
NetOdyssey: A Framework for
Real-Time Windowed Analysis of

Network Traffic

Fábio Duarte Beirão

Submitted to the University of Beira Interior in candidature for the degree ofMaster of Science in Computer Science and Engineering
Supervised by Mário Marques Freire

June 2010

Departament of Computer ScienceUniversity of Beira InteriorCovilhã, Portugalhttp://www.di.ubi.pt

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UBibliorum repositorio digital da ubi

https://core.ac.uk/display/303997906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Acknowledgments

"This one goes out to the one I love..."
R.E.M. - The One I Love

The ones we love are the ones who make us stand tall and step up to thechallenges of life. Yet, they do not just shove us into these challenges:they are there, with us, every step of the way. They suffer with us, theyunderstand our deepest frustrations and they rejoice with us on our victories,no matter how small or big they are. To all of you, the ones I love, Mother,Father, Brother, my forever loved Marisa, my friends, Dr. Pedro Inácio, JoãoGomes, and my always supportive supervisor Professor Mário Freire; to allof you who made it possible for me to overcome this challenge, I thank you.You were the ones who made this journey possible, because as life teachesus so well, no man is an island.There is always much to be done, there is always much to be said, butthere is one thing that can’t remain undone, that can’t remain unsaid: totell you how much I appreciate all your effort. Remain assured: not onesingle moment you spent was wasted. My deepest gratitude goes to eachof you.
Fábio Duarte Beirão

iii

This work was partially supported by the Portuguese Fundação paraa Ciência e a Tecnologia through the project TRAMANET: Traffic andTrust Management in Peer-to -Peer Networks, with contracts PTD-C/EIA/73072/2006 and FCOMP-01-0124-FEDER-007253.

iv

Abstract

Traffic monitoring and analysis is of critical importance for managing anddesigning modern computer networks, and constitutes nowadays a veryactive research field. In most of their studies, researchers use techniquesand tools that follow a statistical approach to obtain a deeper knowledgeabout the traffic behaviour. Network administrators also find great valuein statistical analysis tools. Many of those tools return similar metricscalculated for common properties of network packets. This dissertationpresents NetOdyssey, a framework for the statistical analysis of networktraffic. One of the crucial points of differentiation of NetOdyssey fromother analysis frameworks is the windowed analysis philosophy behind
NetOdyssey. This windowed analysis philosophy allows researchers whoseek for a deeper knowledge about networks, to look at traffic as if lookingthrough a window. This approach is crucial in order to avoid the biasingeffects of statistically looking at the traffic as a whole. Small fluctuationsand irregularities in the network can now be analyzed, because one isalways looking through window which has a fixed size: either in numberof observations or in the temporal duration of those observations. Ne-
tOdyssey is able to capture live traffic from a network card or from apre-collected trace, thus allowing for real-time analysis or delayed andrepetitive analysis. NetOdyssey has a modular architecture making itpossible for researchers with reduced programming capabilities to createanalysis modules which can be tweaked and easily shared among those whoutilize this framework. These modules were thought so that their implemen-tation is optimized according to the windowed analysis philosophy behind
NetOdyssey. This optimization makes the analysis process independentfrom the size of the analysis window, because it only contemplates the

v

observations coming in and going out of this window. Besides presentingthis framework, its architecture and validation, the present Dissertation alsopresents four different analysis modules: Average and Standard deviation,
Entropy, Auto-Correlation and Hurst Parameter estimators. Each of thismodules is presented and validated throughout the present dissertation.

vi

Keywords

Analysis of Traffic Behavior, Auto-correlation estimator, Average and Stan-dard Deviation, Entropy estimator, Hurst Parameter, Mersenne Twisterpseudo-random generator, Modular Approach, Random Capture Genera-tor, Real time Analysis, Statistical Traffic Analysis, Windowed Analysis ofNetwork Traffic

vii

viii KEYWORDS

Contents

Acknowledgments iii

Abstract v

Keywords vii

Contents ix

List of Figures xiii

Acronyms and Abbreviations xv

1 Introduction 11.1 Focus and Scope . 11.2 Problem Definition and Objectives 31.3 Main Contributions . 41.4 Organization of the Dissertation 5
2 State of the Art and Critical Review of Tools for Network Moni-

toring and Analysis 72.1 Introduction . 72.2 Network Capturing and Analysis Tools 82.2.1 Wireshark . 82.2.2 Analyzer 3.0 (alpha) . 10
ix

x CONTENTS

2.2.3 ntop . 12
2.2.4 CoMo - Continuous Monitoring 13
2.2.5 The NetBee Library . 14

2.3 Overview of Network Information Protocols 15
2.3.1 SNMPv3 . 15
2.3.2 Cisco NetFlow . 16
2.3.3 IPFIX . 18

2.4 Overview of Plotting Tools . 19
2.4.1 Microsoft Excel and OpenOffice Calc 19
2.4.2 RRDtool . 20
2.4.3 gnuplot . 20

2.5 Conclusion . 20
3 The NetOdyssey Framework 23

3.1 Introduction . 23
3.2 Tools for Development of NetOdyssey 23

3.2.1 Microsoft .NET Framework 3.5 24
3.2.2 Mono Framework . 24
3.2.3 winPcap . 25
3.2.4 SharpPcap . 26

3.3 The Calculation Philosophy of NetOdyssey 26
3.4 The Architecture of NetOdyssey 29
3.5 A modular approach . 31
3.6 An example module . 32
3.7 Conclusion . 37

CONTENTS xi

4 Results and Validation 394.1 Validation of NetOdyssey . 394.2 Random capture generator . 394.3 Implemented modules . 404.3.1 Entropy Estimator . 414.3.2 Validation of Entropy Estimator 424.3.3 Auto-correlation Estimator 434.3.4 Validation of Auto-correlation Estimator 474.3.5 Hurst Exponent by Autocorrelation Function Estimator 484.4 Conclusions . 50
5 Conclusions and Future Work 515.1 Main Conclusions . 515.2 Directions for Future Work . 52
References 55

A Class Model 59A.1 Base classes of NetOdyssey 59A.1.1 Program . 59A.1.2 clsSettings . 60A.1.3 frmSettings . 62A.1.4 clsModules . 62A.1.5 clsCapturer . 63A.1.6 clsAnalysisWindow . 65A.1.7 clsHealthMonitor . 66A.1.8 clsMessages . 66A.1.9 IHealthReporter . 66A.2 Base classes of the user modules of NetOdyssey 66

xii CONTENTS

A.2.1 NetOdysseyModuleBase 66A.2.2 NetOdysseyModuleBaseTask 67A.2.3 NetOdysseyModuleBaseModuleTask 67A.2.4 INetOdysseyBCTUAnalyzerModule 68A.2.5 INetOdysseyPacketAnalyzerModule 68
B Implemented Modules Source Code 77B.1 Average and Standard Deviation estimator 77B.2 Entropy estimator . 80B.3 Auto-correlation estimator . 83B.4 Hurst parameter estimator . 88

List of Figures

3.1 A representation of a sliding analysis window (Analysis Win-dow Size (AWS) of 3 observations). 27
3.2 A representation of a temporal analysis window (AnalysisWindow Time (AWT)). 28
4.1 R code used to validate results from Entropy Estimator module. 43
4.2 Entropy of 5.000 randomly generated packet sizes, with AWS=250. 44
4.3 Plot of equation 4.3 . 45
4.4 Autocorrelation of equation 4.3, maximum lag K = 200. . . . 45
4.5 Autocorrelation of 5.000 randomly generated packet sizes,for all Ks. 46
4.6 R code used to validate results from Auto-Correlation Esti-mator module. 47
4.7 Estimation of the Hurst parameter based on autocorrelationfunction using linear regression. 49
A.1 Program - The main class containing the main() method. 59
A.2 clsSettings - The class responsible for holding all Ne-

tOdyssey’s settings. 69
A.3 frmSettings - The form for entering and confirming thesession settings. 70
A.4 clsModules - The class responsible for compiling *.csand *.vb files. 70

xiii

xiv LIST OF FIGURES

A.5 clsCapturer - The class responsible for capturing net-work packets or statistics, according to the analysis mode. . 71A.6 clsAnalysisWindow - The class responsible for queuingvalues in a windowed manner, and sending them to usermodules. 71A.7 clsHealthMonitor - The class responsible for request-ing the current status of NetOdyssey’s threads, from time totime. 72A.8 clsMessages - The abstract class responsible for printing
NetOdyssey’s outputs to stdout. 72A.9 IHealthReporter - The interface that must be imple-mented by classes who are able to report their current status(health). 73A.10 NetOdysseyModuleBase - The class responsible for pro-viding all the basic methods for a user module. 74A.11 NetOdysseyModuleBaseTask - The class that holds a
NetOdyssey module task. 75A.12 NetOdysseyModuleBaseModuleTask - The enum thatrepresents the type of possibleNetOdysseyModuleBaseTasks. 75A.13 INetOdysseyBCTUAnalyzerModule - The interface thatmust be implemented by user modules that perform a BitCount per Time Unit (BCTU) analysis. 76A.14 INetOdysseyPacketAnalyzerModule - The interfacethat must be implemented by user modules that perform a
per-packet analysis. 76

Acronyms and Abbreviations

Acronyms

AWS Analysis Window Size
AWT Analysis Window Time
BCTU Bit Count per Time Unit
CPU Central Processing Unit
CSV Comma Separated Values
CLR Common Language Runtime
DoS Denial of Service
DPI Deep Packet Inspection
DLL Dynamically Linked Library
DTLS Datagram Transport Layer Security
GUI Graphical User Interface
HEAF Hurst Exponent by Autocorrelation Function
HTTP Hypertext Transfer Protocol
ICMP Internet Control Message Protocol
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IOS Internetwork Operating System
IP Internet Protocol
IPFIX Internet Protocol Flow Information Export

xv

xvi 0. Acronyms and Abbreviations

IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IPX Internetwork Packet Exchange
LSM Least Square Method
NMCG Network Multimedia and Computing Group
NIC Network Interface Card
OS Operating System
PC Personal Computer
PR-SCTP Partial Reliability Stream Control Transmission Protocol
RFC Request For Comments
RMON Remote Network Monitoring
SCTP Stream Control Transmission Protocol
STD Standard
SSL Secure Sockets Layer
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SNMPv3 Simple Network Management Protocol version 3
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
XML Extensible Markup Language
Abbreviations

Please consider the meaning of the following abbreviations when you findthem later in the text:a.k.a. also known as;e.g. for example;i.e. that is to say; in other words;vs. versus.

Chapter 1

Introduction

1.1 Focus and Scope

Internet, the great network that connects everything and everyone who hasaccess to it, is a game-changing paradigm for many. Nowadays, there arejobs exclusively on the Internet, social networks that allow us to know otherpeople, video and voice conferences that make physical distances as shortas the available bandwidth. In the past 30 years, ever since the first "helloworld" Internet communication, the Internet has grown in ways that couldnot have been predicted. This is evident, for instance, nowadays, whenwe are realizing that the addressing space of Internet Protocol version4 (IPv4) is becoming scarce. In the early days of the Internet, it wasnever thought that it would reach so many people and affect so many lives.The Internet of today is no longer available for a minority of experts only.There is a growing usage by children and elder people, that either seekfor entertainment and gaming, or for some companion, which many find on-
line. The ever growing popularity and ease of access to the Internet bringswith it questions that are constantly arising: how safe is the Internet?,
is there any privacy on the Internet?, is it possible to remain anonymous
on the Internet?, among other questions, whose answers might not remainconstant throughout time.
On the Internet, just as outside it, there are always those persons whohave malicious intentions. These malicious intentions break laws and rules,

1

2 1. Introduction

disrupting the harmonious coexistence of society. On the Internet, there areseveral ways to disrupt the normal way of working, for instance, Denial ofService (DoS) attacks, phishing scams, identity theft, amongst other threats.With the convergence of services on the Internet such as banking, groceryshopping, renting and buying music, videos or books, among many otherfree or paid on-line services, the potential damage caused by these threatsbecomes much more significant.
The Internet can be seen as a variety of things, depending on how peopleuse it: some people see the Internet as a way to navigate on websites;some people see the Internet as a way to talk to other people; others seethe Internet as a way to read news; others see the Internet as a mean tofreely easily obtain content that otherwise would need to be paid; amongother ways that the Internet may be seen. This happens because so manyof the actual Internet users do not know (and do not need to know) howeverything works under-the-hood. It is because the Internet allows for thisease of access that it has a growing popularity and it is also because ofthis needed ignorance that many attacks are possible and cause potentialdamage.
All of these issues lead to a lot of research and development, in order to tryto make the Internet a safer place. This is a constant struggle, one whichis necessary, because challenges are a requirement for evolution. In orderto understand the problems of the Internet of today and the challengesof the Internet of tomorrow, one needs to comprehend the behavior ofInternet users and their needs. With the increasing bandwidth availabilityand decreasing Internet access prices, Internet users are becoming moredemanding and with greater expectations than ever. With the advent of on-line radio, video and television streaming, standard Internet communicationprotocols faced a challenge: deliver quality or deliver quantity. Thesequestions are always actual, because tomorrow a new need will emerge,which was not predictable today, so there is a need to understand howcan the Internet respond to that challenge. This is why it is important tohave means to understand how the Internet behaves and how users on theInternet use it: what is their experience, what are their problems, and whatcan be done to solve or prevent those problems.

1.2. Problem Definition and Objectives 3

In this dissertation, the author describes a new tool, which helps in thisprocess of understanding the Internet. Although there are several researchcommunities and tools, the author felt the need to analyze the Internet in aparticular manner that, to the best of the knowledge of the author, was notyet addressed. Thus, this dissertation presents and describes NetOdyssey,a tool to facilitate the process of statistically analyzing the behavior of theInternet traffic.
1.2 Problem Definition and Objectives

As described in section 1.1, the need for understanding the behavior theusage of the Internet, and other networks, in order to better comprehendtheir expectations, is constant throughout the evolution of the Internet. Thisbehavior can be assessed by long term analysis, performed in some Internetnodes, which are able to gather Internet traffic from several sources. Someof the currently available tools that permit this analysis are presented inChapter 2, but, to best knowledge of the author of this dissertation, noneof them presents an approach to analyzing Internet traffic as NetOdyssey(the outcome of this dissertation) does.
This dissertation seeks the easiness of the process of understanding thebehavior of any given network (Internet or other), but he is also looking forfreedom in this process of analysis. One of the problems the author wasfaced with was the need to analyze non-conventional network parameters.This means that while a researcher may wish to analyze one specificnetwork metric today, she/he might wish to analyze a radically differentnetwork metric tomorrow. Also, the author of this dissertation wishesto look at the network in a non-traditional way. Traditionally, networkcommunications may be seen as unidirectional or bidirectional flows, butwithin the scope of this dissertation, there is a wish to look at the network asa whole. So, in order to avoid losing information with vast analysis periods,the author wishes to analyze the network as if he was looking through awindow, and network packets where passing through that window. Thisanalysis philosophy will be throughly explained in section 3.3.

4 1. Introduction

Specifically, the main objective of this dissertation is to present a frameworkwhich:
- Allows researchers to understand the behavior of a network by statis-tically analyzing it;- Looks at the network as if one was through a window ; this windowshould be parameterizable in size and fashion of sliding;- Provides modularity and expandability, so the analysis is not confinedto predefined metrics;- Allows for researchers to easily exchange analysis modules and re-sults, in order to share knowledge and conclusions.

