
Towards a Formally Verified
Microkernel using the VCC Verifier

Joaquim José e Silva de Carvalho Tojal

Submitted to University of Beira Interior in candidature for the degree of

Master in Computer Science

Supervised by Simão Melo de Sousa

Co-supervised by José Miguel Faria

Department of Computer Science

University of Beira Interior

Covilhã, Portugal

http://www.di.ubi.pt

Acknowledgements

I would like to express my deep thank to all those who in one way or another, contributed

to the achievement of this work, in particular:

To my supervisor, Professor Simão Melo de Sousa, for scientific guidance and support that

has always had, without which the achievement of this work would not be possible.

To my co-supervisor, José Miguel Faria, for the availability, interest, guidance and friend-

ship that has always had and that was very important to the success of this work.

To André Passos by the friendship and constant support.

To all my colleagues in Critical Software who helped me with xLuna.

To Critical Software for giving me the opportunity to develop this thesis in a company

like that, which was a very enriching experience.

To my girlfriend, Rita, for the patience and care she had for me throughout this period,

for the help, support and constant encouragement.

To my parents, Marilia and Adriano, and my brother, Ricardo, for their trust and care that

always gave me and for all the support, because without it would never have gotten where I

am.

For all of you: Thanks!

iii

iv

Abstract

In this thesis we present the design by contract modular approach to formal verification

of an industrial real-time microkernel which was not designed with formal verification

in mind. The microkernel module targeted is a particular interrupt manager of xLuna

Real Time Operating System (RTOS) for embedded systems built by Critical Software

S.A. The annotations were verified automatically using the Microsoft Research Verified

C Compiler (VCC) tool to reason about concurrency and safety properties of xLuna kernel.

The specifications are based in Hoare-style pre- and post-conditions inlined with the real

code.

xLuna is a microkernel based on the RTEMS Real-Time Operating System. xLuna

extends RTEMS for run a GNU/Linux Operating System, providing a runtime multitasking

environment for real-time (RTEMS) and non-real-time (Linux) applications.

xLuna runs in a preemptable and concurrent environment. Therefore, we use VCC

for reasoning about concurrent executions and some functional and safety properties of

xLuna microkernel. VCC is an automated verifier for concurrent C programs that is being

developed by Microsoft Research, Redmond, USA and European Microsoft Innovation

Center (EMIC), Aachen, Germany. VCC is being built and used for operating system

verification which makes it suitable for our verification work.

Specifications were added to xLuna code following a modular approach to the veri-

fication of a specific microkernel module, namely the Interrupt Request (IRQ) module.

The Verified C Compiler (VCC) annotations added cover approximately 80% of the IRQ

manager C code (the remaining 20% of the code are relative to auxiliary functions outside

the scope of our verification work). All the annotations were automatically verified and

proven to be correct.

v

vi

Keywords

Concurrency, Critical Systems, Design By Contract, Embedded Systems, Formal Veri-

fication, Formal Methods, Microkernel, Real-Time, Operating System, Safety, Security,

Software Reliability, Verified C Compiler, xLuna.

vii

Contents

Acknowledgements iii

Abstract v

Keywords vii

Contents ix

List of Figures xiii

Acronyms xv

1 Introduction 1

1.1 Motivation . 1

1.2 Context . 2

1.3 Work Definition and Objectives . 3

1.4 Contribution . 3

1.5 Outline . 4

2 VCC: Verified C Compiler 5

2.1 Verification Toolchain . 6

2.2 VCC Annotations . 6

2.3 Ownership, Type Invariants . 7

2.4 Ghost Code . 8

2.5 VCC clauses . 9

ix

2.6 Summary . 10

3 xLuna Real-Time Operating System 11

3.1 Memory manager . 13

3.2 Interrupt Manager . 14

3.3 Inter-System Communication . 14

3.3.1 Communication on RTEMS side 15

3.3.2 Communication on Linux side . 16

3.4 System call example . 17

3.5 Summary . 18

4 Operating System Verification: Related Work 19

4.1 Early Projects . 19

4.2 Recent Projects . 21

4.3 Verisoft/VerisoftXT Project . 27

4.4 Summary . 30

5 IRQ Manager Formal Verification 31

5.1 Verification Target . 31

5.2 IRQ Design . 32

5.3 VCC Verification Approach . 33

5.3.1 Queue types and invariants . 34

5.3.2 VCC ghost types, invariants and initialization 35

5.3.3 Verification of lock init() function 35

5.3.4 Verification of irq init() function 36

5.3.5 Verification of irq monitor entry() function 38

5.3.6 Verification of event queue is not empty() function 40

5.3.7 Verification of event queue has sync event() function 41

5.3.8 Verification of irq handle event() function 41

5.4 Concurrency Verification . 42

5.4.1 Lock approach . 43

x

5.4.2 Verification of irq insert() function 44

5.4.3 Verification of sparc disable interrupts() function 45

5.4.4 Verification of sparc enable interrupts() function 47

5.4.5 Verification of event queue insert sync() function 48

5.4.6 Verification of event queue insert async() function 49

5.4.7 Verification of event queue pop() function 51

5.5 Summary . 53

6 Conclusions 55

6.1 Results . 55

6.2 VCC . 56

6.3 Future Work . 56

A Other IRQ Verified Functions 61

A.0.1 Verification of irq set interrupt on off() function 61

A.0.2 Verification of irq build linux regs from isf() function 62

A.0.3 Verification of irq build linux new isf() function 63

Appendices 61

References 67

xi

xii

List of Figures

2.1 VCC Workflow . 5

2.2 VCC wrap/unwrap protocol . 7

2.3 VCC type transformation . 9

3.1 xLuna architecture . 12

3.2 xLuna approach . 12

3.3 xLuna memory access rights . 13

3.4 xLuna inter-systems communication . 16

3.5 Write system call . 17

5.1 Interrupt request manager . 32

5.2 VCC event queue ownership . 33

5.3 Call Graph for irq init() function . 34

5.4 Call Graph for irq insert() function . 43

xiii

Acronyms

API Application Programming Interface

CC Common Criteria

CPU Central Processing Unit

CVM Communicating Virtual Machines

DFKI Germen Research Center for Artificial Intelligence

DSU Data Secure Unix

EAL Evaluation Assurance Level

EMIC European Microsoft Innovation Center

ESA European Space Agency

HDM Hierarchical Development Methodology

HRT Hard Real Time

IDE Integrated Development Environment

IEC International Electrotechnical Commissions

IPC Inter-Process Communication

IRQ Interrupt Request

ISC Inter-Systems Communication

JML Java Modeling Language

xv

xvi ACRONYMS

KIT Kernel for Isolated Tasks

KSOS Ford Aerospace Kernelized Secure Operating System

LOC Lines of Code

MASK Mathematically Analyzed Separation Kernel

MILS Multiple Independent Levels of Security

MMU Memory Management Unit

MSc Master of Science

NASA National Aeronautics and Space Administration

NICTA Australia’s ICT Research Center of Excellence

NRT Non-Real-Time

NSA National Security Agency

OS Operating System

PSOS Provably Secure Operating System

PVS Prototype Verification System

RAMS Reliability, Availability, Maintainability and Safety

RTEMS Real-Time Executive for Multiprocessor Systems

RTOS Real Time Operating System

seL4 Secure Embedded L4

SKPP Separation Kernel Protection Profile

SPECIAL Specification and Assertion Language

SIPs Software-Isolated Processes

SRI Stanford Research Institute

SRMMU SPARC Reference Memory Management Unit

xvii

SOS Simple Operating System

TAME Timed Automata Modeling Environment

TLS Top Level Specification

UCLA University of California at Los Angeles

USA United States of America

VCC Verified C Compiler

VFiasco Verified Fiasco

xLuna eXtending free/open-source reaL-time execUtive for oN-board space Applications

Chapter 1

Introduction

The subject of this thesis is the formal verification of operating systems using automated

and mathematical-based tools to prove software correctness. This work is integrated in the

context of the Master of Science (MSc) course in computation an intelligent systems. This

chapter introduces the main aspects related to this work.

1.1 Motivation

Almost every computer system depends directly on the operating system behavior. Having

kernel code that is proved to be correct is a goal that researchers and industrial company’s

have attempted to achieve. Large amounts of low-level implementations like operating

system core are obviously a perfect and challenging target for formal verification.

Nowadays, formal software verification or development is seen as the best way to achieve

a greater quality in software systems. Mainly in critical systems, software reliability for

safety and security is a crucial requirement. For instance DO-178B [1] standard for avionics

industry, demands extensive validation, careful test cases design, requirement engineering

and coverage analysis. Indeed, The International Electrotechnical Commissions (IEC) stan-

dard IEC 61508 (SIL 4) [2] and DO-178B (Design Assurance Level A and B), recommend

the use of formal methods. However, an even more demanding standards for security

evaluation is the Common Criteria (CC) Evaluation Assurance Level (EAL) framework [3].

CC EAL security evaluation provides seven assurance levels (EAL-1 to EAL-7). The last

three levels require the use of formal methods in the development process.

1

2 CHAPTER 1. INTRODUCTION

• EAL 1,2,3 and 4. For this 4 levels its not required the use of formal methods in

software requirements, functional specification, system high-level design, low-level

design and implementation. CC EAL-4/5 have been compared with DO-178B.

• For EAL-5 formal methods shall be applied in requirements phase and semi-formal

methods for functional specification and system high-level design.

• EAL-6 is EAL-5 plus semi-formal verification for low-level design.

• Finally the last, and more demanding standard, EAL-7 requires the use of formal

methods in software requirements, functional specification, system high-level design

and also semi-formal verification for low-level design.

One can see that none of these levels requires a formal implementation. A fully verified

system is one that uses formal methods at all levels. Therefore modular verification of

each function at the code level could be considered an efficient way prove implementation

correctness since for CC assurance framework, functions are interpreted as black boxes.

In our approach, annotations are inlined within function implementation to prove that the

specification meets the implementation.

The specifications follow the design− by− contract [4] paradigm based in Hoare logic

[5] with pre- and post-conditions. Basically, each function has pre-condition and a post-

condition that can be viewed as a contract between the same function and its caller. The

source code is then confronted with that contract. This type of formalism is most of the times

closely connected to the implementation language used. For C code we have Frama-C [6]

and VCC [7] (the tool used in this thesis), for Java we have Java Modeling Language (JML)

[8], for C# we have Spec# [9] and for Ada we have Ada/Spark [10] are some examples of

tools that provide support for software verification.

1.2 Context

This work is inserted in a partnership between Critical Software,SA.[11] and the University

of Beira Interior. The knowledge transfer process between these two entities was important

during the development of this work. Our verification target is the Critical’s xLuna Real-

Time microkernel for embedded systems. Particularly, a special xLuna interrupt request

manager was chosen for verification.

1.3. WORK DEFINITION AND OBJECTIVES 3

As verification tool we chose the Microsoft’s VCC. VCC has been built mainly for

operating systems verification with particular support for reasoning about concurrent envi-

ronments which fits perfectly on the verification target. VCC was already been used for this

purpose in real industrial system as xLuna. Namely, in Microsoft Hypervisor and PikeOS

microkernel.

1.3 Work Definition and Objectives

This Work was divided in four main steps. (i) First it was necessary to be aware of all the

related work that had already been done or still in development. After that (ii) a careful study

of the verification tool, verification methodology and xLuna microkernel was made. Then,

we had to (iii) connect the verification tool environment to the source code by performing

appropriate code isolations to maintain a manageable scope. Finally (iv) the specifications

were added to xLuna code following a modular approach to the verification of a specific

microkernel module (IRQ).

Now we list the main objectives of this work:

• Use and explore the VCC tool to perform an appropriate application.

• Complete verification of xLuna IRQ module C code.

• Achieve a basis for a possible certification.

1.4 Contribution

Formal verification of xLuna IRQ module was performed on two parallel paths using two

different tools. This work is one of these paths. The results of the two approaches have

been submitted to publication with an article [12] showing, in a comparative sense, the two

experiences.

Beyond publication for the related scientific community and the know-how acquired

within Critical Software, verify a realistic and industrial system like xLuna brings a major

value to the product and for the company taking into account a future certification.

4 CHAPTER 1. INTRODUCTION

1.5 Outline

The remaining of this document is organized as follows:

• Chapter 2 presents an overview on VCC tools and verification methodology.

• Chapter 3 describes the xLuna architecture and some particular design aspects.

• Chapter 4 describes the related work in operating system verification.

• Chapter 5 exposes the detail design of xLuna IRQ manager and the verification work

for each function.

• Chapter 6 presents the verification results and future improvements.

Chapter 2

VCC: Verified C Compiler

VCC is a fully automated verification tool for concurrent C that is being developed by

Microsoft Research, Redmond, United States of America (USA) and EMIC, Aachen, Ger-

many [7]. VCC utilizes annotations based in Hoare-style pre- and post-conditions closely

attached to source code. That is, the annotations are mixed into the codebase rather than

within blocks of commented (for the C compiler) specifications. Even so, the annotated C

code can still be compiled with any C compiler through conditional compilation: If a regular

C compiler is called, a special VCC flag is disabled and the annotations and specification

code are preprocessed and transformed into empty strings. The concept of complete code

with annotations is the same used in JML [8] for Java code or SPEC# [9] for C# programs.

VCC performs a static modular analysis, which scales for verification of bigger systems

like an operating systems. One function can thus be verified in isolation without knowing

its use or possible callers [7].

Figure 2.1: VCC Workflow

5

6 CHAPTER 2. VCC: VERIFIED C COMPILER

2.1 Verification Toolchain

VCC is fully integrated with the well known Microsoft Visual Studio Integrated Develop-

ment Environment (IDE), providing a familiar environment to programmers and making

the correct use of the VCC tool-chain very simple. One of the advantages of having an

integration with familiar tools allow developers to verify programs while implementing.

Three main steps are made by VCC when trying to verify an annotated C program:

• (i) VCC translates annotated C code into BoogiePL (an intermediated verification

language), asserting for instance, type-safe memory access, arithmetic overflows, etc.

• (ii) Boogie translates BoogiePL into first-order predicate formulas, which are a num-

ber of mathematical statements more often called as verification conditions.

• (iii) Z3 tries to solve them and if it finds a proof then the program is correct according

to the specifications. If Z3 can not find a proof it generates a counter-example with

a sequence of program states and variable assignments that can be viewed using

the VCC model viewer. However, memory or time resources are limited and the

prover may fail without a counter-example. For this case VCC provides the Z3

visualizer which show what the prover was trying to do when run out of resources

[13]. Figure 2.1 shows the verification flow for using VCC.

2.2 VCC Annotations

As in standard design by contract approach to partial correctness, the pre- and post-conditions

inserted into a C function constitute a contract between the function and a function caller,

guaranteeing that if the function starts in a state that satisfies the precondition then the

postcondition holds at the end of the function.

To express and reason about specifications, VCC uses clauses such requires to specify in

which condition the function can be called, ensures clause to specify in which condition the

function is allowed to return, result function to reasoning about the function return value

or writes representing the frame conditions which limit what the function is authorized to

modify. VCC also supports loop invariants for reasoning about loop behavior.

2.3. OWNERSHIP, TYPE INVARIANTS 7

2.3 Ownership, Type Invariants

VCC memory model [14] ensures that objects (pointers to structures) do not overlap in

memory, keeping a typed and hierarchical view of all objects (Spec# ownership model).

For instance, one may need to specify all the locations written by a function (e.g. fields of

an object). This breaks data encapsulation and thus, VCC implicitly lets the object own its

representation and writing the object allows writing its whole ownership domain. However,

updating an object requires a special wrap/unwrap protocol to transfer ownership domains

[15]. Figure 2.2 object transitions during this protocol.

Figure 2.2: VCC wrap/unwrap protocol

Stating an hierarchical structure (in specification code) gives VCC a tree view of the system.

One object can only have one owner and threads own themselves. One can see in Figure 2.2

that a specific ownership domain ideally it should be open or close inside of the thread

domain and close outside the thread domain. In a sequential fashion an object can only be

updated when it is mutable and must return to an safe state performing some operations

required by the wrap/unwrap protocol. The explanation of these states is given bellow.

• Mutable

– After creation the object is open and owned by me() which represents the current

thread.

8 CHAPTER 2. VCC: VERIFIED C COMPILER

– At this state the thread is allowed to modify the object and prevents other threads

interference.

• Wrapped

– Wrapping the object (wrap) requires its invariant to hold.

– The reverse transition (unwrap) assume object invariants.

• Nested

– Closed objects can be added to (or removed from) another objects ownership

via set owns(), set closed owner() (wrap owner) or giveup closed owner()

(unwrap owner) operations.

– The reverse transition (unwrap) assume object invariants.

Structures can be also annotated with type invariants related to its ownership behavior or

to its own fields. This can be useful to state safe object transitions in concurrent context.

