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Abstract

This dissertation is included in the MSc course in Computer Science of the University
of Beira Interior. It is a Formal Method’s related dissertation, where it’s used an Hoare
Logic based paradigm, the Design by Contract (DbC).

This project consists in doing a Formal Verification of an industrial real-time Operating
System (OS) kernel. The OS kernel that is verified is the eXtending free/open-source
reaL-time execUtive for oN-board space Applications (xLuna). It is an OS from a
portuguese company, CSW. The code that was verified is the real source code of
xLuna. More precisely the source code of the Interrupt request (IRQ) Manager module.

The platform that was used to do the verification is the FRAmework for Modular
Analyses of C (Frama-C) Toolset which is a platform that allows the verification of C
code. Some incompatibilities were found in the use of the Frama-C in the source code
of the IRQ Manager. Both results and Frama-C incompatibilities will be analyzed in
the dissertation.
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Chapter 1

Introduction

This is a project inserted in the MSc course and it is the dissertation that concludes
it. This MSc course was orientated to the formal methods, artificial intelligence and
informations security. In continuation to the work done in the project of the under-
graduate course, that was a project based in the formal methods 1. This dissertation is
also related to the formal methods. In particularly it is related to the DbC [1, 2, 3]. It
is a formal software methodology, based on the Hoare logic paradigm [4, 5, 6].

In the beginning, we have the idea of making a formal verification of a critical system.
After making an analyze of the critical system to verify, we made contact with some
projects that has been done in verification of OS Kernel’s. Almost every computer
system depends directly on OS behavior. So, the verification of an OS Kernel is an
almost perfect and challenging target to a Formal Verification.

An OS Kernel is a critical application, and on these applications it is hard to
know how much trust we can put on the application. So, the common criteria [7] for
information technology security evaluation defines various levels of assurance. These
levels go from Evaluation Assurance Level (EAL)-1 to EAL-7. Now a little explanation
of those levels:

- EAL-1: Functionally Tested.

- EAL-2: Structurally Tested.

- EAL-3: Methodically Tested and Checked.

- EAL-4: Methodically Designed, Tested and Reviewed.
1This project was about the formal development of a voting system using the DbC paradigm

1



2 CHAPTER 1. INTRODUCTION

- EAL-5 : Semi formally Designed and Tested.

- EAL-6: Semi formally Verified, Designed and Tested.

- EAL-7 : Formally Verified, Designed and Tested.

Even the highest assurance level, EAL-7, does not require formal verification of the
system implementation. However there is the tag fully formally verified that guarantees
that the system is 100% functionally correct. That means that the implementation al-
ways strictly follows high level abstract specification of kernel behavior. This guarantee
that the kernel never crashes and never performs unsafe operations. But we can say
even more: the behavior of the kernel in every situation is precisely predictable.

However in the avionic industry there is another security evaluation, the D0-178B,
that is the safety and reliable standard in avionics and aerospace systems. This
standards provides different safety levels, Design Assurance Levels (DAL). They are
defined on the basis of potential effects on flight safety, having the following degrees of
criticality: catastrophic, dangerous, major, minor, and no effect. Catastrophic criticality
corresponding to DAL A is the highest and no effect criticality corresponding to DAL
E is the lowest. In DAL the utilization of the Formal Methods are only highly
recommended actually. In a near future it is very probable that the use of Formal
Methods will be required.

Now that we have a target to verify we needed to choose the platform that will
be used in the verification. There were various platforms that implement the DbC
paradigm. Now I will list some of them:

- Spec# [8].

- Java Modeling Language (JML) [9].

- A Verifier for Concurrent C (VCC) [10].

- Eiffel [11].

- Ruby-contract [12].

- Frama-C [13].

The first idea was to use the Frama-C platform, previously Caduceus, which is a
static and deductive verifying platform, and it is based in the DbC paradigm. After
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analyzing Frama-C, we thought that it was the perfect platform to my project. The
Frama-C platform is co-developed by two French public institutions:

- Commissariat a la Energie Atomique (CEA)-LIST and

- Institut National de Recherche en Informatique et en Automatique (INRIA)-
Saclay.

The next task was to choose what OS Kernel will be verified. At this moment a
portuguese company, CSW, launched the challenge to do the verification of their OS,
the xLuna. After that, we had a target to verify and a platform to do the verification.
After this, we started to study the xLuna and decided to do the verification in small
steps, module by module.

So the chosen module to start the verification was the xLuna IRQ Manager. With the
verification of this module we expect to learn the lessons that will make the verification
of the other modules easier.

So, the work made on this dissertation was the static and deductive verification of
the IRQ Manager, which is a module of xLuna OS. To do this verification we used the
Frama-C platform.

Now i will made a small summary of the organization of the dissertation:

- Chapter 2: The description of the tools used in the verification.

- Chapter 3: The State of the Art of OS verification.

- Chapter 4: The introduction and analyze of xLuna.

- Chapter 5 : The verification chapter with the presentation and analyze of the
contracts.

- Chapter 6: Conclusions of the verification and of the use of Frama-C and Future
Work.
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Chapter 2

Tools

In this chapter the description of the tools used in the project will be made. The tools
used were:

- Frama-C and its plug-ins:

1. Jessie

2. Value analysis

3. Occurrence analysis

4. Sparecode Analysis

- Why Platform

- Alt-Ergo Prover

2.1 Static Analysis

Static analysis [14, 15] is the inference of behavioral essence of a program without
in fact requiring its execution. It consists in particular inspection of the code. In the
context of program verification it is used with the objective of finding possible errors
or detecting possible anomalies in the code or simply inspecting its behavior. Several
of such analyses are available in the Frama-c toolset, but also in the following:

- BLAST

- Clang

5



6 CHAPTER 2. TOOLS

- Sparse

- Splint

Some of the techniques used in the static analysis are: model checking, data-flow
analysis, symbolic analysis and abstract interpretation.

Abstract interpretation is heavily use in the Frama-C framework. It consists in a
abstract machine that approximates the behavior of the program in analyze.

2.2 Frama-C

2.2.1 Frama-C introduction

Frama-C [13] is a platform that provides a collaborative environment for several C
program analyses (that come in the form of plug-ins). These analyses are of two type:

1. Static Analysis: as previously introduced, these analyses compute certain aspect
of the behavior of the inspected program that are useful for the verification.

2. Deductive Analysis: these analysis allow a hoare-logic based deductive verifica-
tion of the inspected code. The main deductive plug-in is the Jessie plug-in that
will be detailed in the next section.

The annotations in Frama-C are written in ACSL. For this work, we make heavy use
of the deductive verification plug-in. Figure 2.1 depicts how Frama-C platform works.

Figure 2.1: Frama-C platform. Excerpt from http://frama-c.com/
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2.2.2 Deductive Analysis in Frama-C

The deductive verification is done through Jessie [16], which is a plug-in of Frama-C.
It is the Frama-C plugin that enables design by contract development of C programs.
The contracts are written in the ACSL. The generated verification conditions can be
submitted to external automatic provers such as Simplify [17], Alt-Ergo [18], Z3 [19],
Yices [20], and CVC3 [21]. So, to summarize, the Jessie plug-in takes a C annotated
program and convert it in a file that can be used in the Why platform.

2.2.3 Static Analysis in Frama-C

Among the several available static analysis plug ins, we highlight those that we use
in our verification task:

- Value analysis

- Occurrence analysis

- Sparecode Analysis

The value analysis plug-in control the values of all the variables in the program. It
tries to find variables that may not have the right behavior.

In the Occurrence analysis we can track a variable along the program. We pick an
variable and the tool searches all the code and shows where that variable is used.

The spare code plug-in simply analysis the code looking for dead code.

