-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by UBibliorum repositorio digital da ubi

UNIVERSIDADE DA BEIRA INTERIOR
Covilha | Portugal

NetOdyssey: A Framework for
Real-Time Windowed Analysis of
Network Traffic

Fabio Duarte Beirao

Submitted to the University of Beira Interior in candidature for the degree of

Master of Science in Computer Science and Engineering

Supervised by Mario Marques Freire

June 2010

Departament of Computer Science
University of Beira Interior
Covilha, Portugal
http://www.di.ubi.pt

https://core.ac.uk/display/303997906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgments

"This one goes out to the one | love..."
REM. - The One | Love

The ones we love are the ones who make us stand tall and step up to the
challenges of life. Yet, they do not just shove us into these challenges:
they are there, with us, every step of the way. They suffer with us, they
understand our deepest frustrations and they rejoice with us on our victories,
no matter how small or big they are. To all of you, the ones | love, Mother,
Father, Brother, my forever loved Marisa, my friends, Dr. Pedro Inacio, Jodo
Gomes, and my always supportive supervisor Professor Mario Freire; to all
of you who made it possible for me to overcome this challenge, | thank you.
You were the ones who made this journey possible, because as life teaches

us so well, no man is an island.

There is always much to be done, there is always much to be said, but
there is one thing that can’t remain undone, that can’t remain unsaid: to
tell you how much | appreciate all your effort. Remain assured: not one
single moment you spent was wasted. My deepest gratitude goes to each

of you.

Fabio Duarte Beirdo

it

This work was partially supported by the Portuguese Fundacdo para
a Ciéncia e a Tecnologia through the project TRAMANET: Traffic and
Trust Management in Peer-to -Peer Networks, with contracts PTD-
C/EIA/73072/2006 and FCOMP-01-0124-FEDER-007253.

v

Abstract

Traffic monitoring and analysis is of critical importance for managing and
designing modern computer networks, and constitutes nowadays a very
active research field. In most of their studies, researchers use techniques
and tools that follow a statistical approach to obtain a deeper knowledge
about the traffic behaviour. Network administrators also find great value
in statistical analysis tools. Many of those tools return similar metrics
calculated for common properties of network packets. This dissertation
presents NetOdyssey, a framework for the statistical analysis of network
traffic. One of the crucial points of differentiation of NetOdyssey from
other analysis frameworks is the windowed analysis philosophy behind
NetOdyssey. This windowed analysis philosophy allows researchers who
seek for a deeper knowledge about networks, to look at traffic as if looking
through a window. This approach is crucial in order to avoid the biasing
effects of statistically looking at the traffic as a whole. Small fluctuations
and irreqularities in the network can now be analyzed, because one is
always looking through window which has a fixed size: either in number
of observations or in the temporal duration of those observations. Ne-
tOdyssey is able to capture live traffic from a network card or from a
pre-collected trace, thus allowing for real-time analysis or delayed and
repetitive analysis. NetOdyssey has a modular architecture making it
possible for researchers with reduced programming capabilities to create
analysis modules which can be tweaked and easily shared among those who
utilize this framework. These modules were thought so that their implemen-
tation is optimized according to the windowed analysis philosophy behind
NetOdyssey. This optimization makes the analysis process independent

from the size of the analysis window, because it only contemplates the

observations coming in and going out of this window. Besides presenting
this framework, its architecture and validation, the present Dissertation also
presents four different analysis modules: Average and Standard deviation,
Entropy, Auto-Correlation and Hurst Parameter estimators. Each of this

modules is presented and validated throughout the present dissertation.

vi

Keywords

Analysis of Traffic Behavior, Auto-correlation estimator, Average and Stan-
dard Deviation, Entropy estimator, Hurst Parameter, Mersenne Twister
pseudo-random generator, Modular Approach, Random Capture Genera-

tor, Real time Analysis, Statistical Traffic Analysis, Windowed Analysis of
Network Traffic

vil

viii KEYWORDS

Contents

IAcknowledgments| i
[Abstract v
Keywords vi
Contents ix
[List of Figures| xiii
[Acronyms and Abbreviations| XV
1__Introduction 1
(1.1 Focus and Scope| 1
(1.2 Problem Definition and Objectives|. 3
(1.3 Main Contributionsl L 4
(1.4 Organization of the Dissertation| 5

DS Fihe A [Critical Rewi Tools Tor T K Monie

| toring and Analysis| 7
(21 __Introductionl 7
[2.2 Network Capturing and Analysis lools| 8

21 Wiresharkl. 8
[2.2.2 Analyzer 3.0 (alpha)[. 10

ix

CONTENTS

............................. 12
2.2.4 CoMo - Continuous Monitoring| 13
[2.25 The NetBee Library. 14

2.3 Overview of Network Information Protocols|. 15
R3T_SNMPV3| 15
232 Cisco NetFlow 16
R33IPEIXo 18

2.4 Overview of Plotting lTools| 19
[2.4.1 Microsott Excel and OpenOftice Cald. 19
242 RRDfooll.o 20
243 gnuplotl 20

25 __Conclusionl 20
[3 The NetOdyssey Framework| 23
B1 Introductionl 23
[3.2 Tools tor Development of NetOdyssey|. 23
B21 Microsoft NET Framework 35 24
.22 Mono Frameworkl L. 24
323 winPcap|. 25
[3.2.4 SharpPcap| 26

[3.3 The Calculation Philosophy ot NetOdyssey| 26
[3.4 The Architecture of NetOdyssey| 29
[3.5 A modular approach|o oo 31
[3.6 An example module|. 32

CONTENTS

4 Results and Validation| 39
[4.1 Validation of NetOdyssey| 39
[4.2 Random capture generator] 39
[4.3 Implemented modules| 40

[4.3.1 Entropy Estimator| L. 4
[4.3.2 Validation of Entropy Estimator| 42
.33 Auto-correlation Estimatord 43
434 Validation of Auto-correlation Estimatod 47
[4.3.5 Hurst Exponent by Autocorrelation Function Estimator| 48
44 Conclusionsl 50

D Conclusions and Future Workl 51
b.1__Main Conclusions|. 51
b.2 Directions for Future Workl 52

[References| 55

IA__Class Modell 59
[A.1 Base classes of NetOdyssey| 59

A1 Program|. 59
A1.2 clsSettings| 60
A1.3 frmSettings| 62
A14 clsModules| oo oL 62
A15 clsCapturer] 63
IA1.6 clsAnalysisWindow| 65
A1/ cdsHealthMonitord 0L 66
A18 clsMessages| L 66
IA1.9 IHealthReporter| 0L 66

|[A.2 Base classes of the user modules of NetOdyssey| 66

Xii CONTENTS

A.21 NetOdysseyModuleBase| 66

A.2.2 NetOdysseyModuleBaselaskl 67

A.2.3 NetOdysseyModuleBaseModulelask|. 67

A.2.4 INetOdysseybClUAnalyzerModule|. 68

A.2.5 INetOdysseyPacketAnalyzerModule| 68

(B Implemented Modules Source Code| 77
[B.1 Average and Standard Deviation estimator| 77
[B.2 Entropy estimator|. 80
[B.3 _Auto-correlation estimatod. 83

[B.4 Hurst parameter estimator{. 88

List of Figures

[3.1 Arepresentation of a sliding analysis window (Analysis Win- |

dow Size (AWS) of 3 observations)| 27

[3.2 A representation ot a temporal analysis window (Analysis |

Window lime (AWT))| 28

[4.1 R code used to validate results from Entropy Estimator module | 43

(4.2 Entropy ot 5.000 randomly generated packet sizes, with|AWSE=250. 44

[4.3 Plot ot equation 4.3 |.o 45

[4.4 Autocorrelation ot equation 4.3, maximum lag K =200 . .. 45

[4.5 Autocorrelation ot 5.000 randomly generated packet sizes, |

tforall Ksl o 46

A5 R cod | i T Nito-Correlation T<ic l

mator modulel 47

[4.7 Estimation of the Hurst parameter based on autocorrelation |

function using linear regression.| 49

A1 Program - I'he main class containing the main () method| 59

A2 clsSettings - l'he class responsible for holding all Ne- |

tOdyssey's settings.| L L. 69

A3 frmSettings - [he form for entering and confirming the |

session settings.| L 70

A4 clsModules - lhe class responsible for compiling *.cs |

and «.vb files) 70

xitt

Xiv LIST OF FIGURES

A5 clsCapturer - lhe class responsible for capturing net- |

| work packets or statistics, according to the analysis mode| . 71

A6 clsAnalysisWindow - lhe class responsible for queuing |

| values in a windowed manner, and sending them to user |
| modules) 71

IA./ clsHealthMonitor - lhe class responsible for request- |

| ing the current status of NetOdyssey's threads, from time to |

T fmel - 72
[A.8 clsMessages - Ihe abstract class responsible for printing |
| NetOdyssey's outputs to stdout| 72

A9 THealthReporter - lhe interface that must be imple- |

| mented by classes who are able to report their current status |
| (health)| 73

[A.10 NetOdysseyModuleBase - Ihe class responsible for pro- |

| viding all the basic methods for a user modulef 74

[A.1T NetOdysseyModuleBaseTask - |[he class that holds a |
| NetOdyssey module task.| 75

[A.12 NetOdysseyModuleBaseModuleTask - [he enum that |

| represents the type of possibleNet OdysseyModuleBaseTasks,| 75

[A13 INetOdysseyBCTUAnalyzerModule - [he interface that |

| must be tmplemented by user modules that pertorm a Bit |
| Count per Time Unit (BCTU) analysis] 76

[A.14 INetOdysseyPacketAnalyzerModule - |he interface |

| that must be implemented by user modules that perform a |

| per-packet analysis| 0L 76

Acronyms and Abbreviations

Acronyms

AWS Analysis Window Size

AWT Analysis Window Time

BCTU Bit Count per Time Unit

CPU Central Processing Unit

CSVv Comma Separated Values

CLR Common Language Runtime

DoS Denial of Service

DPI Deep Packet Inspection

DLL Dynamically Linked Library

DTLS Datagram Transport Layer Security

GUI Graphical User Interface

HEAF Hurst Exponent by Autocorrelation Function
HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force

10S Internetwork Operating System

IP Internet Protocol

IPFIX Internet Protocol Flow Information Export

XV

XVi

0. Acronyms and Abbreviations

IPv4
IPv6
IPX
LSM
NMCG
NIC
(03]

PC
PR-SCTP
RFC
RMON
SCTP
STD
SSL
SMTP
SNMP
SNMPv3
TCP
TLS
UDP
XML

Internet Protocol version 4
Internet Protocol version 6
Internetwork Packet Exchange

Least Square Method

Network Multimedia and Computing Group

Network Interface Card
Operating System

Personal Computer

Partial Reliability Stream Control Transmission Protocol

Request For Comments

Remote Network Monitoring

Stream Control Transmission Protocol

Standard

Secure Sockets Layer

Simple Mail Transfer Protocol

Simple Network Management Protocol

Simple Network Management Protocol version 3

Transmission Control Protocol
Transport Layer Security
User Datagram Protocol

Extensible Markup Language

Abbreviations

Please consider the meaning of the following abbreviations when you find

them later in the text:

a.k.a. also known as;

e.g. for example;

Le. that is to say; in other words;

VS. versus.

Chapter 1

Introduction

1.1 Focus and Scope

Internet, the great network that connects everything and everyone who has
access to it, is a game-changing paradigm for many. Nowadays, there are
jobs exclusively on the Internet, social networks that allow us to know other
people, video and voice conferences that make physical distances as short
as the available bandwidth. In the past 30 years, ever since the first "hello
world" Internet communication, the Internet has grown in ways that could
not have been predicted. This is evident, for instance, nowadays, when
we are realizing that the addressing space of Internet Protocol version
4 is becoming scarce. In the early days of the Internet, it was
never thought that it would reach so many people and affect so many lives.
The Internet of today is no longer available for a minority of experts only.
There is a growing usage by children and elder people, that either seek
for entertainment and gaming, or for some companion, which many find on-
line. The ever growing popularity and ease of access to the Internet brings
with it questions that are constantly arising: how safe is the Internet?,
is there any privacy on the Internet?, is it possible to remain anonymous
on the Internet?, among other questions, whose answers might not remain

constant throughout time.

On the Internet, just as outside it, there are always those persons who

have malicious intentions. These malicious intentions break laws and rules,

1. Introduction

disrupting the harmonious coexistence of society. On the Internet, there are
several ways to disrupt the normal way of working, for instance, Denial of
Service attacks, phishing scams, identity theft, amongst other threats.
With the convergence of services on the Internet such as banking, grocery
shopping, renting and buying music, videos or books, among many other
free or paid on-line services, the potential damage caused by these threats

becomes much more significant.

The Internet can be seen as a variety of things, depending on how people
use it: some people see the Internet as a way to navigate on websites;
some people see the Internet as a way to talk to other people; others see
the Internet as a way to read news; others see the Internet as a mean to
freely easily obtain content that otherwise would need to be paid; among
other ways that the Internet may be seen. This happens because so many
of the actual Internet users do not know (and do not need to know) how
everything works under-the-hood. It is because the Internet allows for this
ease of access that it has a growing popularity and it is also because of
this needed ignorance that many attacks are possible and cause potential

damage.

All of these issues lead to a lot of research and development, in order to try
to make the Internet a safer place. This is a constant struggle, one which
is necessary, because challenges are a requirement for evolution. In order
to understand the problems of the Internet of today and the challenges
of the Internet of tomorrow, one needs to comprehend the behavior of
Internet users and their needs. With the increasing bandwidth availability
and decreasing Internet access prices, Internet users are becoming more
demanding and with greater expectations than ever. With the advent of on-
line radio, video and television streaming, standard Internet communication
protocols faced a challenge: deliver quality or deliver quantity. These
questions are always actual, because tomorrow a new need will emerge,
which was not predictable today, so there is a need to understand how
can the Internet respond to that challenge. This is why it is important to
have means to understand how the Internet behaves and how users on the
Internet use it: what is their experience, what are their problems, and what

can be done to solve or prevent those problems.

1.2. Problem Definition and Objectives

In this dissertation, the author describes a new tool, which helps in this
process of understanding the Internet. Although there are several research
communities and tools, the author felt the need to analyze the Internet in a
particular manner that, to the best of the knowledge of the author, was not
yet addressed. Thus, this dissertation presents and describes NetOdyssey,
a tool to facilitate the process of statistically analyzing the behavior of the

Internet traffic.

1.2 Problem Definition and Objectives

As described in section [} the need for understanding the behavior the
usage of the Internet, and other networks, in order to better comprehend
their expectations, is constant throughout the evolution of the Internet. This
behavior can be assessed by long term analysis, performed in some Internet
nodes, which are able to gather Internet traffic from several sources. Some
of the currently available tools that permit this analysis are presented in
Chapter @ but, to best knowledge of the author of this dissertation, none
of them presents an approach to analyzing Internet traffic as NetOdyssey

(the outcome of this dissertation) does.

This dissertation seeks the easiness of the process of understanding the
behavior of any given network (Internet or other), but he is also looking for
freedom in this process of analysis. One of the problems the author was
faced with was the need to analyze non-conventional network parameters.
This means that while a researcher may wish to analyze one specific
network metric today, she/he might wish to analyze a radically different
network metric tomorrow. Also, the author of this dissertation wishes
to look at the network in a non-traditional way. Traditionally, network
communications may be seen as unidirectional or bidirectional flows, but
within the scope of this dissertation, there is a wish to look at the network as
a whole. So, in order to avoid losing information with vast analysis periods,
the author wishes to analyze the network as if he was looking through a
window, and network packets where passing through that window. This

analysis philosophy will be throughly explained in section [3.3]

1. Introduction

Specifically, the main objective of this dissertation is to present a framework

which:

- Allows researchers to understand the behavior of a network by statis-

tically analyzing it;

- Looks at the network as if one was through a window; this window

should be parameterizable in size and fashion of sliding;

- Provides modularity and expandability, so the analysis is not confined

to predefined metrics;

- Allows for researchers to easily exchange analysis modules and re-

sults, in order to share knowledge and conclusions.

1.3 Main Contributions

This section presents the main contributions of the present dissertation, in

accordance with the opinion of the author.

The first and main contribution of this dissertation is the NetOdyssey
network analysis framework itself. This framework is the outcome of a
research and engineering effort, which provides researchers with special in-
terest in statistically analyzing network traffic with a means to perform this
analysis in a windowed manner. Also, the NetOdyssey framework facilitates
the sharing of knowledge and information, due to its open nature. This
framework was presented to the scientific community at the 9th Institute of
Electrical and Electronics Engineers (IEEE) International Symposium on
Network Computing and Applications NCA10) [1]. As it is described
in Chapter 3] NetOdyssey provides a modular approach, which means that
the analysis is performed by independent modules, allowing them to be

easily tweaked and adjusted as the researcher sees fit.