Moreover, VCC implicitly applies an object transformation to each object adding implicit

invariants that are checked during this protocol.

2.4 Ghost Code

This ownership machinery is applied as a ghost transformation behind every structure in

the program. Each type has a related ownership control object in specification code (ghost

code), only visible to VCC and providing a bridge between implicit specification code and

VCC annotations in the real program. This is a crucial concept in verification methodology.

Figure 2.3 shows the transformation applied to each structure.

This support for communication between programmer and verifier is an hidden (Ghost

state) verification mechanism and cannot modify non-ghost state. In transformation seen

in Figure 2.3 type T have its own fields F . VCC implicit adds ghost fields, ownership

control objects (not transformed) and invariants (see [16]). This ghost code is the code

inside the green rectangles in Figure 2.3.

Ghost code can also exist as explicit specification functions, objects or variables only

seen by VCC for verification purposes (surrounded with spec() clause).

2.5. VCC CLAUSES 9

Figure 2.3: VCC type transformation

2.5 VCC clauses

It is important to understand other key annotation function given by VCC and also used in

this work. A list of those annotations are given bellow.

• keeps(). Used mostly in ownership invariants to state fixed ownership sets. For

instance, an structure with the invariant invariant(keeps(&objectA,&objectB) will

always own just this two objects. It is also used when dealing with array objects.

• spec() or speconly(). For specification variables and specification code respectively

(invisible to the compiler).

• set owns(A,B). Updates the owner set of A adding B. This statement will only be

asserted when wrapping A.

• set owner(B,A). Union of the old owns set of A and the object B.

• thread local(A). A points to an object that belongs to the current thread.

• maintains(). pre and postcondition with the same predicate (as a function invariant).

• always(A, closed(B)). Maintains A wrapped and A has a implicit invariant which

implies closed(B).

• atomic(objs). VCC requires updates to volatile fields of closed objects to be within

atomic block. VCC checks the invariants of each object in objs over this action,

10 CHAPTER 2. VCC: VERIFIED C COMPILER

and that are all closed. Defines the safe transition of the objects when updating their

volatile fields.

2.6 Summary

This chapter presented an overview of the VCC verification methodology and tools. VCC

has been built to target low-level C code in a concurrent environment. Therefore, suitable

for our verification target. The next chapter shows the xLuna real-time operating system

architecture.

Chapter 3

xLuna Real-Time Operating System

Most of the space missions software is based on a RTOS solution. Although, some recent

space applications require a more high level support and standard development environment

such as Linux operating system. Recent space applications with new autonomy require-

ments, mapping or navigation demand less low-level services like file system or a rich set

of libraries that can be reused. However most of this features are not supported by some

RTOS solutions. Therefore when such applications are needed, they are built in a known

environment with support for high level services, tested in prototypes or flight models and

then, ported to an RTOS qualified for space missions. This process requires a lot of time

and undesirable effort which could be reduced using an hybrid solution.

eXtending free/open-source reaL-time execUtive for oN-board space Applications (xLuna)

[17] is a microkernel based on the Real-Time Executive for Multiprocessor Systems (RTEMS)

[18] Real-Time Operating System already qualified for on-board software. xLuna extends

RTEMS with the ability to run a GNU/Linux Operating System [19], providing therefore a

runtime environment for real-time (RTEMS) and non-real-time (Linux) applications. xLuna

was designed to supports European Space Agency (ESA)’s LEON SPARC processor [17]

with the main goal of extending the RTEMS kernel in order to enable a safely Linux

execution without jeopardizing aspects of reliability, availability, maintainability and safety

(RAMS) and at the same time providing a rich chain of compiler, debuggers, and utilities

that require a lower learning curve to create applications, integrate existent components and

reuse components across different missions. Its general architecture is shown in Figure 3.1.

11

12 CHAPTER 3. XLUNA REAL-TIME OPERATING SYSTEM

Figure 3.1: xLuna architecture

The Linux subsystem runs as an unprivileged RTEMS task and in a different memory

partition. This provides spacial partitioning, guaranteeing a safe isolation between the Non-

Real-Time (NRT) and Hard Real Time (HRT) subsystems. Figure 3.2 shows an example of

the xLuna approach to running tasks in a secure environment. Another advantage of this

architecture with two isolated subsystems is that components with less criticality level can

be easily developed and added reducing time-to-market and budget. However, Linux system

was designed to run with direct access to the underlying layer, and thus, violating security

requirements of the whole architecture. Therefore, all Linux direct hardware accesses were

eliminated and transformed in communication events caught by xLuna.

Figure 3.2: xLuna approach

The RTEMS core system was not modified, instead, were developed several xLuna man-

agers to support the Linux integration in the overall architecture.

3.1. MEMORY MANAGER 13

• Sub-systems used in xLuna project:

– The Snapgear embedded Linux distribution, kernel version is 2.6.11.

– RTEMS version 4.6.6.

The following sections give a brief overview of the main modules provided by xLuna

microkernel.

3.1 Memory manager

Memory protection is ensured at the entry point of xLuna, during bootstrap1 process the

SPARC Reference Memory Management Unit (SRMMU) hardware is set to mapping virtual

and physical address for RTEMS and Linux kernel memory windows correctly. This initial

configuration enables enforcing isolation requirements between RTEMS and Linux and en-

sures RTEMS system protection if Linux behaves incorrectly or even if it crashes. Moreover,

the memory manager xLuna module also guarantees protection between Linux kernel em

Linux user processes and among Linux processes. Figure 3.3 shows xLuna system memory

privileges.

Figure 3.3: xLuna memory access rights

We can conclude from figure 3.3 that with this access rights configuration Linux processes

or Linux kernel can not access to RTEMS window and Linux window is marked as invalid

for Linux processes (protect Linux kernel from Linux processes).

1Boot sequence to load the main operating system.

14 CHAPTER 3. XLUNA REAL-TIME OPERATING SYSTEM

3.2 Interrupt Manager

The IRQ module main goal is connect hardware interrupts/traps to the Linux kernel (which

does not have access to them) and provides the services (system calls) to Linux kernel, serv-

ing as a para-virtualization2 Application Programming Interface (API). The IRQ manager

is mainly responsible for:

• Intercept hardware interrupts required by Linux subsystem and redirect them for the

corresponding RTEMS handles.

• Intercept all traps (Linux system calls requested by Linux processes or xLuna system

calls performed by the Linux kernel) and call the respective handlers, which can be a

service from IRQ manager or other xLuna manager.

• Enable/disable interrupts virtualization for Linux kernel.

However, this methodology brings some issues when dealing with real-time and non-real-

time executions. When interrupt/trap handling is working the RTEMS HRT dispatching is

disabled which could affect the overall system functionality, therefore, xLuna makes sure

that the time spent during this process is minimum and quantifiable for the worst case.

One can conclude form this brief description that the IRQ module is one of the most

critical components of the entire xLuna system. The correct pipelining and treatment of

interrupts/traps is crucial not only for Linux subsystem, but for the entire system behav-

ior. For instance, in order to achieve communication between NRT and HRT tasks, the

Inter-Systems Communication (ISC) manager uses the IRQ manager. Therefore, an IRQ

malfunction may compromise both subsystems. Due to all this important factors, the xLuna

IRQ manager was considered a suitable target for formal verification.

3.3 Inter-System Communication

The main goal of having an inter system communication in xLuna kernel is to provide

support to Linux and RTEMS tasks communicate between them, and so, a RTEMS task

(HRT) can write a message that can be read by a Linux task (NRT) and the opposite.

Such communication is performed making use RTEMS message queues located in the
2Software layer similar to the underlying hardware and visible to user process request.

3.3. INTER-SYSTEM COMMUNICATION 15

RTEMS memory space. Since the shared resources are in the RTEMS side, communication

is implemented directly using message queues.

On the Linux side, a kernel device driver is provided for inter-systems communication. It

uses system calls to access the xLuna kernel services, which will call the RTEMS message

queue directives. All this process is detailed in Figure 3.4 and explained in the following

sections.

For the overall ISC functionality xLuna uses some resources provided by the RTEMS

API. Those resources are listed bellow.

• RTEMS resources used in ISC Module:

– 1 fixed size write memory buffer (rtems to lx)

– 1 fixed size read memory buffer(lx to rtems)

– 2 counting semaphores (n empty linux and n empty rtems) for write buffer con-

trol

– 2 counting semaphores (n full linux and n full rtems) for read buffer control.

These resources are used in the communication flow of the two subsystems. The information

flow and the system calls associated with the ISC manager show the importance of the IRQ

module. The ISC flow and ISC IRQ usage is described bellow.

3.3.1 Communication on RTEMS side

The following item describe the communication flow when a HRT needs to write/read data

to/from a NRT (see dotted flow in figure 3.4).

• Write HRT→ NRT. To write data to the memory buffer rtems to lx, the HRT needs

to use the ISC API to call the xluna send to linux() function, which will perform the

requested action in 3 main steps:

– Obtain N EMPTY semaphore to check how many slots are available

– Write on the message queue

– Add an IRQ to signal Linux N FULL semaphore. This is an example of the

aforementioned IRQ usage (see 3.2).

16 CHAPTER 3. XLUNA REAL-TIME OPERATING SYSTEM

• Read HRT← NRT. To read data from the memory buffer lx to rtems, the HRT needs

to call the API function xluna receive from linux(). The body of this function is also

divided in 3 main steps:

– Obtain N FULL semaphore

– Read the data from the message queue

– Add and interrupt request to the IRQ queue trough the IRQ manager. This

request will increment the N EMPTY semaphore (on Linux side), assuring that

the data has been read.

Figure 3.4: xLuna inter-systems communication

3.3.2 Communication on Linux side

The following item describe the communication flow when a NRT needs to write/read data

to/from a HRT (see solid flow in Figure 3.4). To provide communication between the NRT

and the ISC manager in RTEMS space a virtual device must be used (isc driver.c). The ISC

device, on time of initialization, creates the two global semaphores n empty and n full.

• Write NRT→ HRT

3.4. SYSTEM CALL EXAMPLE 17

– Decrement N EMPTY semaphore (Linux side)

– Issue the system call to write the message and increment the N FULL semaphore(see 3.4).

• Read NRT← HRT

– Decrement the N FULL (Linux side).

– Issue a system call to RTEMS for reading the data from the memory buffer and

for incrementing the N EMPTY semaphore (RTEMS side).

3.4 System call example

The ISC virtual device driver registers a virtual device in the Linux kernel and imports a

device node (/dev/isc) for user processes to access. Through this virtual device, a Linux

process can perform the usual file I/O operations. The actual read and write operations will

perform communication with the peer ISC client inside the RTEMS subsystem. This device

implements the functions needed to communicate with tasks in RTEMS space. Figure 3.5

shows a system call to write a message on RTEMS side.

Figure 3.5: Write system call

The implementation ensures that the N EMPTY semaphore on Linux side is decremented,

to mark that one write resource was used by an NRT. Then a request to use the shared

resources is made through a system call.

The trap dispatcher() will insert an event on the IRQ event queue (IRQ Manager), this

18 CHAPTER 3. XLUNA REAL-TIME OPERATING SYSTEM

action will wake up the irq monitor entry task which was suspended until now. This task

is responsible to treat the events inserted in the event queue. Each event will be dispatched

to their handles according to their types (in this case XLUNA SYSCALL ISC) by calling

the irq handle event() for each event on the IRQ event queue. This last function will send

our request to the irq xluna syscall dispatcher(), which finally will call the ISC Manager to

make the requested of write the message on buffer. This aforementioned IRQ flow is the

center target of the verification presented in this thesis.

3.5 Summary

This chapter presented an overview of xLuna architecture and its main modules. Some

important details to understand our approach to verify the IRQ manager were also described.

The next chapter shows the state of the art related to operating system verification.

Chapter 4

Operating System Verification: Related
Work

The interest in formally verifying realistic and industrial low-level code and obtaining the

highest standards of safety like, the Common Criteria EAL7 has grown significantly in

recent years. This chapter presents a general overview of the work that is being made using

formal methods in order to verify operating systems kernel.

The following sections are organized as follows:

• Section 4.1 and Section 4.2 give an overview on early and recent work related to

operating system verification, respectively. For a more detailed presentation it is

recommended the reading of Klein’s article [20], which gives an excellent overview

about work related to the subject.

• Section 4.3 explains how the successor of Verisoft Project—Verisoft XT project—is

using VCC tool to verify the Microsoft Hypervisor and PikeOS microkernel.

4.1 Early Projects

Proving software implementation correctness is a goal pursued for decades. The early work

on formal verification of operating systems comes from Stanford Research Institute (SRI)

international [21] in 1973-1980 with the Provably Secure Operating System (PSOS).
Neumann and Feiertag [22] gave a retrospective analysis of PSOS design—earlier docu-

19

20 CHAPTER 4. OPERATING SYSTEM VERIFICATION: RELATED WORK

ments in [23, 24].

PSOS goal was the construction of an operating system with provable security properties

using an earlier example of hierarchical layered abstractions called Hierarchical Develop-

ment Methodology (HDM) [24] which define a decomposition of development process with

formal specifications defining each module and provides formal abstractions to module

intercommunications. PSOS formal specifications were made using specification and as-

sertion language (SPECIAL) [25].

Despite the original goal of reaching a fully formal verified operating system, PSOS

ended with only some simple proofs demonstrated—“some simple illustrative proofs were

carried out, it would be a incorrect to say that PSOS was a proven secure operating system

”[22]. The HDM methodology and PSOS work were later used on SRI Prototype Verifica-

tion System (PVS) [26] and Ford Aerospace Kernelized Secure Operating System (KSOS)

[27, 28].

University of California at Los Angeles (UCLA) Data Secure Unix (DSU) was developed

in the late seventies at the UCLA [29] and aimed to prove Operating System (OS) kernel

implementation through program verification methods. Its architecture was similar to the

modern microkernels providing threads, access control, virtual memory and input/output

devices making these implementations the main effort of the verification work.

DSU kernel security proofs were divided in two steps, at the beginning were made

bottom-up abstract specifications split in four levels [30], from Pascal kernel implemen-

tations, which had a clear formal semantics [31] and was considered to be suitable for low-

level software, to top-level security properties. The second step was to prove that each level

behavior was correct and consistent with each other.

The proofs were guided through XIVUS tool [32] based on first-order predicate calculus.

Authors of [30] state that more than 90% of Kernel specifications were made and 20% of the

code have been proven correct. Despite the verification proccess has shown some security

bugs in earlier phases of the project, the authors conclude that “the task is still too dificult

and expensive for general use ”[30, Sect. 4].

Kernel for Isolated Tasks (KIT) is probably the first OS that deserves to be called full

formally verified. Despite its size—620 assembly lines—the verification work has sub-

stantial meaning to the subject. As the name says, KIT addressed the problem of verifying

properties for process isolation in a multi-tasking environment providing process scheduling

4.2. RECENT PROJECTS 21

and allocation of Central Processing Unit (CPU) time, response to program error conditions,

massage passing between processes and I/O asynchronous devices [33, 34]. Nevertheless it

did not provide support for dynamic process creation, file system or shared memory which

is understandable considering its size.

KIT was not considered as a kernel for a general purpose operating system but more

for small special purpose systems, which was also a limitation. The verification was done

in the Boyer-Moore logic and conducted in the Boyer-Moore theorem prover [35], which

was the predecessor of the ACL2 theorem prover [36]. KIT refinement-based verification

methodology was actually very similar to UCLA Secure Unix, with a bottom-up abstract

specification approach the state machine of the kernel running on hardware were the hard-

ware machine states with memory, registers, flags and program counter. The abstract kernel

in the middle defined the tasks scheduling and the communication primitives and the top-

level abstract operation specifications defined the communication transitions [33]. These

levels were interpreted as finite state machines and the correspondence proof, which is a

state mapping from concrete operation to abstract operations, showed that on a single CPU

the kernel implements the abstractions correctly.

KIT project proved task isolation, operating system protection from tasks, the inability

of task entering in supervisor mode. In the process were revealed some some bugs such as

naming incorrect registers or the bad restore of the task state after an I/O interrupt [34].

PSOS, DSU and KIT were pioneers in attempts to large scale software verifications and

inspired some techniques still used nowadays. Despite the important advances made in these

projects, formal verification of operating systems seemed at the time, too expensive, not

suitable to realistic large systems (as is the case of KIT) or slow and incomplete verification

work (like DSU and PSOS). Nevertheless the interest in operating systems verification

returned after a decade. The next section gives an overview on more recent related work.

4.2 Recent Projects

The Verified Fiasco (VFiasco) project started in 2001 at Dresden University of technology

[37] and aimed to formally verify C++ source code of the Fiasco kernel [38] which is an

re-implementation of the L4 microkernel [39] with approximately 15K lines of code.