1.3 Main Contributions

This section presents the main contributions of the present dissertation, inaccordance with the opinion of the author.The first and main contribution of this dissertation is the NetOdysseynetwork analysis framework itself. This framework is the outcome of aresearch and engineering effort, which provides researchers with special in-terest in statistically analyzing network traffic with a means to perform thisanalysis in a windowed manner. Also, the NetOdyssey framework facilitatesthe sharing of knowledge and information, due to its open nature. Thisframework was presented to the scientific community at the 9th Institute ofElectrical and Electronics Engineers (IEEE) International Symposium onNetwork Computing and Applications (IEEE NCA10) [1]. As it is describedin Chapter 3, NetOdyssey provides a modular approach, which means thatthe analysis is performed by independent modules, allowing them to beeasily tweaked and adjusted as the researcher sees fit.The other main contribution of this dissertation is the pack of availablemodules, presented and validated in section 4.3 which are useful not onlyfor the analysis they preform, but also as a basis for other researchersto learn and understand how to create their own NetOdyssey analysismodules. This pack of modules include an average and standard deviation

1.4. Organization of the Dissertation 5

calculator, an entropy estimator, an auto-correlation estimator and a Hurstparameter estimator.
Although the contributions of this dissertation may seem short in number,the author strongly believes that NetOdyssey is a framework that may growand, through the contributions of those who will use it, mature even further.In section 5.2 directions for future work of NetOdyssey are proposed.

1.4 Organization of the Dissertation

The body of this dissertation is constituted by three main chapters, pre-ceded and succeeded by the Introduction and Final Conclusions and Future
Work, respectively. There are also two Appendixes in the end of thisdissertation. The compilation of the bibliographic references used alongthis work is included after Chapter 5. The contents of each one of thechapters of this dissertation can be summarised as follows:
Chapter 1 elucidates the context for the subject on which this dissertationis going to elaborate on, identifying the main objectives and the problemto be solved. In this chapter it is also included the description of the maincontributions resulting from this dissertation.
Chapter 2 provides an overview of the current state of the art regardingthe subjects of interest of this dissertation. The three main subjects ofinterest reviewed in this chapter were network tools for packet capturingand analysis, network information protocols and plotting tools.
Chapter 3 is the core of this dissertation, presenting the NetOdyssey frame-work. The tools user for the development of NetOdyssey are enumeratedand the calculation philosophy and modular approach are also depicted. Inthis chapter there is also an example of an user analysis module, which iscreated and explained step by step.
Chapter 4 presents the whole process of validating the NetOdyssey frame-work, from the creation of a random capture generator, to the validation ofthe analysis modules provided with this dissertation.

6 1. Introduction

Chapter 5 wraps up the most important conclusions of this dissertation,while also providing some directions for future research and work.
Appendix A depicts the detailed description of the class model in a high-level analysis, detailing what is the purpose of each programmatic class of
NetOdyssey.
Appendix B with has a pretty print of the source code of the implementedmodules that are one of the contributions of this dissertation.

Chapter 2

State of the Art and Critical
Review of Tools for Network
Monitoring and Analysis

2.1 Introduction

The main idea behind this section is to briefly present some important andpopular tools that are - each in their own way - related to the scope ofthis dissertation. This dissertation has three subjects of interest and thecurrent state of the art related to each of them is presented in this section.The first subject of interest in this dissertation is the process of capturingand analyzing packets traveling in a network. In section 2.2 some of themost well known tools for analysis of network traffic will be presented [2–9].Due to the relatively large number of available tools, only some of the mostimportant and well-known tools are presented. Because there are a lotof published research and tools available the focus of this chapter is theanalysis of those works, in order to gather a deeper understanding of thefocus of other researchers.The second subject of interest in this dissertation is the process of statisticalanalysis of data gathered by the packet capturer. In section 2.3 somenetwork protocols will be presented that, with the help of active networkequipment, allow for some analysis of network metrics. This section is
7

8 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

presented here, because it was important for the author to understand whichnetwork metrics are being analyzed in real-world scenarios and how arethey gathered and processed.
The third subject of interest in this dissertation is the representation of theresults. This representation is usually done by creating a chart, using plottools. In section 2.4 a brief description of some available plotting tools ispresented, but since this is the least important subject of this dissertation,the analysis of the state of the art concerning this section was more shallow.

2.2 Overview of Network Tools for Packet Cap-
turing and Analysis

This section presents some of the most relevant tools available for capturingand analyzing network packets.It focuses on tools that, in the opinion ofthe author, have a closer scope to the goal of this dissertation, allowing abetter understand about what has been done and what may remain to bedone.
2.2.1 Wireshark

Wireshark is widely known as the de facto standard across educationalinstitutions, as claimed in [4]. Although Wireshark is known as a networkanalysis tool, it is not the kind of analysis that one is looking for at theNetwork Multimedia and Computing Group (NMCG) [10]. The analysisprovided by Wireshark is aimed at the packets themselves instead of statis-tical analysis. Wireshark enables the understanding of packets per networklayers and conversation flows. Still, this section presents Wireshark in thisstate-of-the art, because it is one of the most well-known network analysistools and it helped in the process of validating his dissertation.
The analyze menu provided by the Graphical User Interface (GUI) of Wire-
shark contains the following features:

2.2. Network Capturing and Analysis Tools 9

- Display filters and display filter macros: this feature allows thecreation and management of filters that define which of the capturedpackets will be displayed. Filters can be simple expressions, like
ip.src == 192.168.0.1

(display packets which Internet Protocol (IP) address source is
192.168.0.1), or more complex expressions, like

not (tcp.port == 80) and

not (tcp.port == 25) and

ip.addr == 192.168.0.1

which displays non Hypertext Transfer Protocol (HTTP) and nonSimple Mail Transfer Protocol (SMTP) packets to and from IP address
192.168.0.1. Display filter macros are a mechanism to createshortcuts for complex filters. It is possible for example to create afilter called myFilter, whose expression is

(ip.src == $1 and ip.dst == $2)

and then use the filter like
${myFilter:192.168.0.1;192.168.0.254}.

For very complex and repetitive filters, it becomes very useful to usemacros in order to minimize accidental typos and ease the analysisprocess;- Follow Transmission Control Protocol (TCP) (defined in Standard(STD)007 [11]), User Datagram Protocol (UDP) (defined inSTD0006 [12]) and Secure Sockets Layer (SSL) stream: this featureallows the following of the conversation stream, for the currentlyselected packet. TCP streams are well defined, because they havea sequence number, a stream beginning and a stream ending. Whenrequested to follow a TCP stream, Wireshark applies a filter such as
(tcp.stream eq 29).

10 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

This implies that there is an identifying number for TCP streamsgenerated by Wireshark when it captures a new TCP stream initial-ization. UDP streams are more tricky to follow, because they are justtheoretical streams, due to the session-less nature of UDP. So, whenrequested to follow an UDP stream, Wireshark applies a filter like
((ip.addr eq ip1 and ip.addr eq ip2) and

(udp.port eq port1 and udp.port eq port2)).

Thus, it is possible to understand that Wireshark considers UDPstreams as a combination of IP addresses (source and destination)and UDP ports;- Expert info and Expert info composite: this feature presents a windowwith a log of errors, warnings and notes about the current capture.The log lines are categorized with four severity levels, described asfollows:* Chat: information about usual workflow, e.g. a TCP packet withthe SYN flag set, or a TCP connection reset (RST flag set);* Note: notable information, e.g. an application returned an "usual"error code like HTTP 404, or there was a TCP duplicate ACK;* Warn: warning, e.g. application returned an "unusual" error, likea connection problem, or there was a TCP segment lost (which maybe usual at capture start);* Error: serious problem, e.g. a malformed packet. Expert infocomposite displays the same information as expert info, but groupedin a tabular fashion (one tab for each severity level).
2.2.2 Analyzer 3.0 (alpha)

Analyzer 3.0 (alpha) is a network packet analyzer for the Win32 platform.It is claimed in [7] that Analyzer includes several functionalities that areneeded by a network management operator. Analyzer is based on Win-Pcap [3], thus making it able to capture packets on most Win32 platforms.
Analyzer is currently being developed at Politecnico di Torino [13], although

2.2. Network Capturing and Analysis Tools 11

at the time this dissertation was written, the latest version of Analyzerwas 3.0a12, dated November 15th, 2007. The source code of Analyzer isavailable. Just as WireShark, Analyzer is able to capture and displaypackets on both local machines and remote probes. Analyzer is able toparse network packets according to a protocol descriptor contained in anexternal file. This protocol descriptor is written in NetPDL language [14],a markup language describing network packets, maintained by NetBeeLibrary group [8].Some of the main features of Analyzer are:
- Advanced capture settings: it is possible to define how many packetsshould be captured (or capture until session is stopped), or the dura-tion of the capture in seconds. It is also possible to define a customsize for the packet snapshot length, allowing for instance to captureonly the packet headers (98 bytes, according to the default settingsof Analyzer). Simple packet sampling options are also available:capturing 1 packet every N packets or 1 packet every N milliseconds- Remote capturing: based on the remote capturing capabilities of Win-PCap itself, Analyzer allows for packet capturing on remote sites.These remote probes must also be running Analyzer and be ready toaccept a remote monitoring session. Remote capturing allows for UDPtransport and automatically ignoring packets belonging to the currentremote capture session;- NetInject: this module allows to inject a capture file created by Ana-

lyzer itself. It provides options like infinite looping or defining thenumber of times to inject the capture, respecting capture timings,sending as fast as possible, setting the number of packets per secondor Kbytes per second;- NetMiner: this module allows some data mining to be performedon captured network traffic. Its algorithm allows for the detectionof frequent itemsets (e.g. which are the top 10 couples of Host-s/Ports?) and association rules (e.g. IP 192.168.0.1 -> MAC

AA11BB-223344). The definable data mining parameters are: mini-mum support (e.g. a value of 0.1% means that only results referring to

12 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

more than 0.1% of traffic will be considered) and minimum confidence(e.g. 80% means that only rules valid for more than 80% of applicabletraffic will be considered).- End-to-end reachability monitor: based on Internet Control MessageProtocol (ICMP) echo (a.k.a. ping) packets, this module is able toperiodically check for hosts ping reachability, HTTP and SSL avail-ability and respond with one or more of the following actions: ring abell, start traffic capture and send an e-mail to several recipients.
The problems that the author of this dissertation encountered during hisanalysis of Analyzer 3.0 alpha were:

- Although Analyzer allows for pcap (libpcap and winpcap) captures tobe opened, it does not allow the recording of its captures in any otherformat than Analyzer capture format. This is a big limitation, becausethe interoperability of capture files allows for more applications toanalyze them;- It was not possible to test NetMiner module, because an error wasdisplayed, while opening the source database. Several different con-figurations were tried but there was no success;- Starting a new NetLogger instance or opening a NetLogger databasefile caused Analyzer 3.0 to simply crash without any warning. Severaldifferent configurations were tried but there was no success;- Although the menu for link-layer statistics exists, it simply shows amessage box saying it is not implemented.
2.2.3 ntop

ntop is a network probe based on libpcap [2]. ntop may be seen as asimple Remote Network Monitoring (RMON)-like agent, with an embeddedweb interface. ntop architecture is described in [9], and, at the time thisdissertation was written, the team behind ntop was working on PF_RING,a module that allows the enhancement of the packet capturing process, byallowing packets to travel directly from the Network Interface Card (NIC)

2.2. Network Capturing and Analysis Tools 13

to PF_RING, instead of taking the traditional path within the OperatingSystem (OS) kernel. This approach is enabling ntop to be able to capturepackets that travel in 10Gb links running in commodity Personal Computers(PCs), while optimizing the overall capturing process.The main features of ntop are:
- Displaying traffic statistics, such as unicast, multicast and broadcastcounters, packet size grouping, bad packet checksum count, total IPtraffic, IP fragmented traffic, and non-IP traffic, number of hops (dis-tance) for each packet, as well as other statistics;- Sorting of network traffic according to many protocols, such as IPv4,Internet Protocol version 6 (IPv6), Internetwork Packet Exchange (IPX),AppleTalk, and others, and showing the distribution of IP traffic amongthose protocols;- Identifying computer users (e.g. email address, through the capture ofSMTP packets);- Passive host OS identification (though the OS fingerprint and patternscontained in some packets);- Displaying IP traffic Subnet matrix (who is talking to who);- Acting as a NetFlow (see 2.3.2) collector;- Protocols are user configurable, meaning a user can teach ntop abouta specific protocol he wishes to be understood when captured, so itcan be included in statistics.

ntop has other features, but none of them fulfill the requirements of theresearch work behind this dissertation. ntop, like other tools analyzed andexperimented by the author, does not have the capability of measuring non-conventional network metrics, and also does not allow for that analysis tobe done with a sliding window manner.
2.2.4 CoMo - Continuous Monitoring

CoMo, described in [6], is a passive monitoring system, designed to be thebasic building block of an open network monitoring infrastructure. Because

14 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

CoMo was though to allow the capturing and analysis of traffic over multiplesites, it faces a great challenge to provide privacy and security guaranteesto the owner of the monitored link. CoMo tries to fulfill the requirements of
Openness, allowing users to customize the system and the software platformto their specific needs; and Resilience, since the system should be ableto monitor and analyze the traffic in any load condition, specially underunexpected traffic anomalies that may overload the system resources.
The philosophy behind CoMo is to allow researchers to create severalanalysis module and them run them (with due permission) on the remotesite. This means that the traffic itself is not available to researchers, butinstead only the analysis returned by the module.

2.2.5 The NetBee Library

NetBee is a library intended for packet sniffing, packet decoding and trafficclassification. NetBee was created and is being developed by the sameresearch group that created WinPCap [3]. However, it is claimed in [8] thatthe WinPcap architecture is rather old and does not fit for nowadays needs.This claim emphasizes the lack of modularity and extendability of WinPcap(and libpcap) architecture. This limitation, combined with the extremelyhard to upgrade nature of WinPcap (it is very easy to break backwardcompatibility), lead to the choice of creating a new library, from scratch,with a new architecture, object-oriented and open to extensions.
The main problem around NetBee is its lack of maturity. In fact, the creatorsof NetBee warn that current releases must be intended as a proof of concept.They also assure that due to the try and error nature of early development,new releases of NetBee will almost surely break backward compatibility.These issues lead us to exclude NetBee for traffic analysis, even if NetBeewould be, theoretically, a good choice.

