APPENDIX C – PICTURES OF EQUILIBRIA

Figure C.1: Equilibria Pictures for v=0.01 and H_3 =0.01

Figure C.2: Equilibria Pictures for v=0.01 and H_3 =0.495

Figure C.3: Equilibria Pictures for v=0.01 and H_3 =0.99

Figure C.4: Equilibria Pictures for v=0.1 and H_3 =0.01

GYROSTAT DYNAMICS ON A CIRCULAR ORBIT

Figure C.5: Equilibria Pictures for v=0.1 and H_3 =0.1, H_3 =0.2 and H_3 =0.25

GYROSTAT DYNAMICS ON A CIRCULAR ORBIT

Figure C.6: Equilibria Pictures for v=0.1 and H_3 =0.3 and H_3 =0.4

Figure C.7: Equilibria Pictures for v=0.1 and H_3 =0.45 and H_3 =0.5

Figure C.8: Equilibria Pictures for v=0.1 and H₃=0.511 and H₃=0.6

Figure C.9: Equilibria Pictures for v=0.1 and H_3 =0.7 and H_3 =0.8

Figure C.10: Equilibria Pictures for v=0.1 and H_3 =0.9 and H_3 =0.96

Figure C.11: Equilibria Pictures for v=0.1 and H₃=1 and H₃=1.021

Figure C.12: Equilibria Pictures for v=0.1 and H_3 =1.1 and H_3 =1.2

GYROSTAT DYNAMICS ON A CIRCULAR ORBIT

Figure C.13: Equilibria Pictures for v=0.1 and H_3=1.3 and H_3=1.4

Figure C.14: Equilibria Pictures for v=0.1 and H₃=1.5 and H₃=1.805

Figure C.15: Equilibria Pictures for v=0.1 and H_3 =2, H_3 =2.32 and H_3 =3.61

Figure C.16: Equilibria Pictures for v=0.1 and H_3 =3.81 and H_3 =4

Figure C.17: Equilibria Pictures for v=0.2 and H_3 =0.01 and H_3 =0.1

Figure C.18: Equilibria Pictures for v=0.2 and H_3 =0.2 and H_3 =0.25

Figure C.19: Equilibria Pictures for v=0.2 and H₃=0.3 and H₃=0.4

Figure C.20: Equilibria Pictures for v=0.2 and H₃=0.5 and H₃=0.524

Figure C.21: Equilibria Pictures for v=0.2 and H₃=0.6 and H₃=0.7

Figure C.22: Equilibria Pictures for v=0.2 and H₃=0.8 and H₃=0.9

Figure C.23: Equilibria Pictures for v=0.2 and H₃=0.92 and H₃=1

Figure C.24: Equilibria Pictures for v=0.2 and H_3 =1.048 and H_3 =1.1

Figure C.25: Equilibria Pictures for v=0.2 and H₃=1.2 and H₃=1.3

Figure C.26: Equilibria Pictures for v=0.2 and H₃=1.4, H₃=1.5, H₃=1.632 and H₃=2

Figure C.27: Equilibria Pictures for v=0.2 and H₃=2.15, H₃=3.264, H₃=3.63 and H₃=4

Figure C.28: Equilibria Pictures for v=0.3 and H₃=0.01 and H₃=0.1

Figure C.29: Equilibria Pictures for v=0.3 and H_3 =0.2 and H_3 =0.25

Figure C.30: Equilibria Pictures for v=0.3 and H_3 =0.3 and H_3 =0.35

Figure C.31: Equilibria Pictures for v=0.3 and H_3=0.4 and H_3=0.5

Figure C.32: Equilibria Pictures for v=0.3 and H_3=0.541 and H_3=0.6

Figure C.33: Equilibria Pictures for v=0.3 and H₃=0.7, H₃=0,8 and H₃=0.89

Figure C.34: Equilibria Pictures for v=0.3 and H₃=0.9, H₃=1, H₃=1,082 and H₃=1,1

Figure C.35: Equilibria Pictures for v=0.3 and H_3 =1.2, H_3 =1.3, H_3 =1,4 and H_3 =1,475

