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Abstract

Turbulence transition modelling is still, albeit the past developments, an active research area
of interest for various industry sectors. Its modelling can range from RANS based closures to full
DNS computations. The former approach is of course the most feasible simulation methodology.
Therefore, RANS based transition models have been developed for industry use. These, range
from empirically correlated transition models to physics based phenomenological transition
closures. Implementation and validation of these models resulted in a deeper understanding
of the processes by which RANS based closures are able to predict turbulence transition onset.
The research presented herein on the specific type of physics in which the transition models
are based resulted in an accuracy improvement of an existing turbulence transition closure, the
k-kl-ω. Additionally, upon gaining a deeper understanding on the role of the pre-transitional
flow region, a new turbulence transition model was devised. This is based on a never before
applied concept of pre-transitional turbulent vortex deformation due to mean flow shear. This
will induce the appearance of a small pre-transitional turbulent viscosity on the edge of the
laminar boundary layer. The induced viscosity is a result from the predicted small negative
pre-transitional u′v′ values. Although experimentally verified, up until now, no model has ever
been able to predict this turbulent feature based on a mechanical analogy. The transition
V-model was then coupled to a turbulence model, the Spalart-Allmaras closure, resulting in
the V-SA transition model. This was validated for a wide range of flow conditions and multiple
geometries. It is concluded that the mechanical analogy based closure is a feasible concept
with a promising future. Although the developed V-SA turbulence transition model is simple, it
is able to predict complex transition phenomenon.
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Resumo

A modelação de transição para escoamento turbulento, continua a ser uma área de investigação
activa, com interesse para vários sectores industriais. A sua modelação pode abranger desde
modelos RANS a simulações DNS. A primeira abordagem é claramente a mais exequível forma
de simular transição para turbulência. Como tal, modelos de transição RANS têm vindo a ser
desenvolvidos para uso industrial. Estes podem variar desde modelos de correlação empírica
a modelos fenomenológicos baseados na física do processo de transição. A implementação e
validação destes modelos, resultou num aprofundamento do conhecimento sobre os processos
a partir dos quais os modelos RANS têm a capacidade de prever a transição para a turbulência.
Para além disto, a pesquisa sobre o tópico específico de modelos de transição baseados na física
do processo de transição, resultou numa melhoria da exactidão de um modelo de transição exis-
tente, o k-kl-ω. Adicionalmente, após adquirir um conhecimento mais detalhado sobre o papel
do escoamento de pré-transição, foi desenvolvido um novo modelo de transição. Este é baseado
num conceito nunca antes aplicado de deformação de vórtices presentes na região de pré-tran-
sição devido ao efeito de corte do escoamento médio. Isto irá induzir o aparecimento de uma
pequena viscosidade de pré-transição na fronteira da camada limite laminar. Esta viscosidade é
resultante da previsão de pequenos valores negativos de u′v′ na região de pré-transição. Apesar
de experimentalmente verificado, até agora, nenhum modelo conseguiu alguma vez prever este
fenómeno turbulento baseando-se numa analogia mecânica. O modelo de transição V-model,
foi então acoplado com um modelo de turbulência, o modelo Spalart-Allmaras, resultando no
novo modelo de transição, o V-SA. Este foi validado para uma vasta gama de escoamentos assim
como com múltiplas geometrias. Conclui-se que, o modelo baseado numa analogia mecânica é
um conceito funcional com um futuro promissor. Apesar do modelo de transição desenvolvido,
V-SA, ser simples, este tem a capacidade de prever fenómenos de transição complexos.
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Nomenclature

Greek symbols
α V-SA model vortex deformation angle along the shear stress tensor

major axis
α
′

V-SA model vortex deformation half angle along the shear stress
tensor major axis

αt k-kl-ω model effective turbulent diffusivity
αnewt k-kl-ω-mod model effective turbulent diffusivity
β V-SA model vortex deformation angle along the shear stress tensor

minor axis
β
′

V-SA model vortex deformation half angle along the shear stress
tensor minor axis

βbp k-kl-ω model bypass transition threshold function
βnat k-kl-ω model natural transition threshold function
βts k-kl-ω model Tollmien-Schlichting threshold function
γ Turbulence intermittency

γeff γ −Reθ model effective turbulence intermittency
γsep γ −Reθ model separation induced transition turbulence

intermittency
δ γ −Reθ model boundary layer thickness parameter
ε Turbulent kinetic energy dissipation rate
ζ Pressure loss coefficient
λθ γ −Reθ model pressure gradient parameter
λeff k-kl-ω model effective turbulent length scale
λt k-kl-ω model turbulent length scale
µ Dynamic viscosity
µT Turbulent dynamic viscosity
ν Kinematic viscosity
νT Turbulent kinematic viscosity
νt,l k-kl-ω model large scale turbulent kinematic viscosity
νt,s k-kl-ω model small scale turbulent kinematic viscosity
νTuv V-SA model pre-transitional turbulent viscosity
ν̃T Spalart-Allmaras model modified turbulent kinematic viscosity
Π Pressure-strain redistribution component
ρ Density
τij Reynolds stress tensor
φbp k-kl-ω model bypass transition limiting function
φnat k-kl-ω model natural transition limiting function
φnewbp k-kl-ω-mod model bypass transition limiting function
χ Spalart-Allmaras model modified and turbulent kinematic viscosity

ratio
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Chapter 1

Introduction

1.1 Transition to Turbulence

Transition is a process that transforms a steady and organized laminar flow into an unsteady
chaotic turbulent stream as exemplified in Fig.1.1. The transition regime can only be explained
by first addressing turbulence itself. As such, turbulence can be roughly described as a collec-
tion of fractal flow patterns, such as vortex tubes and rings, with a high mixing capacity. It can
be said that, in general all flows surrounding us develop under turbulent regime. This seems
to be the case since most of these flows are exposed to a multitude of disturbances. These
disturbances have their origin from sound, surface roughness, free-stream vorticity, thermal
instability and more.

All of these factors have the potential to breed turbulence in an organized laminar flow,
forcing it to go through a transition process. As such, turbulence and its transition understanding
are fundamental for comprehension of the world around us, from the weather to the boiling
water in a pan. Nevertheless, some flows are engineer to maintain their laminar properties.
This is done in order to benefit from the low viscous drag characteristic of a non-turbulent flow.

1.2 MAAT Project

The MAAT project is an innovative concept of air transportation for goods and people.
Transportation is achieved through means of two vehicles, the Feeder and Cruiser. The Feeder is
mostly responsible for vertical freightage, between the ground stations and the second airborne
vehicle. This last is then designated as the Cruiser. It was conceived to sustain flight for very
long periods of time. For realizability reasons, both vehicles are airships. The docking of a
Feeder inside the Cruiser is presented in Fig.1.2. As can be observed, the Cruiser airship is
several times larger than the vertical transport Feeder. The operation altitude for the MAAT
project vehicles is approximately 15 kilometers, which translates to stratospheric heights. The
Cruiser will then carry at least two Feeders as shown in Fig.1.3. The disclosed configuration
is expected to travel at a cruise velocity of 200 km/h. Although the cargo capacity of this
transport is limited, its operation costs are reduced due to the fact that this project makes

Figure 1.1: Transition to turbulence on a laminar mixing layer flow. Photo from
experimental work of Parezanoviíc et al.[1].
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Figure 1.2: MAAT project vehicles. Feeder in docking operation near the Cruiser
airship.

Figure 1.3: MAAT project vehicles. Cruiser carrying two Feeder airships.

use of solar powered vehicles without resorting to conventional commercial jet fuel such as
Kerosene.

1.3 Objectives

The main motivation of the present work is the development of numerical models for
prediction of laminar boundary layer transition to fully turbulent flow regime. These should
be applied in a Reynolds Average Navier Stokes, RANS, work-frame. Therefore, the developed
transition model should also be a RANS turbulence model or be coupled to one. The developed
transition closures will be applicable for both bi-dimensional and three-dimensional geometries.
These models will focus on the pre-transitional region of the laminar boundary layer depicted
in Fig.1.4.

1.4 Thesis layout

The present work is divided in the next described chapters. Chapter two, or the bibliographic
review, gives a summary of the known transition mechanisms and the impact of turbulence
transition phenomenon over common geometries. It also includes a brief historical review of
the considered main turbulence and transition experimental and numeric works related to the
transition modeling subject. A description of approaches for transition modeling is performed.
Also, a deeper exposition of two transition models is presented.

Chapter three, or the transition models development chapter, discloses the devised transi-
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Figure 1.4: General overview of laminar boundary layer transition to turbulence.
Some of the concepts of late transition depicted here were observed in the work of
[2].

tion closures. An initial description of the first phenomenological model origin is presented. The
current laminar fluctuation kinetic energy transition model is disclosed in detail. Afterwards,
the laminar fluctuation kinetic energy transition model alteration is explained. The used em-
pirically correlated transition closure formulation is exhibited. Following this exposition of
the empirical RANS transition closure, a new turbulence transition model is presented. This is
based on a never before used mechanical approximation for the effects of mean flow shear over
turbulence characteristics. The development of this novel model is carefully described.

Chapter four, also designated as the ERCOFTAC test cases chapter, describes the validation of
both developed transition models over the ERCOFTAC flat-plate benchmark test cases. This val-
idation includes a comparison with numerical results obtained with two commercially available
transition models and a turbulence closure. This begins then with the zero-pressure gradient
flat-plate test cases. These are followed by the pressure-gradient experimental benchmark.
The final validation is performed for the separation induced experimental test cases.

Chapter five, or the airfoil test cases chapter, presents a validation of the novel transi-
tion model with available experimental data. The latter is also compared to the results of a
turbulence model. Initially a description of the motivation behind such validation is presented.
This is followed by a short exposition over the purpose of the first used airfoil geometries. Af-
terwards three airfoil test cases are analyzed. Finally a turbine airfoil benchmark test case is
studied.

Chapter six, designated as the three-dimensional test cases chapter, shows the application
of the new transition closure over three-dimensional geometries. This analysis is compared with
available experimental data and with the computational results from a turbulence model. The
validation begins with a complex flow test case with cross flow effects over a prolate-spheroid.
The following case is the flow over a wing under various angles of attack. The obtained nu-
merical results with the developed novel transition model are compared to pictures from the
experiment showing a naphthalene distribution over the top and bottom wing surfaces. The
final analysis is on a transonic wing test case. The computational results from the newly de-
veloped transition closure were compared with experimental pressure coefficient distributions
and transition patterns.

Chapter seven, or the conclusions chapter, presents a summary of what was done during the
present work. Also, the main results obtained are presented along with problems encountered
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during the development of the transition models. At the end of the chapter, future works are
proposed for the continuous development of the transition closures.
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Chapter 2

Bibliographic review

2.1 Transition mechanisms

The transition of laminar flow into fully turbulent regime is done through mainly three
transition mechanisms. These are the natural, bypass and separation induced transition. Also a
secondary fourth transition mechanism is increasingly being taken into consideration, the wake
induced transition. This is normally observed within turbine and compressor engines where high
turbulence intensity wakes are convected throughout the engine blades.

2.1.1 Natural transition

For flow with free-stream turbulence intensity ≤ 1%, natural transition is generally observed
when the developing laminar flow reaches a critical Reynolds number value. After this critical
stage of flow development, viscous wave instabilities named Tollmien-Schlichting waves begin to
slowly grow, from small linear perturbations to non-linear disturbance waves. Having reach this
point in the transition process, these non-linear waves create three dimensional disturbances
and by means of inviscid mechanisms spots of turbulence begin to form randomly inside the
laminar boundary layer. Some of these spots grow in size and downstream from where transition
first began to develop, a process of fusion between these spots gives light to the fully turbulent
boundary layer.

2.1.2 Bypass transition

It is commonly known that bypass transition can occur due to two sources of disturbances.
One is surface roughness and the second high free-stream turbulence intensity, which translates
to free-stream turbulence intensities ≥ 1% [9]. Bypass transition is simply a natural transition
process without the Tollmien-Schlichting wave development phase. When laminar flow suffers
bypass transition the flow turns from laminar to the turbulent spot formation phase immedi-
ately. The subsequent development is equal to the natural transition process.

2.1.3 Separation induced transition

Boundary layer separation can be observed in flow development over airfoils with an high
angle of attack or large leading edge radius surfaces. Due to the adverse-pressure-gradient, a
separation bubble is formed and flow may or may not reattach closing the bubble. The process
of reattachment is due to the transition of the separated laminar shear layer. This increased
flow mixture capacity, originated by turbulence, allows for the shear layer to gain energy from
the free-stream and reattach to the wall. During the transition process the free-stream tur-
bulence intensity has an important role determining the separation bubble length [10]. This
implies that for low free-stream turbulence intensity a longer transition process develops in the
separated laminar shear boundary layer. After turbulence is reached the shear layer reattaches
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creating a long length bubble. On the other hand, for high free-stream turbulence intensity,
transition occurs faster implying shorter bubble length.

2.1.4 Wake induced transition

As previously mentioned, wake induced transition can be seen in turbine blade cascades.
The appearance of turbulent spots on cascade blades can be due to the periodic passing wake,
which has enhanced turbulence and creates a momentum deficit in the free-stream. As men-
tioned in Langtry et al. [11], the principal cause of the turbulent spot formation on the wake
impinged blade surface is not known. Studies show that wakes can be seen as negative jets that
destabilize the flow forming turbulent spots [12].

2.2 Impacts of transition

The use and general interest in transitional turbulence models in industrial engineering
is steadily increasing [13, 11]. This also applies for the MAAT project [14, 15], a revolutionary
concept of transportation. Due to its high altitude flight conditions air density and viscosity will
greatly differ from sea-level values. Thus, the reigning Reynolds number flows and turbulence
conditions will delay transition to turbulence. This implies that for the MAAT project vehicles,
feeders and cruiser, large regions of laminar flow will be induced. Therefore, elements of the
feeders and cruiser vehicles, such as propulsive systems, will be exposed to late transition and
consequently considerable sized laminar flow regions. Possession of a turbulence model that
can accurately predict transition onset as well as correctly calculate the transition length has
become a must amongst CFD engineers who deal with transitional flows in a daily basis.

2.2.1 Wings stall conditions and turbulence transition effects

The effect of flow transition to turbulence over wings is a critical issue [16]. Investigation
and modeling of airfoil flow characteristics is essential as shown in an Onera-A airfoil pre- and
stall conditions evaluation using a finite volume method in [17] or the S809 airfoil laminar to
turbulent transition modeling attempt using the standard k-ε turbulence model on [18] and
others [19, 20]. In the beginning of aviation history, there were cases where airplanes suddenly
lost all of the wings lift and or flight control. These unfortunate incidents typically happen
under extreme off-flight envelope conditions such as very high angle of attack and low speed
flight. This was later understood as the airplane wings stall state. Stall is a condition where
the flow over the wing is fully separated and does not reattach. As such there is a pressure
increase over the upper wing surface due to the presence of the separated flow vortices. Also,
the wing’s control surfaces will no longer operate since the low speed flow regions might not
even flow in the designed direction due to the vortices imposed circulation. In commercial
aviation, the airplane wings have small probes over the upper wing surface or “suction side”
of the wing. These probes, also named as vortex generators, induce an axial vorticity which
helps increasing the flow momentum near the wing’s surface [21]. Additionally, these small
structures will induce turbulence transition, again contributing to a higher momentum transfer
rate to the wing’s surface. It might be thought that the best solution for wing design is to force
turbulence transition on the wing’s leading edge, resulting in turbulent flow over the entire
wing. Although this approach would improve the wing’s stall angle of attack, fully turbulent
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flow over the entire wing’s surface will in fact reduce the wing’s efficiency. This is so since
turbulence affected surfaces are subjected to a higher drag due to the increase of surface
momentum transfer. As such, turbulence transition control and prediction in wing design is of
most importance [22].

2.2.2 Turbines turbulence transition characteristics

Contrary to compressor blade flow conditions, turbine blade flows normally have favor-
able-pressure-gradient characteristics. Such is the case since the purpose of turbines is the
extraction of mechanical energy from the incoming flow. Typically the jet engine turbine stage
can be found after its compressor and combustor stages. Therefore, turbines are exposed to
various flow conditions such as high heat transfer [23], and high free-stream turbulence inten-
sity [24]. These stages also have some regions of adverse-pressure-gradient on the suction side
of the blade such as the T106. Also, despite the fact that high free-stream turbulence intensity
induces an early transition to turbulence, these geometries have large laminar flow regions as
shown in the work of Mayle [25]. This is due to the high favorable-pressure-gradient conditions
found on the pressure side of the turbine blade. This induced flow acceleration inhibits laminar
flow from turbulence transition. However, as shown in the experimental work of Volino and
Simon [26, 27], the pressure side high free-stream turbulence intensity present at the edge
of the boundary layer resulted only in its unsteadiness. As such, transition onset prediction
is of vital importance in order to correctly estimate a turbine blade overall efficiency. The
industrial usage of fully turbulent models will result in over-prediction of drag effects on the
turbine blade. Additionally, the assumption of fully turbulent flow conditions from the leading
edge of the turbine blade will produce optimistic stall angles of attack. Therefore a broader
operational envelope will result from the flow calculations based on fully turbulent models.
Some low-Reynolds turbulence models such as the Spalart-Allmaras, have the apparent ability
of transition onset prediction due to their low-Reynolds formulation. However, as will be later
explained this is only accidental in what regards bypass and natural transition mechanisms. For
separation induced transition to turbulence these low-Reynolds turbulence models, such as the
Spalart-Allmaras and the k-ω-SST turbulence closure, present reasonably good results [28].

2.2.3 Fuselages transition to turbulence considerations

Due to the typical large size of fuselages, turbulence transition onset does not present such
significant impact on their overall behavior. Nonetheless, under low to medium speeds, laminar
flow regions can extend for several meters over the fuselage. It will be later shown that for
over almost half of a 2.4 meters long surface such as the prolate-spheroid the boundary layer
flow remains laminar. Also, as shown in the work of Langtry and Menter [29], which presented
a computation over the Eurocopter fuselage, it can be seen that the whole nose part of this
geometry maintains laminar flow characteristics. This will result in a more accurate calculation
of the resulting drag force acting upon the aircraft body. Unless the developing fuselage is
exposed to very off-design conditions such as high angles of attack, the usage of a transition
model will not be critical in defining the flight operational envelope. This is the case since in
principal the fuselage does not contribute to flight control nor lift. There is, of course, the
case of flying wing geometries where both wings and fuselage are bound together. In these
special cases, fuselage and wing design cannot be considered as separated issues and transition
to turbulence must be taken into account.
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2.3 RANS throughout time

As presented in the historically detailed work of Schimtt [30], the development of a flow
averaging process that could have resulted in the known Reynolds averaging was first incorrectly
published by Boussinesq [31]. Citing the former publication: “here Boussinesq did not notice
the apparition, through a temporal average of transport equations, of the tensor that will later
be called Reynolds tensor”. It was then with the work of Reynolds [32], that the base for RANS
models was developed. This enabled the creation of multiple types of turbulence models such
as the second-order closures based on the Reynolds stress transport equations that were first
closed by Rotta [33]. Most of the remaining RANS turbulence model types would not be feasible
if not for the contribution of Boussinesq. The simplifying concept of a turbulent viscosity or
eddy viscosity, was first presented in 1877 by Boussinesq [31]. Afterwards, the mixing-length
theory was proposed by Prandtl [34]. The first algebraic, or zero-equation, turbulence models
were based on this notion. However, some works dismissed the mixing-length theory as a viable
theoretical basis for turbulence models development [35]. The simplest complete turbulence
closure type is the two-equation turbulence model. This is so since these models are able
to determine both turbulent velocity and length scales. These model types make use of two
transport equations. Most, if not all, of these closures rely on the transport equation for the
turbulent kinetic energy. The remaining second transport equation is used for the turbulence
length scale calculation. The work of Jones and Launder [36], produced one of the best known
and used two equation turbulence closure, the k-ε model. However, the first works on this
particular model were presented by Chou [37] and others,[38, 39].

2.4 Transition throughout time

Experimental considerations on transition to turbulence were firstly addressed in 1937 by the
pioneer work of Dryden [40]. Measurements in the boundary layer over a thin flat-plate were
described and reviewed. Laminar to turbulent flow transition was observed in the performed
experiment. It was acknowledged that increasing the free-stream turbulence intensity reduced
the transitional Reynolds number considerably. Also, the effect of flow pressure-gradient on the
transition Reynolds number was studied. For the same free-stream turbulence intensity, small
variations on the flow pressure-gradient greatly changed the transition onset Reynolds number.
Under a favorable-pressure-gradient, transition Reynolds number was increased. Streamwise
velocity fluctuations were measured in both the laminar and turbulent flow regions. It was
recorded that under free-stream turbulence intensity the laminar flow region over the flat-plate
presented velocity fluctuations. The amplitude of these velocity fluctuations was considerably
greater than that of the free-stream oscillations. The main reported difference in these velocity
fluctuations between fully turbulent flow and the laminar state of motion was the fluctuations
frequency. In laminar flow these velocity fluctuations presented a lower frequency in compar-
ison to the fully turbulent state velocity fluctuations. Additionally it was concluded that it
is impossible to determine if a flow is in a laminar or turbulent state just by considering the
absence or presence of velocity fluctuations. This was the case since measurements in the lami-
nar flow region, proved that under the influence of free-stream turbulence, a laminar boundary
layer will develop considerable velocity fluctuations while maintaining a Blasius velocity profile.

Later in 1943, the experimental work of Schubauer and Skramstad [41], was performed with
the main motivation of validating the then recently developed linear stability theory based
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on exponential growth of small disturbances. The research effort focused on the effects of
very low free-stream turbulence intensity. Measurements of turbulence, sound and transition
were performed for the developing flow over a thin flat-plate. The reduction of the free-stream
turbulence was performed gradually using damping screens in order to reduce this to the lowest
possible value. It was concluded that the laminar boundary layer velocity oscillations are the
velocity fluctuations induced by a wave traveling downstream within the boundary layer. This
could be triggered by both free-stream turbulence or by sound. Also, it was concluded that a
broad band random disturbance, under amplification and damping by the boundary layer, will
isolate a limited frequency band close to the most highly amplified disturbance frequencies.
This landmark experimental work provided the confirmation of Tollmien-Schlichting waves [42,
43], within the Blasius boundary layer. Later, other works presented experimental confirmation
results of the T-S waves for channel flow and controlled boundary layer [44, 45].

In 1978, Arnal and Juillen showed that for free-stream turbulence intensity values higher
than 0.5%, the main disturbances were not T-S waves [46]. Instead, a low frequency instability
with maximum peak values at the middle of the laminar boundary layer was responsible. This
fundamental instability, called the K-type instability, was identified in 1962 by Klebanoff et al.
[47]. Later, other authors such as Craik [48], and Herbert [49], observed two different types
of subharmonic instabilities. These were designated as the C-type and the H-type, after their
authors names respectively. The fundamental instability was experimentally observed as an
ordered pattern. On the other hand, subharmonic instabilities typically presented a staggered
disposition. Both types of instabilities were observed in experimental works, such as Kozlov
and Ramazanov [50], where a rectangular channel was used for visual inspection of the lambda
shaped perturbations, and others [51, 52]. As discussed in the work of Leib et al. [53], Taylor
noticed that these streamwise velocity fluctuations were related with thickening and thinning
of the boundary layer [54]. Klebanoff in a later experimental work named these fundamental
instabilities as breathing modes [4]. However, it was Kendall that renamed these as Klebanoff
modes [55].

The experimental work of Bakewell and Lumley [56], reported measurements on the
viscous sublayer of a turbulent boundary layer. It was concluded that the near wall region of
the viscous sublayer was not a simple passive region dominated by viscous effects subjected to
turbulence at its layer edge. Instead, together with the presence of a wall, it had an active
role of generation and preservation of turbulence within the turbulent boundary layer. Also this
layer had an active role in the transition process itself due to the close presence of the wall.
The production of these streamwise velocity fluctuations u

′
, are believed to be related to the

wall-normal velocity oscillations v
′
through the ”splat-mechanism“ mentioned by Bradshaw [3],

or by the concept of ”inactive motion“ proposed by Townsend [57] and Bradshaw [58]. As stated
by Bradshaw [3], ”the so-called inactive motion... is simple: the motion near the surface, ...
results mainly from eddies actually generated near the surface, ... the contribution... to
the shear stress -ρu′v′ is small“. However, this small shear stress is critical for turbulence
transition. The production of these fluctuations has particular characteristics. One of these is
the boundary layer selectiveness of free-stream turbulent eddy scales that are filtered from the
broad spectrum free-stream turbulence. This has been identified as “shear-sheltering“ and was
first described by Hunt et al. [59].

In the work of Jacobs and Durbin [60], the Orr-Sommerfeld equations were implemented
using both their discrete and continuous modes. These were employed in order to correctly
obtain the expansion into eigenfunctions of a general disturbance within a viscous flow. The fast
decay phenomenon of the disturbances continuous modes in the boundary layer was observed.
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This was related to the “shear-sheltering“ effect which was demonstrated to be a general
property of the continuous spectrum of the Orr-Sommerfeld equation. As such, continuous
modes were eliminated from the main boundary layer region, being confined to the upper
reaches of the laminar boundary layer. Also, it was concluded that the boundary layer depth
reach of these disturbances was dependent on disturbance frequency and flow Reynolds number.
A function relating these variables with penetration depth was developed. This was inversely
proportional to the product of disturbance frequency with flow Reynolds number. The developed
relation enforces the concept that only low frequency disturbances are amplified by shear in
the pre-transitional laminar boundary layer region.

In the experimental work of Volino and Simon [61], spectra of fluctuating streamwise
velocity u

′
, wall-normal velocity v

′
and turbulent shear stresses −u′v′ were recorded. It was

found noticeable values of −u′v′ in the pre-transitional boundary layer. This was also reported
in the experimental work of Volino and Simon [27]. These were correlated with peak values
of low-frequency wall-normal velocity fluctuations v

′
of the free-stream turbulence. As pre-

viously mentioned these −u′v′ values had lower energy and frequency than those found in
fully turbulent boundary layer flow. Additionally, the experimental works of Volino and Simon
[26, 27], measured heated flow conditions under high acceleration and curvature subject to high
free-stream turbulence intensity. The experimental setup was designed to approximate the op-
erational conditions of the downstream half of the pressure side of a gas turbine airfoil. Only a
constant curvature wall was used in the experiment as the main test geometry. Other works on
curvature effects in transition threshold can be found such as the report of Liepmann [62]. The
obtained results documented flow transition to fully turbulent regime. The high free-stream
turbulence intensity should impose an early transition. Nonetheless, due to the strong flow ac-
celeration, transition was delayed. In this transitional region, significant unsteady effects and
eddy advection were present. However, the near-wall turbulence production was suppressed
due to the strong flow acceleration. The unsteadiness of this particular transitional flow was
taken from the influence of the free-stream turbulence instead. This observation is similar to
the first obtained laminar velocity fluctuation measurement experiment of Dryden in 1937 [40].

2.5 Approaches to transition modeling

2.5.1 DNS transition studies

Direct Numerical Simulation or DNS, is the direct calculation of the full Navier-Stokes equa-
tions, resolving all turbulence scales. The colossal computational requirements by this fully
resolving turbulence method makes it almost impossible to apply in industrial relevant product
development cases. One of the major limitations of DNS is its increasing requirements with
higher Reynolds numbers. The increase in Reynolds number, decreases the size of the smallest
turbulence scales. Therefore DNS simulations will require even more refined mesh conditions for
increasing Reynolds number flows. Since the most relevant industrial flows have typically high
values of Reynolds number, it is simply impractical to use such turbulence resolving methodol-
ogy. Even though DNS is far from being considered a viable solution for industrial development,
there is an increasing tendency of GPU parallel processing usage in CFD. This processing method
largely increases computational processing speeds [63]. With time, this turbulence full scale
resolving method might be used in industry.

Although nowadays DNS can only be practically applied to relatively simple geometries,
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the outcome of these computer simulations deliver an insight in flow-physics never before seen
in experimental conditions. This is due to the fact that, computational data can be thor-
oughly scrutinized, whereas experimental data outcome depth is dependent on the measuring
technology available. Nevertheless, DNS is presently applied in a more numerical study ap-
proach such as the following presented work. The numerical investigation of Jacobs and Durbin
[64], presented results of bypass simulation under free-stream turbulence. This was conducted
through DNS. It was concluded that streaks of streamwise velocity fluctuations are triggered by
low-frequency boundary layer breaching modes from free-stream turbulence. This turbulence
spectrum is changed by a shear-layer non-linear process. The resulting spectrum has high en-
ergy in specific low-frequencies. This mechanism of frequency selection makes the resulting
spectrum insensitive to details of inlet conditions. It was also concluded that the near wall
streaks are relatively stable in the vicinity of the surface. When upwelling occurs, these streaks
are pushed out of the lower part of the boundary-layer towards its edge. These, under the
influence of the free-stream turbulence, become unstable and degenerate into turbulent spots.
Other relevant DNS numerical study works related to transition can be found such as the work
of Liu and Chen [2], where DNS modeling is applied to study the late stages of transition, and
others [65, 66, 67].

2.5.2 LES transition applications

Large Eddy Simulation or LES, is being increasingly used in industrial applications thanks
mainly to the parallel computational power enhancement of the last few years. However,
product development and optimization using this type of turbulence modeling still presents a
tremendous challenge in terms of computational costs. Turbulence modeling performed through
LES resolves the larger scales of the turbulent vortices. The smaller scales are modeled using a
RANS approach. This is so since in the small scale range the distribution of turbulent vortices
approaches the isotropic and homogeneous state. As such, these are less influenced by the
surrounding flow characteristics. On the other hand, the larger scaled turbulent vortices that
have a longer life span, and thus are more exposed to flow history need to be fully resolved.
This method was first successfully applied in 1970 by Deardorff in his turbulent channel flow
simulation [68]. In order to model the small scale turbulence, Deardorff applied an eddy-vis-
cosity model developed by Smagorinsky [69]. It goes without saying that LES simulation results
are dependable on the selected small scale or sub-grid scale model as shown in the work of
Schlatter [70]. Nevertheless, LES is applicable to turbulence transition modelling as shown in
the laminar flow transition to fully turbulent regime over a flat-plate with a blowing and suc-
tion strip on [71] or the flow transition to turbulence on a channel flow from [72], and others
[73, 74].