2.3. Overview of Network Information Protocols 15

2.3 Overview of Network Information Protocols

This section describes some network protocols that facilitate the processof analyzing network traffic and behavior. These protocols exist becausetypically, network analysis needs to be conducted on terminal networknodes, which are able to gather packets from several sources. Theseterminal nodes are usually active network equipments, such as switchesand routers. These active network equipments run an OS that allows themto gather and analyze network information. The protocols presented in thissection enable the process of exporting this data, so they can be stored,presented and further analyzed.
2.3.1 SNMPv3

Simple Network Management Protocol version 3 (SNMPv3) is describedin STD0062 [15] and it provides a framework for managing networks. An
SNMPv3 management system contains several nodes (traditionally calledagents), each with access to management instrumentation; at least one
SNMPv3 entity (traditionally called a manager), containing command gen-erator and/or notification receiver applications; and a management protocol,used to convey management information between the SNMPv3 entities.
The main goals that drove the architecture behind SNMPv3 were [15]:

- Use existing materials as much as possible;- Address the need for security, which was considered the most impor-tant flaw with previous implementations of this protocol;- Allow for architecture evolution in the standards track, even if consen-sus has not been reached on all pieces, making it possible to upgradeportions of Simple Network Management Protocol (SNMP) withoutdisrupting an entire SNMP framework;- Keep SNMP as simple as possible (S stands for Simple).
STD0062 [15] describes the main security requirements of SNMPv3, but amore thorough analysis of these security measures would fall outside the

16 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

scope of this state of the art review. Thus, we will consider SNMPv3 to bea secure and reliable protocol.
Although SNMP allows the gathering of many network properties andstatistics (such as number of packets, erroneous packets, packet drops,among other management statistics), these statistics fall outside the pur-pose of this dissertation.
2.3.2 Cisco NetFlow

NetFlow is a protocol developed by Cisco Inc., that provides a key set ofservices for IP applications. Some examples of these services are networkmonitoring, DoS monitoring and network traffic accounting. Although Net-
Flow was initially a proprietary protocol, it is now a mature protocol. Net-
Flow is now an Internet Engineering Task Force (IETF) standard describedin informational Request For Comments (RFC)3954 [16]. The actual versionof NetFlow by the time the present dissertation was written was version9 [17]. An IETF standard, known as Internet Protocol Flow InformationExport (IPFIX) (described in subsection 2.3.3) is emerging inspired on thisversion of NetFlow.
The NetFlow version 9 export format uses templates to ease the taskof observing IP packet flows, in an extensible and flexible manner. Atemplate defines the collection of fields to be exported, with correspondingdescriptions of structure and semantics. Active network elements, such asrouters and switches (those that implement Cisco Internetwork OperatingSystem (IOS)) gather informations about IP flows and export it to collectors,using UDP (defined in STD0006 [12]) or Stream Control TransmissionProtocol (SCTP) (defined in RFC4960 [18]) packets. In this particularcontext, a flow is defined as an unidirectional sequence of packets, withsome common properties. The collected data about these flows providesfine-grained metering for highly flexible resource usage accounting. Thisdata is very granular, containing information such as IP addresses, packetand byte counts, timestamps, application ports, input and output interfaces,etc.

2.3. Overview of Network Information Protocols 17

The template-based approach of NetFlow version 9 provides the followingadvantages:
- Just like - for instance - in Extensible Markup Language (XML),new fields can be added to the export records, without changing thestructure of the export record format. This was a limitation of versionsprior to version 9;- Structural information about the exported flow records are containedin the export, thus, if the NetFlow collector does not understand thesemantics of new fields, it can still interpret the flow record;- Due to the flexibility provided by the template mechanism, it is pos-sible to only export the fields that are required. This helps to reducethe volume of the exported data and also reduce network load.

A NetFlow Exporter (e.g. a Cisco IOS router or a Cisco IOS switch) gathersinformations about flows and exports them using the NetFlow protocol. Aflow can be exported under some conditions, such as:
- If an explicit end of flow is detected. For example, TCP (defined inSTD007 [11]) has special flags (called FIN (as in finish) and RST (asin reset)) that explicitly terminate a TCP connection (because in thiscontext flows are unidirectional, tcp connections represent 2 flows);- If the flow has been inactive (no packets observed corresponding tothis flow) for a given period of time;- If it is a long-lasting flow, exports should be made on a regular basis;- If the Exporter is experiencing internal constraints, such as low memortor counters wrapping.

Although the exports of previous versions of NetFlow were strictly en-capsulated into UDP packets, NetFlow version 9 has been designed tobe transport protocol independent, allowing it to operate over congestion-aware protocols, such as SCTP.These exports should be collected by NetFlow Collectors and these areresponsible for analysis, storage and/or presentation of the results to theuser/network administrator. The NetFlow version 9 was designed with the

18 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

assumption and expectation that the Explorers and Collectors would remainwithin a single private network. Thus, no great security measures wereimplemented, no impositions on confidentiality, integrity nor authenticationrequirements. This greatly reduces the implementation complexity andalso increased the efficiency of NetFlow version 9 protocol. As describedin subsection 2.3.3, IPFIX (described in RFC5101 [19]) addresses thesesecurity considerations.
2.3.3 IPFIX

IPFIX is described in RFC5101 [19] and, at the time this dissertation waswritten, it had a status of Proposed Standard. RFC3917 [20] provides the re-quirements for the IPFIX and RFC5655[21] is also a Proposed Standard fora file format designed to facilitate interoperability and re-usability among awide variety of flow storage, processing and analysis tools. Because IPFIXis based on Cisco NetFlow version 9 (see subsection 2.3.2), they sharesome similarities, such as the existence of export processes and collectingprocesses and the existence of data and template records. Nevertheless,
IPFIX may be considered the version 10 of NetFlow. In fact, the versionfield in the IPFIX header contains the value 0x000a, which increments byone the value used in the NetFlow services export version 9.Just as NetFlow version 9, IPFIX has been designed to be transport protocolindependent. It is also notable that the exporter can export to multi-ple collecting processes using different transport protocols. RFC5101 [19]specifically states that in order to guarantee compliance and interoperabil-ity with different IPFIX implementations, SCTP (defined in RFC4960 [18])using the Partial Reliability Stream Control Transmission Protocol (PR-SCTP) (defined in RFC3758 [22]) must be supported. UDP (defined inSTD0006 [12]) and TCP (defined in STD007 [11]) are referred to as op-tional implementations. TCP may be used in environments susceptible tocongestion, although there is a strong recommendation for the usage ofPR-SCTP, due to its ability to limit back pressure on exporters.The security considerations for the IPFIX protocol have been derived fromRFC3917 [20], where an analysis of potential security threats is made.

2.4. Overview of Plotting Tools 19

Thus, the requirements for IPFIX security define that IPFIX must provide amechanism to ensure the confidentiality of IPFIX data, in order to preventdisclosure of Flow Records; IPFIX must provide a mechanism to ensurethe integrity of IPFIX data, in order to prevent the injection of incorrectdata or control information into an IPFIX stream and IPFIX must providea mechanism to authenticate Collecting and Exporting Processes, in orderto prevent collection of data from an unauthorized Collecting Process, orthe exportation of data from an unauthorized Exporting Process. TransportLayer Security (TLS) (defined in RFC4346 [23]) and Datagram TransportLayer Security (DTLS) (defined in RFC4347 [24]) were designed to meetthe aforementioned security requirements of IPFIX, without the need forpre-shared keys. Since a deeper security analysis would fall outside thepurpose of this protocol review, we will just assume IPFIX is a secure andreliable implementation, even though RFC5101 [19] presents some scenariosthat could compromise the reliability hereby assumed.
2.4 Overview of Plotting Tools

This section presents some plotting tools that are well-known to the scien-tific community. These tools are important in the scope of this dissertation,because plotting data greatly helps the process of analyzing it, so conclu-sions and details can be assessed.
2.4.1 Microsoft Excel and OpenOffice Calc

Microsoft Excel and OpenOffice Calc are two well-known spreadsheet ap-plications, with intuitive and simple GUIs, which allow for data analysisand processing. Although they both support extensions that enable muchmore analysis methods than those already implemented, they both have aphysical limitation of 65.536 rows and 1.024 columns, which is predictable tosoon become a limitation, given the amount of data intended to be analyzedin the scope of this dissertation. For instance, a 24 hour network capture,in a 2Mb link can contain about 22.000.000 100B packets: a much greaternumber of values than those which these tools are designed to handle.

20 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

2.4.2 RRDtool

In [25] it is claimed that RRDtool is the open source industry standard,high performance data logging and graphing system for time series data.RRD stands for Round Robin Database. RRDtool is available for severallinux distributions and Microsoft Windows platforms. Source code is alsoavailable, so it is possible to compile it on other OSs.
RRDtool supports 2D plotting of captured data, as opposed to gnuplot (see2.4.3) which also supports 3D plotting and mathematical functions as input.
RRDtool supports different types of outputs, such as png, svg or eps.
2.4.3 gnuplot

Gnuplot [26] is a graphing utility available for several OSs such as Linux,Microsoft Windows, OSX and others. It is an open source utility and wasoriginally created to allow scientists and students to visualize mathematicalfunctions and data.
Gnuplot supports several types of plots, in either 2D or 3D representations.Several demos for the different plots are available, facilitating the learningprocess to use gnuplot. It is possible to export the plots to several fileformats, such as eps, jpg, LATEX, png, svg, and other formats and gnuplot isextensible, so new output modes can be added.
2.5 Conclusion

In the introduction of this chapter, the three subjects of interest for thisdissertation were introduced. After gathering information about tools re-lated to the scope of this dissertation, it was provided a new insight and adeeper comprehension about related works and the current state of the art.About the first subject of interest of this dissertation, the process of captur-ing and analyzing packets traveling in a network, one may learn that, amongthe tools presented in this chapter, CoMo (see section 2.2.4) is the one thatwas author found to be closest to the tool developed by the author. Still,

2.5. Conclusion 21

the scope and goals of CoMo are different from the ones of NetOdyssey inthe following aspects:
- CoMo was designed for multi site (different locations/organizations)traffic analysis. This raises security and privacy issues that are notrelevant in the scope of this dissertation;- CoMo was also designed to be used by multiple users, so there is aneed for fair resource sharing, in order to guarantee those users areable to run the analysis they wish, without compromising the systemand other users.

In this dissertation, these needs are relaxed , as the developed tool (seeChapter 3) was designed to fulfill our research needs, although also beingmodular and open enough for it to be used by other researchers.Regarding the second subject of interest, the process of statistically ana-lyzing the captured packets, it was learned that many current approachesare based on Cisco NetFlow (see section 2.3.2), IPFIX (see section 2.3.3)and SNMPv3 (see section 2.3.1). These approaches present tools that actas gatherers of information provided by these protocols, and then run someanalysis on the gathered data. These approaches were outside the scopeof this dissertation, because we wish to enable researchers to analyze anykind of metric, conventional and non-conventional.Finally, for the third subject of interest, the representation of the results ofthe traffic analysis, the author decided to use gnuplot because of the highplotting versatility it provides and because this is a well-known tool in theresearch community.

22 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

Chapter 3

The NetOdyssey Framework

3.1 Introduction

The main purpose of the NetOdyssey framework was initially to supportsome research work at the NMCG, but, as NetOdyssey evolved, it becameclear that it be could easily used by other researchers for network trafficanalysis. Thus, NetOdyssey has evolved to a modular approach, describedin section 3.5 , in order to make its usage easier. NetOdyssey encompassesthe actual trend of Central Processing Unit (CPU) manufacturers to deploymore than one core inside the processors, by using a multi-thread approach.As described in section 3.4, each analysis module, e. g. the packet capturingcode and other core components, all run in separate threads. Thus, if oneanalysis module is slower to process than the others, it will not become abottleneck, since other modules can keep running, given there are enoughresources in the host machine. Even if an analysis module encountersan exception and needs to be stopped, it will stop alone, and it will notinterrupt the whole analysis process of other modules. In Chapter 4, thevalidation process of NetOdyssey is described.
3.2 Tools for Development of NetOdyssey

NetOdyssey was developed using Microsoft .NET Framework 3.5. Althoughthis framework was designed to develop applications for the Microsoft
23

24 3. The NetOdyssey Framework

Windows OS, it is possible to use Mono Project to run NetOdyssey onother OSs (namely Linux and Apple Mac OS). NetOdyssey was entirelywritten in C#.
In order to capture network packets within the Microsoft Windows platform,winPcap was used. Since winPcap is not natively object-oriented (as C#is), sharpPcap - a winPcap C# wrapper - was used.
3.2.1 Microsoft .NET Framework 3.5

According to [27], the .NET Framework is an integral Microsoft Windowscomponent that supports building and running applications and XML Webservices. One of the main objectives behind the .NET Framework is toprovide a consistent object-oriented programming environment. The .NETFramework has two main components: the Common Language Runtime(CLR) and the .NET Framework class library. The CLR is the foundationof the .NET Framework, as it provides core services such as memory andthread management, strict type safety, providing accuracy, security androbustness. On the other hand, the class library is a comprehensive,object-oriented collection of reusable types that a developer can use onits applications.
3.2.2 Mono Framework

According to [28], Mono is a software platform designed to allow developersto easily create cross platform applications. It is an open source implemen-tation of Microsoft .NET Framework based on ECMA [29] standards for C#and the CLR, sponsored by Novell [30]. The main motivation behind Monois to lower the barriers of production of applications for Linux, embracinga successful and standardized software platform. On [28] it is also claimedthat the benefits of Mono are:
- Popularity: built on the success of .NET, there are millions of devel-opers that have experience building applications in C#;

3.2. Tools for Development of NetOdyssey 25

- High-level programming: all Mono languages benefit from the featuresof the runtime, like automatic memory management, reflection, genericsand threading;- Base Class Library: a comprehensive class library provides thousandsof built in classes to increase productivity;- Cross Platform: Mono runs on Linux, Microsoft Windows, Mac OS X,BSD, Sun Solaris, Nintendo Wii, Sony Playstation 3, Apple iPhone.It also runs on x86, x86-64, IA64, PowerPC, SPARC (32), ARM, Alpha,s390, s390x (32 and 64 bits). It is claimed that applications designedwith Mono are able to run on nearly any computer in existence;- CLR: the use of the CLR allows developers to choose the programminglanguage they best like to work with, and it can inter-operate withcode written in any other CLR language.
3.2.3 winPcap

In [3], it is claimed that winPcap is the industry-standard tool for link-layernetwork access in Windows environments. WinPcap consists of a driverand a library that provide easy access to low-level network layers.In [31] it is claimed that the main features of winPcap are the following:
- Freedom: there is a total freedom to modify winPcap and use it withinany application, even commercial ones;- High performance: there are classic optimizations, described in thepacket capture literature and some original ones like just-in-time filtercompilation and kernel-level statistic processing.- Popularity: there is a vast list of tools - free and commercial ones- that use winPcap. Within this list there are some well knowntools such as Wireshark, Nmap, Snort, WinDump and ntop. It is alsoclaimed that winPcap has thousands of downloads per day;- Reliability: with a rock-solid development approach, and through thecontributions of many users, winPcap has grown to be a reliable andstable software;

26 3. The NetOdyssey Framework

- Ease of use: either in a programmers point of view and the final userperspective, winPcap is well documented and simple to setup and startto use;- Portability: winPcap is compatible with libpcap [2], meaning currentapplications can b ported either to or from other operative systems,without the hassle of porting the capture library.
3.2.4 SharpPcap

In order to use winPcap with Microsoft .NET Framework, a wrapper needsto be used. This is due to the object oriented nature of the programminglanguage used to develop NetOdyssey, namely C#. WinPcap is not object-oriented per se, but an object oriented approach increases the reliabilityand re-usability of NetOdyssey. At the time this dissertation was written,SharpPcap was open source software and it was freely available at [32].
3.3 The Calculation Philosophy of NetOdyssey

Equation 3.1, the Strong Law of Large Numbers, shows that, given enoughobservations (possibly infinite), the values from a random variable tendto the expected value (the average). This leads to a lost of information,because any variation in the observed values is absorbed and smoothedby all other values. In order to avoid this loss of information, NetOdysseyrelies in analyzing all data in a windowed fashion. NetOdyssey supportsthe two following types of analysis windows:
- Analysis Window Size (AWS) - the analysis window is filled with
AWS = n observations and then analyzed. Once all results arecalculated, the analysis window slides one observation to the right(this means the first observation is removed, and a new observation isinserted in the window), and this process repeats all over again (seeFigure 3.1);- Analysis Window Time (AWT) - the analysis window is filled withobservations for AWT = t seconds, and when it is full, it is analyzed.