Figure C.36: Equilibria Pictures for v=0.3 and H₃=1.5, H₃=2, H₃=2.02 and H₃=2.95

Figure C.37: Equilibria Pictures for v=0.3 and H₃=3.48 and H₃=4

Figure C.38: Equilibria Pictures for v=0.4 and H₃=0.01 and H₃=0.1

GYROSTAT DYNAMICS ON A CIRCULAR ORBIT

Figure C.39: Equilibria Pictures for v=0.4 and H_3 =0.2 and H_3 =0.25

Figure C.40: Equilibria Pictures for v=0.4 and H₃=0.3, H₃=0.4, H₃=0.5 and H₃=0.562

Figure C.41: Equilibria Pictures for v=0.4 and H₃=0.6, H₃=0.7, H₃=0.8 and H₃=0.86

Figure C.42: Equilibria Pictures for v=0.4 and H₃=0.9, H₃=1, H₃=1.1 and H₃=1.124

Figure C.43: Equilibria Pictures for v=0.4 and H₃=1.2, H₃=1.3, H₃=1.335 and H₃=1.4

Figure C.44: Equilibria Pictures for v=0.4 and H₃=1.5, H₃=1.9, H₃=2 and H₃=2.669

Figure C.45: Equilibria Pictures for v=0.4 and H_3 =3.3 and H_3 =4

Figure C.46: Equilibria Pictures for v=0.5 and H_3 =0.01, H_3 =0.1, H_3 =0.2 and H_3 =0.25

Figure C.47: Equilibria Pictures for v=0.5 and H₃=0.3, H₃=0.4, H₃=0.5 and H₃=0.591

Figure C.48: Equilibria Pictures for v=0.5 and H₃=0.6, H₃=0.7, H₃=0.8 and H₃=0.84

Figure C.49: Equilibria Pictures for v=0.5 and H_3 =0.9, H_3 =1, H_3 =1.1 and H_3 =1.182

Figure C.50: Equilibria Pictures for v=0.5 and H₃=1.2, H₃=1.206, H₃=1.3 and H₃=1.4

Figure C.51: Equilibria Pictures for v=0.5 and H₃=1.5, H₃=1.8, H₃=2 and H₃=2.412

Figure C.52: Equilibria Pictures for v=0.5 and H_3 =3.21 and H_3 =4

Figure C.53: Equilibria Pictures for v=0.6 and H_3 =0.01, H_3 =0.2, H_3 =0.4 and H_3 =0.593

Figure C.54: Equilibria Pictures for v=0.6 and H₃=0.79, H₃=1, H₃=1.084 and H₃=1.186

Figure C.55: Equilibria Pictures for v=0.6 and H_3 =1.68, H_3 =2, H_3 =2.167 and H_3 =3.08

Figure C.56: Equilibria Pictures for v=0.6 and H_3 =4

Figure C.57: Equilibria Pictures for v=0.7 and H₃=0.01, H₃=0.15, H₃=0.2 and H₃=0.3

Figure C.58: Equilibria Pictures for v=0.7 and H₃=0.4, H₃=0.553, H₃=0.7 and H₃=0.958

Figure C.59: Equilibria Pictures for v=0.7 and H₃=1, H₃=1.105, H₃=1.51 and H₃=1.915

GYROSTAT DYNAMICS ON A CIRCULAR ORBIT

Figure C.60: Equilibria Pictures for v=0.7 and H₃=2, H₃=2.96 and H₃=4

Figure C.61: Equilibria Pictures for v=0.8 and H₃=0.01, H₃=0.1, H₃=0.2 and H₃=0.4

Figure C.62: Equilibria Pictures for v=0.8 and H_3 =0.455, H_3 =0.55, H_3 =0.815 and H_3 =0.909

Figure C.63: Equilibria Pictures for v=0.8 and H₃=1, H₃=1.27, H₃=1.629 and H₃=2

Figure C.64: Equilibria Pictures for v=0.8 and H_3 =2.81 and H_3 =4

Figure C.65: Equilibria Pictures for v=0.9 and H_3 =0.01, H_3 =0.05, H_3 =0.1 and H_3 =0.2

Figure C.66: Equilibria Pictures for v=0.9 and H₃=0.338, H₃=0.39, H₃=0.4 and H₃=0.623

Figure C.67: Equilibria Pictures for v=0.9 and H₃=0.676, H₃=0.96, H₃=1 and H₃=1.245

Figure C.68: Equilibria Pictures for v=0.9 and H₃=2, H₃=2.62 and H₃=4

Figure C.69: Equilibria Pictures for v=0.99 and H_3=0.005, H_3=0.01, H_3=0.5 and H_3=1

Figure C.70: Equilibria Pictures for v=0.99 and H₃=2