by increasing the ionic strength of the buffer to 3 M NaCl
(peak 3). In this way, this result demonstrates that the agmatine lig-
ands distinguished and differentially interacted with various RNA
molecules, suggesting a specific recognition for the pre-miR-29.
Thereby, in order to establish a correlation between the differ-
ent RNAs species present in the mixture, and the peaks in the
chromatogram, a polyacrylamide gel electrophoresis (Fig. 2B) was
performed, thus the lines 1, 2 and 3 presented in the electrophoretic
profile correspond to the samples pooled from the respective peaks
in the chromatogram. Hence, electrophoretic analysis revealed that
the first peak of unbound species corresponds to the elution of tRNA
species (Fig. 2B, lane 1), at lower ionic strength. On the other hand,
the elution of the pre-miR-29 only occurs with the increase of ionic
strength in the second peak (Fig. 2B, lane 2). Finally, the 6S RNA,
pre-miR-29 and other tRNAs species were eluted with 3 M NaCl,
as it was  observed in the third chromatographic peak (peak 3 and
lane 3). These findings suggest that pre-miR-29 presents a stronger
interaction with the agmatine monolith than the majority of tRNA
species.

Recently, our research group demonstrated the possibility to
purify pre-miR-29 using stepwise gradients of NaCl with the
arginine–agarose matrix [21] being verified the pre-miR-29 elu-
tion at 360 mM of NaCl, while in this study the agmatine monolith

Fig. 2. (A) Chromatographic profile of the pre-miR-29 purification from a sRNA mixture using the agmatine monolithic disk. Elution was performed at 1.0 mL/min by stepwise
increasing NaCl concentration in the eluent from 1.75, 2.5 and 3 M,  as represented by the arrows. (B) Polyacrylamide gel electrophoresis of samples collected at the column
outlet. Fractions corresponding to peaks (1)–(3) are shown in lanes 1–3, respectively. Lane S, impure sRNA preparation injected onto the column.
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Fig. 3. (A) Chromatogram showing the purification of pre-miR-29 from sRNA population by using the agmatine monolithic disk. Elution was performed at 1 mL/min by
stepwise decreasing (NH4)2SO4 concentration in the eluent from 2.4 to 0 M (NH4)2SO4 in 10 mM Tris buffer (pH 8.0). (B) Polyacrylamide gel electrophoresis analysis of
samples collected at the column outlet. Fractions corresponding to peaks (1) and (2) are shown in lanes 1 and 2, respectively. Lane S, impure sRNA sample injected onto the
column.

allowed the recovery and purification of pre-miR-29 with 2.5 M of
NaCl. In general, this comparative study evidences that the bind-
ing mechanism inherent to the biorecognition of pre-miR-29 by
the agmatine amino acid derivative is stronger than the interac-
tions established with the arginine amino acid. This phenomenon
can result from the combination of multiple elementary interac-
tions such as electrostatic interactions, hydrogen bonds, hydrogen
� interactions, water mediated bonds and cation–� interactions,
which both ligands may  engage through the terminal guanidine
group. However, in the agmatine monolith a stronger interaction
occurred since the recovery of pre-miR-29 required a higher NaCl
concentration. The difference between the ligands is the absence of
the carboxyl group in agmatine, which can have two positive effects
in the RNA retention. It can prevent repulsion of charged molecules
and enables the establishment of additional hydrophobic inter-
actions with the carbon backbone of the ligand. Thus, depending
on the environmental conditions established and the amino acid
ligands used, some interactions can be more favored than other,
becoming more evident under these conditions. In order to prove
this hypothesis and mainly exploit hydrophobic interactions, a
stepwise gradient by decreasing ammonium sulfate ((NH4)2SO4)
concentration between 2.4 M and 0 M in 10 mM Tris–HCl buffer
(pH 8) was applied. In this case, the agmatine monolith was  equili-
brated with 2.4 M (NH4)2SO4 in 10 mM Tris–HCl buffer (pH 8). After
the binding of the sample to the disk, a first elution step designed
to elute the tRNA species with lower affinity to the support was
carried out with the same salt concentration of the equilibrium
buffer, promoting total pre-miR-29 retention (Fig. 3A). The elution
of pre-miR-29 was then achieved with a second step by using 0 M
(NH4)2SO4 in 10 mM  Tris–HCl buffer (pH 8) (Fig. 3A). In fact, the
high salt concentration plays a key role on the pre-miR-29 bind-
ing to agmatine ligand. Again, a polyacrylamide gel electrophoresis
was used to detect and identify different species eluting in each
chromatographic peak (Fig. 3B). The electrophoretic analysis of
the fractions eluting from the agmatine monolith (Fig. 3A) proved
that the first peak of unbound material corresponds to the elu-
tion of tRNA (Fig. 3B, lane 1), whereas the second peak was mainly
attributed to the elution of pre-miR-29 (Fig. 3B, lane 2). The interac-
tions that favor the recognition of pre-miR-29, under hydrophobic
elution conditions, can be van der Waals forces and hydrophobic
interactions while the main responsible group for the interactions
established between pre-miR-29 and agmatine ligand can be the
carbon chain of the spacer arm.

The functionality of agmatine ligand to biorecognize the pre-
miR-29 under hydrophobic- and ionic-based elution conditions

shows  the applicability and versatility of this ligand to develop
several pre-miR-29 purification strategies due to the multiple
interactions involved for each condition. Apart from the struc-
tural characteristics of the agmatine ligand, also the pre-miR-29
structural features seem to be relevant on its distinct interaction
behavior with the ligand. The main explanation for the specific
interactions occurring between the pre-miR-29 and the agmatine
amino acid derivative is the single-stranded nature of RNA, which
is normally involved in RNA recognition, due to the high base expo-
sure and availability for interactions. Additionally, the negative
charge conferred by the phosphate groups in the RNA backbone is
important for their interaction with the agmatine monolith, sug-
gesting them to have a crucial role in RNA retention. Likewise,
pre-miR-29 is a sRNA molecule with the shape of a stem-loop
or hairpin consisting of two long irregular double-stranded stem
regions, which are interrupted by a largely single-stranded internal
loop [21]. This particular structure may also explain the multiple
non-covalent interactions established which are involved in the
biomolecular recognition of pre-miR-29 by the agmatine ligand.

In  turn, to obtain an elution strategy more selective and biospe-
cific as well as to achieve higher elution efficiency, it was employed
a new approach for pre-miR-29 purification using arginine as com-
petitive agent. This agent can bind either to the retained pre-miR-29
or to the immobilized agmatine ligand depending on their char-
acteristics, allowing thus to predict the interactions that can be
involved once agmatine is derived of arginine. The competitive
studies were performed by adding 250 mM of arginine to the
elution buffer in stepwise gradient to exploit specific elution of
pre-miR-29 from the agmatine monolith and therefore to evalu-
ate the possibility of reaching higher purification factors. Elution
gradients applied were adapted to ensure that the RNA sample is
on ideal conditions to bind to the support and be eluted only due
to the competing agent. Agmatine monolith was  first equilibrated
with 1.75 M NaCl in 10 mM Tris–HCl buffer (pH 9.5) to promote the
total retention of pre-miR-29. After sample application, a first peak
of unbound species was  obtained and then the ionic strength was
increased upon arginine addition. In this step, 1.75 M of NaCl sup-
plemented with 100 mM arginine in 10 mM Tris–HCl buffer (pH 9.5)
was used for the elution of pre-miR-29 in a second peak (Fig. 4A).

These  findings are in accordance with previous published results
which show that this competition strategy is able to elute bound
pre-miR-29 from arginine–agarose column [21]. It is suggested
that the major mechanism from which pre-miR-29 is eluted from
the agmatine support is the preferential binding of free arginine
to the pre-miR-29, an interaction that we believe to be stronger
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Fig. 4. (A) Separation of pre-miR-29 using agmatine monolithic disk. Elution was  performed at 1 mL/min by stepwise increasing of arginine concentration in the eluent to
100  mM as represented by the arrows. (B) Polyacrylamide gel electrophoresis analysis of each peak in both experiments is represented in the respective figure. Fractions
corresponding to peaks (1)–(3) are shown in lanes 1–3, respectively. Lane S, sRNA sample injected onto the column.

than the interaction pre-miR-29–agmatine support. In fact, since
the arginine is positively charged at the pH in study, electrostatic
interactions can possible occur between the pre-miR-29 and the
free arginine. However, another mechanism that can explain pre-
miR-29 elution is the interaction of free arginine with the agmatine
ligand in the immobilized support [48], that could also promote the
displacement of bound pre-miR-29. The last peak corresponded to
the elution of tRNAs and some residual pre-miR-29 by increasing
the ionic strength to 3 M of NaCl. The results of polyacrylamide gel
electrophoresis (Fig. 4B) showed that the tRNAs were recovered in
the first peak (lane 1), being separated from the pre-miR-29 that
was attained in the second peak (lane 2), while other tRNAs and
pre-miR-29 were obtained in the third peak (lane 3). As judged by
polyacrylamide gel electrophoresis, pre-miR-29 was isolated and
suitably purified in the second chromatographic step with high
integrity. However, even if some arginine remains in the sample,
the structure of pre-miR-29 is not changed, as we have previ-
ously studied by circular dichroism (data not shown). Actually, the
application of arginine can also be strongly associated with the pre-
served integrity observed in RNA samples since arginine, owing to
its multiplicity for interactions, has been largely associated with
stabilizing effects on RNA conformation [17,21].

In a general way, the competition study has shown that the free
arginine could promote the pre-miR-29 biospecific elution of the
agmatine monolith.

Beyond  the potential application of agmatine-based affinity
chromatography to purify pre-miR-29 described here, this study
also demonstrates the possibility of using three different strate-
gies to achieve the pre-miRNA purification. In fact, the purification
of pre-miR-29 was accomplished either using an increased NaCl
or decreased (NH4)2SO4 gradients or using a competition strategy
with arginine supplemented buffer. In addition, this work proves
the relevance of the establishment of well-defined binding and
elution conditions to enhance the pre-miR-29 purification perfor-
mance, resulting in an improvement of the final pre-miRNA yields,
as this could represent an important impact on therapeutic applica-
tions of the purified pre-miR-29. Comparing the elution strategies
with NaCl or arginine to elute bound pre-miR-29 biomolecules, it
was found that the competition strategy favors the selectivity for
pre-miR-29 because the arginine concentration needed to promote
elution is lower than the NaCl concentrations. This fact is in accor-
dance with what has been previously described by other authors,
because as arginine is monovalent at the pH used, it is equivalent to
NaCl in terms of valency; however the conductivity is much lower

than  for NaCl at identical concentrations [21,49]. This study also
allowed the purification of pre-miR-29 in 20 min at a flow-rate of
1 mL/min.

3.4.  Effect of flow rate on pre-miR-29 purification

The effect of flow rate on purification of pre-miR-29 was investi-
gated, although no change is expected on the separation selectivity
once some studies proved that the molecules separation is flow-
independent due to the physical and chemical constitution of
monoliths [26,50]. Therefore, to verify the impact of flow rate on
purification of pre-miR-29, the same elution gradient previously
established for the ideal separation was used. Fig. 5A shows the
resulting chromatograms for the separation of pre-miR-29 at the
different flow rates from 0.5 to 3 mL/min. The purity of pre-miR-29
separated with different flow rates was  followed by electrophore-
sis as shown in Fig. 5B. Evaluating the chromatograms and the
respective electrophoresis, it is clearly evident that no changes have
occurred in the separation efficiency of pre-miR-29 for the different
flow rates under study, but a significant reduction on the chromato-
graphic run time was verified when higher flow rates were used
(Fig. 5A). It is also possible to observe that the chromatograms over-
lap each other even at the highest applied flow rate of 3 mL/min. In
this case the separation was completed in 9 min, which is in accor-
dance with the advantages presented by the monolithic supports,
where the chromatographic run was  4 times faster that the time
used in conventional matrix of arginine [21].

3.5. Pre-miR-29 characterization

To  ensure the success of the pre-miR-29 purification method-
ologies here described for therapeutic applications it is essential
to guarantee the total elimination of impurities such as proteins,
assessed by the micro-BCA method and endotoxins evaluated
by LAL assay as well as to isolate the pre-miR-29 from other
sRNAs species, which may  be assured by polyacrylamide gel elec-
trophoresis [5,51]. Moreover, RNA preparations should maintain
the structural integrity, free from enzymatic inhibitors for RT and
PCR reactions and free from nucleases [52].

The concentration and quality of the pre-miR-29 preparations
isolated by the agmatine monolith were evaluated by Phoretix
1D software (Nonlinear Dynamics, Newcastle, United Kingdom)
through the evaluation of the intensity of electrophoretic bands.
The quantitative analysis of pre-miR-29 throughout the isolation
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Fig. 5. (A) Effect of flow rate on resolution of pre-miR-29. Experiments were performed in the same salt and gradient conditions applied for the pre-miR-29 purification
(presented in Fig. 2) at different flow rates (0.5, 1, 2 and 3 mL/min). (B) The peaks obtained in the chromatographic runs at different flow rates were identified by polyacrylamide
gel electrophoresis.

procedure is summarized in Table 3, which presents the purity
degree, purification factor and recovery yield of pre-miR-29 sample
obtained with the agmatine monolith. In a general point of view,
the strategy with NaCl enabled a high recovery (97.33%) of the tar-
get miRNA but the purity degree only reached 75.21%, whereas the
strategy with (NH4)2SO4 allows the recovery of the partially purify
pre-miR-29 (35.51% of purity) when the salt concentration is signif-
icantly reduced. On the other hand, the competition studies using
arginine in the elution buffer, demonstrated the possibility of puri-
fying pre-miR-29 with higher purity (90.11% of purity and 94.88%
of yield) in comparison to the other strategies, even though some
pre-miRNA is lost in the final elution step. Thus, if larger amounts
of pure pre-miRNA are desired, the strategy that employs NaCl can
be used, while if higher purity levels are necessary, the competition
strategy with arginine is more appropriate [21].

The protein quantification in the purified pre-miR-29 fractions
collected from the chromatographic peaks was performed using
the micro-BCA assay (Table 3). The analysis of the protein con-
tent in the fractions collected along the pre-miR-29 purification
gradient revealed that proteins tend to elute more in the first
gradient step (data not shown). Therefore, the chromatographic
strategies used in these new pre-miRNA isolation methods (peak
2 in Figs. 2A, 3A and 4A) also provide a reduction of protein con-
tamination in RNA samples, specifically in the competition strategy
using arginine in the elution buffer, where the protein contami-
nation level was negligible (2.774 ± 0.005 ng/�L), as required for
therapeutic applications (Table 3). Endotoxins contamination was
assessed using the ToxinSensorTM Chromogenic Limulus Amoe-
bocyte Lysate (LAL) Endotoxin Assay Kit (GenScript, USA, Inc.)
according to the manufacturer’s instructions. The endotoxins con-
tent in the final pre-miR-29 sample indicates a significant reduction
of the endotoxins level throughout the chromatographic step with
the agmatine monolith, with a purification factor of pre-miR-29

Fig. 6. pre-miR-29 identification by reverse-transcription PCR. The agarose-gel
electrophoretic  analysis of PCR products shows amplification of pre-miR-29 cDNA
fragments. The negative control had no band intensification. Lane M,  DNA molec-
ular  weight marker; lane 1, negative control; lanes 2, 3 and 4, second peaks of the
three strategies under study (sodium chloride, ammonium sulfate and arginine),
respectively.

relatively to LPS of 50 times (data not shown). A more accurate
identification of pre-miR-29 molecules purified from the sRNA
populations with the agmatine monolith was  performed by PCR.
As it can be observed from the electrophoretic analysis of the PCR
products (Fig. 6), by using specific primers for pre-miR-29 cDNA,
the PCR reaction allowed the amplification of pre-miR-29. No fur-
ther amplification was seen in the control (lane 1). The negative

Table 3
Quantitative analysis of purity and recovery yield of pre-miR-29 isolated by agmatine monolithic disk.

Elution strategy sRNA sample (�g) Pre-miR-29 purity (%) Pre-miR-29 yield (%) Proteins (ng/�L)

NaCl 20 75.21 97.33 3.258 ± 0.001
(NH4)2SO4 20 35.51 99.40 5.516 ± 0.006
Arginine  20 90.11 94.88 2.774 ± 0.005

The correlation coefficients of protein calibration curves was 0.9998.
Data are presented as means with SD (N = 3).
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control was made of PCR reaction solutions without cDNA. There-
fore, it was verified the identity of the sRNA isolated from the
original population as pre-miR-29.

4. Conclusions

This work combines, for the first time, the structural versatility
provided by monolithic supports with the specificity and selectivity
of agmatine ligand, as a promising strategy for miRNA purification.
Moreover, the characterization of the modified monolith revealed
that a maximum binding capacity at 100% breakthrough was
8.08 mg/mL  for a RNA concentration of 0.25 mg/mL. The obtained
Kd value, 2.6 × 10−7 M,  confirms that the agmatine monolith sup-
port develops a good affinity interaction with RNA, showing that
agmatine monolith is a good affinity chromatographic support.
The implementation of agmatine monolithic chromatography for
pre-miR-29 purification was based on the development of spe-
cific interactions between the pre-miR-29 and agmatine ligands,
allowing the removal of other RNA species, as well as the reduction
of proteins and endotoxins contaminants, obtaining highly pure
pre-miR-29 for therapeutic applications. The type and salt con-
centration and pH manipulation in the loading buffer allows the
establishment of different interactions and consequently different
elution strategies. The exploitation of these affinity interactions,
resulting from multiple intermolecular forces, namely van der
Waals forces, hydrogen bonds, electrostatic and hydrophobic inter-
actions, can trigger new insights not only in isolation strategies but
also in many other RNA research fields owing to its implication in
molecular recognition phenomena. Additionally, for the pre-miR-
29 purification this monolithic support represents an advantageous
alternative to conventional supports due to fast separation and
consequent short contact time, ensuring structural stability of the
target molecule. In conclusion, our approach revealed an efficient
technique to obtain pharmaceutical-grade miRNA with high recov-
ery yield, purity and good integrity, which may  in a near future be
used in RNA structural and functional studies as well as in gene
therapy.
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a b s t r a c t

The purpose of the present study is to provide a tool for an efficient design and synthesis of non-viral vec-
tors for small RNA delivery. The effects of properties of the polycation, such as molecular weight, charge
density and backbone structure, to polyplex structure and physicochemical behavior were systematically
evaluated. The condensing agents, polyethylenimine (PEI), chitosan (CS) and poly(allylamine) (PAA) were
added to sRNA molecules at different N/P ratio. The efficiency of encapsulation and protection of sRNA, as
well as polyplex size, zeta potential and morphology were followed and compared. The results show that
PEI/sRNA polyplexes display a small size and positive zeta potential. However, for low molecular weights,
this polycation is unable to protect sRNA in the presence of a decompacting agent. With chitosan, sRNA is
efficiently compacted at high N/P ratios. The CS/sRNA complexes display small sizes, ca. 200 nm, positive
surface charge and also good stability. Finally, the PAA/sRNA polyplexes were found to be the smallest at
low N/P ratios, displaying a good encapsulation efficiency and high stability. A rationale for the experi-
mental observations is provided using Monte Carlo simulation for systems with polycations of different
length and charge density. The simulations showed that there is an interplay between the size of poly-
cation chains and its charge density that define the degree of condensation for sRNA.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Gene therapy has gained significant attention over the past two
decades as a promising approach for a future therapeutic strategy
in clinical applications. Gene therapy is important not only for the
treatment of diseases caused by genetic defects, but also in the
development of methods for treatment and prevention of a wide
range of acquired disorders that include severe combined immu-
nodeficiency, cystic fibrosis, rheumatoid arthritis and Parkinson’s
disease, as well as an alternative to the traditional chemotherapy
used in treating cancer [1–4].