2.5.3 RANS based transition tools

2.5.3.1 Low-Reynolds turbulence models

Transition modeling is still not widely used in industrial flow computations, mainly due to
several limitations of present day models. This seems to be the case since the available tran-
sition models tend to be complex. Thus, computation time is largely increased by the usage
of a transition tool just to calculate an often small fraction of the relevant flow. It goes with-
out saying that it is of vital importance to know where transition occurs. However, for some
engineering problems this transition onset is overlooked and fully turbulent models are applied
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instead [75]. Some of these, specifically low-Reynolds turbulence models, are sometimes used
to predict transition onset. The first few serious efforts to evaluate transition modeling capabil-
ities of used turbulence models were presented by Savill [76]. These low-Reynolds turbulence
models derive their name from the fact that they resolve the turbulent boundary layer up to
the wall, in the low Reynolds near wall region. This means that, instead of using a wall-function
for resolving the near wall velocity distribution, the whole turbulent boundary layer, including
the sub-laminar layer, is resolved. The near wall modeling is possible mainly due to damping
functions. Some of these reduce the turbulence scale based on the calculation of the nearest
wall distance. Others use the turbulent Reynolds number to reduce the turbulent viscosity in
the near-wall region in order to simulate the sub-laminar layer of a turbulent boundary layer.
The one-equation Spalart-Allmaras turbulence model is one such example of these low-Reynolds
turbulence models.

Another low-Reynolds turbulence closure is the k-ω turbulence model, presented in the
work of Wilcox [77]. This work exposed that after modifications on viscous damping functions,
the k-ω model was able to reproduce sub-layer turbulent behavior details such as k ∼ y2 as
y→ 0. These details also included maximum dissipation and peak value of k near the surface.
Other low-Reynolds turbulence model developments were also presented by Chang et al. [78].
Chen et al. [79], presented a numerical work where three low-Reynolds turbulence models
were validated for transitional flows. One of these turbulence closures was based on the linear
eddy-viscosity relationship of Boussinesq [31]. The remaining two turbulence models had a
non-linear eddy-viscosity formulation calculated through a cubic form. It was claimed that
although the non-linear models presented better results than the linear relation closure, none
of the tested models presented satisfactory transition results. Other related work was also
published, such as the development of a cubic eddy-viscosity closure by Craft et al.[80], and
others [81, 82]. Later, Hadzic and Hanjalic [10], presented a low-Reynolds second-moment
turbulence closure applied to separation induced transition. This model was validated using
the ERCOFTAC T3L test cases. It was shown that the second-moment turbulence model was
able to correctly predict transition onset due to flow separation. Even though the model had
difficulties predicting bypass transition for flows with lower turbulence intensity than < 2.5%,
it could predict the combination of laminar and turbulent flows in transitional separating flows.

Although some of these models have an apparent transition behavior, Rumsey [83], presented
a work showing that this behavior is mere coincidence and can lead to design mistakes. This
numerical work presented two very well known low-Reynolds turbulence models, the k-ω-SST
and the Spalart-Allmaras turbulence closure. These were scrutinized for turbulence transition
behavior. It was argued that the apparent transition behavior of these two turbulence models
is simply accidental and to some degree undesirable since it might not be an accurate solution.

2.5.3.2 Empirical correlated transition models

The experimental work of Skramstad [41], resulted in one of the first empirical graphic cor-
relation for transition onset. Dhawan and Narasimha [84], developed an experimental intermit-
tency correlation that was used to determine transition onset. Later, the works of Abu-Ghannam
and Shaw [85], Mayle [25], and others produced various empirical correlations for transition on-
set. Based on these empirical correlations transition to turbulence models were formulated
such as the ones created by Cho et al.[86], applied on a turbine wake induced transition study,
and others [87, 88]. Typically these first empirically correlated transition models were non-lo-
cally formulated, since they depended on integration of the boundary layer velocity profiles.
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This was performed so as to obtain one of the parameters used by the empirical correlations.
Most commonly this would be the local momentum thickness Reynolds number. The work of
Anderson et al. [89], evaluated boundary layer upstream disturbances with higher spatial en-
ergy growths. It was found that the maximum spatial transient growth scales linearly with the
Reynolds number, for values higher than 1 × 105. Taking into consideration the revealed linear
relation, a scaling law for the transition Reynolds number was proposed. Using this, a simple
transition onset prediction closure was developed. The latter correlated free-stream turbu-
lence intensity and the transition Reynolds number. Later, Suzen and Huang [90], presented a
new transport equation for turbulence intermittency. This was coupled to the Menter k-ω-SST
turbulence model. The presented intermittency closure was a blended function from two other
proposed intermittency models. The first was presented by Steelant and Dick [91], for stream-
wise intermittency evolution. The last used function was developed by Cho and Chung [92],
for cross-stream intermittency distribution. The first locally formulated empirically correlated
transition model was presented in 2005 by Langtry [29].

2.5.3.3 Non-empiric transition models

Besides the pure empirically correlated transition models, there is also the non-empiric
closures that are either not dependent or semi-dependent on the applied empirical correlations.
The cubic non-linear turbulence model proposed by Craft et al. [80], was modified in order
to improve accuracy on flows far from equilibrium such as those characteristic of transition
regions. The model enhancement included the inclusion of another transport equation for the
second invariant of the stress anisotropy tensor [81]. It was concluded that the use of another
parameter besides the turbulent Reynolds number was required for the correct calculation of
the turbulence model coefficients. These were then formulated with dependence on the stress
anisotropy second invariant as well as the turbulent Reynolds number. Another approach for
turbulent transition modeling was proposed in the numerical work of Wang and Perot [93],
which presented a turbulence potential model. This was validated under flat-plate transition
and channel relaminarization.

Although it has been proven in the work of Rumsey [83], that low-Reynolds turbulence mod-
els transition capabilities are accidental, there still persists some works on the research effort
of converting these models into transition tools. An example of such works was presented by
Denissen et al. [94], where the k-ω-SST turbulence model was altered in order to correctly pre-
dict transition onset under high free-stream turbulence intensity. After calibration the model
was validated with subsonic and hypersonic flow benchmark test cases.

In the work of Durbin [12], a new intermittency model was proposed for bypass transition
onset prediction and length computation. The presented model is an intermittency transport
equation. As all the intermittency models, this is coupled to the production term of the selected
turbulence model. Transition onset is predicted by diffusion of the intermittency variable and
the transition process is carried by a source term in the intermittency equation. This model
does not require any external input data. Contrary to most models of this type, this does not
use empirical correlations.

The recently developed transition to turbulence model by Rodio et al.[95], is based on
the stress-ω model of Wilcox [96]. The transition closure was developed to predict natural
transition phenomenon. It was concluded that the model was able to reliably predict the
natural transition onset. However, for the cases of bypass and separation induced transition the
model requires improvement.
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2.5.3.4 Phenomenological transition models

Turbulent flow has always been distinguishable from its laminar state. Transition can be
identified through an increase in skin-friction and velocity profile departure from a Blasius dis-
tribution. There used to be a certainty about the fact that only turbulent flow had velocity
fluctuations. Laminar flow was considered to develop in a stationary fashion. This all changed
with the work of Dryden [40]. The latter experimental work is considered to be the first at-
tempt to successfully measure velocity fluctuations in the laminar flow region. Later on, the
experimental work of Skramstad [41], also confirmed the presence of laminar fluctuations just
before turbulence transition. To the best of our knowledge, and according to the award winning
paper of Mayle and Schulz [97], the work of Lin [98], was the first to analytically evaluate the
effects of laminar fluctuations over laminar velocity profiles. This study confirmed the possibil-
ity of having velocity fluctuations in a laminar flow, even when maintaining a Blasius velocity
profile distribution. This fact was also documented by Dyban et al.[99] where a flat-plate was
subjected to low speed flow with varying free-stream turbulence intensity from 0.3% to 25%,
as well as on a heated flat-plate flow experimental configuration with a varying free-stream
turbulence intensity from 0.4% to 6% by Sohn and Reshotko [100], and others [101, 102].

As previously mentioned, in the work of Mayle and Schulz [97], the LKE, or, Laminar-Ki-
netic-Energy theory was proposed. Following this development, a new tool for transition mod-
eling was available. The first transition models based on LKE were developed by Lardeau et
al. [103] and Walters and Leylek [104]. Others followed this trend, such as Vlahostergios et
al. [105]. The work of Volino [106], presented a model that took into account the physical
effects of free-stream turbulence in boundary layer calculation. The model computed a tur-
bulent free-stream induced eddy-viscosity. This was attributed to the relation between the
Klebanoff modes and the “splat-mechanism”. The normal to the wall velocity fluctuations re-
sulted in streamwise velocity oscillations. This model can be used in combination with any
turbulence model. Therefore, besides the calculation of a turbulent eddy viscosity by the cho-
sen turbulence closure, a free-stream induced eddy-viscosity is also used to calculate the total
eddy viscosity of the flow. In 2000, the numerical work of Edwards et al. [107], claimed to
have developed an unified one-equation turbulence transition model. The presented model
was the result from blending two distinct turbulence closures. One of these is the very well
known, low-Reynolds turbulence model, the Spalart-Allmaras closure. The other model was an
eddy-viscosity transport equation for non-turbulent fluctuation growth. This was based on the
work of Warren and Hassan [108]. The blending between these two closures was accomplished
with a multi-dimensional intermittency function.

Walsh [109], evaluated the entropy production in the pre-transitional region. The produc-
tion rate of entropy increased near the wall in the pre-transitional flow region and decreased
downstream to the fully turbulent boundary layer distribution values. Although this work did
not produce a new transition model, it will certainly be of critical importance for the develop-
ment of a phenomenological transition model based on the physics of entropy generation rate
near the transition onset region.

Another contribution to the ever increasing number of phenomenological transition to
turbulence models is the recent modification of the k-kl-ω model of Walters and Cokljat [110]
by Fürst et al.[111]. This alteration was focused on the natural transition behavior of the
transition closure under adverse-pressure-gradient conditions. The developed model was able
to improve the transition onset prediction under adverse-pressure-gradient flows. Nevertheless,
it was concluded that the transition closure still required improvement.
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2.5.4 Linear stability models

The fundamental contributions made by Tollmien in [112] and [113] and Schlichting in [43]
and [114], allowed the development of the currently known linear stability theory. Also the
experimental works of Orszag and Patera [115] and Herbert [49], contributed for the validation
of the linear stability theory.

Through the simultaneous work of Smith and Gamberoni [116] and Ingen [117], the en method
was developed. This was initially conceived to be applied with viscous-inviscid codes such as the
ISES [118]. However, the successful coupling of the en method with the Navier-Stokes equations
became a growing trend [119]. Considered by some to be the state of the art in prediction of
transition onset, it is a method based on the linear local stability theory. According to Ingen,
“The linear stability theory considers a given laminar main flow upon which small disturbances
are superimposed” [120]. The operation protocol of this method begins with the resolution of
the laminar boundary layer velocity profiles. This is then used to calculate the growth rate of
the superimposed linear instabilities within the flow by solving the linear stability equations.
After completion of the latter, an integration of the obtained growth rates throughout the
streamlines is performed. The resulting value will represent the amplification factor, n, of
the instabilities. The disturbance amplitude ratio is then given by en. When this reaches a
threshold, transition onset is assumed. Typical transition threshold values for en are obtained
with n values between 7 to 9. The semi-empirical nature of the n factor determination, the
high quality mesh requirements and its inherent two dimensional approach are some of the
flaws of this transition calculation tool.

Nevertheless, the parallel computing works of Krimmelbein and Radspiel [121] and Krimmel-
bein and Krumbein [122], presented a three-dimensional solving methodology based on the en

approach. This was derived from coupling multiple solving elements. These were a 3D Navier-S-
tokes solver, a transition module, a boundary layer code and a stability code. This method was
applied to various three-dimensional geometries such as the 6:1 prolate-spheroid and a fuse-
lage of a generic transport aircraft. It was demonstrated that a en based method for transition
calculation on complex three-dimensional geometries using parallel computation is feasible.

2.6 The empirical correlated γ −Reθ model

In the work presented by Langtry and Menter [29], where multiple geometries from air-
foils to a full helicopter are analysed, along with the work of Menter et al.[123] with flat-
plate validations including a three-dimensional transonic wing, and the following publications
[124, 125, 126], a new transition model is introduced, the γ − Reθ. The turbulence transition
closure is based on experimental data correlation with the possibility of user-defined empirical
correlations. Typically these types of transition models require non-local information such as
momentum thickness Reynolds number, which is calculated by boundary-layer velocity profile
integration. However, the developed empirically correlated transition model is locally formu-
lated. The authors proposed an alternative method to calculate the non-local variable of the
momentum thickness Reynolds number. This was done by considering the approximation of
the momentum thickness Reynolds number by the vorticity Reynolds number. The momentum
thickness Reynolds number is then locally calculated using an algebraic relation based on the
vorticity Reynolds number [127] and [128]. Although these two flow properties are not iden-
tical, it was shown that a relation between these was viable under a considerable range of
flow favorable-pressure-gradients for which there is experimental transition data. Nonetheless,

15



under strong adverse-pressure-gradient and in nearly separated flows, the difference between
vorticity Reynolds number and momentum thickness Reynolds number can be significant. The
transition model is then constituted by two transport equations. One for the turbulence in-
termittency, γ, that is coupled to the selected turbulence model production term. The other
equation is for the transition momentum thickness Reynolds number, Reθ. This is computed in
the free-stream according to the used empirical correlations applied by the model user. The
transition momentum thickness Reynolds number is then diffused from the free-stream into
the boundary layer. Within the boundary layer, the diffused transition momentum thickness
Reynolds number is compared to the locally calculated momentum thickness Reynolds number.
If the calculated value is equal to the diffused experimental data threshold then the inter-
mittency production term is activated. Thus, transition to turbulence is triggered and fully
turbulent flow is formed thereafter. This transition to turbulence closure is coupled with the
k-ω-SST turbulence model of Menter [129]. However, according to the transition model authors,
it is possible to use these transition components of the model with other turbulence models.
The model was validated on two dimensional cases and three-dimensional cases including a full
helicopter fuselage. The obtained results led the authors to conclude that the model was a
reliable tool for industrial CFD calculation, able to capture the major transition effects.

The main problem with the work of Langtry [124], was the lacking of two key components
of the model, due to proprietary reasons. However and thanks to the work of Suluksna and Jun-
tasaro [130], which presented a first attempt of developing the critical momentum thickness
Reynolds number and turbulence transition length functions, as well as others [131, 132, 133],
these lacking terms were approximated by alternative functions. Nonetheless, later in 2009,
Langtry and Menter, the original authors of the γ − Reθ transition model, published all of the
lacking terms [134]. This transition model, although having a promising future as an engineering
tool, has too many transport equations. It delivers turbulent flow with transition calculation
at the expense of a significant increase in processing time. These type of models are also
non-universally formulated. They depend upon the used empirical correlations. This implies
that whenever a new flow phenomenon is encountered the model might not work as it should.
Following this work, You and Kwon [135], blended the SAS, Scale Adaptive Simulation, model
and the empirical correlated transition closure of γ − Reθ into one turbulence model. The
model was tested on a circular cylinder at supercritical Reynolds number. The transition on-
set over the circular geometry predicted by the blended model was compared to the original
stand-alone γ−Reθ transition closure. The separated unsteady wake of the cylinder calculated
by the blended model was compared to the original SAS model. Both of these results presented
good agreement, thus, a new blended SAS empirically correlated transition turbulence model
was developed. Also, Gorji [136], presented a comparison study with DNS results of an accel-
erated channel flow using ten eddy viscosity turbulence models. It was concluded that the k-ε
turbulence model of Launder and Sharma [137] and the γ−Reθ transition closure were the only
models able to correctly capture the unsteady flow features.

2.7 The phenomenological k-kl-ω model

As previously mentioned, based on the newly developed LKE theory, one of the first phe-
nomenological turbulence transition models developed was presented by Walters and Leylek
[104]. Later in 2008, a newly improved version of the transition model was published by Wal-
ters and Cokljat [110]. Some of the most significant differences between the two turbulence
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transition models published versions was the turbulence length scale transport equation. For
the Walters and Leylek [104], transition closure, a transport equation for turbulent kinetic en-
ergy dissipation rate was used. In the newer turbulence transition model of Walters and Cokljat
[110], a transport equation for the specific turbulent kinetic energy dissipation rate was chosen
instead. Besides this, there are many other changes between the two transition model versions.
Nevertheless, both model versions share some interesting characteristics such as the division of
turbulence into large and small scales. As discussed in the work of Volino [138], the experimen-
tal works of Moss and Oldfield [139] and Thole and Bogard [140], proved the existence of two
different turbulence scales in fully turbulent boundary layers. Similar to the proposal presented
by Walters and Leylek [104], the lower frequencies, or large scale fluctuations, were related
to free-stream turbulence unsteady actuation on the boundary layer. The higher frequency, or
small scale, is believed to be related to the near wall turbulence production. Also, in the work
of Volino and Simon [141], it was once again concluded that the high amplitude low frequency
velocity oscillations were related to the effect of free-stream turbulence. The effect of these
low frequency perturbations are modeled by the k-kl-ω transition model as laminar fluctuations
kinetic energy. This is performed by the transition closure by dividing the total turbulent ki-
netic energy in the previously mentioned small and large turbulence scales. This division is only
executed within the near wall region. The transition model then uses the laminar fluctuations
kinetic energy to perform the transition process itself.

In 2007, Cutrone et al. [142], presented an improved turbulence transition closure based
on the Walters and Leylek [104] and Walters and Leylek [143] versions of the k-kl-ω transition
model. Later, this same improved model was applied in the computation of turbo-machinery
relevant flows by Cutrone et al. [6]. The numerical work of Reza et al. [144], changed some of
the model constants used in the 2004 Walters and Leylek transition model. The changed model
was compared with other turbulence models on some ERCOFTAC benchmark test cases and on
the S809 two-dimensional wind turbine airfoil.

A low pressure turbine, LPT, computation with the 2004 Waters and Leylek transition
model version was presented by Sanders et al. [145] and [146]. The study was divided in two
parts, one for light loading conditions and the other for separated blade flow due to high blade
loading level. It was concluded that the model presented reasonable results, although better
experimental agreement was obtained for the light loading conditions. The experimental and
numerical work of Genç et al. [147], performed an evaluation of the k-kl-ω transition model
for laminar separated bubbles over the NACA2415 airfoil. Also, the effect of separation bubble
control was studied with the use of suction and blowing jet actuators. Other works related
to this transition model were presented by Holloway et al.,[148] with an unsteady analysis
of the flow behind a cylinder, Turner and Prosser [149] on a bypass transition validation over
a flat-plate, Bernardini et al. [150] for the application of a zero-net mass flux actuator for
turbine flow separation overthrow, and others [151, 152].
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Chapter 3

RANS transition models

3.1 Transition models development

As previously mentioned, the main types of available RANS transition models are the empir-
ical correlated transition closures and the phenomenological models. During the review effort
on the available transition models the latter type was chosen as the main topic of research. This
type of models was chosen for its physics modeling potential. The transition model study began
with the implementation of a laminar kinetic energy theory based closure developed by Walters
and Leylek [104]. The implementation was performed in the open-source software, OpenFoam.
After some trials with this transition model, a second transition model was implemented. This
was a newer version of the turbulence transition model developed by Walters and Cokljat [110].
During the model testing, some of its terms were changed for improvement on the turbulence
transition accuracy. Afterwards, the final research effort in turbulence transition modeling re-
sulted in a new transition closure. This is based on a mechanical approximation of the mean
statistical effect of mean flow on the pre-transitional turbulence.

3.2 Origin of the laminar kinetic energy transition model

In the work of Mayle and Schulz [97], the Laminar-Kinetic-Energy theory was proposed.
This is also known as the LKE theory. The transport equation for laminar kinetic energy was
obtained in the same way the turbulent kinetic energy transport equation was obtained by
Bradshaw [153]. The resulting equation obtained by Mayle is presented in (3.1).

u
∂kl
∂x

+ v
∂kl
∂y

= −
(
u′v′

) ∂u
∂y
− ∂

∂y

[
v′kl − ν

∂kl
∂y

]
− ε+

(
u′
∂U

′
imp

∂t

)
. (3.1)

In this, the kl represents the kinetic energy of laminar fluctuations. Although this transport
equation is the corner stone of LKE theory, some models based on the theory do not make
explicit use of it. Instead, only the concept of modeling laminar fluctuations kinetic energy is
used to create new transition models. Some properties of the LKE theory transport equation
are used in these newly developed models. For instance in (3.1), the kl variable diffusion
term takes only into account the fluid kinematic viscosity rather than adding this with the flow
turbulent viscosity. An example of such model is presented in the following.

3.2.1 k-kl-ε transition model

The first published version of a locally formulated laminar kinetic energy turbulence
transition model was that of Walters and Leylek [104]. In this version of the transition closure
the transported turbulent properties were the turbulent kinetic energy, k, the laminar kinetic
energy, kl, and the turbulent kinetic energy dissipation rate, ε. The transport equations are
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then presented in (3.2-3.4).
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The terms CεR and Cε1 are defined in (3.5) and (3.6) respectively.
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Although the model was novel, soon after its disclosure in the literature, a new version of the
model was developed in 2005 [143]. Afterwards, again a new version of the k-kl-ω transition
closure was presented in 2008 [110]. This turbulence transition closure version was modified
and is presented in the following section.

3.3 k-kl-ω phenomenological transition model

The work of Walters and Leylek [143], presented a new version of the laminar kinetic
energy transition model based on their previously developed model in [104]. Albeit the simi-
larities between both models, in the new model version the transport equation for turbulent
kinetic energy dissipation rate, ε, was substituted by a transport equation for specific turbulent
kinetic energy dissipation rate, ω. Later on, a new version of the k-kl-ω transition model was
released in 2008 by Walters and Cokljat [110]. The newly published transition model presented
differences in some terms in relation to its previous version [143].

The model formulation of the 2008 version, is then constituted by a set of three transport
equations. One for the laminar fluctuations kinetic energy (kl), another for the turbulent kinetic
energy (k), and the last one for the specific turbulent kinetic energy dissipation rate (ω). The
transport equations for incompressible flow are shown in (3.7-3.9).
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The production components for the transport equations of turbulent kinetic energy, (3.7), and
laminar fluctuations kinetic energy, (3.8), are based on velocity strain rate given by (3.10) and
(3.11) respectively.

Pk = νt,sS
2, (3.10)

Pkl = νt,lS
2. (3.11)

Additionally, it can be observed that these source terms, (3.10) and (3.11), are also dependent
on a small and large scale turbulent viscosity, νt,s and νt,l respectively. Therefore, turbulence is
divided in large and small scales. The former scale is limited by the wall and related to laminar
fluctuations kinetic energy production through the "splat mechanism", as suggested by Volino
[106]. The small scale is related to regular turbulence, and as observed in (3.10), it is also
responsible for its production. As will be shown later, far from wall surfaces the small scale
turbulent kinetic energy is equal to the free-stream turbulent kinetic energy.

Following the work of Walters and Leyleck [104], the definition of the turbulence dividing
length scale, also designated as the effective turbulent length scale, is obtained from (3.12),
where λt is the turbulent length scale presented in (3.13).

λeff = min (Cλy, λt) , (3.12)

λt =

√
k

ω
. (3.13)

The definition for the effective turbulence length scale, (3.12), implies that far from wall
surfaces the dividing length scale is equal to the turbulence length scale. This presupposes that
under these conditions, there is no dividing length scale, and as will be shown later, there is no
turbulence large scale to begin with.

The small scale turbulent kinematic viscosity from the turbulent kinetic energy production
term, (3.10), is computed according to equation (3.14).

νt,s = fνfintCµ
√
kt,sλeff . (3.14)

This is calculated based on a series of damping functions that attempt to simulate various flow
mechanisms. Also, there is a dependency on the effective turbulence length scale and on the
small scale turbulent kinetic energy, kt,s. This is calculated according to the relation presented
in (3.15).

kt,s = fssfW k. (3.15)

Two of the aforementioned damping functions are used to compute this small scale turbulent
kinetic energy. The first of these functions serves as a model for the mechanism of shear-shel-
tering effect. According to the work of Jacobs and Durbin [60], this process is responsible for
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the decay of the free-stream turbulence continuous modes inside a laminar boundary layer.
This then results in a confinement of these perturbations modes to the edges of the laminar
boundary layer. Within the k-kl-ω model the shear-sheltering is obtained through (3.16).

fss = e

[
−(CssνΩ

k )
2
]
. (3.16)

As can be observed, equation (3.16) is defined as an exponential function. This in turn is
inversely proportional to the local turbulent kinetic energy. Due to the negative dependence
of the exponential function, this implies that the larger the turbulent kinetic energy, the lower
the shear-sheltering effect. Also, it must be remarked that this shear-sheltering term is defined
with a direct proportionality to mean flow vorticity.

The second damping function is related to wall effects on turbulence. This is then the
kinematic wall effect defined in (3.17).

fW =

(
λeff
λt

)
. (3.17)

The kinematic wall effect is simply modeled as a relation between the turbulent length scale
and its effective or dividing length scale. From relation (3.12), it can be concluded that in
the vicinity of wall surfaces, there will be a decrease of the effective turbulence scale, λeff ,
in comparison with the turbulent length scale, λt. Hence, the kinematic wall effect damping
function, (3.17), imposes a less than unity value in the vicinity of wall boundaries, whereby
the free-stream equivalence of turbulent kinetic energy, k, and small scale turbulent kinetic
energy, kt,s, is lost. This gives room for the large scale turbulent kinetic energy, kt,l, to first
emerge in the flow. The large scale turbulent kinetic energy definition is exhibited in (3.18).

kt,l = k − kt,s. (3.18)

The following damping function in equation (3.14), is the flow turbulence intermittency
defined in (3.19).

fint = min

(
kl

Cintktot
, 1

)
. (3.19)

The ktot in equation (3.19) is equal to k plus kl. This equation presents a linear relation with the
laminar fluctuations kinetic energy, kl. As will be shown later, this is a contradiction considering
the fact that far from wall surfaces, kl, is null. Therefore, this predicts a zero value for
free-stream turbulence intermittency.

The last remaining damping function is again related to wall effects on turbulence. This is
then the viscous wall effect damping function disclosed in (3.20).

fν = 1.0− e

(
−
√
Ret
Aν

)
. (3.20)

Similar to the shear-sheltering damping function, this term is also an exponential based func-
tion. Nonetheless, the viscous wall effect damping function takes only into account the turbu-
lent Reynolds number value.

For the particular model published in [110], the turbulent Reynolds number definition is not
the same as other turbulence models. The k-kl-ω transition closure turbulent Reynolds number

22



definition is disclosed in (3.21).

Ret =
f2
W k

νω
. (3.21)

Although this definition is similar to the most common turbulent Reynolds number relation, it
presents an additional dependency on a damping function modeling the kinematic wall effect,
fW .

The last term within the small length scale turbulent kinematic viscosity, (3.14), is the
fundamental relation between direct turbulence properties such as turbulent kinetic energy
and specific turbulent kinetic energy dissipation rate with the turbulent viscosity, the Cµ. Taken
to be constant within a turbulent boundary layer under equilibrium conditions, this coefficient
takes the value of 0.09 for such cases. However, under non-equilibrium turbulent flows, such
as turbulence transition stages, Cµ no longer presents the aforementioned constant value. Also
and in order to satisfy realizability, Cµ is instead a function of flow and turbulence properties,
calculated according to (3.22).

Cµ =
1

A0 +As
(
S
ω

) . (3.22)

This expression for Cµ is a simplified version of its original form according to the work of Shih
and Zhu [154], and Shih et al. [155].

As mentioned earlier, the laminar fluctuations kinetic energy production component, (3.11),
is a function of the large scale turbulent kinematic viscosity, νt,l. This is related to the transition
onset process and it is defined according to (3.23).

νt,l = min

{
fτ,lC11

(
Ωλ2

eff

ν

)√
kt,lλeff + βtsC12ReΩy

2Ω,
0.5 (kl + kt,l)

S

}
. (3.23)

The imposed minimum limit term ensures the realizability constraint through the right hand
side of the minimum function, 0.5 (kl + kt,l) /S. Within the left hand side of the minimum term,
the first component accounts for the bypass transition mechanism while the second component
treats the natural transition process. Similar to the small scale turbulent viscosity, νt,s, the
bypass transition element is a function of the effective turbulence length scale. Nevertheless,
the bypass term has a dependency on the large scale turbulent kinetic energy, kt,l, instead of
the small scale, kt,s. Also, this bypass transition function applies a time-scale damping function,
fτ,l. The definition for the latter relation is disclosed in (3.24).

fτ,l = 1− e

[
−Cτ,l

kt,l

λ2
eff

Ω2

]
. (3.24)

Although there is some resemblance between this damping function and the viscous wall effect,
(3.20), the former uses mean flow vorticity and the large scale turbulent kinetic energy, kt,l,
while the viscous wall effect is based on the turbulent Reynolds number.

Furthermore, the bypass term is a function of mean flow vorticity. The component responsi-
ble for handling the natural transition process is dependent on a Tollmien-Schlichting threshold
function. The definition of this threshold is disclosed in (3.25).

βts = 1− e

(
−
max(ReΩ−Cts,crit,0)2

Ats

)
. (3.25)
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Additionally, the previous equation and the natural transition component of (3.23), make use
of the vorticity based Reynolds number, ReΩ. This is defined in (3.26).

ReΩ =
y2Ω

ν
. (3.26)

Finally, the natural transition element is also dependent on mean flow vorticity and on wall
distance.

Besides the turbulent kinetic energy destruction term, ωk, there is also the near wall
anisotropic destruction terms in the laminar fluctuations and turbulent kinetic energy transport
equations, (3.8) and (3.7). These are computed according to the relations disclosed in (3.27)
and (3.28) respectively.

Dl = ν
∂
√
kl

∂xj

∂
√
kl

∂xj
, (3.27)

Dt = ν
∂
√
k

∂xj

∂
√
k

∂xj
. (3.28)

The laminar fluctuations kinetic energy transport equation, (3.8), does not have any turbulent
diffusion. This is in agreement with the pioneer work published in the award winning paper of
Mayle and Schulz [97]. However, resembling with most if not all turbulence models, the tur-
bulent kinetic energy transport equation, (3.7), has turbulent diffusion. As such, the effective
turbulent diffusivity is computed according to equation (3.29).

αt = fνCµ,std
√
kt,sλeff . (3.29)

It must be noted that for this relation the Cµ,std, is not the same as the previous Cµ from the
small scale turbulent viscosity, (3.14). The k-kl-ω transition model published in [110], assumes
a constant value for Cµ,std of 0.09.

Contrary to the empirically correlated transition closure, instead of using an intermittency
function to activate turbulence production, the k-kl-ω transition model uses energy transfer.
The transition process is mainly conducted through the transfer of energy from the laminar fluc-
tuations kinetic energy to the turbulent kinetic energy. Therefore, there is a flux of turbulent
kinetic energy from the large scales to the turbulence small length scales. This energy transfer
is done through Rbp or Rnat. These two energy transfer functions are defined in (3.30) and
(3.31) respectively.

Rbp = Crβbpkl
ω

fW
, (3.30)

Rnat = Cr,natβnatklΩ. (3.31)

For bypass transition, energy transfer is conducted by Rbp, on the other hand, for natural
transition this transfer is operated through Rnat. These two components do not change the
overall total turbulent kinetic energy. This is the case since these terms are added to the
turbulent kinetic energy transport equation, (3.7), while being subtracted from the laminar
fluctuations kinetic energy equation, (3.8). Both, Rbp and Rnat, are dependent on the laminar
fluctuations kinetic energy, kl, in order to assure that the energy transfer process does not
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Table 3.1: k-kl-ω turbulence transition model constants.