Hohmuth and Tews gave in [40] a summary of the VFiasco project where they, among

other things, describe an experiment with the use of SPIN model checker [41] in an attempt

22 CHAPTER 4. OPERATING SYSTEM VERIFICATION: RELATED WORK

to verify a reduced version(only two threads, no timeouts, no message buffers, no interrupts

or page-faults) of Fiasco Inter-Process Communication (IPC).

The results from this work were not the most desirable due to the fact that SPIN exten-

sively checks the whole state space, leading to the problem of state space explosion—“the

model checker used almost 2 GB main memory and more than 15 GB on the hard disk. We

doubt that one can model check the full IPC path. ”[40, Sect. 2.3]. This approach was based

on the construction of a model of the IPC using the Promela language [42] which then could

be passed to SPIN model checker. A More detailed description can be found in [43].

Despite this experiment the project moved on with another approach and a subset of C++

was formalized using the PVS theorem prover [26], to reason about Fiasco implementations.

This approach of verifying C++ source code was continued in Robin Project on the Nova
Hypervisor [44] but neither VFiasco nor Robin could fully verify the kernel implementation.

A more recent work related to the verification of Fiasco IPC was made by Schierboom in

2007 also using the PVS theorem prover [45].

Model checking approaches for verifying kernel implementation are also common prac-

tice. One of those examples is the Fluke IPC subsystem [46] where the SPIN model checker

was used. Fluke IPC is the major and most complex component of the microkernel and it

is highly concurrent. The authors state that the use of model checking instead of theorem

provers implies a much lower learning curve. Yet, they also concluded that applying SPIN

to the whole kernel would not be a good decision. Again, the state space explosion problem

would not be desirable. Promela specification language and the SPIN model checker were

also used to model and verify the multitasking multiprocessor operating system RUBIS
[47]. In this work the IPC was also taken as a primary consideration. Once again a top-down

approach to verification was used, high level abstract models and more detailed models of

the RUBIS IPC were built. The more abstract levels were used to to prove properties like

the absence of deadlocks an then, entering with more detail in lower level models, some

aspects of the implementation and different IPC scenarios were taken under consideration

and verified with SPIN. The work was worth it because it were found some important

problems such as wrong return errors between tasks or not returning error messages at all.

In this last case the task could not know whether an error had occurred or not which could

lead to complete system failure. Another kernel which used SPIN as verification tool is the

HARMONY portable real-time multitasking multiprocessor operating system developed at

the Software Engineering Laboratory of the National Research Council of Canada. In [48]

the approach used for Kernel formalization is similar to the RUBIS project. Different levels

4.2. RECENT PROJECTS 23

of abstraction models were created in Promela and checked with SPIN. The paper shows

how IPC and task management were modeled and simulated with a significant number of

different scenarios of tasks using different combinations of kernel services.

Coyotos secure microkernel-based operating system is the continuation of its predecessor

EROS [49]. Coyotos is implemented in BitC [50], a language developed for the project

with a precise formal semantics in order to perform verification of low-level Coyotos im-

plementations. Starting from the fact that most of the kernel implementations were made

based in unsafe languages like C, C++, and assembly, the idea of a kernel implemented

in a safe language which facilitates the verification process was in fact appealing and the

objectives for verification with this approach cover functional proofs of address translations

and memory safety [51].

L4.Verified and Secure Embedded L4 (seL4). Klein et al [52] in 2005 argued about

how the significant advances in theorem proving tools, all experiences in real industrial

applications and at the same time, the increasingly choice for small but trusted OS kernels

have stimulated the use of formal methods and consequent increase of software security and

functionality. Due to this fact they decided to work on the verification of L4 microkernel.

L4 has suffered many re-implementations since its original version, among others [53,

54] in the aforementioned Fiasco project. The most recent work on L4 microkernel was

carried out by the Australia’s ICT Research Center of Excellence (NICTA)(NICTA) [55]

in seL4 and L4. Verified projects, two projects that evolved closely related to each other

with the primary objective of achieving an implementation correctness proof for seL4.

L4.Verified starts after a first small pilot project that ended in 2004 to study the feasibility

of a complete formal verification of the kernel, where basically there were three goals:

(i) formalization of the L4 API using B Method where they were discovered ambiguities

and inconsistencies in some places of the API implementation [52, Sect. 3], (ii) gaining

experience to full verification of a small part of actual kernel code and (iii) developing a

plan for full kernel verification.

After this pilot project the work on L4 verification continued on L4.Verified/seL4 projects

in 2005 with two teams constantly providing feedback to each other. seL4 was concluded

at the end of 2007 with a resulting small (8700 Lines of Code (LOC) C and 600 LOC

assembly) microkernel to run in ARM architecture [56] and providing threads, IPC, virtual

memory control, capabilities and interrupts control. The OS design team use Haskell [57]

24 CHAPTER 4. OPERATING SYSTEM VERIFICATION: RELATED WORK

for building fast prototyping together with hardware simulator to be tested with user appli-

cations. Because Haskell is so related with Isabelle/HOL [58] the prototype specifications

were translated to the theorem prover and served already as low-level formal designs useful

for further efforts on L4.Verified work. Above C implementation the L4.Verified team built

an model stack (similar to UCLA) that included the Isabelle/HOL output low/high-level

design and an access-control model as the top layer [59] [20, Sect. 4.7]. For reasoning

about the lowest layer with C and assembly implementation, the L4.Verified team had

to model some hardware details like Memory Management Unit (MMU), exceptions and

interrupts, then the next two design layers (low/high-level) contain the implementations of

all important data structures with low-level details and the user-visible kernel operations

respectively. The refinement proofs between abstract layers and executable specifications is

100K LOC of Isabelle proof.

In [60] Klein states, among other things, the microkernel verified functional correctness

properties such as: no buffer overflows, no null pointers access, well formed structures,

algorithmic invariants, etc. Among what they assumed to be correct, Klein shows the

success and complete verification efforts in the scope of the project.

There are other projects which, although dealing with less complex kernels or not directly

related with verification down to implementation level, made useful work related to the

subject.

The Flint project is one of these efforts, Xinyu et al. [61] describe a way to formalize

low-level code in an hardware interrupts and preemptive threads environment, which are

constantly used in critical systems. Using ownership transfer techniques they show how

disable/enable of interrupts in a concurrent setting can be formalized using a Hoare-logic

style framework for reason about interrupt handlers, context switch and synchronization

primitives.

The National Security Agency (NSA), Motorola and Kestrel Institute in 2000 designed

and built together the Mathematically Analyzed Separation Kernel (MASK) to apply in

Motorola cryptography smart card platform. The authors used Specware [62] to guarantee

separation properties through several refinement proofs down to a close implementation

level [63]. In the first phase of the project it were defined mathematical specifications for

separation properties and multiple abstract levels specifying how MASK should enforce the

separation specification. The last part of the project consisted in defining the data structures

and algorithms used in the kernel. The separation kernel low-level design was translated

4.2. RECENT PROJECTS 25

into C code and analyzed against the Specware models.

Separation kernels are also often used in high assurance systems. Rockwell Collins

and the U.S. Department of Defense presented in [64] a formal security policy for a sep-

aration kernel aimed for a Multiple Independent Levels of Security (MILS) architecture.

A security policy is an important requirement for Separation Kernel Protection Profile

(SKPP) [65] and is basically a formal specification of what is allowed in the system. The

properties proved were based on previous defined theorems about exfiltration, mediation

and infiltration [64, Sect. 3]. The authors use Common Lisp programming language to

describe the security policy and the ACL2 [36] for proving the theorems expressed and the

aforementioned security properties. The work also shows an example of a firewall which

relies on the separation kernel security policy. Rockwell Collins AAMP7 microprocessor

also implements in hardware the properties of a separation kernel [66] in order to achieve

Common Criteria EAL7 certification. The proof is achieved trough a high-level model that

implements partitioning and a low-level design of the implementation micro processor code.

The latter is translated manually and then executed in the ACL2 theorem prover.

Heitmeyer et al. [67, 68] at Washington Naval Research Laboratory [69] also provide

formal verification for an embedded device that uses a separation kernel to ensure data

separation but is unclear which device, kernel or Common Criteria evaluation level aimed.

However the authors mention a small kernel (3000 LOC C) and less complex than a general

purpose kernel. A Top Level Specification (TLS) was described in Timed Automata Mod-

eling Environment (TAME) [70] with the guarantee that it is in agreement with the data

separation security policy. As in Rockwell Collins approach, in order to have concordance

with the security policy the kernel must implement a set of properties such as no-exfiltration,

no-infiltration, temporal separation, separation of control and kernel integrity. The prove

that the TLS enforces data separation the authors use PVS prover [26]. By correspondence

proof between the TLS abstract states to Kernel concrete states and mapping assertion in

the abstract TLS to assertion in the concrete code using Hoare-style pre/post conditions, the

code conformance is demonstrated. The proof that the code was connect to the TLS was

made manually. Other verification approach using TAME was also used in EAL4 certified

SELinux [71].

The Singularity project at Microsoft Research started with the objective of designing a

software platform with the main goal of dependability and answer to the question: “what

would a software platform look like if it was designed from scratch with the primary goal

26 CHAPTER 4. OPERATING SYSTEM VERIFICATION: RELATED WORK

of dependability, instead of the more common goal of performance? ”[72, Sect. 1]. Hunt et

al. show the Singularity project in [72, 73]. Singularity uses the advances in programming

languages and tools to build new system architecture and a reliable operating system. The

three key features on the Singularity architecture are (i) Software-Isolated Processes (SIPs)

which can encapsulate an application or system providing failure isolation and strong inter-

faces, (ii) contract-based channels for fast and verifiable communication messages between

processes and (iii) manifest-based programs for defining behavior properties of the code

that runs on isolated processes. Approximately 90% of the system is written in Sing# [74]

and C++ and assembly language. Sing# is an Spec# based type-safe, garbage-collecting

programming language. Spec# [75] is an extension of the object-oriented language C#

which porvides Hoare-style pre/post-conditions and object invariants for specification of

program behaviour. Spec# static verifier uses Boogie [76] to generate logical verifcation

conditions throught the annotated code and an automatic theorem prover that try to prove

program correctness or find errors.

Some of the projects here spoken are research projects and despite the major contributions

made in operating system verification they do not have the desired impact on the market

or just were not built for this purpose. Nevertheless, there are some proprietary verified

operating systems which are available in the market and are used in commercial and military

planes, phones, cars, etc. One example of these systems is the Green Hills Integrity R©-178B
operating system [77]. Integrity is certified by the NSA-managed NIAP lab to EAL6+ High

Robustness making it one of the most secure operating system. In order to be in accordance

with the SKPP requirements and achieve such level of certification the kernel security

policies, specifications and correspondence between design and implementation had to be

formally proven, a complete test coverage of functional requirements and penetration tests

by the NSA. The brand new Boeing 787 or the military Lockheed Martin F-35 Lightning II

aircrafts are an example of Integrity kernel usage. Other commercial kernel under evaluation

for EAL6+ is the Wind River VxWorks MILS platform [78] which already reached the

SKPP requirements for medium robustness EAL4+. The BMW iDrive system and the Mars

Reconnaissance Orbiter National Aeronautics and Space Administration (NASA) multipur-

pose spacecraft are two separate examples using VxWorks as its base system.

The following section describes the work made in Verisoft and VerisoftXT project. We

give special attention to the VerisoftXT project due to the fact that it is tightly connected to

4.3. VERISOFT/VERISOFTXT PROJECT 27

the VCC development and usage.

4.3 Verisoft/VerisoftXT Project

Verisoft [79] and VerisoftXT [80] projects are an example of how years of research can be

placed in practice and used in real-world applications. The Verisoft project started in 2003

and it was scheduled to end in 2007 with the objective of providing a pervasive1 formal

verification of a complete operating system stack from hardware to user applications. From

bottom to top:

• Hardware

– The VAMP microprocessor in the lower-level gives a formal consistent founda-

tion for the upper levels [81, 82]. The PVS theorem prover was used to formally

verify the instruction set behavior.

• Kernel Mode

– On top of hardware level is the Communicating Virtual Machines (CVM)
defining the hardware dependent code of the kernel, such as device drivers

and memory paging mechanism, and the hardware independent interface [83].

This separation between hardware dependent and independent parts enabled the

isolation of assembly code which was positive for the verification work.

– The VAMOS layer defines the code running in kernel mode and together with

the CVM layer form the OS kernel [84]. The verification is not yet completed.

• User Mode

– The next layer implements the user-mode Simple Operating System (SOS)
[85]. It provides file based I/O, IPC, sockets and procedure calls interface for

applications. The verification work in this level was also incomplete.

– The last layer resides the user applications. In [86] is shown an example of a

formally verified email client.

1Do not rely on compiler correctness nor instruction set model and formally verify all these steps to form

a complete formal chain

28 CHAPTER 4. OPERATING SYSTEM VERIFICATION: RELATED WORK

The following text describe two projects within VerisoftXT, the (i) Subproject Avionics

where the objective is to prove functional correctness of the SYSGO PikeOS microkernel-

based partitioning hypervisor and the (ii) formal verification of the Microsoft Hyper-V

Hypervisor platform. The Verisoft successor began in 2007 as collaborative research project

between Germen Research Center for Artificial Intelligence (DFKI), Microsoft Research,EMIC

and Saarland University. It is scheduled to end in 2010.

Microsoft Hyper-V Hypervisor is a 100K LOC C and 5K LOC assembly software layer

that runs on x64 hardware and has the ability to turn a x64 multi-processor with virtualiza-

tion extensions2 into a number of virtual x64 multi-processors. Leinenbach and Santen show

in [89] that applying formal methods to a system like Hyper-V, which was not implemented

with verification in mind, has many challenges. The authors state that in the verification

process developers and testers shall maintain the annotations together with the code, which

fits perfectly into VCC’s methodology. The Hypervisor is mostly implemented in C, and as

C has an unsafe type system where memory allocation or deallocation is made explicitly so

memory safety needs to be verified. VCC also solves this problem using a typed view of

the memory based on Spec#-style object ownership methodology, the VCC memory model

[14] provides means to have a typed view of the objects in memory and reason about its

validity (see Chapter 2). Another challenge has to do with the fact that the Hypervisor is a

concurrent system and the original code shall not be modified to facilitate the verification

task. As previously stated (Chapter 2) VCC is suitable for concurrency verification.

Correctness of concurrent code is, in most cases, achieved by proving a simulation theo-

rem between the code and an abstract model of the system. For the Hypervisor verification a

VCC ghost top-level model for each partition (guest system) of the Hypervisor was built to

take information about IPC, privileges, a set of x64 processor states, etc. The development

of the x64 architecture top-level model has been carried out by the Saarland University

and is also being used in proofs for the low-level assembly code [90]. As the authors

explain in [89, Sect. 3], build an abstract model of the underling processor cannot be

made deterministically because other core-extern events (memory changed by other cores,

interrupt requests from devices or other cores,etc) can happen non-deterministically. The

verification team together with VCC solves this problem by adding a two-state invariants

in the abstract model for specifying the correct and legal behavior of each state transition.

Connecting invariants within concrete objects and invariants in the abstract model VCC

2AMD SVM [87] or Intel VMX [88] virtualization extensions

4.3. VERISOFT/VERISOFTXT PROJECT 29

will ideally prove the admissible actions and the correct implementation of the Hyper-V

concerning the abstract model.

VCC tools has been successfully applied and certainly improved in this project. In [7],

some results of the verification work are shown. It were inserted into the code-base 13500

lines of VCC annotations, 350 functions have been successfully verified as well as invariants

for about 150 C structures have been verified and prove admissible. Despite the fact that

“The Hypervisor is part of a released product with very low defect density.”and “indeed less

than a handful have been found during the verification process ”[89, Sect. 3]. The authors

also concluded that the usage of this verification methodology and tools since the beginning

would have improved the quality and prevent defects.

Another work within VerisofXT is the Subproject Avionics where the objective is to prove

functional correctness of the SYSGO PikeOS microkernel developed to the DO-178B avion-

ics safety standard and aimed at Common Criteria EAL7 [91]. As in Hyper-V, PikeOS

provides partitions virtualization for guest operating systems running on the same CPU. It

can thus be used as a paravirtualizing hypervisor for several architectures (x86, PowerPC,

ARM and others) for developing embedded systems in a secure environment with real-time

capabilities, kernel resources and thread communication mechanisms (shared memory, IPC

and events).

The verification approach in this work is also conducted by VCC Tools and methodology.

Baumann et al. [92] show the first verification results relating functional properties. The

first parts of the code being verified were chosen by their small level of dependence with

other parts of the kernel. The next target was the verification of the system calls whose

execution spans through all levels of the microkernel, thus creating a much more complex

scenario to verification. One system call to change the priority of a thread is given as an

example in [93]. System call verification involves reasoning about the underling hardware

and assembly parts of the implementation code. To address this problem the relevant parts

of the hardware were modeled as C structures using the VCC capabilities to create ghost

C code only for verification purposes. This model enabled the verification of low-level

functions. For example, assembly PowerPC (the chosen target platform for verification) in-

structions are implemented in ghost state and verified in VCC as normal (ghost) C functions.