3.3. The Calculation Philosophy of NetOdyssey 27

Once all results are calculated, the analysis window is cleared, andthis process repeats all over again (see Figure 3.2).
P
(lim
n→∞

Xn = µ
) = 1 (3.1)

NetOdyssey may gather the network packets themselves, one by one, ora statistical information provided by winPcap: Bit Count per Time Unit(BCTU). These two capture modes are not compatible with each other,because they require the network adapter to work in different capturingmodes. When NetOdyssey is gathering BCTU information, it is not possibleto access the packets themselves. This happens because a captured packet,by definition, has a well defined start time and size, but this does notallow us to know how long did it actually take to transmit/receive, or howmany bits were generated by it, because of situations like re-transmits andmalformed packets. Thus, in order to gather BCTU information, the adapteris requested to work in statistic gathering mode, which allows the adapterto return precise information about the amount of bits traveling through it.

Network packet Analysis window

tim
e

#1 #2 #3 #4 #5 #6

#1 #2 #3 #4 #5 #6

#1 #2 #3 #4 #5 #6

Figure 3.1: A representation of a sliding analysis window (AWS of 3 observations).
In Figure 3.1 it is easily perceivable that in an analysis window of AWS = nanalysis, when there is a right-shift of the analysis window, n− 1 packetsare common to the previous analysis window. If every window needed tobe fully analyzed (although this may be the case for some analyses), thiswould lead to a slow and potentially not real-time analysis. In order tooptimize this process, all of the analysis methods of NetOdyssey must beimplemented with a per input and per output analysis in mind. Whencorrectly implemented, this approach makes the analysis independent from

28 3. The NetOdyssey Framework

Observation

Analysis window

tim
e

#1 #2 #3 #4 #5 #6

#1 #2 #3 #4 #5 #6

#1 #2 #3 #4 #5 #6

(...)

Figure 3.2: A representation of a temporal analysis window (AWT).
the size of the AWS (this does not apply to AWT, because after t secondsthe analysis window is cleared (as seen in Figure 3.2)).
In a high-level description, NetOdyssey provides an analysis window con-structor that works in the following manner:

- Until analysis window is full (definition of full varies according toanalysis method: AWS = n observations or AWT = t seconds ofobservations):* Enqueue an observation (may be a network packet or a BCTUstatistic) in the analysis window;* Send this observation to all analysis modules;
- When analysis window is full:* Request all analyzers to report their analysis from the currentanalysis window;* If analyzing in a sliding fashion (AWS): Dequeue an observationfrom the analysis window, sending this observation to all analysismodules;* If analyzing in a temporal fashion (AWT): Clear all observationsfrom the analysis window, requesting all analysis modules to cleartheir analysis;
- Now that the analysis window is not full, repeat the process again.

3.4. The Architecture of NetOdyssey 29

3.4 The Architecture of NetOdyssey

NetOdyssey has been developed with expansion capability and easinessof use in mind. NetOdyssey was thought with a multi-thread approach, inorder to allow it to take full advantage of current multi-core CPUs. Thecore behind NetOdyssey provides the tools and the threads responsible forcompiling expansion modules, capturing network packets or BCTU statis-tics, constructing and managing the analysis window, reporting applicationstatus and delays through a Health Reporter and providing task queuingsupport methods for Expansion Modules.
- Expansion Modules CompilerMicrosoft .NET Framework provides methods and classes that allowfor runtime compilation of C# or VB.NET source code. As describedin section 3.2.1, the CLR is the foundation of the .NET Framework,so these classes are able to compile plain-text code (determiningsyntax-errors and compiler warnings), and run this code inside thescope of the application. This is the same process as invokinga Dynamically Linked Library (DLL), though the only differencerelies on the code being compiled on-demand, instead of being pre-

compiled. This approach facilitates the openness philosophy behind
NetOdyssey, allowing for all of those who utilize this framework toshare their modules and allowing them to be updated, adapted andtested with different settings. The NetOdyssey class that provides thisfunctionality is clsModules and it is described in Appendix A.1.4;

- Capturer Thread

NetOdyssey relies on a thread to capture the observations that aregoing to be analyzed. It is important to run this capturing processin a separate thread, in order to minimize the number of droppedobservations that may arise due to processing delays. As described insection 3.3, these observations may be the network packets themselvesor BCTU statistics. From a high level point of view, the capturerthread is responsible for:a) configuring the capture device (live capturedevice or off-line capture device: a pcap file); b) capturing the

30 3. The NetOdyssey Framework

observations; c) sending each observation to the analysis windowconstructor thread. It is also this capturer thread that is responsiblefor verifying if the configured stopping conditions (time limit and/orobservation count) have been reached. The NetOdyssey class thatprovides this functionality is clsCapturer and it is described inAppendix A.1.5;
- Analysis Window Constructor Thread

NetOdyssey constructs and manages the analysis window accordingto the configured settings in a separate thread. The capturer threaddispatches the observations to this analysis window constructor andthis thread constructs the analysis window, sending the observationsto the analysis modules and requesting them to report their analysisaccording to the algorithm described in section 3.3. The NetOdysseyclass that provides this functionality is clsAnalysisWindow andit is described in Appendix A.1.6;
- Health Reporter Thread

NetOdyssey provides a thread that allows the monitoring of the status(also known as health) of other NetOdyssey’s threads. This mechanismis useful to understand if any loss of observations is happening or anyanalysis module is falling behind on it’s analysis process. In orderto be able to report it’s health, a class must implement the interface
IHealthReporter, described in Appendix A.1.9. The NetOdysseyclass that provides this functionality is clsHealthMonitor and itis described in Appendix A.1.7;

- Expansion Modules Base ThreadsEach of NetOdyssey’s analysis modules is an implementation ofeither interface INetOdysseyBCTUAnalyzerModule (describedin Appendix A.2.4) or INetOdysseyPacketAnalyzerModule(described in Appendix A.2.5) and an extension of base class
NetOdysseyModuleBase (described in Appendix A.2.1). This baseclass provides essential services, such as: a) threaded execution ofthe module; b) queuing of the analysis tasks the module must perform;
c) streaming the module reports to a text file; d) reporting the module’s

3.5. A modular approach 31

status, namely the size of it’s task queue . It is essential to providethese services, in order to permit an easier utilization of NetOdyssey.For example, an user programming a NetOdyssey module does nothave to worry about writing the analysis to a file: all the output fromthe analysis report method is automatically streamed to a file, one foreach module. Thus, the module developer only has to worry about theformat of his output, which can of course be adapted to his needs, e.g.:Comma Separated Values (CSV).
3.5 A modular approach

As stated in Chapter 1, NetOdyssey aims to become a well known networkanalysis framework. One of the main advantages of NetOdyssey ispresented in this section: modularity. This feature is possible due to aprecise differentiation between the core of NetOdyssey and the analysismodules. While the core of NetOdyssey provides basic functionality andservices, such as those described in section 3.4, it is the modules that areresponsible for actually analyzing network information.The analysis modules of NetOdyssey are nothing more than plain-text codefiles (C# or VB.NET) that get compiled during NetOdyssey’s start. Eachmodule is a class that extends a base class and implements an analysisinterface. This base class is NetOdysseyModuleBase (describedin Appendix A.2.1) and the currently available analysis interfaces are
INetOdysseyBCTUAnalyzerModule (described in Appendix A.2.4) and
INetOdysseyPacketAnalyzerModule (described in Appendix A.2.5).Section 3.3 explains the philosophy behind the per observation analysis:with the windowed analysis approach of NetOdyssey, it is much moreefficient to analyze only the observations that enter and exit the windowinstead of always analyzing the whole window. This is even more obviousfor sliding analysis windows (AWS = n), where n is large.The core services of NetOdyssey run in separate threads and each analysismodule also run on it’s own thread. This is required because there may bedifferent modules performing an analysis and it is not desirable that mod-

32 3. The NetOdyssey Framework

ules delay each other. Thus, when extending NetOdysseyModuleBase,a module is actually gaining access to a set of the core services of
NetOdyssey, such as threaded execution, task management and reportstreaming. Whoever wishes to implement a NetOdyssey analysis modulemust only worry about how to process the observations entering and leavingthe analysis window. An example of a NetOdyssey analysis module ispresented in subsection 3.6.
3.6 An example module

This section presents an example module. In this example, one wishesto analyze the mean and standard deviation of the network packet sizes.Thus, the analysis will be performed in a per-packet fashion (as opposedto a per-BCTU analysis).In order to perform a per-packet analysis, this example module needs toimplement the interface INetOdysseyPacketAnalyzerModule (Ap-pendix A.2.5). All of this module is written in C# code.
class example : NetOdysseyModuleBase,

INetOdysseyPacketAnalyzerModule

As described in Appendix A.2.5, INetOdysseyPacketAnalyzerModulerequires the classes that implement it to implement the following methodsand functions:
1. void AnalysePacketIn(Packet Packet, int WindowSize)2. void AnalysePacketOut(Packet Packet, int WindowSize)3. void Clear()4. string ModuleEnd()5. string ModuleStart()6. string ReportAnalysis()

Function string ModuleStart() is invoked once, before NetOdysseystarts the analysis process. This function returns a string which is au-tomatically added to the top of the module output file. In this example,

3.6. An example module 33

the output will be separated by a semi-colon. It is convenient to print theheader names in the first line, so the implementation of ModuleStart()is as follows:
public override string ModuleStart() {

return "average; stdDev" + Environment.NewLine;

}

Function string ModuleEnd() is invoked once, after the current Ne-
tOdyssey module finishes the analysis process. This function returns astring which is automatically added to the end of the module output file.In this example, there is no need for a special footer output, so the imple-mentation of ModuleEnd() is as follows:
public override string ModuleEnd() {

return "";

}

The analysis performed by this module resides inside the
AnalysePacketIn() and AnalysePacketOut() methods. Theseare the methods responsible for performing the real-time analysis ofobservations (in the particular case of this module these observations arenetwork packets), as they enter and leave the analysis window. In thismodule, the author seeks to know the average and standard deviation ofthe network packets’ size. The equation for determining the average of arandom variable (x̄) is presented in 3.2 and the equation for determiningthe standard deviation of a random variable (σ) is presented in 3.3.

x̄ = 1
N

N∑
i=1 xi (3.2)

σ =
√√√√ 1
N

N∑
i=1 (xi − x̄)2 (3.3)

Equation 3.2 is fairly simple to implement, but equation 3.3 needs tobe approached in a different manner, in order to facilitate the windowed

34 3. The NetOdyssey Framework

analysis approach of NetOdyssey. Thus, re-writing equation 3.3, it ispossible to obtain equation 3.4.
σ =

√√√√ 1
N

N∑
i=1 xi

2 − x̄2 (3.4)
In order to optimize the execution of the module, the following variablesare declared and initialized inside the scope of the module’s class:

1. int _packetLenght2. int _currentCount = 03. double _sum = 04. double _sumOfSquares = 05. double _average6. double _sigma

Variable _packetLenght is an auxiliary variable that seeks to minimizethe overhead of accessing inside the Packet object received in the analysismethods. Variable int _currentCount holds a counter to the currentnumber of packets inside the analysis window. This variable represents
N in equation 3.2. Variable double _sum holds the sum of the packetslength inside the analysis window. This variable represents ∑N

i=1 xi inequation 3.2. Variable double _sumOfSquares holds the sum of thesquare value of the packets length inside the analysis window. This variablerepresents ∑N
i=1 xi2 in equation 3.3. Variables double _average and

double _sigma are auxiliary variables that facilitate the output of theanalysis function described ahead.Method void AnalysePacketIn(Packet Packet, int

WindowSize) is called every time a network packet enters theanalysis window. The implementation of this method is as follows:
public override void AnalyzePacketIn(

PacketDotNet.Packet Packet, int WindowSize) {

_packetLenght =

Packet.BytesHighPerformance.Length;

_currentCount++;

3.6. An example module 35

_sum += _packetLenght;

_sumOfSquares += _packetLenght * _packetLenght;

}

Method void AnalysePacketOut(Packet Packet, int

WindowSize) is called every time a network packet leaves theanalysis window. The implementation of this method is as follows:
public override void AnalyzePacketOut(

PacketDotNet.Packet Packet, int WindowSize) {

_packetLenght =

Packet.BytesHighPerformance.Length;

_currentCount--;

_sum -= _packetLenght;

_sumOfSquares -= _packetLenght * _packetLenght;

}

Method void Clear() is called every time the network analysis windowis cleared. This happens particularly in the case of a temporal analysiswindow (AWT = t seconds). This method exists to provide additionaloptimization, since if the analysis window was cleared, there is no needto analyze the removal of each packet, just reset the analysis modulealtogether. The implementation of this method is as follows:
public override void Clear() {

_currentCount = 0;

_sum = 0;

_sumOfSquares = 0;

}

Finally it is necessary to implement the string ReportAnalysis()function. This function is called every time the analysis window is full, inorder to allow the method to output a string containing it’s results of theanalysis of the current window. This output is automatically appended tothe module report file, as mentioned in section 3.4. The implementation ofthis function is as follows:

36 3. The NetOdyssey Framework

public override string ReportAnalysis() {

if (_currentCount > 0)

_average = _sum / _currentCount;

else

_average = 0;

if (_currentCount > 1)

_sigma = Math.Sqrt(

(_sumOfSquares / _currentCount) -

(_average * _average)

);

else

_sigma = 0;

return _average + "; " + _sigma +

Environment.NewLine;

}

This module was tested with the following randomly generated packets(generated with the tool described in section 4.2):
{569; 153; 1188; 64; 768; 339; 892; 1357; 435; 384}.
The output generated by this module for a sliding analysis window of 5packets (AWS= 5) is:
average; stdDev

548,4; 412,000291262033

502,4; 419,896463428784

650,2; 400,511872483201

684; 448,703465553811

758,2; 362,421522539708

681,4; 391,710403231775

Using equation 3.2 to verify the average calculation results:
(569 + 153 + 1188 + 64 + 768)/5 = 548.4;

3.7. Conclusion 37

(153 + 1188 + 64 + 768 + 339)/5 = 502.4;(1188 + 64 + 768 + 339 + 892)/5 = 650.2;(64 + 768 + 339 + 892 + 1357)/5 = 684;(768 + 339 + 892 + 1357 + 435)/5 = 758.2;(339 + 892 + 1357 + 435 + 384)/5 = 681.4.As expected, all results match.Using equation 3.4 to verify the standard deviation calculation results:√(5692 + 1532 + 11882 + 642 + 7682)/5− 548, 42 = 412.002913;√(1532 + 11882 + 642 + 7682 + 3392)/5− 502.42 = 419.8964634;√(11882 + 642 + 7682 + 3392 + 8922)/5− 650.22 = 400.5118724;√(642 + 7682 + 3392 + 8922 + 13572)/5− 6842 = 448.7034656;√(7682 + 3392 + 8922 + 13572 + 4352)/5− 758.22 = 362.4215225;√(3392 + 8922 + 13572 + 4352 + 3842)/5− 681.42 = 391.7104032.As expected, all results match.The full and pretty printed source code of this module is available inAppendix B.1.
3.7 Conclusion

The present section presented a framework whose purpose is to ease theprocess of statistically analyzing network traffic. The philosophy behindthis framework allows for a windowed analysis approach. This windowedanalysis lets us at the NMCG and all others who use this framework, to lookat the traffic as if looking through a window. Observations slide throughthis window, entering and leaving one at a time, as in a queue.Because it is not easy for one to predict which metrics she/he will be ana-lyzing throughout her/his research, the presented framework, NetOdysseyallows for analysis modularity. This modular approach means that thosewho use NetOdyssey may effectively develop their own analysis modulestuning them to their personal analysis necessities.