A0 = 4.04 As = 2.12 Aν = 6.75 Abp = 0.6 Anat = 200

Ats = 200 Cbp,crit = 1.2 Cnc = 0.1 Cnat,crit = 1250 Cint = 0.75

Cts,crit = 1000 Cr,nat = 0.02 C11 = 3.4 × 10−6 C12 = 1.0 × 10−10 Cr = 0.12

Css = 1.5 Cτ,l = 4360 Cω1 = 0.44 Cω2 = 0.92 Cω3 = 0.3

Cωr = 1.5 Cλ = 2.495 Cµ,std = 0.09 σk = 1 σω = 1.17

exceed its source value. Also, the latter transition energy transfer terms make use of threshold
functions βbp and βnat for bypass and natural transition respectively. These are presented in
(3.32) and (3.33).

βbp = 1.0− e
(
−
φbp
Abp

)
, (3.32)

βnat = 1.0− e(−
φnat
Anat

). (3.33)

These threshold functions still require additional limiting functions defined in (3.34), (3.35) and
(3.36).

φbp = max

[(
k

νΩ
− Cbp,crit

)
, 0

]
, (3.34)

φnat = max

[(
ReΩ −

Cnat,crit
fnat.crit

)
, 0

]
, (3.35)

fnat,crit = 1.0− e

(
−Cnc

√
kly

ν

)
. (3.36)

The elements in φbp and φnat are the crucial keys for turbulence bypass and natural transition
control accordingly. These control the onset of transition.

The last consideration over the set of transport equations presented in (3.7-3.9), is the
fω term. This is only used in the specific turbulent kinetic energy dissipation rate transport
equation, (3.9). The fω component is then a damping function related to the boundary layer
wake region. This is responsible for the stabilization of the length scale of turbulent flows in
stagnation and separated flow regions. The fω function is then calculated in (3.37).

fω = 1.0− e

[
−0.41

(
λeff
λt

)4
]
. (3.37)

As observed, this stabilization length scale term uses the same ratio present in the kinematic
wall effect damping function, fW . Nonetheless, contrary to relation (3.17), in equation (3.37),
the fw term uses this ratio within an exponential function instead of a direct linear relation.

Conclusively, the k-kl-ω transition model resulting total turbulent kinematic viscosity is the
sum of the large and small scale kinematic viscosities as presented in (3.38).

νt = νt,s + νt,l. (3.38)

The model constants are disclosed in table 3.1.
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3.3.1 k-kl-ω modifications for transition onset prediction improvement

The model implementation as published by Walters and Cokljat [110], presented some issues
when tested on experimental test cases. Some authors have attempted to alter these laminar
kinetic energy transition models. Cutrone et al. [142], and Cutrone et al. [6], developed a mod-
ified version of the transition model based on the work of Walters and Leylek [104] and Walters
and Leylek [143]. Turner [151], wrote her PhD. thesis on the alteration of the Walters and Cokl-
jat [110], transition model. Therefore, an attempt to find the reasons for such discrepancies
was carried out. The alteration of some of the original terms resulted in an improvement on
the results of the published model. Through careful analysis of the model behavior, and using
an educated guess based on knowledge of the flow physics, several modifications to the origi-
nal model are proposed. The process by which such corrections were analyzed was based on
comparing results with the same boundary conditions on equal numerical meshes run in Ansys
Fluent and OpenFoam. The published model from [110] and its corrected version, described
in the present section, were implemented in OpenFoam, whereas the assumed same model is
available in the commercial software Ansys Fluent. The new variant of the k-kl-ω transition
model from [110], is presented by highlighting the relevant changes to the original one.

The proposed first modification of the model is made to the function fint (3.19). Without
this correction the original model predicts zero turbulent viscosity in the free-stream. This is
due to the fact that, (kl), exists only near wall surfaces. The corrected term is then (3.39).

fnewint = min

(
k

Cintktot
, 1

)
. (3.39)

This was also confirmed by Turner [151].

The second relevant change, in relation to the original model, is a definition of the
turbulence Reynolds number, Ret (3.21), without the non-dimensional function, fW (3.17).
The literature definition of turbulent Reynolds number is the same amongst several turbulence
models such as Chang et al. [78], Craft et al. [81] and Lardeau et al. [103]. Removing the
dimensionless damping function (3.17), responsible for the kinematic wall effect, resulted in a
correction of the asymptotic skin-friction coefficient behavior along the fully turbulent region
of the flow. Such effect was observed in the flat-plate test cases during the model’s correction
stage. This is to be expected since fW reduces the value of Ret near the wall. This in turn
increases the viscous wall effect of (3.20), decreasing the small-scale turbulent viscosity near
the wall. By doing so, it excessively decreases the influence of turbulence near the wall. Thus
decreasing the rate of momentum transfer to the wall surface. The proposed term is presented
in (3.40). The small-scale turbulent viscosity distribution due only to the last correction is
presented in Fig.3.1.

Ret =
k

νω
, (3.40)

Further, it was observed that in the original model, the destruction term of turbulent
kinetic energy specific dissipation rate, −Cω2ω

2, presents an excessive effect near the wall.
It was identified that the turbulence model of Craft et al. [80], presents a set of equations
that have a very similar behavior to the present model. This is mostly related to the turbulent
kinetic energy (k) and also for the specific turbulent kinetic energy dissipation rate (ω). In
that work, instead of (ω), the transported quantity is the turbulent kinetic energy dissipation

26



Figure 3.1: Flat-plate small-scale turbulent viscosity profile near the wall. Results
computed with the OpenFoam implemented original k-kl-ω-org transition closure
and its modified version the k-kl-ω-mod transition model.

rate (ε̃). The interest on this model lies on the used Cε2 function. This function is multiplied
to the term responsible for the destruction of the turbulent kinetic energy dissipation rate.
The Cε2 purpose is then to reduce the influence of the turbulent kinetic energy dissipation
rate destruction term near the wall. In this regard, Turner [151], proposed a change by which
−Cω2ω

2 is multiplied by the square of fW , (3.17). Although this modification was implemented,
it was identified that the transition process of the flow over a flat-plate presented some issues
regarding transition onset. In the present version of the model a linear relation with fW was
applied instead. This resulted in better flow transition development. This term is presented in
the third element, on the right side of (3.41).

Dω

Dt
= Cω1

ω

k
Pkω +

(
Cωr
fW
− 1

)
ω

k
(Rbp +Rnat)− Cω2ω

2fW

+Cω3fωαtf
2
W

√
k

y3
+

∂

∂xj

[(
ν +

αt
σω

)
∂ω

∂xj

]
, (3.41)

As might have been noticed, the previous (ω) transport equation production term is different
from the original equation in (3.9). The production component of the transport equation for
specific turbulent kinetic energy dissipation rate, is based on the velocity vorticity field as
exhibited in (3.42).

Pkω = νt,sΩ
2, (3.42)

The published version of the k-kl-ω in [110] specifies that turbulence diffusivity, αt (3.29),
is calculated using the Cµ,std constant equal to 0.09. This value is typically found in the inertial
sublayer of a turbulent boundary layer of flow over a flat-plate. Therefore, it is assumed
an equilibrium state of turbulence over the entire flow region, transition included. Though,
turbulence is far from equilibrium in the transition region. The use of the small and large
scale turbulent kinematic viscosity provided a more physically correct model for the turbulence
diffusivity (3.43).

αnewt = νt,s + νt,l. (3.43)
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The Rbp term in (3.30), is a key parameter to control the extension of the transition region.
Herein it is propose that (3.30) should not be a function of the kinematic wall effect fW , in
(3.17). This induces an excessive energy transfer from the laminar to turbulent kinetic energy.
The proposed modification for Rbp is (3.44).

Rnewbp = Crβbpklω. (3.44)

The bypass transition term φbp (3.34), shows that vorticity plays an important role deter-
mining transition onset. Taking into account dimensional reasoning, it is proposed the use of
the specific turbulence dissipation rate instead of the mean flow vorticity. By applying this, the
dependence on the turbulence Reynolds number is enforced. The resulting corrected function
is presented in (3.45).

φnewbp = max

[(
Ret −

Cbp,crit
fbp,crit

)
, 0

]
. (3.45)

In (3.45), there is an additional function fbp,crit. During the model’s corrections, it was
observed that using only a threshold constant for bypass transition onset in (3.34) was impracti-
cal. In the original natural transition onset function (3.35) the constant, Cnat,crit, is divided by,
fnat.crit. As such, an analogous function was implemented on the bypass transition onset term,
(3.45). This improved the computed transition onset results. The applied function is presented
in (3.46).

fbp,crit = 1.0− e

(
−Cbp

√
kly

ν

)
. (3.46)

As observed in (3.46), an additional constant is required, namely Cbp = 0.05. Some
modifications were also applied to the model’s original constants such as Cbp,crit = 120, Cr =

0.18 and Cnat,crit = 2500. These last modifications were performed through calibration with the
ERCOFTAC zero-pressure-gradient flat-plate test case T3A.

3.4 γ −Reθ empirical transition model

The first locally formulated empirically correlated turbulence transition model was devel-
oped by Langtry and Menter in [29]. The full description of the model was published in [134].
The developed transition model was coupled to the k-ω-SST turbulence model. Nevertheless,
the set of equations constituting the transition tool can be coupled to any other turbulence
model as long as an intermittency factor can be applied to the production and destruction
terms of the turbulence closure. The transition model has two transport equations, one for tur-
bulence intermittency and the second for the transition momentum thickness Reynolds number.
The transport equation for turbulence intermittency, γ, is then presented in (3.47).

∂ργ

∂t
+
∂ (ρUjγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
. (3.47)

This equation production component is disclosed in (3.48).

Pγ = Flengthca1ρS [γFonset]
0.5

(1− ce1γ) . (3.48)
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This is based on the mean flow shear, S. The onset and length of transition is controlled through
the dimensionless functions Fonset and Flength. The onset function is presented in (3.49).

Fonset = max (Fonset2 − Fonset3, 0) . (3.49)

As observed, this function in turn depends on secondary onset functions. These are presented
in (3.50) and (3.51).

Fonset2 = min
(
max

(
Fonset1, Fonset1

4
)
, 2.0

)
. (3.50)

Fonset3 = max

(
1−

(
RT
2.5

)3

, 0

)
. (3.51)

The second onset function, Fonset2, itself relies on the first onset function, Fonset1 defined in
(3.52).

Fonset1 =
Reν

2.193Reθc
. (3.52)

This primary dimensionless onset term depends on the main innovation brought to light by
Menter et al. [128], the locally formulated momentum thickness Reynolds number, Reθ. This
relation is defined in (3.53).

Reθ =
Reν
2.193

. (3.53)

The usage of this relation in the primary onset function results in (3.54).

Fonset1 =
2.193Reθ
2.193Reθc

=
Reθ
Reθc

. (3.54)

Therefore, the main purpose of Fonset1, is to compare the locally calculated momentum thick-
ness Reynolds number with the empirically obtained critical momentum thickness Reynolds
number, Reθc. It must be noted that Reθc, is the critical Reynolds number at which turbulence
intermittency, γ, begins to increase within the boundary layer. Therefore, this process takes
place upstream of the transported transition momentum thickness Reynolds number, Reθt.

The vorticity Reynolds number, Reν, is originally defined according to (3.55). However,
the used definition is shear based. The applied vorticity Reynolds number is then disclosed in
(3.56).

Reνorg =
ρy2Ω

µ
, (3.55)

Reν =
ρy2S

µ
. (3.56)

The fundamental correlations for the critical momentum thickness Reynolds number, Reθc,
and the transition length function, Flength, were missing on the first publication of the γ −Reθ
transition model. Therefore, publications with alternative functions for these two components

29



flourish. An example of these from the work of Paul [132] are shown in (3.57) and (3.58)
respectively.

Reθc = min
(
0.625Reθt + 62, Reθt

)
, (3.57)

Flength = min
[
0.01e(−0.022Reθt+12) + 0.57, 300

]
. (3.58)

Nevertheless, the originally applied correlations published by the original authors of the γ−Reθ
transition closure are available in [134]. The empirical correlation for the critical momentum
thickness Reynolds number is then formulated according to relation (3.59).

Reθc =


Reθt − (396.035× 10−2 +

(
−120.656× 10−4

)
Reθt +

(
868.230× 10−6

)
Reθt

2

+
(
−696.506× 10−9

)
Reθt

3
+
(
174.105× 10−12

)
Reθt

4
), Reθt ≤ 1870

Reθt −
(
593.11 +

(
Reθt − 1870

)
× 0.482

)
. Reθt > 1870

. (3.59)

The original transition length dimensionless function, Flength, is then disclosed in (3.60).

Flength =



398.189× 10−1 +
(
−119.270× 10−4

)
Reθt +

(
−132.567× 10−6

)
Reθt

2
, Reθt < 400

263.404 +
(
−123.939× 10−2

)
Reθt +

(
194.548× 10−5

)
Reθt

2

+
(
−101.695× 10−8

)
Reθt

3
, 400 ≤ Reθt < 596

0.5−
(
Reθt − 596

)
× 3× 10−4, 596 ≤ Reθt < 1200

0.3188. 1200 ≤ Reθt

. (3.60)

Both of these empirical correlations are polynomials based on the transported transition mo-
mentum thickness Reynolds number, Reθt.

The third onset function, Fonset3, is based on the turbulent Reynolds number defined in
(3.61).

RT =
ρk

µω
. (3.61)

The destruction term of the intermittency transport equation, (3.47), is defined in (3.62).

Eγ = ca2ρΩγFturb (ce2γ − 1) . (3.62)

Contrary to the intermittency production term, (3.48), this is based on mean flow vorticity, Ω.
The turbulence dimensionless function, Fturb, is also a function of, RT . This is then presented
in (3.63).

Fturb = e
−
(
RT
4

)4

. (3.63)

The transition momentum thickness Reynolds number, Reθt, is calculated and convected
along the free-stream. This is then diffused into the boundary layer where the aforementioned
functions will evaluate the local transition threshold conditions. The transition momentum
thickness Reynolds number transport equation is then shown in (3.64).

∂
(
ρReθt

)
∂t

+
∂
(
ρUjReθt

)
∂xj

= Pθt +
∂

∂xj

(
σθt (µ+ µt)

∂Reθt
∂xj

)
. (3.64)
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The source term of the transition momentum thickness Reynolds number transport equation,
Pθt, is disclosed in (3.65).

Pθt = cθt
ρ

t

(
Reθt −Reθt

)
(1.0− Fθt) . (3.65)

As can be observed, this source component is designed to force Reθt to be equal to the empir-
ically correlated Reθt. It must be noticed that, the latter empirical value can be calculated
using diverse empirical correlations. The originally used empirical correlation is presented in
(3.66).

Reθt =

1173.51− 589.428Tu + 0.2196
Tu 2 F (λθ), Tu ≤ 1.3

331.5 [Tu − 0.5658]
−0.671

F (λθ). Tu > 1.3
. (3.66)

These correlations make use of the turbulence intensity, Tu, and of a pressure gradient function,
F (λθ). The definition of F (λθ) is disclosed in (3.67).

F (λθ) =

1−
[
−12.986λθ − 123.66λ2

θ − 405.689λ3
θ

]
e−[ Tu1.5 ]

1.5

, λθ ≤ 0

1 + 0.275
[
1− e[−35λθ]

]
e[
−Tu
0.5 ]. λθ > 0

. (3.67)

The latter component is a function of the pressure gradient parameter, λθ. This is defined
according to (3.68).

λθ =
ρθ2

µ

dU

ds
. (3.68)

The term, dU/ds, is the calculated flow acceleration through the streamwise direction.

In order to allow the diffusion of the transition momentum thickness Reynolds number,
Reθt, from the forced free-stream value to the latent boundary layer, a switch function is
required. This is performed through the usage of the blending function, Fθt. This takes a unity
value within the boundary layer and assumes a null value in the flow free-stream The blending
function is then defined in (3.69).

Fθt = min

max
Fwakee−( yδ )

4

, 1.0−

(
γ − 1

ce2

1.0− 1
ce2

)2
 , 1.0

 . (3.69)

This switch utility should not take a zero value within a flow wake region. Therefore, another
switch function is required in order to distinguish within the shear flow conditions, if these
correspond to a boundary layer or a flow wake. The used wake identifier is then the Fwake

parameter disclosed in (3.70).

Fwake = e
−
(
Reω

1×105

)2

. (3.70)

This parameter uses a turbulent kinetic energy specific dissipation, ω, Reynolds number defined
in (3.71).

Reω =
ρωy2

µ
. (3.71)

The blending function, Fθt, also makes use of a boundary layer thickness parameter, δ. This is
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locally calculated according to the following equations (3.72), (3.73) and (3.74).

δ =
50Ωy

U
δBL, (3.72)

δBL =
15

2
θBL, (3.73)

θBL =
Reθtµ

ρU
. (3.74)

The last considered term in the Reθt transport equation production component, (3.65), is a
time scale, t. This is applied for correct dimensional characteristics. The latter scale is defined
in (3.75).

t =
500µ

ρU2
. (3.75)

Unlike the turbulence intermittency transport equation, (3.47), the transport equation (3.65),
does not require a destruction term. This is the case since, the existing production term only
assures that the convected Reθt value is the same as the empirically determined transition
threshold value of the momentum thickness Reynolds number, Reθt. In order to account for the
separation induced transition an effective turbulence intermittency is calculated according to
(3.76).

γeff = max (γ, γsep) . (3.76)

This operates by comparing the maximum value of the convected intermittency from the trans-
port equation, (3.47), and the intermittency function related to separation induced transition.
This is defined according to relation (3.77).

γsep = min

(
s1max

[
0,

(
Reν

3.235Reθc

)
− 1

]
Freattach, 2

)
Fθt. (3.77)

The separation intermittency parameter, γsep, makes use of a boundary layer re-attachment
function disclosed in (3.78).

Freattach = e
−
(
RT
20

)4

. (3.78)

This parameter in turn only evaluates the turbulent conditions through the turbulent Reynolds
number, (3.61).

As already mentioned, the empirically correlated turbulence transition model, γ−Reθ, was
coupled to the low-Reynolds turbulence closure the k-ω-SST. Therefore, the effective intermit-
tency is applied to this classical k-ω-SST turbulence model according to the modified equation
set (3.79-3.82).

∂ρk

∂t
+
∂ρUjk

∂xj
= P̃kt − D̃kt +

∂

∂xj

(
(µ+ σkµt)

∂k

∂xj

)
, (3.79)
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Table 3.2: γ-Reθ turbulence transition model constants.

ce1 = 1.0 ca1 = 2.0 σf = 1.0 σθt = 2.0

ce2 = 50 ca2 = 0.06 cθt = 0.03 s1 = 2.0

∂ρω

∂t
+
∂ρUjω

∂xj
=
γSST
νt

Pkt −Dω +
∂

∂xj

(
(µ+ σωµt)

∂ω

∂xj

)
+ 2ρ (1− F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
, (3.80)

P̃kt = γeffPkt , (3.81)

D̃kt = min (max (γeff , 0.1) , 1.0)Dkt . (3.82)

In (3.81-3.82) Pkt and Dkt are the original production and destruction terms of the k-ω-SST
turbulence closure. The turbulence transition model constants are presented in the table 3.2.

3.5 Introduction of the V-model transition closure

The V-model is not able to compute turbulence. Instead it determines the transition
threshold region. For this reason, the V-model transition closure was coupled to the Spalart-All-
maras turbulence model. Transition onset prediction is performed by computing the viscosity
induced by the predicted pre-transitional u′v′ values described throughout this work. The
modus-operandi of the V-SA model is depicted in Fig.3.2.

Figure 3.2: V-SA model architecture, by coupling the transition V-model to the
Spalart-Allmaras turbulence model.

3.5.1 Mechanical model approximation rational

The rational behind the development of the transition V-model is herein presented,
including the flow physics on which it is supported. Before the mechanical approximation
disclosure, some considerations need to be taken into account and explained. It is here as-
sumed that pre-transitional turbulence is isotropic in a strain-less free-stream, in the sense
that kx = ky = kz = kp. This is in agreement with the flow physics of transition such as pre-
sented in the work of [97]. However, under the effect of flow shear the model will predict
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small pre-transitional negative values of u′v′ related to non-isotropic turbulence conditions. A
bi-dimensional analysis is here described. Nevertheless, the V-model transition closure is ap-
plicable to three-dimensional cases as will be later presented. This is the case since the main
three orthogonal shear deformation planes are all accounted for in the computation of the local
shear magnitude. As such, a global effect of three-dimensionality is taken into account in the
computation of the pre-transitional u′v′.

3.5.1.1 Pre-transitional turbulent kinetic energy considerations

Pre-transition velocity fluctuations wave forms, for a specific frequency, have seldom
a regular shape. Although this is true for most cases, the modeling of the pre-transition re-
gion, see works such as [60], requires both discrete and continuum modes. Citing [60], ”The
eigensolutions to the Orr-Sommerfeld equation in an unbounded domain are classified into two
spectra: the first is a finite set of discrete modes; the second is an infinite continuum of modes.
The latter are weakly damped and are irrelevant to classical linear stability analysis. Unstable
modes are only members of the discrete spectrum.“ As previously stated, the modes used in
classical linear stability analysis are the discrete spectrum components. However, the present
transition model will attempt to model the effects on the continuum spectrum of modes. Citing
[60], ”The eigenfunction of the discrete modes decays exponentially with distance above the
boundary layer. The eigenfunction of the continuous modes is sinusoidal in that region.” There-
fore and in order to simplify the following exposure, a sinusoidal wave shape was considered to
model the free-stream pre-transition continuum spectrum. It is here assumed that sinusoidal
wave forms represent the time evolution of velocity fluctuations due to pre-transitional turbu-
lence. Admitting that a particle is stuck inside one of these special pre-transitional turbulent
vortices, its movement follows that of the vortex. Considering then a cross sectional plane
of the bi-dimensional vortex, the equations of motion for the particle imprisoned in the small
pre-transitional vortex can be obtained. The equations of motion for x

′
and y

′
are then defined

by (3.83) and (3.84) respectively. These were obtained considering as a frame of reference the
center of the pre-transitional vortex itself.

x
′

= −ravg cos
(
ω̃t+

α

2

)
, (3.83)

y
′

= −ravg cos
(
ω̃t− α

2

)
. (3.84)

The time derivative of the latter will introduce the equations of the velocity fluctuations u
′
and

v
′

represented by (3.85) and (3.86).

u
′

= ravgω̃ sin
(
ω̃t+

α

2

)
, (3.85)

v
′

= ravgω̃ sin
(
ω̃t− α

2

)
. (3.86)

As already mentioned, it should be noted that these last four laws of motion are deduced
assuming a frame of reference of the vortex itself. From the presented equations (3.83-3.86),
consideration of the α values must be taken. It can be seen that for α = π

2 these laws of motion
describe a circular motion as shown in Fig.3.3. This motion can be interpreted as a circular
non-deformed pre-transitional vortex. Nonetheless, for α = π

4 and α = 3π
4 the described
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Figure 3.3: Particle trajectory describing a circular path through time.

motion will be elliptical. The limiting cases are obtained for α = 0 and α = π, where although
the motion is periodical, it is also linear.

The pre-transitional vortex will have its turbulent kinetic energy. This can be related to a
more simple definition of kinetic energy. In order to perform the analogy, we take another look
at the clinging particle under the effect of the circular pre-transitional vortex. This circular
motion analogy is considered under a bi-dimensional plane coincident with the xy Cartesian
frame of reference positioned within the vortex center. Considering Fig.3.4, the animated
particle in point P will have a certain amount of specific kinetic energy defined as, ecP = U2/2.

This same particle will have a mean turbulent kinetic energy since it follows the pre-transitional
vortex rotational motion. The latter is defined as the sum of the mean turbulent kinetic energy
along xx’s axis and the mean turbulent kinetic energy along yy’s axis. Assuming a circular
vortex, and taking this into consideration, through (3.87), a relation can be obtained in order
to characterize the value of rotational velocity and radius of the pre-transitional vortex. The
resulting relation is then (3.88).

kx + ky =
1

2
u′u′ +

1

2
v′v′ = ecP =

(ωzravg)
2

2
, (3.87)

√
2 (kx + ky) = ωzravg. (3.88)

In (3.88), ωz represents the vortex rotational speed and ravg is the average pre-transitional
vortex radius in the xy cross section plane.

An equivalence of turbulent kinetic energy and kinetic energy was just performed. Besides the
assumption of a circular pre-transitional vortex, up until this point no approximation has been
used. However, in order to close this particular system an approximation must be performed.
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Figure 3.4: The pre-transitional turbulent vortices can be generated at the
interface between the free-stream turbulence and the pre-transitional laminar
boundary layer due to ”inactive motion“ [3]. It is here presented a cut-section of a
circular pre-transitional vortex.

Either the average radius of the vortices is approximated or the rotational velocity of the vor-
tices, ωz. The approach of rotational velocity approximation was chosen. The used relation
was defined on the assumption that, rotational velocity of the pre-transitional turbulent vor-
tices should be proportional to its pre-transitional turbulent kinetic energy. Also, the rotational
velocity of pre-transitional vortices should be inversely proportional to the flow kinematic vis-
cosity. This is further related to the fact that for a fixed turbulent large scale, the small
turbulence sizes, such as the Kolmogorov scales, are reduced with increasing Reynolds number
flows. This scale reduction is also related to an increase of the turbulent vortices rotational
velocities due to angular momentum conservation. Therefore, the lower the fluid kinematic vis-
cosity, the higher the flow Reynolds number and consequently the higher the turbulent vortices
rotational velocities. Besides this, dimensional analysis of the used relation confirms its correct
dimensional characteristics. The selected approximation is then presented in (3.89).

ωz =
kx + ky

ν
. (3.89)

Throughout the remaining model exposure ωz = ω̃. Therefore, since kx + ky = 2kp, the value of
ω̃ is now computed using the relation presented in (3.90).

ω̃ =
2kp
ν
. (3.90)

From this relation and equation (3.88), the value of ravg is calculated in (3.91).

ravg =

√
4kp

ω̃
. (3.91)

In order to compute terms such as u′u′ or u′v′ a time average of these fluctuating values
must be performed according to equation (3.92).
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u′u′ = lim
T→∞

1

T

∫ T

0

u
′
u
′
dt. (3.92)

It was then assumed a sinusoidal function for these fluctuating velocities. This purports that
these fluctuations have a periodicity. Therefore this implies that a finite value for T is possible.
A plausible value for T could be the periodicity of these sinusoidal functions. This assumption
results in (3.93).

u′u′ =
ω̃

2π

∫ 2π
ω̃

0

u
′
u
′
dt. (3.93)

Using the explicit formulations of u
′

and v
′
, the calculation of u′u′ and u′v′ should be done

according to (3.94) and (3.95) respectively.

u′u′ =
ω̃

2π

∫ 2π
ω̃

0

[
ravgω̃ sin

(
ω̃t+

α

2

)]2
dt, (3.94)

u′v′ =
ω̃

2π

∫ 2π
ω̃

0

ravgω̃ sin
(
ω̃t+

α

2

)
ravgω̃ sin

(
ω̃t− α

2

)
dt. (3.95)

The u′u′ value is directly obtained through (3.96). It can be seen that for isotropic pre-transi-
tional turbulence, kx = ky, equation (3.96) is in accordance with the kinetic energy relations
of (3.87) and (3.88).

u′u′ =
r2
avgω̃

2

2
. (3.96)

The u′v′ value is then calculated using relation (3.97). It should be noted that ravg is the
mean radius of the undeformed pre-transitional vortex. As can be seen in (3.97), there is a
dependence with α. This α represents the phase shift between the two velocity components
u
′

and v
′
. It also represents the deformation angle of the pre-transitional vortex. For α equal

to π
2 rad or 90̊ the pre-transitional vortex has a circular undeformed shape. Also, for this value

of α, according to (3.97), the Reynolds shear stresses, u′v′, will be zero for an undeformed
pre-transitional vortex.

u′v′ =
r2
avgω̃

2 cos (α)

2
. (3.97)

3.5.1.2 Mechanical model for pre-transitional turbulent velocity fluctuation components
under mean shear

The fact that u′v′ has a trend to present negative values under shear influence is commonly
accepted. The reasoning begins by considering a no-slip wall constrained velocity profile. Under
this scenario, a positive vertical velocity fluctuation away from the wall, such that v

′
> 0,

will induce a reduction of the flow momentum. The excited particle tends to maintain its
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Figure 3.5: The deformation of a large scale vortical structure due to mean flow
shear assumes the presented shape. Also, this is the expected pre-transitional
vortex deformation shape under mean flow shear.

momentum, this is lower than the new surrounding fluid due to the presence of the wall no-slip
condition. This will then imply that u

′
< 0, since the relative velocity of the new low momentum

fluid is lower than the surroundings. The reverse case is also applicable, that is for v
′
< 0 a

value of u
′
> 0 will follow. Therefore u′v′ has a negative value.

Consider then the case where an initially circular pre-transitional vortex is deformed by
mean shear as in Fig.3.5. It must be noted that the presented schematic only demonstrates
what is to be expected, not what the mechanical model predicts. Due to shear deformation,
there will be an alteration of path curvature along the vortex surface. The centrifugal force
distribution along the pre-transitional vortex will change accordingly. These centrifugal forces
defined in (3.98), will act as pseudo non-linear springs of the pre-transitional vortex. These will
act on the vortex when shear is present. The effect of the vortex deformation is reflected on
the centrifugal forces computation, (3.98), through the local curvature radius, rlocal.

Fcent =
U2ρV

rlocal
. (3.98)

In order to compute the centrifugal forces, (3.98), the local radius of curvature, rlocal, needs to
be calculated. The change of the vortex curvature is dependent on the predicted deformation
angle, α. As such, a relation between the local radius of curvature and the angle of deformation
of the system is required. This relation was developed so as to deliver the requirements in,

α = π ⇒ rlocal =∞, (3.99)

α = 0⇒ rlocal = 0, (3.100)

α =
π

2
⇒ rlocal = ravg. (3.101)

The requirement presented in (3.99) is representative of an absolute flat vortex with orientation
depicted in Fig.3.9. The following requirement in (3.100) represents the scenario of a perfectly
flat vortex with orientation depicted in Fig.3.5. The final requirement in (3.101) represents the
undeformed circular vortex. Also, the calculation of local radius will depend on the average
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radius of the vortex and its deformation angle, α. The developed relation was then,

rlocal = ravg
α

π − α
. (3.102)

This relation enforces the requirements in (3.99-3.101).

The shear force acting upon the vortex is defined in (3.103). In this equation, S, is mean flow
shear magnitude. The A and V terms in both the equations (3.98) and (3.103), represent surface
area and volume of the pre-transitional vortex respectively. These are defined in (3.104) and
(3.105). The l is here considered as the length of the pre-transitional vortex. A value for this is
not required since l will cancel itself in the upcoming model development.