Over recent years, the importance of RNA in numerous biologi-
cal processes has increased substantially. Small RNAs (sRNAs) are
being increasingly recognized as crucial regulatory molecules in
all organisms. The specificity and the potency of sRNAs suggest
that they might become therapeutic agents, especially in interfer-
ence RNA strategies [5–7]. Free therapeutic genes can be enzymat-
ically degraded by ubiquitous nucleases resulting in a short
half-life in the blood. For that reason they show poor cellular
uptake when delivered in aqueous solutions, and insufficient tissue

bioavailability, which has stimulated the development of carrier
systems for gene delivery [1,8,9]. The gene carriers include viral
systems such as retrovirus and adenovirus or non-viral systems,
including cationic polymers, cationic lipids, peptides and dendri-
mers [10,11]. The polycations are a promising alternative to com-
pact RNA for systemic delivery because of their low cytotoxicity,
low immunogenicity, high stability, biocompatibility, and unre-
stricted gene materials size. In addition, potential safety benefits
make these compounds increasingly attractive for gene therapy
[4,12–14]. Moreover, non-viral vectors present relatively low cost
production and high flexibility, allowing to design carriers with
well-defined structural and chemical properties [1].

Cationic polymers can efficiently condense RNA molecules into
nanometer range complexes, commonly via protonated amine
groups that promote the electrostatic interaction with the nega-
tively charged phosphate groups in RNA [15]. They may also
provide a positively charged surface in the complex. One of the
obstacles for an efficient gene transfection is crossing the negatively
charged cell membrane, and net positive charge of the polyplexes
promotes electrostatic interaction with the overall negative charge
of the cell membrane and prevents particle aggregation [14–16]. In
addition, the size of the polyplexes should be between 50 and
200 nm for efficient internalization by endocytic processes, and
once inside the cell, they should dissociate to release the sRNAs
from the vector system for their respective functions [17–19].
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Due to the increased interest in these systems, a large number
of natural and synthetic polymers have been synthesized and char-
acterized. Polyethylenimine (PEI), a polycationic polymer has
emerged as one of the most promising candidates for the develop-
ment of efficient gene delivery vectors [12]. The complexes PEI-
nucleotide show high stability, controllable size, adjustable
unpackaging properties in cells, and flexibility for addition of moi-
eties that target specific entities on cell membranes and intracellu-
lar structures [20]. In particular, PEI has potential as a RNA carrier
due to its superior transfection efficiency which may facilitate
endosomal escape after entering the cells as it acts as a ‘‘proton
sponge’’ during acidification of the endosome [13,21]. Chitosan
(CS) is also considered to be a good candidate to integrate gene
delivery systems. CS presents beneficial qualities such as low tox-
icity, low immunogenicity, excellent biodegradability, biocompati-
bility, as well as a high positive charge that can easily form
polyelectrolyte complexes with negatively charged nucleotides
through electrostatic interactions [2,9,22]. Recently, poly(allyla-
mine) (PAA), a synthetic cationic polymer having high density of
primary amino groups, has drawn considerable attention as a
non-viral gene delivery system [23]. PAA carries a strong positive
charge, which enables it to bind and package negatively charged
sRNA. It is a polymer extensively used in the formulation of bio-
compatible films, nanomaterials and for cell encapsulation.

In the present work, a systematic study of different polymers,
PEI, CS and PAA, with different molecular weights and charge den-
sities is performed. The aim of this study is to compare the perfor-
mance of these different polycations on sRNA condensation, with
the subsequent assessment of the biophysical and structural char-
acteristics (such as size, zeta potential, morphology and complex
stability) of the polymer–sRNA complexes, in order to design a suc-
cessful delivery system for sRNA.

2. Experimental section

2.1. Materials

Five different polycations were used. CS low molecular weight
(LMW) (Mw = 50–190 kDa; degree of deacetylation in the 75–85%
range), CS medium molecular weight (MMW) (Mw = 190–
310 kDa, degree of deacetylation in the 75–85% range), PEI-LMW
with Mw = 1.3 kDa, 50 wt% in H2O and PAA of 17 kDa, 20 wt% in
H2O were obtained from Sigma–Aldrich (St. Louis, MO, USA). PEI
high molecular weight (HMW) of Mw = 10 kDa was purchased from
Polysciences, Inc. (Warrington, PA). Guanidinium salt and all the
chemicals used in the lysis buffer were obtained from Sigma (St.
Louis, MO, USA). All solution were freshly prepared using 0.05%
diethyl pyrocarbonate (DEPC) treated water. DEPC was purchased
from Fluka (Sigma). Fetal bovine serum (FBS) was purchased from
Biochrom and heparin (25,000 IU for 5 mL) was obtained from
Winthrop.

2.2. sRNA samples

sRNA samples used in this study were isolated from Escherichia
coli DH5a based on the protocol described by Martins and co-
workers (2010), in which an acid guanidinium thiocyanate–phe-
nol–chloroform method is used [24]. Briefly, cells were lysed and
the nucleic acid fraction obtained was precipitated with isopropa-
nol. The precipitate was recovered by centrifugation at 16,000g for
20 min at 4 �C. After centrifuging, the sRNA pellets were air-dried
for 5 min at room temperature and their solubilization was per-
formed in 200 lL of 0.05% DEPC-treated water. Finally, the optical
density of the samples was determined using a Nanophotometer to
assess sRNA quantity and purity.

2.3. Polyplex formation

All the polyplexes were formulated using the method of simple
complexation between molar concentrations of positive charge,
present in the protonated amine groups of polycation (N), and
the negative charge of the phosphate groups of RNA (P) [3,8]. To
determine specific N/P ratios, the mass of 325 Da corresponding
to one phosphate group on sRNA was used. Moreover, over the
pH used in this study, sRNA displays an approximately constant
anionic charge density, with the pKa of the respective phosphate
group close to 1.5 [25]. The calculation of the positive charges
was made in accordance with the pKa values and molecular weight
of each polycation (Table 1). sRNA stock solution was prepared by
sRNA dissolution in sodium acetate buffer (0.1 M sodium acetate/
0.1 M acetic acid, pH 4.5), up to a final concentration of 25 lg/
mL. The sRNA concentration was determined by UV absorbance
at 260 nm. A solution of 40 lg/mL of RNA will have an absorbance
of 1 [26]. The polycation stock solutions were also prepared in so-
dium acetate buffer pH 4.5 in a concentration of 10 mg/mL.
Preliminary experiments were performed to identify the concen-
tration range where the polyplexes are formed. A fixed volume of
polycation solution (100 lL) of variable concentration was added
to a sRNA solution (400 lL). The final concentration of sRNA was
equal to 20 lg/mL (60.6 lM) and was kept constant in all the
methods used for the characterization of the formed complexes.
Particles were obtained by addition of cationic polymer solution
to sRNA solution and immediately vortexed at maximum speed
for 30 s. All the samples were subsequently left for equilibration
at room temperature for 60 min.

2.4. Circular dichroism (CD)

CD was used to monitor the RNA behavior when subjected to
different pH values. CD spectra were obtained using a 0.2 cm path
length quartz rectangular cell at a constant temperature of 25 �C, in
a Jasco 1850 spectrophotometer. Spectra were recorded from 215
to 320 nm at a scan speed of 10 nm/min and a bandwidth of
1 mm. Three spectra were accumulated and averaged for each
sample. The final sRNA concentration was 100 lg/mL. All measure-
ments were conducted under a constant gas flow, to purge the
ozon generated by the light source of the instrument. The CD signal
was converted to molar ellipticity, smoothed with a Jasco Fast Fou-
rier transform algorithm.

2.5. Gel agarose sRNA assays

A series of polycation/sRNA polyplexes in different ratios were
prepared as described above. The samples (20 lL) were analyzed
by horizontal electrophoresis using 0.8% of agarose gels (Hoefer,
San Francisco, CA, USA). The electrophoresis was carried out in
Tris–acetic acid (TAE) buffer in DEPC-treated water (40 mM Tris
base, 20 mM acetic acid and 1 mM EDTA, pH 8.0) and run at 90 V
for 50 min. The bands corresponding to sRNA and polycation/sRNA
complexes were visualized under ultraviolet light after staining the
gels with ethidium bromide (0.5 lg/mL) or 5 lL of a 10,000� solu-
tion of Gelstar. The gels were imaged using a Vilber Lourmat sys-
tem (ILC Lda, Lisbon, Portugal).

2.6. Scanning electron microscopy (SEM)

The morphological characteristics of the polyplexes were
visualized with a scanning electron microscopy (SEM) (Hitachi
S-2700, Tokyo, Japan). Briefly, one drop of the solution containing
the polyplex samples was placed on the surface of cover glasses
and stored at 37 �C overnight. Subsequently, the samples were
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then sputter coated with gold using an Emitech K550 Sputtering
Coater (London, England) for 3 min at 30 mA.

2.7. Particle size and zeta potential measurements

The mean particle diameter of the polyplexes and polydisper-
sion index were determined by dynamic light scattering (photon
correlation spectroscopy, PCS) using an N5 Particle Analyzer (Beck-
man Coulter Inc., USA). Particle diameters of the freshly prepared
complexes were measured at 25 �C, and data were collected at
90� scattering angle. The time-averaged autocorrelation functions
were transformed into intensity-weighted distributions of the
apparent hydrodynamic diameter using the available Malvern
PCS software 6.20. The surface charges (zeta potential) of the poly-
plexes were determined by laser Doppler electrophoresis using a
Zetasizer Nano ZS (Malvern Instruments Ltd., UK), at 25 �C. The
average values of size and zeta potential were calculated with
the data obtained from three measurements ± SD.

2.8. Determination of sRNA encapsulation efficiency

The sRNA encapsulation efficiency (EE) was calculated from the
determined free sRNA concentration in the supernatant recovered
after particle centrifugation (15,000g, 20 min, 25 �C). The amount
of unbound sRNA was determined by UV–Vis analysis (Shimadzu
UV–Vis 1700 spectrophotometer) at 260 nm. Supernatant recov-
ered from unloaded polycation (without sRNA) was used as a
blank. Three repetitions of this procedure were performed for each
system. The encapsulation efficiency was calculated as

EE ð%Þ ¼ ½ðTotal sRNA amount

� sRNA supernatant amountÞ=Total sRNA amount�
� 100

2.9. Polyplexes: release profile and protection of sRNA

Protection and release profile of the sRNA present in the poly-
plexes were also assessed. All the polyplexes were resuspended
in PBS buffer, pH 7.4. The protection experiments were carried
out by incubation of 12.5 lL of polyplexes with 1.5 lL of RNase
solution (10 and 100 lg/mL) for 1 h at 37 �C or with 10% of fetal
bovine serum (FBS) for 30 and 60 min at 37 �C. To characterize
the release of the encapsulated sRNA, samples were incubated with
a series of heparin solutions (0.01, 0.1, 0.5 and 1 IU/mL of heparin),
prepared by diluting aliquots of a heparin stock solution (10 IU/
mL). The polyplex solutions (10 lL) were incubated with 10 lL of
each concentration for 1 h at 37 �C.

2.10. Molecular modeling

An estimation of size and charge density of all polycations used
was carried out resorting to the Avogadro package [27], using the

UFF force field [28]. The structure of all polycations was estab-
lished considering at least ten monomers. The average distance be-
tween charged groups, dAB, and also the average size per monomer
were established, considering the structure of each monomer as gi-
ven by the manufacturer.

2.11. Monte Carlo simulation

The systems studied in this work were modeled in a coarse-
grain approach, where all ions and chain monomers are considered
as charged hard-spheres and the solvent is considered as a contin-
uum with a dielectric permittivity of water. We modeled a titration
of a polyanion with 100 negative charged beads, with oppositely
charged polyplexes with variable chain lengths and charge densi-
ties. The four different systems are listed in Table 2. The notation
corresponding to the length of the polycation chain and corre-
sponding charge density (e.g. Short-HCD) is used. The charge den-
sity varies between low (LCD), moderate (MCD) and high (HCD).
The charge ratio, N/P, between polyanion and polycation were kept
constant, equal to unity, for all systems considered. It is given by

N=P ¼ zmon;PCNmon;PCNPC

zmon;PANmon;PA

where Zmon is the charge of monomers, Nmon is the number of mono-
mers in each chain and N is the number of polycation chains in the
system. The subscript PC and PA correspond to polycation and pol-
yanion, respectively. The linear charge density, dz, of the polycation
chains was calculated as,

dz ¼
Nmon;PCZmon;PC

ðNmon;PC � 1ÞR0

and taking R0 as the bead-bead separation. A more extensive
description of this method can be seen in previous work by some
of the authors [29]. In the present work, the hard sphere radius of
polyanion beads was 2.7 Å and of positive beads of polycation 2 Å.
A reference distance between connected monomers of 6.5 Å was
imposed for the negative chain, 5.6 Å for the polycations. The
harmonic force constant and angular force constant used was
0.4 N m�1 and 1.7 � 10�24 J deg�2, respectively. The polyelectrolyte
backbones correspond to semi-flexible polymers, in terms of

Table 1
Main characteristics of PEI-LMW, PEI-HMW, CS-LMW, CS-MMW and PAA.

Polymer Molecular weight (MW)a Monomer charge density (e)a Nominal DDb (%) Determined DDc (%) pKa
ref

PEI-LMW 1300 11+ – – 9.26 [15]
PEI-HMW 10,000 3+ – – 8.5 [45]
CS-LMW 50,000–190,000 1+ 75–85 83.14 ± 0.39 6.5 [15]
CS-MMW 190,000–310,000 1+ 75–85 73.86 ± 0.61 6.5 [15]
PAA 17,000 1+ – – 8.5 [46]

a e is the elementar charge.
b Provided by the manufacturer.
c Determined by 1DUVS. The data represent the mean and standard error of at least three separate measurements (mean ± SD).

Table 2
Systems simulated in the present work. In all cases, a negative polyelectrolyte with
100 charged beads of unit charge was present.

Systems Number of positive
chains

Number of beads/
chain

Charge per
bead

Short-HCD 5 20 1
Intermediate-

LCD
8 50 0.25

Intermediate-
MCD

4 50 0.5

Long-LCD 2 200 0.25
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intrinsic persistence length. Considering also the electrostatic
effects, the values of the persistence length, in the presence of the
respective counterions only, is 28 Å for the polyanion, and ca.
22 Å for the polycations, irrespective of the chain length. For each
system, Metropolis Monte Carlo simulations were performed in
the canonical ensemble using the Molsim package [30]. The effi-
ciency of the simulations was improved by taking concerted moves
in the chain particles. These included translation as a whole and
slithering [31]. The rate of acceptance of single particle moves for
the polyanion was 33% for a simulation of a compact polyplex (sys-
tem Short-HCD), while translation and slithering warranted levels
of acceptance of 4% and 39%, respectively. In general, all remaining
systems yielded higher values for the polyanion. The polycation
moves resulted in significantly higher rates of acceptance: 44%,
32% and 38% for the single particle, translation as a whole and slith-
ering, respectively, also in system Short-HCD. Again, the remaining
systems displayed higher acceptance ratios for the polycations
backbone.

3. Results and discussion

3.1. Structural characteristics of the polycations

From the structures of different polycations with optimized
conformation, it is possible to determine the average size and
charge density of the respective monomers (Fig. 1). Also, consider-
ing the molecular weight of each monomer and the corresponding
average chain molecular weight, it is possible to estimate the num-
ber of monomers per chain, Nmon,PC. The linear charge density was
calculated similarly to what was described for the Monte Carlo
simulation but zmon,PC is the number of charges in each monomer
(see Table 1) and R0 is the length per monomer. Table 3 summa-
rizes the results obtained from simple molecular mechanics calcu-
lations in gas phase. It should be stressed that these are rough
estimates, in which the groups are not protonated to avoid the
necessity of a solvent, and aim at facilitate the link between the
experimental and theoretical approaches. Chitosan chains display
the highest chain length, but the lowest charge density. The

highest charge density is, as expected, obtained for PEI polymers.
In this case, and due to the fact that these polycations are
branched, it is more difficult to establish the total chain length.
This is especially important in the case of PEI, 10 kDa, in which
the branching is random. PAA presents an intermediate size and
chain length. Further details will be discussed in the next sections.

3.2. Assessment of sRNA stability in different solutions

The conformational stability of the sRNA secondary structure
was assessed at different solutions (H2O–DEPC and acetate buffer,
pH 4.5) using CD (Fig. 2). The CD spectra of the sRNA in H2O–DEPC
is very similar and show characteristic features of the A-RNA [32].
For sRNA in H2O–DEPC, a positive band around 260 nm was ob-
served, and a negative signal at 220 nm, with approximately the
same intensity. On the other hand, the sRNA spectrum in acetate
buffer at pH 4.5 depicts a decrease in the value of the molar ellip-
ticity of the positive band (260 nm) and maintains the negative sig-
nal at 220 nm. These results show that isolated RNA is sensitive to
the buffer used, since the respective CD spectrum is different in
acetate buffer and in water. This indicates that the sRNA structure
is altered at lower pH.

To check on RNA integrity, further techniques were used. Spec-
trophotometry analysis (Nanophotometer) measuring absorbance

Fig. 1. Optimized geometries (UFF) of polycations in gas phase, (a) PAA and (b) CS, (c) PEI, 1.2 kDa and (d) PEI 10 kDa. Each polycation contains not less than 10 monomers.
The average distance between the ionizable species (blue) was performed by considering the distance, dAB, and subsequent distances determined following the nearest
ionizable group. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Estimates from molecular mechanics of the average length per monomer, average
length per chain and charge density of each of the polycations used in the present
work.

Polycations Averaged measurements per chain

Length per monomer
(Å)

Length per chain
(Å)

Charge density
(e/Å)a

PAA 3.4 810 0.29
CS-LMW 5.4 3627 0.19
CS-MMW 5.4 6347 0.19
PEI-LMW 24.9 62.3 0.44
PEI-HMW 9.3 – 0.32

a e is the elementar charge.
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at 260 and 280 nm [26] were conducted. The nucleic acid concen-
tration was estimated using the absorbance values at 260 nm,
while the integrity of each sample was determined by calculating
the 260/280 ratio. The spectrophotometric data show that RNA in
H2O–DEPC displays a high degree of integrity as extracted from
the absorbance ratio, A260/280 = 2.017 ± 0.046, value which is
in close agreement with the reference ratio 2.0 ± 0.1 [26]. A
similar value is obtained for RNA in acetate buffer,
A260/280 = 1.979 ± 0.057. Electrophoresis analysis is an important
complementary technique that also enables to assess RNA integrity
[26]. For that purpose, the UVIband—1D gel analysis software
(Uvitec, Cambridge, UK) is used as an auxiliary of the agarose
electrophoresis allowing the determination of the intensity of
sRNA bands. Fig. 2B shows the semiquantitative analysis of the
intensity of sRNA bands in H2O–DEPC and acetate buffer. The value
of peak volume obtained was 40,505,059, which indicates that the
intensity of sRNA in H2O–DEPC band is slightly higher than the
intensity of sRNA in acetate buffer (37,224,173). Together, these
results demonstrate that there is a small decrease of RNA integrity,
but it remains stable at pH 4.5 (Fig. 2B).