38 3. The NetOdyssey Framework

Since NetOdyssey looks at the network as if looking through a window,it is important to analyze only the observations that enter and leave thisanalysis window, since those are the ones that bring new information tothe metrics being analyzed. The user analysis modules of NetOdysseymust be implemented with this approach in mind. If this approach was nottaken, one would need to analyze the whole window, for each entering andleaving packet, which for an analysis window of size n would mean n − 1observations with duplicated analysis.As of the actual implementation, NetOdyssey may fill the analysis windowswith two types of observations: the network packets themselves and BCTUobservations. Analyzing the network packets allows for researchers tolook at headers and payloads, while analyzing BCTU observations allowsfor researchers to understand fluctuations in bandwidth usage and othermetrics. Due to the incompatible nature of these two observation types(libPcap must be configured to capture in either packet mode or BCTUmode), it is not possible to analyze them both at the same time.

Chapter 4

Results and Validation

4.1 Validation of NetOdyssey

NetOdyssey supports capturing live packets on any available NIC (providedthey are compatible with winPcap), but it also supports opening an offlinecapture. The source of the packets is independent from all the calculationmethods, so in order to validate NetOdyssey and assure coherent and validresults, an offline capture was used. Also, in order to avoid potentially bi-ased captures, a random capture generator was created. Whenever possible,all calculations presented in this chapter were performed by well-knownand valid mathematical tools, such as the R-project tool [33].
4.2 Random capture generator

In order to have a statistically random and unbiased offline capture to aidthe validation process of NetOdyssey and all the implemented modules,a random capture generator was created. This random capture generatorutilizes the well-known Mersenne-Twister [34] algorithm to randomly gen-erate different packet sizes and different inter-arrival times. Although it ispossible to perform Deep Packet Inspection (DPI) with NetOdyssey (thepayload of the packets is available to the modules), this is outside of thescope of this dissertation, and, based on this, only packet sizes and packet
39

40 4. Results and Validation

inter-arrival times are considered here. This random capture generator hasdifferent parameters for minimum and maximum packets sizes, minimum andmaximum inter-arrival times, capture size and random payload generation(otherwise payload will be full of zeros).This random capture generator outputs all packet sizes and inter-arrivaltimes to a plain text file, which can be used to validate the generator. Bothpacket sizes and packet inter-arrival times are compared against theserandomly generated values, using WireShark [4], a well-known, impartialand scientifically valid tool. In order to produce statistically significantresults, several captures of more than 500.000 packets were generated andvalidated.Throughout the present dissertation and the process of validating Ne-
tOdyssey and its modules, it was used one randomly generated captureof 5.000 packets, with a minimum packet size of 64 bytes and maximumpacket size of 1518 bytes (as recommended by STD0041 [35]). For theinter-arrival times, it was decided to use a minimum value of 0 (zero) anda maximum value of 2.000.000 microseconds (2 seconds).In order to assess the degree of randomness of this generated capture,the entropy calculation for an AWS of 250 observations is presented insubsection 4.3.1, and in subsection 4.3.3, the auto-correlation function ofthis generated capture is included.
4.3 Implemented modules

One of the contributions of this dissertation, mentioned in section 1.3, isthe pack of analysis modules. These modules are presented and validatedin this current section. In order to obtain a good degree of scientificvalidation, all the results provided by currently implemented modules weremathematically validated with a well-known and impartial mathematicaltool: R [33]. The implemented modules available and explained in thisdissertation are:
- Average and Standard Deviation estimator, described in section 3.6(source code available in Appendix B.1);

4.3. Implemented modules 41

- Entropy estimator, described in section 4.3.1 (source code available inAppendix B.2);- Auto-Correlation estimator, described in section 4.3.3 (source codeavailable in Appendix B.3);- Hurst parameter estimator, described in section 4.3.5 (source codeavailable in Appendix B.4).
4.3.1 Entropy Estimator

Entropy (H) is the measure of the uncertainty of random variable. Equa-tion 4.1 presents the definition of Entropy, also known as Shannon Entropy.The maximum value of the Entropy is the logarithm of the different numberof possible observations.
H(X) = −∑

x∈χ
p(x) logp(x) (4.1)

With the present dissertation, and, as stated in section 1.3, one of theanalysis modules available is an entropy estimator module. Equation 4.1is not directly implementable in an optimized way to perform a windowedanalysis, as described in section 3.3. Thus, there were two possible ap-proaches for an entropy analysis:
- For every full analysis window, calculate the entropy of the wholewindow: this approach is not optimized at all and, as such, it was notimplemented;- For every observation entering and leaving the window, calculateit’s particular effect on the entropy of that window: this approachis optimized to work in accordance with NetOdyssey’s calculationphilosophy, so it was implemented.

In the following explanation, please consider w as the analysis windowsize and c as the number of times that the current observation’s valueis present inside the analysis window. When an observation enters theanalysis window, this module performs the following analysis:

42 4. Results and Validation

- If c = 0:* c = 1;* Add c
w ∗ ln(w) to the entropy;- Else, if c > 0:* Subtract c

w ∗ ln(wc) from the entropy;* c = c + 1;* Add c
w ∗ ln(wc) to the entropy;

In a similar way, when an observation leaves the analysis window, thismodule performs the following analysis:
- If c = 1:* Remove c

w ∗ ln(w) from the entropy;* c = 0;- Else, if c > 1:* Subtract c
w ∗ ln(wc) from the entropy;* c = c − 1;* Add c

w ∗ ln(wc) to the entropy;
Thus, when reporting the analysis, this module only needs to output thecurrent value of the entropy, because it is always up-to-date.The main idea behind this algorithm is to update the value entropy onlywhen observations enter and leave the observation window. If an obser-vation value already existed inside the window, its previous effect on theentropy must be removed, before adding the new effect on entropy. This isobservable in the algorithm above.The validation of this module is presented in subsection 4.3.2, and thesource code for this module is available in Appendix B.2.
4.3.2 Validation of Entropy Estimator

Figure 4.1 presents the R source code utilized to validate the Entropycalculation module available with the present dissertation.

4.3. Implemented modules 43

Figure 4.1: R code used to validate results from Entropy Estimator module.
Entropy() is a function available in R, that estimates the Shannonentropy of a random variable from its observation counts. It is necessaryto use the table() function, in order to return the observation countsof a random variable. By comparing all R entropy calculation results fora sub-vector of initial packet sizes, rounded to the 5th decimal place fordifferent window sizes, and observing that all values match, it is possibleto access the validity of the implementation of this module. As it possibleto understand from the validation source code, in the first occurrence of amismatch, the validation immediately stops and warns about the error. Theexecution of this validation ran flawlessly for different AWS sizes and originvalues, thus proving that this module is correctly estimating the Entropyvalues.In order to assess the degree of randomness of the captures generatedby the tool presented in section 4.2, the entropy calculation for an AWS of250 observations was calculated and the results are presented in Figure 4.2.As it is possible to visualize, the entropy values are always very close tothe maximum value (ln(250) = 5.521), thus confirming the high-degree ofrandomness of this randomly generated capture.
4.3.3 Auto-correlation Estimator

The auto-correlation function [36] is a commonly-used tool for assessingrandomness in a data set. This randomness is measured by calculating

44 4. Results and Validation

Figure 4.2: Entropy of 5.000 randomly generated packet sizes, with AWS=250.
the correlations of the values within the data set with each other. Thedistance of the packets utilized for determining the correlation is called
lag, and is represented by k . Equation 4.2 presents the equation for theauto-correlation function of a random variable X, for a lag k and observationcount w. When the data set has a high degree of randomness, the auto-correlation values are near to zero for all lag separations. Likewise, if thereis a low degree of randomness, autocorrelation values will be far from zero.The auto-correlation function has a co-domain of [-1:1].

acf(X, k) =
w−k∑
i=0 XiXi+k − µ

w−k∑
i=0 Xi − µ

w−k∑
i=0 Xi+k + (w − k)µ2

w∑
i=0 Xi

2 − wµ2 (4.2)

As an example of the auto-correlation function, Figure 4.3 presents theplot of the example equation 4.3. Figure 4.4 presents the plot of the auto-correlation function for a maximum lag of K = 200. For small values of
K , the auto-correlation of the function values is evident. This is expected,because the origin vales have a very small degree of randomness, yet they

4.3. Implemented modules 45

are not constant.
f(x) = 2 sin(2π(x − 14

))
, x = [0, 2] (4.3)

Figure 4.3: Plot of equation 4.3 .

Figure 4.4: Autocorrelation of equation 4.3, maximum lag K = 200.

46 4. Results and Validation

In order to access the degree of randomness of the random capture gener-ated in section 4.2, and utilized in the process of validating the analysismodules available in this dissertation, the auto-correlation function for allvalues of K is presented in Figure 4.5. It is possible to observe thatfor all values K > 0 the value of the auto-correlation is very near to 0,meaning a very good degree of randomness (auto-correlation of K = 0 is1 by convention). This is the desired and expected behavior, because, asstated in 4.2, a well-known and valid pseudo-random generator was usedto generate these values.

Figure 4.5: Autocorrelation of 5.000 randomly generated packet sizes, for all Ks.
With the present dissertation, and, as stated in section 1.3, one of theanalysis modules available is an auto-correlation estimator module. Thismodule was implemented in order to take advantage of the optimization theanalysis philosophy behind NetOdyssey, presented in section 3.3 provides.To accomplish this, it was used the methods to analyze the observationsentering and leaving the analysis window to update all sum values and thenin the analysis report method calculate and return the result of equation 4.2.Since it is desirable to calculate the auto-correlation function to different
lag values, there were two approaches:

- Either create a module that would calculate the auto-correlation for

4.3. Implemented modules 47

one specific lag and then run this module several times for different
lags;- Or create a module capable of calculating different lags at the sametime.

The second approach was the one followed in this particular implementa-tion, because as the number of lags to calculate increases, so could the
overhead of running different concurrent threads (see section 3.5) at thesame time increase.The validation of this module is presented in subsection 4.3.4, and thesource code for this module is available in Appendix B.3.
4.3.4 Validation of Auto-correlation Estimator

Figure 4.6 presents the R source code utilized to validate the Auto-Correlationcalculation module available with the present dissertation.

Figure 4.6: R code used to validate results from Auto-Correlation Estimator module.
Acf() is a function available in R that computes estimates of the auto-correlation function. In the scope of this validation process, the argumentsthat are important in this function are lag.max=k and plot=FALSE. Thesearguments are important, because by default, the acf() function utilizes10 log1 0(N), where N is the number of observations; plot=FALSE is a flagthat tells acf() not to present it’s results in a plot, as it does by default.Input argument Ks is a vector with the different values of k that will be

48 4. Results and Validation

calculated. By comparing all R acf() calculation results for a sub-vectorof initial packet sizes, rounded to the 5th decimal place for different windowsizes, and observing that all values match, it is possible to access thevalidity of the implementation of this module. As it possible to understandfrom the validation source code, in the first occurrence of a mismatch, thevalidation immediately stops and warns about the error. The execution ofthis validation ran flawlessly for different AWS sizes and origin values,thus proving that this module is correctly estimating the Auto-Correlationvalues.
4.3.5 Hurst Exponent by Autocorrelation Function Estima-
tor

In [37], Gubner and Kettani proposed a new method for the estimation ofthe Hurst parameter, naming it Hurst Exponent by Autocorrelation Function(HEAF). This proposal is based on the autocorrelation function γ(k) of aself-similar process, which can be simplified as equation 4.4.
γ(k) = 12 (|k + 1|2H − 2 |k|2H + |k − 1|2H) (4.4)

Calculating the auto-correlation for k = 1, equation 4.4 degenerates intoequation 4.5, which can be solved for H, thus providing an immediateestimate for the Hurst parameter, presented in equation 4.6.
γ(1) = 22H−1 − 1 (4.5)

⇔ H = 12 log2 (γ(1) + 1) + 12 (4.6)
These were the basic principles followed in the implementation of theHurst parameter estimation module, available with the present dissertation.Because of the novelty of the method, this particular implementation hasnot yet been implement in R software, thus it is not possible to validate inthe same fashion as the previous modules were validated. Nevertheless,and as it is possible to observe by comparing the source code of the

4.3. Implemented modules 49

Auto-Correlation Estimation Module (Appendix B.3) and the source codeof the Hurst Parameter Estimation Module (Appendix B.4), this moduleutilizes the already validated auto-correlation code, only expanding it onthe ReportAnalysis() function. This extension is nothing more thanthe application of the Least Square Methods (LSMs) to the points withcoordinates constituted by the base 2 logarithm of the values of lag k andthe autocorrelation also for lag k .
The main idea behind this implementation of the Hurst Estimation is toplot the following values for, as a term of example an analysis window of200:
x-axis: log2(2) = 1, log2(4) = 2, log2(8) = 3, log2(16) = 4, log2(32) = 5,log2(64) = 6, log2(128) = 7;
y-axis: log2(acf(k = 2)), log2(acf(k = 4)), log2(acf(k = 8)), log2(acf(k =16)), log2(acf(k = 32)), log2(acf(k = 64)), log2(acf(k = 128)).
From this plot, it is possible to assess the slope of the line connectingthese points, through the LSMs method. Once this slope s is estimated His determinable by equation 4.7.

s+ 12 (4.7)

Figure 4.7: Estimation of the Hurst parameter based on autocorrelation function using linearregression.

50 4. Results and Validation

Figure 4.7 depicts an example of the plot for the results from the firstAWS of 200 observations, from the random capture generated with thetool presented in 4.2. As it is possible to observe, the slope of the linefrom the linear regression of the values is close to 0 (−0, 0139). Throughequation 4.7 it is possible to determine that the Hurst parameter H is0.49307. This value is very close to 0.5, meaning there is no long-rangedependence between values in this particular observation window. When
H is close to 1, there is strong evidence of long-range dependence (alsoknown as long memory). Likewise, when H is close to 0, there is strongevidence of anti-persistence.
4.4 Conclusions

One of the main contributions of this dissertation is the pack of avail-able user analysis modules. Throughout the present chapter, this pack ofmodules was presented and validated. These modules are: average andstandard deviation calculation, entropy estimation, auto-correlation esti-mation and HEAF estimation. A random capture generator was developed,in order to provide some statistically random data (non biased), so theseanalysis modules can be validated.This pack of modules has their C# source code available in Appendix B. Itwas important to us to provide the scientific community with this disserta-tion explaining these analysis modules and their source code, because thisprovides a basis for the development of more NetOdyssey modules. Thesemodules depict the windowed analysis philosophy behind NetOdyssey andprovide easiness to its understanding.Everyone who implements a NetOdyssey analysis module should takespecial care in the validation process, because only with valid and correctresults it is possible to obtain knowledge about network behavior. Sec-tion 5.2 presents some guidelines for those who wish to develop analysismodules for NetOdyssey.