Fshear = (µ+ µT )SA, (3.103)

A = 2πravgl, (3.104)

V = πr2
avgl. (3.105)

This non-linear spring feature of the centrifugal forces can be modeled by a relatively simple
mechanical system shown in Fig.3.6. The non-linear spring mechanical behavior is given by
the centrifugal force physical characteristics as disclosed in (3.98). The rlocal represents the
local curvature radius of the pre-transitional vortex. In Fig.3.6, the left picture represents
the expected statistical mean shape of a pre-transitional vortex under the effect of mean flow
shear. Normally the shear tensor main axes are aligned 45 ˚with the local flow direction.
The presented α and β angles in this left picture of Fig.3.6 are representative of the vortex
deformation angles located in the directions of the shear stress tensor major axis and minor
axis. Also, this α angle represents the phase shift in the motion equations (3.83-3.86). The
right schematic in Fig.3.6, is the approximation of the continuum vortex shown in the left
picture by a discrete system composed of four elements. In this schematic, the α

′
and β

′
angles

are the half values of the original α and β angles. Therefore, the angle relations in this problem
are shown in (3.106) and (3.107).

α = 2α
′
, (3.106)

β
′

=
π

2
− α

′
. (3.107)

The solution of the mechanical dynamic problem presented in the right schematic of Fig.3.6 can
be simplified by considering only one quarter of the system. This is possible due to the double
symmetry along the shear stress tensor major axis and minor axis coincident with the axes of
the ellipse resulting from the deformed circular pre-transitional vortex. With this in mind, the
final mechanical model approximation is then shown in Fig.3.7. The presented orientation is in
accordance to Fig.3.5.

The attempt to solve the mechanical system in Fig.3.7 will produce a relation between vortex
deformation and mean shear. In order to solve the mechanical problem presented in Fig.3.7,

39



Figure 3.6: The pre-transitional boundary layer oscillations due to shear known as
Klebanoff modes were first observed and named ”breathing modes“ by [4]. This
behavior of the pre-transitional turbulent vortices can be accounted for by the
mechanical model approximation. The depicted mechanical model approximation
makes use of a fictitious non-linear spring analogy to describe the internal forces
acting on the vortex.

Figure 3.7: The shear force, ~S, effect on pre-transitional eddies is approximated by
this mechanical model for one quarter of a circular vortex. The mechanical
approximation depicted here is applied to pre-transitional turbulent vortices in the
upper zones of the laminar boundary layer.
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classical mechanical system solving procedures must be taken. First an equilibrium of the
system moments in relation to point ”C” is in order. The resulting equation is presented in
(3.108).

ΣMC = RA
h

2
cos(α

′
) + FcentA

h

2
sin(α

′
)−RB

h

2
sin(α

′
)− FcentB

h

2
cos(α

′
) = 0. (3.108)

The shear force depicted in Fig.3.7 by an ~S, is decomposed in the x and y axes directions
resulting in Sx and Sy presented in (3.109) and (3.110) respectively.

Sx = ~Ssin(α
′
), (3.109)

Sy = ~Scos(α
′
). (3.110)

From this, the following required equation is the equilibrium of forces in the y axis direction.
The obtained equation is disclosed in (3.111).

ΣFy = RB + FcentA + Sy = 0⇔ RB = −FcentA − Sy. (3.111)

The final required system equation is the x axis direction forces equilibrium equation. The
resulting equation is shown in (3.112).

ΣFx = −RA − FcentB + Sx = 0⇔ RA = −FcentB + Sx. (3.112)

Substitution of the obtained relations (3.111) and (3.112) in the moment equilibrium equation
(3.108) will result in (3.113).

− FcentB
h

2
cos(α

′
) + Sx

h

2
cos(α

′
) + FcentA

h

2
sin(α

′
)

+ FcentA
h

2
sin(α

′
) + Sy

h

2
sin(α

′
)− FcentB

h

2
cos(α

′
) = 0. (3.113)

From the relations (3.109) and (3.110), equation (3.113) turns to (3.114).

FcentAhsin(α
′
)− FcentBhcos(α

′
) + ~Shsin(α

′
)cos(α

′
) = 0. (3.114)

From this, the following step is presented in,

FcentBcos(α
′
)− FcentAsin(α

′
)

sin(α′)cos(α′)
= ~S. (3.115)

According to equations (3.98), (3.102), (3.106) and (3.107), the centrifugal forces in points “A”
and “B” are defined in,

FcentA =
1

4

U2ρV

ravg

π − 2α
′

2α′
, (3.116)

FcentB =
1

4

U2ρV

ravg

2α
′

π − 2α′
. (3.117)

The value of the shear force depicted by an ~S in Fig.3.7 is equal to a quarter of the total shear
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Figure 3.8: Ratio evolution with α
′

according to the mechanical system solution
(3.122).

force acting upon the pre-transitional vortex defined in (3.103). Therefore, ~S is defined in,

~S =
1

4
(µ+ µT )SA. (3.118)

As such, from these relations the resulting equation from (3.115) is disclose in,

U2ρV

ravg


(

2α
′

π−2α′

)
cos
(
α
′
)
−
(
π−2α

′

2α′

)
sin
(
α
′
)

sin (α′) cos (α′)

 = (µ+ µT )SA. (3.119)

From the mean linear velocity of the pre-transitional vortex defined in (3.120) and from the
definition of area, “A“, and volume, “V“, defined in (3.104) and (3.105) respectively, the ratio
between pre-transitional vortex acting shear and centrifugal forces is given in (3.121).

U = ω̃ravg, (3.120)

ratio =
Fshear
Fcent

=
(ν + νT )2S

(ω̃ravg)
2 . (3.121)

The solution of this system in terms of angle α
′

is then,
(

2α
′

π−2α′

)
cos
(
α
′
)
−
(
π−2α

′

2α′

)
sin
(
α
′
)

sin (α′) cos (α′)

 = ratio. (3.122)

The evolution of ratio to α
′

of the exact solution (3.122) is presented in Fig.3.8. According to
relation (3.122) and observing Fig.3.8, an unexpected evolution of the angle α

′
is predicted by

the mechanical model. Based on (3.122), this solution of the mechanical model approximation
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Figure 3.9: The derived relation (3.122) for computation of the α
′

deformation
angle is used to calculate the α deformation angle through (3.106). The former
relation predicts an α angle increase with shear, instead of the expected angle
decrease as depicted in Fig.3.5. As the mean flow shear increases so does the ratio
calculated according to (3.121). The predicted pre-transitional vortex deformation
under mean flow shear is presented here.

used in this work predicted an increase of the angle α
′
with increasing shear. This in turn means

that according to (3.97) and (3.106), the calculated values of u′v′ will be negative. The α angle
increases from π

2 to its limiting value π. This also signifies that the correct pre-transitional
vortex shape under the effect of shear is the one presented in Fig 3.9. Since the relation
(3.122) is far too complex to be use in a numerical transition closure, a simpler function is used
instead. The used function is a good approximation of the exact relation and is presented in,

tan

[
1.8
(
α
′
− π

4

)0.7
]

= ratio. (3.123)

The used mechanical approximation function in the transition V-model numerical implementa-
tion is here presented in (3.124). This is done in order to simplify implementation attempts by
the reader.

α
′

= min

[(
tan−1 (ratio)

1.8

)1.42857

+
π

4
,
π

2

]
. (3.124)

In (3.124), the minimum function is applied since the maximum value of α
′

is π
2 . This corre-

spond to a perfectly flat pre-transitional vortex deformation angle. For values of ratio = 0 the
minimum value of α

′
is π

4 . This represents an undeformed circular pre-transitional vortex.

3.5.2 The transition V-model transport equation

The Reynolds stress transport equations were first closed by [33], setting the foundations
for second order turbulence models. The transport equations are here presented in (3.125) as
presented by [77].

∂τij
∂t

+ Uk
∂τij
∂xk

= −τik
∂Uj
∂xk

− τjk
∂Ui
∂xk

+ εij −Πij +
∂

∂xk

[
ν
∂τij
∂xk

+ Cijk

]
, (3.125)
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εij = 2µ
∂u
′
i

∂xk

∂u
′
j

∂xk
, (3.126)

Πij = p′
(
∂u
′
i

∂xj
+
∂u
′
j

∂xi

)
, (3.127)

Cijk = ρu
′
iu
′
ju
′
k + p′u

′
iδjk + p′u

′
jδik. (3.128)

In (3.125), τij = −ρu′iu
′
j, represents the Reynolds stress tensor. The presented terms on the

right hand side of (3.125), are from left to right, two terms of production, one for turbulent
dissipation presented in (3.126), another for pressure-strain shown in (3.127) and finally the
molecular and turbulent diffusion. This last term is presented in (3.128). Considering the
normal Reynolds stresses transport equations, that is, the trace components of the stress tensor,
the number of terms is reduced resulting in (3.129). Through the condition imposed by the
equation of continuity applied to turbulent velocity fluctuations the pressure-strain term is
null.

∂τii
∂t

+ Uk
∂τii
∂xk

= −2τik
∂Ui
∂xk

+ 2µ
∂u
′
i

∂xk

∂u
′
i

∂xk
+

∂

∂xk

[
ν
∂τii
∂xk

+ ρu
′
iu
′
iu
′
k + 2p′u

′
iδik

]
. (3.129)

Since k = 1
2u
′
iu
′
i, considering then the relation that, τii = −2ρk, we obtain the following

transport equation for turbulent kinetic energy in (3.130).

∂k

∂t
+ Uk

∂k

∂xk
= −u′iu

′
k

∂Ui
∂xk
− ν ∂u

′
i

∂xk

∂u
′
i

∂xk
+

∂

∂xk

[
ν
∂k

∂xk
− 1

2
ρu
′
iu
′
iu
′
k − p

′u
′
iδik

]
. (3.130)

The proposed transition model pre-transition turbulent kinetic energy transport equation com-
ponents are based on some terms of equation (3.130). The transition closure production term
was obtained by analyzing the first term in (3.130). This analysis will be performed considering
a flat-plate flow far from its leading edge region. Within the shear region of the flow, u′1u

′
2 or,

u′v′, will be negative. The shear value of ∂U1/∂x2 will be positive. Thus, this term is a pro-
duction term in mean flow shear conditions. The mean flow shear magnitude, S, is used as the
mean flow property that drives pre-transitional turbulence production. It must be noted that
for clarity reasons, a term was omitted in the previously presented u′v′ calculation in (3.97).
The term is a function responsible for the evaluation of the mean flow and turbulent scales
proximity, FS. This is defined in (3.131).

FS = 1−min
(
mag

(
Ssize − ravg

max (Ssize, ravg)

)
, 1

)
. (3.131)

The used mean flow shear scale function, Ssize, is defined in (3.132).

Ssize =

√
ν

S
. (3.132)
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The u′v′ computation is then performed according to,

u′v′ =
(ravgω̃)

2
cos (α)

2
FS . (3.133)

The production term used is presented in,

Prodkp = −CPkSu
′v′ . (3.134)

In this equation, CPk is the V-model calibration constant equal to 0.8335. The CPk calibration
constant was obtained by considering the experimental validation with the ERCOFTAC zero-pres-
sure-gradient flat-plate test case T3A.

The second term on the RHS of (3.130) will be used to obtain the dissipation term of the
presented transition model transport equation. The calculation of the cross partial derivatives
from this term reveals a fundamental result. In order to simplify the partial derivatives calcula-
tion, the following assumption is required. The definitions in equations (3.83) and (3.84) impose
a phase shift between x

′
and y

′
. For an undeformed pre-transitional vortex, implying α = π

2 ,
and summing a phase shift value of π

4 to both equations, (3.83) and (3.84), we obtain the same
phase shift imposition through (3.137) and (3.138) respectively. A detailed explanation of the
process is presented in (3.135) and (3.136).

x
′

= −ravg cos

(
ω̃t+

π
2

2
+
π

4

)
= ravg sin (ω̃t) , (3.135)

y
′

= −ravg cos

(
ω̃t−

π
2

2
+
π

4

)
= −ravg cos (ω̃t) , (3.136)

x
′

= ravg sin (ω̃t) , (3.137)

y
′

= −ravg cos (ω̃t) . (3.138)

The new velocity fluctuations u
′
and v

′
are then represented by (3.139) and (3.140) respectively.

u
′

= ravgω̃ cos (ω̃t) , (3.139)

v
′

= ravgω̃ sin (ω̃t) . (3.140)

Considering then a cross partial derivative where the length scale of ∂y is comparable to the
length scale of ∂y

′
resulting in,

∂u
′

∂y
≈ ∂u

′

∂y′
=
∂ravgω̃ cos (ω̃t)

∂y′
. (3.141)

It can be observed that apparently the latter partial derivative can not be easily solved. How-
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ever, the ω̃t dependence can be written as,

y
′

= −ravg cos (ω̃t)⇔ ω̃t = arcos

(
−y′

ravg

)
. (3.142)

By doing so the cross partial derivative becomes then,

∂u
′

∂y′
=
∂ravgω̃ cos

(
arcos

(
−y
′

ravg

))
∂y′

=
∂ω̃ravg

−y
′

ravg

∂y′
. (3.143)

The resulting cross partial derivative is presented in (3.144).

∂u
′

∂y′
= −∂ω̃y

′

∂y′
= −ω̃. (3.144)

Therefore the cross partial derivative of the dissipation term (3.126) is equal to a form of
rotational velocity of the undeformed pre-transitional turbulent vortices, ω̃. It must be noted
that due to the assumption of ∂y ≈ ∂y

′
, a scale proximity between turbulent and mean flow

must exist. The non-cross partial derivatives of (3.126) were not considered. The resulting
dissipation term in the V-model transport equation is then presented in (3.145). It must be
noted that although the cross partial derivative, (3.144), of the dissipation term, (3.126), has
a negative sign, the dissipation term makes use of the square of this cross partial derivative.

Destkp = νΩ2FΩ ≈ ν
∂u
′
i

∂xk

∂u
′
i

∂xk
. (3.145)

Similar to the used ”shear-sheltering” effect function presented in the work of [110], mean
flow vorticity, Ω, is used as a form of rotational velocity instead of the pre-transitional vortex
rotational speed, ω̃, for the destruction effect within the boundary layer. Citing from the work
of [110], “Shear-sheltering refers to the damping of turbulence dynamics that occurs in thin
regions of high vorticity...”. This is also done in order to allow the mean flow characteristics
to control transition onset as depicted in Fig.3.2. Also, mean flow vorticity can be related to
stabilization effects of turbulence, which can be interpreted as a turbulence sink. Such can
be observed in relaminarization experiments of turbulent flow inside tube coils as presented
by the work of [156]. This was also calculated with DNS [157]. The FΩ function assures the
aforementioned assumption of ∂y ≈ ∂y

′
. FΩ can also be interpreted as a measure of the mean

and turbulent flow scale proximity. This is defined in (3.146).

FΩ = 1−min
(
mag

(
Ωsize − ravg

max (Ωsize, ravg)

)
, 1

)
. (3.146)

The used mean flow vorticity scale function, Ωsize, is defined in (3.147).

Ωsize =

√
ν

Ω
. (3.147)

The turbulent diffusion component of the transport equation was chosen to be equal to a
common turbulent kinetic energy transport equation such as the model of [80]. The resulting
pre-transitional turbulent kinetic energy transport equation is then presented in,

Dkp
Dt

= Prodkp −Destkp +
∂

∂xj

[
(ν + νT )

∂kp
∂xj

]
. (3.148)
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From the transition V-model, the pre-transition turbulent kinetic energy will apply an induced
viscosity defined in (3.149).

νTuv =
−u′v′

mag (∇U)
. (3.149)

This will then be the small effect of the pre-transitional turbulent kinetic energy on the viscosity
within the pre-transitional region of the laminar boundary layer.

3.5.3 Coupling of the transition V-model to Spalart-Allmaras turbulence clo-
sure

The Spalart-Allmaras is a well known one-equation turbulence model. It was first pre-
sented by [158]. As stated before, the transition V-model was coupled to the Spalart-Allmaras
turbulence closure version presented in [159]. This was performed by simply adding a control
function in the production term of the turbulence model. This control function depends upon
the ratio value obtained by the mechanical model approximation in (3.121). The performed
implementation is shown in (3.150).

Dν̃T
Dt

= Cb1S̃ν̃T exp (−Cν̃T ratio)− Cw1fw

(
ν̃T
y

)2

+
∂

∂xj

[(
ν̃T + ν

σ

)
∂ν̃T
∂xj

]
+
Cb2
σ

∂ν̃T
∂xi

∂ν̃T
∂xi

. (3.150)

As can be seen in the first component of the RHS of (3.150), the control function is an expo-
nential term. The Cν̃T constant is equal to 0.5. Also in order to account for the effect of the
pre-transitional viscosity, (3.149), the Spalart-Allmaras turbulence model production term is
slightly changed to,

S̃ =
Ω√
2

+
ν̃T

(κy)
2 fv2. (3.151)

The total turbulent viscosity that the V-SA transition model predicts is a sum of the obtained
turbulent viscosity from the SA model and the transition V-model. This is presented in (3.152).

νT = νTuv + fv1ν̃T . (3.152)

3.5.4 Fine tuning the V-SA transition model

Due to the model initial validation, some issues were encountered related to calibration
of the V-SA model. Also, under separation induced transition conditions the model presented
transition onset delays. As such, a separation correction for the model was devised. This is
presented in (3.153).

SepCorrect = exp

(
−max

(
Csep

(
Ω− S
ω̃

)
, 0

))
. (3.153)

The proposed correction is based on the observation that the main flow region where the pre-
transitional turbulent kinetic energy is excessively destroyed is on vorticity dominated flows.
Therefore, the use of an exponential function with negative dependency on the subtraction of
the mean flow vorticity field by the mean flow shear value ensures that for flow regions with
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vorticity dominating effects, the destruction term will be diminished. This separation correc-
tion will force the destruction term, (3.145), to be almost zero if the vorticity field is very
intense. The applied maximum function imposes that for low vorticity flows, where the main
strain feature is pure shear, the correction function will not affect the destruction term. This is
the case since the subtraction result will be negative. The correction function is then applied
to the destruction term in the V-model transport equation. This results in equation (3.154).

Dkp
Dt

= Prodkp −DestkpSepCorrect +
∂

∂xj

[
(ν + νT )

∂kp
∂xj

]
. (3.154)

The constant Csep within equation (3.153) has a value of 10. The Csep calibration constant was
obtained by considering the experimental A-airfoil validation and the ERCOFTAC zero-pressure-
gradient flat-plate test case T3A.

Afterwards, further validation with airfoils and wings exposed a critical flaw of the separa-
tion corrected transition model, the V-SA-Sep-Correct. This model version presented an abnor-
mal behavior on the fully turbulent flow region. Under adverse-pressure-gradient conditions,
the turbulent boundary layer would prematurely separate. This would not be of concern if the
base turbulence closure, that is the Spalart-Allmaras model, also computed flow separation at
the same critical regions. However, the turbulence model did not behave as such.

As previously stated, the V-SA turbulence transition model is composed of the transition
V-model and the Spalart-Allmaras turbulence closure. The applied Spalart-Allmaras turbulence
model is not the standard version on [158]. Instead, the initially implemented turbulence
closure version was the one published on [159]. This was the case due to the fact that the V-SA
model, being developed on OpenFOAM, used the available Spalart-Allmaras implementation.
Also, the original coupling between the transition V-model and the turbulence closure was
straightforward. This focused solely on the production term of the turbulence model as shown
in (3.150).

The V-SA-Sep-Correct model improvement starts by reconsidering the coupling between its
two components. A more dynamic linkage is implemented according to the recommendations
on [158]. The resulting model coupling is disclosed in (3.155).

Dν̃T
Dt

= Cb1S̃ν̃TCtexp (−ratio)−
[
Cw1fw − {1− Ctexp (−ratio)} Cb1

κ2
fw

](
ν̃T
d

)2

+
∂

∂xj

[(
ν̃T + ν

σ

)
∂ν̃T
∂xj

]
+
Cb2
σ

∂ν̃T
∂xi

∂ν̃T
∂xi

. (3.155)

The Ct constant is equal to 1.1 and the original Cν̃T constant is removed. Further, the proposed
coupling takes into consideration not only the production term of the Spalart-Allmaras model,
but also its destruction element. Along with this modification, the production term of the
turbulence model is changed to the following form in (3.156).

S̃ = Ω +
ν̃T

(κd)
2 fv2. (3.156)

Additionally the fv2 function is modified to its original form in [158]. The altered formulation
is disclosed in (3.157).

fv2 = 1− χ

1 + χfv1
. (3.157)

Finally the last modification is done on the V-SA model pre-transitional turbulent kinetic energy,
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kp, transport equation, (3.154). Its production constant in (3.134), CPk, is changed from its
original 0.8335 value to 0.83. The final CPk calibration constant was obtained by considering
the experimental T3A test case validation of the ERCOFTAC zero-pressure-gradient flat-plate
benchmark.
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Chapter 4

ERCOFTAC benchmark

The ERCOFTAC, or European Research Community on Flow, Turbulence and Combustion, has
a large data set on transition threshold experimental test cases along with many other exper-
iments related to turbulence. The flat-plate benchmark cases were chosen for the validation
of the developed turbulence transition models due to their availability, data information depth
and simple implementation.

4.1 Flat-plate test cases

During the transition model’s development stage, experimental bi-dimensional test cases
were used. These were selected because of computational simplicity and fast convergence.
Some of these cases are geometrically simple, such as the zero-pressure-gradient flat-plate
ERCOFTAC T3A, T3A- and T3B cases. However, the pressure-gradient flat-plate ERCOFTAC T3C
test cases have a more complex geometry. This is due to the required flow acceleration. The
top surface of the pressure-gradient flat-plate test cases, is shaped in order to reproduce the
experimental acceleration and deceleration rates. Finally the T3L separation induced transi-
tion flat-plate test cases were considered. These test cases have a similar geometry to the
zero-pressure-gradient flat-plate case. Yet, these have a larger leading edge radius to induce
flow separation.

All of the obtained results for the Spalart-Allmaras turbulence model, henceforward desig-
nated as SA, the V-SA transition closure versions, the originally implemented and the modified
versions of the k-kl-ω transition model, herein referred to as k-kl-ω-org and k-kl-ω-mod re-
spectively, were computed using the open-source software OpenFoam. The considered cases
were all steady-state and incompressible. These were performed with a constant density of
ρ = 1.2

(
kg/m3

)
. The results calculated with OpenFoam were run with a pressure based solver

SIMPLE, linear discretization for Laplacian terms and second order linear-upwind stabilized
transport, or LUST, discretization scheme for divergence terms. All of the obtained results with
the empirical transition model γ-Reθ and the phenomenological k-kl-ω model were computed
using Ansys Fluent 13.0. The used discretization scheme was the second order upwind, SOU, and
for pressure the linear setting was applied. Unless stated otherwise, the presented numerical
cases make use of an air kinematic viscosity of ν = 1.5× 10−5

(
m2/s

)
.

The V-SA turbulence transition model applied to the tested cases has two calibrations.
These are performed based upon the experimental transition onset data from the ERCOFTAC
T3A test case and the computational flat-plate geometry with the corresponding leading edge
radius size. Therefore, for flat-plate cases using a leading edge radius of 0.002 meters, the
applied V-SA closure was calibrated using the computational flat-plate geometry with a leading
edge radius size of 0.002 meters. Subsequently, test cases using a flat-plate geometry with a
leading edge radius of 0.00075 meters, will have a V-SA transition model calibrated with the
transition threshold data from the ERCOFTAC T3A test case using a computational flat-plate
geometry with a leading edge radius size of 0.00075 meters. It should be noted that, although
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Figure 4.1: Zero-pressure-gradient flat-plate leading edge mesh view.

the experimental ERCOFTAC flat-plate geometry had a leading edge radius of 0.00075 meters,
the analysis of the leading edge radius effect on the V-SA transition models calibration, the
developed k-kl-ω-mod transition closure and the existing k-kl-ω and γ-Reθ transition models,
was considered to be pertinent. However, the original k-kl-ω implementation on OpenFoam,
the k-kl-ω-org, is only evaluated on the flat-plate geometries with a leading edge radius of
0.00075 meters and on the separation flat-plate test cases.

The previously proposed corrections in section, "Fine tuning the V-SA transition model",
were only applied to the V-SA transition model calibrated with the ERCOFTAC T3A flat-plate
test case using a geometry with leading edge radius of 0.00075 meters. As such, the flat-plate
results obtained for the leading edge radius size of 0.002 meters will not include results from
the separation corrected V-SA transition model herein defined as V-SA-Sep-Correct. This also
applies for the second correction implemented on the V-SA model. Using the V-SA-Sep-Correct
closure as the base model, the correction was focused on the coupling between the transition
V-model and the SA turbulence closure. The resulting model is then the improved V-SA transition
closure henceforward designated as V-SA-Improved.

4.1.1 Zero-Pressure-Gradient test cases

The experimental values from Coupland [160], obtained for a flat-plate under zero-pressure-
gradient were considered in this validation study. As already mentioned, the present geometry
is simple. For the zero-pressure-gradient test case the flat-plate mesh used was structured and
had y+ values below 0.1. It is constituted by a flat-plate with 1.7 meters of extension with 200

mesh points over its surface. The flat-plate leading edge has a circular shape. The leading
edge radius can vary from 0.00075 to 0.002 meters. This is done so as to show the effect of
the leading edge radius on the overall results. Along the circular leading edge the geometry
has 30 mesh points. A detail view of the zero-pressure-gradient flat-plate leading edge mesh is
shown in Fig.4.1. The wall perpendicular spacing of the first layer of cells over the flat-plate is
1×10−5 meters. The top surface of the geometry is located at approximately 0.15 meters above
the flat-plate. This vertical length has 110 mesh points along it. The inlet is positioned 0.15

meters before the flat-plate leading edge. It has a height of 0.15 meters. The bottom surface
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Figure 4.2: General overview of zero-pressure-gradient flat-plate mesh with 25000

nodes.

Table 4.1: ERCOFTAC Zero-Pressure-Gradient Flat-Plate Upstream Conditions

Case Tu(%) U(m/s)

T3A 3.0 5.4

T3B 6.0 9.4

T3A− 0.9 19.8

upstream of the flat-plate leading-edge, will be considered as a symmetry boundary condition.
This is done in order to generate a natural stagnation region as well as a correct initial boundary
layer development [110]. This short extension has 110 mesh nodes. The top surface has also
a symmetry boundary condition [104] [110] and [132]. The zero-pressure-gradient flat-plate
geometry mesh is disclosed in Fig.4.2.

The outlet surface of the geometry has a Neumann boundary condition of ∂x
∂η = 0, where x

represents any flow variable except for fluid static pressure. For the latter flow variable, the
outlet surface has a Dirichlet boundary condition. The flat-plate and leading edge radius are
assigned with no-slip wall conditions. As such, for all tested turbulence and transition models
a first type boundary condition was applied to the turbulent kinetic energy k = 0, the pre-tran-
sitional turbulent kinetic energy kp = 0, the laminar kinetic energy kl = 0 and the modified
turbulent viscosity ν̃t = 0. The wall boundary condition for the specific turbulent kinetic energy
dissipation rate is equal to a second type boundary condition for the k-kl-ω phenomenological
model of Walters [110], the original implementation in OpenFoam, k-kl-ω-org, and its modified
version the k-kl-ω-mod. For the empirically correlated transition model, γ-Reθ, coupled to the
k-ω-SST turbulence model, this same variable has a wall function as reported by Menter [129].

According to the ERCOFTAC database, the upstream flow conditions for the zero-pressure-
gradient test cases are presented in table 4.1.

4.1.1.1 T3A flat-plate validation

The first flat-plate zero-pressure-gradient transition test case considered was the ERCOFTAC
T3A case. This case was designed to evaluate bypass transition type. The used inlet boundary
conditions for all tested transition and turbulence models are presented in table 4.2. It must
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Table 4.2: ERCOFTAC T3A Flat-plate Inlet Boundary Conditions

Model U(m/s) k(m2/s2) kp(m
2/s2) ω(s−1) ν̃t(m

2/s)

SA 5.4 N/A N/A N/A 4.5 × 10−5

V-SA 5.4 N/A 0.03936 N/A 4.5 × 10−5

V-SA-Sep-Correct 5.4 N/A 0.03936 N/A 4.5 × 10−5

V-SA-Improved 5.4 N/A 0.03936 N/A 4.5 × 10−5

k-kl-ω-org 5.4 0.12 N/A 65 N/A
k-kl-ω-mod 5.4 0.12 N/A 65 N/A

k-kl-ω 5.4 0.12 N/A 65 N/A
γ-Reθ 5.4 0.12 N/A 700 N/A

Figure 4.3: Flat-plate T3A turbulence intensity decay.

be noted that, although not referenced in this table, the used inlet boundary conditions for
the V-SA-Fluent-Implementation were the same as the V-SA transition models. This transition
model implementation is only evaluated on flat-plate test cases with leading edge radius size
of 0.00075 meters and on the T3L separation induced transition flat-plate cases. This is the case
for all of the following disclosed results.

The analysis of the free-stream turbulence intensity decay rate is vital for turbulence tran-
sition models such as k-kl-ω, k-kl-ω-org, k-kl-ω-mod, and γ-Reθ. This is so, since it is a method
to analyze the free-stream turbulence characteristics such as the turbulent kinetic energy and
its length scale. The free-stream turbulence intensity decay rate is shown in Fig.4.3. As can be
seen, the imposed inlet boundary conditions allow a correct free-stream turbulence decay. The
V-SA closures and the SA model do not require such validation. The SA model does not make
use of a transport equation for turbulent kinetic energy nor its specific dissipation rate. The
V-SA models, although having a transport equation for pre-transitional turbulent kinetic energy,
this is not allowed to decay in the free-stream. Specification of the correct leading edge tur-
bulence intensity and modified turbulent viscosity, ν̃t, will suffice for the correct behavior of
these turbulence transition models.

The skin-friction coefficient along the flat-plate is presented in Fig.4.4. The presented re-
sults were obtained for the flat-plate with leading edge radius of 0.002 meters. The k-kl-ω-mod,
k-kl-ω and γ-Reθ transition models predict a slightly earlier transition onset compared to the
experimental data. This behavior is believed to be related to the leading edge radius size. The
V-SA model was calibrated using the transition onset point of this same case for this leading
edge radius size. As such, it is to be expected that the model is able to predict the transition
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Figure 4.4: Comparison of experimental data from ERCOFTAC T3A flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The used structured
computational light and refined grids for the mesh refinement study had the
respective sizes of 110 × 340 and 220 × 680 nodes. The flat-plate leading edge
radius size is 0.002 meters.

onset correctly. The SA turbulence model predicts an early transition. Also a mesh indepen-
dence result is shown using the V-SA model. This was obtained by calculating the same case
with a computational mesh with the double number of nodes. As can be seen the presented re-
sults have mesh independence. The effect of using a smaller leading edge radius on this case is
presented in Fig.4.5. As expected the k-kl-ω-mod, k-kl-ω and γ-Reθ transition models improve
on the transition onset prediction. However, the k-kl-ω-mod and k-kl-ω closures compute the
transition onset earlier than the empirically correlated γ-Reθ transition model. The k-kl-ω-org
predicts an even earlier turbulence transition with a low skin-friction coefficient on the fully
turbulent region of the flat-plate. The applied V-SA, V-SA-Sep-Correct, V-SA-Improved and the
V-SA-Fluent-Implementation transition models were calibrated using this test case. Therefore,
the initiation of transition is correctly computed. The SA turbulence model still presents a very
early transition.