Specifications were also added into kernel C code and a more general abstract model of the

kernel functionalities was built in ghost state and connected with the real code trough object

invariants. At the end this approach did provide a complete structure for machine-checked

30 CHAPTER 4. OPERATING SYSTEM VERIFICATION: RELATED WORK

proof [94].

For performance and real-time reasons there are preemptive parts of the microkernel

which force reasoning about concurrency and switching problems. In order to guarantee

non-interference accessing shared physical hardware the verification team enforce the ac-

cess policy to shared resource (locking) verifying PikeOS lock implementation and thus

ensuring exclusive access to the running thread [95]. The lock verification approach to

shared access is inspired in [96] and is also used in this thesis. Context switch problems were

also address, using the VCC PowerPC model to reason about system state and load/save

context when interrupts involve switching. (For more details please refer to [95, Sect. 8].)

PikeOS verification is still ongoing work. Despite the major verification advances and

improvements to verification methodology and structure there are some kernel capabilities

that have not yet been addressed (e.g. IPC). In [95] the authors conclude that a possible

future work in PikeOS formal verification is to prove correctness of the PikeOS system

instead of PikeOS microkernel alone, thus providing a formally verified hypervisor.

4.4 Summary

Despite formal verification of low-level operating systems code was initially seen as an

prohibitively or even impossible task due to the size and complexity of the problem, this

view has changed over time and projects aiming to use of formal methods in large low-

level systems grew positively in the last years. Achieving the highest security Common

Criteria requirements is now a target for both industrial and research areas. Common

Criteria defines 7 levels of assurance and the last 3 levels requires the use of formal or

semi-formal methods. The EAL7 level requires the use of formal methods in requirements,

functional specification, high-level design and semi-formal for low-level design.

For the best of our knowledge only Integrity as reached the EAL6+ level. In the projects

listed here, one can see that different formalisms such as model checking, automated first-

order theorem provers or interactive methods were used. Yet, as showed in the VerisoftXT

project the trend is to drive the verification through more automated tools.

The verification tool chosen to be applied in xLuna was also VCC. The following chapter

shows the results of that work.

Chapter 5

IRQ Manager Formal Verification

In this chapter we give a detailed description of the modular verification approach applied

to the xLuna IRQ module. We expose the contract embedded into each IRQ function as

well as the methodology followed for both path, functional and safety requirements, and

concurrent verification.

When dealing with a multi task environment, the system has to process several events

through interrupts with associated handlers. Thus, the main objective of this xLuna module

is the correct dispatching of such events. When Linux task is running and an interrupt/trap

occurs a xLuna dispatcher function saves it (see Figure 5.1). When the IRQ manager starts

or an event is saved, another task is resumed for treat the event inserted (see Figures 5.35.4).

Our verification target is the correct event treatment process.

5.1 Verification Target

Verifying low-level code that was not implemented with formal verification in mind and

adapting the verification methodology to that implementation is a non-trivial task. When

reasoning about xLuna as a formal verification target its own architecture suggests that a

modular approach should be taken in order to achieve an overall correctness proof. One of

the most critical and crucial modules of xLuna is the IRQ manager, since it has to catch

and process all interrupt requests needed for proper system functionality. It thus constitute

and interesting target for formal verification and was the subject of our study. Yet, the

different modules are considerably dependent on each other. Moreover, kernel code is

highly dependent of machine assembly instructions, which causes issues for the verification

31

32 CHAPTER 5. IRQ MANAGER FORMAL VERIFICATION

task since VCC does not interpret assembly language. For this reason, it was decided, at

this stage, to assume machine instructions and inlined assembly correct. All IRQ module

dependencies were studied to build proper code isolations and abstractions were made to fit

the verification methodology.

5.2 IRQ Design

Following xLuna architecture (see Chapter 3), the Linux kernel is running as an unprivileged

(user-mode) RTEMS task and thus, it does not have direct hardware access. The main

purpose of the IRQ manager is to serve as a bridge connecting the Linux subsystem to

hardware interrupts. Hardware interrupts or software traps are both called events that are

inserted into an Event Queue to be sent to their handlers.

Figure 5.1: Interrupt request manager

Interrupts are filtered by a dispatcher function which is responsible to insert them into the

event queue. Once there are events in the queue they should be processed by the IRQ

manager through a monitor task and for each event call the respective Linux handles or

xLuna services (see Figure 5.1). Events can be treated synchronously or asynchronously.

In the queue structure there can be only one sync event at a time. This event is a request

caused by the running instruction and must be processed synchronously. Async events are

accumulated in the queue according to their event type (e.g., TT ISC RTEMS TO LX is the

special trap type 0x21 for inter systems communication that is inserted as an async event).

As shown in Figure 5.1, both events have an associated data structure which contains the

data needed for event handlers and the the interrupt/trap code.

In the next sections, we describe the approach taken for verifying the treatment of each

5.3. VCC VERIFICATION APPROACH 33

event inserted in the queue and the correct usage of data structures involved in this flow.

5.3 VCC Verification Approach

We can drive the verification methodology used through an IRQ manager function used

to insert a synchronous event into the queue. As already mentioned, VCC enforces a

ownership model to guarantee a consistent and typed view of all objects (e.g., pointers to

data structures) which ensures that objects of the same type and different addresses do not

overlap in memory. [14].

Figure 5.2: VCC event queue ownership

Figure 5.2 shows an high-level view of our ownership setup. Basically, the figure says that

the event queue will be the owner of all synchronous and asynchronous events entering in

IRQ manager. The Lock (which is a spin lock to ensure mutual exclusion) protects and is the

queue structure owner. Moreover, the Lock is himself owned by the container object. Nev-

ertheless, more details about configuration of this setup are given throughout this chapter.

When xLuna interrupt manager is initialized VCC sees all objects as mutable. Therefore

ownership relations must to be configured at the program entry point (see Listing 5.6 for

irq init() function) to prevent further object updates without complying with the ownership

protocol.

After initialization function, the IRQ manager will start the events dispatching and the

execution flow spans throughout other functions. Figure 5.3 shows the IRQ manager sim-

plified Call Graph of the target functions for verification in this section.

Verification of RTEMS code is out of scope of this work. Therefore, RTEMS API calls

were assumed pure for the verification.

34 CHAPTER 5. IRQ MANAGER FORMAL VERIFICATION

Figure 5.3: Call Graph for irq init() function

5.3.1 Queue types and invariants

In this section we show the queue structures/objects for real code (in Figure 5.2) as well as its

invariant that are supposed to hold according to the VCC ownership protocol. Asynchronous

events have to stay within bounds and must have no associated data (invariant in Line 4).

When is a sync event, data must be non NULL and well typed in memory.

1 t y p e d e f s t r u c t i r q e n t r y {
2 u n s i g n e d 3 2 e v e n t ;

3 void ∗ d a t a ;

4 i n v a r i a n t (d a t a == NULL <==> (even t >=0x10 | | even t <=0x22))

5 i n v a r i a n t (d a t a != NULL <==> t y p e d (d a t a))

6 } i r q e n t r y ;

Listing 5.1: IRQ entry event

The queue invariants guarantee that the queue is the owner of all event and that the number

of pending event will be positive.

1 s t r u c t e v e n t q u e u e e n t r y {
2 s t r u c t i r q e n t r y s y n c e v e n t ;

3 s t r u c t {
4 unsigned i n t pend ing ;

5 } a s y n e v e n t s [NUMBER OF ASYN EVENTS] ;

6 i n v a r i a n t (keeps (& s y n c e v e n t))

7 i n v a r i a n t (f o r a l l (unsigned i ; i < NUMBER OF ASYN EVENTS ; keeps (

a s y n e v e n t s + i)))

8 i n v a r i a n t (f o r a l l (unsigned i ; i >=0 && i < NUMBER OF ASYN EVENTS ;

a s y n e v e n t s [i] . pend ing >= 0))

9 } e v e n t q u e u e ;

Listing 5.2: IRQ queue

5.3. VCC VERIFICATION APPROACH 35

5.3.2 VCC ghost types, invariants and initialization

In this section we show the VCC ghost objects only for verification purposes (surrounded

with spec(...)). This is related to the gray part of Figure 5.2. This objects are used for

concurrency verification, but the Lock and Container objects are initialized and configured

at IRQ manager boot time.

1 spec (

2 s t r u c t vcc (c l a i m a b l e) QUEUE CONTAINER {
3 i n t dummy ;

4 i n v a r i a n t (keeps (&QueueLock))

5 i n v a r i a n t (QueueLock . p r o t e c t e d o b j ==&e v e n t q u e u e)

6 } QueueCon ta ine r ;

7)

Listing 5.3: Queue container object

In Line 4 and 5, invariants say that the QueueContainer will allays keep QueueLock in its

ownership set and that the QueueLock protected object is the queue.

1 spec (

2 t y p e d e f s t r u c t vcc (v o l a t i l e o w n s) LOCK {
3 v o l a t i l e i n t i n t e r r u p t d i s a b l e ;

4 o b j t p r o t e c t e d o b j ;

5 i n v a r i a n t (i n t e r r u p t d i s a b l e == 0 ==> keeps (p r o t e c t e d o b j))

6 } LOCK;

7)

Listing 5.4: Ghost lock object

The lock object simulates whenever the interrupts are enable or disable. In the real code

the enabling/disabling interrupts are done trough assembly atomic operation when calling

sparc disable interrupts() or sparc enable interrupts() functions. The object declara-

tion in Line 4 points to the queue (from QueueContainer invariant) and Line 5 says that

whenever the interrupts are enable (zero) the lock is the owner of the queue.

5.3.3 Verification of lock init() function

1 s p e c o n l y (

2 void l o c k i n i t (LOCK ˆ l spec (o b j t queue))

3 w r i t e s (span (l) , queue)

36 CHAPTER 5. IRQ MANAGER FORMAL VERIFICATION

4 r e q u i r e s (wrapped (queue))

5 e n s u r e s (c l o s e d (l) && l→p r o t e c t e d o b j == queue)

6 e n s u r e s (c l o s e d (queue))

7 {
8 l→i n t e r r u p t d i s a b l e = 0 ;

9 s p e c o n l y (

10 l→p r o t e c t e d o b j = queue ;

11 s e t o w n s (l , SET (queue)) ;

12 wrap (l) ;

13)

14 }
15)

Listing 5.5: VCC ghost function for lock initialization

Listing 5.5 shows the lock initialization. It must ensure that after the initialization the the

protected object is the queue (Line 5), the both objects are closed to assert its invariant

(Lines 5 and 6) and the lock owns the queue (Line 11).

5.3.4 Verification of irq init() function

The irq init() function is the main entry point of IRQ manager. It is also the function where

we should tell VCC what is our ownership configuration.

1 r t e m s s t a t u s c o d e i r q i n i t (void)

2 w r i t e s (s e t u n i v e r s e ())

3 r e q u i r e s (p r o g r a m e n t r y p o i n t ())

4 e n s u r e s (c l o s e d (& e v e n t q u e u e))

5 e n s u r e s (l i n u x i n t e r r u p t e n a b l e d ==1 &&

l i n u x h a r d w a r e h a n d l e r i n p r o g r e s s ==0)

6 {
7 e v e n t q u e u e r e s e t () ; / / Queue a l l o c a t i o n

8 spec (c l a i m t c ;)

9 spec (

10 unsigned j ;

11 f o r (j = 0 ; j < NUMBER OF ASYN EVENTS ; j ++)

12 i n v a r i a n t (j <= NUMBER OF ASYN EVENTS)

13 i n v a r i a n t (f o r a l l (unsigned i ; i < NUMBER OF ASYN EVENTS ; i < j ?

14 wrapped (& e v e n t q u e u e . a s y n e v e n t s + i) : mu tab le (& e v e n t q u e u e .

a s y n e v e n t s + i)))

15 w r i t e s (a r r a y r a n g e (& e v e n t q u e u e . a s y n e v e n t s , NUMBER OF ASYN EVENTS))

5.3. VCC VERIFICATION APPROACH 37

16 {
17 wrap(& e v e n t q u e u e . a s y n e v e n t s + j) ;

18 }
19 s e t o w n s (& e v e n t q u e u e , a r r ay member s (& e v e n t q u e u e . a s y n e v e n t s ,

NUMBER OF ASYN EVENTS)) ;

20 s e t o w n e r (& e v e n t q u e u e . s y n c e v e n t ,& e v e n t q u e u e) ;

21 wrap(& e v e n t q u e u e . s y n c e v e n t) ;

22 wrap(& e v e n t q u e u e) ;

23 a s s e r t (wrapped (& e v e n t q u e u e)) ;

24 a s s e r t (& e v e n t q u e u e == owner (& e v e n t q u e u e . s y n c e v e n t)) ;

25 a s s e r t (& e v e n t q u e u e == owner (& e v e n t q u e u e . a s y n e v e n t s [0])) ;

26) / / End spec

27 / / assumed (t r u e) r t e m s m o n i t o r c r i a t i o n

28 a s s e r t (wrapped (& e v e n t q u e u e)) ;

29 spec (l o c k i n i t (spec (&QueueLock) spec (& e v e n t q u e u e)) ;)

30 a s s e r t (c l o s e d (& e v e n t q u e u e)) ;

31 s e t o w n e r (&QueueLock , &QueueCon ta ine r) ;

32 wrap(& QueueCon ta ine r) ;

33

34 s p e c o n l y (

35 c = c l a i m (& QueueConta iner , c l o s e d (& QueueCon ta ine r)) ;)

36 / / s t a r t m o n i t o r

37 i r q m o n i t o r e n t r y (0 spec (c)) ;

38

39 a s s e r t (c l o s e d (& e v e n t q u e u e)) ;

40

41 l i n u x i n t e r r u p t e n a b l e d = 1 ;

42 l i n u x h a r d w a r e h a n d l e r i n p r o g r e s s = 0 ;

43 re turn RTEMS SUCCESSFUL ;

44 }

Listing 5.6: IRQ Manager Initialization Function

The first two annotations state that this is the initial function. In Line 2 we tell VCC that all

global objects are considered to be mutable at this point, therefore, we want to have access

to them and manage its behavior from now. The program entry point state is marked by the

program entry point() function in Line 3 which implicitly takes state as parameter.

Now we need to set the ownership relations for all async objects in the queue. Currently

VCC can not wrap all objects of an array in one call. Therefore, in order to configure

ownership relations for async events we have to do it iteratively through a ghost loop (Line

38 CHAPTER 5. IRQ MANAGER FORMAL VERIFICATION

11 to 18). The loop invariant says that if i < j the async event i is already wrapped (owned

by the current thread). Otherwise, the async event i is mutable (Line 13 and 14). This holds

after each iteration. We also state that the loop will only operate within array bounds (Line

12).

Write permissions to change the array also have to be guaranteed as a loop invariant (Line

15). The loop body then wraps the object (Line 17).

We can now say that the queue is the owner of all async objects because they are all

wrapped (Line 19). One can only close the owner object if all its embedded objects are

wrapped. Sync events are also owned by the queue (Line 20).

Now we can wrap the queue inside out and assert its ownership properties (Lines 21 to

25). According to the setup shown in Figure 5.2, after IRQ manager boot we ensure that:

• The queue is typed and protected at the end of initialization (Line 4);

• The queue is the owner of all sync and async events (Line 24 and 25);

• When the queue is closed its invariant and the invariants of all embedded types hold

(see Subsection 5.3.1).

Line 29 initializes the lock (see Listing 5.5) and in Line 31 we set the owns field of

QueueContainer (container now owns the lock). The container invariant holds when

wrapping it at Line 32.

Now we can create a claim on the container and pass it as ghost parameter to other

function (Line 37). The claim ensures that the QueueContainer will remain closed. That

knowledge will be useful for verification in other functions.