The other main contribution of this dissertation is the pack of available
modules, presented and validated in section which are useful not only
for the analysis they preform, but also as a basis for other researchers
to learn and understand how to create their own NetOdyssey analysis

modules. This pack of modules include an average and standard deviation

1.4. Organization of the Dissertation

calculator, an entropy estimator, an auto-correlation estimator and a Hurst

parameter estimator.

Although the contributions of this dissertation may seem short in number,
the author strongly believes that NetOdyssey is a framework that may grow
and, through the contributions of those who will use it, mature even further.

In section directions for future work of NetOdyssey are proposed.

1.4 Organization of the Dissertation

The body of this dissertation is constituted by three main chapters, pre-
ceded and succeeded by the Introduction and Final Conclusions and Future
Work, respectively. There are also two Appendixes in the end of this
dissertation. The compilation of the bibliographic references used along
this work is included after Chapter The contents of each one of the

chapters of this dissertation can be summarised as follows:

Chapter [1] elucidates the context for the subject on which this dissertation
is going to elaborate on, identifying the main objectives and the problem
to be solved. In this chapter it is also included the description of the main

contributions resulting from this dissertation.

Chapter [provides an overview of the current state of the art regarding
the subjects of interest of this dissertation. The three main subjects of
interest reviewed in this chapter were network tools for packet capturing

and analysis, network information protocols and plotting tools.

Chapter[3is the core of this dissertation, presenting the NetOdyssey frame-
work. The tools user for the development of NetOdyssey are enumerated
and the calculation philosophy and modular approach are also depicted. In
this chapter there is also an example of an user analysis module, which is

created and explained step by step.

Chapter[4 presents the whole process of validating the NetOdyssey frame-
work, from the creation of a random capture generator, to the validation of

the analysis modules provided with this dissertation.

1. Introduction

Chapter [5 wraps up the most important conclusions of this dissertation,

while also providing some directions for future research and work.

Appendix [A| depicts the detailed description of the class model in a high-
level analysis, detailing what is the purpose of each programmatic class of

NetOdyssey.

Appendix [B with has a pretty print of the source code of the implemented

modules that are one of the contributions of this dissertation.

Chapter 2

State of the Art and Critical
Review of Tools for Network

Monitoring and Analysis

2.1 Introduction

The main idea behind this section is to briefly present some important and
popular tools that are - each in their own way - related to the scope of
this dissertation. This dissertation has three subjects of interest and the

current state of the art related to each of them is presented in this section.

The first subject of interest in this dissertation is the process of capturing
and analyzing packets traveling in a network. In section [2.2] some of the
most well known tools for analysis of network traffic will be presented [2-9].
Due to the relatively large number of available tools, only some of the most
important and well-known tools are presented. Because there are a lot
of published research and tools available the focus of this chapter is the
analysis of those works, in order to gather a deeper understanding of the

focus of other researchers.

The second subject of interest in this dissertation is the process of statistical
analysis of data gathered by the packet capturer. In section some
network protocols will be presented that, with the help of active network

equipment, allow for some analysis of network metrics. This section is

7

8 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

presented here, because it was important for the author to understand which
network metrics are being analyzed in real-world scenarios and how are

they gathered and processed.

The third subject of interest in this dissertation is the representation of the
results. This representation is usually done by creating a chart, using plot
tools. In section a brief description of some available plotting tools is
presented, but since this is the least important subject of this dissertation,

the analysis of the state of the art concerning this section was more shallow.

2.2 Overview of Network Tools for Packet Cap-

turing and Analysis

This section presents some of the most relevant tools available for capturing
and analyzing network packets.It focuses on tools that, in the opinion of
the author, have a closer scope to the goal of this dissertation, allowing a
better understand about what has been done and what may remain to be

done.

2.2.1 Wireshark

Wireshark is widely known as the de facto standard across educational
institutions, as claimed in [4]. Although Wireshark is known as a network
analysis tool, it is not the kind of analysis that one is looking for at the
Network Multimedia and Computing Group [10]. The analysis
provided by Wireshark is aimed at the packets themselves instead of statis-
tical analysis. Wireshark enables the understanding of packets per network
layers and conversation flows. Still, this section presents Wireshark in this
state-of-the art, because it is one of the most well-known network analysis

tools and it helped in the process of validating his dissertation.

The analyze menu provided by the Graphical User Interface (GUI) of Wire-

shark contains the following features:

2.2. Network Capturing and Analysis Tools

- Display filters and display filter macros: this feature allows the
creation and management of filters that define which of the captured

packets will be displayed. Filters can be simple expressions, like
ip.src == 192.168.0.1

(display packets which Internet Protocol (IP) address source is

192.168.0.1), or more complex expressions, like

not (tcp.port == 80) and
not (tcp.port == 25) and
ip.addr == 192.168.0.1

which displays non Hypertext Transfer Protocol (HTTP) and non
Simple Mail Transfer Protocol (SMTP) packets to and from[[P|address
192.168.0.1. Display filter macros are a mechanism to create
shortcuts for complex filters. It is possible for example to create a

filter called myFilter, whose expression is
(ip.src == $1 and ip.dst == $2)
and then use the filter like
S{myFilter:192.168.0.1;192.168.0.254}.

For very complex and repetitive filters, it becomes very useful to use
macros in order to minimize accidental typos and ease the analysis

process;

- Follow Transmission Control Protocol (defined in Standard
(STD)007 [11]), User Datagram Protocol (UDP) (defined in
[STDPO06 [12]) and Secure Sockets Layer stream: this feature
allows the following of the conversation stream, for the currently
selected packet. @ streams are well defined, because they have
a sequence number, a stream beginning and a stream ending. When

requested to follow a [TCP|stream, Wireshark applies a filter such as

(tcp.stream eq 29).

10 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

This implies that there is an identifying number for [TCP| streams
generated by Wireshark when it captures a new [TCP] stream initial-
ization. [UDP] streams are more tricky to follow, because they are just
theoretical streams, due to the session-less nature of UDP| So, when
requested to follow an [UDP)|stream, Wireshark applies a filter like

((ip.addr eq ipl and ip.addr eq ip2) and

(udp.port eq portl and udp.port eq port2)).

Thus, it is possible to understand that Wireshark considers [UDP]

streams as a combination of [[P] addresses (source and destination)
and [UDP]| ports;

- Expert info and Expert info composite: this feature presents a window
with a log of errors, warnings and notes about the current capture.
The log lines are categorized with four severity levels, described as

follows:

* Chat: information about usual workflow, e.g. a [TCP| packet with
the SYN flag set, or a [TCP| connection reset (RST flag set);

*Note: notable information, e.g. an application returned an "usual"
error code like [HTTP| 404, or there was a [TCP| duplicate ACK;

* Warn: warning, e.qg. application returned an "unusual" error, like
a connection problem, or there was a [TCP| segment lost (which may

be usual at capture start);

* Error: serious problem, e.g. a malformed packet. Expert info
composite displays the same information as expert info, but grouped

in a tabular fashion (one tab for each severity level).

2.2.2 Analyzer 3.0 (alpha)

Analyzer 3.0 (alpha) is a network packet analyzer for the Win32 platform.
It is claimed in [7] that Analyzer includes several functionalities that are
needed by a network management operator. Analyzer is based on Win-
Pcap [3], thus making it able to capture packets on most Win32 platforms.
Analyzer is currently being developed at Politecnico di Torino [13], although

2.2. Network Capturing and Analysis Tools

11

at the time this dissertation was written, the latest version of Analyzer
was 3.0a12, dated November 15th, 2007. The source code of Analyzer is
available. Just as WireShark, Analyzer is able to capture and display
packets on both local machines and remote probes. Analyzer is able to
parse network packets according to a protocol descriptor contained in an
external file. This protocol descriptor is written in NetPDL language [14],
a markup language describing network packets, maintained by NetBee

Library group [8].

Some of the main features of Analyzer are:

- Advanced capture settings: it is possible to define how many packets
should be captured (or capture until session is stopped), or the dura-
tion of the capture in seconds. It is also possible to define a custom
size for the packet snapshot length, allowing for instance to capture
only the packet headers (98 bytes, according to the default settings
of Analyzer). Simple packet sampling options are also available:

capturing 1 packet every N packets or 1 packet every N milliseconds

- Remote capturing: based on the remote capturing capabilities of Win-
PCap itself, Analyzer allows for packet capturing on remote sites.
These remote probes must also be running Analyzer and be ready to
accept a remote monitoring session. Remote capturing allows for[UDP]
transport and automatically ignoring packets belonging to the current

remote capture session;

- Netlnject: this module allows to inject a capture file created by Ana-
lyzer itself. It provides options like infinite looping or defining the
number of times to inject the capture, respecting capture timings,
sending as fast as possible, setting the number of packets per second

or Kbytes per second;

- NetMiner: this module allows some data mining to be performed
on captured network traffic. Its algorithm allows for the detection
of frequent itemsets (e.g. which are the top 10 couples of Host-
s/Ports?) and association rules (e.g. IP 192.168.0.1 —-> MAC
AA11BB-223344). The definable data mining parameters are: mini-

mum support (e.g. a value of 0.1% means that only results referring to

12

2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

more than 0.1% of traffic will be considered) and minimum confidence
(e.g. 80% means that only rules valid for more than 80% of applicable

traffic will be considered).

- End-to-end reachability monitor: based on Internet Control Message
Protocol (ICMP) echo (ak.a. ping) packets, this module is able to
periodically check for hosts ping reachability, [HTTP| and [SST avail-

ability and respond with one or more of the following actions: ring a

bell, start traffic capture and send an e-mail to several recipients.

The problems that the author of this dissertation encountered during his

analysis of Analyzer 3.0 alpha were:

- Although Analyzer allows for pcap (libpcap and winpcap) captures to
be opened, it does not allow the recording of its captures in any other
format than Analyzer capture format. This is a big limitation, because
the interoperability of capture files allows for more applications to

analyze them;

- It was not possible to test NetMiner module, because an error was
displayed, while opening the source database. Several different con-

figurations were tried but there was no success;

- Starting a new NetlLogger instance or opening a NetLogger database
file caused Analyzer 3.0 to simply crash without any warning. Several

different configurations were tried but there was no success;

- Although the menu for link-layer statistics exists, it simply shows a

message box saying it is not implemented.

2.2.3 ntop

ntop is a network probe based on libpcap [2]. ntop may be seen as a
simple Remote Network Monitoring (RMON)-like agent, with an embedded
web interface. ntop architecture is described in [9], and, at the time this
dissertation was written, the team behind ntop was working on PF_RING,
a module that allows the enhancement of the packet capturing process, by

allowing packets to travel directly from the Network Interface Card (NIC)

2.2. Network Capturing and Analysis Tools

13

to PF_RING, instead of taking the traditional path within the Operating
System (OS) kernel. This approach is enabling ntop to be able to capture
packets that travel in 10Gb links running in commodity Personal Computers

(PGCs), while optimizing the overall capturing process.

The main features of ntop are:

- Displaying traffic statistics, such as unicast, multicast and broadcast
counters, packet size grouping, bad packet checksum count, total [[P]
traffic, [[P] fragmented traffic, and non{IP| traffic, number of hops (dis-

tance) for each packet, as well as other statistics;

- Sorting of network traffic according to many protocols, such as
Internet Protocol version 6 (IPv6), Internetwork Packet Exchange (IPX),
AppleTalk, and others, and showing the distribution of [[P]traffic among

those protocols;

- ldentifying computer users (e.g. email address, through the capture of

SMITP] packets)
- Passive host OS identification (though the [0Sfingerprint and patterns

contained in some packets);
- Displaying [[P] traffic Subnet matrix (who is talking to who);
- Acting as a NetFlow (see 2.3.2) collector;

- Protocols are user configurable, meaning a user can teach ntop about
a specific protocol he wishes to be understood when captured, so it

can be included in statistics.

ntop has other features, but none of them fulfill the requirements of the
research work behind this dissertation. ntop, like other tools analyzed and
experimented by the author, does not have the capability of measuring non-
conventional network metrics, and also does not allow for that analysis to

be done with a sliding window manner.

2.2.4 CoMo - Continuous Monitoring

CoMo, described in [6], is a passive monitoring system, designed to be the

basic building block of an open network monitoring infrastructure. Because

14 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

CoMo was though to allow the capturing and analysis of traffic over multiple
sites, it faces a great challenge to provide privacy and security guarantees
to the owner of the monitored link. CoMo tries to fulfill the requirements of
Openness, allowing users to customize the system and the software platform
to their specific needs; and Resilience, since the system should be able
to monitor and analyze the traffic in any load condition, specially under

unexpected traffic anomalies that may overload the system resources.

The philosophy behind CoMo is to allow researchers to create several
analysis module and them run them (with due permission) on the remote
site. This means that the traffic itself is not available to researchers, but

instead only the analysis returned by the module.

2.2.5 The NetBee Library

NetBee is a library intended for packet sniffing, packet decoding and traffic
classification. NetBee was created and is being developed by the same
research group that created WinPCap [3]. However, it is claimed in [8] that
the WinPcap architecture is rather old and does not fit for nowadays needs.
This claim emphasizes the lack of modularity and extendability of WinPcap
(and libpcap) architecture. This limitation, combined with the extremely
hard to upgrade nature of WinPcap (it is very easy to break backward
compatibility), lead to the choice of creating a new library, from scratch,

with a new architecture, object-oriented and open to extensions.

The main problem around NetBee is its lack of maturity. In fact, the creators
of NetBee warn that current releases must be intended as a proof of concept.
They also assure that due to the try and error nature of early development,
new releases of NetBee will almost surely break backward compatibility.
These issues lead us to exclude NetBee for traffic analysis, even if NetBee

would be, theoretically, a good choice.

2.3. Overview of Network Information Protocols

15

2.3 Overview of Network Information Protocols

This section describes some network protocols that facilitate the process
of analyzing network traffic and behavior. These protocols exist because
typically, network analysis needs to be conducted on terminal network
nodes, which are able to gather packets from several sources. These
terminal nodes are usually active network equipments, such as switches
and routers. These active network equipments run an [OS|that allows them
to gather and analyze network information. The protocols presented in this
section enable the process of exporting this data, so they can be stored,

presented and further analyzed.

2.3.1 SNMPv3

Simple Network Management Protocol version 3 is described
in [STDPO062 [15] and it provides a framework for managing networks. An
management system contains several nodes (traditionally called

agents), each with access to management instrumentation; at least one

[SNMPv3 entity (traditionally called a manager), containing command gen-
erator and/or notification receiver applications; and a management protocol,

used to convey management information between the entities.
The main goals that drove the architecture behind [SNMPv3 were [15]:

- Use existing materials as much as possible;

- Address the need for security, which was considered the most impor-

tant flaw with previous implementations of this protocol;

- Allow for architecture evolution in the standards track, even if consen-
sus has not been reached on all pieces, making it possible to upgrade
portions of Simple Network Management Protocol (SNMP) without
disrupting an entire SNMP, framework;

- Keep [SNMP as simple as possible (S stands for Simple).

STDP062 [15] describes the main security requirements of SNMPv3, but a

more thorough analysis of these security measures would fall outside the

16 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

scope of this state of the art review. Thus, we will consider SNMPv3 to be

a secure and reliable protocol.

Although [SNMH allows the gathering of many network properties and
statistics (such as number of packets, erroneous packets, packet drops,
among other management statistics), these statistics fall outside the pur-

pose of this dissertation.

2.3.2 Cisco NetFlow

NetFlow is a protocol developed by Cisco Inc., that provides a key set of
services for IP applications. Some examples of these services are network
monitoring, [DoS| monitoring and network traffic accounting. Although Net-
Flow was initially a proprietary protocol, it is now a mature protocol. Net-
Flow is now an Internet Engineering Task Force (IETF) standard described
in informational Request For Comments (RFC)3954 [16]. The actual version
of NetFlow by the time the present dissertation was written was version
9 [17]. An standard, known as Internet Protocol Flow Information

Export (TPFIX) (described in subsection is emerging inspired on this
version of NetFlow.

The NetFlow version 9 export format uses templates to ease the task
of observing [[P] packet flows, in an extensible and flexible manner. A
template defines the collection of fields to be exported, with corresponding
descriptions of structure and semantics. Active network elements, such as
routers and switches (those that implement Cisco Internetwork Operating
System (IOS)) gather informations about[[P|flows and export it to collectors,
using (defined in [STDPO06 [12]) or Stream Control Transmission
Protocol (defined in [RFCH960 [18]) packets. In this particular
context, a flow is defined as an unidirectional sequence of packets, with
some common properties. The collected data about these flows provides
fine-grained metering for highly flexible resource usage accounting. This
data is very granular, containing information such as [[P] addresses, packet
and byte counts, timestamps, application ports, input and output interfaces,

etc.