2.2.4 ACSL

The ACSL [22] is the specification language used in Frama-C. With ACSL we can add
pre and post conditions and invariants. This contracts are written in C comments. So
we can compile the annotated program with any C Compiler. Example:

1 /∗@ r e q u i r e s \ v a l i d ( p ) ;
2 @ ass igns ∗p ;
3 @ ensures ∗p == \ old (∗ p ) + 1 ;
4 @∗ /
5 vo id i n c r s t a r ( i n t ∗p ) ;

Listing 2.1: ACSL Example
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The contract is given by the comment, which starts with /*@. I ends with @*/. In
the example we have a precondition in the first line. In the second line an assigns
clause, that indicates that the pointer p is in a safely memory location. The third line
is an poscondition that ensures that the pointer p will have its old value incremented
by one.

2.3 Why platform

The Why tool [23] takes annotated programs written in a very simple imperative
programming language of its own, produces verification conditions and sends them to
existing provers (proof assistants such as Coq [24], PVS [25] etc. or automatic provers
such as Simplify, Alt- Ergo, etc.). In this project it was used the Alt-Ergo. In the
figure 2.2 it is possible to see how the why platform works on Frama-C.

Figure 2.2: Why platform. Excerpt from: http://ralyx.inria.fr/

2.4 Alt-Ergo prover

It is an automatic theorem prover used in program verification. Alt-ergo is a SMT
prover and contains a SAT-solver and an instantiation mechanism. In the figure 2.3 we
can see Alt-ergo overall architecture.
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Figure 2.3: Alt-ergo Architecture. Excerpt from ergo.lri.fr/

2.5 Summary

This was the description of the tools used in the verification of the IRQ Manager that
will be analyzed in the chapter 5.
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Chapter 3

Related Work

In this chapter, the State of the Art of OS Verification will be presented. To start it
will be shown a table that have the five most important verifications done on an OS.
Next the work that was done in those projects will be explained.

So, this chapter will have the following structure:

- An overview of the OS verification projects.

- The explanation of the following projects:

1. UCLA Secure Unix.

2. KIT.

3. VFiasco/Rodin.

4. Verisoft.

5. L4 Verified/seL4.

The work done in this section is highly based in the work of Gerwin Klein [26, 27, 28, 29]
that, among an impressive work on OS Verification, provides an excellent state of the
art and survey of related work.

3.1 Overview

The projects that will be presented in this chapter, are only the projects that aim to
prove functional correctness or security requirements of an OS implementation. The
table 3.1 [29] that is presented are organized as follows:

11



12 CHAPTER 3. RELATED WORK

UCLA Secure Unix Security Model 90% XIVUS 1980
KIT Isolated Tasks 100% Boyer Moore 1987

VFiasco/Rodin Does Not Crash 70% Prototype Verification System (PVS) 2001 - 2008
Verisoft Application Level 100% Isabelle 2004 - 2008

L4 Verified Security Model 100% Isabelle 2005 - 2008

Table 3.1: OS Verification Overview

- The first column has the name of the project.

- The second column contains the level of the verification.

- The third column contains the amount of specification that was made.

- The fourth column indicates the prover used.

- Finally, the fifth column contains the year of the project.

Now, in the next sections those five projects will be analyzed.

3.2 UCLA Secure Unix

UCLA Secure Data Unix [30, 31, 32] is an OS that aimed to provide a standard UNIX
interface to applications. The verification concentrate on the OS Kernel that is very
similar to the modern microkernels. This OS can provide:

- Threads.

- Access Control.

- Virtual Memory.

- Input/Output Devices.

The proof technique used was the formal refinement. The idea it is to increase the
detail of a more abstract layer that as the same behavior of the new more concrete
layer. This technique is an instance of the forward simulation, that is a more general
technique. As an example of this technique we can say pick a object, and on a more
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concrete layer pick a red object. In this example the refinement step used was reducing
the non-determinism.

As was on the table only about 90% of the specifications were completed. This
happen because the XIVUS [33] did not support pointers, so the functions that use
pointers were not covered by the simplified version of Pascal [34] that was implemented.
They had isolated all the functions that required access to pointers. However this
functions were annotated with pre and postconditions. To this verification one of the
most important component was the invariants, that needed to be true before and after
every kernel call, but not during the call.

In this project, the authors refer that the built of the contracts were painful and
tedious [30]. They also refer that the effort that they had on the specification and veri-
fication process was less than the time spent on design, implementation and debugging.

3.3 KIT

KIT [35, 36] is a short OS kernel with a simple von Neumann architecture [37]. KIT
provides:

- Access to asynchronous Input/Output Devices.

- Exception handling.

- Single-word message passing.

But it fails to provide shared memory, dynamic creation of processes and file systems.

KIT’s implementation has 620 lines of assembler source code and 300 lines of
assembler instructions. It is a lot smaller than the modern microkernels.

It was a really important OS because it was the first ever kernel that was formally
verified.

For this verification it was used the ACL2 [38] prover predecessor, the Boyer-Moore
theorem prover [39, 40]. This prover was criticized because it was really hard to read.
That happens because this theorem is very similar to pure LISP. And the parenthesis
prefix form used on LISP language was what caused the specification so hard to read.

The proof of KIT was very similar to the proof of the UCLA Secure Unix.
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After this two verifications, a long time passed into the next real attempt of verifying
the implementation of an OS. This verifications were really important because they
demonstrate that it was possible to verify an OS Kernel

3.4 VFiasco

The start of this project was in 2001, 14 years after the last project about OS verification.
Fiasco [41] is a re-implementation of the L4 microkernel. In this implementation it was
improved the following properties:

- Reliability.

- Maintainability.

- Real-Time Properties.

A small part of the L4 [42] Kernel was also removed. Fiasco implementation language
was c++ and an optimized IPC was used in assembly. The following issues were
related to be fundamental for the verification of modern microkernels:

1. As accurate formal semantics of the implementation language.

2. The view of the memory used in kernel code is more complex than the memory
used in other applications.

The solution to the second point was to create an invariant to control the behave
of the memory. But it can be broken temporarily, and on that case a more complex
semantics are needed [43, 44] .

The theorem prover used in this project was the PVS [25], and for that it was
necessary to translate the program directly to its semantics.

In the final of this project it was produced something about 70% of the specification.
The implementation was barely verified.

3.5 Verisoft

This project started in 2003 and was funded by the German Federal Ministry of
Education and Research. The initial project had the duration of 4 years. In 2007, when
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the project ended, immediately after, the successor of this project began. Its name
was Verisoft XT. The objective of this project is to reach a pervasive formal verification
starting on the application layer into the hardware, including a microkernel and a
compiler. These layers produce various abstraction levels. More details and invariants
are necessary as the level of abstraction is lower, in order to ensure overall system
correctness.

The part of the OS verification of the Verisoft Project [45, 46] is estimated to last at
least 30 years.

Now, I will explain the verification approach. It is a layered approach that goes from
the hardware into the software. The verification is implemented and formally specified.
A great number of them are verified in pen and paper proofs. The proofs checked on
the Isabelle/HOL prover [47] were about the 75% of the proofs. Now, the description of
the layers from the bottom to the top:

- Hardware: It has a VAMP microprocessor [48], that is a real processor, but it is
not widely used. It was formally verified in the PVS theorem prover [25] before
the Verisoft project started.

- Communicating Virtual Machines: This layer sets the hardware independent
interface for the rest of the kernel to run on. Because of this division the
verification effort is simpler. It will isolate the assembly level constructs.

- VAMOS [28]: It is the code that runs in the privilege mode of the hardware.
Joining this layer with the previous we have the OS Kernel. It also include a
kernel mode device driver and a memory paging. The verification of this layer is
not as advanced as the verification of the Communicating Virtual Machines layer.