Chapter 5

Conclusions and Future Work

5.1 Main Conclusions

In section 1.2 it was stated that this dissertation aims to facilitate theprocess of understanding any given network, while providing researcherswith freedom in this understanding process. Chapter 2 presented therevision of most of the state of the art available at the time this dissertationwas written. From this analysis of the state of the art, it was put inevidence the need for the development of a tool . Throughout the presentdissertation, it was described the design and development of NetOdyssey, aframework for network traffic analysis, with a windowed analysis philosophyin mind (as described in section 3.3). This windowed analysis philosophy isone of the crucial differentiation points of NetOdyssey from other analysisframeworks. This framework has grown in such a way, that it could be usednot only by the NMCG research group, but also by the scientific communityin general. This lead to a change in the scope of this dissertation, thatinstead of focusing in traffic analysis itself, it focused on the developmentand validation of this framework. Throughout Chapter 3 and Chapter 4, theauthor presented and validated this framework, NetOdyssey. Throughoutall sets of laboratory tests that the author submitted NetOdyssey to, itsreliability increased notably. There is a great confidence in this tool, sinceit has been able to surpass all initial expectations.
The NetOdyssey framework is a very good addition for the ever grow-

51

52 5. Conclusions and Future Work

ing community of researchers that wish to analyze network metrics andstatistics. Its modular approach and object oriented development facilitatefurther expansions and improvements. The analysis modules developed andpresented with the current dissertation also facilitate the understanding andimplementation of further analysis modules. This is a crucial requisite inorder to guarantee the future utilization and improvement of NetOdyssey.
Special care was taken while scientifically validating both NetOdyssey andthe available analysis modules. This validation was possible thanks to ameticulous way of developing the analysis modules and then comparingthe output of these modules against a well known and impartial statisticaltool. The choice for using the R software [33] was due to the fact that it isindeed very useful, has a non-steep learning curve and it is freely availablefor everyone to use.
5.2 Directions for Future Work

While NetOdyssey has already proven to be a robust and reliable frame-work for network analysis, many improvements may still take place. Be-cause of the open and modular approach inherent to NetOdyssey, re-searchers and developers, who wish to use this framework to perform theiranalysis, are able to expand and improve the functionalities of NetOdyssey.
Because user analysis modules need to be written in plain source code,they can be shared within the scientific and interested community. This isonly possible, of course, if those who utilize this framework are willing toshare their analysis modules, but there are great expectations for the futureof NetOdyssey.
About the future work and progress of NetOdyssey, the following guidelinesare proposed:

- Assessment of the statistical metric one wishes to analyze;
- Evaluation if this metric can be evaluated in a windowed manner (i.e.,following the analysis philosophy described in section 3.3);

5.2. Directions for Future Work 53

- Development of the analysis module, according to the documentationin this dissertation and other available modules;- Validation of the results with a well known and impartial tool;- Use the developed and validated module to perform the desired anal-ysis, obtaining results and conclusions;- Share of these results, conclusions and preferably also the analysismodule with the scientific community.
NetOdyssey was developed with a good degree of object-orientation andclass separation in mind. This allows for the development and extensionof additional core functionalities. For example, if one wishes to analyzenetwork flows, one may develop a capturer module that captures flows andsends them to the already developed analysis modules.In short, the future work of NetOdyssey depends greatly on those whoutilize it. Those who wish to implement analysis modules may focus on thatscope, and those who wish to improve its core services and functionalitiesmay focus on that scope. The author feels it will be a thrilling experienceto watch NetOdyssey develop and mature even further.

54 5. Conclusions and Future Work

References

[1] F. D. Beirão, J. V. Gomes, P. R. M. Inácio, M. Pereira, M. M.Freire. NetOdyssey - a new tool for real-time analysis of networktraffic. 9th IEEE International Symposioum on Network Computing
and Applications (IEEE NCA 2010), Cambridge, USA, 15-17 July 2010,4 pages.

[2] tcpdump/libpcap Web Page. http://www.tcpdump.org/ accessed Febru-ary 22nd, 2010.
[3] CACE Technologies. WinPcap: The Windows Packet Capture Library.http://www.winpcap.org/ accessed February 22nd, 2010.
[4] CACE Technologies. Wireshark About Page.http://www.wireshark.org/about.html accessed March 3rd, 2010.
[5] Analyse-it. Analyse-it Web Page. http://www.analyse-it.com/ accessedMarch 8th, 2010.
[6] G. Iannaccone, C. Diot, D. McAuley, A. Moore, I. Pratt, L. Rizzo. TheCoMo White Paper. September 2004.
[7] Politecnico di Torino. Analyzer 3.0 (alpha) Wep Page, November 2007.http://analyzer.polito.it/ accessed March 2nd, 2010.
[8] Politecnico di Torino. The NetBee Library Web Page.http://www.nbee.org/ accessed March 2nd, 2010.
[9] ntop.org. ntop Web Page. accessed March 16th, 2010.

[10] Network multimedia and computing group. http://floyd.di.ubi.pt/nmcg/accessed June 25th, 2010.
55

56 REFERENCES

[11] J. Postel. STD0007: Transmission Control Protocol. September 1981.
[12] J. Postel. STD0006: User Datagram Protocol. August 1980.
[13] Politecnico Di Torino Web Page. http://www.polito.it/ accessed March2nd, 2010.
[14] The NetBee Library PDL. http://www.nbee.org/doku.php?id=netpdl:indexaccessed March 2nd, 2010.
[15] B. Wijnen D. Harrington, R. Presuhn. STD0062: An Architecture forDescribing Simple Network Management Protocol (SNMP) Manage-ment Frameworks. December 2002.
[16] Ed. B. Claise. RFC3954: Cisco Systems NetFlow Services ExportVersion 9. October 2004.
[17] Cisco. http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html accessed March 9th, 2010.
[18] Ed. R. Stewart. RFC:4960: Stream Control Transmission Protocol.September 2007.
[19] Ed. B. Claise. RFC5101: Specification of the IP Flow InformationExport (IPFIX) Protocol for the Exchange of IP Traffic Flow Information.January 2008.
[20] B. Claise S. Zander J. Quittek, T. Zseby. RFC3917: Requirements forIP Flow Information Export (IPFIX). October 2004.
[21] L. Mark T. Zseby A. Wagner B. Trammell, E. Boschi. RFC5655:Specification of the IP Flow Information Export (IPFIX) File Format.October 2009.
[22] Q. Xie M. Tuexen P. Conrad R. Stewart, M. Ramalho. Stream ControlTransmission Protocol (SCTP) Partial Reliability Extension. May 2004.
[23] E. Rescorla T. Dierks. RFC4346: The Transport Layer Security (TLS)Protocol Version 1.1. April 2006.

REFERENCES 57

[24] N. Modadugu E. Rescorla. RFC4347: Datagram Transport LayerSecurity. April 2006.
[25] T. Oetiker. RRDTool Web Page.http://oss.oetiker.ch/rrdtool/index.en.html accessed March 17th,2010.
[26] gnuplot. gnuplot Wep Page. http://www.gnuplot.info/ accessed March17th, 2010.
[27] MSDN. .NET Framework Conceptual Overview.http://msdn.microsoft.com/en-us/library/zw4w595w.aspx accessedFebruary 22nd, 2010.
[28] Mono-Project Web Page. http://www.mono-project.com/ accessedFebruary 22nd, 2010.
[29] ECMA International. ECMA Web Page. http://www.ecma-international.org/ accessed February 22nd, 2010.
[30] Novell Web Page. http://www.novell.com/ accessed February 22nd,2010.
[31] CACE Technologies. WinPcap features.http://www.winpcap.org/misc/features.htm accessed February 22nd,2010.
[32] SharpPcap Sourceforge Project Page.http://sourceforge.net/projects/sharppcap/ accessed February 22nd,2010.
[33] Bell Laboratories. R-project. http://www.r-project.org/ accessed April19th, 2010.
[34] M. Matsumoto, T. Nishimura. Mersenne twister: a 623-dimensionallyequidistributed uniform pseudo-random number generator. Special

issue on uniform random number generation, 8:3–30, 1998.
[35] C. Hornig. STD0041: A Standard for the Transmission of IP Datagramsover Ethernet Networks. April 1984.

58 REFERENCES

[36] G. E. P. Box and G. Jenkins. Time series analysis: Forecasting andcontrol. 1976.
[37] J.A. Kettani, H.; Gubner. A novel approach to the estimation of thelong-range dependence parameter. IEEE Transactions on Circuits and

Systems II: Express Briefs, 53:463–467, 2006.

Appendix A

Class Model

A.1 Base classes of NetOdyssey

A.1.1 Program

Figure A.1: Program - The main class containing the main() method.
Program (Figure A.1) is the default class where the main() methodresides. This class contains the following properties:

- prpAnalysisWindow : this property contains the instance of clsAnalysisWindow(see A.1.6);- prpCapturer : this property contains the instance of clsCapturer(see A.1.5);
59

60 A. Class Model

- prpFrmModuleCompiler : this property contains the instance of theGUI form that contains the instance of clsModules (see A.1.4);- prpHealthMonitor : this property contains the instance of clsHealthMonitor(see A.1.7);- prpSettings: this property contains the instance of clsSettings(see A.1.2).
In a no error execution, the main() method goes through the followingsteps:

1. read and parse command-line settings;2. check current settings;- if current settings are not valid or incompatible, show frmSettings(see A.1.3);3. compile user modules;4. start user modules;5. start AnalysisWindow thread;6. start HelathMonitor thread;7. start Capturer thread;8. start capturing and analysis process;9. wait for user input, or wait for stopping conditions to be reached, ifset;- when there is any user input, request Capturer thread to stop;10. gracefully terminate application
A.1.2 clsSettings

The class clsSettings (Figure A.2) is responsible for holding all of
NetOdyssey’s settings. The description of these settings is also availableif NetOdyssey is started with -h command-line flag.
The available settings and their command-line flags are as follows:

- AnalysisWindowSize -aws=n: the size in packets or statistics of theAWS;- AnalysisWindowTime -awt=t: the number of seconds of the AWT;

A.1. Base classes of NetOdyssey 61

- AutoStartCapture -asc: automatically start capture if all settings arevalid (will show compile results window anyway);- BitCountPerTimeUnit -bctu=t: the number of milliseconds betweenBCTU readings;- CaptureDevice -d=d: the zero-based index of the device to captureon; use flag -ld to list available devices;- CaptureMode: an internal property to facilitate the differentiationbetween packet capturing and gathering of statistics;- DumpCapture -dump: a flag to dump the capture to an offline file,allowing for posterior processing and further analysis; dumping thecapture is not available in statistics gathering mode;- HealthMonitorInterval -hmi=t: the number of milliseconds betweenhealth monitor reports;- IsStopScheduled: an internal property set to true when there is anykind of capture stop scheduled (time or packet count);- ListDevices -ld: a flag signaling whether devices will be listed ornot;- ModulesFolder -modulesFolder=string: the path for the folderfrom where user modules will be compiled;- Packets_StatisticsToCapture -c=n: the amount of packets or statis-tics (depending on capture mode) to capture before automaticallystopping the analysis;- PrintHelp -h: a flag signaling whether help will be printed or not;- prpArguments: an internal list of parsed command-line arguments;- prpDevices: an internal list of PcapDevices;- prpDumpFile: an internal string containing the default path for thedump file;- RealTimePriority -rtp: a flag indicating that NetOdyssey should tryto raise it’s priority to real-time;- ReportsFolder -reportsFolder=string: the path for the folderto where user modules’ reports will be written;- SecondsToCapture -t=t: number of seconds to capture, before auto-matically stopping the analysis;- ShowCompileWindow -nsc: a flag signaling whether or not to show

62 A. Class Model

the compile results window;- TcpDumpFilter -filter=string: a string written with the syntaxof tcpdump to filter the captured packets;- Verbose -v: a flag signaling whether NetOdyssey will produce ver-bose output.
clsSettings also provides the following methods:

- checkSettings(): a method that checks all settings for invalid orincompatible configurations;- createReportsFolder(): a method that verifies the existence ofthe given report folder and creates it, if possible;- dumpSettings(): a method that will output the current settings tothe reports folder, for future reference.
A.1.3 frmSettings

frmSettings (Figure A.3) is shown either when the current settings areinvalid or incompatible (e.x. if both AWS and AWT are set) or if theflag AutoStartCapture (see A.1.2) is not set. The default settings include
AutoStartCapture set to false, thus frmSettings is shown if NetOdysseyis run with not command-line options.
A.1.4 clsModules

The abstract class clsModules (Figure A.4) provides the method
compileModules() which is responsible for looking for *.cs and *.vbfiles inside inSourceDirectory and compile them. Once compiled,these modules can be accessed through the public field prpModules. Thetype of this public field is List of NetOdysseyModuleBase (see A.2.1).This class is utilized by the main() method inside Program class.
In general guidelines, the process of compiling a NetOdyssey user modulewritten in C# is as follows:

A.1. Base classes of NetOdyssey 63

- Create an array _ra of Strings with the necessary refer-ence assemblies, i.e.: {"System.dll", "SharpPcap.dll",
"NetOdysseyModule.dll", "PacketDotNet.dll"}- Instantiate an object _cscp of type
Microsoft.CSharp.CSharpCodeProvider;- Instantiate an object _cp of type
System.CodeDom.Compiler.CompilerParameters, passing
_ra as argument;- Instantiate an object _cr of type
System.CodeDom.Compiler.CompilerResults from
CSharpCodeProvider.CompileAssemblyFromFile(),passing _cp and the full path to the file to be compiled as arguments;* Collection _cr.Errors contains all compile errors and warn-ings;- Instantiate an object _a of type System.Reflection.Assemblyfrom _cr.CompiledAssembly;- For each object _t of type System.Type from _a.GetTypes():* If _t.IsClass and
_t.IsSubclassOf(typeof(NetOdysseyModuleBase)):* Instantiate an object _module oftype NetOdysseyModuleBase by casting
System.Activator.CreateInstance(_t) to
NetOdysseyModuleBase;

The compiled user module, of type NetOdysseyModuleBase is nowaccessible through _module. clsModules places all instances of usermodules inside the list prpModules.
A.1.5 clsCapturer

When clsCapturer (Figure A.5) is instantiated, it receives a PcapDevice(an object that represents a winPcap device). This PcapDevice may bea Live device or an Offline device.This class implements the interface IHealthReporter (see A.1.9), mean-ing it is able to report it’s status through the method HealthReport().