As already mentioned, the V-model transition closure calculates small pre-transitional
negative values of u′v′. This is shown for the region near the leading edge and for the transition
onset zone of the T3A test case in Fig.4.6. As can be seen, when the mean flow characteristics
are ideal the V-model predicts the piercing of the laminar boundary layer by the pre-transitional
u′v′. This then activates the turbulence model production term. The proposed mechanical
model approximation for pre-transitional turbulent vortex deformation predicts the distribution
of u′v′ in the pre-transitional boundary layer region. A comparison is performed between the
experimental ERCOFTAC database of u′v′ and the V-model predicted values. These comparisons
are performed from the leading edge to the transition onset point. The last comparison is one
station in the middle of the transition region. The results are presented in Figs.4.7, 4.8, 4.9,
4.10, 4.11 and 4.12. These represent the axial positions in meters of 0.095, 0.195, 0.295, 0.395,
0.495 and the transition section 0.595 respectively. The latter axial positions correspond to the
Reynolds numbers of 3.24×104, 6.70×104, 10.06×104, 13.48×104, 16.92×104 and the transition
section 20.35 × 104 respectively. As can be seen, the V-model predicts an overshoot of u′v′

near the leading edge. However, the results greatly improve along the pre-transitional region.
Within the laminar boundary layer, the scale functions, FS and FΩ, are null in the near wall
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Figure 4.5: Comparison of experimental data from ERCOFTAC T3A flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, V-SA-Sep-Correct, V-SA-Improved, V-SA-Fluent-Implementation,
k-kl-ω-org, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The flat-plate leading edge radius
size is 0.00075 meters.

Figure 4.6: Contour map of u′v′ values with detailed results near the leading edge
and transition onset zone of the T3A flat-plate test case.
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Figure 4.7: Comparison of ERCOFTAC flat-plate T3A experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.095 meters or
Rex of 3.24 × 104. The negative pre-transitional u′v′ values were related to
”splat-mechanism“ or ”inactive-motion“ by [3].

Figure 4.8: Comparison of ERCOFTAC flat-plate T3A experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.195 meters or
Rex of 6.70 × 104.
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Figure 4.9: Comparison of ERCOFTAC flat-plate T3A experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.295 meters or
Rex of 10.06 × 104.

Figure 4.10: Comparison of ERCOFTAC flat-plate T3A experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.395 meters or
Rex of 13.48 × 104.

58



Figure 4.11: Comparison of ERCOFTAC flat-plate T3A experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.495 meters or
Rex of 16.92 × 104.

Figure 4.12: Comparison of ERCOFTAC flat-plate T3A experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.595 meters or
Rex of 20.35 × 104.

59



Table 4.3: ERCOFTAC T3B Flat-plate Inlet Boundary Conditions

Model U(m/s) k(m2/s2) kp(m
2/s2) ω(s−1) ν̃t(m

2/s)

SA 9.4 N/A N/A N/A 4.5 × 10−5

V-SA 9.4 N/A 0.4771 N/A 4.5 × 10−5

V-SA-Sep-Correct 9.4 N/A 0.4771 N/A 4.5 × 10−5

V-SA-Improved 9.4 N/A 0.4771 N/A 4.5 × 10−5

k-kl-ω-org 9.4 1.0736 N/A 65 N/A
k-kl-ω-mod 9.4 1.0736 N/A 65 N/A

k-kl-ω 9.4 1.0736 N/A 65 N/A
γ-Reθ 9.4 1.05 N/A 700 N/A

Figure 4.13: Flat-plate T3B turbulence intensity decay.

region. Although the calculated pre-transition u′v′ values are zero in this zone, the near wall
experimental measured u′v′ values are not zero. The results in Fig.4.12, corresponding to a
station in the middle of the transition length region, show that the model predictions deviate
from the measured values.

4.1.1.2 T3B flat-plate validation

The ERCOFTAC T3B flat-plate zero-pressure-gradient test case is similar to the T3A. However,
both the free-stream turbulence intensity and the free-stream velocity are roughly doubled im-
posing a very early transition onset. This case was designed to evaluate bypass transition type
closer to the flat-plate leading edge. The applied inlet boundary conditions for all tested tran-
sition and turbulence models are presented in table 4.3. The free-stream turbulence intensity
decay rate is presented in Fig.4.13. As observed, the imposed inlet boundary conditions allow
for a correct free-stream turbulence development. An initial attempt to run the transition
and turbulence models under the flow conditions imposed on table 4.3 was performed. This
computation was done using a geometry with leading edge radius of 0.002 meters. The results
for the flat-plate T3B ERCOFTAC test case presented in Fig.4.14, show that all models predict
transition earlier than expected. This is due to the leading edge curvature radius, low fluid
kinematic viscosity and high velocity conditions that induce flow separation at the beginning of
the flat-plate. Therefore, the transition closures predict an early separation induced transition
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Figure 4.14: Comparison of experimental data from ERCOFTAC T3B flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The flat-plate leading edge
radius size is 0.002 meters.

instead of a bypass transition type as was meant to be. The separation bubble can be seen in
Fig.4.15. In order to evaluate the transition turbulence models capacity to correctly predict by-
pass transition for the T3B test case conditions, another computation was performed. The inlet
boundary conditions were maintained but the fluid kinematic viscosity was increased to double
its standard value to ν = 3× 10−5

(
m2/s

)
for this particular case. This was performed in order

to avoid flow separation at the leading edge of the flat-plate. As shown in Fig.4.16, avoiding
the separation bubble the V-SA transition model is able to correctly predict transition onset.
Also the k-kl-ω-mod, k-kl-ω and γ-Reθ transition closures are able to predict a transition incep-
tion closer to the experimental data. The γ-Reθ transition model computes a larger laminar
skin-friction coefficient value than what is to be expected. This condition is anomalous, and has
not been observed in the transition model publications. The SA model predicts transition later
than expected. The effect of reducing the leading edge radius to 0.00075 meters should dispose
of the need to apply a higher fluid kinematic viscosity. As such, the results for the T3B test case
with the original kinematic viscosity of ν = 1.5 × 10−5

(
m2/s

)
are presented in Fig.4.17. The

presented results show that the anomalous behavior of the γ-Reθ transition closure remains un-
changed. The SA turbulence model predicts transition onset later than the experimental data.
The V-SA, V-SA-Sep-Correct, V-SA-Improved and V-SA-Fluent-Implementation transition closures
predict the transition threshold slightly earlier than the experiment. The most accurate models
are the k-kl-ω-mod and the k-kl-ω transition models. The implemented original formulation of
the k-kl-ω transition model, the k-kl-ω-org, does not predict any transition to turbulence over
the flat-plate geometry.

4.1.1.3 T3A- flat-plate validation

The last flat-plate zero-pressure-gradient test case is the T3A-. This case was conceived
to evaluate natural transition type. This is so, since its upstream turbulence intensity is less
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Figure 4.15: Separation bubble from the T3B V-SA computational case. Flow
stream-lines are displayed over the contour of pre-transitional turbulent kinetic
energy.

Figure 4.16: Comparison of experimental data from ERCOFTAC T3B flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The used fluid kinematic
viscosity was ν = 3 × 10−5

(
m2/s

)
. The flat-plate leading edge radius size is 0.002

meters.
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Figure 4.17: Comparison of experimental data from ERCOFTAC T3B flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, V-SA-Sep-Correct, V-SA-Improved, V-SA-Fluent-Implementation,
k-kl-ω-org, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The used fluid kinematic viscosity
was ν = 1.5 × 10−5

(
m2/s

)
. The flat-plate leading edge radius size is 0.00075

meters.

Table 4.4: ERCOFTAC T3A- Flat-plate Inlet Boundary Conditions

Model U(m/s) k(m2/s2) kp(m
2/s2) ω(s−1) ν̃t(m

2/s)

SA 19.8 N/A N/A N/A 4.5 × 10−5

V-SA 19.8 N/A 0.0476 N/A 4.5 × 10−5

V-SA-Sep-Correct 19.8 N/A 0.0476 N/A 4.5 × 10−5

V-SA-Improved 19.8 N/A 0.0476 N/A 4.5 × 10−5

k-kl-ω-org 19.8 0.08 N/A 65 N/A
k-kl-ω-mod 19.8 0.08 N/A 65 N/A

k-kl-ω 19.8 0.08 N/A 65 N/A
γ-Reθ 19.8 0.078 N/A 700 N/A

than 1%. It must be noted that although the free-stream turbulence intensity is decreased, the
free-stream velocity is approximately four times higher than the imposed velocity in the T3A
test case as presented in table 4.1. This will cause flow separation at the flat-plate leading
edge. The applied inlet boundary conditions for all tested transition and turbulence models
are presented in table 4.4. The computed free-stream turbulence intensity decay over the
flat-plate is disclosed in Fig.4.18. The applied inlet turbulent boundary conditions reproduce a
correct free-stream turbulence development. As already mentioned, a first computation with
the presented inlet conditions resulted in flow separation at the leading edge of the flat-plate
as presented in Fig.4.19. The latter will then again result in an earlier separation induced tran-
sition. The skin-friction coefficient plot results are presented in Fig.4.20. In order to eliminate
or greatly reduce the flow separation at the leading edge of the flat-plate, the fluid kinematic
viscosity was again increased. For the case of T3A-, the fluid kinematic viscosity was increased
from its standard value to ν = 8× 10−5

(
m2/s

)
. This larger increase in fluid kinematic viscosity

was required since the upstream velocity was much higher than that of the T3B test case. The
inlet boundary conditions were maintained but the used computational mesh was augmented.
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Figure 4.18: Flat-plate T3A- turbulence intensity decay.

Figure 4.19: Separation bubble from the T3A- V-SA computational case. Flow
stream-lines are displayed over the contour of pre-transitional turbulent kinetic
energy.

64



Figure 4.20: Comparison of experimental data from ERCOFTAC T3A- flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The flat-plate leading edge
radius size is 0.002 meters.

For this particular case, the used mesh is almost the same as the previous described mesh for
the zero-pressure-gradient flat-plate test cases. The difference of the applied mesh is then
the larger flat-plate extension of 9.0 meters long. The number of nodes along the flat-plate
were 400. The remaining characteristics of the mesh are the same as the one used for both
the T3A and T3B test cases. As can be seen in Fig.4.21, the V-SA model is able to correctly
calculate the transition onset. The transition point is very close to the minimal experimental
value of skin-friction coefficient. Although the V-SA model correctly predicts transition onset,
the transition extension is relatively shorter than that of the experimental data. The SA model
predicts transition onset far too early. The k-kl-ω-mod and k-kl-ω transition closures behave
in a similar manner, predicting turbulence transition slightly earlier than the experiment. The
empirically correlated γ-Reθ transition model does not predict turbulence transition. This does
not imply that the model cannot predict transition under these conditions. This means that the
model was not able to predict natural transition under the maximum flat-plate length of 9.0 me-
ters. Similar to the ERCOFTAC T3B test case, the use of a smaller leading edge radius will avoid
the need of resort to computations with higher kinematic viscosity. The obtained skin-friction
coefficient distribution results are disclosed in Fig.4.22. Again the SA turbulence model pre-
dicts a very early transition. The V-SA, V-SA-Sep-Correct and V-SA-Improved transition models
predict an early transition onset, with the improved version of the model predicting the best
result. The V-SA-Fluent-Implementation closure computes a transition threshold closer to the
original V-SA transition model. With the exception of the V-SA-Improved transition model, the
k-kl-ω-org predicts a more accurate transition threshold region than the V-SA model versions.
However, the k-kl-ω-org computed skin-friction coefficient in the fully turbulent region is below
the correct values. The k-kl-ω-mod, k-kl-ω and γ-Reθ transition closures predict the transition
threshold closer to the experimental data. Nevertheless, the best numerical result is obtained
with the γ-Reθ and the worst with the k-kl-ω-mod.

4.1.2 Pressure-Gradient test cases

The experimental data from Coupland [161], for a flat-plate subjected to flow pressure-
gradient was considered. The present geometry is slightly more complex than the zero-pres-
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Figure 4.21: Comparison of experimental data from ERCOFTAC T3A- flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The used fluid kinematic
viscosity was ν = 8 × 10−5

(
m2/s

)
. The flat-plate leading edge radius size is 0.002

meters.

Figure 4.22: Comparison of experimental data from ERCOFTAC T3A- flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, V-SA-Sep-Correct, V-SA-Improved, V-SA-Fluent-Implementation,
k-kl-ω-org, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The used fluid kinematic viscosity
was ν = 1.5 × 10−5

(
m2/s

)
. The flat-plate leading edge radius size is 0.00075

meters.
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Figure 4.23: Pressure-gradient flat-plate inlet mesh view.

Figure 4.24: General overview of pressure-gradient flat-plate mesh with 31000

nodes.

sure-gradient test cases. It can be said that the bottom part of this geometry is equal to the
latter exposed cases. The top surface of the geometry is curved and it extends over the entire
flat-plate 1.7 meters. The curved surface has 200 mesh points along it. The mesh points cluster
near this surface resulting in a distance of 1× 10−4 meters for the first layer of cells. This top
section of the mesh has 30 nodes along its vertical connectors. Summing this with the previous
bottom part of the mesh makes a total of 140 mesh points in the vertical direction over the
flat-plate. Similar to the first flat-plate geometry, the inlet is located 0.15 meters before the
flat-plate leading edge. This has a height of 0.3 meters. A detail view of the pressure-gradient
geometry inlet mesh is given in Fig.4.23. The remaining characteristics of the used computa-
tional mesh are similar to the zero-pressure-gradient cases. The pressure-gradient flat-plate
full geometry mesh is presented in Fig.4.24. In the present case, the top surface is a no-slip
wall boundary condition. As such, this surface has equal boundary conditions to the bottom
flat-plate. Also, the effect of different leading edge radius of 0.00075 and 0.002 meters will be
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Table 4.5: ERCOFTAC T3C Pressure-Gradient Flat-Plate Upstream Conditions

Case Tu(%) U(m/s)

T3C1 6.6 5.9

T3C2 3.0 5.0

T3C3 3.0 3.7

T3C4 3.0 1.2

T3C5 3.0 8.4

Table 4.6: ERCOFTAC T3C1 Flat-plate Inlet Boundary Conditions

Model U(m/s) k(m2/s2) kp(m
2/s2) ω(s−1) ν̃t(m

2/s)

SA 5.9 N/A N/A N/A 4.5 × 10−5

V-SA 5.9 N/A 0.22745 N/A 4.5 × 10−5

V-SA-Sep-Correct 5.9 N/A 0.22745 N/A 4.5 × 10−5

V-SA-Improved 5.9 N/A 0.22745 N/A 4.5 × 10−5

k-kl-ω-org 5.9 11 N/A 1075 N/A
k-kl-ω-mod 5.9 11 N/A 1075 N/A

k-kl-ω 5.9 11 N/A 1075 N/A
γ-Reθ 5.9 11 N/A 11576 N/A

studied. The free-stream turbulence intensity and velocity are measured in an horizontal line
along the geometry at the vertical distance of 0.15 meters above the flat-plate.

From the ERCOFTAC database, the upstream flow conditions for the T3C pressure-gradient
flat-plate test cases are presented in table 4.5.

4.1.2.1 T3C1 flat-plate validation

The first considered flat-plate pressure-gradient transition test case was the ERCOFTAC
T3C1. This is used for benchmarking favorable-pressure-gradient conditions for bypass tran-
sition type. The specified inlet boundary conditions for all tested transition and turbulence
models are presented in table 4.6. The free-stream turbulence intensity decay rate for the
used turbulence and transition models is disclosed in Fig.4.25. The results for the flat-plate
T3C1 ERCOFTAC test case are presented in Fig.4.26. Among these, there is also a mesh refine-
ment study similar to the one performed for the T3A test case. The used refined mesh has
double number of nodes of the previously described computational mesh. The mesh refinement
study indicates that the obtained results are mesh independent. It should be noted that the
calculation of skin-friction coefficient for these pressure-gradient test cases is performed using
the local free-stream velocity. This implies that the free-stream velocity used for calculating
the latter coefficient varies along the plate due to flow pressure-gradient. The discrepancies
in the skin-friction coefficient in the laminar region over the flat-plate are probably due to an
incorrect velocity non-dimensionalization. As can be seen, the SA turbulence model predicts
transition onset later than expected. The V-SA transition model is able to predict transition
onset very close to the experimentally determined transition Reynolds number. The modified
laminar kinetic energy transition model, k-kl-ω-mod, predicts transition closer to the experi-
mental data than the original k-kl-ω closure. The empirical transition model, γ-Reθ, presents
again an anomalous behavior. This occurrence is apparently related to near leading edge bypass
transition flow conditions. Reduction effects of the flat-plate leading edge radius to 0.00075 me-
ters, are presented in Fig.4.27. The disposition of the computed skin-friction coefficient curves
by the previously applied turbulence and transition models is almost unchanged. Nonetheless,
there is a slight improvement of the transition onset prediction by both the k-kl-ω-mod and
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Figure 4.25: Flat-plate T3C1 turbulence intensity decay.

Figure 4.26: Comparison of experimental data from ERCOFTAC T3C1 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The used structured
computational light and refined grids for the mesh refinement study had the
respective sizes of 140 × 340 and 280 × 680 nodes. The flat-plate leading edge
radius size is 0.002 meters.
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Figure 4.27: Comparison of experimental data from ERCOFTAC T3C1 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, V-SA-Sep-Correct, V-SA-Improved, V-SA-Fluent-Implementation,
k-kl-ω-org, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The flat-plate leading edge radius
size is 0.00075 meters.

Table 4.7: ERCOFTAC T3C2 Flat-plate Inlet Boundary Conditions

Model U(m/s) k(m2/s2) kp(m
2/s2) ω(s−1) ν̃t(m

2/s)

SA 5 N/A N/A N/A 4.5 × 10−5

V-SA 5 N/A 0.03375 N/A 4.5 × 10−5

V-SA-Sep-Correct 5 N/A 0.03375 N/A 4.5 × 10−5

V-SA-Improved 5 N/A 0.03375 N/A 4.5 × 10−5

k-kl-ω-org 5 0.08 N/A 55 N/A
k-kl-ω-mod 5 0.08 N/A 55 N/A

k-kl-ω 5 0.08 N/A 55 N/A
γ-Reθ 5 0.08 N/A 592 N/A

k-kl-ω transition closures. The k-kl-ω-org transition model does not predict any transition on-
set, remaining laminar the whole extension of the plate. The V-SA-Sep-Correct, V-SA-Improved
and V-SA-Fluent-Implementation transition models, compute the transition threshold region on
the same transition Reynolds number as the V-SA model. However, the minimum skin-friction
coefficient value of the V-SA model is slightly lower than all the other V-SA transition closure
versions.

4.1.2.2 T3C2 flat-plate validation

The following analyzed flat-plate pressure-gradient transition test case was the ERCOFTAC
T3C2 case. The present experiment has the purpose to provide data regarding bypass transition
on the minimum cross-section station of the T3C experimental benchmark setup. Therefore,
the experimental transition onset is observed in the point where the pressure-gradient condi-
tion changes from favorable to adverse. The specified inlet boundary conditions for all tested
transition and turbulence models are presented in table 4.7. These inlet boundary conditions
are validated for the turbulence decay affected models. The turbulence intensity decay rate
is presented in Fig.4.28. As observed in Fig.4.29, the results for the T3C2 test case show
that the V-SA model is able to predict transition onset correctly. However, the V-SA model cal-
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Figure 4.28: Flat-plate T3C2 turbulence intensity decay.

Figure 4.29: Comparison of experimental data from ERCOFTAC T3C2 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The flat-plate leading edge
radius size is 0.002 meters.
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Figure 4.30: Comparison of experimental data from ERCOFTAC T3C2 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, V-SA-Sep-Correct, V-SA-Improved, V-SA-Fluent-Implementation,
k-kl-ω-org, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The flat-plate leading edge radius
size is 0.00075 meters.

culates a short transition extension when compared to the experimental data. The SA model
predicts transition onset much earlier than the experimental results. The k-kl-ω model presents
the best transition behavior of all tested models. This shows a very accurate transition onset
point with a large transition length. Yet, the latter is still shorter than the experimentally de-
termined transition extension. The modified k-kl-ω-mod model predicts transition earlier than
its original version. Nevertheless, it must be reminded that the leading edge geometry size is
not the experimentally used one. The γ-Reθ empirical model, predicts transition later than
expected, without the anomalous behavior previously reported. The leading edge radius shrink-
age effect can be visualized in Fig.4.30. Similar to the earlier obtained results of the T3C1
case, in general, the skin-friction coefficient curves remain mostly in the same positions with
some exceptions described in the following. The V-SA-Sep-Correct and the V-SA-Improved tran-
sition models improve on the transition threshold point compared to the original V-SA model.
The V-SA-Fluent-Implementation computes a slightly later transition onset. The original k-kl-ω
closure, predicts a later transition onset in comparison to the experimental skin-friction coeffi-
cient distribution. The initial OpenFoam implementation of this model, the k-kl-ω-org, predicts
a very early transition onset with a low value of skin-friction coefficient on the turbulent flat-
plate region. The k-kl-ω-mod transition model with the correct experimental leading edge
radius, is able to accurately predict the transition onset for the T3C2 test case conditions.

A similar analysis, of the predicted pre-transitional u′v′ values, presented for the zero-pres-
sure-gradient T3A test case was also applied to the T3C2. This evaluation was also done using
the experimental ERCOFTAC database of u′v′. Again this analysis was executed from the leading
edge to the transition onset point including a station in the middle of the transition length. The
results are presented in Figs.4.31, 4.32, 4.33, 4.34, 4.35, 4.36, 4.37, 4.38, 4.39 and 4.40. These
represent the axial positions in meters of 0.095, 0.195, 0.295, 0.395, 0.495, 0.595, 0.695, 0.795,
0.895 and the transition section 0.995 respectively. The latter axial positions correspond to the
Reynolds numbers of 3.85 × 104, 8.50 × 104, 13.21 × 104, 18.26 × 104, 23.69 × 104, 29.37 × 104,
35.25 × 104, 41.16 × 104, 46.75 × 104 and the transition section 51.59 × 104 respectively.
The initial behavior of the V-model mechanical approximation for u′v′ calculation is similar to
the zero-pressure-gradient flat-plate test case development. There is an overshot in the cal-
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Figure 4.31: Comparison of ERCOFTAC flat-plate T3C2 experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.095 meters or
Rex of 3.85 × 104.

Figure 4.32: Comparison of ERCOFTAC flat-plate T3C2 experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.195 meters or
Rex of 8.50 × 104.
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Figure 4.33: Comparison of ERCOFTAC flat-plate T3C2 experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.295 meters or
Rex of 13.21 × 104.

Figure 4.34: Comparison of ERCOFTAC flat-plate T3C2 experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.395 meters or
Rex of 18.26 × 104.
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Figure 4.35: Comparison of ERCOFTAC flat-plate T3C2 experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.495 meters or
Rex of 23.69 × 104.

Figure 4.36: Comparison of ERCOFTAC flat-plate T3C2 experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.595 meters or
Rex of 29.37 × 104.
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Figure 4.37: Comparison of ERCOFTAC flat-plate T3C2 experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.695 meters or
Rex of 35.25 × 104.

Figure 4.38: Comparison of ERCOFTAC flat-plate T3C2 experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.795 meters or
Rex of 41.16 × 104.
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Figure 4.39: Comparison of ERCOFTAC flat-plate T3C2 experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.895 meters or
Rex of 46.75 × 104.

Figure 4.40: Comparison of ERCOFTAC flat-plate T3C2 experimental u′v′ values with
those predicted by the transition V-model in the axial position of 0.995 meters or
Rex of 51.59 × 104.
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Figure 4.41: Evolution on the transition onset region of the scale function between
mean flow shear and turbulence scales.

culated pre-transitional u′v′ distribution near the leading edge of the flat-plate. The V-model
then approaches to the experimental data measurements up until Rex of 13.21× 104. From the
measurements at Rex of 18.26 × 104 until the station of transition onset, the V-model predicts
a lower maximum peak value of u′v′. This under prediction evolution by the V-model was not
observed in the zero-pressure-gradient analyzed T3A test case. However, the V-model restores
the maximum peak value of u′v′, on the measuring station located at Rex of 46.75 × 104. This
corresponds to the region where the V-model has already predicted the laminar boundary layer
piercing by the u′v′ values, in other words, the transition onset. At this stage, there is a large
band in the transition boundary layer where the scale functions are closer to unity. Otherwise,
it can be said that the turbulent and mean flow scales are similar in almost all over the bound-
ary layer wall-normal extension. This can be observed in Fig.4.41. The presented scale function
is related to the mean flow shear.

4.1.2.3 T3C3 flat-plate validation

The flat-plate pressure-gradient transition test case considered here was the ERCOFTAC
T3C3 case. The experimentally applied turbulent flow conditions were performed in order to
observe turbulent bypass transition under adverse-pressure-gradient. The turbulence transition
onset was set to happen prior to flow separation on the diverging region of the T3C experimen-
tal benchmark configuration. The specified inlet boundary conditions for all tested transition
and turbulence models are presented in table 4.8. The turbulence intensity decay rate for
the specified inlet boundary conditions is presented in Fig.4.42. The results for the T3C3 test
case are presented in Fig.4.43. Again the discrepancy between the computed and experimental
values of skin-friction coefficient are due to an incorrect value of free-stream velocity used
on the process of non-dimensionalization. As can be observed, the V-SA model’s transition on-
set prediction is in accordance with the experimental data. This is calculated at the correct
transition Reynolds number prior to flow separation. Nonetheless, the skin-friction coefficient
of the critical point is lower than the experimental data. Again, this might be related to the
aforementioned free-stream velocity applied on the process of non-dimensionalization. The
SA turbulence closure transits to fully turbulent regime earlier than expected. The empiri-
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Table 4.8: ERCOFTAC T3C3 Flat-plate Inlet Boundary Conditions

Model U(m/s) k(m2/s2) kp(m
2/s2) ω(s−1) ν̃t(m

2/s)

SA 3.7 N/A N/A N/A 4.5 × 10−5

V-SA 3.7 N/A 0.01848 N/A 4.5 × 10−5

V-SA-Sep-Correct 3.7 N/A 0.01848 N/A 4.5 × 10−5

V-SA-Improved 3.7 N/A 0.01848 N/A 4.5 × 10−5

k-kl-ω-org 3.7 0.05 N/A 55 N/A
k-kl-ω-mod 3.7 0.05 N/A 55 N/A

k-kl-ω 3.7 0.05 N/A 55 N/A
γ-Reθ 3.7 0.05 N/A 592 N/A

Figure 4.42: Flat-plate T3C3 turbulence intensity decay.
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Figure 4.43: Comparison of experimental data from ERCOFTAC T3C3 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The flat-plate leading edge
radius size is 0.002 meters.

cally correlated, γ-Reθ, transition model also displays a good transition onset prediction. The
phenomenological, k-kl-ω-mod and k-kl-ω, transition closures compute an early beginning of
transition. The modified version predicts the earliest result of the two models. The usage of a
smaller flat-plate leading edge radius of 0.00075 meters alters the previously presented results.
These are then displayed in Fig.4.44. The SA turbulence model results remain unchanged. The
V-SA closure computes a slightly earlier transition onset, whereas the V-SA-Sep-Correct model
predicts a later transition onset. The latter is computed after flow separation. This is not in
accordance to the experimental data, since this test case is suppose to detect bypass transition
prior to flow separation. The V-SA-Fluent-Implementation model presents a similar behavior
to the V-SA-Sep-Correct closure. On the other hand, the V-SA-Improved turbulence transition
model correctly predicts the bypass transition prior to flow separation at the exact transition
Reynolds number. It can be noticed that the k-kl-ω transition model greatly improves on the
computed transition point. Yet, its modified version predicts transition onset earlier than ex-
pected. Nevertheless, the k-kl-ω-org predicts a low skin-friction coefficient turbulent region
with a transition onset even earlier than both the k-kl-ω transition model versions. Also, the
γ-Reθ closure apparently is unaffected by the reduction of the flat-plate leading edge radius,
as it computes transition onset at almost the same position.

4.1.2.4 T3C4 flat-plate validation

The following flat-plate pressure-gradient transition benchmark is the ERCOFTAC T3C4.
This case has the particular characteristic of testing transition under strong adverse-pressure-
gradient conditions. The flow actually separates before turbulence transition onset as will be
observed in both numerical results and experimental data. The specified inlet boundary con-
ditions for all tested transition and turbulence models are presented in table 4.9. The decay
rate of the free-stream turbulence intensity over the flat-plate obtained with the applied in-
let boundary conditions in table 4.9, is disclosed in Fig.4.45. This validates the used inlet
free-stream turbulent characteristics. Shown in Fig.4.46, the results for the pressure-gradient
T3C4 test case demonstrate that the V-SA model predicts transition onset near the experimen-
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Figure 4.44: Comparison of experimental data from ERCOFTAC T3C3 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, V-SA-Sep-Correct, V-SA-Improved, V-SA-Fluent-Implementation,
k-kl-ω-org, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The flat-plate leading edge radius
size is 0.00075 meters.