5.3.5 Verification of irq monitor entry() function

1 s t a t i c r t e m s t a s k i r q m o n i t o r e n t r y (r t e m s t a s k a r g u m e n t i g n o r e d c l a im p (

c))

2 w r i t e s (& s y n c e v e n t s h a n d l e d)

3 w r i t e s (& l i n u x i s f)

4 w r i t e s (& l i n u x h a r d w a r e h a n d l e r i n p r o g r e s s)

5 r e a d s (& l i n u x i n t e r r u p t e n a b l e d)

6 r e q u i r e s (t h r e a d l o c a l (& l i n u x i n t e r r u p t e n a b l e d))

7 { i r q e n t r y i r q ;

8 do { whi le (e v e n t q u e u e i s n o t e m p t y ()) {
9 i f (e v e n t q u e u e h a s s y n c e v e n t ()) {

5.3. VCC VERIFICATION APPROACH 39

10 ASSERT(0== e v e n t q u e u e p o p (& i r q spec (c))) ;

11 unchecked (s y n c e v e n t s h a n d l e d ++) ;

12 i r q h a n d l e e v e n t (i r q . even t , i r q . d a t a) ;

13 }
14 e l s e i f (LINUX INTERRUPT ENABLED) {
15 ASSERT(0== e v e n t q u e u e p o p (& i r q)) ;

16 i r q h a n d l e e v e n t (i r q . even t , i r q . d a t a) ;

17 }
18 e l s e {
19 r t e m s t a s k s u s p e n d (RTEMS SELF) ;

20 }
21 } / / End While

22 r t e m s t a s k s u s p e n d (RTEMS SELF) ;

23 } whi le (1) ; / / w h i l e t r u e

24 }

Listing 5.7: IRQ monitor task

This function is responsible to pop the events and send them to their handlers. Basically

the function is a loop iterating over the queue, but the actual work is done in the called

functions. For the monitor function we need to frame the access to manager state flags and

ensures the queue good health for the necessary called functions.

• Write and read access to state flags are framed in Lines 2 to 5. Write access implicitly

assert thread locality. However, the monitor will only needs to read linux interrupt enabled,

so we state a precondition saying that linux interrupt enabled is local to the current

thread (Line 6).

• In Line 12 VCC complains about a possible overflow. This can properly avoided by

the unchecked() clause. Even so, limits shall be bounded in the real code to avoid

overflow.

• Note that when the event queue pop() is called (Lines 10 and 15) the ghost parameter

takes the necessary knowledge with it. This will be necessary to prove that the event

was removed with non-interference.

40 CHAPTER 5. IRQ MANAGER FORMAL VERIFICATION

5.3.6 Verification of event queue is not empty() function

1 s t a t i c i n l i n e u n s i g n e d 3 2 e v e n t q u e u e i s n o t e m p t y (void)

2 r e q u i r e s (t h r e a d l o c a l (& e v e n t q u e u e . s y n c e v e n t))

3 r e q u i r e s (t h r e a d l o c a l (a s a r r a y (& e v e n t q u e u e . a s y n e v e n t s ,

NUMBER OF ASYN EVENTS)))

4 r e a d s (span (& e v e n t q u e u e))

5 e n s u r e s (r e s u l t == 1 ==> (& e v e n t q u e u e . s y n c e v e n t != NULL) | | (& e v e n t q u e u e

. a s y n e v e n t s != NULL))

6 {
7 i n t i ;

8 i f (e v e n t q u e u e h a s s y n c e v e n t ()) re turn 1 ;

9

10 f o r (i = 0 ; i < NUMBER OF ASYN EVENTS ; i ++)

11 i n v a r i a n t (0 <= i <= NUMBER OF ASYN EVENTS)

12 i n v a r i a n t (e v e n t q u e u e . a s y n e v e n t s [i] . pend ing >=0)

13 i n v a r i a n t (f o r a l l (unsigned i ; 0 <= i < NUMBER OF ASYN EVENTS ; t y p e d

(& e v e n t q u e u e . a s y n e v e n t s [i])))

14 {
15 i f (e v e n t q u e u e . a s y n e v e n t s [i] . pend ing) re turn 1 ;

16 }
17 re turn 0 ;

18 }

Listing 5.8: Event queue is not empty function

This function will not change the queue, it will just see if there is events and inform that

trough the return values. In this case we only need to prove that is running in the current

thread domain (Lines 2 an 3) and only with read permissions (Line 4).

• If the queue have a sync or asyn event it will return 1. The postcondition in Line 5

will ensure that the event is non null.

• For asyn event a loop is done to search pending events. The loop invariants in Lines

11,12 and 13 will ensure respectively that:

– The loop will iterate within bounds

– That pending is positive

– That all asyn are well typed in memory.

5.3. VCC VERIFICATION APPROACH 41

5.3.7 Verification of event queue has sync event() function

1 s t a t i c i n l i n e u n s i g n e d 3 2 e v e n t q u e u e h a s s y n c e v e n t (void)

2 r e q u i r e s (t h r e a d l o c a l (& e v e n t q u e u e . s y n c e v e n t . e v e n t))

3 r e a d s (& e v e n t q u e u e . s y n c e v e n t . e v e n t)

4 e n s u r e s (r e s u l t != 0 ==> &e v e n t q u e u e . s y n c e v e n t . d a t a != NULL)

5 {
6 re turn e v e n t q u e u e . s y n c e v e n t . e v e n t != 0 ;

7 }

Listing 5.9: Event queue has sync event function

The Event queue has sync event function will also need permissions to read the queue (Line

2 and 3). Remember that the queue will only accept one sync event at the time and sync

events have always data associated. Therefore, if the result of the return value is zero

different (sync event do not exists) one need to make sure that the event queue data is non

null (postcondition in Line 4).

5.3.8 Verification of irq handle event() function

Function responsible for event dispatching.

1 s t a t i c vo id i r q h a n d l e e v e n t (u n s i g n e d 3 2 even t , void ∗ d a t a)

2 r e q u i r e s (e v e n t == TT UART FIRST | | e v e n t == TT TIMER | |
3 e v e n t == TT ASYN CLEAR WINDOW | | e v e n t == TT ASYN CLEAR WINDOW | |
4 e v e n t == TT ISC RTEMS TO LX | | e v e n t == TT ISC LX TO RTEMS | |
5 e v e n t == TT LINUX SYSCALL | | e v e n t == TT SYNC KILL USER | |
6 e v e n t == TT SYNC CLEAR WINDOW | | e v e n t == TT MNA | |
7 e v e n t == TT FPD | | e v e n t == TT DATA ACCESS | |
8 e v e n t == TT INST ACCESS | | e v e n t == TT XLUNA SYSCALL | |
9 e v e n t == TT UNHANDLED EXCEPTION)

10 r e q u i r e s (t h r e a d l o c a l (d a t a))

11 w r i t e s (& l i n u x h a r d w a r e h a n d l e r i n p r o g r e s s)

12 w r i t e s (& l i n u x i s f)

13 {
14 sw i t ch (e v e n t) {
15 case TT UART FIRST :

16 case TT TIMER :

17 case TT ASYN CLEAR WINDOW :

18 case TT ISC RTEMS TO LX :

19 case TT ISC LX TO RTEMS :

42 CHAPTER 5. IRQ MANAGER FORMAL VERIFICATION

20 l i n u x h a r d w a r e h a n d l e r i n p r o g r e s s = 1 ;

21 ASSERT(l i n u x i n t e r r u p t e n a b l e d) ;

22 case TT LINUX SYSCALL :

23 case TT SYNC KILL USER :

24 case TT SYNC CLEAR WINDOW :

25 case TT MNA:

26 case TT FPD :

27 case TT DATA ACCESS :

28 case TT INST ACCESS :

29 ASSERT(l i n u x i s f) ;

30 i r q b u i l d l i n u x f r a m e (even t , l i n u x i s f) ;

31 l i n u x i s f = NULL;

32 r t e m s t a s k s u s p e n d (RTEMS SELF) ;

33 break ;

34 case TT XLUNA SYSCALL :

35 i r q x l u n a s y s c a l l d i s p a t c h e r (d a t a) ;

36 break ;

37 case TT UNHANDLED EXCEPTION :

38 i r q d o u n h a n d l e d e x c e p t i o n (d a t a) ;

39 break ;

40 }
41 }

Listing 5.10: Handle event function

• Line 2. The input trap/event type must be known.

• Line 10. data shall be local to the running thread.

• Line 11 and 12. Write permissions for the addresses updated in this function.

5.4 Concurrency Verification

The above described approach is suitable for sequential code. Nevertheless, the kernel has

to guarantee that executions are made without interference or unexpected kernel behavior.

In a concurrent real-time kernel, not only user processes are preemptable but also kernel

processes may be subject to stringent scheduling policies or interrupts.

In order to achieve non-interference updates to critical regions in xLuna, a low-level

5.4. CONCURRENCY VERIFICATION 43

function is called to restrict concurrent access by disabling interrupts, performing the re-

quired update steps, and then enabling interrupts again. Since this function is implemented

in assembly language, in VCC we would have to analyze its behavior using a ghost assembly

model (as stated in Section 4.3 for Microsoft Hyper-V Hypervisor [90]).

5.4.1 Lock approach

Disable interrupts gives to the running thread non-interference execution steps before inter-

rupts are enabled again. One can think about this low-level access policy as a mandatory

lock and use an abstract ghost implementation suitable for VCC methodology (see for

instance Listing 5.4). When interrupts are disabled we call a VCC ghost specification

function (see Listing 5.16 Line 16) that will transfer ownership domain to the running thread

and prevent preemption while interrupts are disable (see for instance Listing 5.16 line 26).

This allows reasoning about implementation steps in a sequential fashion. Still, one

needs to ensures that the lock is not destroyed or deallocated: in VCC we can model this

issue through a claim. The gray part of Figure 5.2 shows the ownership configuration for

ghost code and states that the QueueContainer ghost structure is the owner of the lock

and the latter owns the queue. The container has two invariants saying that (i) the object

protected by the lock is the queue and (ii) enforcing the fact that it is the owner of the lock

(see Subsection 5.3.2).

Figure 5.4 shows the call graph of the functions explained in this section.

Figure 5.4: Call Graph for irq insert() function

44 CHAPTER 5. IRQ MANAGER FORMAL VERIFICATION

5.4.2 Verification of irq insert() function

VCC enables the implementation of pure functions to be used inside other VCC clauses

(requires, ensures, assert etc.). This functions are always marked with an ispure at the

beginning of its declaration and they are not required to have a body. In xLuna irq insert

the above pure function V CC SPEC FUN is asyn trap is used to verify if the trap is

indeed asynchronous or synchronous when it is denied.

1 spec (

2 i s p u r e boo l VCC SPEC FUN is asyn trap (u n s i g n e d 3 2 t r a p)

3 r e t u r n s (((t r a p)>=TT ASYN MIN) && ((t r a p)<=TT ASYN MAX)) ;

4)

Listing 5.11: Is asynchronous trap VCC specification function

Now we explain the contracts added to irq insert function.

1 r t e m s s t a t u s c o d e i r q i n s e r t (u n s i g n e d 3 2 even t , void ∗ da ta , u n s i g n e d 3 2

sync c l a i mp (c))

2 r e a d s (even t , da t a , sync)

3 m a i n t a i n s (mutab le (& i r q m o n i t o r i d))

4 r e q u i r e s ((sync ==ASYN EVENT)<==> VCC SPEC FUN is asyn trap (e v e n t) && (

d a t a ==NULL))

5 r e q u i r e s ((sync ==SYNC EVENT)<==> ! VCC SPEC FUN is asyn trap (e v e n t) && (

d a t a !=NULL))

6 e n s u r e s (r e s u l t == RTEMS SUCCESSFUL | | r e s u l t == RTEMS TOO MANY)

7 {
8 i r q e n t r y i r q ;

9 i n t r e t ;

10 s t a t i c i n t q u e u e f u l l c o u n t ;

11 i r q . e v e n t = e v e n t ;

12 i r q . d a t a = d a t a ;

13 i f (sync == SYNC EVENT) {
14 a s s e r t (sync == SYNC EVENT) ;

15 a s s e r t (i r q . d a t a != NULL) ;

16 a s s e r t (! VCC SPEC FUN is asyn trap (i r q . e v e n t)) ;

17 i f (1 == (r e t = e v e n t q u e u e i n s e r t s y n c (& i r q spec (c)))) {
18 ASSERT (0) ;

19 }
20 } e l s e {
21 ASSERT(sync == ASYN EVENT) ;

22 a s s e r t (sync == ASYN EVENT) ;

23 a s s e r t (i r q . d a t a == NULL) ;

5.4. CONCURRENCY VERIFICATION 45

24 a s s e r t (VCC SPEC FUN is asyn trap (i r q . e v e n t)) ;

25 i f (1 == (r e t = e v e n t q u e u e i n s e r t a s y n (& i r q spec (c)))) {
26 i f (++ q u e u e f u l l c o u n t > 100) {
27 ASSERT (0) ;

28 }
29 } e l s e q u e u e f u l l c o u n t = 0 ;

30 }
31 r t e m s t a s k r e s u m e (i r q m o n i t o r i d) ;

32 i f (r e t ==0) re turn RTEMS SUCCESSFUL ;

33 e l s e re turn RTEMS TOO MANY;

34 }

Listing 5.12: IRQ insert function

The irq insert function is used to insert a new event in the queue. It receives as input

parameters an event number, a pointer to data and and one sync variable which will tell if

the event is sync or asyn. In Line 2 we establish the read permissions for this three input

parameters.

After each event inserted, the irq insert will resume the monitor task. The monitor task

has an associated global pointer which has to be mutable. Otherwise VCC will complain

about the permissions access this pointer. This requirement is stated in Line 3.

To reason about the sync parameter we use the pure function explained above (in List-

ing 5.11). Therefore, as input requirement we say that whatever is the type of the sync

variable (ASY N EV ENT or SY NC EV ENT) it is always a true event.

• Lines 14 and 16 assert the sync parameter and event again.

• Line 15 guarantees the data validity.

xLuna has its own ASSERT function. Line 22 is replicated to check the asyn variable in

VCC. We also assert data and event validity for asyn events. For last, the postcondition

in Line 6 ensures the two possible outcomes from this function.

5.4.3 Verification of sparc disable interrupts() function

Synchronization is needed to ensure mutual exclusion or the absence of race conditions in

concurrent programs. For this purpose low-level atomic operations are often used. xLuna

ensures non interference operations by disabling/enabling interrupts using assembly func-

tions for the SPARC processor. The SPARC processor provides atomic operations like

46 CHAPTER 5. IRQ MANAGER FORMAL VERIFICATION

ldstub (load and store unsigned byte) and swap (see [97]). These operations are atomic

exchanges in a special CPU register.

In the scenario when two threads are attempting to disable interrupts (acquiring the lock,

in our model), one of the threads has to do it first since we are reasoning about atomic

instructions in a single processor. Therefore, our lock abstraction needs a way for reason

about atomic low-level operations.

1

2 vcc (a t o m i c i n l i n e) i n t S P A R C t e s t a n d s e t (v o l a t i l e i n t ˆ Des t , i n t Exch

, i n t Comp) {
3 i f (∗ Dest == Comp) {
4 ∗Dest = Exch ;

5 re turn Comp ;

6 } e l s e { re turn ∗Dest ; }
7 }

Listing 5.13: VCC function for simulate atomic SPARC operations

In VCC we can model low-level atomic operations using functions marked with vcc(atomic inline).

Such functions are interpreted as a simulation of the underlying hardware atomic operations

and can only be called inside VCC atomic blocks (as in Function 5.14), counting as a single

update.

The above function is a compare-exchange which checks if Dest == comp and store

Exch in Dest if they are equal (as a SPARC atomic ldstub). This means that the lock was

acquired, or in our abstraction, interrupts are disabled.

The simulation function that replaces (for verification) the original sparc disable interrupts

assembly function is given bellow.

1 s p e c o n l y (

2 void V C C S P E C F U N s p a r c d i s a b l e i n t e r r u p t s (LOCK ˆ l c l a i mp (c))

3 a lways (c , c l o s e d (l))

4 e n s u r e s (wrapped (l→p r o t e c t e d o b j) && i s f r e s h (l→p r o t e c t e d o b j))

5 {
6 i n t a c q u i r e d = 0 ;

7 do {
8 a to mi c (c , l) {
9 a c q u i r e d = S P A R C t e s t a n d s e t (& l→i n t e r r u p t d i s a b l e , 1 , 0) == 0 ;

10 s p e c o n l y (i f (a c q u i r e d) g i v e u p c l o s e d o w n e r (l→p r o t e c t e d o b j , l) ;)

11 }
12 } whi le (! a c q u i r e d) ;}
13)

5.4. CONCURRENCY VERIFICATION 47

Listing 5.14: VCC function for simulate disabling interrupts

To change the event queue without interference, the current thread has to acquire the lock

(disable interrupts) calling this specification function.

• The claim ensures that the lock will remain closed and thus, can not be destroyed

(Line 3).

• The VCC atomic block enables only one atomic operation, which is our SAPAC

atomic function (Line 9) and multiple specification operations. Nevertheless, we

only need to transfer the ownership domain of the queue (l → protected ogj) from

the lock (l) to the current thread (Line 10). Exclusive access to the queue is thus

guaranteed until interrupts are enabled again.

• The is fresh annotation ensures that the queue was not owned by other thread before.

Between disable/enable interrupts the is is always in the lock domain.