However, there is no consensus on the precise nature of the
changes that occur in RNA conformation when the pH is lowered,
and how pH influences the sRNA degree of ionization. Biologically,
hybridization occurs naturally in acidic conditions and promotes
the neutralization of the condensed phosphate molecules [33]. In
vitro, this occurs with a pH below 5 and can result in depurination,
base pair protonation, adenine, uracil, and cytosine unstacking, and
thus degradation of RNA [33].

3.3. UV and agarose gel electrophoresis

In order to determine the optimal complexation conditions, it is
necessary to evaluate the degree of binding between sRNA and
polycation at different N/P ratios. The polycations were mixed with
sRNA at several ratios for the formation of sRNA–polycation parti-
cles (polyplexes) in acetate buffer at pH 4.5 [14]. The pH 4.5 value
was chosen because it is located within the range of pH values
(4–6) that has been attributed to the endo/lysosomal compartment

[34]. Moreover, at this pH, the amine groups of polycations in study
are protonated and act as a cationic polyelectrolyte that can inter-
act with the negatively charged sRNA. In Table 1, it is possible to
observe that the polycations possess pKa values higher than those
of the RNA phosphate groups. The degree of compaction between
sRNA and all polycations in study are analyzed by gel agarose elec-
trophoresis (Fig. 3) and by UV spectrometry (Fig. 4). In preliminary
studies, N/P ratio values in the range of 0.625–50 were studied for
all the selected polycations (data not shown). In this range, an
intermediate region was found for each polycation, where most
of the sRNA molecules are partially condensed, followed by com-
plete condensation of the sRNA at higher concentrations of
polycation.

Regarding the PEI, it was observed that the bands corresponding
to free sRNA in the PEI-LMW/sRNA complex were not observed
when the polymer was present at the N/P ratio above 3, (Fig. 3A).
In accordance with the results obtained from electrophoresis,
100% of sRNA loading efficiency was achieved at the N/P ratio 3–
4 and, at this point, sRNA is completely complexed with PEI-
LMW (Fig. 4). In the case of the PEI-HMW/sRNA complex
(Fig. 3B), no suppression of sRNA was identified in those complexes
with N/P ratios of 1.25–2.5, while sRNA migration in complexes
with N/P ratios higher than 2.5 was not observed. These results
were also observed in the encapsulation studies, in which 97% of
the sRNA loading efficiency was obtained, for the 3–3.5 N/P ratios
(Fig. 4). In comparison, the two PEIs in study display subtle differ-
ences in the sRNA condensation. In general, however, PEI-HMW
seems to be more efficient in sRNA condensation. It is known that
polycations with higher charge densities promote the strongest
binding with RNA [10, 12, 32, 33]. However, it should be stressed
that the degree of compaction depends also on the size of the po-
sitive chains, and on their number, for a constant charge ratio [35].
In Table 3 are listed the main differences between these two poly-
cations in terms of size and charge density. It is observed that the
charge density of PEI-LMW is higher than that of PEI-HMW, but the
chain is longer and the degree of branching is higher in PEI-HMW.
Some previous studies have also pointed out that a branched struc-
ture may promote a more efficient interaction with sRNA, when

Fig. 2. CD spectra of E. coli sRNA in the H2O–DEPC and acetate buffer at pH 4.5. The data shown in this CD spectrum are the average from three independent measurements.
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compared to a linear polymer structure, which may be beneficial
for the packaging of sRNA [36,37].

In a second set of experiments, we have used two types of chito-
san polymers. The characteristics of the different commercial
chitosan (CS-LMW and CS-MMW) used in this work are shown in
Table 1. MW and DD are the molecular weight and the deacetyla-
tion degree, respectively. The DD was measured by a first deriva-
tive UV-spectroscopy (1DUVS) method, using a Shimadzu 1700
UV–vis spectrophometer [38]. The DD values represent the per-
centage of deacetylated primary amine groups along the molecular
chain, which subsequently determines the positive charge density
when chitosan is dissolved in acidic conditions (pH � 5.5) [38]. In
the presence of CS-LMW at an N/P ratio of 15–25, sRNA migrated
along the gel, which indicates the presence of non-complexed
sRNA (Fig. 3C). For higher N/P ratios, around 30, the presence of
polyplexes in the wells (neutralized sRNA) is observed, suggesting

sRNA is fully complexed. In the case of CS-MMW at N/P ratios of
10–35, sRNA also migrated into the gel but at a N/P ratio above
35 the sRNA is neutralized (Fig. 3D). In Fig. 3D, it is possible to ob-
serve that, at the N/P ratio 20–45, some polyplexes move in the
direction of the anode, that is, some polyplexes present an excess
of positive charge. It was clear that the efficiency of the polycation
condensation and the charge distribution inside the polyplex is
known to depend on the distance between the charges in the con-
densing agent. This reflects the fact that both linear charge density
and the relative number of chains of the condensing agent are
important factors in the condensation behavior. Overcharging
effects have been previously observed in similar systems, and over-
charging is favored in situations where a concentrated solution of
polycation is added to the polyanion solution [39,40].

Finally in the presence of PAA, sRNA complexation starts at very
low values of the N/P ratio. This condensation becomes more

Fig. 3. Binding efficiency of sRNA/polymer polyplexes at various N/P ratios. (A) sRNA/PEI-LMW (1300 Da), (B) sRNA/PEI-HMW (10 kDa), (C) sRNA/CS-LMW (50–190 kDa), (D)
sRNA/CS-MMW (190–310 kDa) and (E) sRNA/PAA (17 kDa). The first lane of the gel corresponds to free sRNA. The numbers in each lane indicate the N/P ratios values. Each
experiment was performed of three times.

Fig. 4. Encapsulation efficiency of the polyplexes obtained from different polymers. The mean results and standard deviations (vertical lines in figure) of three independent
measurements are presented (mean ± SD are given, three repetitions each).
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marked at N/P = 0.7 and N/P = 0.8, where most sRNA molecules are
complexed, as extracted from the intensity decrease of the band
that corresponds to free sRNA (Fig. 3E). The results obtained for
PAA/sRNA encapsulation are in agreement with those from agarose
gel electrophoresis, where a 25.6% of sRNA loading efficiency was
achieved at the N/P ratio of 0.7 and the highest N/P ratio was
85% for an N/P ratio of 0.8 (Fig. 4). These observations indicate that
this polycation, which possesses an intermediate size and charge
density, as compared with the others used in this work, is very effi-
cient in sRNA condensation. An illustration from the molecular
mechanics calculations (see Fig. 1) suggests that the charges of
the PAA are more accessible than those in the PEI chains. Also, a
high degree of charge matching between PAA and sRNA [41] is a
definite possibility. In fact, charges in PAA are separated by ca.
3.4 Å (Table 3) yielding a charge density close to that of sRNA.

3.4. Structural properties

The physical properties such as size and surface charge that
influence cellular interactions and polyplex biodistribution were
also determined. The results of zeta potential and size of polyplex-
es are shown in Table 4. In general, an increase in the charge of the
complexes, for all systems in study, is observed upon the addition
of polymers. The size of sRNA, in the absence of polycation, is
325 nm in diameter. The initial size of the sRNA molecules is re-
duced when the N/P ratio increases, up to a minimum value, after
which the chains tend to expand again. It is also observed that the
lowest size of the complexes obtained with CS is slightly higher
than that obtained with the PEI chains. In turn, PAA reaches the
lowest size value. Also, PAA complexes at 0.6, 0.7, 0.8 and 0.9 N/P
ratios are smaller than 150 nm, which is considered the size limit
for nonspecific endocytosis via clathrin-coated pits [42]. In the case
of PEI and PAA it is seen that the zeta potential increases gradually,
from negative to positive values (Table 4). The complexes formed
with sRNA and the two PEIs at N/P ratio of 2.5 displayed small neg-
ative zeta potentials. These results are in accordance with the re-
sults obtained in the electrophoresis (Fig. 3) and in the
encapsulation studies (Fig. 4) at the N/P ratio 2.5, indicating that,
at this point, RNA is not fully complexed with the polycation. These
results may be due to the fact that most of the positively charged
PEI chains in sRNA/PEI complexes were closely covered with the

strongly anionic RNA. For CS chains, the zeta potential values are
positive also in the region where condensation occurs. These corre-
spond to a higher N/P ratio values than for the other polymers. In
this range, the zeta potential value is almost constant in the case of
CS-LMW, and is only slightly increasing for CS-HMW. As noted, PEI
and CS promote sRNA condensation at very different N/P ratios.
This can be ascribed to the marked difference of charge density be-
tween these two classes (see Table 3). However, comparable sizes
and surface charges are obtained in the condensation regions.
Again, PAA, that possesses an intermediate size and charge densi-
ties, leads to the smaller complexes.

Monte Carlo simulations (Table 2) were performed to explain
the trends observed (see Fig. 5). In the simulation, a charge ratio
close to 1 corresponds to the existence of neutral complexes. The
focus of the simulation is to assess the influence of charge density
and size of polymer in the polyanion compaction. As such, the
shorter chains possess a higher charge density, and in the longer
ones, the charge density is decreased, so as to mimic the differ-
ences between the polycations used in the experimental part. It
is observed that, while the highest density chains promote the
higher degree of compaction, for a constant linear charge density
(LCD), the longer chains are the more effective. This means that,
in some cases, a decrease in linear charge density may be compen-
sated by an increase in size, in what concerns compaction effi-
ciency. This is consistent with the experimental observations, in
which chitosan (long and intermediate-LCD), longer but less
densely charged, attains a similar degree of compaction of that at-
tained by PEI (Short-HCD and Intermediate-MCD). Also, PEI is more
densely charged but shorter than the more efficient PAA. Naturally,
these observations should also take into account more detailed
structural aspects, leading to charge matching of charge accessibil-
ity, as referred above. The importance of charge density and charge
localization has been also emphasized in the interaction of oppo-
sitely charged microgel-peptide systems [43].

The simulation also shows additional structural differences in
the polyplexes, apart from those observed in the distribution of
the radii of gyration (Fig. 5). In the presence of the polycation with
longer chain length, the polyanion is neutralized and totally sur-
rounded by the oppositely charged chains (Fig. 6). On the other
hand, with shorter and highly charged polycation chains, the
polyanion is condensed but more exposed to the outside. These
observations can suggest an explanation for the positive charge
of all CS-sRNA polyplexes studied, which is higher than that found
for the remaining systems.

SEM was used to determine the morphology of the particles ob-
tained with the different polycations. Independently of the polyca-
tion used, polyplexes displayed a very well defined spherical and
uniform morphology (Fig. 7A–E).

Table 4
Average zeta potential and size at various N/P ratios of sRNA and polycation (PEI-
LMW, PEI-HMW, CS-LMW, CS-MMW and PAA). The values of zeta potential and size
were calculated with the data obtained from three independent measurements
(mean ± SD, n = 3).

N/P ratios Zeta potential ± SD (mV) Size ± SD (nm)

PEI-LMW PEI-HMW PEI-LMW PEI-HMW

2.5 �11 ± 1 �3 ± 0.4 254 ± 22 371 ± 18
3 12 ± 1 32 ± 2 198 ± 11 144 ± 2
3.5 19 ± 1 32 ± 1 144 ± 7 154 ± 2
4 21 ± 2 30 ± 2 171 ± 1 168 ± 1
5 24 ± 1 27 ± 2 232 ± 12 265 ± 2

CS-LMW CS-MMW CS-LMW CS-MMW

15 28 ± 1 23 ± 0.2 215 ± 5 298 ± 4
20 29 ± 0.4 26 ± 0.2 158 ± 5 243 ± 11
30 27 ± 1 27 ± 1 157 ± 7 193 ± 2
35 29 ± 1 28 ± 0.4 182 ± 10 172 ± 4
40 28 ± 1 29 ± 1 237 ± 20 178 ± 1

PAA

0.5 �14 ± 1 182 ± 6
0.6 �8 ± 3 116 ± 7
0.7 1 ± 0.3 98 ± 16
0.8 17 ± 2 86 ± 11
0.9 25 ± 0.4 122 ± 5

Fig. 5. Probability distributions for the radius of gyration, P(Rgyr), for the
polyanion. The labels indicate the correspondent system.

90 P. Pereira et al. / Journal of Colloid and Interface Science 387 (2012) 84–94

195



3.5. Stability of sRNA in polyplexes

RNA must be stable to digestion by nuclease so as to have max-
imal activity in the cells [9]. As such, to assess if an appropriate
protection of sRNA is promoted by complexation with the polyca-
tion, stability studies, for the systems displaying higher encapsula-
tion efficiency, were performed using RNase and FBS. The results
obtained are shown in Figs. 8 and 9, respectively. The UVIband—
1D gel analysis software (Uvitec, Cambridge, UK) was again used
as an auxiliary of the agarose electrophoresis allowing to control
the degradation of sRNA.

In the case of PEI-LMW polyplexes, sRNA degradation was ob-
served at a 10 and 100 lg/mL enzyme concentration over a period
of 1 h at 37 �C, for all N/P ratios studied (Fig. 8A, lane 3–8). sRNA
degradation was also observed for PAA (Fig. 8C) polyplexes at all
N/P ratios in study while for PEI-HMW polyplexes, it was only ob-
served when N/P = 4 (Fig. 8A, lane 9–14). Regarding the protection
promoted in the nanoparticulated systems, it should be noted that
neither sRNA in the polyplexes produced with CSs nor PEI-HMW

showed signs of degradation when in contact with RNase
(Fig. 8B). These results were confirmed by the intensity of the
bands in each condition by value of peak volume, since the inten-
sity peaks correspond to degraded RNA. PEI-LMW/sRNA complexes
were less stable than PEI-HMW complexes at all charge ratios, with
59% maximal dissociation achieved with 100 lg/mL RNase. There-
fore, PEI-HMW/sRNA complexes were more stable than the PEI-
LMW/sRNA complexes, with 9.5% maximal dissociation achieved
with 100 lg/mL RNase for N/P = 4. PAA/sRNA complexes achieved
16% dissociation, and, therefore, were less stable than the PEI-
HMW/sRNA complexes. Thus, the structure of sRNA seems to be
complexed more loosely in PEI-LMW polyplexes and, hence, RNase
partially degrades the sRNA in the two enzyme concentrations,
whereas PEI-HMW and CSs provide a complete protection
(Fig. 8A and B).

Similar results were obtained when the polyplexes were incu-
bated with 10% of FBS at 37 �C for 30 and 60 min (Fig. 9A–C). As
shown in Fig. 9A, the degraded sRNA was visualized by the appear-
ance of the sRNA bands in the lanes 3–8 of the PEI-LMW/sRNA

Fig. 6. Representative snapshots showing distinct conformations of polycation (green) and polyanion (red) at N/P = 1. (a) System Long-LCD and (b) system Short-HCD. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Polyplexes obtained by simple complexation at pH 4.5 from commercial polymer and sRNA visualized by SEM. (A) sRNA/PEI-LMW (N/P = 3.5), (B) sRNA/PEI-HMW (N/
P = 4), (C) sRNA/CS-LMW (N/P = 35), (D) sRNA/CS-MMW (N/P = 45) and (E) sRNA/PAA (N/P = 0.6).
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Fig. 8. Agarose gel electrophoresis of the nanoparticle following incubation with RNase (10 and 100 lg/mL) for 1 h at 37 �C. (A) sRNA/PEI-LMW and sRNA/PEI-HMW, (B)
sRNA/CS-LMW and sRNA/CS-MMW and (C) sRNA/PAA. Lane 1 – sRNA + RNase (10 lg/mL) and lane 2 – sRNA + RNase (100 lg/mL). The electrophoresis presents the data of
three times independents experiments.

Fig. 9. Agarose gel electrophoresis of the nanoparticle protection of sRNA following incubation with FBS for 30 and 60 min. (A) sRNA/PEI-LMW and sRNA/PEI-HMW, (B) sRNA/
CS-LMW and sRNA/CS-MMW and (C) sRNA/PAA. Lane 1 – FBS (10%); lane 2 – sRNA + FBS (10%). All experiments were performed of three times.

Fig. 10. Agarose gel electrophoresis of the nanocapsules following incubation with heparin (0.01, 0.1 and 0.5 IU/mL) for 1 h at 37 �C. (A) sRNA/PEI-LMW, (B) sRNA/PEI-HMW,
(C) sRNA/CS-LMW, (D) sRNA/CS-MMW, (E) sRNA/PAA. Lane 1 – sRNA + heparin (0.1 IU/mL) and lane 2 – sRNA + heparin (0.5 IU/mL). Each experiment was carried three times.
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complexes. On the other hand, sRNA complexed with the other
polymers does not show any signs of degradation, even after incu-
bating with 10% FBS for 1 h at 37 �C, whereas the free sRNA rapidly
degrades after 30 min of incubation at 37 �C (as shown by the com-
plete absence of sRNA bands in the gel in wells 1). It should be
noted that the band of the lane 2 results of FBS as shown in the
control FBS gel (Fig. 9A–C, lane 2). PEI-LMW/sRNA complexes at
all N/P ratios tested, from 3.5 to 5, were very sensitive to FBS with
75% maximal dissociation. In general, these results revealed that
PEI-HMW, CS-LMW, CS-MMW and PAA nanoparticles are able to
protect sRNA from nuclease degradation (Fig. 9A – lanes 9–15; B
and C), suggesting that they are suitable delivery vehicles for
in vitro and in vivo gene delivery applications.

The dissociation properties of the polyplexes were evaluated
through heparin/polyanion competition assay. Polyplexes can suf-
fer unwanted modifications when interacting with large polyani-
ons found outside cells, such as sulfated glycosaminoglycans and
proteoglycans during the transfer membrane, since they have pos-
itively charged surfaces, which may affect the integrity and the
mobility of the polyplexes [13,20]. For this reason, it is important
to measure the capability of complexes for sRNA delivery through
the polyanion competition assay. Heparin is a polysaccharide neg-
atively charged bearing sulfonate groups that compete with the
nucleic acids, leading to dissociation. For this purpose, polyplexes
are incubated with varying amounts of heparin (0.01, 0.1 and
0.5 IU/mL) to induce the decomplexation of the sRNA within the
complexes, prior to separation on agarose gels (Fig. 10A–E). All
the PEI-LMW/sRNA complexes are unstable in the presence of hep-
arin (Fig. 10A). PEI-LMW/sRNA complexes achieved 10.7% maximal
dissociation, after incubation with heparin. So, these results
indicate that PEI-HMW/sRNA complexes are more stable than
PEI-LMW/sRNA complexes at all charge ratios, in the presence of
heparin (Fig. 10A and B). The results obtained are in accordance
with Kwok and Hart [44]. Furthermore, sRNA maintained stable
complexes with CS-LMW and CS-MMW, even in the presence of
high concentrations of heparin (Fig. 10C and D). The PAA/sRNA
complexes formulated at a N/P ratio of 1.0 and 1.1 dissociated even
with trace amounts of heparin (Fig. 10E). For PAA/sRNA complexes
formulated at N/P ratios of 1.0 and 1.1, 13.7% and 2.9% maximal
dissociation was achieved, respectively, after incubation with
0.5 IU/mL heparin. Overall, the results concerning the incubation
with heparin for a period of 1 h indicate that PEI-LMW and PAA
complexes are more strongly affected by heparin than PEI-HMW
and CS complexes, and it is also expected that they have a lower
efficiency in transfer of the cell membrane. Except for that with
PAA, polyplexes that are more sensitive to RNase degradation are
also more prone to decompaction by heparin. Also, longer polyca-
tions seem to promote a higher degree of protection.