- Simple Operating System (SOS) [49, 50, 51]: It is implemented in the user mode
of the hardware and runs in privileged user process. This OS have:

1. File based input/output.

2. IPS.

3. Sockets.

4. Remote procedure calls to the application level.

5. Only part of the SOS has been verified..
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- Application Layer : It only has example applications, some of them already
formally verified.

The technology used to the main code verification, was a generic environment in the
theorem prover Isabelle [47]. That tool includes a Floyd Hoare style logic.

The focus of the Verisoft was on pure implementation correctness. It does not do
any investigations in high level security policies or access control models of the OS.

3.6 L4 Verified/seL4

In this verification we had two different projects that started in 2004:

1. L4 Verified: Provide a machine-checked.

2. seL4 [52]: Formal Correctness proof of the seL4 microkernel [26].

3.6.1 seL4

By having this two parallel projects they had the goal of achieving an implementation
correctness proof for seL4 [26]. The seL4 project was completed with success in the end
of 2007. It provides the following services:

- Threads.

- IPC.

- Virtual Memory.

- Capabilities.

- Interrupt Control.

It was implemented in C and assembly. The performance of the seL4 was in
some cases even better than the performance of the L4, that is currently the fastest
microkernel. The capabilities of the seL4 are software implemented on a standard
processor architecture.
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The great integration of the teams in the two projects was a real important factor
in the success of design of the seL4 kernel [26], especially because the early feedback
from the team that was verifying L4 was very useful to the design team.

The prototype seL4 was written in Haskell [53], a pure functional language that is
very similar to the notation of the theorem prover, so it can be automatically translated
into the theorem prover. All the work of designing, implementing and validating take
6 years to complete.

3.6.2 L4 Verified

The refinement approach to the L4 Verified [54, 55] was similar to the refinement
approach of the UCLA Secure Unix. In the bottom it has the High Performance C
Implementation. Above it has the low level design. Next it has the high level design.
And finally, at the top, the access control model. All these specifications are completed.
In the total, it has around 20800 lines of code in total. 10000 lines of code are from
the C implementation. In this implementation it was used the true subset of C, so in
this way, it can me compiled with standard tools. However the following features of C
were restricted:

- Taking address of a local variable is disallowed.

- Unions are not allowed.

- Functions Pointers are also not allowed.

In the global of the project including tool, library, logic and C model development,
it took an estimated 10 years to complete.

3.7 Summary

To conclude this chapter, there is only one OS Kernel that have received the tag fully
formally verified. That was the seL4 [26]. There are few systems that have the EAL7
certification.

Being xLuna an OS that is used in the space industry, the achievement of a DAL-A
is clearly a commercial and important goal of CSW.
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Looking to the projects described above, our project is a little bit different because
we made a static and deductive approach. Also, the target of this dissertation is not
all the xLuna kernel but only a module. In this dissertation all the proofs were verified
automatically. In the projects described previously there are also a manual verification
of some proofs.



Chapter 4

xLuna

In this chapter the description of xLuna will be made. xLuna is a separation kernel. A
little introduction to separation kernel is made before the xLuna description. Then, it
will be made the global description of xLuna and also a more detailed description of
the target of our verification, the IRQ Manager.

4.1 Separation Kernel

4.1.1 Overview

A separation kernel [56] is nothing more than a minimal OS kernel that does just the
necessary to create separate execution partitions. It also controls the communications
between the partitions. A separation kernel normally manages:

1. Hardware protection mechanisms

2. Fields interrupts

3. Performs scheduling

All applications are made within and across partitions. This allows the application
security to be separated in two parts:

- Separated and controlled communications created by the separation kernel.

- How the resources are used by any application.
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The minimality of this approach permits construction of a credible assurance argu-
ment.

4.1.2 Partitioning Kernel

The partitioning kernel [57] is the part of the OS that enforces data isolation and
controls the information that flow in the memory partitions. In the memory partitions
(where software programs and data are), only authorize information flows between the
partitions. Some OS functions will be outside the partition kernel. The partitioning
kernel is used in embedded real-time systems. It is used in those systems because
those systems have strict safety and security requirements.

Some of the characteristics expected to appear in the partition kernel are:

- Real-time.

- Deterministic.

- Multiple partitions.

- Hardware-supported data isolation techniques.

4.2 xLuna

4.2.1 Overview

xLuna [58] is an OS created by CSW to provide European Space Agency (ESA) an
open source real-time kernel. The solution to the creation of this OS was to integrate
the real-time OS Real-Time Executive for Multiprocessor Systems (RTEMS) [59] and
the most used open source kernel, the Linux. The Linux kernel runs on unprivileged
mode.

To summarize, xLuna kernel has two main sub-systems:

- RTEMS: runs High Real-Time (HRT) tasks in privileged-mode.

- Linux kernel: that runs Non Real-Time (NRT) tasks executed on a restricted
mode.
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By having this separation, xLuna can activate or de-activate the Linux sub-system
at any time. It can also protect xLuna from erroneous behavior of the Linux kernel.

The RTEMS kernel is a trustable OS that has the following advantages:

1. Maintainability

2. Robustness

3. Standard Compliance

4. Performance

All this advantages makes RTEMS a great choice to use in space missions.

xLuna was designed to supports ESA’s LEON SPARC processor with the main goal
of extending the RTEMS kernel in order to enable a safely Linux execution without
jeopardizing aspects of reliability, availability, maintainability and safety. Its general
architecture is shown in Figure 4.1.

Figure 4.1: xLuna architecture

xLuna provides four main modules [58]:

- Memory Manager : enforces the isolation requirements between RTEMS and
Linux and memory protection of Linux kernel from NRT user processes.

- IRQ Manager : connects interrupts of the real hardware to the Linux kernel (which
does not have access to them) and provides services.
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- Inter-System Communication (ISC) Manager : for bidirectional communication
between HRT and NRT tasks.

- Device Drivers: for other hardware virtualizations required (e.g. timer).

The IRQ Manager was the target of the verification.

4.2.2 IRQ Manager

The principal objective of the IRQ Manager is to connect interrupts of the hardware
into the Linux kernel. At the same time, it has to ensure that the amount of time that
HRT Task-dispatching is disabled is the minimum possible.

Those are the main features provided by the IRQ Manager are:

- Incoming hardware interrupts must be managed by the Linux kernel, by catching
these interrupts and pipelining the corresponding RTEMS handlers.

- Redirect all Linux traps to the correct handlers.

- It allows Linux kernel to virtually disable interrupts.

- Take care of the time synchronization for the Linux subsystem.

- Providing RTEMS API for managing the Linux subsystems.

So, the IRQ Manager have the following four components:

1. dispatcher

2. IRQ monitor task

3. IRQ system call services

4. IRQ manager API

4.2.2.1 Dispatcher

It is the entry point of the interrupts. It has to register the events in the event queue
for the interrupts that are needed for the Linux subsystem to work well. The dispatcher
is the most fundamental part of xLuna kernel because it has to minimize the latencies
of the HRT Tasks.
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4.2.2.2 IRQ monitor task

All the events processed by the dispatcher are processed by this monitor. The IRQ
monitor task priority is higher than the linux task, but lower than all the other HRT
Tasks. The IRQ monitor task is waked when a event is inserted. It will be block again
when all the events are processed.

4.2.2.3 System call services

There are various system call services provided by the IRQ Manager. Some of them
are:

- Change the current PC to an arbitrary address and run it under user mode.

- Allow Linux interrupt handlers to return control back to the xLuna kernel.

- A system call that is used by linux to register the Kernel Interface Table.