2.3. Overview of Network Information Protocols

17

The template-based approach of NetfFlow version 9 provides the following

advantages:

- Just like - for instance - in Extensible Markup Language (XML),
new fields can be added to the export records, without changing the
structure of the export record format. This was a limitation of versions

prior to version 9;

- Structural information about the exported flow records are contained
in the export, thus, if the NetFlow collector does not understand the

semantics of new fields, it can still interpret the flow record;

- Due to the flexibility provided by the template mechanism, it is pos-
sible to only export the fields that are required. This helps to reduce

the volume of the exported data and also reduce network load.

A NetFlow Exporter (e.g. a Cisco[[OS|router or a Cisco[[OS|switch) gathers
informations about flows and exports them using the NetFlow protocol. A

flow can be exported under some conditions, such as:

- If an explicit end of flow is detected. For example, [TCP] (defined in
STDP07 [11]) has special flags (called FIN (as in finish) and RST (as
in reset)) that explicitly terminate a [TCP] connection (because in this

context flows are unidirectional, tcp connections represent 2 flows);

- If the flow has been inactive (no packets observed corresponding to

this flow) for a given period of time;
- If it is a long-lasting flow, exports should be made on a reqular basis;

- If the Exporter is experiencing internal constraints, such as low memort

or counters wrapping.

Although the exports of previous versions of NetFlow were strictly en-
capsulated into [UDP] packets, NetFlow version 9 has been designed to
be transport protocol independent, allowing it to operate over congestion-
aware protocols, such as [SCTP]

These exports should be collected by NetFlow Collectors and these are
responsible for analysis, storage and/or presentation of the results to the

user/network administrator. The Netflow version 9 was designed with the

18 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

assumption and expectation that the Explorers and Collectors would remain
within a single private network. Thus, no great security measures were
implemented, no impositions on confidentiality, integrity nor authentication
requirements. This greatly reduces the implementation complexity and
also increased the efficiency of NetFlow version 9 protocol. As described

in subsection IPFIX| (described in [RECH101 [19]) addresses these

security considerations.

2.3.3 IPFIX

IPFIX|is described in RFCH101 [19] and, at the time this dissertation was
written, it had a status of Proposed Standard. |RFC3917 [20] provides the re-
quirements for the [IPFIX|and [RFCH655[21] is also a Proposed Standard for

a file format designed to facilitate interoperability and re-usability among a

wide variety of flow storage, processing and analysis tools. Because [PFIX|
is based on Cisco NetFlow version 9 (see subsection 23.2), they share
some similarities, such as the existence of export processes and collecting
processes and the existence of data and template records. Nevertheless,
m may be considered the version 10 of NetFlow. In fact, the version
field in the [[PFTX header contains the value 0x000a, which increments by

one the value used in the NetFlow services export version 9.

Just as NetFlow version 9,[[PFTX has been designed to be transport protocol
independent. It is also notable that the exporter can export to multi-
ple collecting processes using different transport protocols. [RFC5101 [19]
specifically states that in order to guarantee compliance and interoperabil-
ity with different implementations, (defined in [RFCA960 [18])
using the Partial Reliability Stream Control Transmission Protocol (PR
SCTP) (defined in [RFCB758 [22]) must be supported. (defined in
[STDP006 [12]) and (defined in [STDPO7 [11]) are referred to as op-
tional implementations. [TCP] may be used in environments susceptible to

congestion, although there is a strong recommendation for the usage of
due to its ability to limit back pressure on exporters.

The security considerations for the [[PFTX] protocol have been derived from
RFCB917 [20], where an analysis of potential security threats is made.

2.4. Overview of Plotting Tools

19

Thus, the requirements for [[PFTX] security define that [[PFIX| must provide a
mechanism to ensure the confidentiality of [[PFTX] data, in order to prevent
disclosure of Flow Records; [[PFIX| must provide a mechanism to ensure
the integrity of [[PFIX| data, in order to prevent the injection of incorrect
data or control information into an [[PFTX] stream and [IPFIX| must provide
a mechanism to authenticate Collecting and Exporting Processes, in order
to prevent collection of data from an unauthorized Collecting Process, or

the exportation of data from an unauthorized Exporting Process. Transport
Layer Security (defined in [RFCH346 [23]) and Datagram Transport
Layer Security (defined in [RECK347 [24]) were designed to meet
the aforementioned security requirements of [[PFIX] without the need for
pre-shared keys. Since a deeper security analysis would fall outside the
purpose of this protocol review, we will just assume [[PFTX|is a secure and
reliable implementation, even though[RFCH101 [19] presents some scenarios

that could compromise the reliability hereby assumed.

2.4 Overview of Plotting Tools

This section presents some plotting tools that are well-known to the scien-
tific community. These tools are important in the scope of this dissertation,
because plotting data greatly helps the process of analyzing it, so conclu-

sions and details can be assessed.

2.41 Microsoft Excel and OpenOffice Calc

Microsoft Excel and OpenOffice Calc are two well-known spreadsheet ap-
plications, with intuitive and simple [GUls, which allow for data analysis
and processing. Although they both support extensions that enable much
more analysis methods than those already implemented, they both have a
physical limitation of 65.536 rows and 1.024 columns, which is predictable to
soon become a limitation, given the amount of data intended to be analyzed
in the scope of this dissertation. For instance, a 24 hour network capture,
in a 2Mb link can contain about 22.000.000 100B packets: a much greater

number of values than those which these tools are designed to handle.

20

2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

2.4.2 RRDtool

In [25] it is claimed that RRDtool is the open source industry standard,
high performance data logging and graphing system for time series data.
RRD stands for Round Robin Database. RRDtool is available for several
linux distributions and Microsoft Windows platforms. Source code is also

available, so it is possible to compile it on other [OSk.

RRDtool supports 2D plotting of captured data, as opposed to gnuplot (see
2.4.3) which also supports 3D plotting and mathematical functions as input.
RRDtool supports different types of outputs, such as png, svg or eps.

2.4.3 gnuplot

Gnuplot [26] is a graphing utility available for several [0Sk such as Linux,
Microsoft Windows, OSX and others. It is an open source utility and was
originally created to allow scientists and students to visualize mathematical

functions and data.

Gnuplot supports several types of plots, in either 2D or 3D representations.
Several demos for the different plots are available, facilitating the learning
process to use gnuplot. It is possible to export the plots to several file
formats, such as eps, jpg, BIEX, png, svg, and other formats and gnuplot is

extensible, so new output modes can be added.

2.5 Conclusion

In the introduction of this chapter, the three subjects of interest for this
dissertation were introduced. After gathering information about tools re-
lated to the scope of this dissertation, it was provided a new insight and a

deeper comprehension about related works and the current state of the art.

About the first subject of interest of this dissertation, the process of captur-
ing and analyzing packets traveling in a network, one may learn that, among
the tools presented in this chapter, CoMo (see section[2.2.4) is the one that

was author found to be closest to the tool developed by the author. Still,

2.5. Conclusion

21

the scope and goals of CoMo are different from the ones of NetOdyssey in

the following aspects:

- CoMo was designed for multi site (different locations/organizations)
traffic analysis. This raises security and privacy issues that are not

relevant in the scope of this dissertation;

- CoMo was also designed to be used by multiple users, so there is a
need for fair resource sharing, in order to guarantee those users are
able to run the analysis they wish, without compromising the system

and other users.

In this dissertation, these needs are relaxed , as the developed tool (see
Chapter [3) was designed to fulfill our research needs, although also being

modular and open enough for it to be used by other researchers.

Regarding the second subject of interest, the process of statistically ana-

lyzing the captured packets, it was learned that many current approaches

are based on Cisco NetFlow (see section [2.3.2), [PFTX] (see section [2.3.3)
and (see section [2.3.7). These approaches present tools that act
as gatherers of information provided by these protocols, and then run some
analysis on the gathered data. These approaches were outside the scope
of this dissertation, because we wish to enable researchers to analyze any

kind of metric, conventional and non-conventional.

Finally, for the third subject of interest, the representation of the results of
the traffic analysis, the author decided to use gnuplot because of the high
plotting versatility it provides and because this is a well-known tool in the

research community.

22 2. State of the Art and Critical Review of Tools for Network Monitoring and Analysis

Chapter 3

The NetOdyssey Framework

3.1 Introduction

The main purpose of the NetOdyssey framework was initially to support
some research work at the NMCC] but, as NetOdyssey evolved, it became
clear that it be could easily used by other researchers for network traffic
analysis. Thus, NetOdyssey has evolved to a modular approach, described
in section[3.5], in order to make its usage easier. NetOdyssey encompasses
the actual trend of Central Processing Unit (CPU) manufacturers to deploy
more than one core inside the processors, by using a multi-thread approach.
As described in section[3.4] each analysis module, e. g. the packet capturing
code and other core components, all run in separate threads. Thus, if one
analysis module is slower to process than the others, it will not become a
bottleneck, since other modules can keep running, given there are enough
resources in the host machine. Even if an analysis module encounters
an exception and needs to be stopped, it will stop alone, and it will not
interrupt the whole analysis process of other modules. In Chapter 4] the

validation process of NetOdyssey is described.

3.2 Tools for Development of NetOdyssey

NetOdyssey was developed using Microsoft .NET Framework 3.5. Although

this framework was designed to develop applications for the Microsoft

23

24

3. The NetOdyssey Framework

Windows [0F] it is possible to use Mono Project to run NetOdyssey on

other [0Sk (namely Linux and Apple Mac [0S). NetOdyssey was entirely
written in C#.

In order to capture network packets within the Microsoft Windows platform,
winPcap was used. Since winPcap is not natively object-oriented (as C#

is), sharpPcap - a winPcap C# wrapper - was used.

3.2.1 Microsoft .NET Framework 3.5

According to [27], the .NET Framework is an integral Microsoft Windows
component that supports building and running applications and XML Web
services. One of the main objectives behind the .NET Framework is to
provide a consistent object-oriented programming environment. The .NET
Framework has two main components: the Common Language Runtime
(CLR) and the .NET Framework class library. The [CLR] is the foundation
of the .NET Framework, as it provides core services such as memory and
thread management, strict type safety, providing accuracy, security and
robustness. On the other hand, the class library is a comprehensive,
object-oriented collection of reusable types that a developer can use on

its applications.

3.2.2 Mono Framework

According to [28], Mono is a software platform designed to allow developers
to easily create cross platform applications. It is an open source implemen-
tation of Microsoft NET Framework based on ECMA [29] standards for C#
and the sponsored by Novell [30]. The main motivation behind Mono
is to lower the barriers of production of applications for Linux, embracing
a successful and standardized software platform. On [28] it is also claimed
that the benefits of Mono are:

- Popularity: built on the success of .NET, there are millions of devel-

opers that have experience building applications in C#;

3.2. Tools for Development of NetOdyssey

25

- High-level programming: all Mono languages benefit from the features
of the runtime, like automatic memory management, reflection, generics

and threading;

- Base Class Library: a comprehensive class library provides thousands

of built in classes to increase productivity;

- Cross Platform: Mono runs on Linux, Microsoft Windows, Mac OS X,
BSD, Sun Solaris, Nintendo Wii, Sony Playstation 3, Apple iPhone.
It also runs on x86, x86-64, 1A64, PowerPC, SPARC (32), ARM, Alpha,
s390, s390x (32 and 64 bits). It is claimed that applications designed

with Mono are able to run on nearly any computer in existence;

- [CLR} the use of the [CLR]allows developers to choose the programming
language they best like to work with, and it can inter-operate with

code written in any other [CLR] language.

3.2.3 winPcap

In [3], it is claimed that winPcap is the industry-standard tool for link-layer
network access in Windows environments. WinPcap consists of a driver

and a library that provide easy access to low-level network layers.

In [31] it is claimed that the main features of winPcap are the following:

- Freedom: there is a total freedom to modify winPcap and use it within

any application, even commercial ones;

- High performance: there are classic optimizations, described in the
packet capture literature and some original ones like just-in-time filter

compilation and kernel-level statistic processing.

- Popularity: there is a vast list of tools - free and commercial ones
- that use winPcap. Within this list there are some well known
tools such as Wireshark, Nmap, Snort, WinDump and ntop. It is also

claimed that winPcap has thousands of downloads per day;

- Reliability: with a rock-solid development approach, and through the
contributions of many users, winPcap has grown to be a reliable and

stable software;

26

3. The NetOdyssey Framework

- Ease of use: either in a programmers point of view and the final user
perspective, winPcap is well documented and simple to setup and start

to use;

- Portability: winPcap is compatible with libpcap [2], meaning current
applications can b ported either to or from other operative systems,

without the hassle of porting the capture library.

3.2.4 SharpPcap

In order to use winPcap with Microsoft .NET Framework, a wrapper needs
to be used. This is due to the object oriented nature of the programming
language used to develop NetOdyssey, namely C#. WinPcap is not object-
oriented per se, but an object oriented approach increases the reliability
and re-usability of NetOdyssey. At the time this dissertation was written,

SharpPcap was open source software and it was freely available at [32].

3.3 The Calculation Philosophy of NetOdyssey

Equation the Strong Law of Large Numbers, shows that, given enough
observations (possibly infinite), the values from a random variable tend
to the expected value (the average). This leads to a lost of information,
because any variation in the observed values is absorbed and smoothed
by all other values. In order to avoid this loss of information, NetOdyssey
relies in analyzing all data in a windowed fashion. NetOdyssey supports

the two following types of analysis windows:

- Analysis Window Size (AWS) - the analysis window is filled with
[AWS] = n observations and then analyzed. Once all results are
calculated, the analysis window slides one observation to the right
(this means the first observation is removed, and a new observation is
inserted in the window), and this process repeats all over again (see
Figure 3.1);

- Analysis Window Time (AWT) - the analysis window is filled with

observations for AWT|= t seconds, and when it is full, it is analyzed.

3.3. The Calculation Philosophy of NetOdyssey

27

Once all results are calculated, the analysis window is cleared, and

this process repeats all over again (see Figure [3.2).

P(um any) — 1 (3.1)

n—o00

NetOdyssey may gather the network packets themselves, one by one, or
a statistical information provided by winPcap: Bit Count per Time Unit
(BCTU). These two capture modes are not compatible with each other,
because they require the network adapter to work in different capturing
modes. When NetOdyssey is gathering[BCTU]information, it is not possible
to access the packets themselves. This happens because a captured packet,
by definition, has a well defined start time and size, but this does not
allow us to know how long did it actually take to transmit/receive, or how
many bits were generated by it, because of situations like re-transmits and
malformed packets. Thus, in order to gather[B_C_TU]lnformation, the adapter
is requested to work in statistic gathering mode, which allows the adapter

to return precise information about the amount of bits traveling through it.

|| #1 #2 #3 45 #6
Q
ElL# 3 # L #s #6
41 #2 || #3 #4 #5 || #6
Network packet | | Analysis window

Figure 3.1: A representation of a sliding analysis window (AWS|of 3 observations).

In Figure[3.1]it is easily perceivable that in an analysis window of AW S| = n
analysis, when there is a right-shift of the analysis window, n — 1 packets
are common to the previous analysis window. If every window needed to
be fully analyzed (although this may be the case for some analyses), this
would lead to a slow and potentially not real-time analysis. In order to
optimize this process, all of the analysis methods of NetOdyssey must be
implemented with a per input and per output analysis in mind. When

correctly implemented, this approach makes the analysis independent from

28 3. The NetOdyssey Framework
L_*1 || #2 #3 #4 #5 #6
. #1 || #2 #3 #4 || #5 #6
=
- #1 #2 #3 i # #6 ||

Observation

I | Analysis window

Figure 3.2: A representation of a temporal analysis window (AWT).

the size of the (this does not apply to because after t seconds

the analysis window is cleared (as seen in Figure [3.2)).

In a high-level description, NetOdyssey provides an analysis window con-

structor that works in the following manner:

- Until analysis window is full (definition of full varies according to
analysis method: [AWS] = n observations or AWT| = t seconds of

observations):

* Enqueue an observation (may be a network packet or a [BCTU]

statistic) in the analysis window;

* Send this observation to all analysis modules;

- When analysis window is full:
* Request all analyzers to report their analysis from the current
analysis window;

* If analyzing in a sliding fashion (AWS): Dequeue an observation
from the analysis window, sending this observation to all analysis

modules;

* If analyzing in a temporal fashion (AWT): Clear all observations
from the analysis window, requesting all analysis modules to clear

their analysis;

- Now that the analysis window is not full, repeat the process again.