Table 4.9: ERCOFTAC T3C4 Flat-plate Inlet Boundary Conditions

Model U(m/s) k(m2/s2) kp(m
2/s2) ω(s−1) ν̃t(m

2/s)

SA 1.2 N/A N/A N/A 4.5 × 10−5

V-SA 1.2 N/A 0.001944 N/A 4.5 × 10−5

V-SA-Sep-Correct 1.2 N/A 0.001944 N/A 4.5 × 10−5

V-SA-Improved 1.2 N/A 0.001944 N/A 4.5 × 10−5

k-kl-ω-org 1.2 0.02 N/A 55 N/A
k-kl-ω-mod 1.2 0.02 N/A 55 N/A

k-kl-ω 1.2 0.02 N/A 55 N/A
γ-Reθ 1.2 0.02 N/A 592 N/A

Figure 4.45: Flat-plate T3C4 turbulence intensity decay.
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Figure 4.46: Comparison of experimental data from ERCOFTAC T3C4 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The flat-plate leading edge
radius size is 0.002 meters.

tal measurements. The V-SA model correctly predicts separation induced transition at the very
end of the flat-plate. This behavior is also observed in the results obtained with the γ-Reθ,
k-kl-ω and the k-kl-ω-mod. However, the V-SA model displays a slightly sluggish turbulent ramp
up of skin-friction coefficient to the experimentally recorded values. The SA model does not
predict flow separation over the flat-plate. As can be seen in the results, the SA model plot-line
has a shorter length than the V-SA. Although both models were computed in the same mesh,
the local free-stream velocities are different. For the V-SA model, since flow separates, the
apparent cross-section of the duct is reduced, thus the local free-stream velocity is higher
than the attached flow computation from the SA closure. This will then result in different end
Reynolds numbers for the plots. The overall effect of the usage of a reduced leading edge
radius is presented in Fig.4.47. As expected, the flat-plate leading edge radius does not greatly
influence the results. This is the case since the radius reduction does not influence the imposed
pressure-gradient conditions. Taking into consideration the fact that, in the present bench-
mark test case, transition is triggered by flow separation and this in turn is conditioned by flow
adverse-pressure-gradient conditions, therefore the transition onset should remain unchanged
for a leading edge radius reduction. There is of course the case of a considerable leading
edge radius increase, which might force the flow to separate prematurely, causing an earlier
separation induced transition. Nonetheless, the V-SA transition model improved the transition
length when compared to the computed results of the larger radius test case. The V-SA-Sep-
Correct and V-SA-Improved models calculate a similar skin-friction coefficient curve to the V-SA
computed result. The V-SA-Fluent-Implementation transition closure displays an extensive and
delayed transition threshold region. The k-kl-ω-org closure presents a similar behavior to the
original k-kl-ω transition model.

4.1.2.5 T3C5 flat-plate validation

The last flat-plate pressure-gradient transition test case was the ERCOFTAC T3C5. Similar to
the T3C1, this case evaluates bypass transition for favorable-pressure-gradients. However, the
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Figure 4.47: Comparison of experimental data from ERCOFTAC T3C4 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, V-SA-Sep-Correct, V-SA-Improved, V-SA-Fluent-Implementation,
k-kl-ω-org, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The flat-plate leading edge radius
size is 0.00075 meters.

Table 4.10: ERCOFTAC T3C5 Flat-plate Inlet Boundary Conditions

Model U(m/s) k(m2/s2) kp(m
2/s2) ω(s−1) ν̃t(m

2/s)

SA 8.4 N/A N/A N/A 4.5 × 10−5

V-SA 8.4 N/A 0.09525 N/A 4.5 × 10−5

V-SA-Sep-Correct 8.4 N/A 0.09525 N/A 4.5 × 10−5

V-SA-Improved 8.4 N/A 0.09525 N/A 4.5 × 10−5

k-kl-ω-org 8.4 0.22 N/A 85 N/A
k-kl-ω-mod 8.4 0.22 N/A 85 N/A

k-kl-ω 8.4 0.22 N/A 85 N/A
γ-Reθ 8.4 0.22 N/A 915 N/A

free-stream velocity is much higher and the turbulence intensity is approximately half of the
first flat-plate pressure-gradient example. The specified inlet boundary conditions for all tested
transition and turbulence models are presented in table 4.10. The free-stream turbulence
intensity decay rate using these inlet turbulent flow characteristics is shown in Fig.4.48. The
T3C5 skin-friction coefficient experimental and numerical results are presented in Fig.4.49. The
empirically correlated model, γ-Reθ, displays the previously mentioned anomalous transition
behavior. The phenomenological models, k-kl-ω and k-kl-ω-mod, are able to calculate transition
close to the experimental data. The modified closure version computes transition earlier than
its original model. As can be seen, the V-SA model predicts transition onset to turbulence close
to the experimental data, similar to the result of k-kl-ω. The SA turbulence closure computes
fully turbulent flow regime early near the flat-plate leading edge. The obtained results for the
same case with the flat-plate leading edge radius of 0.00075 meters are presented in Fig.4.50.
Although the γ-Reθ closure delays transition inception compared to the bigger radius flat-plate
result, this delay is too large. For the present case, this transition model shows high sensitivity
to the used leading edge radius of the flat-plate. Despite the fact that the k-kl-ω transition
closure presents a delay on transition prediction, its modified version, the k-kl-ω-mod, predicts
transition onset close to the experimental data. The k-kl-ω-org transition model computes
an early transition with a low value of skin-friction coefficient on the turbulent region. The
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Figure 4.48: Flat-plate T3C5 turbulence intensity decay.

Figure 4.49: Comparison of experimental data from ERCOFTAC T3C5 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The flat-plate leading edge
radius size is 0.002 meters.
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Figure 4.50: Comparison of experimental data from ERCOFTAC T3C5 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA, V-SA-Sep-Correct, V-SA-Improved, V-SA-Fluent-Implementation,
k-kl-ω-org, k-kl-ω-mod, k-kl-ω and γ-Reθ models. The flat-plate leading edge radius
size is 0.00075 meters.

Table 4.11: ERCOFTAC T3L Flat-Plate Upstream Conditions

Case Tu(%) U(m/s)

T3L1 0.2 5.0

T3L3 2.3 5.0

T3L5 2.3 2.5

V-SA transition closure predicts the transition Reynolds number near the experimental value.
Both the V-SA-Sep-Correct and the V-SA-Improved transition models, are able to compute an
accurate transition onset Reynolds number compared to the experimental recorded Reynolds
number value. Compared to these three transition models, the V-SA-Fluent-Implementation
closure discloses a slightly earlier transition onset prediction. Finally, the SA turbulence closure
computes an early developed fully turbulent boundary layer.

4.1.3 Separation test cases

As mentioned earlier, the ERCOFTAC T3L test cases of separation induced transition were
considered for validation purposes. The importance of such validation is made clear in the
work of Hadzic and Hanjalic [10]. The experimental results from Coupland and Brierley [162],
were used for the present validation. Flow separation will be highly influenced by the fluid
properties. As such, the fluid kinematic viscosity used was the experimental value of ν =

1.6× 10−5
(
m2/s

)
. The mesh geometry is similar to the zero-pressure-gradient test cases. The

main difference is in the flat-plate leading edge. The leading edge has a curvature radius of
0.005 meters, which is in accordance with the experimental setup. Along the leading edge
the mesh has 60 nodes. The separation induced transition flat-plate geometry leading edge
mesh is presented in Fig.4.51. The geometry boundary condition types distribution is identical
to the used mesh for the zero-pressure-gradient test cases. The upstream conditions for the
considered test cases are presented in table 4.11. The following inlet boundary conditions
tables will only display a single entry for the V-SA transition model. These should be interpreted
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Figure 4.51: Separation induced transition flat-plate leading edge mesh view.

Table 4.12: ERCOFTAC T3L1 Flat-plate Inlet Boundary Conditions

Model U(m/s) k(m2/s2) kp(m
2/s2) ω(s−1) ν̃t(m

2/s)

SA 5 N/A N/A N/A 8 × 10−5

V-SA 5 N/A 1.5 × 10−4 N/A 8 × 10−5

k-kl-ω-org 5 2 × 10−4 N/A 5 N/A
k-kl-ω-mod 5 2 × 10−4 N/A 5 N/A

k-kl-ω 5 2 × 10−4 N/A 5 N/A
γ-Reθ 5 2 × 10−4 N/A 100 N/A

as the applied conditions for all of the used V-SA transition model variants.

4.1.3.1 T3L1 flat-plate validation

The presently analyzed separation induced transition test case is the T3L1. This exper-
imental case setup was devised in order to capture separation triggered transition onset for
very low free-stream turbulence intensity. As can be observed in table 4.11, this is far below
1%. The specified inlet boundary conditions for all tested transition and turbulence models are
presented in table 4.12. The results for this case are presented in Fig.4.52. A mesh refinement
study is performed using a mesh with the double number of nodes. The computations where
done using the SA turbulence model. The refine mesh results show that the turbulence closure
transition onset is slightly delayed. Nevertheless, the fully turbulent region is the same as the
regular mesh results. Although the SA model refine mesh results present a transition shift, this
is small. Therefore the results can be considered to be mesh independent. The flat-plate lead-
ing edge oscillations of skin-friction coefficient are due to laminar-boundary layer separation.
The Spalart-Allmaras low-Reynolds turbulence closure predicts transition onset in accordance to
the experimental values. Nonetheless, the model shows low values for skin-friction coefficient
in both transition and fully turbulent region. Both the V-SA-0-002 and V-SA-0-00075, calibrated
with the flat-plate leading edge radius of 0.002 and 0.00075 meters respectively, are unable to
predict the transition onset after the initial separation bubble formation. Still, both of these
models eventually compute transition onset far later over the flat-plate. The presented results
exposed a problem with the V-model based transition closures under these turbulence and flow
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Figure 4.52: Comparison of experimental data from ERCOFTAC T3L1 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA-0-002, V-SA-0-00075, the V-SA-0-00075 separation corrected,
improved and fluent implementation versions, k-kl-ω-org, k-kl-ω-mod, k-kl-ω and
γ-Reθ models. The flat-plate leading edge oscillations of skin-friction coefficient
are due to flow separation.

conditions. This issue has been understood as an excessive effect of the V-model destruction
term −Ω2νFΩ. Due to the turbulence and flow conditions of very low speed and low turbulence
intensity the resulting pre-transitional turbulence kinetic energy is very small. Consequently
the vorticity field, generated by the leading edge induced flow separation, will obliterate the
existing pre-transitional turbulent kinetic energy. Therefore, a separation correction was de-
vised and applied to the V-SA-0-00075 transition model. This correction diminishes the effect
of the V-model destruction term in flow regions where mean flow vorticity is higher than mean
flow shear. The obtained results with this correction have been previously shown throughout
the present chapter as the V-SA-Sep-Correct results. As can be seen in Fig.4.52, the corrected
model is able to predict the transition onset accurately. It also shows one of the best behavior
after transition threshold amongst the tested models. Since the V-SA-Fluent-Implementation
model is the V-SA-Sep-Correct closure implemented on Fluent through an UDF, this is able to
compute the separation induced transition. Nevertheless, this is predicted later than the Open-
Foam implementation. The V-SA-Improved transition model presents a transition behavior very
similar to the V-SA-Sep-Correct closure. The k-kl-ω phenomenological transition model is also
accurate in determining the streamwise position of turbulence transition. Still, this model
shows an abnormal distribution of skin-friction coefficient afterwards and high values within
the fully turbulent region. Even though the k-kl-ω-org and k-kl-ω-mod transition models are not
based on the V-model, these fail to capture separation induced transition near the experimen-
tal data. Both of these closures predict turbulence transition far later over the flat-plate. The
γ-Reθ empirical transition closure presents a correct transition onset prediction compared to
the experimental data. Although the model shows higher values of skin-friction coefficient in
the transition peak, the fully turbulent region is correctly computed.
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Table 4.13: ERCOFTAC T3L3 Flat-plate Inlet Boundary Conditions

Model U(m/s) k(m2/s2) kp(m
2/s2) ω(s−1) ν̃t(m

2/s)

SA 5 N/A N/A N/A 8 × 10−5

V-SA 5 N/A 0.0198 N/A 8 × 10−5

k-kl-ω-org 5 0.0235 N/A 5 N/A
k-kl-ω-mod 5 0.0235 N/A 5 N/A

k-kl-ω 5 0.0235 N/A 5 N/A
γ-Reθ 5 0.0235 N/A 60 N/A

4.1.3.2 T3L3 flat-plate validation

The second separation induced transition test case considered has a higher turbulence inten-
sity than that of the T3L1 experimental conditions. The specified inlet boundary conditions for
all tested transition and turbulence models are presented in table 4.13. The T3L3 ERCOFTAC
flat-plate test case results are presented in Fig.4.53. Again the flat-plate leading edge oscil-
lations of skin-friction coefficient are due to boundary layer separation. The Spalart-Allmaras
turbulence model computes a late turbulence transition compared to the experiment. Further-
more, the model generally presents lower values of skin-friction coefficient both in the transi-
tion region and fully turbulent flow extension. The V-SA-0-002, V-SA-0-00075 and its separation
corrected and improved versions predict transition onset on the same streamwise position as
the Spalart-Allmaras turbulence model. Therefore all of these models display a late turbulence
transition threshold compared to the experimental data. However, the V-SA-0-00075 transition
model, the separation correction variant, V-SA-0-00075-Sep-Correct, and its improved version,
V-SA-0-00075-Improved, compute a fully turbulent skin-friction coefficient distribution closer
to the experimental data. Again the V-SA-Fluent-Implementation presents a delayed transition
prediction compared to its OpenFoam implementation, V-SA-0-00075-Sep-Correct. The k-kl-ω
turbulence transition closure computes the latest transition threshold. Further, this model
presents an irregular behavior after its computed transition onset as can be seen in its fully
turbulent extension of Fig.4.53. The k-kl-ω-mod transition closure, shows a similar behavior to
the original k-kl-ω model, however, the transition onset is slightly earlier and its skin-friction
coefficient peak value is lower. The k-kl-ω-org model presents an initial behavior similar to the
SA turbulence model, however, the turbulent skin-friction coefficient value is low. The γ-Reθ
transition model is able to precisely account for the separation induced turbulence transition
onset. Notwithstanding, this closure computes higher values of skin-friction coefficient in the
presented results. This is especially evident in the transition onset skin-friction coefficient peak
value. However, the model presents the most accurate transition length compared to the re-
maining numerical results. Besides the Spalart-Allmaras turbulence closure and the k-kl-ω-org,
all of the turbulence transition models present a distribution of skin-friction coefficient values
higher than the experimental data within the fully turbulent boundary layer.

4.1.3.3 T3L5 flat-plate validation

The last considered separation induced transition experimental benchmark is the T3L5.
The specified inlet boundary conditions for all tested transition and turbulence models are
presented in table 4.14. The T3L5 test case results are presented in Fig.4.54. For all the pre-
sented turbulence and transition models, the flat-plate leading edge oscillations of skin-friction
coefficient are due to flow separation. Contrary to the T3L1 numerical results, the presently
discussed plot shows that for all tested models there is less oscillation of the skin-friction
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Figure 4.53: Comparison of experimental data from ERCOFTAC T3L3 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA-0-002, V-SA-0-00075, the V-SA-0-00075 separation corrected,
improved and fluent implementation versions, k-kl-ω-org, k-kl-ω-mod, k-kl-ω and
γ-Reθ models. The flat-plate leading edge oscillations of skin-friction coefficient
are due to flow separation.

Table 4.14: ERCOFTAC T3L5 Flat-plate Inlet Boundary Conditions

Model U(m/s) k(m2/s2) kp(m
2/s2) ω(s−1) ν̃t(m

2/s)

SA 2.5 N/A N/A N/A 8 × 10−5

V-SA 2.5 N/A 0.00496 N/A 8 × 10−5

k-kl-ω-org 2.5 0.0065 N/A 5 N/A
k-kl-ω-mod 2.5 0.0065 N/A 5 N/A

k-kl-ω 2.5 0.0065 N/A 5 N/A
γ-Reθ 2.5 0.0065 N/A 50 N/A
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Figure 4.54: Comparison of experimental data from ERCOFTAC T3L5 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA-0-002, V-SA-0-00075, the V-SA-0-00075 separation corrected,
improved and fluent implementation versions, k-kl-ω-org, k-kl-ω-mod, k-kl-ω and
γ-Reθ models. The flat-plate leading edge oscillations of skin-friction coefficient
are due to flow separation.

coefficient values within the separated flow region. This is due to the formation of a single sep-
aration bubble. The Spalart-Allmaras turbulence closure predicts a slightly longer separation
bubble, thus a later transition to turbulence compared to the experimental measurements. The
V-SA-0-002 turbulence transition closure obtained results show that the closure predicts transi-
tion onset later than the Spalart-Allmaras model. The V-SA-0-00075 transition model displays
an almost identical transition behavior to the V-SA-0-002 closure. This same turbulence tran-
sition model with the separation correction, V-SA-0-00075-Sep-Correct, predicts the transition
onset earlier than any other turbulence transition closure. Although this corrected transition
model has an apparent early transition threshold, its streamwise position of transition skin-fric-
tion coefficient peak value occurs very close to the experimentally recorded data. Both the
V-SA-Improved and V-SA-Fluent-Implementation transition models disclose a similar behavior
to the V-SA-0-00075-Sep-Correct closure with a small delay. The k-kl-ω turbulence transition
model predicts the largest separation bubble, followed by its modified version the k-kl-ω-mod
and the original implementation, the k-kl-ω-org. Therefore these models predict the latest
separation induced transition onset points. As for the empirically-correlated transition model,
γ-Reθ, this presents the best behavior in predicting the beginning of transition. Also, the model
predicts the highest skin-friction coefficient peak value closest to the experimental data. It can
be said that in general all of the turbulence and transition models have a similar behavior in
the fully turbulent region. Nonetheless, taking into consideration the experimental distribution
of skin-friction coefficient, all of the models predict a lower value than the recorded data both
in the transition and fully turbulent flow region. Yet, all transition and turbulence closures will
develop the previously mentioned abnormal behavior of the k-kl-ω model. This is an increase of
the skin-friction coefficient after the transition onset. The V-SA-0-00075-Sep-Correct is the first
model to display this distribution. The remaining models late skin-friction coefficient increase
is disclosed in Fig.4.55.
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Figure 4.55: Comparison of experimental data from ERCOFTAC T3L5 flat-plate test
case skin-friction coefficient distribution with the turbulence SA closure and the
transition V-SA-0-002, V-SA-0-00075, the V-SA-0-00075 separation corrected,
improved and fluent implementation versions, k-kl-ω-org, k-kl-ω-mod, k-kl-ω and
γ-Reθ models. The flat-plate leading edge oscillations of skin-friction coefficient
are due to flow separation. Full flat-plate extension.

4.1.4 Summary of results

A turbulence model and a selection of transition models available in the commercial soft-
ware, Ansys Fluent 13.0, were tested together with the developed transition closures. This
evaluation was performed making use of the flat-plate transition test case collection of ERCOF-
TAC.

It was concluded that altering small geometrical characteristics affects most of the pre-
sented numerical results. The change of the flat-plate leading edge radius from 0.002 meters
to the experimentally used value of 0.00075 meters has a profound effect on the development
of the pre-transitional region. In general, the leading edge radius reduction induces a later
transition onset prediction by the tested transition models.

The empirical transition model, γ-Reθ, shows an abnormal behavior for bypass transition
near the flat-plate leading edge. Also the model shows high sensitivity to the leading edge ra-
dius under the ERCOFTAC T3C5 flat-plate test case. Nevertheless, this closure presents the best
behavior for the separation induced transition test cases of the T3L benchmark study. In gen-
eral, the commercial software transition models, γ-Reθ and the k-kl-ω, are reliable transition
tools.

The modified version of the k-kl-ω phenomenological model, k-kl-ω-mod, was developed
with the intent of predicting transition similar to the k-kl-ω. This objective has been partially
achieved, as the model follows the behavioral trends of the k-kl-ω transition closure with a far
better performance than its original implementation, k-kl-ω-org. However, this still requires
further development in order to be considered as reliable as its original transition model.

The developed V-SA transition model was evaluated for two calibrations. Also corrections
were applied to the model in order to overcome the difficulties encountered in separated flow
conditions. The V-SA model variants apparently fail to correctly predict natural transition. For
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the remaining tested flat-plate cases, this transition model displays reasonable transition onset
results. The applied separation correction is effective and has a reduced effect on the overall
performance of the model.

Although the prediction of the pre-transitional u′v′ values is not perfect, it is close to the
experimentally measured data. As such, it can be concluded that the proposed V-SA transition
model is indeed able to capture some of the pre-transition physical phenomenons.
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Chapter 5

Airfoil benchmark

The purpose of this chapter is to present the first application of the developed transition
model to some of the most significant geometries in the aeronautic industry, the airfoils. These
are the cornerstone of any aeronautic endeavor.

5.1 Two-dimensional airfoil test cases

After the developed transition models validation over the simplistic, but fundamental,
flat-plate test cases, more complex geometries were chosen to further validate the developed
transition to turbulence detection tools. For all presented airfoil results, the used computa-
tional mesh was structured and had y+ values below 0.1 over the entire airfoil surface. With
exception of the T106 turbine blade, the following mesh description is valid for all presented
airfoil test cases. The chord length of all airfoils is of 1 meter. The number of mesh points
along the surface of the airfoils is 800 nodes. This is divided between the upper and lower sides
of the airfoils. The computational mesh nodes are more densely distributed near the leading
and trailing edges of the airfoils. The mesh far-field is located at approximately 15 chords
away from the airfoil. The number of mesh nodes along the direction normal to the airfoil and
far-field surfaces is of 150 points. These cluster near the airfoils surface resulting in a wall
perpendicular spacing of the first layer of cells of 1× 10−6 meters. An overview of the airfoil’s
surrounding farfield geometry mesh topology is shown in Fig.5.1.

The used wall boundary conditions for the applied turbulence and transition models follow
the same settings presented in the “ERCOFTAC benchmark“ chapter. The applied numerical and
fluid characteristics for all tested cases, with exception of the T106 turbine blade test case,
are the same as those disclosed in section “Flat-plate test cases“.

5.1.1 NREL airfoils for HAWTs

The development of specialized airfoils for HAWTs, or horizontal-axis wind-turbines, began
in 1984 with the National Renewable Energy Laboratory, NREL, and the Airfoils, Incorporated
[163]. Most of the previously used HAWT airfoils were initially developed for airplane wings.
These were designed according to requirements of the National Advisory Committee for Aero-
nautics (NACA) and National Aeronautics and Space Administration (NASA). Therefore, an effort
to create an airfoil specifically for horizontal-axis wind turbine use was required. This resulted
in the Eppler Airfoil Design and Analysis Program [164] and [165]. The latter produced multiple
airfoil concepts such as the S805 and S809. These airfoils were studied theoretically and exper-
imentally verified. This was performed in the lowest turbulence intensity wind tunnel available
at the time. The experiment took place at the Delft University of Technology Low Speed Lab-
oratory, The Netherlands. This was a low turbulence intensity wind tunnel with a maximum
free-stream turbulence intensity of less than 0.05%. Thus the reported results were obtained
in free-atmospheric conditions.
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Figure 5.1: General overview of airfoil far-field mesh topology with 120000 nodes.

Figure 5.2: Bucket shape drag polar characteristics. Points A and B delimit the low
drag region of the operational envelope for the airfoil. Adapted from [5].

5.1.1.1 S805 airfoil validation

The S805 airfoil is mainly used in wind turbine energy generation. The airfoil design was
conducted in order to fulfill two main objectives. The first design objective for this airfoil was a
characteristic moderate low maximum lift coefficient. The second objective was the constraint
of a low drag-profile under a minimum and maximum lift coefficient range of 0.5 to 0.9 for the
Reynolds number of 1× 106. Therefore, the design philosophy of these type of airfoils is based
on the concept of producing a bucket shape drag polar such as the one shown in Fig.5.2. The
airfoil design and experimental data presented here was obtained from the technical report of
Somers [5].

As reported in [166], the wind tunnel at the Delft University of Technology Low Speed
Laboratory presented a variation range of turbulence intensity levels from 0.02% to 0.04% for
the velocities of 10m/s and 60m/s respectively. As such, since the used free-stream veloc-
ities were 15m/s and 30m/s, an approximate low-free-stream turbulence intensity value of
0.03% was chosen to represent the wind tunnel test conditions. The test case computation was
conducted using the SA turbulence closure and the V-SA transition model with the separation
correction and its improved version. The used transition closure is then the one calibrated for
the ERCOFTAC flat-plate leading edge radius of 0.00075 meters. This particular calibration was
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Table 5.1: NREL S805 Airfoil Inlet Boundary Conditions

Model U(m/s) kp(m
2/s2) ν̃t(m

2/s)

SA 15 N/A 1 × 10−4

V-SA-Sep-Correct 15 3.038 × 10−5 1 × 10−4

V-SA-Improved 15 3.038 × 10−5 1 × 10−4

SA 30 N/A 1 × 10−4

V-SA-Sep-Correct 30 1.22 × 10−4 1 × 10−4

V-SA-Improved 30 1.22 × 10−4 1 × 10−4

Figure 5.3: S805 airfoil detail mesh view. The airfoil has 800 nodes over its surface
with a total number of mesh points of 120000.

selected since it represents a more authentic calibration based on the experimental geometry
specifications. The used inlet boundary conditions for all tested angles of attack over the S805
airfoil are presented in table 5.1.

A mesh independence test was performed using a computational mesh with double number of
nodes. The S805 airfoil near surrounding mesh is shown in Fig.5.3. The results of this validation
were focused on the distribution of skin-friction coefficient over the top surface of the airfoil.
These are presented in Fig.5.4. As can be observed, there is almost no change from the used
mesh to the refined case. Therefore, this geometry computational results are considered mesh
independent.

The flow transition threshold points over the upper and lower surfaces of the airfoil
were obtained by inspection of the skin-friction coefficient curve over these. The obtained
distribution of transition points for flow Reynolds number of 1 × 106, is presented in Fig.5.5.
The SA turbulence model presents a distribution of the transition onset points that vary with
the flow AoA. These transition points are not in accordance with the experimental data. With
exception of extreme AoA values, the SA model predicts earlier transition regions over the
airfoil upper and lower surfaces. The V-SA-Sep-Correct transition closure is able to predict with
some accuracy most of the transition onset points in accordance with the experiment. However,
this does not include the fast transition point movement over the upper surface of the airfoil.
The V-SA-Improved transition model presents a very similar transition onset prediction behavior
to the separation corrected V-SA model.

The airfoil drag polar distribution for the same flow Reynolds number is presented in Fig.5.6.
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Figure 5.4: Mesh independence test using skin-friction coefficient value distribution
over the S805 airfoil top surface at an AoA of 12̊ for Reynolds number of 1 × 106.

Figure 5.5: Experimental data comparison of transition onset points over the S805
airfoil upper and lower surfaces with computed results from the turbulence SA
closure and the transition V-SA-Sep-Correct and V-SA-Improved models. The flow
Reynolds number is 1 × 106.
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Figure 5.6: Experimental data comparison of the drag polar of the S805 airfoil with
computed results from the turbulence SA closure and the transition
V-SA-Sep-Correct and V-SA-Improved models. The flow Reynolds number is 1 × 106.

The experimental drag polar has the desired bucket shape. The V-SA-Sep-Correct model is able
to correctly predict the lift to drag coefficient ratio for most of the tested angles. For the
upper branch of the drag polar, the V-SA-Sep-Correct closure predicts slightly higher values of
drag coefficient than those obtained in the experiment. The V-SA-Improved model computes a
drag polar similar to the V-SA-Sep-Correct closure, showing only some improvement on the drag
polar upper tip extension. For the SA turbulence model case, the computed drag polar presents
a shape with higher drag coefficient values.

It should be noticed that the computed V-SA-Sep-Correct drag polar presents an apparent
down shift in comparison to the experimental data for the high values of lift coefficient, as if
the predicted lift coefficient is less than the expected. For this reason, an evaluation of the
lift coefficient with AoA is presented in Fig.5.7. As can be seen, the V-SA-Sep-Correct transition
model does indeed predict slightly lower values of lift coefficient. This is more pronounced for
the higher AoA range, approximately between 9̊ and 15̊ . However, for the same AoA range, the
V-SA-Improved transition model computes higher values of lift coefficient than was expected.
The SA turbulence closure predicts the highest values of lift coefficient.

Although the latter analysis clarifies the V-SA model variants computed lift coefficients, this
can not account for the large deviation from the experimental data at high angles of attack of
both the V-SA transition models within the lift to drag plot results of Fig.5.6. As such, another
analysis of the drag coefficient with AoA is disclosed in Fig.5.8. As can be seen, for the range
of AoA from −4˚to 8 ,̊ the V-SA-Sep-Correct model predicts a lower drag coefficient over the
airfoil than the SA turbulence model. This is to be expected, since the V-SA-Sep-Correct tran-
sition closure predicts an initial laminar boundary layer extension over the airfoil while the SA
closure assumes fully turbulent boundary layer flow from the leading edge region of the geome-
try. Nevertheless, for higher angles of attack, the V-SA-Sep-Correct transition model increases
drastically its computed drag coefficient, surpassing even that predicted by the SA model at an
AoA of 10 .̊ The V-SA-Improved transition model improves on this issue. In order to understand
what is causing this behavior a flow-field view at the AoA of 10˚is disclosed in Fig.5.9. It is
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Figure 5.7: Experimental data comparison of lift coefficient with AoA for the S805
airfoil with computed results from the turbulence SA closure and the transition
V-SA-Sep-Correct and V-SA-Improved models. The flow Reynolds number is 1 × 106.

Figure 5.8: Experimental data comparison of drag coefficient with AoA for the S805
airfoil with computed results from the turbulence SA closure and the transition
V-SA-Sep-Correct and V-SA-Improved models. The flow Reynolds number is 1 × 106.
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Figure 5.9: Comparison of flow stream-lines with velocity magnitude contour under
an AoA of 10̊ for the S805 airfoil between computed results from the turbulence SA
closure and the transition V-SA-Sep-Correct and V-SA-Improved models. The flow
Reynolds number is 1 × 106.
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Figure 5.10: Experimental data comparison of transition onset points over the S805
airfoil upper and lower surfaces with computed results from the turbulence SA
closure and the transition V-SA-Sep-Correct and V-SA-Improved models. The flow
Reynolds number is 2 × 106.

possible to conclude that, at the AoA of 10˚or higher, the reason why the V-SA-Sep-Correct
turbulence transition model increases its drag coefficient is due to flow separation as shown
in Fig.5.9. Although the transition closure is already under full turbulent regime, it predicts
flow separation. However, the SA turbulence model computes an attached flow over the entire
airfoil surface. The V-SA-Improved model computes the flow turbulent extension as attached to
the airfoil surface. Additionally, for the AoA range of 3˚to 7 ,̊ both transition models present
higher values of drag coefficient when compared to experimental data. This is due to the delay
presented by both transition models, that were not able to correctly capture the fast transition
shift over the upper surface of the airfoil as disclosed in Fig.5.5.

For comparison purposes, the transition onset evolution and drag polar results were also
obtained for flow Reynolds number of 2 × 106. Therefore, the upper and lower airfoil surface
evolution of transition threshold points with angle of attack is presented in Fig.5.10. Similar
conclusions to the latter lower Reynolds number case can be withdrawn from the comparison
between experimental and numerical results. Nonetheless, it must be noted that for both the
V-SA-Sep-Correct and V-SA-Improved transition models the fast transition shift over the airfoil
upper surfaces is predicted with a smaller delay in relation to the experimental data, with a
slightly larger delay by the improved transition model version.