The ability to dissociate in the presence of heparin reveals the
potential to dissociate within the cell, releasing the nucleic acid,
while providing sufficient stability outside the cells to protect
and preserve the size and integrity of the acid nucleic complex.

4. Conclusions

RNA interference technology is emerging as a powerful tool for
in vivo research, both to address questions of basic biology and the
needs of drug development formulations. Their successful applica-
tion depends on optimizing physicochemical properties such as
size, zeta potential, encapsulation efficiency and complex stability
of the carriers. The PEI-LMW/sRNA complexes showed smaller
sizes and a higher encapsulation efficiency (100%). However, they
were not stable in the presence of RNase, FBS and heparin. On
the other hand, the PEI-HMW/sRNA complexes indicate good
encapsulation efficiency, small sizes and stability in the presence

of FBS and heparin. The CS/sRNA particles exhibited positive zeta
values in the relevant range of N/P ratios tested, with size values
of ca. 200 nm, and good stability in the presence of RNase, heparin
and FBS. Additionally, they display high values for the encapsula-
tion efficiency. Finally, the PAA/sRNA polyplexes presented the
smaller size, good encapsulation efficiency and high stability in
mimetized physiological conditions. We recall that PAA is, how-
ever, known to be cytotoxic. Apart from the differences between
the structures of the polycations used, it was observed that it is
possible to produce polyplexes with similar structural properties,
such as size and potential zeta. Thus, from the polyplexes devel-
oped in this work, chitosan complexes seem to be the most prom-
ising vehicles for application in RNA therapeutic.

In a more general sense, results have also shown that a longer
polycation with low charge density may induce a similar degree
of condensation of that of a shorter polycation with a high linear
charge density. The accessibility of the positive charge and effects
of charge matching may also favor an efficient condensation. These
results may easily be transposed to similar systems, and guide in
the optimization of sRNA particles for sRNA delivery.
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Short description: Following the establishment of appropriated strategies for human pre-miR-

29b biosynthesis (paper III), purification (paper VI) and delivery of RNA (paper VIII), here it is 

described the application of this recombinant RNA in decreasing the BACE1 expression levels 

and, subsequently the Aβ expression, after transfection of N2a695 cells. Primarily, all the 

pre-miR-29b loaded polyplexes were formulated using the method of simple complexation 

which is based on the electrostatic interactions that occur between polymer and pre-miR-

29b. According to the results obtained in this study, we developed an integrative platform 

that allows biosynthesis, purification and transfection of the recombinant pre-miR-29b using 

polyplexes to decrease the hBACE1 and endogenous Aβ42 expression levels. At this point, the 

main objective was to verify the biological activity of the recombinant pre-miR-29b, 

evaluated by the efficiency to knockdown BACE1. 
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Abstract 

MicroRNAs are arising as the next generation of diagnostic and therapeutic tools for gene 

silencing. Studies demonstrated that the miR-29 expression is decreased in Alzheimer's 

disease (AD) patients displaying high levels of human β-secretase (hBACE1). Recent advances 

toward an effective therapy for AD intend to employ miR-29 to suppress hBACE1 expression 

and subsequent Amyloid-β (Aβ) peptide. However, delivery of mature miRNA has 

demonstrated modest efficacy in vitro; therefore, the preparation of highly pure and 

biologically active pre-miRNA arises as one of the most important challenges in the 

development of these therapeutic strategies. Recently, we described a new strategy based 

arginine-affinity chromatography to specifically purify the recombinant pre-miR-29b. 

Following this strategy, the purified pre-miR-29b was successfully encapsulated into 

polyplexes that were further delivered in cytoplasm. It was verified that Chitosan/pre-miR-

29b and Polyethylenimine/pre-miR-29b systems efficiently delivered pre-miR-29b to N2a695 

cells, thus reducing the hBACE1 protein expression (around 78% and 86%, respectively) and 

Aβ42 levels (approximately 44% and 47%, respectively). Furthermore, pre-miR-29b 

downregulates the hBACE1 mRNA expression in 80%. Overall, it was demonstrated that the 

recombinant pre-miR-29b using polyplexes allowed to decrease the hBACE1 and Aβ42 

expression levels, improving the currently available methodologies of miRNA-based 

therapeutics. 

 

Keywords  

Alzheimer’s disease; hBACE1; Amyloid-β; Chitosan; Polyethylenimine; Polyplexes; 

Recombinant pre-miR-29b;  
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Introduction 

Over the past decade, several hundred small non-coding regulatory RNA molecules, known as 

microRNAs (miRNAs), have been identified as potential biomarkers and therapeutic 

products1,2. Briefly, miRNAs are initially transcribed as pri-miRNAs from the regions of the 

genome that are subsequently processed by the Drosha into pre-miRNAs stem-loop. Then, pre-

miRNAs are exported to the cytoplasm where they are converted into mature miRNAs after 

the removal of their loops by Dicer. Finally, one strand of the miRNA duplex (called mature 

miRNA sequence) is loaded onto the RNA-induced silencing complex (RISC) and, posteriorly, 

binds to specific sites typically present in the 3’ untranslated region (3’UTR) of messenger 

RNA (mRNA), leading to translational inhibition with imperfect base pairing or, less 

frequently, to the mRNA degradation with perfect base pairing1,3-6. An important feature of 

these RNAs is that an individual miRNA can regulate multiple mRNA targets and, 

consequently, can induce multiple effects on the expression of several related genes 

families3. Accordingly, it is likely that miRNAs are directly involved in a variety of cellular 

processes, namely in cell cycle regulation, proliferation, apoptosis, differentiation, stress 

response and metabolism5,9. Thus, the unveiling of the role of several miRNAs present in 

cellular processes is critical to develop new diagnosis methods or drugs for understanding and 

treating illnesses. To date, there are over 1880 miRNAs that have been discovered in humans, 

among which the miR-29 remains as one of the most interesting and intriguing miRNA 

families, once the dysregulation of this miRNA has a strong impact on many diseases including 

multiple types of cancers10-14 and neurodegenerative15-19 disorders, suggesting that it can be a 

promising target in the therapeutic of these diseases.  

Recently, several studies have been published concerning the expression of miR-29 in patients 

with Alzheimer’s disease (AD)20,25,26, suggesting that this biomolecule can play an important 

role in the regulation of this neurodegenerative disease. The generation and subsequent 

accumulation of amyloid-β peptides (Aβ) is a histological characteristic that is strongly 

implicated in the pathogenesis of AD22-24. One of the mechanisms that contribute to the 

accumulation of Aβ is sequential proteolytic cleavages of full-length amyloid precursor 

protein (APP) by β-site amyloid precursor protein cleaving enzyme 1 (BACE1), being 

considered as a prime drug target for therapeutic inhibition of Aβ production in AD25. Hence, 

the regulation of the proteins expression levels involved in the Aβ generation process has 

demonstrated to be important in AD. Several research groups showed that the miR-29 is 

potentially involved in the regulation of APP and BACE1 expression because in vitro studies 

revealed that in sporadic AD patients, displaying abnormally high BACE1 protein levels, the 

miR-29 cluster was significantly decreased20, 23, 26. These findings provided support for a causal 

relationship between miR-29 and AD, since the miR-29 suppresses the expression levels of 

hBACE1 and, consequently, Aβ peptides levels in neuronal cells16. Thus, miR-29 can be used as 

a potential therapeutic weapon for pharmacological intervention of AD. 



 

 208 

Commonly, the miRNAs used for therapeutic purposes have mostly been produced by chemical 

synthesis (phosphoamidite chemistry, normally used for the generation of short 

oligoribonucleotides), enzymatic synthesis (longer RNAs can be produced by in vitro 

transcription) or via a plasmid (for miRNA expression into eukaryotic cell lines)26. Although 

these methods can be very efficient in producing miRNA, in general, additional purification 

protocols to remove the impurities (failure sequences, impurities of pDNA template, 

enzymes, nucleotides, salts or buffer) from the production process have to be employed. The 

presence of impurities may lead to non-targeted gene silencing, what is commonly associated 

with a decrease in therapeutic effectiveness and still restrict the implementation of these 

oligonucleotides onto clinical applications26,27. Furthermore, the purification methods usually 

employed are still expensive, difficult to scale up and can cause degradation of the RNA 

molecules due to the requirement of toxic solvents and use of denaturing conditions28. Thus, 

considering the rapidly growing interest on these novel biopharmaceuticals, as a result of its 

potential therapeutic application, novel technologies to improve their preparation are 

currently being pursued. 

Thus, our research group recently proposed a new process for production and purification 

through amino acid-based affinity chromatography, of recombinant pre-miR-29b with 

potential therapeutic application29. This strategy could contribute for the establishment of 

reliable, simple and more cost-effective processes, easily adopted by biopharmaceutical 

industries, while maintaining maximal product quality and biological activity. However, in 

order to improve the biological effect in RNAi-based therapies it is also essential the 

development of an efficient miRNA delivery system capable to overcome the biological 

barriers, protect the integrity of miRNA and trapping miRNA in intracellular space to exert its 

function30. During the last decades, several research groups have focused on the production 

and characterization of polyplexes formed between sRNA and some cationic polymers such as 

Polyethylenimine (PEI)31-35 and Chitosan (CS)36-40. In general, these vehicles can be promising 

systems to compact RNA for systemic delivery because they present a mean diameter of 200 

nm, high stability, biocompatibility and proved to be useful in protecting the RNA against 

fetal bovine serum (FBS) and ribonuclease41. Furthermore, delivery by polyplexes has the 

advantage of being more cost-effective. However, the high toxicity of PEI is one of the major 

limiting factors especially for in vivo use. Polymers with low molecular weight (< 25KDa) 

display low toxicity, but the transfection efficiency is low as well. It is commonly believed 

that the most suitable molecular weight of PEI for gene transfer ranges between 5KDa and 

25KDa42,43. Thus, the main novelty of the present study is to report the application of the 

recombinant pre-miR-29b in cells transfection to decrease the hBACE1 expression levels and, 

subsequently the Aβ expression levels. Overall, the implementation of this cutting-edge 

approach provides the basis for the improvement of the currently available methodologies of 

gene silencing as a putative genetic therapy for AD and their implementation on 

biopharmaceutical industry. 
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Results  

pre-miR-29b protection by polyplexes formulation and delivery to neuronal cells 

The pre-miR-29 loaded polyplexes were formulated using the following conditions: CS/pre-

miR-29b with N/P ratio of 30 and to PEI/pre-miR-29b with N/P ratio of 3.5 (see Methods 

section). Relevant parameters such as size, zeta potential and loading capacity were 

determined for the different polyplexes. Thus, as shown in Table 1, all of the polyplexes 

demonstrated high encapsulation efficiency, small sizes and exhibited a strong positive 

charge on their surface. 

 

Table 1 – Characterization of polyplexes. The values of zeta potential and size were 

calculated with the data obtained from three independent measurements (mean ± SD, n = 3). 

Polyplexes N/P Ratio Size (nm) Zeta potential (mV) 
Encapsulation 

efficiency 

Chitosan 30 130.65±8.29 +24.53±2.92 90% 

Polyethylenimine 3.5 118.92±5.10 +35.00±4.22 100% 

 

In vitro characterization of the cytotoxic profile of polyplexes 

The cellular cytotoxicity effect of all the synthesized formulations (polycations/pre-miR-29b) 

was evaluated by MTS and compared with cells treated with ethanol (positive control). As 

presented in Fig. 1, at 48 and 72 h after transfection, cellular viability is clearly not affected 

by the presence of the CS/pre-miR-29b since the majority of cells remained viable (>96% 

viability), suggesting that these carriers are suitable for therapeutic applications. Also, at 48 

and 72 h after transfection with PEI/pre-miR-29b, the cells remained viable (>94% viability), 

as demonstrated in Fig. 1B.  
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Figure 1 - MTS assays conducted in CS/pre-miR-29b (A) and in PEI/pre-miR-29b (B), which 

were cultured in the presence of increasing concentrations of pre-miR-29b for 48 and 72 h. 

Untreated cells and cells transfected with an unrelated RNA control were used as negative 

controls for cytotoxicity. Ethanol treated cells were used as positive controls to induce 

toxicity. Mean percentage values relative to the untreated cells and standard error of the 

mean in 3 independent experiments are shown. ANOVA, mean ± SD. 

 

Downregulation of human BACE1 expression induced by polyplex/pre-miR-29b 

To ascertain whether recombinant pre-miR-29b could effectively suppress human BACE1 

(hBACE1) expression, we used mouse neuroblastoma (N2a) cells stably transfected with cDNAs 

encoding human APP695 (N2a695 cells)44. Thus, in order to explore the effect of recombinant 

pre-miR-29b administration, N2a695 cells were transfected with CS/pre-miR-29b, PEI/pre-

miR-29b and Lipo/pre-miR-29b using different concentrations of the pre-miR-29b (3.84, 6.32, 

8.72 and 9.9 nM).  
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Figure 2 – Recombinant pre-miR-29b effect on BACE1 levels in N2a695 cells at different 

concentrations of the pre-miR-29b for 72 h. (A) Representative confocal microscopy images of 

N2a695 cells treated with CS/pre-miR-29b, PEI/pre-miR-29b and Lipo/pre-miR-29b stained 

against BACE1. Quantification of fluorescence intensity for BACE1 protein expression in cells 

transfected with: (B) CS/pre-miR-29b, (C) PEI/pre-miR-29b, and (D) Lipo/pre-miR-29b. All 

results are expressed relatively to those in untreated cells and error bars represent standard 

deviations derived from three or more independent experiments performed in triplicate. 

ANOVA, mean±SD. 

 

Consistent with the Immunocytochemistry results, Western blot analysis revealed that 

endogenous hBACE1 protein levels were significantly reduced in the N2a695 cell line 

transfected with polyplexes containing the recombinant pre-miR-29b, compared with the 

untreated cells and cells transfected with an unrelated RNA control (Figs. 2 and 3), at 48 and 
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72 h. In addition, N2a695 cells were transfected with synthetic miR-29b (positive control) and 

scrambled RNA (negative control) (at a final concentration of 9.9 nM) (Fig. 3F). At 24 h after 

transfection, no significant changes on the endogenous levels of hBACE1 protein were 

detected when compared with untreated cells and cells transfected with the unrelated RNA 

control (data not shown). On the other hand, 72 h after transfection, hBACE1 protein 

expression was decreased by approximately 78% in cells transfected with CS/pre-miR-29b, 

and by 86% in those transfected by PEI/pre-miR-29b complexes (Figs. 2 and 3). In addition, in 

N2a695 cells, pre-miR-29b treatment caused concentration-dependent inhibition of hBACE1 

expression (Fig. 3). Thus, hBACE1 protein expression was significantly reduced following 

transfection with both synthetic miR-29b (around 48% reduction) and recombinant pre-miR-

29b (around 82% reduction) by comparing with the transfection of untreated cells (Fig. 3C).  

 

Figure 3 –Western blot analysis of endogenous hBACE1 and β-actin levels in the cell lysate of 

N2a695 cells treated with different concentrations of pre-miR-29b, at 24, 48 and 72 h. (A), 

(B) and (C): representative images of Western blot from N2a695 cells after 72 h transfection 

with CS/pre-miR-29b, PEI/pre-miR-29b and Synthetic miR-29b and Scrambled RNA, 

respectively. (D), (E) and (F): densitometric quantifications of hBACE1 expression from 

Western blot images of CS/pre-miR-29b, PEI/pre-miR-29b and synthetic miR-29b and 

scrambled RNA, respectively. Error bars represent standard deviations derived from three or 

more independent experiments performed in duplicate. ANOVA, mean±SD. (For simplicity 

purposes, the blots were cropped and the representative images are shown). 
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Therefore, endogenous hBACE1 levels are significantly inhibited by pre-miR-29b delivery in 

N2a695. To confirm the antibody specificity, the primary antibody anti-BACE1 was blocked 

with BACE1 peptide, by incubation at RT during 4 h. As demonstrated by Fig. 2A, fluorescence 

was not detected in the confocal microscopy image, indicating that the antibody binds to 

BACE1 in N2a695 cells, proving the high specificity of antibody to hBACE1.  

Pre-miR-29b inhibits hBACE1 translation and affect hBACE1 mRNA level 

Following the evaluation of the effect of the transfection of N2a695 cells with polyplexes 

loaded with recombinant pre-miR-29b on hBACE1 protein levels through Immunocytochemistry 

and Western-blot analysis, it was also evaluated its effect on hBACE1 mRNA levels by RT-qPCR 

measurements. As expected, RT-qPCR results (Fig. 4) revealed that hBACE1 mRNA levels in 

N2a695 cells were also significantly reduced after treatment with CS/pre-miR-29b and 

PEI/pre-miR-29b relatively to untreated cells and cells transfected with the unrelated RNA 

control (Fig. 4). As a matter of fact, miRNAs can regulate gene expression through either 

translational suppression, mRNA degradation or both. Data analysis showed that CS/pre-miR-

29b 6.32 nM significantly decreased hBACE1 mRNA expression to 76.4±0.6% (Fig. 4A) relatively 

to N2a695 cells treated with PEI/pre-miR-29b 8.72 nM (77.9±4.5%), at 72 h of transfection 

(Fig. 4B). At 48 h after transfection, a significant reduction of hBACE1 mRNA levels was also 

verified, being 48.5±4.4% and 53.8±8.1%, respectively for CS/pre-miR-29b 3.84 nM and 

PEI/pre-miR-29b 9.9 nM (Figs. 4A and 4B). Furthermore, it was also performed RT-qPCR for 

RNA from N2a695 cells transfected with scrambled RNA or with synthetic miR-29b, at 24, 48 

and 72 h (Fig. 4C). As expected, hBACE1 mRNA levels were also decreased in comparison with 

untreated control and cells transfected with an unrelated RNA control, in the cells 

transfected with synthetic miR-29b (41.3±3.6%), at 72 h (Fig. 4C). On the other hand, hBACE1 

mRNA levels were unaffected in cells transfected with scrambled RNA (Fig. 4C). Thus, the 

decrease in hBACE1 protein levels is likely due to a decrease in hBACE1 mRNA stability or by 

reducing the transcription rate since we found by RT-qPCR that the level of hBACE1 mRNA 

was also decreased by recombinant pre-miR-29b and synthetic miR-29b delivery (Fig. 4)50. 