- Allow linux to simulate the enable/disable of hardware interrupts.

- Finally a system call that is used by Linux to turn off itself.

4.2.2.4 IRQ manager API

It provides APIs for RTEMS tasks do the following tasks:

- A RTEMS task to boot Linux subsystem.

- Another RTEMS task that determine if linux task is already running.

- Finally, a RTEMS task to kill Linux task.

4.3 Summary

We described in this chapter the OS that is the target of the Formal Verification that
is described in the next chapter.
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Chapter 5

Formal Verification of IRQ Manager

In this chapter, the verification process will be explained. It is divided in six different
sections:

- Overview : A general overview of the verification.

- Functions Verified : The presentation of the contracts builded and its explanation.

- Next Steps : The list of the functions that were not verified.

- Results : The results of the proof obligations created.

- Static Verification : An analyze of how Static verification helped the construction
of the Contracts.

- Contracts Analyze : A critic analyze of the contracts.

5.1 Overview

The verification of the IRQ Manager of xLuna was the objective of this project.

The main focus of the Frama-C verification was the safety and functional issues of
xLuna IRQ Manager. The initial stage comprised the evaluation and tailoring of the
original code: since, at the moment, Frama-C does not support all the C language, some
functions had to be changed to resolve some incompatibilities. Other functions were
excluded of the verification, since the code present in those functions was completely
incompatible with Frama-C. After the initial phase, the next step was to start the
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analyze of the code and to start to build the contracts necessary to guarantee that the
code was reliable.

The main topics covered in the verification were:

- Pointer dereferencing: the code of the xLuna IRQ Manager has a significant
number of global variables and pointers. As such, pointer dereferencing was one
of the most relevant aspects;

- Arguments: analyze if the arguments that are in the function are correctly
introduced and do not prevent the functions from terminating;

- Loops Termination: analyze the body of the loops and build the necessary
contracts (loop variants and loop invariants) to prove that each loop terminates
and gives the correct result;

Now the contracts implemented will be shown. The description of the functions and
the explanation of the contracts will be presented.

5.2 Functions Verified

This section will be organized as follows:

- Each function will have a subsection with its name.

- The description of the function start the subsection.

- The original xLuna code with the contracts will follow the description.

- Next we will explain the lines were the contracts were addicted.

- Finally the number of proof obligations created by the VCGen will be shown.

5.2.1 Function event queue is not empty

Description: The objective of this function is to see if there is any event in the queue.

Function C Code:
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1 /∗@ r e q u i r e s \ va l i d _ r ange (& event_queue . asyn_events , 0 ,
NUMBER_OF_ASYN_EVENTS) ;

2 ensures \ r e s u l t==0 | | \ r e s u l t ==1;
3 ∗ /
4 s t a t i c i n l i n e i n t event_queue_ is_not_empty ( vo id )
5 {
6 i n t i ;
7 i f ( even t_queue_has_sync_event ( ) !=0) r e t u r n 1 ;
8 / / @assert NUMBER_OF_ASYN_EVENTS<=(TT_ASYN_MAX - TT_ASYN_MIN + 1) ;
9 / / @assert NUMBER_OF_ASYN_EVENTS>=0;

10 /∗@ loop i n v a r i a n t 0 <= i <= NUMBER_OF_ASYN_EVENTS;
11 @loop v a r i a n t NUMBER_OF_ASYN_EVENTS- i ;
12 @loop i n v a r i a n t NUMBER_OF_ASYN_EVENTS<=(TT_ASYN_MAX - TT_ASYN_MIN +

1) ;
13 @loop i n v a r i a n t \ f o r a l l i n t e g e r i ; 0 <= i < NUMBER_OF_ASYN_EVENTS ==>

\ v a l i d (& event_queue . asyn_events [ i ] ) ;
14 @∗ /
15 f o r ( i =0; i<NUMBER_OF_ASYN_EVENTS; i ++){
16 i f (& event_queue . asyn_even ts [ i ] . pending ) r e t u r n 1 ; }
17 r e t u r n 0 ;
18 }

Listing 5.1: Function event queue is not empty

The contracts included in this function are explained as follows:

- Line 1: This contract is a precondition: the function to finish with success needs
that the field asyn events of the event queue must be valid between 0 and the
number of asyn events.

- Line 2: A postcondition that guarantees that the output of the function is either
0 or -1. (It is 1 if the are events in the queue. If not the output is 0.)

- Line 8 and 9: Two assertions that guarantee that the number of asyn events is
valid.

- Line 10: A loop invariant that says that the integer i, is between 0 and the
number of asyn events.

- Line 11: A loop variant: it guarantees that the loop will terminate.
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- Line 13: It is a loop invariant that guarantees that in the loop all the fields of
the asyn events of the event queue are valid.

The VCGen created 33 proof obligations for this function.

5.2.2 Function event queue pop

Description: This function retires the first event from the queue.

Function C Code:
1 /∗@ r e q u i r e s \ va l i d _ r ange (& event_queue . asyn_events , 0 ,

NUMBER_OF_ASYN_EVENTS) ;
2 r e q u i r e s e v e n t _ t o _ i n d e x ( i r q ->even t ) <= NUMBER_OF_ASYN_EVENTS;
3 r e q u i r e s e v e n t _ t o _ i n d e x ( i r q ->even t ) >=0;
4 r e q u i r e s \ v a l i d ( i r q ) ;
5 ∗ /
6 i n t event_queue_pop ( s t r u c t i r q _ e n t r y ∗ i r q )
7 {
8 i n t l e v e l ;
9 i n t r e t = - 1 ;

10 i n t i ;
11 / / l e v e l = s p a r c _ d i s a b l e _ i n t e r r u p t s ( ) ;
12 i f ( event_queue_has_sync_event ( ) ) {
13 event_queue . sync_even t . e ven t = 0 ;
14 r e t = 0 ;
15 } e lse {
16 /∗@ loop i n v a r i a n t 0 <= i <= NUMBER_OF_ASYN_EVENTS;
17 @loop v a r i a n t NUMBER_OF_ASYN_EVENTS- i ;
18 @loop i n v a r i a n t NUMBER_OF_ASYN_EVENTS<=(TT_ASYN_MAX - TT_ASYN_MIN +

1) ;
19 @loop i n v a r i a n t \ f o r a l l i n t e g e r i ; 0 <= i < NUMBER_OF_ASYN_EVENTS

==> \ v a l i d (& event_queue . asyn_events [ i ] ) ;
20 @∗ /
21 f o r ( i =0; i< NUMBER_OF_ASYN_EVENTS; i ++) {
22 i f ( event_queue . asyn_events [ i ] . pending ) {
23 i r q ->data = NULL ;
24 i r q ->even t = i + TT_ASYN_MIN ;
25 r e t = 0 ;
26 break ;
27 }
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28 }
29 }
30 / / s p a r c _ e n a b l e _ i n t e r r u p t s ( l e v e l ) ;
31 r e t u r n r e t ;
32 }

Listing 5.2: Function event queue pop

The contracts included in this function are explained as follows:

- Line 1: This contract is a precondition: the function to finish with success needs
that the field asyn events of the event queue must be valid between 0 and the
number of asyn events.

- Line 2 and 3: These preconditions say that the event on irq is between 0 and
the number of asyn events.

- Line 4: A precondition that it is required that irq pointer is allocated in a safely
memory location.

- Line 16: A loop invariant that says that the integer i, is between 0 and the
number of asyn events.

- Line 17: A loop variant: it guarantees that the loop will terminate.

- Line 19: It is a loop invariant that guarantees that in the loop all the fields of
the asyn events of the event queue are valid.

The VCGen created 34 proof obligations for this function.