3.4. The Architecture of NetOdyssey

29

3.4 The Architecture of NetOdyssey

NetOdyssey has been developed with expansion capability and easiness
of use in mind. NetOdyssey was thought with a multi-thread approach, in
order to allow it to take full advantage of current multi-core [CPUs. The
core behind NetOdyssey provides the tools and the threads responsible for
compiling expansion modules, capturing network packets or [BCTU] statis-
tics, constructing and managing the analysis window, reporting application
status and delays through a Health Reporter and providing task queuing

support methods for Expansion Modules.

- Expansion Modules Compiler

Microsoft .NET Framework provides methods and classes that allow
for runtime compilation of C# or VB.NET source code. As described

in section 3.2.7] the [CLRl is the foundation of the .NET Framework,

so these classes are able to compile plain-text code (determining

syntax-errors and compiler warnings), and run this code inside the
scope of the application. This is the same process as invoking
a Dynamically Linked Library (DLL), though the only difference
relies on the code being compiled on-demand, instead of being pre-
compiled. This approach facilitates the openness philosophy behind
NetOdyssey, allowing for all of those who utilize this framework to
share their modules and allowing them to be updated, adapted and
tested with different settings. The NetOdyssey class that provides this
functionality is c1sModules and it is described in Appendix [A.1.4

- Capturer Thread

NetOdyssey relies on a thread to capture the observations that are
going to be analyzed. It is important to run this capturing process
in a separate thread, in order to minimize the number of dropped
observations that may arise due to processing delays. As described in
section[3.3] these observations may be the network packets themselves
or BCTU statistics. From a high level point of view, the capturer
thread is responsible for:a) configuring the capture device (live capture

device or off-line capture device: a pcap file); b) capturing the

3. The NetOdyssey Framework

observations; ¢) sending each observation to the analysis window
constructor thread. It is also this capturer thread that is responsible
for verifying if the configured stopping conditions (time limit and/or
observation count) have been reached. The NetOdyssey class that

provides this functionality is clsCapturer and it is described in
Appendix [A1.5

- Analysis Window Constructor Thread

NetOdyssey constructs and manages the analysis window according
to the configured settings in a separate thread. The capturer thread
dispatches the observations to this analysis window constructor and
this thread constructs the analysis window, sending the observations
to the analysis modules and requesting them to report their analysis
according to the algorithm described in section The NetOdyssey

class that provides this functionality is clsAnalysisWindow and
it is described in Appendix

- Health Reporter Thread

NetOdyssey provides a thread that allows the monitoring of the status
(also known as health) of other NetOdyssey's threads. This mechanism
is useful to understand if any loss of observations is happening or any
analysis module is falling behind on it's analysis process. In order
to be able to report it's health, a class must implement the interface
IHealthReporter, described in Appendix [A.1.9) The NetOdyssey

class that provides this functionality is cl1sHealthMonitor and it
is described in Appendix

- Expansion Modules Base Threads

Each of NetOdyssey's analysis modules is an implementation of
either interface INetOdysseyBCTUAnalyzerModule (described
in Appendix [A24) or INetOdysseyPacketAnalyzerModule
(described in Appendix |A.25) and an extension of base class
NetOdysseyModuleBase (described in Appendix [A.21). This base
class provides essential services, such as: a) threaded execution of
the module; b) queuing of the analysis tasks the module must perform;

¢) streaming the module reports to a text file; d) reporting the module’s

3.5. A modular approach

31

status, namely the size of it's task queue . It is essential to provide
these services, in order to permit an easier utilization of NetOdyssey.
For example, an user programming a NetOdyssey module does not
have to worry about writing the analysis to a file: all the output from
the analysis report method is automatically streamed to a file, one for
each module. Thus, the module developer only has to worry about the

format of his output, which can of course be adapted to his needs, e.qg.:
Comma Separated Values (CSV).

3.5 A modular approach

As stated in Chapter [T} NetOdyssey aims to become a well known network
analysis framework. One of the main advantages of NetOdyssey is
presented in this section: modularity. This feature is possible due to a
precise differentiation between the core of NetOdyssey and the analysis
modules. While the core of NetOdyssey provides basic functionality and
services, such as those described in section it is the modules that are

responsible for actually analyzing network information.

The analysis modules of NetOdyssey are nothing more than plain-text code
files (C# or VB.NET) that get compiled during NetOdyssey's start. Each
module is a class that extends a base class and implements an analysis
interface. This base class is NetOdysseyModuleBase (described
in Appendix and the currently available analysis interfaces are
INetOdysseyBCTUAnalyzerModule (described in Appendix[A.2.4) and
INetOdysseyPacketAnalyzerModule (described in Appendix [A.2.5).

Section [3.3] explains the philosophy behind the per observation analysis:
with the windowed analysis approach of NetOdyssey, it is much more
efficient to analyze only the observations that enter and exit the window
instead of always analyzing the whole window. This is even more obvious

for sliding analysis windows (AWS|= n), where n is large.

The core services of NetOdyssey run in separate threads and each analysis
module also run on it's own thread. This is required because there may be

different modules performing an analysis and it is not desirable that mod-

32

3. The NetOdyssey Framework

ules delay each other. Thus, when extending NetOdysseyModuleBase,
a module is actually gaining access to a set of the core services of
NetOdyssey, such as threaded execution, task management and report
streaming. Whoever wishes to implement a NetOdyssey analysis module
must only worry about how to process the observations entering and leaving
the analysis window. An example of a NetOdyssey analysis module is

presented in subsection [3.6]

3.6 An example module

This section presents an example module. In this example, one wishes
to analyze the mean and standard deviation of the network packet sizes.

Thus, the analysis will be performed in a per-packet fashion (as opposed
to a per{BCTU analysis).
In order to perform a per-packet analysis, this example module needs to

implement the interface INetOdysseyPacketAnalyzerModule (Ap-
pendix [A.25). All of this module is written in C# code.

class example : NetOdysseyModuleBase,

INetOdysseyPacketAnalyzerModule

As described in Appendix INetOdysseyPacketAnalyzerModule
requires the classes that implement it to implement the following methods

and functions:

void AnalysePacketIn (Packet Packet, int WindowSize)

void Clear ()
string ModuleEnd ()
string ModuleStart ()

S e

string ReportAnalysis ()

Function string ModuleStart () is invoked once, before NetOdyssey
starts the analysis process. This function returns a string which is au-

tomatically added to the top of the module output file. In this example,

void AnalysePacketOut (Packet Packet, int WindowSize)

3.6. An example module

33

the output will be separated by a semi-colon. It is convenient to print the
header names in the first line, so the implementation of ModuleStart ()

is as follows:

public override string ModuleStart () {

return "average; stdDev" + Environment.NewLine;

Function string ModuleEnd () is invoked once, after the current Ne-
tOdyssey module finishes the analysis process. This function returns a
string which is automatically added to the end of the module output file.
In this example, there is no need for a special footer output, so the imple-

mentation of ModuleEnd () is as follows:

public override string ModuleEnd () {

return "";

The analysis performed by this module resides inside the
AnalysePacketIn() and AnalysePacketOut () methods. These
are the methods responsible for performing the real-time analysis of
observations (in the particular case of this module these observations are
network packets), as they enter and leave the analysis window. In this
module, the author seeks to know the average and standard deviation of
the network packets’ size. The equation for determining the average of a
random variable (x) is presented in [3.2] and the equation for determining

the standard deviation of a random variable (o) is presented in 3.3

1 N
= ; Xi (3.2)
1 N
o=1|x > (xi—x)? (3.3)

i=1

Equation 3.2 is fairly simple to implement, but equation 3.3] needs to

be approached in a different manner, in order to facilitate the windowed

34

3. The NetOdyssey Framework

analysis approach of NetOdyssey. Thus, re-writing equation 3.3} it is
possible to obtain equation

N

1 _
0=1|x > x?—x2 (3.4)

i=1

In order to optimize the execution of the module, the following variables

are declared and initialized inside the scope of the module’s class:

int _packetLenght
int _currentCount = 0
double _sum = 0

double _sumOfSquares = 0

double _average

© 0k W=

double _sigma

Variable _packetLenght is an auxiliary variable that seeks to minimize
the overhead of accessing inside the Packet object received in the analysis
methods. Variable int _currentCount holds a counter to the current
number of packets inside the analysis window. This variable represents
N in equation 3.2 Variable double _sum holds the sum of the packets
length inside the analysis window. This variable represents Zf\; X; in
equation 3.2] Variable double _sumOfSquares holds the sum of the
square value of the packets length inside the analysis window. This variable
represents Zf\; x;2 in equation Variables double _average and
double _sigma are auxiliary variables that facilitate the output of the

analysis function described ahead.

Method void AnalysePacketIn (Packet Packet, int
WindowSize) is called every time a network packet enters the

analysis window. The implementation of this method is as follows:

public override void AnalyzePacketIn (
PacketDotNet .Packet Packet, int WindowSize) {
_packetLenght =
Packet .BytesHighPerformance.Length;

_currentCount++;

3.6. An example module

35

_sum += _packetLenght;

_sumOfSquares += _packetLenght * _packetLenght;

Method void AnalysePacketOut (Packet Packet, int
WindowSize) is called every time a network packet leaves the

analysis window. The implementation of this method is as follows:

public override void AnalyzePacketOut (
PacketDotNet .Packet Packet, int WindowSize) {
_packetLenght =
Packet .BytesHighPerformance.Length;
_currentCount——;
_sum —-= _packetLenght;
_sumOfSquares —= _packetLenght x _packetLenght;

Method void Clear () is called every time the network analysis window
is cleared. This happens particularly in the case of a temporal analysis
window (AWT]| = t seconds). This method exists to provide additional
optimization, since if the analysis window was cleared, there is no need
to analyze the removal of each packet, just reset the analysis module

altogether. The implementation of this method is as follows:

public override void Clear () {
_currentCount = 0;
_sum = 0;
_sumOfSquares = 0;

Finally it is necessary to implement the string ReportAnalysis ()
function. This function is called every time the analysis window is full, in
order to allow the method to output a string containing it's results of the
analysis of the current window. This output is automatically appended to
the module report file, as mentioned in section 3.4 The implementation of

this function is as follows:

36

3. The NetOdyssey Framework

public override string

if (_currentCoun
_average
else
_average

if (_currentCoun

_sigma =

ReportAnalysis () {
t > 0)

= _sum / _currentCount;

t > 1)
Math.Sqgrt (

(_sumOfSquares / _currentCount) -

(_average * _average)

) ;
else

_sigma =

return _average

Environme

0;
+ "; " + _sigma +
nt .NewLine;

This module was tested with the following randomly generated packets
(generated with the tool described in section 4.2):

{569; 153; 1188; 64; 768; 339; 892;

1357, 435; 384}.

The output generated by this module for a sliding analysis window of 5

packets (AWS}= 5) is:

average; stdDev

548,4; 412,000291262033
502,4; 419,896463428784
650,2; 400,511872483201
684; 448,703465553811
758,2; 362,421522539708
681,4; 391,710403231775

Using equation [3.2] to verify the

average calculation results:

(569 + 153 + 1188 + 64 + 768)/5 = 548.4;

3.7. Conclusion

37

(153 + 1188 + 64 + 768 + 339)/5 = 502.4;
(1188 + 64 + 768 + 339 + 892)/5 = 650.2;
(64 + 768 + 339 + 892 + 1357)/5 = 684;
(768 + 339 + 892 + 1357 + 435)/5 = 758.2;
(339 4+ 892 + 1357 + 435 + 384)/5 = 681.4.
As expected, all results match.

Using equation [3.4] to verify the standard deviation calculation results:

/(5692 + 1532 + 11882 + 642 + 7682)/5 — 548, 42 = 412.002913;

\/(1532 + 11882 + 642 + 7682 + 3392)/5 — 502.42 = 419.8964634;

/(11882 + 642 + 7682 + 3392 + 8922)/5 — 650.22 = 400.5118724;

/(642 + 7682 + 3392 + 8922 + 13572)/5 — 6842 = 448.7034656;

/(7682 + 3392 4 8922 + 13572 + 4352)/5 — 758.22 = 362.4215225;

/(3392 4 8922 + 13572 + 4352 + 3842)/5 — 681.42 = 391.7104032.
As expected, all results match.

The full and pretty printed source code of this module is available in

Appendix

3.7 Conclusion

The present section presented a framework whose purpose is to ease the
process of statistically analyzing network traffic. The philosophy behind
this framework allows for a windowed analysis approach. This windowed
analysis lets us at theand all others who use this framework, to look
at the traffic as if looking through a window. Observations slide through

this window, entering and leaving one at a time, as in a queue.

Because it is not easy for one to predict which metrics she/he will be ana-
lyzing throughout her/his research, the presented framework, NetOdyssey
allows for analysis modularity. This modular approach means that those
who use NetOdyssey may effectively develop their own analysis modules

tuning them to their personal analysis necessities.

38

3. The NetOdyssey Framework

Since NetOdyssey looks at the network as if looking through a window,
it is important to analyze only the observations that enter and leave this
analysis window, since those are the ones that bring new information to
the metrics being analyzed. The user analysis modules of NetOdyssey
must be implemented with this approach in mind. If this approach was not
taken, one would need to analyze the whole window, for each entering and
leaving packet, which for an analysis window of size n would mean n — 1

observations with duplicated analysis.

As of the actual implementation, NetOdyssey may fill the analysis windows
with two types of observations: the network packets themselves and [BCTU|
observations. Analyzing the network packets allows for researchers to
look at headers and payloads, while analyzing [BCTU] observations allows
for researchers to understand fluctuations in bandwidth usage and other
metrics. Due to the incompatible nature of these two observation types
(libPcap must be configured to capture in either packet mode or [BCTU]

mode), it is not possible to analyze them both at the same time.

Chapter 4

Results and Validation

4.1 Validation of NetOdyssey

NetOdyssey supports capturing live packets on any available [NIC] (provided
they are compatible with winPcap), but it also supports opening an offline
capture. The source of the packets is independent from all the calculation
methods, so in order to validate NetOdyssey and assure coherent and valid
results, an offline capture was used. Also, in order to avoid potentially bi-
ased captures, a random capture generator was created. Whenever possible,
all calculations presented in this chapter were performed by well-known

and valid mathematical tools, such as the R-project tool [33].

4.2 Random capture generator

In order to have a statistically random and unbiased offline capture to aid
the validation process of NetOdyssey and all the implemented modules,
a random capture generator was created. This random capture generator
utilizes the well-known Mersenne-Twister [34] algorithm to randomly gen-
erate different packet sizes and different inter-arrival times. Although it is
possible to perform Deep Packet Inspection (DPI) with NetOdyssey (the
payload of the packets is available to the modules), this is outside of the

scope of this dissertation, and, based on this, only packet sizes and packet

39

40

4. Results and Validation

inter-arrival times are considered here. This random capture generator has
different parameters for minimum and maximum packets sizes, minimum and
maximum inter-arrival times, capture size and random payload generation

(otherwise payload will be full of zeros).

This random capture generator outputs all packet sizes and inter-arrival
times to a plain text file, which can be used to validate the generator. Both
packet sizes and packet inter-arrival times are compared against these
randomly generated values, using WireShark [4], a well-known, impartial
and scientifically valid tool. In order to produce statistically significant
results, several captures of more than 500.000 packets were generated and

validated.

Throughout the present dissertation and the process of validating Ne-
tOdyssey and its modules, it was used one randomly generated capture
of 5.000 packets, with a minimum packet size of 64 bytes and maximum
packet size of 1518 bytes (as recommended by [STDP041 [35]). For the
inter-arrival times, it was decided to use a minimum value of O (zero) and

a maximum value of 2.000.000 microseconds (2 seconds).

In order to assess the degree of randomness of this generated capture,
the entropy calculation for an of 250 observations is presented in
subsection [4.3.1] and in subsection 4.3.3] the auto-correlation function of

this generated capture is included.

4.3 Implemented modules

One of the contributions of this dissertation, mentioned in section is
the pack of analysis modules. These modules are presented and validated
in this current section. In order to obtain a good degree of scientific
validation, all the results provided by currently implemented modules were
mathematically validated with a well-known and impartial mathematical
tool: R [33]. The implemented modules available and explained in this

dissertation are:

- Average and Standard Deviation estimator, described in section [3.6]
(source code available in Appendix [B.1);

4.3. Implemented modules

41

- Entropy estimator, described in section [4.3.7] (source code available in
Appendix [B.2);

- Auto-Correlation estimator, described in section 4.3.3] (source code
available in Appendix [B.3);

- Hurst parameter estimator, described in section 4.3.5] (source code
available in Appendix [B.4).