Furthermore, the correlation between hBACE1expression and pre-miR-29b provides further 

support for the hypothesis that pre-miR-29b contributes, at least in part, to overall changes 

in hBACE1 expression in AD. Taken together, these data demonstrate effective delivery of 

recombinant pre-miR-29b to N2a695 cells using polyplexes and that a specific suppression of 

hBACE1 expression occurs when these polyplexes delivered pre-miR-29b.  
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Figure 4 – Effect of recombinant pre-miR-29b on hBACE1 mRNA levels in N2a695 cells 

following 24, 48 and 72 h treatment with: (A) CS/pre-miR-29b and (B) PEI/pre-miR-29b (C) 

Synthetic miR-29b and Scrambled RNA. Values in the graphs are mean from triplicates of RT-

qPCR threshold cycles for hBACE1 mRNA normalized to those of mRNA for GAPDH from 3 

independent experiments and demonstrate significant differences across treatment 

conditions. ANOVA, mean ± SD. 

 

Recombinant pre-miR-29b modulates Aβ42 generation in vitro 

Previous studies showed a causal relationship between miR-29b expression and BACE1 

activity, and, consequently, Aβ peptides generation16. Interestingly, by Immunocytochemistry 

analysis it was found that when the endogenous Aβtotal peptides are secreted, they 

accumulate around the nucleus leading to its deformation, appearing like a kidney (Fig. 5A).  



 

 215 

 

Figure 5 – Effect of recombinant pre-miR-29b on modulation of Aβ levels in N2a695 cells. (A) 

Representative confocal microscopy images of untreated N2a695 cells and cells transfected 

with CS/pre-miR-29b and PEI/pre-miR-29b stained against Aβtotal peptide (scale bars 20µm). 

(B) Aβ42 ELISA in cell lysates collected 72 h after transfection with CS/pre-miR-29b and 

PEI/pre-miR-29b. All results are expressed relative to those in untreated cells and presented 

as mean values from at least 3 independent experiments. ANOVA, mean±SD. 

 

Thus, to directly examine whether recombinant pre-miR-29b also reduces endogenous Aβ42 

levels, the N2a695 cells (Fig. 5A) were transfected according to the best transfection 

conditions mentioned above (CS/pre-miR-29b and PEI/pre-miR-29b at 8.72/9.9 and 6.32/8.72 

nM, respectively) to reduce the expression of hBACE1. Aβ42 levels in culture medium and in 

cell lysates were analyzed using ELISA (Fig. 5B). However, it was verified that Aβ42 could only 

be detected in medium but was absent in cell lysate of the transfected cells. As a result, 
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endogenous Aβ42 levels were significantly reduced by 45.2±6.0% and 40.07±1.3% with CS/pre-

miR-29b 8.72 and 9.9 nM, respectively. With PEI/pre-miR-29b 6.32 and 8.72 nM, the 

endogenous Aβ42 levels were reduced by 47.2±11.4% and 31.31±4.7%, respectively, when 

compared to N2a695 untreated cells at 72 h (Fig. 5B). Therefore, endogenous Aβ42 levels were 

inhibited by recombinant pre-miR-29b in this neuronal cell line. Once again, these findings 

indicate that recombinant pre-miR-29b regulates Aβ42 production through mechanisms 

dependent of hBACE1 expression. 

 

Discussion 

BACE1 and Aβ are central players in the pathways implicated in AD, it has been established 

that reducing BACE1 expression has been suggested as a potential strategy for mitigating the 

pathological processes underlying AD25,46. Interestingly, the miR-29a/b-1/c cluster is 

significantly decreased in the brains of AD patients, and this decrease is correlated with the 

increased level of BACE1 protein16,21. Previously published studies have demonstrated the 

importance of using the miR-29 family as a potential major suppressor to silence BACE1 

protein expression. However, the success of any therapeutic strategy depends on the 

development of economic, effective and efficient methods for miRNAs large-scale production 

(recombinant production using prokaryotic hosts) and purification, as an alternative to in 

vitro transcription or chemical synthesis29. The global interest is to produce high quantities of 

miRNA but also to obtain and preserve its quality, fulfilling the requirements of regulatory 

agencies. To accomplish this purpose, we recently described a novel purification methodology 

based on arginine-affinity chromatography to selectively purify the pre-miR-29b from 

different RNA species with high recovery yield, purity and good integrity, revealing to be an 

efficient and reproducible technique to obtain an appropriate RNA quality with potential 

applicability for transfection studies29. Arginine was selected because it is a conserved amino 

acid of the active center of the PAZ domains of the Argonaute proteins, belonging to the 

RISC, suggesting that they have an important role in the specific recognition of the 3’UTR of 

the pre-miRNA47. 

On the other hand, the development of an efficient miRNA delivery system capable to 

overcome the biological barriers, protect the integrity of miRNA from degradation, promote 

cellular uptake and, finally, release miRNA in the cytoplasmic compartment is crucial to 

achieve an improvement in the biological effect in RNAi-based therapies. Hence, according to 

previous results obtained by our research group43, we decided to explore the possibility of 

using polycations-based carrier systems to efficiently deliver the recombinant pre-miR-29b to 

N2a695 neuronal cell line, to suppress hBACE1 expression. The polyplexes developed have not 

a significant cytotoxicity effect of on the selected cell line (Fig. 1). An important in vitro 

experimental approach in this study is the use of a stable N2a695 cell line because in these 

cells there is a constitutive endogenous hBACE1 expression, enabling greater sensitivity for 
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evaluating the direct or indirect effect of recombinant pre-miR-29b on the cellular levels of 

hBACE1 or on the products of its activity (Aβ42 peptides), once in biological systems over-

expressing hBACE1 leads to the formation Aβ peptides20,44,45. 

Along with the role that pre-miR-29b plays in the regulation of the BACE1 levels, it was also 

evaluated the involvement of this miRNA in the functional regulation of the amyloid pathway. 

As a matter of fact, in this study and for the first time, it was demonstrated that the 

overexpression of recombinant pre-miR-29b induces a marked decrease in the levels of the 

protein hBACE1 and, consequently, a significant decrease in the level of the endogenous Aβ42. 

This result suggests that the application of pre-miR-29 lead to a significant decrease in the 

levels of two major risk factors commonly associated with the neurodegeneration in AD. We 

further verified that a single treatment with CS/pre-miR-29b or PEI/pre-miR-29b dramatically 

decreased the amount of hBACE1 expression (suppressed in 78.5±4.5% and 86.1±1.2%, 

respectively) and the generation of Aβ42 peptide (44.2±6.0% and 47.2±11.4%, respectively) by 

downregulating hBACE1 protein in N2a695 cells (Figs. 2, 3 and 5). These findings reinforce the 

fact that the ability of recombinant pre-miR-29b to regulate endogenous hBACE1 protein 

expression is likely direct, because it binds to the 3’ UTR of hBACE1 mRNA, complementary to 

the miR-29b seed region (Fig. 4). Our results demonstrated that hBACE1 mRNA levels were 

also significantly altered following recombinant pre-miR-29b transfection, suggesting a post-

transcriptional mechanism that involves direct degradation/destabilization of hBACE1 mRNA 

and is likely that it promotes inhibition of hBACE1 protein translation. With these results it 

was verified that hBACE1 is a direct target of pre-miR-29b (Figs. 2, 3 and 4), which was 

further validated by the downregulation of hBACE1 gene expression by polycations/pre-miR-

29b in vitro.  

Our findings, together with those from other groups, suggest a fundamental role of miR-29 in 

AD, and emphasize the potential application of miR-29 in prognosis prediction and AD 

therapy. With the successful implementation of this methodology and comparing with 

previously published data (~62% to miR-339-5p46; ~35% to miR-29c21; ~50% to miR-29a/b-116),  

we obtained the highest decrease ever reported for the hBACE1 expression levels (around 78% 

to CS/pre-miR-29b and 86% to PEI/pre-miR-29b) in AD model cells. In addition, it was also 

verified a decrease of the endogenous Aβ42 levels (approximately 44% to CS/pre-miR-29b and 

47% to PEI/pre-miR-29b) in these cells. Furthermore, the concentrations of recombinant pre-

miR-29b used in this study were much lower than those reported in other works using 

synthetic miRNA (25 to 250 nM)16,21, thus a smaller amount of recombinant pre-miR-29b is 

required to obtain a higher silencing level of hBACE1. In fact, this result may be due to the 

fact that we are using recombinant pre-miRNA, which is more efficiently recognized and 

processed within the cell, instead of the mature form of miRNA or the fact that the pre-

miRNA was efficiently purified and delivered to the cell through its encapsulation with 

polycations48,49.  
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Our results suggest that recombinant pre-miR-29b can represent a novel biopharmaceutical 

product for the therapeutic modulation of hBACE1 levels, once this study have new 

implications for hBACE1 biology and offer a new perspective on the treatment of AD. 

According to the results obtained in this study, we developed an integrative platform that 

allows biosynthesis, purification and transfection of the recombinant pre-miR-29b using 

polyplexes to decrease the hBACE1 and endogenous Aβ42 expression levels. In addition, this 

approach allowed improving the currently available methodologies of miRNA-based 

therapeutics, not only for neurological disorders but also for future therapeutic targets that 

may be of potential clinical interest.  

 

Methods 

Reagents 

CS (Mw = 50–190 kDa) and cell culture reagents were purchased from Sigma–Aldrich. PEI (Mw = 

10 kDa) was purchased from Polysciences. (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) was obtained from Promega. 

Anti-human BACE1 and BACE1 peptide (Abcam); anti-β-actin and monoclonal anti-β-Amyloid 

(Sigma-Aldrich); Hoechst 33342®, AlexaFluor 488® and AlexaFluor 546® (Invitrogen); Goat 

anti-rabbit/mouse IgG-HRP (Santa Cruz Biotechnology) were used. 

Pre-miR-29b biosynthesis and purification by arginine affinity chromatography 

The pre-miR-29b used in the experiments was produced in a bacterial cell culture of 

Rhodovulum sulfidophilum DSM 1374 strain (BCCM/LMG, Belgium) modified with the plasmid 

pBHSR1-RM containing the sequence of pre-miR-29b, as previously described by Pereira and 

collaborators29. Then, the pre-miR-29b isolation was achieved using arginine as a specific 

ligand in affinity chromatography29. The endotoxins content was also evaluated by using the 

ToxinSensorTM Chromogenic Limulus Amoebocyte Lysate assay kit (GenScript), being verified 

a considerably reduction during the chromatographic process, since the sample injected onto 

the arginine matrix had 0.164 EU/µg of sRNA and the final pre-miR-29b fraction presented 

0.002 EU/µg of pre-miR-29b. Thus, the endotoxins level in the final pre-miR-29b sample 

conforms the guidelines of regulatory agencies like Food and Drug Administration (<0.06 

EU/mL for the cerebrospinal fluid). In addition, the PCR product corresponding to the purified 

pre-miR-29b was sequenced to confirm the identity and orientation of the amplicon (Figure S1 

in Supporting Information). 

Formulation of polyplexes 

Briefly, all the pre-miR-29b loaded polyplexes were formulated using the method of simple 

complexation which is based on the electrostatic interactions that occur between molar 

concentrations of positive charge, present in the protonated amine groups of each polycation 

(N), and the negative charge of the phosphate groups of RNA backbone (P), as described by 
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Pereira and co-workers41. The pre-miR-29b (a final concentration of 2 µg/mL) and polycation 

(a concentration of 10 mg/mL) stock solutions were prepared in sodium acetate buffer (0.1 M 

sodium acetate/0.1 M acetic acid, pH 4.5). In order to promote encapsulation, cationic 

polymer solution (100 µL) was added dropwise to the pre-miR-29b solution (400 µL), under 

stirring during 30 s, to particle formation41. The PEI/pre-miR-29b molar ratio is 0.35:1 

(mol/mol) and the CS/pre-miR-29b molar ratio is 3:1 (mol/mol). The formulated polyplexes 

were incubated at RT for 30 min and then pelleted by centrifugation at 15000 g for 20 min. 

The amount of unbound pre-miR-29b was quantified by UV spectrophotometry41. Thus, the 

encapsulation efficiency (EE) was determined using the following formula: EE%=[(Total pre-

miRNA amount – pre-miRNA supernatant amount)/Total pre-miRNA amount] x 100. Three 

repetitions of this procedure were performed for each system. The hydrodynamic diameter 

and zeta potential of the pre-miR-29b-loaded polyplexes were determined by dynamic light 

scattering (DLS) using a Zetasizer Nano ZS particle analyzer (Malvern Instruments, 

Worcestershire, UK), equipped with a He-Ne laser, at 25ºC. For DLS analysis particle samples 

were produced as before mentioned and ressuspended in ultrapure water. Size 

characterization was performed in fully automatic mode and with a scattering angle of 173°. 

Particle zeta potential measurements were performed in disposable capillary cells and 

computed by using Henry’s [F(Ka) 1.5], and Smoluchowsky models. All the data was examined 

in Zetasizer software v 7.03. The experiments were performed in triplicate and an average of 

30 measurements was acquired individually for each sample. As a positive control, 

Lipofectamine 2000 transfection reagent was used (Lipo/pre-miR-29b), according to the 

protocol recommended by the manufacturer. 

Transfection of N2a695 cells with polyplexes/pre-miR-29b 

N2a695 cells at passages 5-27 were cultured in the following medium: 1:1 mixture of 

Dulbecco’s modified Eagle’s medium (DMEM) and OptiMEM supplemented with 5% (wt/vol) 

heat-inactivated FBS and 1% (wt/vol) penicillin–streptomycin48. N2a695 cells were seeded at 

3×104 cells/mL. When a 50 to 60% confluence was achieved, the culture medium was replaced 

by serum-free medium. After 12 h, CS/pre-miR-29b, PEI/pre-miR-29b and Lipofectamine/pre-

miR-29b (Lipo/pre-miR-29b) were added to the cells at pre-miR-29b concentration of 3.84 to 

9.9 nM and transfection was carried out during 6 h. The culture medium was replaced by 

fresh medium supplemented with 1% FBS and 1% antibiotic, to allow the cells to remain 

metabolically active, expressing hBACE1 and Aβ. Untreated cells and cells transfected with an 

unrelated RNA (5’-UGUGCAAAUCUAUGCAAAACUGA-3′) were used for negative controls (at a 

final concentration of 9.9 nM). In addition, cells were also transfected with scrambled miRNA 

(5′-UUCUCCGAACGUGUCACGUTT-3′; 3′-TTAAGAGGCUUGCACAGUGCA-5′) and a synthetic miR-

29b in the mature form (5′-UAGCACCAUUUGAAAUCAGUGUU-3´) using CS, as controls (at a 

final concentration of 9.9 nM). The cells were harvested 24, 48 and 72 h after transfection. 

All transfection experiments were performed in triplicate. 
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MTS assay 

The cellular cytotoxicity effect of the different formulations of polyplexes (CS and PEI/pre-

miR-29b) was evaluated using the Cell Titer 96® AQueous Non-Radioactive Cell Proliferation 

Assay. Briefly, N2a695 cells were seeded at a density of 2×104 cells per well in a 96-well 

plate, 24 h after the cell culture medium was replaced by serum-free culture medium. Cells 

were then transfected as described above and the MTS assay was performed at different time 

points (48 and 72 h). Subsequently, the medium was exchanged, a mixture of MTS/phenazine 

metasulfate (PMS) was added to each well, and cells were incubated during 4 h at 37ºC in a 

humidified atmosphere containing 5% CO2. Following incubation, the absorbance 

measurements of the soluble brown formazan produced were performed in a microplate 

reader (Sanofi, Diagnostics Pauster) at 492 nm. All experiments were repeated at least three 

times. Cells incubated with absolute ethanol were used as positive control for cytotoxicity. 

Immunocytochemistry and Imaging Analysis 

N2a695 cells were seeded on glass coverslips into 12-well plates, to be recovered at 24, 48 

and 72 h. After transfection with either Lipofectamine 2000 or polyplexes, the cells were 

fixed for 10 min at RT with 4% paraformaldehyde (PFA) buffer solution, followed by 

permeabilization with 0.1% Triton X-100 for 5 min. Cell preparations were blocked for 1 h at 

RT with 20% FBS in PBS-Tween 20 (PBS-T). The cells were then incubated overnight at 4ºC 

with the primary anti-hBACE1 polyclonal antibody (1:100) and anti-Aβ17-24 monoclonal 

antibody (1:1000). Then, cells were washed 6 times with PBS-T and incubated for 1 h at RT 

with the appropriate fluorescence conjugated secondary antibodies AlexaFluor 488® goat 

anti-rabbit or AlexaFluor 546® goat anti-mouse. After washing, the nucleus were 

counterstained with Hoechst 33342® (1:1000) for 10 min followed by 3 washing steps with 

PBS-T. Glass coverslips were mounted on slides and the preparations were visualized under a 

Zeiss LSM 710 laser scanning confocal microscope (Carl Zeiss SMT Inc., USA) equipped with a 

plane-apocromat 63×/DIC objective. Images were processed and analyzed using ImageJ 

software.  

Western blot Analysis 

Cells were rinsed in ice-cold PBS and homogenized in cell lysis buffer: 25 mM Tris-HCl buffer, 

pH 7.4; 2.5 mM EDTA; 1% Triton X-100; 2.5 mM EGTA; 25 mM phenylmethylsulfonyl fluoride 

and complete EDTA Free protease inhibitor cocktail (Roche). Once homogenized, cell extracts 

were centrifuged at 11500 rpm for 7 min at 4ºC. The total protein concentration in the 

supernatant was determined using Bradford Protein Assay (BioRad) and 50 µg of total protein 

from each cell extract were boiled for 10 min in reducing buffer and then fractionated by 

electrophoresis on 10% SDS-PAGE. After, proteins were transferred to polyvinylidene 

difluoride filter (PVDF) membranes and blocked with TBS-T (200 mM Tris-HCl, pH 7.4; 1.37 M 

NaCl; 0.1% Tween 20) supplemented with 5% BSA. Following, membranes were probed with 

primary antibodies recognizing the hBACE1 (1:1000 in 5% BSA in TBS-T) and β-actin (1:20000 in 
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TBS-T) at 4ºC overnight. After three washes with TBS-T, membranes were incubated with the 

HRP-labeled anti-rabbit/mouse IgG secondary antibody diluted 1:50000, followed by three 

washes with TBS-T. Signal detection was performed with ECL substrate (BioRad) according to 

manufacturer’s instructions and images were acquired with the ChemiDoc™ XRS system 

(BioRad) and analysed with the Image Lab (BioRad).  