The S805 airfoil drag polar for flow Reynolds number of 2 × 106 is presented in Fig.5.11.
The experimental results for the flow Reynolds number of 2× 106 differ slightly from the lower
Reynolds number flow of 1 × 106 test case. The most pronounced difference regards the maxi-
mum lift coefficient value of the top corner from the bucket shape base of the drag polar. For
the low Reynolds flow case this value of lift coefficient is 0.9, while for the high Reynolds case
this is roughly 0.7. The SA turbulence model predicts a drag polar again with larger values of
drag coefficient. Both the V-SA-Sep-Correct and V-SA-Improved transition models are able to
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Figure 5.11: Experimental data comparison of the drag polar of the S805 airfoil with
computed results from the turbulence SA closure and the transition
V-SA-Sep-Correct and V-SA-Improved models. The flow Reynolds number is 2 × 106.

Table 5.2: NREL S809 Airfoil Inlet Boundary Conditions

Model U(m/s) kp(m
2/s2) ν̃t(m

2/s)

SA 30 N/A 1 × 10−4

V-SA-Sep-Correct 30 1.22 × 10−4 1 × 10−4

V-SA-Improved 30 1.22 × 10−4 1 × 10−4

predict a reasonable drag polar compared to the experimental data. However, for the higher
lift coefficient range the lift to drag ratio, computed by the V-SA-Sep-Correct transition closure,
deviates more noticeably from the experimental data. The V-SA-Improved turbulence transition
model presents results closer to the experimental data at this high AoA range.

5.1.1.2 S809 airfoil validation

Similar to the S805 airfoil, the S809 was created for wind turbine energy generation. The
airfoil design was also conducted in order to fulfill the objectives of a characteristic moderate
low maximum lift coefficient and a constant low drag-profile for a lift coefficient range. The
main difference between the S809 and the S805 airfoil is on the second objective character-
istics. This is then the imposition of a low drag-profile under a minimum and maximum lift
coefficient range of 0.2 to 0.8 for the Reynolds number of 2× 106. The disclosed airfoil design
and experimental data was obtained from the technical report of Somers [167]. Other sources
of data can also be found in the experimental work of Ramsay et al. [168, 169].

Analogous to the previous S805 airfoil case, this benchmark test case computation was
performed using the SA turbulence closure and the separation corrected and improved V-SA
transition model versions, V-SA-Sep-Correct and V-SA-Improved. The applied inlet boundary
conditions for all tested angles of attack over the S809 airfoil are presented in table 5.2.

Resembling the previous airfoil test case, a mesh refinement validation was also performed
for the S809 airfoil. This was executed using a computational mesh which has the double
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Figure 5.12: S809 airfoil detail mesh view. The airfoil has 800 nodes over its surface
with a total number of mesh points of 120000.

number of nodes. The S809 airfoil neighboring mesh is disclosed in Fig.5.12. The computed
results of skin-friction coefficient over the top surface of the airfoil are disclosed in Fig.5.13.
Although there is a small skin-friction coefficient value deviation at the leading edge of the
airfoil, the remaining surface results are equal. The refined mesh predicts a slightly lower
value of skin-friction coefficient at the leading edge. As such, the S809 airfoil computational
mesh results are considered to be mesh independent.

For flow Reynolds number of 2 × 106, the transition onset regions were recorded for both
upper and bottom sides of the airfoil. The obtained results are presented in Fig.5.14. In general
the SA turbulence model predicts transition onset points earlier than the experimental recorded
data. The V-SA-Sep-Correct closure is able to predict most of the transition onset regions close
to the experimental data points. The improved V-SA transition model, V-SA-Improved, computes
the transition threshold points similar to the V-SA-Sep-Correct closure. Although the V-SA-Im-
proved model computes the upper surface transition shift with a very small delay, the lower
surface transition behavior shows an improvement when compared to the V-SA-Sep-Correct clo-
sure.

The obtained airfoil drag polar is presented in Fig.5.15. The SA turbulence closure shows
a drag polar with higher drag coefficient values compared to the experimental data. The
V-SA-Sep-Correct transition model computes an accurate drag polar for most of its extent,
with exception for the very low negative AoA range. The improved V-SA transition model,
V-SA-Improved, computes better results at these negative AoA values. The remaining drag
polar plot is almost equal to the V-SA-Sep-Correct transition closure.

5.1.2 Aerospatiale A-airfoil validation

The Aerospatiale A-airfoil has mostly been used for turbulence research [170]. The presented
experimental data was obtained by ONERA in the F1 and F2 wind tunnels [171]. Additionally,
works such as [172] [173] and [174], constitute some of the experimental data sources for this
airfoil. Most of the numerical works focus mainly on validation of RANS turbulence models and
LES simulations [175] [176] and [177]. The considered experiment was the F2 wind tunnel airfoil
test case. This was conducted over the Aerospatiale A-airfoil for an angle of attack of 13.3 .̊
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Figure 5.13: Mesh independence test using skin-friction coefficient value distribution
over the S809 airfoil top surface at an AoA of 15̊ for Reynolds number of 2 × 106.

Figure 5.14: Experimental data comparison of transition onset points over the S809
airfoil upper and lower surfaces with computed results from the turbulence SA
closure and the transition V-SA-Sep-Correct and V-SA-Improved models. The flow
Reynolds number is 2 × 106.
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Figure 5.15: Experimental data comparison of the drag polar of the S809 airfoil with
computed results from the turbulence SA closure and the transition
V-SA-Sep-Correct and V-SA-Improved models. The flow Reynolds number is 2 × 106.

Table 5.3: Aerospatiale A-airfoil Inlet Boundary Conditions

Model U(m/s) kp(m
2/s2) ν̃t(m

2/s)

SA 30 N/A 1 × 10−4

V-SA-Sep-Correct 30 1.22 × 10−4 1 × 10−4

V-SA-Improved 30 1.22 × 10−4 1 × 10−4

The experimental chord Reynolds number was 2 × 106. The F2 wind tunnel experimental test
conditions presented free-stream turbulence intensity values lower than 0.05%. Therefore, a
turbulence intensity value of 0.03% was applied in the presented computational results. The
SA turbulence model, the separation corrected V-SA transition closure, V-SA-Sep-Correct, and
its improved version, V-SA-Improved, were used in the Aerospatiale A-airfoil test case computa-
tion. The used inlet boundary conditions for the tested AoA over the A-airfoil are presented in
table 5.3.

In order to assure that the obtained results will not vary much with the selected computa-
tional mesh, an independence validation was performed. Again, the computed numerical mesh
had a double number of nodes. The Aerospatiale A-airfoil surface nearby mesh is presented in
Fig.5.16. For this validation, skin-friction coefficient distribution over the airfoil top surface for
the used computational mesh and its refined version, was evaluated. Therefore, a skin-friction
coefficient plot over the upper surface of the airfoil is presented together with experimental
data in Fig.5.17. The refined mesh skin-friction coefficient distribution presents a slightly ear-
lier development of the flow behavior compared to the used mesh. Turbulence transition and
flow separation are predicted slightly earlier than the obtained results with the regular mesh.
Nonetheless, this is a small deviation considering the increase in node distribution, therefore
the results are considered to be mesh independent.

As discussed in the numerical work of Dahlström and Davidson [178], for the F2 wind
tunnel test, the flow over the upper surface of the A-airfoil transits to turbulence at 12% chord
length. Afterwards, the flow develops under adverse-pressure-gradient until its separation point
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Figure 5.16: Aerospatiale A-airfoil detail mesh view. The airfoil has 800 nodes over
its surface with a total number of mesh points of 120000.

Figure 5.17: Aerospatiale A-airfoil upper surface skin-friction coefficient
experimental data comparison with computed results from the turbulence SA
closure and the transition V-SA-Sep-Correct and V-SA-Improved models. A mesh
refinement study using a mesh with double number of nodes is presented. The
experimental transition threshold is marked by the vertical dashed line. The zero
skin-friction coefficient value is marked by the horizontal dotted line. The flow
Reynolds number is 2 × 106.
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Table 5.4: T106 Turbine Blade Test Conditions

Tu(%) kp(m
2/s2) ν̃t(m

2/s)

1 1.41135 4.563 × 10−6

2 5.6454 1.732 × 10−5

3 12.7022 1.197 × 10−5

4 22.5816 4.120 × 10−6

5 35.2838 9.678 × 10−7

6 50.8086 1.785 × 10−7

6.7 64.6863 4.958582 × 10−8

located at roughly 82.5% of the chord length. As observed in the obtained numerical results,
the SA turbulence model captures correctly the experimental flow separation point. However,
the flow transition threshold is predicted to occur right at the leading edge of the airfoil. The
V-SA-Sep-Correct transition closure is able to accurately predict the experimental transition
point at 12% of the chord. Nonetheless, the V-SA-Sep-Correct closure predicts an earlier flow
separation at approximately 65% of the chord. The improved transition model, V-SA-Improved,
computes an accurate transition onset. Also, the computed separation point is in accordance
with the experimental data, similar to the SA turbulence model.

5.1.3 T106 turbine blade airfoil

The knowledge of flow losses in turbine cascades is critical to evaluate the latter mechanical
efficiency. This is mostly related to the behavior of the laminar boundary layer transition to
turbulence. It is then of great interest to delay the boundary layer transition onset. As stated
by Hoheisel et al. [179], “An important aspect of turbine aerodynamic design is the question of
optimum profile shape to reduce the losses. With respect to the boundary layer state of actual
turbo-machinery blades, it is essential to find velocity distributions with the laminar-turbulent
transition point as far downstream as possible.“.

One of the first works to evaluate the effects of turbulence on turbine cascades performance
was presented by Hebbel [180]. However, the first work to carefully consider the effects of
varying free-stream turbulence intensity was presented by Hoheisel et al. [179]. The T106
linear turbine cascade blade experimental data from [179] was used to evaluate the improved
V-SA transition model version.

In order to have access to a fast implicit density based solver, the V-SA-Improved transition
model was implemented in Ansys Fluent. Evaluation of the separation, transition onset and
flow re-attachment over the suction side of the T106 turbine blade was performed. This was
performed for the Reynolds number value of Re = 11 × 105. A variation of the free-stream
turbulence intensity from Tu = 1% to Tu = 6.7% was considered. A compressible fluid was
used with perfect gas law for density calculation. The applied fluid kinematic viscosity was set
to a constant value of ν = 1.809 × 10−5

(
m2/s

)
. The inlet flow angle was 37.7˚and the outlet

flow Mach number was 0.59. The test conditions are disclosed in table 5.4.

The used numerical mesh was both structured and unstructured with y+ values below 0.3

for the entire T106 geometry. This mesh had a blade chord of 0.1 meters with 400 mesh nodes
around the turbine airfoil. The first layer of cells had a wall normal distance of 1×10−6 meters.
In order to model a linear turbine cascade, linear periodic boundary conditions were applied
above and below the blade with a separating distance equal to the cascade pitch of 0.0799

meters. The geometry inlet was located a pitch distance before the leading edge of the turbine
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Figure 5.18: General overview of the T106 turbine blade airfoil mesh. The total
number of mesh points is 52000.

blade and the geometry outlet was located at two pitch distances after the blade leading edge.
The applied boundary conditions can be observed on the general mesh overview presented in
Fig.5.18. The unstructured mesh portion was used as an interface between the structured mesh
regions as shown in Fig.5.19.

A mesh validation was performed using a computational mesh with double number of nodes.
The considered analysis concerns the skin-friction coefficient distribution along the suction side
of the T106 geometry. This is disclosed in Fig.5.20. Although the mesh validation shows a small
deviation, it can be considered that the obtained results are mesh independent.

The results for the flow Reynolds number of Re = 11× 105 are presented in Fig.5.21. As can
be observed, turbulence transition onset is driven by bypass transition or separation induced
transition depending on the free-stream turbulence intensity. For lower values of turbulence
intensity, less than Tu = 3%, the dominant transition process is separation induced transi-
tion. For higher values of free-stream turbulence intensity, turbulence transition is performed
through bypass transition mechanisms. The V-SA-Improved transition model is able to capture
this shift of transition process from separation induced transition to bypass transition. However,
the V-SA-Improved closure computes flow separation later than the experimental record. This
is also observed for the transition onset curve with exception for the bypass transition onset
curve section where the V-SA-Improved transition model predicts a slightly earlier transition on-
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Figure 5.19: T106 turbine blade airfoil detail mesh view. The airfoil has 400 nodes
over its surface.

Figure 5.20: Mesh independence test using skin-friction coefficient value distribution
over the T106 turbine blade airfoil suction side surface, under flow Reynolds number
of Re = 11 × 105 with free-stream turbulence intensity of Tu = 1%.
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Figure 5.21: Experimental data comparison of laminar boundary layer evolution over
the T106 turbine blade airfoil under flow Reynolds number of Re = 11 × 105. The
separated regions are represented by ”S“, transition onset points are disclosed by
”TO“ and flow re-attachment zones are designated by ”R“. The improved V-SA
transition model, V-SA-Improved, was used for comparison along with results from
the SA turbulence closure and the numerical work of Cutrone et al. [6].

set than the experimental data curve. The numerical work of Cutrone et al. [6], presents very
little data on this specific result. Nonetheless, for the lower turbulence intensity of Tu = 2%,
the presented numerical data is similar to the V-SA-Improved computed separation point. The
remaining transition onset and re-attachment points are in better agreement with experimen-
tal data than the V-SA-Improved model. However, for the case of high free-stream turbulence
intensity of Tu = 7%, the numerical data of Cutrone et al., presents a late turbulent transition
onset point. The SA turbulence model computes a turbulence transition threshold at the leading
edge of the T106 turbine blade.

In order to evaluate the efficiency of a turbine blade a total pressure loss coefficient is
calculated according to the work of [179]. This is disclosed in (5.1).

ζ =
Ptotinlet − Ptotoutlet
Ptotinlet − Pstaticoutlet

(5.1)

The obtained total pressure loss coefficient with varying free stream turbulence intensity is
presented in Fig.5.22. The experimental data validation indicates that the V-SA-Improved tran-
sition closure is able to accurately compute the pressure losses for lower turbulence intensities
than Tu = 2% and larger turbulence intensities than Tu = 6%. The transition model over-pre-
dicts the pressure losses on the bypass transition turbulence intensity range of Tu = 3% to
Tu = 5%. From the previously presented transition onset analysis this is related to the tran-
sition process shift from separation induced transition to bypass transition mechanisms. This
shift forces the transition threshold to move towards the leading edge of the turbine blade, or
in other words, it imposes an earlier transition onset. Nevertheless, the V-SA-Improved transi-
tion model predicted pressure-loss coefficient values are closer to the experimental data than
the SA turbulence closure computed coefficients.
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Figure 5.22: Experimental data comparison of total pressure loss coefficient of the
T106 turbine blade airfoil under flow Reynolds number of Re = 11 × 105. This is
evaluated within a range of free-stream turbulence intensity values of Tu = 0.8% to
Tu = 7.1%. The V-SA-Improved transition model was used for comparison along
with results from the Spalart Allmaras turbulence model.

5.1.4 Summary of results

The separation corrected V-SA transition model is able to predict with some accuracy the
transition threshold regions for various airfoil geometries. However, the analysis performed
with the S805 airfoil and the Aerospatiale A-airfoil revealed a problem with the V-SA-Sep-Cor-
rect. Under adverse pressure gradient flow, the model computes fully turbulent boundary layer
separation earlier than the experimental data. Although the V-SA-Sep-Correct closure makes
use of the SA model as its turbulent component, this early separation is also sooner than what
the SA turbulence model computes.

The improvements applied to the V-SA-Sep-Correct model, resulting in the V-SA-Improved
transition closure, enabled the model to correctly compute fully turbulent attached flow fea-
tures under adverse-pressure-gradient conditions similar to the SA turbulence closure. Also, the
implemented modifications do not significantly change the transition onset prediction behavior
of the V-SA-Sep-Correct model.

The validation with the T106 turbine blade airfoil presented some issues regarding the
flow correct separation point and the transition onset within the separated flow extension. For
the lower free-stream turbulence intensity numerical runs, the V-SA-Improved transition model
systematically predicts delayed flow separation and transition onset points in comparison with
the experiment.

For the increased free-stream turbulence intensity, the transition process shifts for bypass,
and the transition onset region predicted by the V-SA-Improved model approaches that of the
experimental data. However, for this case the bypass transition onset is predicted slightly
earlier than the experiment. When compared to the SA turbulence closure, the use of the
V-SA-Improved model allows a more accurate calculation of the turbine pressure losses.
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Chapter 6

Three-dimensional transition flow benchmark

A complete validation of any turbulence transition model for industry use should include re-
al-world geometries. Therefore, three-dimensional geometry validation test cases must be used
in order to perceive the developed model’s capacity of predicting complex three-dimensional
transition flows.

6.1 Three-dimensional geometry test cases

The selected cases were a simple 6:1 Prolate-spheroid geometry, which resembles a fuselage
shape, the Onera-M6 wing geometry and the compressible benchmark test case the DLR-F5 wing.
The used wall boundary conditions for the applied turbulence and transition models follow the
same settings presented in chapter “ERCOFTAC benchmark“. Unless stated otherwise, the
applied numerical and fluid characteristics for all tested cases are the same as those disclosed
in section “Flat-plate test cases“.

6.1.1 The 6:1 Prolate-spheroid test case

The incompressible three-dimensional geometry of a 6:1 prolate-spheroid was computed
using SA, V-SA, the V-SA with separation correction, its improved model version, V-SA-Improved,
and the empirical correlation transition model of Ansys Fluent, the γ −Reθ.

These test cases were performed using the experimental data of [7]. This was obtained
through a personal communication with Dr. Kreplin. The latter experimental work has many
test cases, however only some of these were considered for validation purposes. The selected
three test cases had significant transition effects. The upstream conditions for these test cases
are presented in table 6.1. The experimental setup comprised of a 6:1 prolate-spheroid with a
major and minor axis lengths of 2.4 and 0.4 meters respectively. For the considered test cases
the experimental flow velocity was 45 (m/s). The experimental fluid kinematic viscosity was
ν = 1.7× 10−5

(
m2/s

)
. In order to perform validation using these test cases experimental data,

an equal three-dimensional geometry was used with the same dimensions.

The used prolate-spheroid mesh was structured and had y+ values below 0.6 over the
entire surface. Along the surface major axis the mesh had 400 computational nodes. In the
azimuth orientation, the prolate-spheroid cross-section had 100 mesh nodes. The total value
of grid points over the prolate-spheroid surface was 40000. The total number of mesh points
is of 2.8 million. From these a value of 1.6 million cells belong to the boundary layer region.

Table 6.1: 6:1 Prolate-spheroid Test Conditions

AoA Tu(%) Re

5̊ 0.1 6.5 × 106

15̊ 0.1 6.5 × 106

30̊ 0.1 6.5 × 106
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Figure 6.1: General overview of the 6:1 Prolate-spheroid mesh. The inlet and outlet
surfaces are indicated and colored with the corresponding surface name color. The
spheroid computational grid has a total number of 2800000 mesh points.

Table 6.2: 6:1 Prolate-spheroid Inlet Boundary Conditions

Model U(m/s) k(m2/s2) kp(m
2/s2) ω(s−1) ν̃t(m

2/s)

SA 45 N/A N/A N/A 4.5 × 10−5

V-SA 45 N/A 0.003038 N/A 4.5 × 10−5

V-SA-Sep-Correct 45 N/A 0.003038 N/A 4.5 × 10−5

V-SA-Improved 45 N/A 0.003038 N/A 4.5 × 10−5

γ-Reθ 45 0.003038 N/A 1 N/A

The first layer of cells over the spheroid surface were distanced at 1 × 10−5 meters. The 6:1
Prolate-spheroid surrounding structured mesh is disclosed in Fig.6.1. A detail view of the 6:1
Prolate-spheroid tip surface mesh is presented in Fig.6.2.

The inlet boundary conditions for these test cases of transition under cross-flow effects
over a 6:1 prolate-spheroid are presented in table 6.2. The applied inlet boundary conditions
for the Fluent transition model γ−Reθ, were selected in order to simulate the same turbulence
intensity in the free-stream as presented in table 6.1. The used fluid kinematic viscosity was
the experimental value of ν = 1.7× 10−5

(
m2/s

)
.

A mesh independence validation test case was computed using a computational grid with 6
million cells. A skin-friction coefficient contour map shows the refinement effect on the tran-
sition region oscillations in Fig.6.3. The refined mesh oscillations present smaller amplitudes.
The transition onset region is mostly the same, thus the computed results can be considered to
be mesh independent.

Cut-section plots of skin-friction coefficient for the obtained results is performed. The
cut-section plane is perpendicular to the 6:1 prolate-spheroid minor axis and contains the latter
volume center point. This section cuts the 6:1 prolate-spheroid in the x-z plane as shown in
Fig.6.4.

The results for the 5 ˚angle of attack, AoA, test case are presented in Fig.6.5. The
experimental data for the prolate-spheroid tips is not available. Thus, these have been assigned
with a zero value of skin-friction coefficient in all presented results. Nevertheless, for all
AoA the flow separates at the trailing edge of the prolate-spheroid. As can be seen, the SA
closure determines transition onset right at the leading edge of the prolate-spheroid. The
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Figure 6.2: The 6:1 Prolate-spheroid leading edge detail mesh view. The
Prolate-spheroid has 40000 nodes over its surface.

Figure 6.3: Prolate-spheroid mesh independence validation with AoA 5̊ . The
V-SA-Sep-Correct transition model calculated skin-friction coefficient contour map is
used as surface contour. The top contour represents the 2.8 million cells mesh
result and the bottom contour shows the refinement effect of the usage of a 6
million cell computational grid.
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Figure 6.4: X-Z cut-section of 6:1 prolate-spheroid for skin-friction coefficient plots.
The cutting plane is perpendicular to the 6:1 prolate-spheroid minor axis and
contains its origin point. The presented structured mesh has the size of 100 × 400

nodes.

V-SA transition model predicts transition onset near to the experimental result. It should be
noted that, the transition length of the V-SA is shorter than the experimental data. However,
the transition onset position is quite close to the experimental measurements. The separation
corrected V-SA model version predicts a slightly earlier transition threshold compared to the
base V-SA transition closure. The V-SA-Improved transition model displays a transition onset
behavior similar to the experimental recorded data. The γ − Reθ transition model predicts
the transition onset correctly but the transition line along the surface has an incorrect angle.
A skin-friction coefficient plot from a top x-z cutting plane parallel to the one presented in
Fig.6.4 is presented in Fig.6.6. It is shown that the γ − Reθ empirical transition model is
able to correctly predict transition onset as well as the late transition value of skin-friction
coefficient. For this top cut section, it is seen that the separation corrected version of the
V-SA model presents a weaker behavior than its original version for these flow conditions. The
V-SA-Improved transition model computes a transition region close to the experimental data.

The central x-z cutting plane results are presented in Fig.6.7. The presented results con-
firm the reliability of the V-SA model and the fact that the separation corrected version of the
transition model predicts a slightly earlier transition onset. The V-SA-Improved closure com-
putes a correct transition onset compared to the experimental data. Although the computed
initial skin-friction coefficient distribution along the fully turbulent flow length is accurate, the
calculated skin-friction coefficient values over the Prolate-spheroid rear tip is slightly over-pre-
dicted.

The results for the AoA 15˚test case shown in Fig.6.8 expose the fact that the SA model
predicts transition at the leading edge of the geometry. The V-SA closure is able to predict tran-
sition onset near the experimental values although with some delay. The separation corrected
V-SA closure presents a similar transition pattern to the original transition model. The V-SA-Im-
proved transition model predicts the transition onset later than both the V-SA and V-SA-Sep-Cor-
rect closures. Again the γ − Reθ transition model predicts the transition onset very close to
the experimental data but the transition zone shape is incorrect. In the work of [181], similar
numerical results were obtained with the γ−Reθ transition model for these last two test cases.
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Figure 6.5: Comparison of experimental data from [7] for skin-friction coefficient
contour map of 6:1 prolate-spheroid with AoA 5̊ with numerical results from the
turbulence SA closure and the transition V-SA, V-SA-Sep-Correct, V-SA-Improved and
γ-Reθ models.
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Figure 6.6: Comparison of experimental skin-friction coefficient along a top X-Z
cutting plane over the 6:1 prolate-spheroid with AoA 5̊ with numerical results from
the turbulence SA closure and the transition V-SA, V-SA-Sep-Correct, V-SA-Improved
and γ-Reθ models.

Figure 6.7: Comparison of experimental skin-friction coefficient along the X-Z
cutting plane over the 6:1 prolate-spheroid with AoA 5̊ with numerical results from
the turbulence SA closure and the transition V-SA, V-SA-Sep-Correct, V-SA-Improved
and γ-Reθ models.
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The x-z cutting plane results are presented in Fig.6.9. As can be seen, the V-SA model
predicts transition onset close to the experimental data with a slight delay. However, due to
the separation corrected V-SA model earlier transition threshold prediction behavior, this com-
putes the transition onset point closer to the experimental data. Both of the transition models
predicted a transition skin-friction coefficient peak value lower than that of the experimental
data. The V-SA-Improved transition closure computes the transition threshold later than ex-
pected, displaying a slightly higher value of skin-friction coefficient over the fully turbulent
region when compared to the remaining turbulence and transition models. The evolution of
flow streamlines and u′v′ iso-surfaces over the spheroid are presented in Fig.6.10. As can be
observed, there is flow separation at the trailing edge of the spheroid. Also, the leading edge
u′v′ iso-surfaces patterns are quite interesting. There seems to be two sets of u′v′ fluctuations
over the spheroid nose. This can also be observed in the front view of the 6:1 prolate-spheroid
u′v′ iso-surface patterns. These are presented in Fig.6.11. In the fully turbulent flow region
these patterns cease to exist. Instead a constant iso-surface covers the remaining extension of
the prolate-spheroid. These fluctuations are related to the Klebanoff modes.

The final 6:1 prolate-spheroid validation test case was performed with an AoA of 30 .̊
As can be seen in the results of Fig.6.12, the V-SA model’s transition onset prediction is in
accordance with the experimental measurements. The V-SA transition closure can even predict
the saw-tooth shape behavior of the transition onset line very similar to the experimental data.
A resembling saw-tooth shape transition pattern is also predicted by the separation corrected
V-SA model. Although the V-SA-Improved transition closure calculates an almost equal transition
pattern to the one computed by the original V-SA model, this is predicted slightly later. The
SA turbulence model predicts transition onset at the beginning of the prolate-spheroid. The
γ −Reθ exhibits a similar behavior to the last two test cases presented here.

The x-z cutting plane results are presented in Fig.6.13. As shown the V-SA model is able
to predict transition onset near the experimental data and calculates the transition process
with a saw-tooth shape. The latter shape is due to strong cross-flow effects during turbulence
transition. This effect is visible in the regions marked by the letters A, B, C and D in Fig.6.12.
Although the separation corrected V-SA transition model predicts the transition onset point
coincident with the experimental data, the transition development shows a less satisfactory
skin-friction coefficient value distribution along the transition length. This shows skin-friction
coefficient spikes that overshoot the experimental data distribution. Since the V-SA-Improved
transition model predicts the transition threshold slightly later, the skin-friction coefficient
plot line crosses over only the last spike of the cross-flow induced transition saw-tooth shape
region. Therefore, the V-SA-Improved skin-friction coefficient plot presents a transition onset
prediction slightly later than the experimental data, showing only one of the transition spikes
prior to the fully turbulent flow region.

6.1.2 The Onera-M6 wing test case

The following three-dimensional geometry studied was the Onera-M6 wing. This has a
single type of wing section defined by the Onera D symmetrical airfoil. The Onera-M6 is a swept
tapered wing. The wing root chord is 0.8059 meters. Its tip length is 0.4533 meters implying
a taper ratio of 0.56. The wing has a span of 1.1963 meters. Its sweep angle and aspect ratio
are 26.7˚and 3.8 respectively. In order to perform a set of validation test cases using the
Onera-M6 wing as a benchmark, a geometry with the same experimental dimensions was used
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Figure 6.8: Comparison of experimental skin-friction coefficient contour map of 6:1
prolate-spheroid with AoA 15̊ with numerical results from the turbulence SA closure
and the transition V-SA, V-SA-Sep-Correct, V-SA-Improved and γ-Reθ models. In the
regions marked by the letters A, B, C and D there is a severe cross-flow transition
effect.
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Figure 6.9: Comparison of experimental skin-friction coefficient along the X-Z
cutting plane over the 6:1 prolate-spheroid with AoA 15̊ with numerical results from
the turbulence SA closure and the transition V-SA, V-SA-Sep-Correct, V-SA-Improved
and γ-Reθ models.

Table 6.3: Onera-M6 Wing Test Conditions

AoA Tu(%) Re

0̊ 0.2 5.6 × 106

5̊ 0.2 5.6 × 106

15̊ 0.2 5.6 × 106

for the computational mesh. This was computed using the SA turbulence closure, the separation
corrected V-SA transition model, V-SA-Sep-Correct, and its improved version, the V-SA-Improved
transition closure.

The used Onera-M6 wing test case experimental data was provided by Onera through
the technical report in [182]. The experimental upstream conditions for these test cases are
presented in table 6.3. The experimental test cases free-stream flow velocity was 90 (m/s).
For all of the experimentally tested Onera-M6 wing flow angles of attack, the root chord
Reynolds number was 5.6 × 106. Therefore the experimental fluid kinematic viscosity was
ν = 1.3 × 10−5

(
m2/s

)
. The performed validation based on the supplied experimental data,

was conducted using the same fluid kinematic viscosity.

The computed Onera-M6 wing mesh was of unstructured nature, however it had y+ values
below 1 over the entire wing surface. Using a boundary layer mesh near the surface, the first
layer of cells over the wing were distanced at 1 × 10−6 meters. The number of computational
nodes over the Onera-M6 wing surface was 43760. The total number of mesh points is of 1.7

million. The Onera-M6 wing unstructured mesh is presented in Fig.6.14. A top view of the
Onera-M6 wing unstructured surface mesh is shown in Fig.6.15.

A mesh validation with a 4 million cell grid was computed. The skin-friction coefficient
contour plot is presented in Fig.6.16. As observed, the transition threshold regions are located
at similar positions with the refined mesh predicting slightly larger laminar spots. Nevertheless,
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Figure 6.10: Prolate-spheroid pre-transitional instabilities. Side view of red colored
transparent u′v′ iso-surfaces with flow streamlines over the 6:1 prolate-spheroid
with AoA 15̊ . Top image represents the u′v′ iso-surface equal to -0.02. Bottom
image represents the u′v′ iso-surface equal to -0.03. The V-SA transition model
calculated skin-friction coefficient contour map is used as surface contour.

Figure 6.11: Front view of red colored non-transparent u′v′ iso-surfaces over the
6:1 prolate-spheroid with AoA 15̊ . The image represents the u′v′ iso-surface equal
to -0.03. The V-SA transition model calculated skin-friction coefficient contour map
is used as surface contour.
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Figure 6.12: Comparison of experimental skin-friction coefficient contour map of
6:1 prolate-spheroid with AoA 30̊ with numerical results from the turbulence SA
closure and the transition V-SA, V-SA-Sep-Correct, V-SA-Improved and γ-Reθ models.
In the regions marked by the letters A, B, C and D there is a severe cross-flow
transition effect.
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Figure 6.13: Comparison of experimental skin-friction coefficient along the X-Z
cutting plane over the 6:1 prolate-spheroid with AoA 30̊ with numerical results from
the turbulence SA closure and the transition V-SA, V-SA-Sep-Correct, V-SA-Improved
and γ-Reθ models.