4.3.1 Entropy Estimator

Entropy (H) is the measure of the uncertainty of random variable. Equa-
tion presents the definition of Entropy, also known as Shannon Entropy.
The maximum value of the Entropy is the logarithm of the different number

of possible observations.

H(X) = =) p(x)logp(x) (4.1)

XEx
With the present dissertation, and, as stated in section one of the
analysis modules available is an entropy estimator module. Equation
is not directly implementable in an optimized way to perform a windowed
analysis, as described in section 3.3 Thus, there were two possible ap-

proaches for an entropy analysis:

- For every full analysis window, calculate the entropy of the whole
window: this approach is not optimized at all and, as such, it was not

implemented;

- For every observation entering and leaving the window, calculate
it's particular effect on the entropy of that window: this approach
is optimized to work in accordance with NetOdyssey's calculation

philosophy, so it was implemented.

In the following explanation, please consider w as the analysis window
size and ¢ as the number of times that the current observation’s value
is present inside the analysis window. When an observation enters the

analysis window, this module performs the following analysis:

4. Results and Validation

* Add = * [n(w) to the entropy;

- Else, if ¢ > 0:
* Subtract € * In(%) from the entropy;
fc=c+1;
* Add = * [n(*) to the entropy;

In a similar way, when an observation leaves the analysis window, this

module performs the following analysis:

-lfe=1:
* Remove & x In(w) from the entropy;

c=0;
- Else, if ¢ > 1:
* Subtract + * In(%) from the entropy;

"c=c—1,;

* Add £ *[n(%) to the entropy;

Thus, when reporting the analysis, this module only needs to output the

current value of the entropy, because it is always up-to-date.

The main idea behind this algorithm is to update the value entropy only
when observations enter and leave the observation window. If an obser-
vation value already existed inside the window, its previous effect on the
entropy must be removed, before adding the new effect on entropy. This is

observable in the algorithm above.

The validation of this module is presented in subsection [4.3.2) and the

source code for this module is available in Appendix [B.2]

4.3.2 Validation of Entropy Estimator

Figure [4.1] presents the R source code utilized to validate the Entropy

calculation module available with the present dissertation.

4.3. Implemented modules

43

1 function {aws,count) {

2 E for{aux in seqg{count-aws+1)3) {

3 W =— packets[aux:{aux+aws-1)]
o a =<— round{entropy{table{w)),5)
5 h <- round{results[aux],5}

& = if {a 1= by {

7 print{c{"Failed in ",aux))
o return{ FALZE)

= B } else {}

i0 r }

11 return{ TRUE}

1z -1

Figure 4.1: R code used to validate results from Entropy Estimator module.

Entropy () is a function available in R, that estimates the Shannon
entropy of a random variable from its observation counts. It is necessary
to use the table () function, in order to return the observation counts
of a random variable. By comparing all R entropy calculation results for
a sub-vector of initial packet sizes, rounded to the 5th decimal place for
different window sizes, and observing that all values match, it is possible
to access the validity of the implementation of this module. As it possible
to understand from the validation source code, in the first occurrence of a
mismatch, the validation immediately stops and warns about the error. The
execution of this validation ran flawlessly for different[AWS]sizes and origin
values, thus proving that this module is correctly estimating the Entropy

values.

In order to assess the degree of randomness of the captures generated
by the tool presented in section 4.2} the entropy calculation for an [AWS] of
250 observations was calculated and the results are presented in Figure
As it is possible to visualize, the entropy values are always very close to
the maximum value (ln(250) = 5.521), thus confirming the high-degree of

randomness of this randomly generated capture.

4.3.3 Auto-correlation Estimator

The auto-correlation function [36] is a commonly-used tool for assessing

randomness in a data set. This randomness is measured by calculating

44

4. Results and Validation

I I I | I I
0 1000 2000 3000 4000 5000

Figure 4.2: Entropy of 5.000 randomly generated packet sizes, with AWSE=250.

the correlations of the values within the data set with each other. The
distance of the packets utilized for determining the correlation is called
lag, and is represented by k. Equation presents the equation for the
auto-correlation function of a random variable X, for a lag k and observation
count w. When the data set has a high degree of randomness, the auto-
correlation values are near to zero for all lag separations. Likewise, if there
is a low degree of randomness, autocorrelation values will be far from zero.

The auto-correlation function has a co-domain of [-1:1].

w—k w—k w—k
D XXuk—w) Xi—p) X+ (w—kp
UCf(X, k) _ i=0 i=0 i=0 (42)

w
i=0

As an example of the auto-correlation function, Figure presents the
plot of the example equation Figure presents the plot of the auto-
correlation function for a maximum lag of K = 200. For small values of
K, the auto-correlation of the function values is evident. This is expected,

because the origin vales have a very small degree of randomness, yet they

4.3. Implemented modules

45

are not constant.

f(x) = 2sin (2n (x—%)) x=1[0,2]

T T T T T
0o 0.5 1.0 1.5 20

Figure 4.3: Plot of equation .

1.0

05

oo
|

-05
I

| | 1 | |
0 50 100 150 200

Figure 4.4: Autocorrelation of equation maximum lag K = 200.

(4.3)

46

4. Results and Validation

In order to access the degree of randomness of the random capture gener-
ated in section and utilized in the process of validating the analysis
modules available in this dissertation, the auto-correlation function for all
values of K is presented in Figure It is possible to observe that
for all values K > 0 the value of the auto-correlation is very near to 0,
meaning a very good degree of randomness (auto-correlation of K = 0 is
1 by convention). This is the desired and expected behavior, because, as
stated in a well-known and valid pseudo-random generator was used

to generate these values.

=
=

08

06

04

0z
I

0 1000 2000 3000 4000 5000

Figure 4.5: Autocorrelation of 5.000 randomly generated packet sizes, for all Ks.

With the present dissertation, and, as stated in section @ one of the
analysis modules available is an auto-correlation estimator module. This
module was implemented in order to take advantage of the optimization the
analysis philosophy behind NetOdyssey, presented in section [3.3] provides.
To accomplish this, it was used the methods to analyze the observations
entering and leaving the analysis window to update all sum values and then

in the analysis report method calculate and return the result of equation 4.2}

Since it is desirable to calculate the auto-correlation function to different

lag values, there were two approaches:

- Either create a module that would calculate the auto-correlation for

4.3. Implemented modules

one specific lag and then run this module several times for different

lags;

- Or create a module capable of calculating different lags at the same

time.

The second approach was the one followed in this particular implementa-
tion, because as the number of lags to calculate increases, so could the
overhead of running different concurrent threads (see section at the

same time increase.

The validation of this module is presented in subsection and the

source code for this module is available in Appendix [B.3]

4.3.4 Validation of Auto-correlation Estimator

Figure[d.6]presents the R source code utilized to validate the Auto-Correlation

calculation module available with the present dissertation.

function (aws, count, EKs) {
= r <-—
3 for(aux in seqg(count-aws+1)) {

w <- packets[aux: (auxt+aws-1)]

= for (k in Es) {
a <€- round(acf (w,lag.max=k, plot=FALSE)$acf[k+1],5)
b <- round(results[r],5)
= if (a '=b) {

print(c("Failed in k,aux,r", k, aux, r))

return (FALSE)
} else {
12 r <- r +
3 }
}

}
return (TRUE)

!

Figure 4.6: R code used to validate results from Auto-Correlation Estimator module.

Acf () is a function available in R that computes estimates of the auto-
correlation function. In the scope of this validation process, the arguments
that are important in this function are lag.max=k and plot=FALSE. These
arguments are important, because by default, the acf () function utilizes
10log, O(N), where N is the number of observations; plot=FALSE is a flag
that tells acf () not to present it's results in a plot, as it does by default.

Input argument Ks is a vector with the different values of k that will be

48

4. Results and Validation

calculated. By comparing all R acf () calculation results for a sub-vector
of initial packet sizes, rounded to the 5th decimal place for different window
sizes, and observing that all values match, it is possible to access the
validity of the implementation of this module. As it possible to understand
from the validation source code, in the first occurrence of a mismatch, the
validation immediately stops and warns about the error. The execution of
this validation ran flawlessly for different [AWS] sizes and origin values,
thus proving that this module is correctly estimating the Auto-Correlation

values.

4.3.5 Hurst Exponent by Autocorrelation Function Estima-

tor

In [37], Gubner and Kettani proposed a new method for the estimation of
the Hurst parameter, naming it Hurst Exponent by Autocorrelation Function
(HEAF). This proposal is based on the autocorrelation function y(k) of a
self-similar process, which can be simplified as equation

1
v(k) = 5 (1 + 17" = 20+ =) (4.4)

Calculating the auto-correlation for k = 1, equation degenerates into
equation which can be solved for H, thus providing an immediate

estimate for the Hurst parameter, presented in equation [4.6]

y(1) = 22" 1 (4.5)
H—1l 1) +1 ! 4.6
< —§ogz(v()+)+§ (4.0)

These were the basic principles followed in the implementation of the
Hurst parameter estimation module, available with the present dissertation.
Because of the novelty of the method, this particular implementation has
not yet been implement in R software, thus it is not possible to validate in
the same fashion as the previous modules were validated. Nevertheless,

and as it is possible to observe by comparing the source code of the

4.3. Implemented modules

49

Figure 4.7:

regression.

Auto-Correlation Estimation Module (Appendix B3) and the source code
of the Hurst Parameter Estimation Module (Appendix [B.4), this module
utilizes the already validated auto-correlation code, only expanding it on
the ReportAnalysis () function. This extension is nothing more than
the application of the Least Square Methods ([SME) to the points with
coordinates constituted by the base 2 logarithm of the values of lag k and

the autocorrelation also for lag k.

The main idea behind this implementation of the Hurst Estimation is to

plot the following values for, as a term of example an analysis window of
200:

x-axis: log,(2) = 1, log,(4) = 2, log,(8) = 3, log,(16) = 4, log,(32) = 5,
log,(64) = 6, log,(128) = 7;

y-axis: log,(acf(k = 2)), log,(acf(k = 4)), log,(acf(k = 8)), log,(acf(k =
16)), log,(acf(k = 32)), log,(acf(k = 64)), log,(acf(k = 128)).

From this plot, it is possible to assess the slope of the line connecting
these points, through the [[SMs method. Once this slope s is estimated H
is determinable by equation 4.7]

s+ 1

(4.7)

\f\\‘\ == og2{acf)
0 / N Linear (log2({acf))
-0,05

. y=-0,0139x+0,0502
0.1 -J v

Estimation of the Hurst parameter based on autocorrelation function using linear

50

4. Results and Validation

Figure [4.7) depicts an example of the plot for the results from the first
[AWS]| of 200 observations, from the random capture generated with the
tool presented in As it is possible to observe, the slope of the line
from the linear regression of the values is close to 0 (—0,0139). Through
equation [4.7] it is possible to determine that the Hurst parameter H is
0.49307. This value is very close to 0.5, meaning there is no long-range
dependence between values in this particular observation window. When
H is close to 1, there is strong evidence of long-range dependence (also
known as long memory). Likewise, when H is close to 0, there is strong

evidence of anti-persistence.

4.4 Conclusions

One of the main contributions of this dissertation is the pack of avail-
able user analysis modules. Throughout the present chapter, this pack of
modules was presented and validated. These modules are: average and
standard deviation calculation, entropy estimation, auto-correlation esti-
mation and estimation. A random capture generator was developed,
in order to provide some statistically random data (non biased), so these

analysis modules can be validated.

This pack of modules has their C# source code available in Appendix (B} It
was important to us to provide the scientific community with this disserta-
tion explaining these analysis modules and their source code, because this
provides a basis for the development of more NetOdyssey modules. These
modules depict the windowed analysis philosophy behind NetOdyssey and

provide easiness to its understanding.

Everyone who implements a NetOdyssey analysis module should take
special care in the validation process, because only with valid and correct
results it is possible to obtain knowledge about network behavior. Sec-
tion presents some guidelines for those who wish to develop analysis

modules for NetOdyssey.

Chapter 5

Conclusions and Future Work

5.1 Main Conclusions

In section [.2] it was stated that this dissertation aims to facilitate the
process of understanding any given network, while providing researchers
with freedom in this understanding process. Chapter 2] presented the
revision of most of the state of the art available at the time this dissertation
was written. From this analysis of the state of the art, it was put in
evidence the need for the development of a tool . Throughout the present
dissertation, it was described the design and development of NetOdyssey, a
framework for network traffic analysis, with a windowed analysis philosophy
in mind (as described in section[3.3). This windowed analysis philosophy is
one of the crucial differentiation points of NetOdyssey from other analysis
frameworks. This framework has grown in such a way, that it could be used
not only by the [NMCC] research group, but also by the scientific community
in general. This lead to a change in the scope of this dissertation, that
instead of focusing in traffic analysis itself, it focused on the development
and validation of this framework. Throughout Chapter [3and Chapter[4} the
author presented and validated this framework, NetOdyssey. Throughout
all sets of laboratory tests that the author submitted NetOdyssey to, its
reliability increased notably. There is a great confidence in this tool, since

it has been able to surpass all initial expectations.

The NetOdyssey framework is a very good addition for the ever grow-

51

52

5. Conclusions and Future Work

ing community of researchers that wish to analyze network metrics and
statistics. Its modular approach and object oriented development facilitate
further expansions and improvements. The analysis modules developed and
presented with the current dissertation also facilitate the understanding and
implementation of further analysis modules. This is a crucial requisite in

order to guarantee the future utilization and improvement of NetOdyssey.

Special care was taken while scientifically validating both NetOdyssey and
the available analysis modules. This validation was possible thanks to a
meticulous way of developing the analysis modules and then comparing
the output of these modules against a well known and impartial statistical
tool. The choice for using the R software [33] was due to the fact that it is
indeed very useful, has a non-steep learning curve and it is freely available

for everyone to use.

5.2 Directions for Future Work

While NetOdyssey has already proven to be a robust and reliable frame-
work for network analysis, many improvements may still take place. Be-
cause of the open and modular approach inherent to NetOdyssey, re-
searchers and developers, who wish to use this framework to perform their

analysis, are able to expand and improve the functionalities of NetOdyssey.

Because user analysis modules need to be written in plain source code,
they can be shared within the scientific and interested community. This is
only possible, of course, if those who utilize this framework are willing to
share their analysis modules, but there are great expectations for the future
of NetOdyssey.

About the future work and progress of NetOdyssey, the following guidelines
are proposed:
- Assessment of the statistical metric one wishes to analyze;

- Evaluation if this metric can be evaluated in a windowed manner (i.e.,

following the analysis philosophy described in section [3.3);

5.2. Directions for Future Work

53

- Development of the analysis module, according to the documentation

in this dissertation and other available modules;
- Validation of the results with a well known and impartial tool;

- Use the developed and validated module to perform the desired anal-

ysis, obtaining results and conclusions;

- Share of these results, conclusions and preferably also the analysis

module with the scientific community.

NetOdyssey was developed with a good degree of object-orientation and
class separation in mind. This allows for the development and extension
of additional core functionalities. For example, if one wishes to analyze
network flows, one may develop a capturer module that captures flows and

sends them to the already developed analysis modules.

In short, the future work of NetOdyssey depends greatly on those who
utilize it. Those who wish to implement analysis modules may focus on that
scope, and those who wish to improve its core services and functionalities
may focus on that scope. The author feels it will be a thrilling experience

to watch NetOdyssey develop and mature even further.

54

5. Conclusions and Future Work

References

[1] F. D. Beirdo, J. V. Gomes, P. R. M. Indcio, M. Pereira, M. M.
Freire. NetOdyssey - a new tool for real-time analysis of network
traffic. 9th IEEE International Symposioum on Network Computing
and Applications (IEEE NCA 2010), Cambridge, USA, 15-17 July 2010,
4 pages.

[2] tcpdump/libpcap Web Page. http://www.tcpdump.org/ accessed Febru-
ary 22nd, 2010.

[3] CACE Technologies. WinPcap: The Windows Packet Capture Library.
http://www.winpcap.org/ accessed February 22nd, 2010.

[4] CACE Technologies. Wireshark About Page.
http://www.wireshark.org/about.html accessed March 3rd, 2010.

[5] Analyse-it. Analyse-it Web Page. http://www.analyse-it.com/ accessed
March 8th, 2010.

[6] G. lannaccone, C. Diot, D. McAuley, A. Moore, I. Pratt, L. Rizzo. The
CoMo White Paper. September 2004.

[7] Politecnico di Torino. Analyzer 3.0 (alpha) Wep Page, November 2007.
http://analyzer.polito.it/ accessed March 2nd, 2010.

[8] Politecnico di Torino. The NetBee Library Web Page.
http://www.nbee.org/ accessed March 2nd, 2010.

[9] ntop.org. ntop Web Page. accessed March 16th, 2010.