Expression of BACE1 mRNA in N2a695 cells by RT-qPCR 

Total RNA was extracted from the cells using TRIzol reagent (Invitrogen). 1 µg of total RNA 

was reverse transcribed using the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher 

Scientific Inc.), according to the manufacturer’s instructions. For quantitative analysis, RT-

qPCR amplification of cDNA was performed using the Maxima® SYBR Green/Fluorescein qPCR 

Master Mix (Thermo Fisher Scientific Inc.) in an IQ5 Cycler from BioRad. RT-qPCR efficiencies 

were calculated from the given slopes with MyIQ 2.0 software (BioRad). The relative 

quantification of the BACE1 expression was based on the comparative threshold cycle (CT) 

method in which the amount of the target was determined to be 2-(ΔCT target - ΔCT calibrator), 

normalized to levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and relative to 

the untreated control cells. The primers used in these experiments were 5’-

AGACGCTCAACATCCTGGTG-3’ (forward) and 5’-CCTGGGTGTAGGGCACATAC-3’ (reverse) for 

the amplification of human BACE (hBACE) and 5’- TGACGTGCCGCCTGGAGAAA-3’ (forward), 

5’-AGTGTAGCCCAAGATGCCCTTCAG-3’ (reverse) for the amplification of GAPDH. Each sample 

was run in triplicate, and threshold cycle (CT) values were averaged from the triplicate. The 

final data were averaged from 3 separately conducted experiments. 

Sandwich enzyme-linked immunosorbent assay (ELISA) 

The endogenous Aβ42 levels were quantified in the culture medium and in total cell lysates 

using ELISA (Invitrogen), according to the manufacturer’s instructions. Total cell lysates were 

performed as described for Western blot and the culture medium was centrifuged at 13000 

rpm for 1 min to remove cell debris. Total cell lysates and culture medium were diluted 1:10 

and Aβ42 concentrations were detected with an ELISA (Invitrogen), according to the 

manufacturer’s instructions. The results were expressed as referred to dilutions of standard 

synthetic control peptides. In addition, absolute Aβ42 values (pg/ml) were measured and 

normalized to total protein yield of crude cell lysates. 

Statistical analysis 

All experiments were repeated at least three times using independent culture preparations. 

Data in the figures are expressed as mean ± standard error. Quantitative data were 

statistically analyzed by one-way analysis of variance (ANOVA), followed by pair-wise 

comparisons using the Fisher’s least significant difference test. * indicate significant 

difference versus untreated cells, # indicate significant difference versus cells transfected 

with unrelated RNA control and ● indicate significant difference between samples, being 
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considered statistically significant for p<0.05. Statistical analysis was performed by using 

GraphPad Prism 6 software. 
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Short description: In view of the promising results previously obtained, it was necessary to 

develop a carrier that can cross the BBB and deliver efficient and effectively the recombinant 

pre-miR-29b to the brain. Thus, in this paper, the nanodevices of CS and PEI were 

functionalized with specific ligands, namely lactoferrin which is recognized by cell surface 

receptors of BBB and stearic acid which has emerged as an optimal ligand for targeting the 

cell membrane allowing nanoparticle endocytosis, for higher transfection yields. To observe 

the cellular uptake of nanodevices, cell live imaging was applied. Ex vivo permeation studies 

in brain barrier models were performed in transwell cell culture systems, in order to evaluate 

the delivery efficiency of the vector to the brain. Moreover, additional studies were carried 

out using in vitro models of the blood-CSF barrier (namely, Z310 cells) and BBB (Rat brain 

endothelial cells (RBE4) cells).  
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Abstract 

The aim of the present study is to develop nanocarriers for targeted pre-miR-29b delivery 

across the Blood-Brain Barrier (BBB), to reach neuronal cells and inhibit the BACE1, with 

potential implications in Alzheimer’s disease treatment. A dual-targeting drug delivery system 

(Chitosan (CS) or Polyethylenimine (PEI) conjugated with stearic acid (SA) and lactoferrin (Lf)) 

was synthesized and its BBB penetration was evaluated. Stearic acid and lactoferrin were 

successfully exploited as brain-targeting ligands to modify cationic polymers. The 

intracellular uptake of the delivery systems by neuronal cells was studied in vitro as well as 

the gene silencing efficiency of pre-miR-29b. The CS/PEI-SA-Lf systems showed very strong 

fluorescence in the cytoplasm and cell nucleus, and were able to deliver pre-miR-29b to 

N2a695 cells in 1 hour after transfection. The experiment of transport across the BBB showed 

that CS-SA-Lf delivered 65% of recombinant pre-miR-29b in a period of 4 hours, an higher 

transport ratio than the 42% found for PEI-SA-Lf in the same time. The results indicate that 

CS-SA-Lf can be a potential pre-miR-29b carrier for AD therapy. 
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Alzheimer’s disease; hBACE1; Chitosan; Polyethylenimine; Blood-Brain-Barrier; Recombinant 
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1. Introduction 

Alzheimer’s disease (AD) is the most common and devastating form of dementia in the elderly 

and can lead to death within 3 to 9 years after appearance of symptoms [1]. AD is 

pathologically characterized by the progressive neuronal loss, mainly due to the accumulation 

of extracellular amyloid plaques consisting of aggregates of toxic amyloid-beta (Aβ) peptides 

[2-4]. They are generated through sequential proteolytic cleavage of the amyloid precursor 

protein (APP) by β-secretase (also known as β-site APP-cleaving enzyme 1 (BACE1)) and γ-

secretase, which play a pivotal role in the dysfunction and death of neurons [5-7]. Several 

convincing evidences suggest that the regulation of expression of proteins involved in the 

generation and accumulation of Aβ peptides can be extremely important in AD, since Aβ 

peptides play the central role in initiating and development of the pathological cascade of AD 

[4, 5, 8, 9]. In the last years, several research groups demonstrated that the levels and 

activity of BACE1 protein are elevated in sporadic AD brains, suggesting that BACE1 

dysregulation is directly implicated in AD pathogenesis. For these reasons, BACE1 has been 

recognized as a promising drug target for the therapy of this disease, once BACE1 inhibition 

may decrease the formation of all forms of Aβ peptides in AD and, consequently, reduce cell 

death [10-12]. On the other hand, significant alterations in the expression of miR-29 family, 

in brains of AD patients, have been observed in most of studies [13, 14], being significantly 

decreased and displaying abnormally high levels of BACE1 protein. These findings raised the 

opportunity to use miR-29 as a possible protective therapeutic strategy for the future of AD 

therapy. The continued lack of progress in identifying effective diagnosis and treatment 

modalities also contributes to higher health care costs and social burdens that are associated 

with this disease [15-17].  

One of the reasons limiting the development of therapies for AD is the existence of a physical 

barrier, the Blood-Brain Barrier (BBB), which hinders the passage of most of the therapeutic 

drugs from the circulating blood to the brain [18]. The BBB prevents the entry of harmful 

substances present in the systemic blood circulation into the brain, but allows the access of 

necessary nutrients and chemical signaling molecules, making of the brain a place of poor 

permeability to various drugs [19-22]. Its function is related to the structural characteristics, 

once the BBB is composed by tight intracellular junctions formed between adjacent brain 

capillary endothelial cells [19]. On the other hand, the BBB possesses a variety of efflux 

transporters, including P-glycoprotein [23], receptors for transferrin [24, 25], lactoferrin [26], 

insulin [27], insulin-like growth factors [28], lipoprotein receptor-related protein (LRP) [29, 

30], as well as, transmembrane monocarboxylic acid transporters and fatty acid transport 

proteins [31], reinforcing BBB function by effectively removing drugs from the brain and 

pumping them back into blood.  

As a result, it is strictly necessary the development of methods that promote the delivery of 

therapeutic drugs to the brain, safely and effectively. During the last decade, several non-
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viral vectors were developed for brain targeting, including polymers (e.g. polyethyleneimine 

(PEI), chitosan (CS), poly(lactic-co-glycolic acid) (PLGA), poly lactic acid (PLA)), polymeric 

micelles, liposomes and dendrimers [32-37]. Among the vectors mentioned above, polymeric 

delivery systems (polyplexes) have emerged as one of the most attractive carriers to cross the 

BBB and increase the uptake of appropriate drugs by the brain. To accomplish this, the 

receptors existing on the BBB have been explored as a means to specifically target drugs to 

the brain. This can be achieved through the surface modification of delivery systems with a 

ligand (such as transferrin (Tf), lactoferrin (Lf), stearic acid (SA)) targeting to the receptor, 

which facilitates drug ability to interact with specific molecules expressed on the luminal side 

of BBB endothelial cells [38]. In the present study, the recombinant human pre-miR-29b was 

chosen as the therapeutic gene to be encapsulated in the polyplexes (CS or PEI) modified with 

Lf and SA in the surface, to bind specifically to the Lf receptors on neuronal cells, through a 

receptor-mediated pathway.  

CS and PEI have gained much attention as delivery systems due to their advantageous 

properties such as, ability to encapsulate large amounts of drug, high stability in biological 

fluids, targeting ability, rapid cellular uptake, high transfection efficiency, biocompatibility, 

biodegradability, low cytotoxicity and immunogenicity, and reduced side effects by targeted 

delivery [39-41]. In addition, the cationic charge of CS and PEI, due to the presence of amino 

groups, allows the establishment of electrostatic interactions with the negatively charged 

RNAs, leading to an effective condensation and protection of the integrity of the RNA. In fact, 

the encapsulation of RNAs prevents non-specific interactions and enzymatic degradation, 

increasing the drug circulation in blood [39-41].  

Lf is a single chain iron-binding glycoprotein that belongs to the Tf family. Its concentration in 

the blood plasma is low but is higher in BBB [42, 43]. Recent studies reported that the 

transport of Lf across the BBB monolayer model was unidirectional and that there was a 

strong affinity of positively charged Lf to Lf receptor, resulting in higher uptake of Lf-

conjugated drug delivery systems to the brain comparing to Tf-modified NPs [26, 44]. For all 

these reasons, Lf has been exploited as a promising brain-targeting ligand, facilitating drug 

delivery into the brain. A previous study also described the ability of CS-SA for the delivery of 

drugs into the brain and to avoid recognition by P-glycoprotein system, yielding an efficient 

brain-targeting gene vector [38]. Thus, in the current study, it was explored the potential of 

the polyplexes CS and PEI combined with two targeting substances, Lf and SA, to encapsulate 

recombinant pre-miR-29b, and act as a brain-targeting delivery system. Various 

measurements, including 1H NMR and SDS-PAGE, were used to characterize and confirm the 

structure of the modified polyplexes. The properties of the polyplexes CS-SA, CS-SA-Lf, PEI-SA 

and PEI-SA-Lf, such as the ability of transport across BBB model, the targeting effects, in 

vitro cell uptake and transfection studies were performed on N2a695, RBE4 and Z310 cells. 

The efficacy of these systems was finally monitored by examining the induced BACE1 

inhibition. 



 

 235 

2. Materials and Methods 

2.1. Materials 

Arginine–Sepharose 4B gel was acquired from Amersham Biosciences. All buffers used for the 

chromatographic experiments were freshly prepared with 0.05% diethyl pyrocarbonate (DEPC) 

treated water and were filtered through a 0.20 µm pore size membrane. Sodium chloride 

(NaCl) was purchased from Panreac and tris(hydroxymethyl) aminomethane (Tris) from Sigma-

Aldrich. CS low molecular weight (LMW) (Mw=50–190 kDa; degree of deacetylation in the 75–

85% range), Stearic acid Grade I (98.5%), Lactoferrin human, 2-Iminothiolane hydrochloride 

(2-IOT, 98%), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and all cell culture media 

and reagents used in cell culture procedures were purchased from Sigma–Aldrich, unless 

otherwise noted. PEI high molecular weight (HMW) (Mw=10 kDa) was acquired from 

Polysciences, Inc. (Warrington, PA). Fluorescein isothiocyanate isomer I (FITC), Hoechst 

33342® and AlexaFluor 488® were obtained from Invitrogen (Carlsbad, CA, US). Mouse 

neuroblastoma (N2a) cells stably transfected with cDNAs encoding human APP695 (N2a695) 

were kindly provided by Professor Wenjie Luo (Weill Cornell Medical College). The rat brain 

microvascular endothelial cell line (RBE4) was provided as a gift by the laboratory of Dr. M. 

Aschner (Department of Pediatrics, Vanderbilt Kennedy Center, Nashville, Tennessee). 

2.2. Methods 

2.2.1. Synthesis and characterization of PEI and CS polyplexes conjugated with SA and Lf 

The conjugation of PEI or CS to SA and Lf (designated as CS-SA-Lf and PEI-SA-Lf) was 

performed as previously reported by Xie and co-workers [38], with minor modifications. In 

brief, first, SA (2.5 mg) and EDC (25 mg, at a ratio 1:10) were dissolved in 1.0 mL anhydrous 

DMSO and stirred at 60ºC for 1 hour, until EDC and SA were well-dissolved and mixed. The 

resulting mixture (SA:EDC) was then added slowly to 1% (w/v) of CS-LMW and PEI-HMW in 

sodium acetate buffer (0.1 M sodium acetate/0.1 M acetic acid, pH 4.5) and the reaction 

solution was kept at room temperature in the dark during 24 hours, with stirring in a water 

bath. The amine group on PEI or CS was crosslinked with the carboxylic group of stearic acid 

by EDC as linker. Posteriorly, the resulting conjugate, CS/PEI-SA, was dialyzed first against 

phosphate buffered saline (PBS, pH 7.4) for 1 day and then against double deionized water for 

2 days, using dialysis membrane (SnakeSkinTM Dialysis Tubing, MWCO 3500 Da, 22mm dry 

diameter, ThermoScientific). The conjugated CS/PEI-SA was isolated as a “sponge” by 

lyophilization, and was further characterized by 1H Nuclear Magnetic Resonance (NMR) 

spectroscopy. All proton NMR spectra were recorded in solution of studied compounds in D2O 

using a Bruker Avance III 600 MHz equipped with a QCI cryoprobe. For the preparation of 

CS/PEI-SA-Lf, Lf (10 mg) was dissolved in 1.0 mL aqueous solution of water and mixed with 

0.5 mL aqueous solution of 2-iminothiolane hydrochloride (2-IOT, 0.7 mg) and the reaction 

proceed for 1 hour at room temperature, with moderate shaking. The excess of 2-IOT was 

removed through a column of Sephadex G 100 column (Hitrap desalting column) using PBS 1x 

(pH 7.0) as elution buffer. Fractions were collected according to the chromatogram obtained 
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by analysis of the absorbance (a peak contains about 90% of thiolated Lf) [45]. Subsequently, 

CS-SA or PEI-SA were dissolved in 0.5 mL PBS (pH 7.0) and then added to the PBS solution of 

Lf, drop by drop, for 20 hours at room temperature, in the dark. To remove unreacted Lf, the 

resulting mixtures were purified by dialysis (SnakeSkinTM Dialysis Tubing, MWCO 3500 Da, 

22mm dry diameter, ThermoScientific) during 4 days against double deionized water and 

freeze dried, for further usage. The SDS-PAGE was used to characterize the carriers CS-SA-Lf 

and PEI-SA-Lf.  

2.2.2. Formulation and characterization of CS-SA-Lf/pre-miR-29b, PEI-SA-Lf/pre-miR-29b, 

CS-SA/pre-miR-29b and PEI-SA/pre-miR-29b complexes 

For all experiments, the human pre-miR-29b was obtained from a bacterial cell culture of 

Rhodovulum sulfidophilum DSM 1374 strain (BCCM/LMG, Belgium) modified with the plasmid 

pBHSR1-RM containing the sequence of pre-miR-29b. The growth was performed in a semi-

defined medium containing 30 µg/mL Kanamycin. After biosynthesis, the recombinant pre-

miR-29b was recovered from a complex mixture of small RNAs, through affinity 

chromatography by using a column of arginine, as previously described by Pereira and 

collaborators [46]. The quantity and quality of the purified pre-miR-29b was assessed by 

measuring its optical density at 260 nm and 280 nm and by polyacrylamide electrophoresis, 

respectively. Recombinant pre-miR-29b was covalently labeled with the fluorescent dye, 

FITC, when necessary. PEI-SA-Lf/pre-miR-29b, PEI-SA-Lf/pre-miR-29b, CS-Lf/pre-miR-29b and 

PEI-Lf/pre-miR-29b systems were formulated using the method of simple complexation 

through electrostatic interaction by using different amines to phosphate ratios (N/P ratios, 

molar ratio of CS/PEI-nitrogen atoms present in the protonated amine groups to pre-miR-29b-

phosphate groups), as described by Pereira and co-workers [47]. Pre-miR-29b stock solution 

was prepared by pre-miRNA dissolution in sodium acetate buffer, up to a final concentration 

of 2 µg/mL and was kept constant in all the methods used for the characterization of the 

formed complexes [47]. The CS-SA-Lf, PEI-SA-Lf, PEI-Lf and CS-Lf stock solutions were also 

prepared in sodium acetate buffer pH 4.5 in a concentration of 10 mg/mL. Briefly, the 

complexes were obtained by addition of 100 µL of CS-SA-Lf, PEI-SA-Lf, PEI-Lf or CS-Lf 

solution, of variable concentration, dropwise to the pre-miR-29b solution (400 µL). The 

complexes were immediately mixed using a vortex mixer at maximum speed for 1 min. After 

30 min of stabilization at room temperature, the complexes were recovered by centrifugation 

(15000 g, 20 min). The complexation of pre-miR-29b by CS-SA, PEI-SA, CS-SA-Lf and PEI-SA-Lf 

was evaluated by agarose gel electrophoresis [47]. 

2.2.3. Determination of the encapsulation efficiency 

The encapsulation efficiency (EE) was calculated by determining free pre-miRNA 

concentration in the supernatant recovered after particle centrifugation (15000g, 20 min, 

25ºC). The amount of unbound pre-miR-29b was quantified by UV spectrophotometry 

(Nanophotometer), at 260 nm. Supernatant recovered from unloaded complexes (without pre-

miRNA) was used as a blank. Three repetitions of this procedure were performed for each 
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system. EE was determined using the following formula: EE % = [(Total pre-miRNA amount – 

pre-miRNA supernatant amount)/Total pre-miRNA amount] x 100 [47]. 

2.2.4. Cell culture  

In this study, N2a695, RBE4 and Z310 choroidal epithelial cells were used. N2a695 cells (at 

passages 13-30) were cultured in the following medium: 1:1 mixture of Dulbecco’s Modified 

Eagle’s Medium (DMEM) and OptiMEM supplemented with 5% (wt/vol) heat-inactivated fetal 

bovine serum (FBS) and 1% (wt/vol) penicillin-streptomycin. In these cells there is a 

constitutive endogenous human BACE1 expression, enabling greater sensitivity for detecting 

pre-miR-29b induced changes in the human BACE1 expression at post transcriptional level. 

Z310 cell line (at passages 95-100) was maintained in DMEM high glucose growth medium 

containing 10% FBS and 1% penicillin-streptomycin [48]. On the other hand, RBE4 cultures (at 

passages 7-30) were grown in the following medium: Minimum Essential Medium (αMEM) and 

Ham’s F10 Nutrient Mix (1:1 vol/vol) supplemented with 10% FBS, 1% penicillin-streptomycin, 

1% L-glutamine and 0.6% Geneticin (300 μg/m). All cell lines were kept at 37ºC in a 

humidified atmosphere containing 5% CO2. Cells were subcultured regularly using trypsin-

EDTA [49]. 