5.2.3 Function isc syscall dispatcher

Description: This routine implements the RTEMS semaphore release directive. It frees
a unit to the semaphore associated with ID. If a task was blocked waiting for a unit
from this semaphore, then that task will be readied and the unit given to that task.
Otherwise, the unit will be returned to the semaphore. Function C Code:

1 /∗@ r e q u i r e s \ v a l i d ( i s f ) ;
2 @ ensures \ r e s u l t ==0 | | \ r e s u l t ==1;
3 @∗ /
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4 i n t i s c _ s y s c a l l _ d i s p a t c h e r ( CPU_In ter rupt_ f rame ∗ i s f )
5 {
6 r t ems_s ta t u s_ code r e t =0;
7 / /@ a s s e r t re t >=0 && i s f ->i1 >=0;
8 i f ( i s f ->i 2 == ISC_READ ) {
9 r e t = r tems_message_queue_rece i ve ( r t e m s _ t o _ l x _ i d ,

10 ( vo id ∗ ) i s f ->i1 , i s f ->i3 ,
11 RTEMS_NO_WAIT , RTEMS_NO_TIMEOUT) ;
12 i f ( r e t == RTEMS_SUCCESSFUL) {
13 / /@ a s s e r t r e t== RTEMS_SUCCESSFUL;
14 i s f ->i0 = 0 ;
15 r tems_semaphore_re lease ( n_empty_id ) ;
16 } e lse {
17 i f ( r e t == RTEMS_UNSATISFIED)
18 / /@ a s s e r t r e t== RTEMS_UNSATISFIED ;
19 i s f ->i0 = EAGAIN ;
20 e lse
21 i s f ->i0 = EIO ;
22 }
23 r e t u r n 1 ;
24 } e lse i f ( i s f ->i 2 == ISC_WRITE ) {
25 r e t = rtems_message_queue_send ( l x _ t o _ r t e m s _ i d ,
26 ( vo id ∗ ) i s f ->i1 , i s f ->i 3 ) ;
27 i f ( r e t == RTEMS_SUCCESSFUL)
28 / /@ a s s e r t r e t== RTEMS_SUCCESSFUL;
29 i s f ->i0 = 0 ;
30 e lse {
31 i f ( r e t == RTEMS_TOO_MANY)
32 / /@ a s s e r t r e t== RTEMS_TOO_MANY;
33 i s f ->i0 = EAGAIN ;
34 e lse i f ( r e t == RTEMS_INVALID_SIZE )
35 / /@ a s s e r t r e t== RTEMS_INVALID_SIZE ;
36 i s f ->i0 = EINVAL ;
37 e lse
38 i s f ->i0 = EIO ;
39 }
40 r e t u r n 1 ;
41 } e lse i f ( i s f ->i 2 == ISC_GET_NUMBER_PENDING) {
42 i s f ->i0 = 1 ;
43 r e t u r n 1 ;
44 }
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45 r e t u r n 0 ;
46 }

Listing 5.3: Function isc syscall dispatcher

The contracts included in this function are explained as follows:

- Line 1: A precondition that requires a valid value of isf.

- Line 2: This postcondition guarantees that the output of the function will be 0 or
1.

- Line 7: An assertion that says that ret will allways equal or bigger than 0 and
that isf i1 will also be equal or bigger than 0.

- Line 13, 18, 28, 32, 35: Those assertions guarantee that the variable ret will have
the right value when enter on that if statement.

The VCGen created 23 proof obligations for this function.

5.2.4 Remaining Function

The analyze of the remaining functions is in the Appendix A.

5.3 Next Steps

In this section we will show what were the functions that were not verified. So, the
unverified functions of xLuna were:

1. irq do unhandled exception

2. irq xluna syscall dispatcher

3. irq restore linux context

4. irq build linux frame

5. irq search linux chain fp
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It was impossible to do the verification of this functions due to incompatibilities of
Frama-C with the source code present on that functions. The objective of the Verifica-
tion was to verify the real source code of IRQ Manager. In those functions there were
a lot of lines to remove due to Frama-C incompatibility. So, the solution was to not
verify that functions.

5.4 Results

In this section the results of the verification of two files will be presented: the irq.c
and the isc.c. This files are from the IRQ Manager of xLuna. The following results will
be shown:

- Why prover isc.c results.

- Why prover irq.c results.

- The result of a function of isc.c.

- The result of a function of irq.c.

- The analyze of the results.

5.4.1 ISC.C: Why prover

Here we will have a screenshot of the Why platform with the functions and the results
of the analyze. So the Figure 5.1 shows the results.

In the total the VCGen created 66 proof obligations.

5.4.2 IRQ.C: Why prover

Now a screenshot of the Why platform with the functions and the results of the analyze
will be inserted. The Figure 5.2 and Figure 5.3 shows the results.

In total were created 373 proof obligations.
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Figure 5.1: ISC

Figure 5.2: IRQ Why prover results 1/2

5.4.3 ISC.C function: Why prover

In this section a example of a isc.c function and the proof obligations created by the
why prover will be shown. In the Figure 5.4 we can see the Why analyze of the isc
call dispatcher function that is explained in the section 5.2.3.

Looking to the figure 5.4, can be seen that the proof obligations created to this
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Figure 5.3: IRQ Why prover results 2/2

function were all based in assertions and postconditions. If we look to the code
presented in the section 5.2.3, we can see that most of the contracts created were
assertions. So, we have a lot of proof obligations of assertions. The postconditions
proof obligations created were based on the return of the functions. In any return it has
to check if the postcondition contract is respected. It as also pointers dereferencing
and check arithmetic overflow.

On Figure 5.5 we can see that the why prover shows the exact place of the contract.
In this case we can see what was the assertion that was verified.

5.4.4 IRQ.C function: Why prover

Now the example of a irq.c function. As in the previous section a image with the proof
obligations created will be shown. In the Figure 5.6 we can see the Why analyze of
the event queue pop function that is explained in the section 5.2.2.

In the irq.c example we have a lot of more different proof obligations. It has
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Figure 5.4: ISC function example

Figure 5.5: ISC function example 2

preconditions checks for the functions called inside the function. Because this functions
has a loop it also checks if the variant decreases in the loops. The return of the
function is also checked in various proof obligations. Four check arithmetic overflow
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Figure 5.6: IRQ function example

proof obligations are also created. The preconditions are also verified.

In this function we had twenty nine proof obligations. One of them was a pointer
dereferencing shown on the Figure 5.7. That pointer dereferencing was the verification
of the pending field of the struct asyn events. With the contracts created the verification
of this proof obligations was a success.

Figure 5.7: IRQ function example 2
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5.4.5 Analyzies of the Proof Obligations

Looking into the past two sections of this chapter we can see that were created 66
proof obligations in the file isc.c and 373 proof obligations in the irq.c. On the total
were created 439 proof obligations by the VCGen. The automatic prover, the Alt-ergo,
proved all of those obligations with success.

5.5 Static Verification

Related to the static verification, we used three plug-ins available in Frama-C. They
were:

1. Value analysis plug-in.

2. Occurrence analysis plug-in.

3. Sparecode plug-in.

On the Figure 5.8 we can see a little example of the static verification in Frama-C.

Figure 5.8: Frama-C Static Verification

The utilization of this plug-ins were very useful in order to test how the variables
behave in all the functions. It also provides with the confirmation that there were not
any dead code in the files analyzed. It helped the building of the contracts because
with the results of the plug-ins we were able to have a better idea of the behavior of
all variables in the functions.
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5.6 Contracts Analysis

Looking into the results of the Verification we can say that the contracts added to
the code were sufficient to formally verify the functions of IRQ Manager source code
compatible with Frama-C. In the construction of the contracts we choose this contracts
because we wanted to do a totally automatic verification. So all of the verification was
orientated to building contracts that could be verified by an automatic theorem prover.
A human-directed proof was totally excluded. So, we excluded any type of contract
that couldn’t be verified by an automatic theorem prover.