[10] Network multimedia and computing group. http://floyd.di.ubi.pt/nmcg/
accessed June 25th, 2010.

55

56

REFERENCES

[11] J. Postel. STDO007: Transmission Control Protocol. September 1981.
[12] J. Postel. STD0006: User Datagram Protocol. August 1980.

[13] Politecnico Di Torino Web Page. http://www.polito.it/ accessed March
2nd, 2010.

[14] The NetBee Library PDL. http://www.nbee.org/doku.php?id=netpdLl:index
accessed March 2nd, 2010.

[15] B. Wijnen D. Harrington, R. Presuhn. STD0062: An Architecture for
Describing Simple Network Management Protocol (SNMP) Manage-

ment Frameworks. December 2002.

[16] Ed. B. Claise. RF(C3954: Cisco Systems NetFlow Services Export
Version 9. October 2004.

[17] Cisco. http://www.cisco.com/en/US/products/ps6601/
products_ios_protocol_group_home.html accessed March 9th, 2010.

[18] Ed. R. Stewart. RFC:4960: Stream Control Transmission Protocol.
September 2007.

[19] Ed. B. Claise. RFC5101: Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of IP Traffic Flow Information.
January 2008.

[20] B. Claise S. Zander J. Quittek, T. Zseby. RFC3917: Requirements for
IP Flow Information Export (IPFIX). October 2004.

[21] L. Mark T. Zseby A. Wagner B. Trammell, E. Boschi. RFC5655:
Specification of the IP Flow Information Export (IPFIX) File Format.
October 20009.

[22] Q. Xie M. Tuexen P. Conrad R. Stewart, M. Ramalho. Stream Control
Transmission Protocol (SCTP) Partial Reliability Extension. May 2004.

[23] E. Rescorla T. Dierks. RFC4346: The Transport Layer Security (TLS)
Protocol Version 1.1. April 2006.

REFERENCES

57

[24] N. Modadugu E. Rescorla. RFC4347: Datagram Transport Layer
Security. April 2006.

[25] T. Oetiker. RRDTool Web Page.
http://oss.oetiker.ch/rrdtool/index.en.html accessed March 17th,
2010.

[26] gnuplot. gnuplot Wep Page. http://www.gnuplot.info/ accessed March

17th, 2010.
[27] MSDN. NET Framework Conceptual ~ Overview.
http://msdn.microsoft.com/en-us/library/zw4w595w.aspx accessed

February 22nd, 2010.

[28] Mono-Project Web Page. http://www.mono-project.com/ accessed
February 22nd, 2010.

[29] ECMA International. ECMA Web Page. http://www.ecma-

international.org/ accessed February 22nd, 2010.

[30] Novell Web Page. http://www.novell.com/ accessed February 22nd,

2010.

[31] CACE Technologies. WinPcap features.
http://www.winpcap.org/misc/features.htm accessed February 22nd,
2010.

[32] SharpPcap Sourceforge Project Page.

http://sourceforge.net/projects/sharppcap/ accessed February 22nd,
2010.

[33] Bell Laboratories. R-project. http://www.r-project.org/ accessed April
19th, 2010.

[34] M. Matsumoto, T. Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. Special

issue on uniform random number generation, 8:3-30, 1998.

[35] C. Hornig. STD0041: A Standard for the Transmission of IP Datagrams
over Ethernet Networks. April 1984.

58 REFERENCES

[36] G. E. P. Box and G. Jenkins. Time series analysis: Forecasting and
control. 1976.

[37] J.A. Kettani, H.; Gubner. A novel approach to the estimation of the
long-range dependence parameter. IEEE Transactions on Circuits and
Systems II: Express Briefs, 53:463-467, 2006.

Appendix A

Class Model

A.1 Base classes of NetOdyssey

A1.1 Program

>>I

' Program
Class

= Properties
S prpAnalysisWindow { get: } : clsAnalysisWindow
sy prpCapturer { get; } @ clsCapturer
e preFriboduleCompiler { get; } : frmModuleCompiler
ey preHealthMonitor { get; } @ clsHealthMenitor
' prpSettings { get: | : clsSettings
= Methods
2" Main(string([] args) : void

Figure A.1: Program - The main class containing the main () method.

Program (Figure [A) is the default class where the main () method

resides. This class contains the following properties:

- prpAnalysisWindow: this property contains the instance of c1sAnalysisWindow

(see [AT1.6);

- prpCapturer: this property contains the instance of clsCapturer

(see A15);

59

60 A. Class Model

- prpFrmModuleCompiler: this property contains the instance of the
[GUI| form that contains the instance of c1sModules (see [A.T.4);
- prpHealthMonitor: this property contains the instance of c1sHealthMonitor

(see |A1.7);

- prpSettings: this property contains the instance of clsSettings

(see [ET2)

In a no error execution, the main () method goes through the following

steps:

1. read and parse command-Lline settings;

N

check current settings;
- if current settings are not valid or incompatible, show frmSettings(see[A.1.3);

compile user modules;

start user modules;

start AnalysisWindow thread;
start HelathMonitor thread;
start Capturer thread;

start capturing and analysis process;

© o N o O W

wait for user input, or wait for stopping conditions to be reached, if

set;
- when there is any user input, request Capturer thread to stop;

10. gracefully terminate application

A1.2 clsSettings

The class clsSettings (Figure [A2) is responsible for holding all of
NetOdyssey's settings. The description of these settings is also available

if NetOdyssey is started with —h command-line flag.

The available settings and their command-line flags are as follows:

- AnalysisWindowSize —aws=n: the size in packets or statistics of the

AWS;,
- AnalysisWindowTime —awt=t: the number of seconds of the AWT}

A.1. Base classes of NetOdyssey

- AutoStartCapture —asc: automatically start capture if all settings are
valid (will show compile results window anyway);

- BitCountPerTimeUnit ~bctu=t: the number of milliseconds between
BCTU| readings;

- CaptureDevice —d=d: the zero-based index of the device to capture
on; use flag —1d to list available devices;

- CaptureMode: an internal property to facilitate the differentiation
between packet capturing and gathering of statistics;

- DumpCapture —dump: a flag to dump the capture to an offline file,
allowing for posterior processing and further analysis; dumping the
capture is not available in statistics gathering mode;

- HealthMonitorinterval —hmi=t: the number of milliseconds between
health monitor reports;

- IsStopScheduled: an internal property set to true when there is any
kind of capture stop scheduled (time or packet count);

- ListDevices —1d: a flag signaling whether devices will be listed or
not;

- ModulesFolder —-modulesFolder=string: the path for the folder
from where user modules will be compiled;

- Packets_StatisticsToCapture —c=n: the amount of packets or statis-
tics (depending on capture mode) to capture before automatically
stopping the analysis;

- PrintHelp -h: a flag signaling whether help will be printed or not;

- prpArguments: an internal list of parsed command-line arguments;

- prpDevices: an internal list of PcapDevices;

- prpDumpFile: an internal string containing the default path for the
dump file;

- RealTimePriority —~rtp: a flag indicating that NetOdyssey should try
to raise it's priority to real-time;

- ReportsFolder ~reportsFolder=string: the path for the folder
to where user modules’ reports will be written;

- SecondsToCapture —t=t: number of seconds to capture, before auto-
matically stopping the analysis;

- ShowCompileWindow -nsc: a flag signaling whether or not to show

62

A. Class Model

the compile results window;

- TepDumpkFilter ~filter=string: a string written with the syntax
of tcpdump to filter the captured packets;

- Verbose —v: a flag signaling whether NetOdyssey will produce ver-

bose output.
clsSettings also provides the following methods:

- checkSettings (): a method that checks all settings for invalid or
incompatible configurations;

- createReportsFolder (): a method that verifies the existence of
the given report folder and creates it, if possible;

- dumpSettings (): a method that will output the current settings to

the reports folder, for future reference.

A1.3 frmSettings

frmSettings (Figure [A3) is shown either when the current settings are
invalid or incompatible (ex. if both [AWS| and [AWT] are set) or if the
flag AutoStartCapture (see is not set. The default settings include
AutoStartCapture set to false, thus frmSettings is shown if NetOdyssey

is run with not command-line options.

A.1.4 clsModules

The abstract class clsModules (Figure provides the method
compileModules () which is responsible for looking for «.cs and % .vb
files inside inSourceDirectory and compile them. Once compiled,
these modules can be accessed through the public field prpModules. The
type of this public field is List of NetOdysseyModuleBase (see [A.2).

This class is utilized by the main () method inside Program class.

In general guidelines, the process of compiling a NetOdyssey user module

written in C# is as follows:

A.1. Base classes of NetOdyssey

63

The

Create an array _ra of Strings with the necessary refer-

ence assemblies, ie.: {"System.dll", "SharpPcap.dll",

"NetOdysseyModule.dll", "PacketDotNet.dl1l"}

Instantiate an object _cscp of type

Microsoft.CSharp.CSharpCodeProvider;

Instantiate an object _cp of type

System.CodeDom.Compiler.CompilerParameters, passing

_ra as argument,

Instantiate an object _cr of type

System.CodeDom.Compiler.CompilerResults from

CSharpCodeProvider.CompileAssemblyFromFile (),

passing _cp and the full path to the file to be compiled as arguments;
* Collection _cr.Errors contains all compile errors and warn-

ings;

Instantiate an object _a of type System.Reflection.Assembly

from _cr.CompiledAssembly;

For each object _t of type System.Type from _a.GetTypes ():
*If _t.IsClass and

_t.IsSubclassOf (typeof (NetOdysseyModuleBase)):

* Instantiate an object _module of
type NetOdysseyModuleBase by casting
System.Activator.CreatelInstance (_t) to

NetOdysseyModuleBase;

compiled user module, of type NetOdysseyModuleBase is now

accessible through _module. clsModules places all instances of user

modules inside the list prpModules.

A1.5 clsCapturer

When clsCapturer (Figure[AD) is instantiated, it receives a PcapDevice

(an object that represents a winPcap device). This PcapDevice may be

a Live device or an Offline device.

This class implements the interface THealthReporter (see[AT.9), mean-

ing it is able to report it's status through the method HealthReport ().

64

A. Class Model

In this health report, clsCapturer outputs the following informations,
according to their applicability: total captured packets/gathered statis-
tics, total packets/statistics to be captured and adapter statistics, such as

dropped packets.

When the method Start () is called, a new thread of the method Work ()
is launched. If the capture has a temporal limit, a new thread of the method
WorkthrCapturerStop () is launched. This last thread sleeps for the
amount of time of the capture temporal limit, and when this time has elapsed

this thread stops the Work () thread.

When working with[BCTU|statistics, these informations are processed asyn-
chronously, because it is the Pcap driver who provides NetOdyssey with
this data. Thus, the method prpLiveDevice_OnPcapStatistics ()
is called every time a [BCTU] reading is available.

The method Work () works in the following manner:

- if capturing packets: prepare the capture device, applying filters and
preparing dump files, if applicable. Then, in an endless loop (termi-
nated by main () or by reaching stopping conditions):

* Capture a packet;

* Parse the packet (convert it from a PacketDotNet.RawPacket to
a PacketDotNet.Packet);

* Enqueue this packet in the analysis window;

* If applicable, dump the packet;

- if gathering [BCTU statistics: prepare the capture device, setting it's
capture mode to Statistics and then setting the statistics callback
method to prpLiveDevice_OnPcapStatistics (). The device
is then requested to start the capture and this thread terminates,
because the capture will run in a thread inside winPcap (this is why

we need to utilize the callback method).

When stopping conditions are met (user input, packets captured or statistics
gathered reach count limit or defined time has elapsed, whichever comes
first), a null element is enqueued in the analysis window queue, signaling

it to stop.

A.1. Base classes of NetOdyssey

65

A.1.6 clsAnalysisWindow

The class clsAnalysisWindow (Figure [A.6) is responsible for queuing
either network packets or network statistics and send each of these items

to all modules.

When the method Start () is called, a new thread of the method Work ()
is launched. IfMis being used, a new thread of the method AWTWork ()
is launched. This thread runs in an infinite loop, sleeping for =t
seconds, and when it awakes, it requests all modules to report their analysis
and clears the current analysis window. (See subsection [3.3] for better

understanding of the [AWT] analysis mechanism).

clsAnalysisWindow has an input queue, because clsCapturer
(see [A15) does not contain any queuing mechanism. This input queue
helps minimize the loss of network packets/statistics due to delays in
handling and processing this data. The method Enqueue () (there are
two signatures according to whether NetOdyssey is capturing packets or
[BCTY statistics) is called by clsCapturer and simply enqueues the
information in the aforementioned input queue. A semaphore is also used

to notify the Work () thread that there is new information available.

The method Work () works in the following manner, inside an endless loop

(terminated when a null element is found in the input queue):

- Read information i from input queue;

*If i is null, this means that a stopping order has been given,
so request all user modules to finish their analysis and terminate the
current thread;

* Else, place i inside the analysisWindow queue, requesting
all user modules to analyze i;

*If analysisWindow has reached the maximum [AWS]| = n size
then:

Request all user modules to report their current analysis;
Remove information t from the tail of the analysisWindow
queue (dequeue);

Request all modules to remove t from their analysis;

A. Class Model

A.1.7 clsHealthMonitor

The class clsHealthMonitor (Figure is responsible for request-
ing current status (health) from classes that implement the interface
IHealthReporter (see [AT9). This class receives the instances of the
objects to monitor through the method addModule () and maintains a
thread (method Work ()) that sleeps in an endless loop for a parameterized
time (see refclsSettings, parameter HealthMonitorinterval). Every time this
thread wakes up, it requests all modules to report their status (health) and

prints the outputs to stdout.

This class is very useful to determine if any user module is having pro-
cessing the inputs slower than expected and to know if packets are being

dropped.

A.1.8 clsMessages

The abstract class clsMessages (Figure [A8) contains the methods for
printing messages to the stdout. This class exists in order to facilitate the

future internationalization of NetOdyssey.

A.1.9 IHealthReporter

IHealthReporter (Figure [A9) is the interface that all classes which
support reporting their current status (health) must implement. This inter-
face is easy to implement, since it only mandates the implementation of the
HealthReport () method, which returns a string. It is up to each class

that impleme

A.2 Base classes of the user modules of NetOdyssey

A.21 NetOdysseyModuleBase

NetOdysseyModuleBase (Figure [A10) is the base class for every user

module, thus providing all basic functionalities, such as threaded running

A.2. Base classes of the user modules of NetOdyssey 67

and task queuing. NetOdysseyModuleBase has an internal queue of
NetOdysseyModuleBaseTask (see [A2.2), so each module may run at

it's own pace.

All user modules are compiled by clsModules (see |A.1.4) and are in-
stantiated in c1sModules.prpModules list. The following methods are
virtual, meaning they can be overridden by a later re-implementation of

those methods:

- void AnalyzeBCTUIn (ulong BCTU, int WindowSize);

- void AnalyzeBCTUOut (ulong BCTU, int WindowSize);

- void AnalyzePacketIn (ulong BCTU, int WindowSize);
- void AnalyzePacketOut (ulong BCTU, int WindowSize);
- void Clear();

- void ModuleStart ();

- void ModuleEnd();

- void ReportAnalysis();

When writing an analysis module, one should implement these methods with
the override keyword, in order to override the default implementations.
These default implementations simply print a warning message saying these

methods were not re-implemented.

A.2.2 NetOdysseyModuleBaseTask

NetOdysseyModuleBase.Task (Figure [AT1) is a class that provides
a mechanism to store the arguments and actions that need to be queued.
This class has several instantiation methods, which are called according to

the action NetOdyssey wishes to enqueue.

A.2.3 NetOdysseyModuleBaseModuleTask

NetOdysseyModuleBase.ModuleTask (Figure|A.12) is an enumerator
with the possible actions to enqueue with NetOdysseyModuleBase.Task

(see [A2.2). This enum exists in order to facilitate the object-oriented

68

A. Class Model

approach, instead of utilizing a not strongly typed mechanism, such as

strings or integers to identify these actions.

A.2.4 INetOdysseyBCTUAnalyzerModule

INetOdysseyBCTUAnalyzerModule (Flgure is the interface that
must be implemented when programming a user module that will ana-
lyze BCTU observations. The main difference between this interface and
INetOdysseyPacketAnalyzerModule (see is the name and
input type of the Analyzeln and AnalyzeOut methods.

A.2.5 INetOdysseyPacketAnalyzerModule

INetOdysseyPacketAnalyzerModule (Figure [AT4) is the interface
that must be implemented when programming a user module that will
analyze packet observations. The main difference between this interface
and INetOdysseyBCTUAnalyzerModule (see is the name and
input type of the Analyzeln and AnalyzeOut methods.