5.4.4 Verification of sparc enable interrupts() function

1 s p e c o n l y (

2 void V C C S P E C F U N s p a r c e n a b l e i n t e r r u p t s (LOCK ˆ l c l a i mp (c))

3 a lways (c , c l o s e d (l))

4 r e q u i r e s (wrapped (l→p r o t e c t e d o b j))

5 w r i t e s (l→p r o t e c t e d o b j)

6 r e q u i r e s (wrapped (l→p r o t e c t e d o b j))

7 {
8 a to mi c (c , l) {
9 s e t c l o s e d o w n e r (l→p r o t e c t e d o b j , l) ;

10 l→i n t e r r u p t d i s a b l e = 0 ;

11 }
12 }
13)

Listing 5.15: VCC function for simulate enabling interrupts

This function is used to enable interrupts again by return queue ownership for the lock

(Line 10) and update the interrupt disable variable to 0 and enabling interrupts again.

48 CHAPTER 5. IRQ MANAGER FORMAL VERIFICATION

5.4.5 Verification of event queue insert sync() function

1 i n t e v e n t q u e u e i n s e r t s y n c (s t r u c t i r q e n t r y ∗ i r q c l a imp (c))

2 a lways (c , c l o s e d (&QueueLock))

3 r e q u i r e s (n e s t e d (& e v e n t q u e u e))

4 r e q u i r e s (i r q→d a t a != NULL)

5 r e q u i r e s (! VCC SPEC FUN is asyn trap (i r q→e v e n t))

6 r e q u i r e s (t h r e a d l o c a l (i r q))

7 r e a d s (i r q)

8 w r i t e s (& e v e n t q u e u e)

9 e n s u r e s (& e v e n t q u e u e . s y n c e v e n t == i r q)

10 e n s u r e s (n e s t e d (& e v e n t q u e u e))

11 e n s u r e s (r e s u l t == 0 | | r e s u l t == 1)

12 {
13 / / xLuna a s s e r t f u n c t i o n

14 ASSERT(i r q→e v e n t) ;

15 a s s e r t (t y p e d (& i r q→e v e n t)) ;

16 i f (e v e n t q u e u e h a s s y n c e v e n t ()) re turn 1 ; s p a r c d i s a b l e i n t e r r u p t s

() ;

17 spec (V C C S P E C F U N s p a r c d i s a b l e i n t e r r u p t s (spec (&QueueLock) spec (c))

;)

18 / / unwrap / wrap p r o t o c o l

19 unwrap(& e v e n t q u e u e) ;

20 unwrap(& e v e n t q u e u e . s y n c e v e n t) ;

21 / / i n s e r t sync e v e n t (f o r vcc we can now change t h e queue)

22 e v e n t q u e u e . s y n c e v e n t = ∗ i r q ;

23 / / r e v e r s e wrapping

24 wrap(& e v e n t q u e u e . s y n c e v e n t) ;

25 wrap(& e v e n t q u e u e) ;

26 s p a r c e n a b l e i n t e r r u p t s () ;

27 spec (V C C S P E C F U N s p a r c e n a b l e i n t e r r u p t s (spec (&QueueLock) spec (c))

;)

28 re turn 0 ;

29 }

Listing 5.16: Insert synchronous event function

As preconditions we tell to VCC that this function will start in a state where:

• event queue is owned by an object and thus its invariant holds (Line 3);

• sync events always have data required by event handlers to work properly (Line 4);

5.4. CONCURRENCY VERIFICATION 49

• event code must be within sync event bounds (Line 5);

• irq points to an object that is local to the running thread which is only allowed to read

it. On the other hand, permissions to change event queue are necessary. The writes

clause guarantees that only event queue will be updated (Lines 6, 7, 8).

To respect the VCC ownership protocol it is necessary unwrap (Lines 18, 19) the queue and

its embedded IRQ entry, change it and then wrap in reverse order (Lines 23, 24). When an

object is unwrapped VCC implicitly assume its invariant and assert it when wrap occurs. In

the example, this ownership flow will guarantee the second postcondition (Line 10) whereas

the first one ensures that the queue sync event was updated correctly (Line 9).

As we said, in VCC, knowledge can be passed to functions through ghost parameters

(claims). The ghost claim parameter and the clause in Line 2 guarantee that:

• c has an implicit invariant ensuring that the container remains closed (container

invariant holds)

• the always clause tells VCC to enforce the fact that if the container is closed, the lock

is also closed and thus can never be destroyed.

Line 16 and 26 ensures exclusive access to the queue (see Functions 5.4.35.4.4).

5.4.6 Verification of event queue insert async() function

1 i n t e v e n t q u e u e i n s e r t a s y n (s t r u c t i r q e n t r y ∗ i r q c l a i mp (c))

2 a lways (c , c l o s e d (&QueueLock))

3 r e q u i r e s (n e s t e d (& e v e n t q u e u e))

4 r e q u i r e s (i r q→d a t a == NULL)

5 r e q u i r e s (VCC SPEC FUN is asyn trap (i r q→e v e n t))

6 r e q u i r e s (t h r e a d l o c a l (i r q))

7 r e a d s (span (i r q))

8 w r i t e s (& e v e n t q u e u e)

9 e n s u r e s (n e s t e d (& e v e n t q u e u e))

10 e n s u r e s (r e s u l t == 0)

11 {
12 u n s i g n e d 3 2 ∗ pend ing ;

13

14 ASSERT(i s a s y n t r a p (i r q→e v e n t)) ;

15 a s s e r t (VCC SPEC FUN is asyn trap (i r q→e v e n t)) ;

50 CHAPTER 5. IRQ MANAGER FORMAL VERIFICATION

16

17 pend ing = &(e v e n t q u e u e . a s y n e v e n t s [e v e n t t o i n d e x (i r q→e v e n t)] . pend ing

) ;

18

19 s p a r c d i s a b l e i n t e r r u p t s () ; / / a s sembly c a l l

20 spec (V C C S P E C F U N s p a r c d i s a b l e i n t e r r u p t s (spec (&QueueLock) spec (c)) ;)

21 a s s e r t (me () == owner (& e v e n t q u e u e . a s y n e v e n t s [e v e n t t o i n d e x (i r q→e v e n t

)])) ;

22 / / unwrap / wrap p r o t o c o l

23 unwrap(& e v e n t q u e u e) ;

24 spec (

25 unsigned j ;

26 f o r (j = 0 ; j < NUMBER OF ASYN EVENTS ; j ++)

27 i n v a r i a n t (j <= NUMBER OF ASYN EVENTS)

28 i n v a r i a n t (f o r a l l (unsigned i ; i < NUMBER OF ASYN EVENTS ; i < j ?

29 mutab le (& e v e n t q u e u e . a s y n e v e n t s + i) : wrapped (& e v e n t q u e u e .

a s y n e v e n t s + i)))

30 w r i t e s (a r r a y r a n g e (& e v e n t q u e u e . a s y n e v e n t s , NUMBER OF ASYN EVENTS))

31 {
32 unwrap(& e v e n t q u e u e . a s y n e v e n t s + j) ;

33 })

34 / / i n s e r t asyn e v e n t

35 ∗ pend ing = unchecked (∗ pend ing + 1) ;

36

37 / / r e v e r s e wrapping

38 spec (

39 unsigned j ;

40 f o r (j = 0 ; j < NUMBER OF ASYN EVENTS ; j ++)

41 i n v a r i a n t (j <= NUMBER OF ASYN EVENTS)

42 i n v a r i a n t (f o r a l l (unsigned i ; i < NUMBER OF ASYN EVENTS ; i < j ?

43 wrapped (& e v e n t q u e u e . a s y n e v e n t s + i) : mu tab le (& e v e n t q u e u e .

a s y n e v e n t s + i)))

44 w r i t e s (a r r a y r a n g e (& e v e n t q u e u e . a s y n e v e n t s , NUMBER OF ASYN EVENTS))

45 {
46 wrap(& e v e n t q u e u e . a s y n e v e n t s + j) ;

47 })

48 wrap(& e v e n t q u e u e) ;

49 s p a r c e n a b l e i n t e r r u p t s () ; / / a s sembly c a l l

50 spec (V C C S P E C F U N s p a r c e n a b l e i n t e r r u p t s (spec (&QueueLock) spec (c)) ;)

51

52 re turn 0 ;

5.4. CONCURRENCY VERIFICATION 51

53 }

Listing 5.17: Insert asynchronous event function

This function is similar to insert a synchronous event with the particular aspect of unwrap-

ping the asyn events array. In the same way that we needed wrap the asynchronous event

array (see Function 5.6) with a ghost loop, e also need to unwrapping it using the same

annotations (Line 24 to 33 and 38 to 47). Other similar annotations to the insert sync

function were defined. However, some aspects are different:

• Line 4. Precondition saying that data is null in case of asyn event.

• Line 5. The event is within bounds.

• Line 10. This function always return 0.

• Line 15. Repeat the xLuna ASSERT function for VCC. Assuring that the input

irq → event is an asyn trap.

5.4.7 Verification of event queue pop() function

1 i n t e v e n t q u e u e p o p (s t r u c t i r q e n t r y ∗ i r q c l a i mp (c))

2 a lways (c , c l o s e d (&QueueLock))

3 r e q u i r e s (n e s t e d (& e v e n t q u e u e))

4 r e q u i r e s (t h r e a d l o c a l (i r q))

5 w r i t e s (i r q)

6 e n s u r e s (c l o s e d (& e v e n t q u e u e))

7 {
8 i n t r e t = 1 ;

9 unsigned i n t i ;

10 s p a r c d i s a b l e i n t e r r u p t s () ;

11

12 spec (V C C S P E C F U N s p a r c d i s a b l e i n t e r r u p t s (spec (&QueueLock) spec (c)) ;)

13

14 / / unwrap / wrap p r o t o c o l

15 unwrap(& e v e n t q u e u e) ;

16 unwrap(& e v e n t q u e u e . s y n c e v e n t) ;

17 spec (

18 unsigned j ;

19 f o r (j = 0 ; j < NUMBER OF ASYN EVENTS ; j ++)

52 CHAPTER 5. IRQ MANAGER FORMAL VERIFICATION

20 i n v a r i a n t (j <= NUMBER OF ASYN EVENTS)

21 i n v a r i a n t (f o r a l l (unsigned i ; i < NUMBER OF ASYN EVENTS ; i < j ?

22 mutab le (& e v e n t q u e u e . a s y n e v e n t s + i) : wrapped (& e v e n t q u e u e .

a s y n e v e n t s + i)))

23 w r i t e s (a r r a y r a n g e (& e v e n t q u e u e . a s y n e v e n t s , NUMBER OF ASYN EVENTS))

24 {
25 unwrap(& e v e n t q u e u e . a s y n e v e n t s + j) ;

26 }) / / End unwrap / wrap p r o t o c o l

27

28 i f (e v e n t q u e u e h a s s y n c e v e n t ()) {
29 ∗ i r q = e v e n t q u e u e . s y n c e v e n t ;

30 e v e n t q u e u e . s y n c e v e n t . e v e n t = 0 ;

31 r e t = 0 ;

32 } e l s e {
33 f o r (i =0 ; i< NUMBER OF ASYN EVENTS ; i ++)

34 {
35 i f (e v e n t q u e u e . a s y n e v e n t s [i] . pend ing) {
36 e v e n t q u e u e . a s y n e v e n t s [i] . pend ing ;

37 i r q→d a t a = NULL;

38 i r q→e v e n t = i + TT ASYN MIN ;

39 a s s e r t (VCC SPEC FUN is asyn trap (i r q→e v e n t)) ;

40 r e t = 0 ;

41 break ;

42 }
43 }
44 }
45

46 / / r e v e r s e wrapping

47 spec (

48 unsigned j ;

49 f o r (j = 0 ; j < NUMBER OF ASYN EVENTS ; j ++)

50 i n v a r i a n t (j <= NUMBER OF ASYN EVENTS)

51 i n v a r i a n t (f o r a l l (unsigned i ; i < NUMBER OF ASYN EVENTS ; i < j ?

52 wrapped (& e v e n t q u e u e . a s y n e v e n t s + i) : mu tab le (& e v e n t q u e u e .

a s y n e v e n t s + i)))

53 w r i t e s (a r r a y r a n g e (& e v e n t q u e u e . a s y n e v e n t s , NUMBER OF ASYN EVENTS))

54 {
55 wrap(& e v e n t q u e u e . a s y n e v e n t s + j) ;

56 })

57 wrap(& e v e n t q u e u e . s y n c e v e n t) ;

58 wrap(& e v e n t q u e u e) ;

5.5. SUMMARY 53

59

60 s p a r c e n a b l e i n t e r r u p t s () ;

61 spec (V C C S P E C F U N s p a r c e n a b l e i n t e r r u p t s (spec (&QueueLock) spec (c)) ;)

62

63 re turn r e t ;

64 }

Listing 5.18: Pop event function

The difference between the Pop function and insert sync/asyn events is that we do not know

what will be event removed from the queue. Therefore, we need to unwrap all the events

in the wrap/unwrap protocol (Lines 15 to 26 and 47 to 58).

• Line 5. Now we need to give write permissions to the input parameter irq instead of

read permissions.

• Line 12 and 61. Guarantee exclusive access to the queue when the event is removed

(disable/enable interrupts).

• Line 39. Ensures that the event removed from the queue is indeed an asyn event.

The irq event removed from the queue is returned by reference in the input parameter

and then sent to their handler.

All functions demonstrated until now were automatically proven to be correct using VCC

tool suite against the specifications inserted in each function. The other IRQ manager

function, some are related with event dispatching which its execution spans to other kernel

managers outside of the scope of this thesis. Other functions manipulate the Linux stack

and processor registers. To a pure verification solution for these functions, a model of the

SPARC processor would be necessary. However, in Appendix A we show some annotations

that were added to ensure some important functional requirements of these functions.

5.5 Summary

In this chapter we have detailed the verification work applied to xLuna kernel. All the

functions presented were verified against the specifications. In the overall IRQ model

(about 1000 LOC C) were inserted proximally 700 line of VCC annotations. Were verified

54 CHAPTER 5. IRQ MANAGER FORMAL VERIFICATION

properties such as correct array index, arithmetic overflow and pointer deference or null

pointers were verified in most parts of IRQ manager. All inside function updates were

surrounded by frame conditions and all parameters validated, type invariants hold with

respect to the VCC ownership protocol. Our concurrency methodology ensure mutual

exclusion in sensible updates abstracting from the underlying executions made by xLuna

microkernel.

From this work, conclusions were pointed and the verification results gave way to future

improvements to achieve a complete xLuna formal verification. The next chapter shows

those results.

Chapter 6

Conclusions

In this thesis we have presented the design by contract approach to formal verification of a

realistic real-time embedded operating system. This work is a collaboration effort between

Critical Software and the University of Beira interior. Acquire knowledge in formal methods

has been an increasing goal inside Critical Software and this work brings a useful case study

applied to their own product. xLuna was design to run in highly critical environments such

satellite space application and avionics. Applying formal methods to xLuna leaves the idea

of a future Common Criteria security evaluation for the more demanding levels of assurance.

Design by contract approach to verify xLuna IRQ module was done in two ways using

different verification tools. In [98] is shown the Frama-C approach. The results of the

verification effort using VCC and Frama-C were already submitted for publication.

6.1 Results

One can instantly conclude that the annotations burden in VCC is greater than other veri-

fication tools (e.g. Frama-C), mainly due to the ghost code and type invariants supported

by VCC. As said before VCC memory model guarantees that objects do not overlap in

memory and played a crucial role for the safety properties verified. At this time, pre- and

post-conditions were added to approximately 80% of IRQ manager C code (the remaining

20% of the code are relative to auxiliary functions outside the scope of our verification

work). The functions were automatically verified against VCC specifications.

The concurrency verification approach guarantees sequential execution in a preemptable

environment as required by xLuna code. Moreover, the spin lock approach was already

55

56 CHAPTER 6. CONCLUSIONS

demonstrated to be suitable to VCC methodology [15, 96] and also used in PikeOS verifi-

cation[95].

6.2 VCC

VCC is being built with operating system verification in mind. However, it requires a

more demanding learning curve when addressing particular low-level code and concurrency

verification aspects. Nevertheless, the constant tool improvements and verification examples

may lower this curve.

The VCC syntax has been changing to make it more homogeneous, simpler and more

consistent. The syntax is converging to ACSL specifications (ANSI/ISO C Specification

Language, already used in Frama-C).

6.3 Future Work

Future improvements for this work can be divided in three different paths.

• Assembly code. Assembly language in kernel code can not be ignored when aiming

to an overall system verification and demanding safety standards. One possibility to

extend VCC work in xLuna is the construction of a ghost underlying hardware model

and assembly language to connect the specifications made to that ghost model. This

would allow more precise verification of the IRQ manager and other xLuna manager.

• SPARC processor. A complete ghost model of the underlying architecture could en-

able mapping ghost assembly instructions to that model which would be also suitable

for verification with VCC.