5.7 Summary

In this chapter we present how the Formal Verification of the IRQ Manager was done
and what results were achieved. Following the conclusions will be shown.
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Conclusion and Future Work

6.1 Frama-C Toolset

After this work we are able to do an analyze of the platform Frama-C. It is a platform
that is in developing and in the last months has been in constant evolution. In this
moment it is a platform that is good to work with. The integration of the ACSL, Jessie
and the why platform makes Frama-C a very good platform to work in the verification of
programs. However it has some problems that the development team needs to improve.
Some of those problems are:

- Frama-C has a clearly limitation in supporting pointers. And that is a problem
when looking into the code found in an OS module.

- The error messages are not clear. Sometimes it does not says what and where
the problem is.

- As the implementation is not stable, it crashes frequently.

- Some of the contracts cause crashes in Frama-C or on its plug-ins.

Despite this errors the verification of a good part of the IRQ Manager was possible.
So, ignoring those problems, I can say that Frama-C is a very suitable tool to execute
the formal verification of C code programs. The help that the static analyzers gives
makes them a very interesting tool. Integrating ACSL, deductive analyzers and static
analyzers makes Frama-C one of the most promissing tools in Formal Verification.
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6.2 Formal Verification

With Frama-C, in the functions that we analyze, the results on the automatic prover
were a success, and all the proof obligations of those function were checked with
success. As said before, some code of a few functions were removed because of
Frama-c incompatibilities, and other functions were not analyzed because of completely
incompatibility with Frama-C. We have verified about 80% of the IRQ Manager code.
So as the Frama-C development proceed it will be possible to reintroduce the code
removed and to analyze the functions that we could not analyze with the actual version
of Frama-C. After the work done in the verification of the xLuna IRQ Manager we
should be able to proceed to other xLuna modules. As long as the xLuna modules
are not too incompatible with the actual version of Frama-C the verification of those
modules may be possible. However with the evolution of Frama-C it may be possible
to verify all of xLuna modules.

6.3 Future Work

As said in the last paragraph of the previous section, the complete verification process
of xLuna is the ultimate goal. To do that with Frama-C, it has to continue developing
into the phase that all the C Code is compatible with it.

When that happens the rest of the IRQ Manager code can be reintroduce and can
be verified. After that the other modules of xLuna can also be verified.

The ultimate goal of this type of verification is to obtain the highest standard
of safety, explained in the Introduction, EAL7. After that, the example of the seL4
verification can be pursuit and try to achieve a fully formally verified for functional
correctness xLuna.

As said before the D0-178B evaluation system is the most used in the avionics and
space industries. So, the final goal of a formal verification of xLuna is to achieve a
DAL-A. It will definitely increase the value of xLuna when compared with rival OS.
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Appendix

A.1 IRQ Manager Annotated Code

A.1.1 Function event queue insert asyn

Description: The objective of this function is to insert an asynchronous event into the
queue.

Function C Code:

1 /∗@ r e q u i r e s \ va l i d _ r ange (& event_queue . asyn_events , 0 ,
NUMBER_OF_ASYN_EVENTS) ;

2 r e q u i r e s e v e n t _ t o _ i n d e x ( i r q ->even t ) <= NUMBER_OF_ASYN_EVENTS;
3 r e q u i r e s e v e n t _ t o _ i n d e x ( i r q ->even t ) >=0;
4 r e q u i r e s \ v a l i d ( i r q ) ;
5 ensures \ r e s u l t==0 ;
6 ∗ /
7 i n t even t_queue_ inse r t _asyn ( s t r u c t i r q _ e n t r y ∗ i r q )
8 {
9 i n t ∗ pending ;

10 i n t l e v e l ;
11 ASSERT( i s _a syn_ t r ap ( i r q ->even t ) ) ;
12 / /@ a s s e r t e v e n t _ t o _ i n de x ( i r q ->even t ) <= NUMBER_OF_ASYN_EVENTS;
13 / /@ a s s e r t e v e n t _ t o _ i n de x ( i r q ->even t ) >= 0 ;
14 / /@ ensures pending == &( event_queue . asyn_events [ e v en t _ t o _ i n de x ( i r q ->

even t ) ] . pending ) + 1 ;
15 pending = &( event_queue . asyn_events [ e v e n t _ t o_ i nd e x ( i r q ->even t ) ] .
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pending ) ;
16 / / l e v e l = s p a r c _ d i s a b l e _ i n t e r r u p t s ( ) ;
17 pending = pending + 1 ;
18 / / s p a r c _ e n a b l e _ i n t e r r u p t s ( l e v e l ) ;
19 r e t u r n 0 ;
20 }

Listing A.1: Function event queue insert asyn

The contracts included in this function are explained as follows:

- Line 1: This contract is a precondition: the function to finish with success needs
that the field asyn events of the event queue must be valid between 0 and the
number of asyn events.

- Line 2 and 3: These preconditions say that the event on irq is between 0 and
the number of asyn events.

- Line 4: A precondition that it’s required that irq pointer is allocated in a safely
memory location.

- Line 14: A postcondition, placed here, because it makes it easier to analyze
because it’s right before the code line that is being analyzed. it ensures that the
pending will be equal to the field pending in the event queue struct.

The VCGen created 13 proof obligations for this function.

A.1.2 Function event queue insert sync

Description: The objective of this function is to insert a synchronous event in to the
queue.

Function C Code:

1 /∗@ r e q u i r e s \ v a l i d ( i r q ) ;
2 r e q u i r e s ( i r q ->data !=NULL) ;
3 ensures \ r e s u l t==0 | | \ r e s u l t ==(- 1 ) ;
4 ∗ /
5 i n t e ven t_queue_ in se r t _ sync ( s t r u c t i r q _ e n t r y ∗ i r q )
6 {



A.1. IRQ MANAGER ANNOTATED CODE 43

7 i n t l e v e l ;
8 ASSERT( i r q ->even t ) ;
9 i f ( even t_queue_has_sync_event ( ) ) r e t u r n - 1 ;

10 / /@ a s s e r t \ v a l i d ( i r q ) ;
11 / /@ ensures event_queue . sync_even t == ∗ i r q ;
12 event_queue . sync_even t = ∗ i r q ;
13 r e t u r n 0 ;
14 }

Listing A.2: Function event queue insert sync

The contracts included in this function are explained as follows:

- Line 1: This contract is a precondition: the function to finish with success needs
a valid irq.

- Line 2: Also a precondition. In this contract we say that the data field in the irq
cannot be null.

- Line 3: A postcondition that guarantees that the output of the function is either
0 or -1. (It is 0 if the event is inserted; if not the output is -1.)

- Line 8: This ASSERT is not part of the contracts that we build. Is an original
xLuna C statement.

- Line 10: An assertion. It strengthens the precondition on line 1. It is right before
the place where is absolutely necessary that irq is not NULL.

- Line 11: The postcondition of the function.

The VCGen created 15 proof obligations for this function.

A.1.3 Function event queue self test

Description: This function will test if the queue has any event, synchronous or asyn-
chronous.