A.2. Base classes of the user modules of NetOdyssey

69

Ep roperties

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

=

=

LR S

AnalysisWindowSize { get; set; } @ uint
AnalysisWindowTime { get; set; } i uint
AutoStartCapture { get; set; } : bool
BitCountPerTimelnit { get; set; } @ uint
CaptureDevice { get; set; } : PcapDevice
CaptureMode { get; } : CaptureMode
DumpCapture { get: set: }: bool
HealthMenitorlnterval { get; set; }: uint
IsStopScheduled { get; }: bool
ListDevices { get: set: } : bool
ModulesFolder { get; set } @ string
Packets_StatisticsToCapture { get; set; } 1 uint
PrintHelp { get: set; } : bool
prefrguments { get; } : clsArguments
prpDevices { get; }: LivePcapDevicelist
preDumpFile { get; } : string
RealTimePriority { get; set; } : bool
ReportsFolder { get; set }: string
SecondsToCapture { get; set; } : uint
ShowCompileWindow { get: set: } ! beol
TepDumpFilter { get; set; }: string
Verbose { get; set; } : bool

ethods

checkSettings() : veid
clsSettings(clsArguments inArguments)
createReportsFolder() : void

dumpSettings(uint inCapturedPackets_Statistics, TimeSpan inCaptureDuration) @ veid

Figure A.2: clsSettings - The class responsible for holding all NetOdyssey's settings.

70

A. Class Model

* Device |'I} Atheros L1C PCI-E Bthemet Controller

(" Capture file |

tepdump filter |

Modules folder |C:\

Reports folder |E:\

B Analysis Window Setfings
Analysis\WindowSize
Analysis\WindowTime
BitCountPerTimellnit

B Capture Settings
DumpCapture
Packsts_Statistics ToCapture
Seconds ToCapture
Global Sethings
Real TimePriority
ShowCompileWwindow
“erbose

E Health monitor
HealthManitorinterval

AnalysisWindowSize
Size in packets'statistics of the sliding analysis window.

...

| cisModules (&) !
Abstract Class

= Fields
¥ prpModules ; List<NetOdysseyModuleBase>
= Methods

% compileMedules(DirectoryInfo inScurceDirectery) @ bool

Figure A.4: clsModules - The class responsible for compiling % .cs and *.vb files.

A.2. Base classes of the user modules of NetOdyssey 71

o [Disposable

IHealthReporter
| csCapturer @ |
Class
T
= Properties

ey prpCapturedPackets_Statistics { get; } @ uint
ey prpCaptureDuration { get; }: TimeSpan
ey prplsCapturelive { get; } : bool

ey prpLiveDevice { get; } : LivePcapDevice

ey prpCfflineDevice { get; } : OfflinePcapDevice

= Methods
W clsCapturer{PcapDevice inCaptureDevice)
% Dispose{) : void
% HealthReport() : string
" prpliveDevice_OnPcapStatistics(chject sender, StatisticsMedeEventfrgs &) @ void
W Start{clsAnalysisWindow inAnalysisWindow, clsHealthMeniter inHealthMoeniter) @ veid
% Stop() : veid

2" Work() : void
2" WorkthrCapturerStop() : void

Figure A5: clsCapturer - The class responsible for capturing network packets or statistics,

according to the analysis mode.

) IDisposable
W IHealthReporter

| clsAnalysisWindow @ |
Class

= Methods

AWTWork() : void
clsAnalysisWindow()

Dispose() : void
Enqueue(Packet inPacket) : void
Engqueue(uleng inBCTU) : veid
HealthReport() : string

Start() : void

Stop() : void

Work() : void

{{{{{{{b{

[
£

Figure A.6: clsAnalysisWindow - The class responsible for queuing values in a windowed

manner, and sending them to user modules.

72 A. Class Model

f clsHealthM onitor
Class

|

= Methods

addMecdule{lHealthReporter inModule) : void
clzHealthMeonitor(int inHealthMonitorInterval)
Start() : void

Stop() : void

2% Work() : void

o € O 4

Figure A.7: clsHealthMonitor - The class responsible for requesting the current status of

NetOdyssey's threads, from time to time.

clsMessages 3N
Abpstract Class !

= Properties
ﬁ preVerbose { get; }: bool
= Methods

PrintAllDone() : void
PrintAnalyzerThreadStepped() @ void
Print&nalyzerThreadStepping() : veid
PrintCapturerThreadStopped() : void
PrintCapturerThreadStepping() : veid
PrintCompilerMessage(string inMessage) : void
PrintDevices() : void

PrintEnd() : void

PrintErroristring inError) @ void
PrintHealthThreadStopped() @ void
PrintHealthThreadStopping() : void
PrintHelp() : veoid
PrintInvalidDevicefrguments() : void
PrintPresskKeyToStop() © void
PrintRaisingPricrity() : void

PrintSettings() : void
ShowhessageBox(string inMessage) : void

C OO OO OO OO OO OO OO0 A

Figure A.8: cl1sMessages - The abstract class responsible for printing NetOdyssey's outputs
to stdout.

A.2. Base classes of the user modules of NetOdyssey 73

¥¥|

| IHealthRe porter
Interface

= Methods
9 HealthReport() : string

Figure A.9: THealthReporter - The interface that must be implemented by classes who

are able to report their current status (health).

74 A. Class Model

IMetCdysseyPacketAnalyzerfModule
INetCdysseyBCTUARalyzerMedule

[Disposable
[HealthReporter
| NetOdysseyModuleBase @)
Class
r
= Properties

) prefeduleMame | get; set }: string
ey prpReportFolder { get; set; } : string
=l Methods

AddTask(Task inTask) : void

AnalyzeBCTUIn[uleng BCTU, int WindowSize) : void
AnalyzeBCTUCUt(uleng BCTU, int WindowSize) : void
AnalyzePacketln(Packet Packet, int WindowSize) @ void
AnalyzePacketOut({Packet Packet, int WindowSize) : void
BCTUIn{uleng BCTU, int WindowSize) : void
BCTUCutuleng BCTU, int WindowSize) : void

Clear() : void

ClearPackets() : void

Dispose() : void

HealthReport() @ string

ModuleEnd() : string

ModuleReport() : void

ModuleStart() : string

MetCdysseyloduleBase()

Packetin(Packet Packet, int Window5ize) ; void
PacketCOut(Packet Packet, int Window5ize) : void
Report() : void

Reporthnalysis() : string

Start() : void

StartModule() : void

TerminateModulel) : woid

TerminateThread() : void
Waork() : void

45

% 66 6 66 L EEEEOE 66O & ¢

."- -
\

Figure A.10: NetOdysseyModuleBase - The class responsible for providing all the basic

methods for a user module.

A.2. Base classes of the user modules of NetOdyssey 75

[Task B
Class
r
= properties

= preBCTU { get; } : ulong
oy prpPacket { get; } : Packet
ﬂ prpTask { get; }: ModuleTask
ey preWindowsSize { get; }: int
= Methods
Task(ModuleTask inTask)
Task(ModuleTask inTask, Packet inPacket)
Task(ModuleTask inTask, Packet inPacket, int inWindowSize)
Task(ModuleTask inTask, ulong inBCTU)
Task(MeoduleTask inTask, ulong inBCTU, int inWindowSize)

o o O 4 4

Figure A.11: NetOdysseyModuleBaseTask - The class that holds a NetOdyssey module
task.

ModuleTask E3
Erumi

AddPacket
AddBCTU
RemowvePacket
RemowveBCTU
Clear

Report

Start

Finizh

Figure A.12: NetOdysseyModuleBaseModuleTask - The enum that represents the type
of possibleNetOdysseyModuleBaseTasks.

76 A. Class Model

| INetOdysseyBCTUAnalyzerModule @) |
Interface

= Methods

AralyzeBCTUIR{wong BCTU, int WindowSize) : void
AnalyzeBCTUQut(wiong BCTU, int WindowSize) @ void
Clear() ! void

ModulsEnd() : string

MogduleStart() : string

RepartAnalysis() ! string

o OO0 A

Figure A13: INetOdysseyBCTUAnalyzerModule - The interface that must be imple-
mented by user modules that perform a @analgsls.

| INetOdysseyPacketAnalyzerModule @) |
Interface

= Methods

AnalyzePacketin(Packet Packel, int Windowsize) ! void
AnalyzePacket QutPacket Packet, int WindowSize) ! void
Clear() : void

Moduletnd() : string

ModuleStart() : string

ReportAnalysis() : string

OO0 T4

Figure A.14: INetOdysseyPacketAnalyzerModule - The interface that must be

implemented by user modules that perform a per-packet analysis.

Appendix B

Implemented Modules Source
Code

B.1 Average and Standard Deviation estimator

77

78 B. Implemented Modules Source Code
1 usi ng System
2 usi ng System Col | ecti ons. Generi c;
3 usi ng Net QdysseyMdul e;
4
5 nanmespace Aver ageAndSt dDev
6 {
7 cl ass Net OdysseyAvgSt dDevPacket shodul e :
8 Net GdysseyModul eBase, | Net OdysseyPacket Anal yzer Modul e {
9
10 int _packetLenght;
11 int _currentCount = O;
12 doubl e _sum = 0;
13 doubl e _sunX Squares = 0;
14 doubl e _average = 0;
15 doubl e _sigma =
16
17 public override string Mdul eStart ()
18 {
19 return "average; stdDev" + Environnment.NewlLine;
20 }
21
22 public override string Mdul eEnd()
23 {
24 return "";
25 }
26
27 public override void Anal yzePacket | n(Packet Dot Net . Packet Packet,
28 int WndowsSi ze) {
29 _packet Lenght = Packet . Byt esH ghPer f or mance. Lengt h;
30 _current Count ++;
31 _sum += _packet Lenght ;
32 _sumOf Squar es += _packet Lenght * _packet Lenght;
33 }
34
35 public override voi d Anal yzePacket Qut (Packet Dot Net . Packet Packet,
36 int WndowSi ze) {
37 _packet Lenght = Packet . Byt esHi ghPerf or mance. Lengt h;
38 _current Count - -;
39 _sum -= _packet Lenght ;
40 _sunOf Squares -= _packetLenght * _packet Lenght;
41 }
42
43 public override void dear() {
44 _current Count = 0;
45 _sum =
46 _sumOf Squares = 0;
47 }
48
49 public override string ReportAnalysis() {
50 if (_currentCount > 0)
51 _average = _sum/ _current Count;
52 el se
53 _average = 0,
54
55 if (_currentCount > 1)
56 _sigma = Math. Sgrt(
57 (_sumf Squares / _current Count) -
58 (_average * _average)

(¢)]
(o]

)

B.1. Average and Standard Deviation estimator

79

60
61
62
63
64
65

el se
_sigm = 0;

return _average + "

' + _sigma + Environnent. Newli ne;

80

B. Implemented Modules Source Code

B.2 Entropy estimator

B.2. Entropy estimator

81

© 00 NO Ul WN P~

o oo oodaddDDASDEBAEDBDEDDDDOWWWWWWWWWNNNDNNNMNNMNNONMNNRPRPRRPRREPERPERRER
© 00O NO U WNEOOWONOOUBAWNEPOOOONOUUBRANAWNEPOOONOUUPRAWNREOOOLONOOOOGDMAWDNEO

usi ng System;
usi ng System . Collections . Generic ;
usi ng NetOdysseyModule

nanespace EntropyOnTheFly

{

class

NetAnalyzerEntropyPacketsModule
NetOdysseyModuleBase , INetOdysseyPacketAnalyzerModule {

int PacketLength ;

double _ws;
double _entropy = 0;
Dictionary <int , int > _occurences = new Dictionary <int , int >();

public override string ModuleStart ()

{
return “entropy” + Environment . NewLine ;
}
public override string ModuleEnd ()
{
return " ;
}

public override void AnalyzePacketin (PacketDotNet . Packet Packet
int WindowSize) {
PacketLength = Packet . BytesHighPerformance . Length ;
_ws = (double)WindowsSize ;
| ock (_occurences)
{
i f (_occurences . ContainsKey (PacketLength)) {
/I If this packet size already exists,
/I remove its previous weight and add
/I the new one to the entropy
_entropy -= (_occurences [PacketLength] / _ws) *
Math. Log(_ws / _occurences [PacketLength 1]);
_occurences [PacketLength] ++;
_entropy += (_occurences [PacketLength] / _ws) *
Math. Log(_ws / _occurences [PacketLength 1);
}
el se {
/I'If this packet size didn't exist already,
/l add it to the entropy
_occurences . Add(PacketLength , 1);
_entropy += (1 / _ws) * Math.Log(_ws);

public override void AnalyzePacketOut (PacketDotNet . Packet Packet
int WindowSize) {
PacketLength = Packet . BytesHighPerformance . Length ;
_ws = (double) WindowSize ;
| ock (_occurences)
{
i f (_occurences [PacketLength] == 1) {
/I'If this is the last occurence of this packet siz e,
/I remove it from the entropy

82 B. Implemented Modules Source Code
60 _occurences . Remove(PacketLength) ;
61 _entropy -= (1 / _ws) * Math.Log(_ws);
62 }
63 el se {
64 /1 If this packet size still exists in the window,
65 /I update its value
66 _entropy -= (_occurences [PacketLength] / _ws) *
67 Math. Log(_ws / _occurences [PacketLength 1);
68 _occurences [PacketLength]--;
69 _entropy += (_occurences [PacketLength] / _ws) *
70 Math. Log(_ws / _occurences [PacketLength 1);
71 }
72 }
73 }
74
75 public override void Clear () {
76 _entropy = 0;
77 | ock (_occurences)
78 _occurences . Clear ();
79 }
80
81 public override string ReportAnalysis () {
82 return _entropy + " + Environment . NewLine;
83 }
84

85

B.3. Auto-correlation estimator

83

B.3 Auto-correlation estimator

B. Implemented Modules Source Code

© 00 NO Ul WN P~

O o oo oooadhBDDAMDAEBAEDBDEDMNDDIDMNDNWOWWWWWWWWWWNNNNNNMNMNMNNONMNNRERPRRPRPRREPRERPERPREREER
© 0O ~NOOU P WNPOOWO~NOUDMA,WNPOOONOORARWNPOOONOOGORMWNPEPOOOONODOGPMMWNEO

usi ng System
usi ng System Col | ecti ons. Generi c;
usi ng Net QdysseyMdul e;

nanespace AutoCorrel ations
{
cl ass Net GdysseyACFPacket sMbdul e :
Net GdysseyModul eBase, | Net GdysseyPacket Anal yzer Modul e

int _Kcount; // check nethod Mdul eStart for K generation
List<int> _Ks = new List<int>();

Li st <Queue<i nt>> _awPackets = new Li st <Queue<i nt>>();

Li st <Queue<i nt >> _Xi Packets = new Li st <Queue<i nt>>();

Li st <Queue<i nt >> _next KPackets = new Li st <Queue<int>>();
Li st<Li st<int>> _Xi kPackets = new List<List<int>>();

Li st <Queue<i nt>> _Xi Xi kProducts = new Li st <Queue<i nt>>();

int _packet Lenght
int _current Count
int _K=0;

0;
0;

Li st<int> _XSum = new List<int>();

List<int> _Xi Sum = new List<int>();

List<int> _Xi Xi kSum = new List<int>();

Li st<int> _Xi Xi kProduct sSum = new Li st<int>();
Li st<int> _Xi kSum = new List<int>();

Li st<int> _Xi Xi kProduct = new List<int>();

Li st<i nt> _XSquareSum = new List<int>();
List<int> _aux = new List<int>();

L
L
L
L

st <doubl e> _XMean = new Li st <doubl e>();
st <doubl e> _EX2 = new Li st <doubl e>();
st <doubl e> _Var X = new Li st <doubl e>();
st <doubl e> _ac = new Li st <doubl e>();

bool _errFlag = fal se;
string _report;

public override string Mdul eStart ()
{
string _Kstring = "";
Il K=2, 4,8, 16, 32, 64, 128, 256, 512, 1024
for (_LK = 2; _K<=2000; _K=*=2)
{
_Ks. Add(_K);
_Kstring += K+ " ";
}
/'l Renmpve | ast conma from _KString
_Kstring = _Kstring. Renove(_Kstring. Length-1);
_Kcount = _Ks. Count;

/1 Initialize all vectors

for (_K = 0; _K < _Kcount; _K++)

{
_awPacket s. Add(new Queue<int>());
_Xi Packet s. Add(new Queue<int>());
_next KPacket s. Add(new Queue<i nt>());
_Xi kPackets. Add(new List<int>());

B.3. Auto-correlation estimator

85

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

}

Consol e. WitelLine("Auto-correlation

return ""

_Xi Xi kProducts. Add(new Queue<i nt>());

_XSu

m Add(0);