• RTEMS. RTEMS subsystem is the basis of the whole system. RTEMS Classic API

is used in several parts of xLuna kernel and it would be desirable verify the RTEMS

services used in xLuna (e.g. scheduler, thread management, etc.).

Understand unknown kernel code in a manageable time frame is not a trivial task. Therefore,

to a ’pure’, formally verified xLuna solution, would also be needed constant communication

with xLuna development team. However, for a certified solution with the highest security

6.3. FUTURE WORK 57

standards this approach is necessary, but just one step of a complex and complete formal

development cycle.

58 CHAPTER 6. CONCLUSIONS

Appendices

59

Appendix A

Other IRQ Verified Functions

A.0.1 Verification of irq set interrupt on off() function

This function is used to change if Linux is to be interrupted or not. The input parameter is

an an integer (0 or 1). It returns an integer with previous value of linux interrupt enabled.

1 r t e m s u n s i g n e d 3 2 i r q s e t i n t e r r u p t o n o f f (r t e m s u n s i g n e d 3 2 o n o f f)

2 r e q u i r e s (l i n u x i n t e r r u p t e n a b l e d == 0 | | l i n u x i n t e r r u p t e n a b l e d ==1)

3 r e q u i r e s (o n o f f == 0 | | o n o f f ==1)

4 r e q u i r e s (t h r e a d l o c a l (& l i n u x i n t e r r u p t e n a b l e d))

5 w r i t e s (& l i n u x i n t e r r u p t e n a b l e d)

6 e n s u r e s (l i n u x i n t e r r u p t e n a b l e d == o n o f f)

7 e n s u r e s (r e s u l t == 0 | | r e s u l t == 1)

8 {
9 r t e m s u n s i g n e d 3 2 r e t = l i n u x i n t e r r u p t e n a b l e d ;

10

11 l i n u x i n t e r r u p t e n a b l e d = o n o f f ;

12 # i f 0

13 i f (l i n u x i n t e r r u p t e n a b l e d) DEBUG puts no cr (”+”) ;

14 e l s e DEBUG puts no cr (” ”) ;

15 # e n d i f
16 re turn r e t ;

17 }

Listing A.1: IRQ function to interrupt Linux

• Line 2 and 3. Preconditions state the possible values for linux interrupt enabled

and on off respectively.

61

62 APPENDIX A. OTHER IRQ VERIFIED FUNCTIONS

• Line 4. Preconditions for thread locality of linux interrupt enabled.

• Line 5. Write permissions to change linux interrupt enabled.

• Line 6. Postcondition ensuring the possible results at the end of the function.

A.0.2 Verification of irq build linux regs from isf() function

This function builds the Linux registers from an old CPU interrupt stack frame. One may

connect possible annotation in this function to a ghost model of the underlying hardware.

1 s t a t i c vo id i r q b u i l d l i n u x r e g s f r o m i s f (s t r u c t p t r e g s ∗ r egs ,

C P U I n t e r r u p t f r a m e ∗ o l d i s f , u n s i g n e d 3 2 t r a p)

2 r e q u i r e s (t y p e d (r e g s))

3 r e a d s (o l d i s f)

4 r e q u i r e s (t h r e a d l o c a l (o l d i s f))

5 w r i t e s (span (r e g s))

6 {
7 r e g s → p s r = o l d i s f→p s r ;

8 i f (IS KERNEL (o l d i s f→pc))

9 r e g s→p s r |= SPARC PSR PS MASK ;

10 e l s e
11 ASSERT(0 == (r e g s→p s r & SPARC PSR PS MASK)) ;

12 i f (i s a s y n t r a p (t r a p)) {
13 r e g s→pc = o l d i s f→pc ;

14 r e g s→npc = o l d i s f→npc ;

15 } e l s e {
16 r e g s→pc = o l d i s f→t p c ;

17 r e g s→npc = o l d i s f→pc ;

18 }
19 r e g s→y = o l d i s f→y ;

20 r e g s→u r e g s [UREG G0] = PT REGS MAGIC G0 ;

21 r e g s→u r e g s [UREG G1] = o l d i s f→g1 ;

22 r e g s→u r e g s [UREG G2] = o l d i s f→g2 ;

23 r e g s→u r e g s [UREG G3] = o l d i s f→g3 ;

24 r e g s→u r e g s [UREG G4] = o l d i s f→g4 ;

25 r e g s→u r e g s [UREG G5] = o l d i s f→g5 ;

26 r e g s→u r e g s [UREG G6] = o l d i s f→g6 ;

27 r e g s→u r e g s [UREG G7] = o l d i s f→g7 ;

28 r e g s→u r e g s [UREG I0] = o l d i s f→i 0 ;

29 r e g s→u r e g s [UREG I1] = o l d i s f→i 1 ;

63

30 r e g s→u r e g s [UREG I2] = o l d i s f→i 2 ;

31 r e g s→u r e g s [UREG I3] = o l d i s f→i 3 ;

32 r e g s→u r e g s [UREG I4] = o l d i s f→i 4 ;

33 r e g s→u r e g s [UREG I5] = o l d i s f→i 5 ;

34 r e g s→u r e g s [UREG I6] = (u n s i g n e d 3 2) o l d i s f ;

35 r e g s→u r e g s [UREG I7] = o l d i s f→i 7 ;

36 }

Listing A.2: IRQ function to build Linux registers from an CPU interrupt frame

• Line 2. Requires that regs has to be valid in memory.

• Line 3. Read permissions to old isf .

• Line 4. Precondition saying that old isf points to an object that is local to this thread.

• Line 5. Write permissions to Linux regs.

A.0.3 Verification of irq build linux new isf() function

This function builds a new Linux interrupt frame. However, the stack manipulation for

Linux Subsystem are out of scope. Therefore, some details of this function are assumed to

be correct.

1 s t a t i c vo id i r q b u i l d l i n u x n e w i s f (C P U I n t e r r u p t f r a m e ∗ n e w i s f , s t r u c t
p t r e g s ∗ r egs , C P U I n t e r r u p t f r a m e ∗ o l d i s f , u n s i g n e d 3 2 t r a p)

2 r e q u i r e s (t h r e a d l o c a l (n e w i s f))

3 r e q u i r e s (t y p e d (n e w i s f))

4 w r i t e s (span (n e w i s f))

5 r e q u i r e s (t h r e a d l o c a l (o l d i s f))

6 r e q u i r e s (t y p e d (o l d i s f))

7 r e a d s (o l d i s f)

8 w r i t e s (& c o n c u r r e n t l i n u x h a n d l e r s)

9 r e q u i r e s (t h r e a d l o c a l (& m m u f a r f o r l i n u x))

10 r e q u i r e s (t h r e a d l o c a l (& m m u f s t a t u s f o r l i n u x))

11 e n s u r e s (c o n c u r r e n t l i n u x h a n d l e r s <= MAX CONCURRENT LINUX HANDLERS)

12 {
13 memcpy (n e w i s f , o l d i s f , s i z e o f (C P U I n t e r r u p t f r a m e)) ;

14 ASSERT(l i n u x i n t e r f a c e p t r) ;

15 ASSERT ((l i n u x i n t e r f a c e p t r [0] & 0x3) == 0) ;

16 assume (t y p e d (& l i n u x i n t e r f a c e p t r [0])) ;

64 APPENDIX A. OTHER IRQ VERIFIED FUNCTIONS

17 assume (t h r e a d l o c a l (& l i n u x i n t e r f a c e p t r)) ;

18 assume (t h r e a d l o c a l (& l i n u x i n t e r f a c e p t r [0])) ;

19 n e w i s f→pc = l i n u x i n t e r f a c e p t r [0] ;

20 n e w i s f→npc = unchecked (n e w i s f→pc +4) ;

21 n e w i s f→i 0 = t r a p ;

22 n e w i s f→i 1 = (u n s i g n e d 3 2) r e g s ;

23 assume (t y p e d (& l i n u x i n t e r f a c e p t r [2])) ;

24 assume (t y p e d ((unsigned i n t ∗) l i n u x i n t e r f a c e p t r [2])) ;

25 assume (t h r e a d l o c a l ((unsigned i n t ∗) l i n u x i n t e r f a c e p t r [2])) ;

26 assume (t h r e a d l o c a l (& l i n u x i n t e r f a c e p t r [2])) ;

27 n e w i s f→g6 = ∗ (unsigned i n t ∗) l i n u x i n t e r f a c e p t r [2] ;

28 i f (t r a p == TT MNA) {
29 assume (t y p e d ((u n s i g n e d 3 2 ∗) (o l d i s f→t p c))) ;

30 assume (t h r e a d l o c a l ((u n s i g n e d 3 2 ∗) (o l d i s f→t p c))) ;

31 n e w i s f→i 2 = ∗ (u n s i g n e d 3 2 ∗) (o l d i s f→t p c) ;

32 } e l s e i f (t r a p == TT DATA ACCESS) {
33 unsigned i n t f s t a t u s , f a d d r ;

34 f a d d r = m m u f a r f o r l i n u x ;

35 f s t a t u s = m m u f s t a t u s f o r l i n u x >> 6 ;

36 n e w i s f→i 2 = f s t a t u s & 1 ;

37 n e w i s f→i 3 = f s t a t u s & 2 ;

38 n e w i s f→i 4 = f a d d r & 0 x f f f f f 0 0 0 ;

39 i f (IS RTEMS KERNEL (o l d i s f→pc)) {
40 ASSERT (0) ;

41 }
42 } e l s e i f (t r a p == TT INST ACCESS) {
43 unsigned i n t f s t a t u s , f a d d r ;

44 /∗ The saved MMU r e g i s t e r s f o r Linux ∗ /

45 f a d d r = m m u f a r f o r l i n u x ;

46 f s t a t u s = m m u f s t a t u s f o r l i n u x >> 6 ;

47 n e w i s f→i 2 = 1 ;

48 n e w i s f→i 3 = 0 ;

49 n e w i s f→i 4 = f a d d r & 0 x f f f f f 0 0 0 ;

50 i f (IS RTEMS KERNEL (o l d i s f→pc)) {
51 ASSERT (0) ;

52 }
53 }
54

55 n e w i s f→i 6 f p = unchecked (((u n s i g n e d 3 2) n e w i s f) + s i z e o f (

C P U I n t e r r u p t f r a m e)) ;

56 ASSERT(c o n c u r r e n t l i n u x h a n d l e r s < MAX CONCURRENT LINUX HANDLERS) ;

65

57 unchecked (c o n c u r r e n t l i n u x h a n d l e r s ++) ;

58 n e w i s f→i 7 = c o n c u r r e n t l i n u x h a n d l e r s ;

59 }

Listing A.3: IRQ function to build Linux new CPU interrupt stack frame

• Line 2,3,5 an 6. Precondition saying that new isf and old isf point to an object that

is local to this thread and that they are valid typed objects in memory.

• Line 4. Write permissions to build the new isf .

• Line 7. Read permissions to old isf .

• Line 8. Write permissions for concurrent linux handlers.

• Line 9 and 10. Precondition saying that (mmu far for linux and mmu fstatus for linux

are local to the current thread.

• Line 11. Ensure that concurrent linux handlers stays within bounds when leaving

this function.

• Lines 16,17,18,23,24,25,26,29 and 30. Properties assumed to be correct.

66 APPENDIX A. OTHER IRQ VERIFIED FUNCTIONS

References

[1] DO-178 Industry Group for Engineers. Website. http://www.do178site.

com/, 2009. [cited at p. 1]

[2] Functional Safety and IEC 61508. Website. http://www.iec.ch/

functionalsafety/. [cited at p. 1]

[3] The Common Criteria for Information Technology Security Evaluation. Website.

http://www.commoncriteriaportal.org/, 2009. [cited at p. 1]

[4] B. Meyer. Applying ”design by contract”. IEEE COMPUTER, 25:40–51, 1992.

[cited at p. 2]

[5] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of

the ACM,Pages: 576-580, 1969. [cited at p. 2]

[6] Frama-C. Website. http://frama-c.com/. [cited at p. 2]

[7] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,

W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.

5674:23–42, 2009. Invited paper. [cited at p. 2, 5, 29]

[8] Gary T. Leavens and Y. Cheon. Design by contract with jml. jml tutorial. http:

//www.rtems.com/, 2006. [cited at p. 2, 5]

[9] K. Rustan M. Leino M. Barnett and W. Schulte. The spec# programming system: An

overview. In CASSIS 2004, 3362, 2004. [cited at p. 2, 5]

[10] John Barnes. High Integrity Software: The SPARK Approach to Safety and Security.

Addison Wesley, 2003. [cited at p. 2]

[11] SA. Critical Software. Website. http://www.criticalsoftware.com/.

[cited at p. 2]

67

http://www.do178site.com/
http://www.do178site.com/
http://www.iec.ch/functionalsafety/
http://www.iec.ch/functionalsafety/
http://www.commoncriteriaportal.org/
http://frama-c.com/
http://www.rtems.com/
http://www.rtems.com/
http://www.criticalsoftware.com/

68 REFERENCES

[12] Joaquim J. Tojal, José M. Faria, Sim ao M. de Sousa, and Carlos Carloto. Towards a

formally verified kernel module. 2010. [cited at p. 3]

[13] M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte. VCC: Contract-based

modular verification of concurrent C. In ICSE Companion 2009: 31st International

Conference on Software Engineering, pages 429–430. IEEE, May 2009. [cited at p. 6]

[14] E. Cohen, M. Moskal, W. Schulte, and S. Tobies. A precise yet efficient memory

model for C. In 4th International Workshop on Systems Software Verification (SSV

2009), volume 254 of Electronic Notes in Theoretical Computer Science, pages 85–

103. Elsevier Science B.V., 2009. [cited at p. 7, 28, 33]

[15] E. Cohen, M. Moskal, W. Schulte, and S. Tobies. A practical verification methodology

for concurrent programs. (MSR-TR-2009-15), February 2009. [cited at p. 7, 56]

[16] E. Cohen, M. Moskal, W. Schulte, and S. Tobies. Local verification of global invariants

in concurrent programs. In Computer Aided Verification (CAV 2010), Lecture Notes

in Computer Science, Edinburgh, UK, July 2010. Springer. To appear. [cited at p. 8]

[17] M. Zulianello P. Braga, L. Henriques. xluna:extending free/open-source real-time

executive for on-bord space applications. Small Satellites Systems and Services The

ESA 4S Symposium, 2008. [cited at p. 11]

[18] Real-Time Executive for Multiprocessor Systems (RTEMS). Website. http://

www.rtems.com/, 2009. [cited at p. 11]

[19] Snapgear Embedded Linux. Website. http://www.snapgear.org/, 2009.

[cited at p. 11]

[20] G. Klein. Operating system verification — an overview. Sãdhanã, 34(1):27–69,

February 2009. [cited at p. 19, 24]

[21] SRI International. Website. http://sri.com/, 2009. [cited at p. 19]

[22] Peter G. Neumann and Richard J. Feiertage. Psos revisited. ACSAC, 2003. [cited at p. 19,

20]

[23] Peter G. Neumann and Richard J. Feiertage. The foundations of a provably secure

operating system (psos). In Proceedings of the National Computer Conference, 1979.

[cited at p. 20]

http://www.rtems.com/
http://www.rtems.com/
http://www.snapgear.org/
http://sri.com/

REFERENCES 69

[24] P.G. Neumann, R.S Boyer, R.J. Feiertag, K.N. Levitt, and L. Robinson. A provably

secure operating system: The system, its applications, and proofs. technical report csl-

116. Computer Science Laboratory, SRI International, Menlo Park, California, 1980.

[cited at p. 20]

[25] L. Robinson and O. Roubine. Special - a specification and assertion language. Tech-

nical Report-Stanford Research Institute, Menlo Park, California, 1977. [cited at p. 20]

[26] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system.

In Deepak Kapur, editor, 11th International Conference on Automated Deduction

(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,

Saratoga, NY, jun 1992. Springer-Verlag. [cited at p. 20, 22, 25]

[27] Ford Aerospace & Communications Corporation. Kernelized secure operating system

(ksos). Executive summary for Defense Supply Service-The Pentagon, 1979. [cited at p. 20]

[28] T. Perrine, J. Codd, and B. Hardy. An overview of the kernalized secure operating

system (ksos). In Proceedings of the Seventh DoD/NBS Computer Security Initiative

Conference, 1984. [cited at p. 20]

[29] University of California at Los Angeles. Website. http://www.ucla.edu/,

2009. [cited at p. 20]

[30] Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek. Specification and

verification of the ucla unix security kernel. Commun. ACM, 1980. [cited at p. 20]

[31] C. A. R. Hoare and Niklaus Wirth. An axiomatic definition of the programming

language pascal. IEEE Transactions On Software Engineering, 1975. [cited at p. 20]

[32] D.I. Good, R.L. London, and W.W. Bledsoe. An interactive program verification

system. Technical Report-Stanford Research Institute, Menlo Park, California, 1977.