Function C Code:
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1 vo id e v e n t _ q u e u e _ s e l f _ t e s t ( vo id )
2 {
3 i r q _ e n t r y i r q ;
4 i n t i ;
5 e ven t_queue_ rese t ( ) ;
6 ASSERT( event_queue_ is_not_empty ( ) == 0) ;
7 ASSERT( e v e n t _ q u e u e _ i s _ n o t _ f u l l ( ) ) ;
8 ASSERT( event_queue_has_sync_event ( ) == 0) ;
9 ASSERT( event_queue_pop (& i r q ) == - 1 ) ;

10
11 i = 0 ;
12 /∗@ loop i n v a r i a n t 0 <= i <= NUMBER_OF_ASYN_EVENTS;
13 @loop v a r i a n t NUMBER_OF_ASYN_EVENTS- i ;
14 @loop i n v a r i a n t NUMBER_OF_ASYN_EVENTS<=(TT_ASYN_MAX - TT_ASYN_MIN +

1) ;
15 @loop i n v a r i a n t \ f o r a l l i n t e g e r i ; 0 <= i < NUMBER_OF_ASYN_EVENTS

==> \ v a l i d (& i r q ) ;
16 @∗ /
17 whi le ( i<NUMBER_OF_ASYN_EVENTS) {
18 i=i +1;
19 i r q . e ven t = i ;
20 i r q . data = NULL ;
21 / / @requires \ v a l i d (& i r q ) ;
22 / / @requires i r q . event<= NUMBER_OF_ASYN_EVENTS;
23 / / @requires i r q . event >=0;
24 i f ( (& i r q ) !=NULL) break ;
25 }
26 ASSERT( i == MAX_EVENTS) ;
27 ASSERT(0== even t_queue_ in se r t _ sync (& i r q ) ) ;
28 ASSERT( -1==even t_queue_ in se r t _ sync (& i r q ) ) ;
29 ASSERT( -1==even t_queue_ inse r t _asyn (& i r q ) ) ;
30 i r q . e ven t = 0 ;
31 ASSERT(0==event_queue_pop (& i r q ) ) ;
32 ASSERT( i r q . e ven t == MAX_EVENTS) ;
33
34 /∗@ loop i n v a r i a n t 1 <= i <= MAX_EVENTS;
35 @loop v a r i a n t MAX_EVENTS- i ;
36 @loop i n v a r i a n t MAX_EVENTS==10;
37 @∗ /
38 f o r ( i =1; i<MAX_EVENTS; i ++) {
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39 ASSERT(0==event_queue_pop (& i r q ) ) ;
40 ASSERT( i r q . e ven t == i ) ;
41 }
42 ASSERT( event_queue_pop (& i r q ) == - 1 ) ;
43 }

Listing A.3: event queue self test

The contracts included in this function are explained as follows:

- Line 12: A loop invariant that says that the integer i is between 0 and the number
of asyn events.

- Line 13: A loop variant: it guarantees that the loop will terminate.

- Line 15: It’s a loop invariant that guarantees that in the loop all the fields of the
asyn events of the event queue are valid.

- Line 21: this precondition requires a valid irq.

- Line 22 and 23: These preconditions say that the event on irq is between 0 and
the number of asyn events.

- Line 34: A loop invariant to test the comportment of the variable i in the loop.

- Line 35: The loop variant in this loop. Guarantees that the loop will terminate.

- Line 36: it’s a loop invariant that says that in this loop the variable MAX
EVENTS is equal to 10.

- As said before all the ASSERT are not part of the contracts that we build. Is an
original xLuna C statement.

The VCGen created 44 proof obligations for this function.

A.1.4 Function irq build linux regs from isf

Description: This function creates the linux registers from the CPU Interrupt frame.

Function C Code:
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1 /∗@ r e q u i r e s \ v a l i d ( o l d _ i s f ) ;
2 r e q u i r e s \ v a l i d ( regs ) ;
3 ∗ /
4 s t a t i c vo id i r q _ b u i l d _ l i n u x _ r e g s _ f r o m _ i s f ( s t r u c t p t_ regs ∗ regs ,
5 CPU_In ter rupt_ f rame ∗ o l d _ i s f ,
6 i n t t r ap )
7 {
8 regs ->psr = o l d _ i s f ->ps r ;
9 i f ( IS_KERNEL ( o l d _ i s f ->pc ) )

10 regs ->psr = SPARC_PSR_PS_MASK; /∗ f ake ke r ne l mode ∗ /
11 e lse
12 (0 == ( regs ->psr && SPARC_PSR_PS_MASK) ) ;
13 /∗ pc / npc depends on RTEMS " asyn / sync " t r ap type . . . ∗ /
14 i f ( i s _a syn_ t r ap ( t r ap ) ) {
15 regs ->pc = o l d _ i s f ->pc ;
16 regs ->npc = o l d _ i s f ->npc ;
17 } e lse {
18 /∗ r tems a l ready moved npc to i s f ->pc ∗ /
19 regs ->pc = o l d _ i s f ->npc ;
20 regs ->npc = o l d _ i s f ->pc ;
21 }
22 regs ->y = o l d _ i s f ->y ;
23 regs ->u_regs [ UREG_G0 ] = PT_REGS_MAGIC_G0 ;
24 regs ->u_regs [ UREG_G1 ] = o l d _ i s f ->g1 ;
25 regs ->u_regs [ UREG_G2 ] = o l d _ i s f ->g2 ;
26 regs ->u_regs [ UREG_G3 ] = o l d _ i s f ->g3 ;
27 regs ->u_regs [ UREG_G4 ] = o l d _ i s f ->g4 ;
28 regs ->u_regs [ UREG_G5 ] = o l d _ i s f ->g5 ;
29 regs ->u_regs [ UREG_G6 ] = o l d _ i s f ->g6 ;
30 regs ->u_regs [ UREG_G7 ] = o l d _ i s f ->g7 ;
31 regs ->u_regs [ UREG_I0 ] = o l d _ i s f ->i0 ;
32 regs ->u_regs [ UREG_I1 ] = o l d _ i s f ->i1 ;
33 regs ->u_regs [ UREG_I2 ] = o l d _ i s f ->i2 ;
34 regs ->u_regs [ UREG_I3 ] = o l d _ i s f ->i3 ;
35 regs ->u_regs [ UREG_I4 ] = o l d _ i s f ->i4 ;
36 regs ->u_regs [ UREG_I5 ] = o l d _ i s f ->i5 ;
37 regs ->u_regs [ UREG_I7 ] = o l d _ i s f ->i7 ;
38 }

Listing A.4: Function irq build linux regs from isf
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The contracts included in this function are explained as follows:

- Line 1 and 2: Two preconditions that declare that a valid regs and a valid old
isf are required to guarantee that the function terminates with success. As this
function only makes access to fields of those variables having valid regs and valid
old isf is the only condition necessary.

The VCGen created 35 proof obligations for this function.

A.1.5 Function irq build linux new isf

Description: In this function a new CPU Interrupt frame will be create.