2.2.5. In vitro transfection and expression 

2.2.5.1. In vitro cellular uptake – Cell live imaging 

In order to investigate the cellular uptake, pre-miR-29b was labeled with FITC. In brief, an 

aliquot of FITC-DMSO solution was added in drops to pre-miR-29b solution (8.72 nM). The 

resultant solution was kept under stirring for 3 hours at room temperature. Then, the final 

product was incubated with 3 M NaCl and 2.5 volumes of absolute ethanol ice-cold at -20ºC 

during 30 min. Excess FITC was removed by centrifugation at 12000g for 30 min at 4ºC. After 

centrifuging, the pellet was washed with 75% ethanol twice, followed by a 5 min 

centrifugation at 12000 g (4ºC). Finally, the FITC-pre-miR-29b was ressuspended in OptiMEM 

and encapsulated with CS-SA-Lf, PEI-SA-Lf, PEI-Lf and CS-Lf. N2a695 cells were seeded at a 

density of 2×104 cells/cm2 in μ-Slide 8-well flat bottom imaging plates (Ibidi GmbH, 

Germany). In the following day, the medium was replaced by fresh serum-free medium and 

cells were stained with Hoechst 33342® nuclear probe for 20 min. Subsequently, the cells 

were transfected with the complexes prepared with FITC-labeled pre-miR-29b in serum-free 

medium. The cells were transferred to a Zeiss LSM 710 confocal laser scanning microscope 

(CLSM; Carl Zeiss SMT Inc., US) equipped with a plane-apocromat 63×/DIC objective and 

processed in Zeiss Zen (SP2, 2010) and Imaris software (Bitplane, Switzerland), in order to 

evaluate the cellular uptake. The fluorescence images were obtained at 63× amplification. 

Cells without the addition of complexes were imaged as control. 

2.2.5.2. In vitro transfection studies  

Briefly, N2a695 cells were seeded in 12-well plates at a density of 2×104 cells/well in 1.5 mL 

of complete medium. When a 50% to 60% confluence was achieved, the media was removed 
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and then replaced with serum-free culture medium. After 12 hours, pre-miR-29-loaded 

complexes and Lipofectamine/pre-miR-29b (Lipo/pre-miR-29b), previously prepared with a 

pre-miR-29b concentration of 8.72 nM, were added to the wells and incubated with the cells, 

for 4 hours. The culture medium was then replaced with 1.5 mL of fresh medium 

supplemented with 1% FBS and 1% antibiotic, to allow the cells to remain metabolically 

active, expressing human BACE1. The cells were incubated for an additional 72 hours at 37ºC. 

As a negative control, untreated cells were used and as a positive control, transfection with 

Lipo/pre-miR-29b was performed according to the manufacturer’s protocol. All transfection 

experiments were performed in triplicate. Total RNA was recovered with TRIzol reagent 

(Invitrogen) and chloroform, further purified by isopropanol precipitation and washed with 

75% ethanol. The concentration of total RNA was determined using a NanoPhotometer UV/Vis 

Spectrophotometer, and the integrity and quality of RNA was assessed by agarose gel 

electrophoresis. RNA was treated with DNase I to avoid genomic contamination. First-strand 

cDNA was synthesized using the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher 

Scientific Inc.) in a total volume of 20 µL containing 1 µg of total RNA, according to the 

manufacturer’s instructions. 

2.2.5.3. Expression of BACE1 mRNA in N2a695 cells by RT-qPCR  

For quantitative analysis, RT-qPCR amplification of cDNA was performed using the Maxima® 

SYBR Green/Fluorescein qPCR Master Mix (Thermo Fisher Scientific Inc.) in an IQ5 Cycler from 

BioRad. PCR reaction was prepared in a final volume of 20 μL containing 10 μL of Maxima® 

SYBR Green/Fluorescein qPCR Master Mix, 1.2 μL each of 25 µM forward and reverse primers 

and 1 μL of cDNA. The cycle was performed as follows: 5 min at 95ºC, followed by 40 cycles of 

30 s at 95ºC, 30 s at 62ºC, and 30 s at 72ºC. RT-qPCR efficiencies were calculated from the 

given slopes with MyIQ 2.0 software (BioRad). The relative quantification of the BACE1 

expression was based on the comparative threshold cycle (CT) method in which the amount of 

the target was determined to be 2-(ΔCT target - ΔCT calibrator), normalized to levels of 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and relative to the untreated control 

cells. The primers used in these experiments were 5’-AGACGCTCAACATCCTGGTG-3’ (forward) 

and 5’-CCTGGGTGTAGGGCACATAC-3’ (reverse) for the amplification of human BACE (hBACE) 

and 5’- TGACGTGCCGCCTGGAGAAA-3’ (forward), 5’-AGTGTAGCCCAAGATGCCCTTCAG-3’ 

(reverse) for the amplification of GAPDH. Each sample was run in triplicate, and CT values 

were averaged from the triplicate. The final data were averaged from 3 separately conducted 

experiments. 

2.2.6 Transport across in vitro BBB model  

2.2.6.1. In vitro BBB model 

RBE4 cells and Z310 cells were established to evaluate the ability of the dual targeting 

complexes transpose the BBB model. RBE4 and Z310 cells were seeded in 12-well culture 

insert coated with type I collagen (Polycarbonate Membrane Transwell Inserts of 1.0 mm 

mean pore size, 1.12 cm2 surface area, Corning, NY, USA). 0.5 mL of cell suspensions 
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containing 2.0 x 105 cells was added to the inner (donor) chamber, which was inserted into 

the outer (acceptor) chamber containing 1.3 mL of the same culture medium. A cell 

monolayer is usually formed 3-5 days after seeding, as judged by three criteria: (1) the cells 

formed a confluent monolayer without visible spaces between cells under a light microscope; 

(2) the height of the culture medium in the inner chamber had to be at least 2 mm higher 

than that in the outer chamber for at least 24 hours; and (3) a constant transendothelial 

electrical resistance (TEER) value across the cell layer was obtained [50]. The TEER was used 

to measure the formation of tight junctions, indicating the integrity of BBB structure for 

studying drug delivery to the brain. The cell monolayer integrity was monitored using an 

EVOM Endohmchamber (Word Precision Instruments, Inc. Sarasota, Florida, USA) to measure 

the TEER value of the in vitro BBB model. Only cell monolayers with TEER value above 100 

Ωcm2 were selected for the transport studies, which indicate that this system could be used 

as an in vitro BBB model [50]. All the permeability experiments were performed in serum-free 

medium at 37ºC, and the drug carriers, including CS-SA/pre-miR-29b-FITC, CS-SA-Lf/pre-miR-

29b-FITC, PEI-SA/pre-miR-29b-FITC and PEI-SA-Lf/pre-miR-29b-FITC were added into the 

donor compartment of the above BBB model with the pre-miR-29b concentration of 8.72 nM. 

After 4 hours, the inserts were removed. The concentration of pre-miR-29b transported across 

BBB media was determined using a spectrofluorometer (Spectramax Gemini XS, Molecular 

Devices LLC, US), with the excitation wavelength of 480 nm and the emission wavelength at 

590 nm. The BBB transport ratio of pre-miR-29b was calculated as follows: Transport ratio % = 

[(Total Fluorescence in the outer chamber)/ [(Total Fluorescence in the inner chamber + 

Total Fluorescence in the outer chamber)] x 100.  

2.2.7.2. Immunofluorescence  

Endothelial cells from the in vitro BBB model were fixed for 10 min at room temperature with 

4% of paraformaldehyde (PFA) buffer solution. Cells were then washed 3 times with PBS for 10 

min, followed by permeabilization with PBS containing 0.1% Triton X-100 for 15 min. After 

fixation, the nucleus of the endothelial cells was counterstained with Hoechst 33342® 

(1:1000) for 10 minutes followed by 3 washing steps with PBS-T. Cells were mounted on slides 

and the fluorescence images were acquired using a confocal laser scanning microscope (Zeiss 

LSM 710, Carl Zeiss SMT Inc., USA) equipped with a plane-apocromat 63×/DIC objective. 

Images were processed and analyzed using ImageJ software. All experiments were repeated 

at least three times, and representative images are shown. 

 

2.8. Statistical analysis  

All the experiments were repeated at least three times using independent culture 

preparations. Data are presented as the mean ± standard error. Statistical comparisons were 

performed using a one-way analysis of variance (ANOVA), followed by pair-wise comparisons 

using the Fisher’s least significant difference test. A P value <0.05 was considered statistically 

significant. Statistical analysis was performed by using GraphPad Prism 6 software. 
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3. Results  

3.1. Synthesis and characterization of CS-SA, PEI-SA, CS-SA-Lf, PEI-SA-Lf 

complexes 

The carriers of CS/PEI-SA were synthesized by chemical reaction between the carboxyl group 

of SA and the amino group of CS or PEI in the presence of EDC, a carboxyl activating agent 

[38]. 1H NMR experiments were used to characterize and confirm the chemical structure of 

the obtained CS/PEI-SA complexes. Also, for comparing the signals, CS and PEI spectra were 

also recorded without stearic acid. The 1H-NMR assignment of CS was previously determined 

and is as follows: 1H NMR (CS, D2O) δ =5.10 (H1), δ =3.09 (H2), δ =3.43~3.81 (H3, H4, H5, H6), δ 

=1.96 (NHCOCH3) ppm. The signal of H1 was effected by the near water peak suppression of 

H2O at δ=4.76. Comparing with CS 1H-NMR spectrum, the triplet signals at 0.9 ppm, due to the 

terminal CH3 protons of stearic acid and the new signal between 1–1.5 ppm corresponding to 

the CH2 chain of acyl chain, showed that stearic acid was linked to CS. Similarly, the 1H NMR 

spectrum of the PEI was first assignment and the proton peaks of PEI (–NHCH2CH2–) appeared 

at 3.2–2.0 ppm. The molecular structure of PEI-SA was then confirmed by 1H NMR. 1H NMR 

analysis indicates that the amino-groups of the PEI were acylated. The 1H-NMR assignment of 

PEI-SA was as follows:  (ppm): 0.86–0.89 (t, -CH2CH2(CH2)15CH3), 1.25 (br, -

CH2CH2(CH2)15CH3), 1.62 (br, -CH2CH2(CH2)9CH3), 2.18 (br, -CH2CH2(CH2)9CH3), 2.39–3.3 (m, -

CH2CH2NH-, -CH2CH2N-, -CH2CH2NHCO-, -CH2CH2NHCO-). Although, the same chemical shifts 

appeared in PEI-SA, however the sharp peaks at 3.0-2.4 ppm could contribute to the chemical 

shifts of PEI. Moreover, the ratio of peak area at 3.0–2.4 ppm to the peak area of methyl 

group in PEI-SA was bigger than that of PEI. These results indicated that stearic acid was 

successfully link to PEI. The NMR studies also demonstrated that very few free amines are 

available on the CS-SA complexes comparing with PEI-SA complexes. The functionalization 

with Lf was obtained using a common method with 2-iminothiolane hydrochloride as the 

sulfhydrylization reagent [45]. After purification, thiolated protein was obtained. The SDS-

PAGE was used to further confirm the surface capping of the terminal amines of the CS/PEI-

SA with Lf. In the SDS-PAGE a new band above 100 KDa was observed, indicating that Lf ligand 

was covalently attached to the CS/PEI-SA (Figure 1). NMR experiments are current running to 

complement the SDS-PAGE results. 
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Figure 1 - SDS-PAGE of CS-SA, CS-SA-Lf, PEI-SA and PEI-SA-Lf. 

 

3.2. Preparation of CS-SA-pre-miR-29b, PEI-SA-pre-miR-29b, CS-SA-Lf-pre-miR-

29b and PEI-SA-Lf-pre-miR-29b 

All pre-miR-29b-loaded complexes were prepared by electrostatic interactions that occur 

between the positively charged amine groups of the carriers and the phosphate groups of the 

pre-miR-29b [47]. The complexes were mixed with pre-miR-29b for the formation of pre-miR-

29b-loaded complexes in acetate buffer at pH 4.5. In order to determine the degree of 

compaction between pre-miR-29b and all carriers in study, a gel retardation assay and UV 

spectrometry were performed (Fig. 2). As shown in Fig. 2A, the mobility of pre-miR-29b was 

fully retarded by all carriers, indicating that the pre-miR-29b was tightly neutralized within 

the carriers. It was also possible to observe that PEI-SA-pre-miR-29b and PEI-SA-Lf-pre-miR-

29b moved in direction of the anode, that is, some polyplexes present an excess of positive 

charge, know as overcharging effects. These results are in accordance with what was 

observed in the encapsulation studies, in which 100% of encapsulation efficiency was 

achieved, indicating that pre-miR-29b was completely complexed with PEI-SA-Lf (Fig. 2B). In 

what concerns to the CS-based systems, CS-SA-Lf seems to be more efficient in pre-miR-29b 

condensation, once a value of 86% was obtained in comparison with 80% for CS-SA.  
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Figure 2 - Synthesis of pre-miR-29b-loaded complexes. (A) Agarose gel electrophoresis 

analysis. Lane 1: naked pre-miR-29b, lane 2-5: pre-miR-29b loaded into the different 

complexes, as indicated in the figure. (B) Encapsulation efficiency of different pre-miR-29b-

loaded complexes (Data represent the mean±SD, n = 4). 

 

3.3. In vitro cellular uptake and intracellular trafficking of the pre-miR-29b-

loaded complexes 

To evaluate the efficacy of cellular uptake of pre-miR-29b loaded onto the CS-SA-Lf and PEI-

SA-Lf, laser scanning confocal microscopy was employed to quantify the uptake and to 

visualize the cellular distribution of pre-miR-29b (see Fig. 3 and 4). To accomplish this 

purpose, the pre-miR-29b was labeled with FITC to construct fluorescent complexes for their 

localization in N2a695 cells. Figures 3 and 4 present the confocal fluorescence 

microphotographs of N2a695 cells treated with CS-SA-Lf/pre-miR-29b-FITC and PEI-SA-Lf/pre-

miR-29b-FITC followed during 2.5 hours, respectively. As demonstrated by serial Z-stacks of 

confocal images, pre-miR-29b-loaded complexes were clearly detected within the cells (see 

Fig. 3 and 4). After 1 hour of transfection, a homogeneous distribution of CS-SA-Lf/pre-miR-

29b-FITC and PEI-SA-Lf/pre-miR-29b-FITC complexes within the cells was observed. Indeed, a 

significant fraction appeared in the cytoplasm near the cell nucleus (see Fig. 3 and 4), 

suggesting that the complexes displayed an excellent ability to cross cell membranes by 

cellular endocytosis. As shown in Fig. 3 and 4, after 2 hours of incubation, pre-miR-29b-

loaded complexes were also present in the nuclei of cells, being visible the green 

fluorescence throughout the entire cytoplasm and nucleus. Following the confirmation that 

the pre-miR29b-loaded complexes were efficiently delivered into N2a695 cells, the expression 

of pre-miR-29b-FITC was also evaluated by quantitative analysis of cellular accumulation of 

FITC.  
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Figure 3 - Confocal laser scanning microscopy images showing the intracellular uptake of 

FITC-labelled CS-SA-Lf/pre-miR-29b in N2a695 cells during 0.5 to 2.5 hours. For each panel, 

images from left to right showed the cells with nuclear staining by Hoechst 33342® (blue); 

Bright field stained cell membrane; CS-SA-Lf/pre-miR-29b-FITC (green); and overlays of both 

images. (A) Representative immunostaining data showing a majority of the FITC-labelled CS-

SA-Lf/pre-miR-29b localized in the cytoplasm.  

 

Fluorescence intensity inside cells increased gradually and a significant difference in 

fluorescence intensity between PEI-SA-Lf/pre-miR-29b-FITC and CS-SA-Lf/pre-miR-29b-FITC 

was observed during the 2.5 hours of incubation. The results obtained with quantitative 

(A) 
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analysis were extremely similar to those obtained with fluorescence imaging. Interestingly, no 

significant differences were found in the mean fluorescence intensity at 1.5 or 2.5 hours, 

indicating that a plateau was achieved after 1.5 hours of incubation, in the cells transfected 

with CS-SA-Lf (data not shown).  

 

 

Figure 4 - Confocal laser scanning microscopy images showing the intracellular uptake of 

FITC-labelled PEI-SA-Lf/pre-miR-29b in N2a695 cells during 0.5 to 2.5 hours. For each panel, 

images from left to right showed the cells with nuclear staining by Hoechst 33342® (blue); 

Bright field stained cell membrane; PEI-SA-Lf/pre-miR-29b -FITC (green); and overlays of both 

images. (A) Representative immunostaining data showing a majority of the FITC-labelled PEI-

SA-Lf/pre-miR-29b localized in the cytoplasm. 

(A) 



 

 245 

In contrast, the mean fluorescence intensity of the PEI-SA-Lf/pre-miR-29b complexes 

increased during the 2.5 hours of incubation, while CS-SA-Lf/pre-miR-29b increased until 1.5 

hours of incubation and then kept stable until the end of transfection period (data not 

shown). These results indicate that the release of pre-miR-29b from the CS-SA-Lf complexes 

was faster than that from the PEI-SA-Lf. 

3.4. Evaluation of human BACE1 gene knockdown induced by pre-miR-29b-loaded 

complexes 

To investigate the effect of recombinant pre-miR-29b on hBACE1 mRNA expression levels, RT-

qPCR measurements were performed. To accomplish this purpose, N2a695 cells were 

transfected with CS-SA-Lf/pre-miR-29b, PEI-SA-Lf/pre-miR-29b and Lipo/pre-miR-29b with 

8.72 nM of the target miRNA. After 72 hours of transfection, it was verified that the 

overexpression of recombinant pre-miR-29b induces a notably decrease in the endogenous 

hBACE1 mRNA levels, in comparison with the untreated cells (Fig. 5). In particular, hBACE1 

mRNA expression was decreased by approximately 77% in cells transfected with CS-SA-Lf/pre-

miR-29b, and by 69% in those transfected with PEI-SA-Lf/pre-miR-29b complexes, when 

compared with untreated cells (Fig. 5). This reduction on mRNA hBACE1 expression was also 

significantly higher than the silencing (around 40%) achieved in cells transfected with 

Lipo/pre-miR-29b, the positive control (Fig. 5). Thus, in comparison to Lipofectamine 2000, 

CS-SA-Lf demonstrated a higher efficacy in delivering pre-miR-29b once it was achieved a 2 

fold reduction of BACE1 mRNA levels.  

 

 

Figure 5 - In vitro gene silencing effect of recombinant pre-miR-29b on hBACE1 mRNA levels 

in N2a695 cells following 72 hours treatment with CS-SA-Lf/pre-miR-29b, PEI-SA-Lf/pre-miR-

29b and Lipo/pre-miR-29b. Values in the graph are mean from triplicates of RT-qPCR 

threshold cycles for hBACE1 mRNA normalized to those of mRNA for GAPDH from 3 

independent experiments and demonstrate significant differences across treatment 

conditions. ANOVA, mean±SD. 
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Although the functionalized CS presents a slightly lower encapsulation efficiency (86%) 

compared with the unmodified CS (90%), it shows a higher transfection efficiency, and 

consequently leads to higher hBACE inhibition, very similar to those obtained for the 

unmodified CS (77% to CS-SA-Lf and 76.4% to CS). These results show that the 

functionalization did not affect the delivery of recombinant pre-miR-29b to the cells and its 

biological activity continues to exceed the synthetic miR-29b. Furthermore, the PEI 

functionalized demonstrates a decrease in the inhibition of hBACE1 (69%) compared to the 

unmodified PEI (78%) what may be due to their structural characteristics after 

functionalization. 