64 A. Class Model

In this health report, clsCapturer outputs the following informations,according to their applicability: total captured packets/gathered statis-tics, total packets/statistics to be captured and adapter statistics, such asdropped packets.
When the method Start() is called, a new thread of the method Work()is launched. If the capture has a temporal limit, a new thread of the method
WorkthrCapturerStop() is launched. This last thread sleeps for theamount of time of the capture temporal limit, and when this time has elapsedthis thread stops the Work() thread.
When working with BCTU statistics, these informations are processed asyn-chronously, because it is the Pcap driver who provides NetOdyssey withthis data. Thus, the method prpLiveDevice_OnPcapStatistics()is called every time a BCTU reading is available.
The method Work() works in the following manner:

- if capturing packets: prepare the capture device, applying filters andpreparing dump files, if applicable. Then, in an endless loop (termi-nated by main() or by reaching stopping conditions):* Capture a packet;* Parse the packet (convert it from a PacketDotNet.RawPacket toa PacketDotNet.Packet);* Enqueue this packet in the analysis window;* If applicable, dump the packet;- if gathering BCTU statistics: prepare the capture device, setting it’scapture mode to Statistics and then setting the statistics callbackmethod to prpLiveDevice_OnPcapStatistics(). The deviceis then requested to start the capture and this thread terminates,because the capture will run in a thread inside winPcap (this is whywe need to utilize the callback method).
When stopping conditions are met (user input, packets captured or statisticsgathered reach count limit or defined time has elapsed, whichever comesfirst), a null element is enqueued in the analysis window queue, signalingit to stop.

A.1. Base classes of NetOdyssey 65

A.1.6 clsAnalysisWindow

The class clsAnalysisWindow (Figure A.6) is responsible for queuingeither network packets or network statistics and send each of these itemsto all modules.
When the method Start() is called, a new thread of the method Work()is launched. If AWT is being used, a new thread of the method AWTWork()is launched. This thread runs in an infinite loop, sleeping for AWT = tseconds, and when it awakes, it requests all modules to report their analysisand clears the current analysis window. (See subsection 3.3 for betterunderstanding of the AWT analysis mechanism).
clsAnalysisWindow has an input queue, because clsCapturer(see A.1.5) does not contain any queuing mechanism. This input queuehelps minimize the loss of network packets/statistics due to delays inhandling and processing this data. The method Enqueue() (there aretwo signatures according to whether NetOdyssey is capturing packets orBCTU statistics) is called by clsCapturer and simply enqueues theinformation in the aforementioned input queue. A semaphore is also usedto notify the Work() thread that there is new information available.
The method Work() works in the following manner, inside an endless loop(terminated when a null element is found in the input queue):

- Read information i from input queue;* If i is null, this means that a stopping order has been given,so request all user modules to finish their analysis and terminate thecurrent thread;* Else, place i inside the analysisWindow queue, requestingall user modules to analyze i;* If analysisWindow has reached the maximum AWS = n sizethen: Request all user modules to report their current analysis;Remove information t from the tail of the analysisWindowqueue (dequeue);Request all modules to remove t from their analysis;

66 A. Class Model

A.1.7 clsHealthMonitor

The class clsHealthMonitor (Figure A.7) is responsible for request-ing current status (health) from classes that implement the interface
IHealthReporter (see A.1.9). This class receives the instances of theobjects to monitor through the method addModule() and maintains athread (method Work()) that sleeps in an endless loop for a parameterizedtime (see refclsSettings, parameter HealthMonitorInterval). Every time thisthread wakes up, it requests all modules to report their status (health) andprints the outputs to stdout.This class is very useful to determine if any user module is having pro-cessing the inputs slower than expected and to know if packets are beingdropped.
A.1.8 clsMessages

The abstract class clsMessages (Figure A.8) contains the methods forprinting messages to the stdout. This class exists in order to facilitate thefuture internationalization of NetOdyssey.
A.1.9 IHealthReporter

IHealthReporter (Figure A.9) is the interface that all classes whichsupport reporting their current status (health) must implement. This inter-face is easy to implement, since it only mandates the implementation of the
HealthReport() method, which returns a string. It is up to each classthat impleme
A.2 Base classes of the user modules of NetOdyssey

A.2.1 NetOdysseyModuleBase

NetOdysseyModuleBase (Figure A.10) is the base class for every usermodule, thus providing all basic functionalities, such as threaded running

A.2. Base classes of the user modules of NetOdyssey 67

and task queuing. NetOdysseyModuleBase has an internal queue of
NetOdysseyModuleBaseTask (see A.2.2), so each module may run atit’s own pace.
All user modules are compiled by clsModules (see A.1.4) and are in-stantiated in clsModules.prpModules list. The following methods are
virtual, meaning they can be overridden by a later re-implementation ofthose methods:

- void AnalyzeBCTUIn(ulong BCTU, int WindowSize);- void AnalyzeBCTUOut(ulong BCTU, int WindowSize);- void AnalyzePacketIn(ulong BCTU, int WindowSize);- void AnalyzePacketOut(ulong BCTU, int WindowSize);- void Clear();- void ModuleStart();- void ModuleEnd();- void ReportAnalysis();
When writing an analysis module, one should implement these methods withthe override keyword, in order to override the default implementations.These default implementations simply print a warning message saying thesemethods were not re-implemented.
A.2.2 NetOdysseyModuleBaseTask

NetOdysseyModuleBase.Task (Figure A.11) is a class that providesa mechanism to store the arguments and actions that need to be queued.This class has several instantiation methods, which are called according tothe action NetOdyssey wishes to enqueue.
A.2.3 NetOdysseyModuleBaseModuleTask

NetOdysseyModuleBase.ModuleTask (Figure A.12) is an enumeratorwith the possible actions to enqueue with NetOdysseyModuleBase.Task(see A.2.2). This enum exists in order to facilitate the object-oriented

68 A. Class Model

approach, instead of utilizing a not strongly typed mechanism, such asstrings or integers to identify these actions.
A.2.4 INetOdysseyBCTUAnalyzerModule

INetOdysseyBCTUAnalyzerModule (Figure A.13) is the interface thatmust be implemented when programming a user module that will ana-lyze BCTU observations. The main difference between this interface and
INetOdysseyPacketAnalyzerModule (see A.2.5) is the name andinput type of the AnalyzeIn and AnalyzeOut methods.
A.2.5 INetOdysseyPacketAnalyzerModule

INetOdysseyPacketAnalyzerModule (Figure A.14) is the interfacethat must be implemented when programming a user module that willanalyze packet observations. The main difference between this interfaceand INetOdysseyBCTUAnalyzerModule (see A.2.4) is the name andinput type of the AnalyzeIn and AnalyzeOut methods.

A.2. Base classes of the user modules of NetOdyssey 69

Figure A.2: clsSettings - The class responsible for holding all NetOdyssey’s settings.

70 A. Class Model

Figure A.3: frmSettings - The form for entering and confirming the session settings.

Figure A.4: clsModules - The class responsible for compiling *.cs and *.vb files.

A.2. Base classes of the user modules of NetOdyssey 71

Figure A.5: clsCapturer - The class responsible for capturing network packets or statistics,according to the analysis mode.

Figure A.6: clsAnalysisWindow - The class responsible for queuing values in a windowedmanner, and sending them to user modules.

72 A. Class Model

Figure A.7: clsHealthMonitor - The class responsible for requesting the current status of
NetOdyssey’s threads, from time to time.

Figure A.8: clsMessages - The abstract class responsible for printing NetOdyssey’s outputsto stdout.

A.2. Base classes of the user modules of NetOdyssey 73

Figure A.9: IHealthReporter - The interface that must be implemented by classes whoare able to report their current status (health).

74 A. Class Model

Figure A.10: NetOdysseyModuleBase - The class responsible for providing all the basicmethods for a user module.

A.2. Base classes of the user modules of NetOdyssey 75

Figure A.11: NetOdysseyModuleBaseTask - The class that holds a NetOdyssey moduletask.

Figure A.12: NetOdysseyModuleBaseModuleTask - The enum that represents the typeof possibleNetOdysseyModuleBaseTasks.

76 A. Class Model

Figure A.13: INetOdysseyBCTUAnalyzerModule - The interface that must be imple-mented by user modules that perform a BCTU analysis.

Figure A.14: INetOdysseyPacketAnalyzerModule - The interface that must beimplemented by user modules that perform a per-packet analysis.

Appendix B

Implemented Modules Source
Code

B.1 Average and Standard Deviation estimator

77

1 using System;

2 using System.Collections.Generic;

3 using NetOdysseyModule;

4

5 namespace AverageAndStdDev

6 {

7 class NetOdysseyAvgStdDevPacketsModule :

8 NetOdysseyModuleBase, INetOdysseyPacketAnalyzerModule {

9

10 int _packetLenght;

11 int _currentCount = 0;

12 double _sum = 0;

13 double _sumOfSquares = 0;

14 double _average = 0;

15 double _sigma = 0;

16

17 public override string ModuleStart()

18 {

19 return "average; stdDev" + Environment.NewLine;

20 }

21

22 public override string ModuleEnd()

23 {

24 return "";

25 }

26

27 public override void AnalyzePacketIn(PacketDotNet.Packet Packet,

28 int WindowSize) {

29 _packetLenght = Packet.BytesHighPerformance.Length;

30 _currentCount++;

31 _sum += _packetLenght;

32 _sumOfSquares += _packetLenght * _packetLenght;

33 }

34

35 public override void AnalyzePacketOut(PacketDotNet.Packet Packet,

36 int WindowSize) {

37 _packetLenght = Packet.BytesHighPerformance.Length;

38 _currentCount--;

39 _sum -= _packetLenght;

40 _sumOfSquares -= _packetLenght * _packetLenght;

41 }

42

43 public override void Clear() {

44 _currentCount = 0;

45 _sum = 0;

46 _sumOfSquares = 0;

47 }

48

49 public override string ReportAnalysis() {

50 if (_currentCount > 0)

51 _average = _sum / _currentCount;

52 else

53 _average = 0;

54

55 if (_currentCount > 1)

56 _sigma = Math.Sqrt(

57 (_sumOfSquares / _currentCount) -

58 (_average * _average)

59);

78 B. Implemented Modules Source Code

60 else

61 _sigma = 0;

62 return _average + "; " + _sigma + Environment.NewLine;

63 }

64 }

65 }

B.1. Average and Standard Deviation estimator 79

80 B. Implemented Modules Source Code

B.2 Entropy estimator

1 using System ;

2 using System .Collections .Generic ;

3 using NetOdysseyModule ;

4

5 namespace EntropyOnTheFly

6 {

7 class NetAnalyzerEntropyPacketsModule :

8 NetOdysseyModuleBase , INetOdysseyPacketAnalyzerModule {

9

10 int PacketLength ;

11 double _ws;

12 double _entropy = 0;

13

14 Dictionary <int , int > _occurences = new Dictionary <int , int >();

15

16 public override string ModuleStart ()

17 {

18 return "entropy" + Environment .NewLine ;

19 }

20

21 public override string ModuleEnd ()

22 {

23 return "" ;

24 }

25

26 public override void AnalyzePacketIn (PacketDotNet .Packet Packet ,

27 int WindowSize) {

28 PacketLength = Packet .BytesHighPerformance .Length ;

29 _ws = (double)WindowSize ;

30 lock (_occurences)

31 {

32 if (_occurences .ContainsKey (PacketLength)) {

33 // If this packet size already exists,

34 // remove its previous weight and add

35 // the new one to the entropy

36 _entropy -= (_occurences [PacketLength] / _ws) *

37 Math.Log(_ws / _occurences [PacketLength]);

38 _occurences [PacketLength]++;

39 _entropy += (_occurences [PacketLength] / _ws) *

40 Math.Log(_ws / _occurences [PacketLength]);

41 }

42 else {

43 // If this packet size didn't exist already,

44 // add it to the entropy

45 _occurences .Add(PacketLength , 1);

46 _entropy += (1 / _ws) * Math.Log(_ws);

47 }

48 }

49 }

50

51 public override void AnalyzePacketOut (PacketDotNet .Packet Packet ,

52 int WindowSize) {

53 PacketLength = Packet .BytesHighPerformance .Length ;

54 _ws = (double)WindowSize ;

55 lock (_occurences)

56 {

57 if (_occurences [PacketLength] == 1) {

58 // If this is the last occurence of this packet siz e,

59 // remove it from the entropy

B.2. Entropy estimator 81

60 _occurences .Remove(PacketLength);

61 _entropy -= (1 / _ws) * Math.Log(_ws);

62 }

63 else {

64 // If this packet size still exists in the window,

65 // update its value

66 _entropy -= (_occurences [PacketLength] / _ws) *

67 Math.Log(_ws / _occurences [PacketLength]);

68 _occurences [PacketLength]--;

69 _entropy += (_occurences [PacketLength] / _ws) *

70 Math.Log(_ws / _occurences [PacketLength]);

71 }

72 }

73 }

74

75 public override void Clear () {

76 _entropy = 0;

77 lock (_occurences)

78 _occurences .Clear ();

79 }

80

81 public override string ReportAnalysis () {

82 return _entropy + ";" + Environment .NewLine ;

83 }

84 }

85 }

82 B. Implemented Modules Source Code

B.3. Auto-correlation estimator 83

B.3 Auto-correlation estimator

1 using System;

2 using System.Collections.Generic;

3 using NetOdysseyModule;

4

5 namespace AutoCorrelations

6 {

7 class NetOdysseyACFPacketsModule :

8 NetOdysseyModuleBase, INetOdysseyPacketAnalyzerModule

9 {

10 int _Kcount; // check method ModuleStart for K generation

11 List<int> _Ks = new List<int>();

12

13 List<Queue<int>> _awPackets = new List<Queue<int>>();

14 List<Queue<int>> _XiPackets = new List<Queue<int>>();

15 List<Queue<int>> _nextKPackets = new List<Queue<int>>();

16 List<List<int>> _XikPackets = new List<List<int>>();

17 List<Queue<int>> _XiXikProducts = new List<Queue<int>>();

18

19 int _packetLenght = 0;

20 int _currentCount = 0;

21 int _K = 0;

22

23 List<int> _XSum = new List<int>();

24 List<int> _XiSum = new List<int>();

25 List<int> _XiXikSum = new List<int>();

26 List<int> _XiXikProductsSum = new List<int>();

27 List<int> _XikSum = new List<int>();

28 List<int> _XiXikProduct = new List<int>();

29 List<int> _XSquareSum = new List<int>();

30 List<int> _aux = new List<int>();

31

32 List<double> _XMean = new List<double>();

33 List<double> _EX2 = new List<double>();

34 List<double> _VarX = new List<double>();

35 List<double> _ac = new List<double>();

36

37 bool _errFlag = false;

38 string _report;

39

40 public override string ModuleStart()

41 {

42 string _Kstring = "";

43 // K=2,4,8,16,32,64,128,256,512,1024

44 for (_K = 2; _K <= 2000; _K *= 2)

45 {

46 _Ks.Add(_K);

47 _Kstring += _K + ",";

48 }

49 // Remove last comma from _KString

50 _Kstring = _Kstring.Remove(_Kstring.Length-1);

51 _Kcount = _Ks.Count;

52

53 // Initialize all vectors

54 for (_K = 0; _K < _Kcount; _K++)

55 {

56 _awPackets.Add(new Queue<int>());

57 _XiPackets.Add(new Queue<int>());

58 _nextKPackets.Add(new Queue<int>());

59 _XikPackets.Add(new List<int>());

84 B. Implemented Modules Source Code

60 _XiXikProducts.Add(new Queue<int>());

61

62 _XSum.Add(0);

63 _XiSum.Add(0);

64 _XiXikSum.Add(0);

65 _XiXikProductsSum.Add(0);

66 _XikSum.Add(0);

67 _XiXikProduct.Add(0);

68 _XSquareSum.Add(0);

69 _aux.Add(0);

70

71 _XMean.Add(0);