_Xi Sum Add(0);
_Xi Xi kSum Add(0);
_Xi Xi kProduct sSum Add(0);

Xik

Sum Add(0);

_Xi Xi kProduct . Add(0);

_Xsq

_aux

_Xve
_EX2
_Var
_ac.

uar eSum Add(0) ;
. Add(0);

an. Add(0);
. Add(0);
X. Add(0);
Add(0);

_Ks=[{0}] (total
_Kstring , _Kcount);

1

public override string Mdul eEnd()

{

return "

1

public override void Anal yzePacket | n(Packet Dot Net . Packet

int WndowSi ze)

_current Count ++;

if (_Ks[_Kcount - 1] >= W ndowSi ze)

{

}

_err
retu

Flag = true;
rn;

_packet Lenght = Packet . Byt esHi ghPerf or mance. Lengt h;

for

{

(_K

= 0; _K < _Kcount; _K++)

_awPacket s[_K] . Enqueue(_packet Lenght);

_XSu

n{ _K] += _packet Lenght;

:{1}) started",

Packet ,

_XSquar eSuni _K] += _packetLenght * _packetLenght;

ifo(
{

}
ifo(
{

_current Count <= WndowSi ze - _Ks[_K])

_Xi Packet s[_K] . Enqueue(_packet Lenght) ;
_Xi Sunf{ _K] += _packet Lenght;

_next KPacket s[_K] . Enqueue(_packet Lenght) ;
_current Count > _Ks[_K])

_Xi kPacket s[_K] . Add(_packet Lenght) ;
_Xi kSuni{ _K] += _packet Lenght;

_Xi Xi kProduct[_K] = _awPacket s[_K]. Dequeue()
_Xi Xi kProductsSuni _K] += _Xi Xi kProduct[_K];

* _packet Lenght;

B. Implemented Modules Source Code

119 _Xi Xi kProducts[_K]. Enqueue(_Xi Xi kProduct[_K]);
120 }

121 }

122 }

123

124 public override voi d Anal yzePacket Cut (Packet Dot Net . Packet Packet,
125 int WndowSi ze)
126 {

127 _packet Lenght = Packet . Byt esH ghPer f or mance. Lengt h;
128 _current Count - -;

129

130 if (_errFlag) return;

131

132 /1 Assuming that the whole analysis wi ndowis full
133 /1 (this is the expected behavior)

134

135 for (_LK =0; _K < _Kcount; _K++)

136 {

137 _XSun{ _K] -= _packetLenght;

138 _XSquareSuni _K] -= _packetLenght * _packetLenght;
139

140 _aux[_K] = _Xi Packets[_K]. Dequeue();

141 _Xisunf_K] -= _aux[_K];

142

143 _aux[_K] = _next KPacket s[_K] . Dequeue();

144 _Xi Packet s[_K] . Enqueue(_aux[_K]);

145 _Xisuni _K] += _aux[_K];

146

147 _aux[_K] = _Xi kPackets[_K][0];

148 _Xiksunf _K] -= _aux[_K];

149 _Xi Xi kProductsSun{ _K] -= _Xi Xi kProducts[_K] . Dequeue(); ;
150 _Xi kPacket s[_K] . RenoveAt (0);

151 }

152 }

153

154 public override void dear()

155 {

156 _current Count = 0;

157 _XSum O ear ();

158 _XSquar eSum C ear () ;

159

160 _Xi Sum Cl ear ();

161 _Xi Xi kSum Cl ear ();

162 _Xi Xi kProductsSum Cl ear();

163 _XikSum Cl ear ();

164 _Xi Xi kProduct.d ear();

165

166 _awPackets = new Li st <Queue<i nt >>(_Kcount);

167 _Xi Packets = new Li st <Queue<i nt >>(_Kcount);

168 _Xi kPackets = new Li st <Li st <i nt >>(_Kcount);

169 _Xi Xi kProducts = new Li st <Queue<i nt>>(_Kcount);
170

171 _errFlag = fal se;

172 }

173

174 public override string ReportAnal ysis()

175 {

176 if (_errFlag)

177 return "!there are Ks greater than analysis w ndow, " +

B.3. Auto-correlation estimator

178 Envi ronment . NewLi ne;

179 _report ="";

180 for (_LK =0; _K < _Kcount; _K++)

181 {

182 if (_currentCount > 0)

183 _XMean[_K] = (double)(_XSun{_K]) / _currentCount;
184 el se

185 _XMean[_K] = 0;

186

187 _ac[_K] = (

188 _Xi Xi kProductsSun{ _K] -

189 (_Xwmean[_K] * _XiSun{_K]) -
190 (_Xwean[_K] * _XikSun{_K]) +
191 (_currentCount - (_Ks[_K])) *
192 (_XMean[_K] * _XMean[_K])
193) 1 (

194 _XSquar eSun{ _K] -

195 _current Count *

196 (_XMmean[_K] * _XMean[_K])
197)

198

199 _report += "ACF(K=" + (_Ks[_K]) + ")=" +
200 _ac[_K] + ";" + Environnment. NewLi ne;
201 }

202 return _report + ";;" + Environment. NewLine;
203 }

204 }

205 '}

88

B. Implemented Modules Source Code

B.4 Hurst parameter estimator

B.4. Hurst parameter estimator 89

© 00 NO Ul WN P~

O o oo oooadhBDDAMDAEBAEDBDEDMNDDIDMNDNWOWWWWWWWWWWNNNNNNMNMNMNNONMNNRERPRRPRPRREPRERPERPREREER
© 0O ~NOOU P WNPOOWO~NOUDMA,WNPOOONOORARWNPOOONOOGORMWNPEPOOOONODOGPMMWNEO

usi ng System
usi ng System Col | ecti ons. Generi c;
usi ng Net QdysseyMdul e;

nanmespace Hur st Par anet er
{
cl ass Net GdysseyHur st Packet shMbdul e :
Net GdysseyModul eBase, | Net GdysseyPacket Anal yzer Modul e

int _Kcount; // check nethod Mdul eStart for K generation
List<int> _Ks = new List<int>();

Li st <Queue<i nt>> _awPackets = new Li st <Queue<i nt>>();

Li st <Queue<i nt >> _Xi Packets = new Li st <Queue<i nt>>();

Li st <Queue<i nt >> _next KPackets = new Li st <Queue<int>>();
Li st<Li st<int>> _Xi kPackets = new List<List<int>>();

Li st <Queue<i nt>> _Xi Xi kProducts = new Li st <Queue<i nt>>();

int _packet Lenght
int _current Count
int _K=0;

0;
0;

/'l Hurst paraneter variables
doubl e _sl ope;

doubl e _hurst;

doubl e _dYMean;

doubl e _dXMmean;

doubl e _dAggXX;

doubl e _dAggXy;

doubl e _I| 0g2Kk;

Li st<int> _XSum = new List<int>();

Li st<int> _Xi Sum = new List<int>();

List<int> _Xi Xi kSum = new List<int>();

Li st<int> _Xi Xi kProduct sSum = new List<int>();
Li st<int> _Xi kSum = new List<int>();

Li st<int> _Xi Xi kProduct = new List<int>();

Li st <i nt > _XSquareSum = new Li st<int>();

Li st<int> _aux = new List<int>();

L

st <doubl e> _XMean = new Li st <doubl e>();

Li st <doubl e> _EX2 = new Li st <doubl e>();
Li st <doubl e> _Var X = new Li st <doubl e>();
Li st <doubl e> _ac = new Li st <doubl e>();

bool _errFlag = fal se;
string _report;

public override string Mdul eStart ()
{

string _Kstring = ;
/1 K=2,4,8,16, 32, 64, 128
for (K=2; K<=200; K?*=2)
{
_Ks. Add(_K);
_Kstring += _K + " ";
}
/'l Renpbve | ast comma from _KString
_Kstring = _Kstring. Renobve(_Kstring.Length-1);

90 B. Implemented Modules Source Code
60 _Kcount = _Ks. Count;
61
62 /1 Initialize all vectors
63 for (_LK = 0; _K < _Kcount; _K++)
64 {
65 _awPacket s. Add(new Queue<i nt>());
66 _Xi Packet s. Add(new Queue<i nt>());
67 _next KPacket s. Add(new Queue<i nt>());
68 _Xi kPacket s. Add(new List<int>());
69 _Xi Xi kProducts. Add(new Queue<int>());
70
71 _XSum Add(0);
72 _Xi Sum Add(0);
73 _Xi Xi kSum Add(0);
74 _Xi Xi kProduct sSum Add(0);
75 _Xi kSum Add(0);
76 _Xi Xi kProduct . Add(0);
77 _XSquar eSum Add(0) ;
78 _aux. Add(0);
79
80 _XMean. Add(0);
81 _EX2. Add(0);
82 _Var X. Add(0) ;
83 _ac. Add(0);
84 }
85 Consol e. WitelLine("Hurst _Ks=[{0}] (total:{1}) started",
86 _Kstring , _Kcount);
87 return "";
88 }
89
90 public override string Mdul eEnd()
91 {
92 return ""
93 }
94
95 public override voi d Anal yzePacket | n(Packet Dot Net . Packet Packet,
96 int WndowSi ze)
97 {
98 _current Count ++;
99
100 if (_Ks[_Kcount - 1] >= W ndowSi ze)
101 {
102 _errFlag = true;
103 return;
104 }
105
106 _packet Lenght = Packet . Byt esH ghPer f or mance. Lengt h;
107 for (_LK = 0; _K < _Kcount; _K++)
108 {
109 _awPacket s[_K] . Enqueue(_packet Lenght) ;
110 _XSun{ _K] += _packet Lenght;
111 _XSquareSuni _K] += _packetLenght * _packetLenght;
112 if (_currentCount <= WndowSize - _Ks[_K])
113 {
114 _Xi Packet s[_K] . Enqueue(_packet Lenght) ;
115 _Xi Sun{ _K] += _packet Lenght;
116 }
117 el se
118 {

B.4. Hurst parameter estimator

119 _next KPacket s[_K] . Enqueue(_packet Lenght);
120 }

121 if (_currentCount > _Ks[_K])

122 {

123 _Xi kPacket s[_K] . Add(_packet Lenght) ;

124 _XikSun{ _K] += _packet Lenght;

125

126 _Xi Xi kProduct[_K] = _awPackets[_K].Dequeue() * _packetLenght;
127 _Xi Xi kProductsSuni _K] += _Xi Xi kProduct[_K];
128 _Xi Xi kProducts[_K]. Enqueue(_Xi Xi kProduct[_K]);
129 }

130 }

131 }

132

133 public override void Anal yzePacket Qut (Packet Dot Net . Packet Packet,
134 int WndowSi ze)
135 {

136 _packet Lenght = Packet . Byt esHi ghPerf or mance. Lengt h;
137 _current Count - -;

138

139 if (_errFlag) return;

140

141 /1 W assune that the whole analysis windowis full
142 /1 (this is the expected behavior)

143

144 for (_K =0; _K < _Kcount; _K++)

145 {

146 _XSun{ _K] -= _packetLenght;

147 _XSquareSuni _K] -= _packetLenght * _packetLenght;
148

149 _aux[_K] = _Xi Packet s[_K] . Dequeue();

150 _Xisunf_K] -= _aux[_K];

151

152 _aux[_K] = _next KPacket s[_K] . Dequeue();

153 _Xi Packet s[_K] . Enqueue(_aux[_K]);

154 _Xisunf _K] += _aux[_K];

155

156 _aux[_K] = _Xi kPackets[_K][0];

157 _XikSun| _K] -= _aux[_K];

158 _Xi Xi kProductsSunf _K] -= _Xi Xi kProduct s[_K] . Dequeue(); ;
159 _Xi kPacket s[_K] . RenbveAt (0);

160 }

161 }

162

163 public override void Cear()

164 {

165 _current Count = 0;

166 _XSum Clear ();

167 _XSquar eSum Cl ear () ;

168

169 _Xi Sum d ear();

170 _Xi Xi kSum O ear () ;

171 _Xi Xi kProductsSum Cl ear ();

172 _XikSum Cl ear();

173 _Xi Xi kProduct . d ear();

174

175 _awPackets = new Li st <Queue<i nt>>(_Kcount);

176 _Xi Packets = new Li st <Queue<i nt>>(_Kcount);

177 _Xi kPackets = new Li st <Li st <i nt>>(_Kcount);

B. Implemented Modules Source Code

178 _Xi Xi kProducts = new Li st <Queue<i nt >>(_Kcount);

179

180 _errFlag = fal se;

181 }

182

183 public override string ReportAnalysis()

184 {

185 if (_errFlag) {

186 return "!there are Ks greater than anal ysis w ndow, " +
187 Envi ronment . NewLi ne;

188 }

189 _report "y

190 _dYMean
191 _dXMean
192 _dAggXX
193 _dAggXyY
194

195 for (_K
196 {

197

198 if (_currentCount > 0)

199 _XMean[_K] = (double)(_XSun{_K]) / _currentCount;
200 el se

201 _XMean[_K] = 0;

202

203 _ac[_Kl = (

204 _Xi Xi kProduct sSun{ _K] -

205 (_XMean[_K] * _XiSuni_K]) -

206 (_Xwmean[_K] * _XikSun]_K]) +

207 (_currentCount - (_Ks[_K])) *

208 (_Xwean[_K] * _XMean[_K])

209) 1 (

210 _XSquar eSuni _K] -

211 _current Count *

212 (_XMean[_K] * _XMean[_K])

213)

214

215 _log2K = Mat h. Log(_Ks[_K], 2);

216

217 if (_Kcount > 1)

218 {

219 _dYMean += _ac[_K] / (double) _Kcount;

220 _dXMean += _|l0g2K / (double) _Kcount;

221 _dAggXX += _lo0g2K * _| og2K;

222 _dAggXY += _log2K * _ac[_K];

223

224 _slope = (

225 _dAggXxy -

226 (doubl e) _Kcount *

227 _dXMean *

228 _dYMean

229) 1 (

230 _dAggXX -

231 (doubl e) _Kcount *

232 _dXMean *

233 _dXMean

234)

235 }

236

CLe2

I
=2

_K < _Kcount; _K++)

B.4. Hurst parameter estimator

93

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

_report += "l o0g2(K=" + (_Ks[_K]) + ")=" +
_log2K + "; " +

"log2(A(K=" + (_Ks[_K]) + "))="

_ac[K+t o+
Envi ronnent . NewLi ne;

if (_Kcount > 1) {
_hurst = (_slope + 1) [2.0;

_report += " _slope=" + _slope +"; " +
" hurst=" + _hurst + ";" +
Envi ronment . Newli ne;
}
return _report + ";;;" + Environnent.NewLine;

94

B. Implemented Modules Source Code

	Acknowledgments
	Abstract
	Keywords
	Contents
	List of Figures
	Acronyms and Abbreviations
	Introduction
	Focus and Scope
	Problem Definition and Objectives
	Main Contributions
	Organization of the Dissertation

	State of the Art and Critical Review of Tools for Network Monitoring and Analysis
	Introduction
	Network Capturing and Analysis Tools
	Wireshark
	Analyzer 3.0 (alpha)
	ntop
	CoMo - Continuous Monitoring
	The NetBee Library

	Overview of Network Information Protocols
	SNMPv3
	Cisco NetFlow
	IPFIX

	Overview of Plotting Tools
	Microsoft Excel and OpenOffice Calc
	RRDtool
	gnuplot

	Conclusion

	The NetOdyssey Framework
	Introduction
	Tools for Development of NetOdyssey
	Microsoft .NET Framework 3.5
	Mono Framework
	winPcap
	SharpPcap

	The Calculation Philosophy of NetOdyssey
	The Architecture of NetOdyssey
	A modular approach
	An example module
	Conclusion

	Results and Validation
	Validation of NetOdyssey
	Random capture generator
	Implemented modules
	Entropy Estimator
	Validation of Entropy Estimator
	Auto-correlation Estimator
	Validation of Auto-correlation Estimator
	Hurst Exponent by Autocorrelation Function Estimator

	Conclusions

	Conclusions and Future Work
	Main Conclusions
	Directions for Future Work

	References
	Class Model
	Base classes of NetOdyssey
	Program
	clsSettings
	frmSettings
	clsModules
	clsCapturer
	clsAnalysisWindow
	clsHealthMonitor
	clsMessages
	IHealthReporter

	Base classes of the user modules of NetOdyssey
	NetOdysseyModuleBase
	NetOdysseyModuleBaseTask
	NetOdysseyModuleBaseModuleTask
	INetOdysseyBCTUAnalyzerModule
	INetOdysseyPacketAnalyzerModule

	Implemented Modules Source Code
	Average and Standard Deviation estimator
	Entropy estimator
	Auto-correlation estimator
	Hurst parameter estimator