3.5. Permeability across the BBB using CS-SA/pre-miR-29b, PEI-SA/pre-miR-29b, 

CS-SA-Lf/pre-miR-29b and PEI-SA-Lf/pre-miR-29b  

In order to evaluate the ability of all the systems to cross the BBB, in vitro BBB model was 

established using RBE4 cells [49], which were transfected with CS-SA/pre-miR-29b-FITC, CS-

SA-Lf/pre-miR-29b-FITC, PEI-SA/pre-miR-29b-FITC and PEI-SA-Lf/pre-miR-29b-FITC. The 

fluorescence intensity in the inner and outer chambers of the transwell was determined, in 

order to evaluate the targeting effect of Lf and SA in the CS and PEI polymers to cross the 

BBB. Fig. 6A shows the transport ability of different complexes to cross BBB model at the 

same concentration of pre-miR-29b. After 4 hours of incubation, the transport ratios were of 

about 12.28, 41.61, 64.56 and 64.93% for PEI-SA, PEI-SA-Lf, CS-SA and CS-SA-Lf, respectively. 

These results indicated that the dual-targeting complexes have enhanced transport ability to 

cross the BBB compared to the complexes with only one targeting group. Fig. 6A shows also 

the immunostaining microphotographs of CS-SA-Lf and PEI-SA-Lf internalized in RBE4 cells. As 

revealed in Fig. 6A, the strong green intensity in cytoplasm of RBE4 cells suggested that 

complexes were internalized by endocytosis through the cells. Z310 cells were used as in 

vitro blood-cerebrospinal fluid barrier model for evaluating the dual-targeting effects (Fig. 

6B).  
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Figure 6 - The transport ratio of pre-miR-29b across the BBB during 4 hours in RBE4 cells (A) 

and Z310 cells (B). Data were presented as the mean ± standard deviation. (A) Intracellular 

trafficking in RBE4 cells after treating with CS-SA-Lf/pre-miR-29b-FITC and PEI-SA-LF/pre-

miR-29b-FITC. The fluorescence signals were collected by LSCM with three channels: blue 

fluorescence from nuclei stained with Hoechst 33258, green fluorescence from FITC labeled 

pre-miR-29b and the merged images of three channels.  

 

With the same incubation time and pre-miR-29b concentration, the different formulations 

were internalized by Z310 cells in the following order: CS-SA-Lf/pre-miR-29b > PEI-SA-Lf/pre-

miR-29b, with transport ratios of 65.49% and 48.08%, respectively. These results are in 

agreement with the BBB transportation result. These findings demonstrated that the dual 

targeting complexes (PEI/CS-SA-Lf) could mediate the recognition via Lf receptors and fatty 

acid transporter(s)/low-density lipoprotein receptor expressed by RBE4 and Z310 cells, 

allowing the transport of exogenous pre-miR-29b into the brain, probably via the pathway of 

receptor-mediated transcytosis (RMT). In addition, Lf is a competent protein that intensifies 

the interaction between complexes and RBE4 and Z310 cells. On the other hand, these results 

can also be explained due to the positive charge of the cationic polymers, which could 

promote electrostatic interactions with the negatively charged RBE4 and Z310 cell 

membranes, activating the cellular uptake through the pathway of adsorptive-mediated 

transcytosis (AMT) [38]. The internalization of CS-SA and CS-SA-Lf by RBE4 cells was higher 

than that of PEI-SA and PEI-SA-Lf. Thus, it was found that the chitosan improved the delivery 
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efficacy both in terms of targeting at an earlier time point as well as in the accumulation in 

cells. These results can be related to some characteristics of CS that can transiently open 

tight junctions, enabling the transport of components via a paracellular pathway through the 

epithelial barrier. 

 

Conclusion 

In conclusion, the present in vitro study demonstrated that CS-SA-Lf and PEI-SA-Lf could 

efficiently cross the BBB and thus, deliver the recombinant pre-miR-29b as a therapeutic 

agent to the neuronal cells. The pre-miR-29b induced the inhibition of BACE1 mRNA. 

Specifically, the in vitro cellular uptake study showed that lactoferrin and stearic acid 

conjugated with chitosan are highly efficient in cell transfection (about 65%) and pre-miRNA 

intracellular delivery, and consequently, in the silencing of the BACE1 mRNA in comparison to 

PEI-SA-Lf. These results suggest that chitosan conjugated with stearic acid and lactoferrin can 

represent a potentially promising and interesting therapeutic strategy for targeting 

recombinant pre-miR-29b to neuronal cells, aiming the development of effective strategies to 

treat AD. 
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Concluding remarks  

 
Over the recent years, the study and application of miRNAs has been considered useful and 

promising for the diagnosis and treatment of several diseases, in particular Alzheimer's 

disease. Most miRNAs employed in the development of these therapeutic approaches are 

produced either by enzymatic or chemical synthesis methods. Although, the synthesis process 

is efficient for large scale production, several limitations have been found regarding the use 

of synthetic miRNAs, once the isolation of these formulations are based on methods that 

employ chemical solvents and denaturing agents. Consequently, the final product is not 

suitable to be biologically applied, because of the health risks associated, and thus strongly 

compromise the success of several RNA based-procedures in the clinical field. Aiming to 

overcome some of these limitations, this project was centered on the establishment of a new 

strategy to biosynthesize and to purify the recombinant pre-miR-29b, also focusing on the 

preparation of suitable non-viral systems to efficiently deliver the pre-miR-29b to the cell. In 

addition, it was demonstrated the efficiency of the recombinant pre-miR-29b in BACE1 

knockdown, using in vitro neuronal cells lines. 

The recombinant production of pre-miR-29b was performed using the bacterium R. 

sulfidophilum DSM 1374, harboring a plasmid encoding for human pre-mir-29b. Regarding the 

growth conditions, and conversely to what was previously described for this bacterium, it was 

possible to develop an original approach for the aerobic growth of R. sulfidophilum, which 

resulted in a cellular growth improvement (higher growth rates, higher optical densities and a 

shorter cultivation time) followed by an enhanced production of intracellular (about 358 

μg/L) and extracellular (approximately 182 µg/L) pre-miR-29b. In addition, the results 

indicated that the extracellular medium is not highly contaminated with genomic DNA, 

proteins or endotoxins, which is an important parameter concerning the integrity, stability 

and activity of the pre-miRNA (Paper III). In general, the use of this alternative strategy, 

based on the secretion of the pre-miRNA, avoids time-consuming and laborious RNA extraction 

methods that frequently induce RNA denaturation and, simultaneously suppresses the use of 

organic solvents and extremely toxic chemicals which are biologically hazardous. Despite this 

great advantage, in the course of this thesis it was difficult to recover the pre-miRNA from 

the extracellular medium, due to the high dilution factor, and the purification experiments 

were developed by using the RNAs recovered from the cells. 

Considering the previous knowledge that pre-miR-29b can be successfully obtained by a 

simple, fast and economic process using the R. sulfidophilum host, it is required the 

development and implementation of an adequate and efficient purification method that 

allows to overcome the challenges of the already existing chromatographic techniques, for 

the purification of miRNAs. In this project, it is suggested that amino acid-based affinity 

chromatography can be considered as a promising chromatographic strategy, to specifically 



 

 256 

and efficiently purify the pre-miR-29b, eliminating the host impurities (small RNAs, proteins 

and endotoxins) by exploiting the specific interactions occurring between the L-lysine and L-

arginine ligands and the pre-miRNA. Thus, it was developed an initial study to characterize 

the binding of pre-miR-29b onto the amino acids-based agarose supports using Surface 

Plasmon Resonance (Paper IV). The understanding of the conditions favoring these 

interactions was essential to control, manipulate, determine and establish the selective 

binding/elution chromatographic conditions (such as the composition and ionic strength of 

elution buffer and temperature), in order to improve the binding specificity of the pre-miR-

29b onto the amino acids-based supports, preserving their structural stability and integrity. 

Considering the equilibrium dissociation constant, it was verified that the recombinant pre-

miR-29b binds more strongly to L-arginine (KD between 10-6 and 10-7 M) than to L-lysine (KD 

between 10-5 and 10-7 M). This study also disclosed that the structure of the pre-miR-29b is 

sensitive to changes in the physical and chemical environmental conditions. In general, the 

results obtained provide valuable information for the optimization and implementation of L-

lysine and L-arginine amino acids as chromatographic ligands, in order to improve the 

efficiency of pre-miR-29b purification.  

Lysine-agarose matrix was the first support to be tested for the purification of pre-miR-29b. 

Due the presence of the amine groups in its structure, it is suggested that the main 

interactions established between nucleic acids and the L-lysine amino acid are electrostatic. 

Thus, initial experiments were performed to choose the best binding/elution conditions for 

pre-miR-29b, using sodium chloride gradients. However, under these conditions the RNA 

binding was not effective and the selective purification of pre-miRNA was not achieved. 

Therefore, the retention behavior of pre-miR-29b was evaluated using an ammonium sulfate 

stepwise gradient (Paper V), in order to achieve higher specificity. Despite the effectiveness 

of lysine-based methodology in the purification of pre-miR-29b, the requirement for high salt 

concentration can be seen as a disadvantage, especially with regard to biotechnological and 

clinical applications.  

To overcome this limitation and to improve pre-miR-29b purification, the arginine-agarose 

matrix was used. The application of arginine as specific ligand allowed the pre-miR-29b 

recovery under mild salt conditions, using sodium chloride gradients, showing that this matrix 

can be a good alternative to purify pre-miR-29b (Paper VI). The arginine ligand allowed the 

purification of the pre-miR-29b using three different elution strategies, namely by using 

sodium chloride (90% of purity and 97% of yield using a low salt concentration) and ammonium 

sulfate (33% of purity and requires high salt concentrations) gradients, or by establishing a 

competitive elution strategy with arginine (98% of purity and 57% of yield). Although 

electrostatic interactions are most prevalent in the arginine matrix, it was verified the 

presence of other interactions due the binding and elution conditions used. Moreover, the 

quality control analysis revealed high integrity of pre-miR-29b preparations as well as high 

purity degree and recovery yields, eliminating R. sulfidophilum impurities (proteins and 
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endotoxins) as well as other species of small RNAs, which can origin adverse effects and 

inflammatory response to the patients.  

Taking into account that the structure of the chromatographic supports is continuously 

optimized to afford rapid and efficient separations, it was also tested a monolithic support to 

purify the pre-miR-29b, in order to overcome the limitations associated with the conventional 

supports in the purification of miRNAs. The application of the agmatine monolithic support for 

pre-miR-29b purification revealed a specific recognition of the pre-miR-29b that was totally 

isolated from other small RNAs, which represented an advantage to obtain highly pure RNA in 

a short time (Paper VII). These results were useful for the implementation of a new affinity 

chromatographic strategy using monoliths immobilized with specific ligands, such as 

agmatine, to efficiently and selectively purify the pre-miR-29b. In addition, this strategy 

allowed an efficient pre-miR-29b separation without flow rate dependence using similar 

binding and elution strategies to those used with arginine-agarose. With this study it was 

verified that the dynamic binding capacity for RNA molecules is dependent of the feed 

concentration and the characterization of the modified monolith revealed that a maximum 

binding capacity of 8.08 mg/mL was reached to a RNA concentration of 0.25 mg/mL. 

Moreover, the dissociation constant value obtained was 2.6x10−7 M, revealing a good affinity 

interaction between the agmatine ligand and pre-miR-29b. The quality control analysis in the 

final pre-miR-29b sample revealed that the removal of host impurities (proteins and small 

RNAs) was efficient. In fact, this new monolithic support arises as a powerful instrument on 

the miRNA purification to be used in further clinical applications, providing a more rapid and 

economical purification platform, resulting in a short contact time with pre-miR-29b 

molecules, which preserves the structural stability and integrity of target molecules.  

Thus, the results and conclusions obtained in these studies suggest that the mechanism 

inherent to the purification of the pre-miR-29b results from the occurrence of multiple non-

covalent interactions, including electrostatic, hydrophobic, hydrogen bonds, van der Waals 

forces and cation–π interactions, which combined induce a specific biorecognition of the pre-

miR-29b by arginine, lysine and agmatine amino acids. In general, the application of amino 

acids-based affinity chromatography allowed the selective, efficient and specific isolation of 

the target pre-miRNA from the complex biological mixture of other sRNAs with high recovery 

yield, integrity and good purity, demonstrating thus the potential and versatility of these 

ligands in the purification of pre-miR-29b, in a single unit operation. Furthermore, the 

purification of the pre-miR-29b using the amino acids-based affinity chromatography showed 

several improvements over the currently used purification methods, thus proving to be an 

interesting option for the downstream processing of miRNA therapeutic products.  

After the purification of the target pre-miRNA, the project was focused on the development 

of delivery systems able to encapsulate, protect and promote the delivery of pre-miR-29b to 

the target cells. Initially, as described in paper VIII, a systematic study of three polymers, 



 

 258 

polyethylenimine (PEI), chitosan (CS) and poly(allylamine), with different structural 

characteristics (such as molecular weights, charge densities and backbone structure) was 

performed, in order to design a successful non-viral delivery system for small RNAs. The 

polymers of PEI and CS stood out in the condensation of small RNA as well as in relation to its 

physicochemical characteristics, namely size, zeta potential, morphology, encapsulation 

efficiency and complex stability. 

In the previous papers it was possible to develop efficient methodologies to recover pre-miR-

29b with a high purity degree, in particular with arginine-agarose matrix. Thus, in the paper 

IX, is described how the recombinant pre-miR-29b was condensed and some systems were 

prepared and characterized to encapsulate and protect the pre-miR-29b activity. All of the 

polyplexes demonstrated high loading capacity, small sizes and exhibited a strong positive 

charge on their surface. Moreover, the results showed that the levels of human BACE1 protein 

expression were significantly decreased, by approximately 80%, in cells transfected with 

polyplexes loaded with recombinant pre-miR-29b relatively to untreated cells and cells 

treated with scrambled RNA and miR-29 synthetic. Consequently, endogenous Aβ42 levels 

were also significantly reduced in about 45%. It is important to highlight that the therapeutic 

effect of pre-miR-29b in BACE1 mRNA silencing was also achieved, with a mRNA reduction of 

approximately 77% in cells transfected with CS-SA-Lf/pre-miR-29b and 69% in those 

transfected by PEI-SA-Lf/pre-miR-29b. Overall, these results showed that the miR-29b can 

induce the suppression of the expression levels of Aβ peptides in neuronal cells, showing a 

causal relationship between miR-29b expression and BACE1 activity, and, consequently, Aβ 

generation. Considering the application of the pre-miR-29b in the brain, the delivery systems 

previously characterized were functionalized with ligands, to facilitate their access and 

interaction with specific molecules expressed on the surface of BBB endothelial cells. In the 

paper X, it was demonstrated that CS functionalized with lactoferrin and stearic acid cross 

the BBB quickly and with high transfection efficiency, causing an increase of the pre-miRNAs 

concentration in the brain.  

According to the results obtained in this doctoral research work and comparing with 

previously published data, it was developed a biotechnological platform that allows 

biosynthesis, purification and transfection of the recombinant pre-miR-29b using polyplexes. 

With the successful implementation of this methodology it was obtained the highest decrease 

ever reported for the hBACE1 and endogenous Aβ42 expression levels in AD model cells. 

Overall, the development and implementation of these cutting-edge approaches allows 

obtaining high quantities of pure pre-miR-29b, in its biologically active form, for further 

application in many molecular biology subjects. This approach also provides the basis for the 

improvement of the currently available methodologies of microRNA-based therapeutics, not 

only for neurological disorders but also for other diseases, and can be translated to additional 

therapeutic targets that may be of potential clinical interest in the future. 
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Future trends 

 
Overall, it can be asserted that the main aims of this research work were fulfilled. However 

several challenging questions arisen that can be addressed as future perspectives. The 

integration of innovative affinity chromatographic strategies in the global bioprocess of pre-

miR-29b biosynthesis and purification will be required for removing the host contaminants 

from the extracellular pre-miR-29b. Thus, the development of a selective strategy for 

efficiently isolate the extracellular pre-miR-29b will allow recovering this target miRNA 

directly from the culture medium without cells lysis and, consequently, without employing 

organic solvents and other harmful reagents. 

Following the work already performed, more studies can be developed to motivate the 

improvement of the already implemented chromatographic techniques or the establishment 

of new purification approaches. In this way, in order to improve the specificity, selectivity 

and throughput of the bioseparation methodology for purification of the target pre-miRNAs, 

other affinity purification strategies can be implemented, using other immobilized amino 

acids, its derivatives or peptides or even testing other specific ligands like complementary 

nucleotide sequences to pre-miRNAs. These ligands could be immobilized onto different 

chromatographic matrices, such as agarose-based and monoliths to purify pre-miRNAs from 

the constituents of culture medium, expecting the improvement of the process performance, 

namely considering the purification degree and recovery yield.  

Likewise, it is extremely necessary to understand the phenomenon of biorecognition, since 

the identification of the interactions involved in the isolation of pre-miRNA can be very 

important, allowing the control and manipulation of the chromatographic conditions 

responsible for the recognition of the pre-miRNA molecules. Accordingly, to characterize the 

binding recognition, as well as the thermodynamic parameters underlying the main 

interaction mechanism between pre-miRNAs and the different affinity ligands, and to 

determine the magnitude of kinetics and/or affinity constants, it could be used Nuclear 

Magnetic Resonance (NMR) spectroscopy, Flow Microcalorimetry (FMC) and Surface Plasmon 

Resonance (SPR), respectively. Furthermore, in order to fully characterize and compare the 

novel supports, dynamic binding capacity studies with target pre-miRNAs can be performed 

under different operation conditions (e.g. feed concentration, flow rate, pH and salt 

concentration), allowing the establishment of the best ligands and conditions to purify the 

target pre-miRNAs. 

On the other hand, to improve the delivery of pre-miRNA therapeutics to the cells and the 

cellular response, different delivery systems based on polymers, such as polymeric 

nanoparticles (e.g. Poly(lactic-co-glycolic acid)) and poloxamer micelles (Pluronic® block 

copolymers) can be developed and characterized. Moreover, as these systems are so 
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versatile, they can be functionalized with brain-targeting molecules, either on their surface 

or on the polymeric network, to be recognized by cell surface receptors of BBB, and promote 

targeting to specific cells and tissues. 

With the successful implementation of these methodologies, it could be further evaluated the 

therapeutic function of the recombinant pre-miRNA in in vivo studies and test its efficacy in 

improving cognition and biochemical hallmarks of disease, using mice models of AD (3xTg and 

APPswe/PSEN1ΔE9). To accomplish this objective, several studies are required to establish 

the range of doses and administration routes to be employed in the pharmacological studies 

(biodistribution/pharmacokinetics and toxicity studies). Finally, it could also be evaluated 

and compared the performance of recombinant pre-miRNAs and conventional therapeutic 

drugs. These studies should be first performed in vitro, but the development of some in vivo 

studies could bring important insights about the efficacy and safety of gene therapy, either 

used separately or in combination with conventional drugs, opening a new prospect of cure, 

due to the possible synergistic effect. 

 

 

 

 

 

 

 

 