Figure 6.14: General overview of the Onera-M6 wing mesh. The inlet, outlet and
symmetry surfaces are indicated and colored with the corresponding surface name
color. The wing computational grid has a total number of 1700000 mesh points.
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Figure 6.15: Onera-M6 wing mesh top view. The Onera-M6 has 43760 nodes over its
surface.

Figure 6.16: Onera-M6 wing mesh independence validation with AoA 0̊ . The
V-SA-Improved transition model calculated skin-friction coefficient contour map is
used as surface contour. The left contour represents the 1.7 million cells mesh
result and the right contour shows the refinement effect of the usage of a 4 million
cell mesh.
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Table 6.4: Onera-M6 Wing Inlet Boundary Conditions

Model U(m/s) kp(m
2/s2) ν̃t(m

2/s)

SA 90 N/A 1 × 10−6

V-SA-Sep-Correct 90 0.0486 1 × 10−6

V-SA-Improved 90 0.0486 1 × 10−6

the computed results can be considered to be mesh independent.

The used inlet boundary conditions for the Onera-M6 wing validation are presented in
table 6.4. The experimental photos capturing transition threshold regions over the upper and
lower surfaces of the Onera-M6 wing at 0 ,̊ 5˚and 15˚AoA, were compared to the skin-friction
coefficient contour plots obtained with the SA and V-SA models. The case of zero angle of
attack with respect to the wing upper surface is presented in Fig.6.17. The experimental
laminar regions are depicted in the photo as white zones. The fully turbulent flow regions are
shown as fully dark zones. It can be seen that the experimentally obtained laminar wing area is
mostly constant along the leading edge of the wing and has a short chord-wise extension. The
V-SA-Sep-Correct skin-friction coefficient contour plot presents blue zones near the leading edge
of the wing. These are relatively small laminar regions predicted by the transition model. The
shown laminar spots occur almost over the whole wing leading edge span. However, near the
wing root, the V-SA-Sep-Correct closure presents a transition threshold predicted too early when
compared to the experimental picture. Also the calculated laminar regions are not constantly
distributed and do not extend in the chord direction as long as the presented laminar regions
in the experimental data. The V-SA-Improved transition model presents a similar behavior to
the V-SA-Sep-Correct closure. The SA turbulence model apparently computes a transition region
that resembles that of the V-SA models. Although there are regions near the leading edge which
present a local depression of skin-friction coefficient, featuring a less turbulent flow extension,
these spots have higher values of skin friction coefficient than those predicted by both V-SA
models.

The following upper surface experimental data of the Onera-M6 wing for 5˚AoA test
case is presented in Fig.6.18. It can be seen that the experimental fully turbulent transition
line moves forward towards the leading edge of the Onera-M6. Almost all of the wing’s upper
surface is under fully turbulent regime. Nonetheless, near the root of the wing there is a small
laminar region. This can also be observed very near the leading edge of the wing close to its tip
region. The SA turbulence model predicts transition onset from the leading edge of the wing
throughout the whole wing span. Both the separation corrected V-SA and the V-SA-Improved
transition models are able to capture the small laminar region near the leading edge within the
wing’s root zone. They also capture laminar zones in the tip region close to the wing’s leading
edge. Nevertheless, the V-SA models predict a thin transition region over the wing’s leading
edge in its mid span area. This transition pattern is not observed in the experimental photo.

The final Onera-M6 upper surface transition pattern experimental photo for flow at 15̊ AoA is
disclosed in Fig.6.19. Similar to the case of the wing under 5̊ AoA, the experimentally recorded
photo shows that the Onera-M6 wing upper surface is fully turbulent. The exceptions are again
the near leading edge root and tip regions of the wing. The V-SA-Sep-Correct transition model
captures again the laminar spot on the wing’s leading edge near root region. The latter chord
length is slightly bigger than the previous test case. Thus, it is also larger than the experimental
disclosed laminar region. The transition model predicts a laminar region in the leading edge tip
region of the wing. However, it also predicts a distribution of skin-friction coefficient in this tip
region that is not in accordance with the experimental data. The V-SA-Sep-Correct transition
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Figure 6.17: Onera-M6 wing upper surface experimental transition regions for 0̊

AoA. Comparison of experimental photo with skin-friction coefficient contour plots
computed with the turbulence SA closure and the transition V-SA-Sep-Correct and
V-SA-Improved models.
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Figure 6.18: Onera-M6 wing upper surface experimental transition regions for 5̊

AoA. Comparison of experimental photo with skin-friction coefficient contour plots
computed with the turbulence SA closure and the transition V-SA-Sep-Correct and
V-SA-Improved models.
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Figure 6.19: Onera-M6 wing upper surface experimental transition regions for 15̊

AoA. Comparison of experimental photo with skin-friction coefficient contour plots
computed with the turbulence SA closure and the transition V-SA-Sep-Correct and
V-SA-Improved models.
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closure computes flow separation within the wing’s tip region. Although the SA turbulence
closure does not predict the root and tip laminar regions over the wing, it correctly calculates
the attached flow over the wing’s upper surface tip zone. The V-SA-Improved transition model
shows a dramatic improvement on the tip region of the wing. The improved V-SA closure is
able to compute fully attached flow over the wing’s upper surface, similar to the SA turbulence
model. However, the model does not predict the small laminar regions near the wing’s root and
tip zones.

Even though the next presented experimental data is similar to the upper surface case,
the lower surface transition pattern of the Onera-M6 wing for 0 ˚AoA is also presented in
Fig.6.20. Since the Onera-M6 wing is symmetrical, similar conclusions can be withdrawn from
the presented numerical results comparison with the experimental photo. However, this is not
the case for the Onera-M6 lower surface at 5̊ AoA. This is shown in Fig.6.21. The experimental
distribution of the laminar leading edge regions is not constant. There is a color variation
from laminar white zones to gray and fully turbulent black regions. As such, moving from the
near root zone of the wing’s lower surface towards the tip of the wing, this is initially fully
laminar close to the leading edge. In the neighboring area, the photo is gray, which can be
interpreted as an early turbulent zone. Afterwards the surface is again totally white, thus
implying laminar flow conditions. There after the surface presents a gray spike between the
tip and mid span sections of the wing. After this spike the wing’s leading edge surface is
again white, therefore fully laminar. The SA turbulence closure computes fully turbulent flow
regime over the entire lower surface of the wing. The separation corrected V-SA transition
model predicts a non-uniform transition threshold pattern along the wing’s span. In the root
area, close to the leading edge the flow is laminar. Next to this flow region in the spanwise
direction, the V-SA-Sep-Correct closure predicts a fully turbulent flow spike that reaches the
wing’s leading edge. This resembles with the experimentally observed gray zone near the
wing’s root leading edge area. However, this spike is not as wide as the experimental gray
zone. Similar to the experimental transition data photo, within the leading edge mid and tip
sections of the Onera-M6 wing, the V-SA-Sep-Correct model predicts a second turbulent spike
that reaches the wing’s leading edge. The V-SA-Improved model transition pattern resembles
the V-SA-Sep-Correct closure and the disclosed experimental photo transition shape.

The last Onera-M6 transition pattern photo of the wing’s lower surface is shown in Fig.6.22.
The experimental leading edge transition region appears to be more regular in shape. Never-
theless, the color distribution within this transition leading edge region is not totally white nor
constant. The wing’s leading edge root region is again laminar. Along the wing’s span direction
this initial laminar region is turned into a darker zone, thus a turbulent region. Afterwards it
presents an intermittent variation between dark and light gray regions up until the tip of the
wing. The latter region is fully laminar. For this case the SA closure predicts intermittent and
very small laminar spots along the leading edge region. The V-SA-Sep-Correct transition model
predicts a large laminar region near the wing’s root leading edge. This is larger than what can
be perceived by the experimental photo. Nonetheless, along the wing’s spanwise direction, the
transition closure is able to predict an intermittent laminar region with an approximate chord-
wise size close to the experimentally observed transition region. At the wing’s tip area, the
V-SA-Sep-Correct model predicts a laminar region similar to the disclosed experimental data.
Although the predicted transition shape is not identical to the experimental recorded pattern,
again the V-SA-Sep-Correct model predicts a reasonable approximation of the complex transi-
tion threshold pattern behavior. The V-SA-Improved transition model shows a laminar region
near the wing’s root leading edge with a similar size to the experimental data. With exception
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Figure 6.20: Onera-M6 wing lower surface experimental transition regions for 0̊

AoA. Comparison of experimental photo with skin-friction coefficient contour plots
computed with the turbulence SA closure and the transition V-SA-Sep-Correct and
V-SA-Improved models.
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Figure 6.21: Onera-M6 wing lower surface experimental transition regions for 5̊

AoA. Comparison of experimental photo with skin-friction coefficient contour plots
computed with the turbulence SA closure and the transition V-SA-Sep-Correct and
V-SA-Improved models.
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Figure 6.22: Onera-M6 wing lower surface experimental transition regions for 15̊

AoA. Comparison of experimental photo with skin-friction coefficient contour plots
computed with the turbulence SA closure and the transition V-SA-Sep-Correct and
V-SA-Improved models.
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Table 6.5: DLR-F5 Wing Test Conditions

AoA Tu(%) Re

0̊ 0.35 1.5 × 106

2̊ 0.35 1.5 × 106

Table 6.6: DLR-F5 Wing Inlet Boundary Conditions

Model U(m/s) kp(m
2/s2) ν̃t(m

2/s)

SA 268.84 N/A 7.2 × 10−5

V-SA-Sep-Correct 268.84 1.319 7.2 × 10−5

V-SA-Improved 268.84 1.319 7.2 × 10−5

of the near wing tip and root regions, the improved model version displays a similar transition
behavior to the separation corrected transition closure.

6.1.3 The DLR-F5 wing test case

The final three-dimensional test case is the DLR-F5 wing under transonic flow conditions.
This test case is fully documented within the report developed by Helmut Sobieczky [8]. The
geometry is then a swept wing with an aspect ratio of 9.5 with 20̊ of swept angle, besides this,
along the wing spanwise length there is no twist. Also, the root has a large fillet smoothing
corner and the wing tip is rounded. The wing root chord is 0.359 meters and the wing tip has
chord length of 0.058 meters, additionally the wing spanwise length is 0.649 meters. This wing
was designed to avoid the development of vortices at the root’s leading edge. The wing sections
are based on a symmetrical NACA 0036 airfoil.

As described in the test case report, the dominant flow physics are laminar flow transition
to turbulence and the presence of a shock-wave over the DLR-F5 wing. Therefore, the test case
was conducted in the Transonic Wind-tunnel Göttingen (TWG) [183]. The tunnel stagnation
pressure range is of 0.4 to 1.6 bar and its stagnation temperature is 310 K̊. Also, the tunnel
free-stream turbulence intensity is less than 0.35%. As detailed in Helmut Sobieczky report,
the test conditions for the DLR-F5 wing are the flow angles of attack of 0 and 2 degrees. The
flow Reynolds number was set to be 1.5× 106 based on a mean chord value of 0.15 meters. The
flow mach number is M ' 0.82. As such, the test conditions are disclosed in table 6.5.

This compressible DLR-F5 wing test case was computed with a density-based solver of Fluent
using second order upwind discretization schemes. The V-SA-Sep-Correct and V-SA-Improved
transition models Fluent implementation were applied for this case. Also, the SA turbulence
model available within the Fluent software was used. The commercial software Ansys Fluent
was selected to compute this case in order to have access to a fast implicit density based
solver. The fluid viscosity was calculated using the Sutherland law. The applied stagnation
temperature was 310 K̊. The fluid density was calculated using the perfect gas law. The
applied inlet conditions are presented in table 6.6.

The used computational mesh is then fully structured with y+ values less than 1 over the
entire DLR-F5 wing. This wing mesh had 200 computational nodes around its airfoil sections.
Also, the spanwise length of the wing had 140 mesh points. The wing had 28000 computational
points over its surface, with the first layer of cells over this wing surface with a wall normal
distance of 1 × 10−6 meters. The total number of mesh points is 4 million. The DLR-F5 wing
structured mesh is disclosed in Fig.6.23. A top view of the DLR-F5 wing structured surface
mesh is presented in Fig.6.24. A mesh validation with an 8 million cell grid was computed.
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Figure 6.23: General overview of the DLR-F5 wing mesh. The far-field and symmetry
surfaces are indicated and colored with the corresponding surface name color. The
wing computational grid has a total number of 4000000 mesh points.

Figure 6.24: DLR-F5 wing mesh top view. The DLR-F5 has 28000 nodes over its
surface.
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Figure 6.25: DLR-F5 wing mesh independence validation with AoA 0̊ . The
V-SA-Sep-Correct transition model calculated skin-friction coefficient contour map is
used as surface contour. The left contour represents the 4 million cells mesh result
and the right contour shows the refinement effect of the usage of an 8 million cell
mesh.

The skin-friction coefficient contour plot is presented in Fig.6.25. As can be seen, although
the results are not identical, the general transition onset regions are similar with differences
arising at the tip region of the wing. As such the obtained results can be considered to be mesh
independent.

The pressure coefficient distribution along chordwise cross-sections of the wing under an AoA
of 2̊ was analyzed. These are located at 1.64%, 33.77% and 80.02% of the wing spanwise length.
The near root section distribution results are disclosed in Fig.6.26. The presented results show
that both the turbulence and the transition models are able to capture the main features of
the pressure distribution at this spanwise section of the wing. The shock-wave location on the
upper surface of the wing is predicted slightly later by both closures. This improves on the lower
surface case, where both the SA turbulence closure and the V-SA-Improved transition model
predict the shock-wave presence closer to the experimental data than the V-SA-Sep-Correct
closure. After the shock-wave there is a strong decay on the pressure coefficient. However,
all models compute a steep decay compared to the experimental data. Nevertheless, for the
lower surface the separation corrected V-SA transition closure predicts a pressure coefficient
decay closer to the experimental data due to its delayed shock-wave position.

The mid wing section pressure coefficient plot results are disclosed in Fig.6.27. Similar to the
former cross-section results, the pressure coefficient plots for the DLR-F5 wing lower surface
are closer to the experimental data by the SA and both the V-SA models. On the upper-side of
the wing, the numerically obtained results predict the occurrence of the transonic shock-wave
earlier than what was experimentally recorded. After the shock-wave on the lower-surface
side of the wing there are pressure oscillations. These are also present on the upper side of the
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Figure 6.26: DLR-F5 wing pressure coefficient distribution along the chordwise
cross-section at 1.64% of the wing spanwise length under 2̊ AoA. Comparison of
experimental data on pressure coefficient plots with computed results from the
turbulence SA closure and the transition V-SA-Sep-Correct and V-SA-Improved
models.

Figure 6.27: DLR-F5 wing pressure coefficient distribution along the chordwise
cross-section at 33.77% of the wing spanwise length under 2̊ AoA. Comparison of
experimental data on pressure coefficient plots with computed results from the
turbulence SA closure and the transition V-SA-Sep-Correct and V-SA-Improved
models.
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Figure 6.28: DLR-F5 wing pressure coefficient distribution along the chordwise
cross-section at 80.02% of the wing spanwise length under 2̊ AoA. Comparison of
experimental data on pressure coefficient plots with computed results from the
turbulence SA closure and the transition V-SA-Sep-Correct and V-SA-Improved
models.

wing, nevertheless with a smaller amplitude.

The near wing tip section pressure coefficient plot data is presented in Fig.6.28. It
can be observed that the SA turbulence model and both the V-SA transition closures predict a
very early pressure shock-wave on the upper surface of the wing. Also, the V-SA-Sep-Correct
transition closure presents very intense pressure oscillations on the trailing edge of the wing
after the shock-wave. These are due to the fact that the V-SA-Sep-Correct model computes flow
separation in these regions on both sides of the wing. Both the V-SA-Improved and SA models
improve on this issue, presenting a smoother pressure-coefficient development. Although the
SA, V-SA-Sep-Correct and V-SA-Improved closures compute an earlier shock-wave location on
the lower side of the wing, this is closer to the experimental data region than the upper side
results.

In order to evaluate the experimentally recorded transition patterns over the DLR-F5
wing, a contour plot of the skin-friction coefficient over the wing was obtained for the SA
and V-SA transition model versions. However, only the V-SA-Sep-Correct and V-SA-Improved
transition models are directly compared to the experimental transition patterns. This is the
case since the SA turbulence model does not predict any transition pattern, instead it assumes
fully turbulent flow from the leading edge of the wing. Nevertheless, a comparison between the
latter and the V-SA models is performed in order to expose this fact. As such, for an AoA of 0̊ ,
the comparison between the experimental transition patterns and the skin-friction coefficient
contour plot is disclosed in Fig.6.29. For this transonic test case, the separation corrected V-SA
transition model is able to capture the main transition features that occur over the DLR-F5
wing surface. The root leading edge region has a very small laminar extension due to the fact
that the numerical simulation was performed using a symmetric boundary condition for the
plane where the wing is recessed. In the experimental setup, this is a wall, which bleeds its
turbulent boundary layer over the DLR-F5 wing root region. The used symmetry boundary will
not affect turbulence transition since it does not impose any flow strain. The initial curved
transition shape on the root is very closely predicted by the V-SA-Sep-Correct transition model
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Figure 6.29: DLR-F5 wing experimental transition regions for 0̊ AoA. Comparison of
experimental patterns with skin-friction coefficient contour plots computed with
the separation corrected V-SA transition model.

when compared to the experimental pattern. The remaining spanwise length transition onset
region is computed slightly earlier than the experimental data.

Although the near tip area presents an apparent transition shape resembling that of the
experimental transition onset patterns, it is not clear and easily interpreted whether or not the
computed transition threshold zones are correctly predicted. As such, an overlap of sections
from the experimental transition patterns will be imposed on the skin-friction coefficient con-
tour plots of both the V-SA-Sep-Correct and V-SA-Improved transition models. These are then
used for the comparison with the obtained computational results from the SA turbulence model.
This is presented in Fig.6.30. From these results it can be concluded that the SA turbulence
model predicts a fully turbulent flow right from the leading edge of the wing. Even the near root
leading edge region that was predicted to be laminar by the V-SA transition models is computed
as fully turbulent flow by the SA closure. Also, it can be observed that the V-SA-Sep-Correct
transition closure computes a slightly earlier transition threshold compared to the experimental
data and a near tip area with an apparently correct transition shape close to the experimental
pattern. The V-SA-Improved transition model presents a similar transition onset behavior to the
V-SA-Sep-Correct closure. However, the V-SA-Improved model predicts a more accurate wing
tip transition onset pattern. This can be observed in more detail in Fig.6.31.

The remaining experimental data on transition threshold patterns is for the case of the
DLR-F5 wing under 2˚AoA. The results from the upper surface side of the wing are then shown
in Fig.6.32. For the case of the DLR-F5 wing upper surface under 2˚AoA, the experimental
transition patterns on the tip region slightly shift towards the leading edge. Additionally, the
spanwise extension of the transition detection by pressure measurements is also extended to-
wards the wing’s tip. These two trends are also predicted by the V-SA-Sep-Correct transition
model. Nevertheless, the transition shift onto the wing’s leading edge is over-estimated in the
mid sections of the DLR-F5. The V-SA-Sep-Correct transition model predicts an earlier transition
onset than the experimental data in these regions.
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Figure 6.30: DLR-F5 wing skin-friction coefficient contour plot for 0̊ AoA.
Comparison of computed results between the SA turbulence closure and the
V-SA-Sep-Correct and V-SA-Improved transition models with overlapping
experimental transition patterns.
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Figure 6.31: DLR-F5 wing skin-friction coefficient contour plot for 0̊ AoA with a wing
tip region detail view. Comparison of computed results from the V-SA-Improved
transition model with overlapping experimental transition patterns.

Figure 6.32: DLR-F5 wing upper surface experimental transition regions for 2̊ AoA.
Comparison of experimental patterns with skin-friction coefficient contour plots
computed with the separation corrected V-SA transition model.
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The SA turbulence closure obtained results are compared with the separation corrected V-SA
transition model and the V-SA-Improved closure in Fig.6.33. Again the SA turbulence closure
predicts transition onset from the leading edge of the DLR-F5 wing. The experimental transition
pattern overlap shows that the V-SA-Sep-Correct transition model computes a root transition
region close to the experimental data, along side the wing tip region. However, within the
spanwise mid zone of the wing, the transition closure predicts a transition onset earlier than the
experimental data. Although the V-SA-Improved transition model results resemble those from
the V-SA-Sep-Correct closure, these show a slightly more accurate transition pattern closer to
the experimentally recorded data. It must be noted that the small wiggles, on the computed
transition pattern lines, are to be expected. These small oscillations were also observed in the
experimental photo from the Helmut Sobieczky report disclosed in Fig.6.34.

The experimental comparison, with the computed results from the lower surface side of the
DLR-F5 wing under 2˚AoA, is disclosed in Fig.6.35. These results show that the V-SA transition
model captures the root region transition shape close to the experimental data. Although the
remaining wing spanwise extension does not apparently display any transition onset, under a
closer look it can be observed that this is actually predicted by the separation corrected V-SA
transition model as shown in the following Fig.6.36. As can be seen, the SA turbulence model
calculates fully turbulent flow from the leading edge of the DLR-F5 wing. The V-SA-Sep-Correct
and V-SA-Improved transition closures are able to predict the transition onset regions close to
the experimental data along the whole extension of the wing. Nevertheless, V-SA-Improved
transition model discloses the most accurate transition onset pattern. This can be examined in
more detail in Fig.6.37.

6.1.4 Summary of results

The strengths of the V-SA transition model are verified on the transition under cross-flow
effects test cases of the three-dimensional 6:1 prolate-spheroid, the Onera-M6 wing and the
DLR-F5 wing geometries. It was observed that although the free-stream turbulence intensity for
these cases is very low, the 6:1 prolate-spheroid with Tu=0.1%, the Onera-M6 wing with Tu=0.2%

and Tu=0.35% for the DLR-F5 wing, the model is able to predict transition onset patterns close
to the experimental data.

However, the transition length of the model is short in some of the tested cases. For
the 6:1 prolate-spheroid test case with a low angle of attack of 5 ,̊ the V-SA model predicts
a short transition length. Although the reason for the latter is unclear, it is suspected that
an excessive pre-transition turbulent kinetic energy diffusion inside the boundary layer might
be the reason for such short transition length. The rate of turbulence intermittency diffusion
into the transition boundary layer has a major role determining transition length as shown
in the work of [12]. Also, the separation corrected version of the transition closure has an
earlier prediction behavior compared to its base V-SA transition model. Nevertheless, the
improved version of this model improves on this issue, however, for the AoA of 15˚test case,
the V-SA-Improved transition model shows a delayed transition onset compared to both the
experimental and the numerical results of the remaining V-SA transition model versions. The
V-SA-Improved closure predicted transition threshold patterns, for the test cases with an AoA
of 5̊ and 30̊ , are in good agreement with the experimental data.

The most concerning issue of the V-SA-Sep-Correct model under adverse-pressure-gradient
flow conditions, is its apparent lack of turbulent strength in the fully turbulent region. This is
seen in the Onera-M6 wing test case upper surface tip zone for flow AoA of 15˚and also in the
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Figure 6.33: DLR-F5 wing upper surface skin-friction coefficient contour plot for 2̊

AoA. Comparison of computed results between the SA turbulence closure and the
V-SA-Sep-Correct and V-SA-Improved transition models with overlapping
experimental transition patterns.
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Figure 6.34: DLR-F5 wing upper surface sublimation turbulence transition detection
technique for 2̊ AoA. Comparison of computed skin-friction coefficient results from
V-SA-Improved model with experimental photo from technical report of Helmut
Sobieczky [8]. The orange line highlights the transition onset location on both the
experimental photo and the V-SA-Improved model computed transition pattern. The
letters A, B, C, D, and E indicate the location of pressure probe stations.

Figure 6.35: DLR-F5 wing lower surface experimental transition regions for 2̊ AoA.
Comparison of experimental patterns with skin-friction coefficient contour plots
computed with the separation corrected V-SA transition model.
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Figure 6.36: DLR-F5 wing lower surface skin-friction coefficient contour plot for 2̊

AoA. Comparison of computed results between the SA turbulence closure and the
V-SA-Sep-Correct and V-SA-Improved transition models with overlapping
experimental transition patterns.
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Figure 6.37: DLR-F5 wing lower surface skin-friction coefficient contour plot for 2̊

AoA with a wing tip region detail view. Comparison of computed results from the
V-SA-Improved transition model with overlapping experimental transition patterns.

previous chapter test case of the Aerospatiale A-airfoil. For these cases the V-SA-Sep-Correct
transition model computes flow separation earlier than expected. Nonetheless, the V-SA-Sep-
Correct improved version, that is the V-SA-Improved, displays an outstanding enhancement on
this issue. The V-SA-Improved transition model is able to maintain its transition onset prediction
capabilities while correcting the aforementioned apparent lack of turbulent strength in the fully
turbulent region. Thus, computations under adverse-pressure-gradient conditions, show no pre-
mature flow separation when compared to the V-SA transition model original Spalart-Allmaras
turbulence closure.

The transonic DLR-F5 wing test case showed the full capacity of the model to predict
complex transition patterns under transonic flow conditions with compressible effects on the
transition behavior. Although some of the transition patterns were predicted slightly earlier, the
comparison between the SA turbulence closure and the V-SA transition models show a clear dis-
tinction between using a low-Reynolds turbulence closure and a physics based transition model
to compute a transonic transition test case. The low-Reynolds turbulence models are not fit for
computations of compressible external flows with significant transition effects. On the other
hand, and as shown by the V-SA-Improved transition model, the experimental DLR-F5 transonic
wing test case transition patterns were accurately predicted by the performed computations
using the V-SA transition models.
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Chapter 7

Conclusions

7.1 Summary

During the present work, the main objective of developing numerical models for prediction
of laminar boundary layer transition to fully turbulent flow regime was accomplished. These
tools were implemented in a RANS work-frame.

The modified phenomenological LKE transition model, k-kl-ω-mod, is also a RANS turbu-
lence model since it is embedded within a k-ω turbulence model. The initial objective for the
implementation of the phenomenological k-kl-ω transition model, was its modification for im-
provement. However, when attempting to validate the implemented model according to the
original published model formulation, the obtained results were systematically incorrect. Also,
these presented different results and did not follow the same trend as the closed commercial
model version.

As such, the initial objective of improving an existing transition RANS closure was changed
to obtain a more correct model formulation. This was then performed in order to mimic the
behavior of the commercial software Ansys Fluent available phenomenological transition model,
not its improvement. The model was then validated for existing flat-plate ERCOFTAC benchmark
test cases for zero-pressure-gradient, for pressure-gradient and also for separation induced
transition.

Based on the initial transition model modification work, a new concept for transition
prediction was developed. The concept is a never before used mechanical approximation for
the effects of mean flow shear over turbulence characteristics in the pre-transition zone. This
was then numerically evaluated and developed in order to be a feasible transition model. The
developed novel transition model was coupled to the RANS low-Reynolds turbulence model, the
Spalart-Allmaras.

Afterwards, the created V-SA transition model was validated for the ERCOFTAC flat-plate
benchmark test cases of zero-pressure-gradient, pressure-gradient and separation induced tran-
sition. The effect of transition induced by separation under low velocity and turbulence inten-
sity has revealed a weakness of the V-SA transition model. A correction for the separation issue
was devised and successfully applied on the transition model.

Besides the previous flow separation induced transition predicament, yet another circum-
stance related to flow separation was observed. For this case, the transition model computed
a premature boundary layer separation on the fully turbulent region of the flow under adverse-
pressure-gradient conditions. This was solved by modifying the coupling between the transition
V-model and the Spalart-Allmaras turbulence closure.

Also, the model was further validated for airfoil geometries and finally the transition closure
was validated for three-dimensional geometries such as the 6:1 prolate-spheroid, the Onera-M6
wing and the transonic DLR-F5 wing test case.

145



7.2 Concluding remarks

The effect of small changes to the flat-plate leading edge radius was studied with the
developed transition models and existing RANS transition closures. The increase of the flat-plate
leading edge radius will move the transition onset prediction closer to the flat-plate leading
edge, thus the transition threshold Reynolds number is reduced.

The obtained results from the modified laminar kinetic energy transition model, k-kl-ω-mod,
reveal a significant improvement in comparison to the original published model formulation. In
some cases the altered model presents slightly improved results when compared to the obtained
computations from the k-kl-ω. Therefore, it can be stated that the achieved modified transition
model, k-kl-ω-mod, corresponds to the proposed objectives.

Regarding the novel transition model, V-SA, the proposed mechanical approximation for the
mean flow shear effect on the turbulence characteristics was validated. This was performed
using the ERCOFTAC database of u′v′ values within the pre-transitional region of the laminar
boundary layer. Although the evolution of the distribution of u′v′, along the flat-plate test
cases of T3A and T3C2 was not in perfect accordance to the experimental data, it captures the
experimental trend.

The proposed separation correction for the V-SA model improves the model robustness under
separation induced transition. Additionally, the improved transition model version enhances the
separation corrected transition closure under adverse-pressure-gradient flow conditions for the
fully turbulent boundary layer region.

The V-SA model was also validated for more complex cases such as wind turbine airfoils.
The transition onset for the multiple AoA values was captured very close to the experimental
data. Also, a validation of the T106 turbine airfoil was performed. The main experimental
characteristic pressure losses evolution of the linear turbine cascade as well as the transition
onset behavior were predicted in accordance to the experimental data.

Finally, the model validation with three-dimensional geometries reveals that the transition
closure is able to capture interesting transition onset features of these test cases, such as the
experimental 6:1 prolate-spheroid test case transition patterns. It can be concluded that the
V-SA transition model is a ready to use robust transition tool for industry use [14, 15].

7.3 Future works

For future works it is proposed the improvement of the modified LKE transition model
k-kl-ω-mod in what regards transition onset prediction accuracy. Also, the LKE concept of the
model could be linked to other turbulence models.

For the V-SA transition model, this could incorporate pure natural transition mechanism
components. The implementation of such functions was not feasible since the developed me-
chanical model analogy is not applicable to pure natural transition onset. This would improve
the accuracy for some cases such as the example in the ERCOFTAC zero-pressure-gradient test
case of T3A-.

The V-model transition closure could also be coupled to other turbulence models. Also,
the V-model formulation was performed for isotropic turbulence conditions, a three-component
turbulent kinetic energy transition model would be of interest to see the implications of such
approach.

Finally, the V-model transition closure is not able by it-self to reproduce turbulence. It
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would be very interesting to attempt the creation of a turbulence model based on the proposed
mechanical approximation.
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