72 _EX2.Add(0);

73 _VarX.Add(0);

74 _ac.Add(0);

75 }

76 Console.WriteLine("Auto-correlation _Ks=[{0}] (total:{1}) started",

77 _Kstring , _Kcount);

78 return "";

79 }

80

81 public override string ModuleEnd()

82 {

83 return "";

84 }

85

86 public override void AnalyzePacketIn(PacketDotNet.Packet Packet,

87 int WindowSize)

88 {

89 _currentCount++;

90

91 if (_Ks[_Kcount - 1] >= WindowSize)

92 {

93 _errFlag = true;

94 return;

95 }

96

97 _packetLenght = Packet.BytesHighPerformance.Length;

98 for (_K = 0; _K < _Kcount; _K++)

99 {

100 _awPackets[_K].Enqueue(_packetLenght);

101 _XSum[_K] += _packetLenght;

102 _XSquareSum[_K] += _packetLenght * _packetLenght;

103 if (_currentCount <= WindowSize - _Ks[_K])

104 {

105 _XiPackets[_K].Enqueue(_packetLenght);

106 _XiSum[_K] += _packetLenght;

107 }

108 else

109 {

110 _nextKPackets[_K].Enqueue(_packetLenght);

111 }

112 if (_currentCount > _Ks[_K])

113 {

114 _XikPackets[_K].Add(_packetLenght);

115 _XikSum[_K] += _packetLenght;

116

117 _XiXikProduct[_K] = _awPackets[_K].Dequeue() * _packetLenght;

118 _XiXikProductsSum[_K] += _XiXikProduct[_K];

B.3. Auto-correlation estimator 85

119 _XiXikProducts[_K].Enqueue(_XiXikProduct[_K]);

120 }

121 }

122 }

123

124 public override void AnalyzePacketOut(PacketDotNet.Packet Packet,

125 int WindowSize)

126 {

127 _packetLenght = Packet.BytesHighPerformance.Length;

128 _currentCount--;

129

130 if (_errFlag) return;

131

132 // Assuming that the whole analysis window is full

133 // (this is the expected behavior)

134

135 for (_K = 0; _K < _Kcount; _K++)

136 {

137 _XSum[_K] -= _packetLenght;

138 _XSquareSum[_K] -= _packetLenght * _packetLenght;

139

140 _aux[_K] = _XiPackets[_K].Dequeue();

141 _XiSum[_K] -= _aux[_K];

142

143 _aux[_K] = _nextKPackets[_K].Dequeue();

144 _XiPackets[_K].Enqueue(_aux[_K]);

145 _XiSum[_K] += _aux[_K];

146

147 _aux[_K] = _XikPackets[_K][0];

148 _XikSum[_K] -= _aux[_K];

149 _XiXikProductsSum[_K] -= _XiXikProducts[_K].Dequeue(); ;

150 _XikPackets[_K].RemoveAt(0);

151 }

152 }

153

154 public override void Clear()

155 {

156 _currentCount = 0;

157 _XSum.Clear();

158 _XSquareSum.Clear();

159

160 _XiSum.Clear();

161 _XiXikSum.Clear();

162 _XiXikProductsSum.Clear();

163 _XikSum.Clear();

164 _XiXikProduct.Clear();

165

166 _awPackets = new List<Queue<int>>(_Kcount);

167 _XiPackets = new List<Queue<int>>(_Kcount);

168 _XikPackets = new List<List<int>>(_Kcount);

169 _XiXikProducts = new List<Queue<int>>(_Kcount);

170

171 _errFlag = false;

172 }

173

174 public override string ReportAnalysis()

175 {

176 if (_errFlag)

177 return "!there are Ks greater than analysis window;" +

86 B. Implemented Modules Source Code

178 Environment.NewLine;

179 _report = "";

180 for (_K = 0; _K < _Kcount; _K++)

181 {

182 if (_currentCount > 0)

183 _XMean[_K] = (double)(_XSum[_K]) / _currentCount;

184 else

185 _XMean[_K] = 0;

186

187 _ac[_K] = (

188 _XiXikProductsSum[_K] -

189 (_XMean[_K] * _XiSum[_K]) -

190 (_XMean[_K] * _XikSum[_K]) +

191 (_currentCount - (_Ks[_K])) *

192 (_XMean[_K] * _XMean[_K])

193) / (

194 _XSquareSum[_K] -

195 _currentCount *

196 (_XMean[_K] * _XMean[_K])

197);

198

199 _report += "ACF(K=" + (_Ks[_K]) + ")=" +

200 _ac[_K] + ";" + Environment.NewLine;

201 }

202 return _report + ";;" + Environment.NewLine;

203 }

204 }

205 }

B.3. Auto-correlation estimator 87

88 B. Implemented Modules Source Code

B.4 Hurst parameter estimator

1 using System;

2 using System.Collections.Generic;

3 using NetOdysseyModule;

4

5 namespace HurstParameter

6 {

7 class NetOdysseyHurstPacketsModule :

8 NetOdysseyModuleBase, INetOdysseyPacketAnalyzerModule

9 {

10 int _Kcount; // check method ModuleStart for K generation

11 List<int> _Ks = new List<int>();

12

13 List<Queue<int>> _awPackets = new List<Queue<int>>();

14 List<Queue<int>> _XiPackets = new List<Queue<int>>();

15 List<Queue<int>> _nextKPackets = new List<Queue<int>>();

16 List<List<int>> _XikPackets = new List<List<int>>();

17 List<Queue<int>> _XiXikProducts = new List<Queue<int>>();

18

19 int _packetLenght = 0;

20 int _currentCount = 0;

21 int _K = 0;

22

23 // Hurst parameter variables

24 double _slope;

25 double _hurst;

26 double _dYMean;

27 double _dXMean;

28 double _dAggXX;

29 double _dAggXY;

30 double _log2K;

31

32 List<int> _XSum = new List<int>();

33 List<int> _XiSum = new List<int>();

34 List<int> _XiXikSum = new List<int>();

35 List<int> _XiXikProductsSum = new List<int>();

36 List<int> _XikSum = new List<int>();

37 List<int> _XiXikProduct = new List<int>();

38 List<int> _XSquareSum = new List<int>();

39 List<int> _aux = new List<int>();

40

41 List<double> _XMean = new List<double>();

42 List<double> _EX2 = new List<double>();

43 List<double> _VarX = new List<double>();

44 List<double> _ac = new List<double>();

45

46 bool _errFlag = false;

47 string _report;

48

49 public override string ModuleStart()

50 {

51 string _Kstring = "";

52 // K=2,4,8,16,32,64,128

53 for (_K = 2; _K <= 200; _K *= 2)

54 {

55 _Ks.Add(_K);

56 _Kstring += _K + ",";

57 }

58 // Remove last comma from _KString

59 _Kstring = _Kstring.Remove(_Kstring.Length-1);

B.4. Hurst parameter estimator 89

60 _Kcount = _Ks.Count;

61

62 // Initialize all vectors

63 for (_K = 0; _K < _Kcount; _K++)

64 {

65 _awPackets.Add(new Queue<int>());

66 _XiPackets.Add(new Queue<int>());

67 _nextKPackets.Add(new Queue<int>());

68 _XikPackets.Add(new List<int>());

69 _XiXikProducts.Add(new Queue<int>());

70

71 _XSum.Add(0);

72 _XiSum.Add(0);

73 _XiXikSum.Add(0);

74 _XiXikProductsSum.Add(0);

75 _XikSum.Add(0);

76 _XiXikProduct.Add(0);

77 _XSquareSum.Add(0);

78 _aux.Add(0);

79

80 _XMean.Add(0);

81 _EX2.Add(0);

82 _VarX.Add(0);

83 _ac.Add(0);

84 }

85 Console.WriteLine("Hurst _Ks=[{0}] (total:{1}) started",

86 _Kstring , _Kcount);

87 return "";

88 }

89

90 public override string ModuleEnd()

91 {

92 return "";

93 }

94

95 public override void AnalyzePacketIn(PacketDotNet.Packet Packet,

96 int WindowSize)

97 {

98 _currentCount++;

99

100 if (_Ks[_Kcount - 1] >= WindowSize)

101 {

102 _errFlag = true;

103 return;

104 }

105

106 _packetLenght = Packet.BytesHighPerformance.Length;

107 for (_K = 0; _K < _Kcount; _K++)

108 {

109 _awPackets[_K].Enqueue(_packetLenght);

110 _XSum[_K] += _packetLenght;

111 _XSquareSum[_K] += _packetLenght * _packetLenght;

112 if (_currentCount <= WindowSize - _Ks[_K])

113 {

114 _XiPackets[_K].Enqueue(_packetLenght);

115 _XiSum[_K] += _packetLenght;

116 }

117 else

118 {

90 B. Implemented Modules Source Code

119 _nextKPackets[_K].Enqueue(_packetLenght);

120 }

121 if (_currentCount > _Ks[_K])

122 {

123 _XikPackets[_K].Add(_packetLenght);

124 _XikSum[_K] += _packetLenght;

125

126 _XiXikProduct[_K] = _awPackets[_K].Dequeue() * _packetLenght;

127 _XiXikProductsSum[_K] += _XiXikProduct[_K];

128 _XiXikProducts[_K].Enqueue(_XiXikProduct[_K]);

129 }

130 }

131 }

132

133 public override void AnalyzePacketOut(PacketDotNet.Packet Packet,

134 int WindowSize)

135 {

136 _packetLenght = Packet.BytesHighPerformance.Length;

137 _currentCount--;

138

139 if (_errFlag) return;

140

141 // We assume that the whole analysis window is full

142 // (this is the expected behavior)

143

144 for (_K = 0; _K < _Kcount; _K++)

145 {

146 _XSum[_K] -= _packetLenght;

147 _XSquareSum[_K] -= _packetLenght * _packetLenght;

148

149 _aux[_K] = _XiPackets[_K].Dequeue();

150 _XiSum[_K] -= _aux[_K];

151

152 _aux[_K] = _nextKPackets[_K].Dequeue();

153 _XiPackets[_K].Enqueue(_aux[_K]);

154 _XiSum[_K] += _aux[_K];

155

156 _aux[_K] = _XikPackets[_K][0];

157 _XikSum[_K] -= _aux[_K];

158 _XiXikProductsSum[_K] -= _XiXikProducts[_K].Dequeue(); ;

159 _XikPackets[_K].RemoveAt(0);

160 }

161 }

162

163 public override void Clear()

164 {

165 _currentCount = 0;

166 _XSum.Clear();

167 _XSquareSum.Clear();

168

169 _XiSum.Clear();

170 _XiXikSum.Clear();

171 _XiXikProductsSum.Clear();

172 _XikSum.Clear();

173 _XiXikProduct.Clear();

174

175 _awPackets = new List<Queue<int>>(_Kcount);

176 _XiPackets = new List<Queue<int>>(_Kcount);

177 _XikPackets = new List<List<int>>(_Kcount);

B.4. Hurst parameter estimator 91

178 _XiXikProducts = new List<Queue<int>>(_Kcount);

179

180 _errFlag = false;

181 }

182

183 public override string ReportAnalysis()

184 {

185 if (_errFlag) {

186 return "!there are Ks greater than analysis window;" +

187 Environment.NewLine;

188 }

189 _report = "";

190 _dYMean = 0;

191 _dXMean = 0;

192 _dAggXX = 0;

193 _dAggXY = 0;

194

195 for (_K = 0; _K < _Kcount; _K++)

196 {

197

198 if (_currentCount > 0)

199 _XMean[_K] = (double)(_XSum[_K]) / _currentCount;

200 else

201 _XMean[_K] = 0;

202

203 _ac[_K] = (

204 _XiXikProductsSum[_K] -

205 (_XMean[_K] * _XiSum[_K]) -

206 (_XMean[_K] * _XikSum[_K]) +

207 (_currentCount - (_Ks[_K])) *

208 (_XMean[_K] * _XMean[_K])

209) / (

210 _XSquareSum[_K] -

211 _currentCount *

212 (_XMean[_K] * _XMean[_K])

213);

214

215 _log2K = Math.Log(_Ks[_K], 2);

216

217 if (_Kcount > 1)

218 {

219 _dYMean += _ac[_K] / (double) _Kcount;

220 _dXMean += _log2K / (double) _Kcount;

221 _dAggXX += _log2K * _log2K;

222 _dAggXY += _log2K * _ac[_K];

223

224 _slope = (

225 _dAggXY -

226 (double) _Kcount *

227 _dXMean *

228 _dYMean

229) / (

230 _dAggXX -

231 (double) _Kcount *

232 _dXMean *

233 _dXMean

234);

235 }

236

92 B. Implemented Modules Source Code

237 _report += "log2(K=" + (_Ks[_K]) + ")=;" +

238 _log2K + "; " +

239 "log2(A(K=" + (_Ks[_K]) + "))=" +

240 _ac[_K] + ";" +

241 Environment.NewLine;

242 }

243

244 if (_Kcount > 1) {

245 _hurst = (_slope + 1) / 2.0;

246 _report += "_slope=;" + _slope + "; " +

247 "_hurst=;" + _hurst + ";" +

248 Environment.NewLine;

249 }

250

251 return _report + ";;;" + Environment.NewLine;

252 }

253 }

254 }

B.4. Hurst parameter estimator 93

94 B. Implemented Modules Source Code

	Acknowledgments
	Abstract
	Keywords
	Contents
	List of Figures
	Acronyms and Abbreviations
	Introduction
	Focus and Scope
	Problem Definition and Objectives
	Main Contributions
	Organization of the Dissertation

	State of the Art and Critical Review of Tools for Network Monitoring and Analysis
	Introduction
	Network Capturing and Analysis Tools
	Wireshark
	Analyzer 3.0 (alpha)
	ntop
	CoMo - Continuous Monitoring
	The NetBee Library

	Overview of Network Information Protocols
	SNMPv3
	Cisco NetFlow
	IPFIX

	Overview of Plotting Tools
	Microsoft Excel and OpenOffice Calc
	RRDtool
	gnuplot

	Conclusion

	The NetOdyssey Framework
	Introduction
	Tools for Development of NetOdyssey
	Microsoft .NET Framework 3.5
	Mono Framework
	winPcap
	SharpPcap

	The Calculation Philosophy of NetOdyssey
	The Architecture of NetOdyssey
	A modular approach
	An example module
	Conclusion

	Results and Validation
	Validation of NetOdyssey
	Random capture generator
	Implemented modules
	Entropy Estimator
	Validation of Entropy Estimator
	Auto-correlation Estimator
	Validation of Auto-correlation Estimator
	Hurst Exponent by Autocorrelation Function Estimator

	Conclusions

	Conclusions and Future Work
	Main Conclusions
	Directions for Future Work

	References
	Class Model
	Base classes of NetOdyssey
	Program
	clsSettings
	frmSettings
	clsModules
	clsCapturer
	clsAnalysisWindow
	clsHealthMonitor
	clsMessages
	IHealthReporter

	Base classes of the user modules of NetOdyssey
	NetOdysseyModuleBase
	NetOdysseyModuleBaseTask
	NetOdysseyModuleBaseModuleTask
	INetOdysseyBCTUAnalyzerModule
	INetOdysseyPacketAnalyzerModule

	Implemented Modules Source Code
	Average and Standard Deviation estimator
	Entropy estimator
	Auto-correlation estimator
	Hurst parameter estimator