[cited at p. 20]

[33] William R. Bevier. A verified operating system kernel. Report 11, Computational

Logic Inc., Austin, Texas,, 1987. [cited at p. 21]

[34] William R. Bevier. Kit: A study in operating system verification. Technical Report 28,

Computational Logic Inc., Austin, Texas,, 1988. [cited at p. 21]

http://www.ucla.edu/

70 REFERENCES

[35] R. S. Boyer and M. Kaufmann. The boyer-moore theorem prover and its interactive

enhancement. Computers & Mathematics with Applications, 1995. [cited at p. 21]

[36] ACL2. Website. http://userweb.cs.utexas.edu/users/moore/

acl2/, 2009. [cited at p. 21, 25]

[37] University of Technology Dresden. Website. http://tu-dresden.de/en,

2009. [cited at p. 21]

[38] M. Hohmuth and H. Haertig. Pragmatic nonblocking synchronization for real-time

systems. In Proceedings of the 2001 Usenix Annual Technical Conference, 2001.

[cited at p. 21]

[39] J. Liedtke. On micro-kernel construction. In Proceedings of the 15th ACM Symposium

on Operating systems principles, 1995. [cited at p. 21]

[40] M. Hohmuth and H. Tews. The vfiasco approach for a verified operating system. In 2nd

ECOOP Workshop on Program Languages and Operating Systems, 2005. [cited at p. 21,

22]

[41] Gerard J. Holzmann. The spin model checker: Primer and reference manual. Addison-

Wesley Professional, 2003. [cited at p. 21]

[42] Promela Language. Website. http://www.dai-arc.polito.it/dai-arc/

manual/tools/jcat/main/node168.html, 2009. [cited at p. 22]

[43] Endrawaty. Verification of the fiasco ipc implementation. Thesis Report, International

Master Program Computational Logic, 2005. [cited at p. 22]

[44] H. Tews. Microhypervisor verfication: possible approaches and relevant properties. In

Proceedings of the NLUUG Voorjaarsconferentie 2007, 2007. [cited at p. 22]

[45] E.G.H. Schierboom. Verification of fiascos ipc implementation. Master thesis, 2007.

[cited at p. 22]

[46] P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau, A. Chitturi, and G. Back. Formal

methods: A practical tool for os implementors. Proceedings of the 6th Workshop on

Hot Topics in Operating Systems, 1997. [cited at p. 22]

[47] G. Duval and J. Julliand. Modeling and verification of the rubis microkernel with spin.

In Proceedings of the First SPIN Workshop, 1995. [cited at p. 22]

http://userweb.cs.utexas.edu/users/moore/acl2/
http://userweb.cs.utexas.edu/users/moore/acl2/
http://tu-dresden.de/en
http://www.dai-arc.polito.it/dai-arc/manual/tools/jcat/main/node168.html
http://www.dai-arc.polito.it/dai-arc/manual/tools/jcat/main/node168.html

REFERENCES 71

[48] T. Cattel. Modelization and verification of a multiprocessor realtime os kernel.

Proceedings of the 7th IFIP WG6.1 International Conference on Formal Description

Techniques VII, 1995. [cited at p. 22]

[49] Jonathan S. Shapiro, Jonathan M. Smith, , and David J. Farber. Eros: a fast capability

system. In In Symposium on Operating Systems Principles, pages 170-185, 1999.

[cited at p. 23]

[50] J. Shapiro, S. Sridhar, and S. Doerrie. Bitc (0.11 transitional) language specification.

BitC Documentation, the BitC Language and System, 2008. [cited at p. 23]

[51] J. Shapiro, M. Scott Doerrie, E. Northup, and M. Miller. Towards a verified, general-

purpose operating system kernel. In 1st NICTA Workshop on Operating System

Verification, 2004. [cited at p. 23]

[52] H. Tuch, G. Klein, and G. Heiser. Os verification — now! In Margo Seltzer, editor,

Proc. 10th Workshop on Hot Topics in Operating Systems (HotOS X), 2005. to appear.

[cited at p. 23]

[53] J. Liedtke, U. Dannowski, K. Elphinstone, G. Liefländer, E. Skoglund, V. Uhlig,

C. Ceelen, A. Haeberlen, and M. Völp. The l4ka vision, April 2001. [cited at p. 23]

[54] NICTA-Australia’s ICT Research Centre of Excellence. Arm architecture and systems.

http://www.cse.unsw.edu.au/˜disy/L4/MIPS/, 2001. [cited at p. 23]

[55] NICTA-Australia’s ICT Research Centre of Excellence. Secure microkernel project

(sel4). http://ertos.nicta.com.au/research/sel4/, 2009. [cited at p. 23]

[56] Leonid Ryzhyk. The arm architecture. 2006. [cited at p. 23]

[57] Haskell programming language. Website. http://www.haskell.org/, 2009.

[cited at p. 23]

[58] Isabelle proof assistant. Website. http://isabelle.in.tum.de, 2009.

[cited at p. 24]

[59] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:

Formal verification of an OS kernel. In Proc. 22nd ACM Symposium on Operating

http://www.cse.unsw.edu.au/~disy/L4/MIPS/
http://ertos.nicta.com.au/research/sel4/
http://www.haskell.org/
http://isabelle.in.tum.de

72 REFERENCES

Systems Principles (SOSP), pages 207–220, Big Sky, MT, USA, October 2009. ACM.

[cited at p. 24]

[60] G. Klein. Correct OS kernel? proof? done! USENIX ;login:, 34(6):28–34, Dec 2009.

[cited at p. 24]

[61] X. Feng, Z. Shao, Y. Guo, and Y. Dong. Certifying low-level programs with hardware

interrupts and preemptive threads. Journal of Automated Reasoning (Special Issue on

Operating System Verification) 42 (2-4): 301-347, 2009. [cited at p. 24]

[62] specware tool. Website. http://www.specware.org/, 2007. [cited at p. 24]

[63] W. Martin, P. White, F. S. Taylor, and A. Goldberg. Formal construction of the math-

ematically analyzed separation kernel. Proceedings of the 15th IEEE international

conference on Automated software engineering, 2000. [cited at p. 24]

[64] D. Greve and M. Wilding. A separation kernel formal security policy. Rockwell

Collins, Inc. Advanced Technology Center, 2000. [cited at p. 25]

[65] Information Assurance Directorate. U.s. government protection profile for separation

kernels in environments requiring high robustness. IAD,Version 1.03, 2007. [cited at p. 25]

[66] David Greve, Raymond Richards, and Matthew Wilding. A summary of intrinsic

partitioning verification. In In Proceedings of the Fifth International Workshop on the

ACL2 Theorem Prover and Its Applications, 2004. [cited at p. 25]

[67] C. Heitmeyer, M. Archer, E. Leonard, and J. McLean. Formal specification and verifi-

cation of data separation in a separation kernel for an embedded system. Proceedings

of the 13th ACM conference on Computer and communications security,Pages: 346-

355, 2006. [cited at p. 25]

[68] C. Heitmeyer, M. Archer, E. Leonard, and J. McLean. Applying formal methods

to a certifiably secure software system. IEEE Transactions on Software Engineer-

ing,Pages: 82-98, 2008. [cited at p. 25]

[69] United States Naval Research Laboratory. Website. http://www.nrl.navy.

mil/, 2009. [cited at p. 25]

http://www.specware.org/
http://www.nrl.navy.mil/
http://www.nrl.navy.mil/

REFERENCES 73

[70] M. Archer, C. Heitmeyer, and E. Riccobene. Using tame to prove invariants of

automata models: Two case studies. Proceedings of the third workshop on Formal

methods in software practice,Pages: 25 - 36, 2000. [cited at p. 25]

[71] M. Archer, E. Leonard, and M. Pradella. Analyzing security-enhanced linux policy

specifications. Proceedings of the 4th IEEE International Workshop on Policies for

Distributed Systems and Networks, 2003. [cited at p. 25]

[72] G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham, M. Fhndrich, C. Hawblitzel,

O. Hodson, S. Levi, N. Murphy, B. Steensgaard, D. Tarditi, T. Wobber, and B. Zill.

An overview of the singularity project. Microsoft Research Technical Report MSR-

TR-2005-135, 2005. [cited at p. 26]

[73] Galen C. Hunt and James R. Larus. Singularity: rethinking the software stack. ACM

SIGOPS Operating Systems Review,Pages: 37 - 49, 2007. [cited at p. 26]

[74] M. Fhndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. Larus, and S. Levi.

Language support for fast and reliable message-based communication in singularity

os. ACM SIGOPS Operating Systems Review,Pages: 177 - 190, 2006. [cited at p. 26]

[75] Spec# Microsoft Research. Website. http://research.microsoft.com/

en-us/projects/specsharp/, 2009. [cited at p. 26]

[76] M. Barnett, B. Evan Chang, R. Deline, B. Jacobs, and K. Rustanm. Leino. Boogie:

A modular reusable verifier for object-oriented programs. In Formal Methods for

Components and Objects: 4th International Symposium, FMCO 2005, volume 4111

of Lecture Notes in Computer Science, pages 364–387. Springer, 2006. [cited at p. 26]

[77] Green Hills Integrity real-time Operating System. Website. http://www.ghs.

com/products/safety_critical/integrity-do-178b.html, 2009.

[cited at p. 26]

[78] Wind River’s VxWorks real-time Operating System. Website. http://www.

windriver.com/products/vxworks/index.html, 2009. [cited at p. 26]

[79] The Verisoft Consortium. Website. http://www.verisoft.de, 2008. [cited at p. 27]

[80] The Verisoft XT Consortium. Website. http://www.verisoftxt.de/, 2009.

[cited at p. 27]

http://research.microsoft.com/en-us/projects/specsharp/
http://research.microsoft.com/en-us/projects/specsharp/
http://www.ghs.com/products/safety_critical/integrity-do-178b.html
http://www.ghs.com/products/safety_critical/integrity-do-178b.html
http://www.windriver.com/products/vxworks/index.html
http://www.windriver.com/products/vxworks/index.html
http://www.verisoft.de
http://www.verisoftxt.de/

74 REFERENCES

[81] S. Beyer, C. Jacobi, D. Kroening, D. Leinenbach, and W. Paul. Putting it all

together: Formal verification of the VAMP. International Journal on Software Tools

for Technology Transfer, 8(4–5):411–430, August 2006. [cited at p. 27]

[82] M. Hillebrand and S. Tverdyshev. Formal verification of gate-level computer

systems. In Anna Frid, Andrey Morozov, Andrey Rybalchenko, and Klaus W. Wagner,

editors, Computer Science – Theory and Applications, Fourth International Computer

Science Symposium in Russia, CSR 2009, Novosibirsk, Russia, August 18–23, 2009,

Proceedings, volume 5675 of Lecture Notes in Computer Science, pages 322–333.

Springer, 2009. [cited at p. 27]

[83] T. In der Rieden and A. Tsyban. CVM – A verified framework for microkernel

programmers. In 3rd International Workshop on Systems Software Verification (SSV

2008), volume 217C of Electronic Notes in Theoretical Computer Science, pages 151–

168. Elsevier Science B.V., 2008. [cited at p. 27]

[84] M. Daum, J. Dörrenbächer, and S. Bogan. Model stack for the pervasive verification of

a microkernel-based operating system. In Bernhard Beckert and Gerwin Klein, editors,

Proceedings, 5th International Verification Workshop (VERIFY), Sydney, Australia,

volume 372 of CEUR Workshop Proceedings, pages 56–70. CEUR-WS.org, August

2008. [cited at p. 27]

[85] S. Bogan. Formal Specification of a Simple Operating System. PhD thesis, Saarland

University, Computer Science Department, August 2008. [cited at p. 27]

[86] G. Beuster, N. Henrich, and M. Wagner. Real world verification – Experiences from

the Verisoft email client. In Geoff Sutcliffe, Renate Schmidt, and Stephan Schulz,

editors, Proceedings of the FLoC’06 Workshop on Empirically Successful Computer-

ized Reasoning (ESCoR 2006), volume 192 of CEUR Workshop Proceedings, pages

112–125. CEUR-WS.org, August 2006. [cited at p. 27]

[87] Inc. Advanced Micro Devices (AMD). Amd64 architecture programmers man-

ual:volumes 13. 2006. [cited at p. 28]

[88] Intel Corporation. Intel 64 and ia-32 architectures software developers man-

ual:volumes 13b. 2006. [cited at p. 28]

[89] D. Leinenbach and T. Santen. Verifying the Microsoft Hyper-V Hypervisor with VCC.

In Jean-Raymond Abrial, Michael Butler, Rajeev Joshi, Elena Troubitsyna, and Jim

REFERENCES 75

C. P. Woodcock, editors, 09381 Extended Abstracts Collection – Refinement Based

Methods for the Construction of Dependable Systems, number 09381 in Dagstuhl

Seminar Proceedings, pages 104–108, Dagstuhl, Germany, 2010. Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, Germany. [cited at p. 28, 29]

[90] S. Maus, M. Moskal, and W. Schulte. Vx86: x86 assembler simulated in C powered by

automated theorem proving. In José Meseguer and Grigore Roşu, editors, Algebraic

Methodology and Software Technology (AMAST 2008), volume 5140 of Lecture

Notes in Computer Science, pages 284–298, Urbana, IL, USA, July 2008. Springer.

[cited at p. 28, 43]

[91] SYSGO embedding innovations. Website. http://www.sysgo.com/, 2007.

[cited at p. 29]

[92] C. Baumann and T. Bormer. Verifying the PikeOS microkernel: First results in the

Verisoft XT Avionics project. In Ralf Huuck, Gerwin Klein, and Bastian Schlich,

editors, Doctoral Symposium on Systems Software Verification (DS SSV 2009), number

AIB-2009-14 in Aachener Informatik Berichte, pages 20–22. Department of Computer

Science, RWTH Aachen, June 2009. [cited at p. 29]

[93] C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Formal verification of a

microkernel used in dependable software systems. In Bettina Buth, Gerd Rabe,

and Till Seyfarth, editors, Computer Safety, Reliability, and Security (SAFECOMP

2009), volume 5775 of Lecture Notes in Computer Science, pages 187–200, Hamburg,

Germany, 2009. Springer. [cited at p. 29]

[94] C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Better avionics software

reliability by code verification – A glance at code verification methodology in the

Verisoft XT project. In Embedded World 2009 Conference, Nuremberg, Germany,

March 2009. Franzis Verlag. To appear. [cited at p. 30]

[95] C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Ingredients of operating system

correctness. In Embedded World 2010 Conference, Nuremberg, Germany, March

2010. To appear. [cited at p. 30, 56]

[96] Mark A. Hillebrand and Dirk C. Leinenbach. Formal verification of a reader-writer

lock implementation in C. In 4th International Workshop on Systems Software

http://www.sysgo.com/

76 REFERENCES

Verification (SSV 2009), volume 254 of Electronic Notes in Theoretical Computer

Science, pages 123–141. Elsevier Science B.V., 2009. [cited at p. 30, 56]

[97] Inc. SPARC International. The sparc architecture manual. [cited at p. 46]

[98] C. Carloto. Towards a formally verified kernel using the frama-c. Master thesis, 2010.

[cited at p. 55]

	Acknowledgements
	Abstract
	Keywords
	Contents
	List of Figures
	Acronyms
	Introduction
	Motivation
	Context
	Work Definition and Objectives
	Contribution
	Outline

	VCC: Verified C Compiler
	Verification Toolchain
	VCC Annotations
	Ownership, Type Invariants
	Ghost Code
	VCC clauses
	Summary

	xLuna Real-Time Operating System
	Memory manager
	Interrupt Manager
	Inter-System Communication
	Communication on RTEMS side
	Communication on Linux side

	System call example
	Summary

	Operating System Verification: Related Work
	Early Projects
	Recent Projects
	Verisoft/VerisoftXT Project
	Summary

	IRQ Manager Formal Verification
	Verification Target
	IRQ Design
	VCC Verification Approach
	Queue types and invariants
	VCC ghost types, invariants and initialization
	Verification of lock_init() function
	Verification of irq_init() function
	Verification of irq_monitor_entry() function
	Verification of event_queue_is_not_empty() function
	Verification of event_queue_has_sync_event() function
	Verification of irq_handle_event() function

	Concurrency Verification
	Lock approach
	Verification of irq_insert() function
	Verification of sparc_disable_interrupts() function
	Verification of sparc_enable_interrupts() function
	Verification of event_queue_insert_sync() function
	Verification of event_queue_insert_async() function
	Verification of event_queue_pop() function

	Summary

	Conclusions
	Results
	VCC
	Future Work

	Appendices
	Other IRQ Verified Functions
	Verification of irq_set_interrupt_on_off() function
	Verification of irq_build_linux_regs_from_isf() function
	Verification of irq_build_linux_new_isf() function

	References