Function C Code:

1 /∗@ r e q u i r e s \ v a l i d ( o l d _ i s f ) ;
2 r e q u i r e s \ v a l i d ( regs ) ;
3 r e q u i r e s \ v a l i d ( new_ i s f ) ;
4 r e q u i r e s t rap >=0;
5 ∗ /
6 s t a t i c vo id i r q _ b u i l d _ l i n u x _ n e w _ i s f ( CPU_In te r rupt_ f rame ∗ new_is f ,
7 s t r u c t p t_ regs ∗ regs ,
8 CPU_In ter rupt_ f rame ∗ o l d _ i s f ,
9 i n t t r ap )

10 {
11 / /@ r e q u i r e s ( new_ i s f ->pc ) >= 0 ;
12 / /@ ensures new_ i s f ->i1 == 1 ;
13 new_ i s f ->npc = new_ i s f ->pc ;
14 new_ i s f ->i0 = t r ap ;
15 new_ i s f ->i1 = 1 ;
16 i f ( t r ap == TT_MNA) { /∗ we need to get the f a u l t type and f a u l t addr

∗ /
17 } e lse i f ( t r ap == TT_DATA_ACCESS) {
18 i n t f s t a t u s , f a dd r ;
19 / /@ ensures new_ i s f ->i2 == f s t a t u s ;
20 / /@ ensures new_ i s f ->i3 == f s t a t u s ;
21 / /@ ensures new_ i s f ->i4 == fadd r ;
22 f add r = m mu_ f a r _ f o r _ l i n u x ;
23 f s t a t u s = m m u _ f s t a t u s _ f o r _ l i n u x >> 6 ;
24 new_ i s f ->i2 = f s t a t u s ; / / Data = 0 ; I n s t r c = 1
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25 new_ i s f ->i3 = f s t a t u s ; / / Read = 0 ; Wri te = 1
26 new_ i s f ->i4 = fadd r ;
27 i f ( IS_RTEMS_KERNEL( o l d _ i s f ->pc ) ) {
28 DEBUG_puts ( " Page f a u l t i n RTEMS/ xLuna ! " ) ;
29 dump_is f ( o l d _ i s f ) ;
30 }
31 } e lse i f ( t r ap == TT_INST_ACCESS ) {
32 i n t f s t a t u s , f a dd r ;
33
34 / /@ ensures new_ i s f ->i2 == 1 ;
35 / /@ ensures new_ i s f ->i3 == 0 ;
36 / /@ ensures new_ i s f ->i4 == fadd r ;
37 f add r = m mu_ f a r _ f o r _ l i n u x ;
38 f s t a t u s = m m u _ f s t a t u s _ f o r _ l i n u x >> 6 ;
39 new_ i s f ->i2 = 1 ; / / t e x t _ f a u l t = 1 -> I n s t r u c t i o n
40 new_ i s f ->i3 = 0 ; / / w r i t e = 0 -> read
41 new_ i s f ->i4 = fadd r ;
42 i f ( IS_RTEMS_KERNEL( o l d _ i s f ->pc ) ) {
43 DEBUG_puts ( " Page f a u l t i n RTEMS/ xLuna ! " ) ;
44 dump_is f ( o l d _ i s f ) ;
45 ASSERT ( 0 ) ;
46 }
47 }
48
49 ( c o n c u r r e n t _ l i n u x _ h a n d l e r s < MAX_CONCURRENT_LINUX_HANDLERS) ;
50 ASSERT( c o n c u r r e n t _ l i n u x _ h a n d l e r s=c o n c u r r e n t _ l i n u x _ h a n d l e r s +1) ;
51 new_ i s f ->i7 = c o n c u r r e n t _ l i n u x _ h a n d l e r s ;
52 }

Listing A.5: Function irq build linux new isf

The contracts included in this function are explained as follows:

- Line 1, 2 and 3: These preconditions require that the pointers old isf, regs and
new isf are valid.

- Line 4: A precondition. These precondition was built based on the xLuna
properties that require that the variable trap must be equal or bigger than 0.

- Line 11: It’s also a xLuna property that the field i1 of the CPU Interrupt frame
must be equal or bigger than 0.
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- Line 12: A postcondition.

- Line 19, 20 and 21: These postconditions guarantee that if the program reach
this point than the fields i2 and i3 of the new isf will be fstatus and the field i4
will be equal to faddr.

- Line 34, 35 and 36: These three postconditions ensures that if the program enters
this if statement then the field i2 will be 1, the field i3 will be 0 and the field i4
will be equal to faddr.

- As said before all the ASSERT are not part of the contracts that we build. Is an
original xLuna C statement.

The VCGen created 48 proof obligations for this function.

A.1.6 Function irq insert

Description: This function is used to insert a new Interrupt Request in the queue.

Function C Code:

1 /∗@ r e q u i r e s sync==SYNC_EVENT | | sync==ASYN_EVENT;
2 r e q u i r e s event >=0;
3 ensures \ r e s u l t == RTEMS_SUCCESSFUL | | \ r e s u l t == RTEMS_TOO_MANY;
4 ∗ /
5 r t ems_s ta t u s_ code i r q _ i n s e r t ( i n t event , vo id ∗data , i n t sync )
6 {
7 i r q _ e n t r y i r q ;
8 i n t r e t ;
9 s t a t i c i n t q u e u e _ f u l l _ c o u n t ;

10 / /@ ensures i r q . data==data && i r q . e ven t==even t ;
11 i r q . e ven t = even t ;
12 i r q . data = data ;
13 i f ( ! LINUX_IS_RUNNING ) r e t u r n RTEMS_TOO_MANY;
14 i f ( sync == SYNC_EVENT) {
15 i f ( - 1 == ( r e t=even t_queue_ in se r t _ sync (& i r q ) ) ) {
16 ASSERT ( 0 ) ;
17 }
18 } e lse {
19 ASSERT( sync == ASYN_EVENT) ;
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20 i f ( - 1 != ( r e t=even t_queue_ in se r t _ sync (& i r q ) ) ) {
21 i f ( q u e u e _ f u l l _ c o u n t > 100) {
22 ASSERT ( 0 ) ;
23 DEBUG_puts ( " Queue b locked ? " ) ;
24 }
25 } e lse
26 q u e u e _ f u l l _ c o u n t = 0 ;
27 }
28 r tems_task_resume ( i r q _ m o n i t o r _ i d ) ;
29 i f ( r e t ==0) r e t u r n RTEMS_SUCCESSFUL;
30 e lse r e t u r n RTEMS_TOO_MANY;
31 }

Listing A.6: Function irq insert

The contracts included in this function are explained as follows:

- Line 1: A precondition that says that the variable sync must be SYNC EVENT
or ASYN EVENT. This is because the variable sync will determine if the event
is a synchronous or asynchronous event. SYNC EVENT and ASYN EVENT are
both global variables of the IRQ Manager.

- Line 2: It’s a precondition that requires that the variable event must be equal or
bigger than 0.

- Line 3: A postcondition that guarantees that the output of the function will be
RTEMS SUCCESSFUL or RTEMS TOO MANY. Those are two global variables.

- Line 10: That’s a postcondition that guarantees that the fields data and event of
the irq will be respectively equal to data and event.

- As said before all the ASSERT are not part of the contracts that we build. Is an
original xLuna C statement.

The VCGen created 84 proof obligations for this function.

A.1.7 Function irq handle event

Description: In this function the event will be treated.
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Function C Code:

1 /∗@ r e q u i r e s even t==TT_UART_FIRST | | e ven t==TT_TIMER | | e ven t==
TT_ASYN_CLEAR_WINDOW | | even t==TT_ISC_RTEMS_TO_LX | |

2 @ even t==TT_ISC_LX_TO_RTEMS | | e ven t==TT_GRETH | | e ven t==
TT_LINUX_SYSCALL | | e ven t==TT_SYNC_KILL_USER | |

3 @ even t==TT_SYNC_CLEAR_WINDOW | | even t==TT_MNA | | e ven t==TT_FPD | | e ven t
==TT_DATA_ACCESS | |

4 @ even t==TT_INST_ACCESS | | e ven t==TT_XLUNA_SYSCALL | | e ven t==
TT_UNHANDLED_EXCEPTION;

5 @∗ /
6 s t a t i c vo id i r q _hand l e_e ven t ( i n t event , vo id ∗ data )
7 {
8 sw i t ch ( e ven t ) {
9 case TT_UART_FIRST :

10 case TT_TIMER :
11 case TT_ASYN_CLEAR_WINDOW:
12 case TT_ISC_RTEMS_TO_LX : / / e ven to i n s e r i d o na queue pe lo i s c do

r tems
13 case TT_ISC_LX_TO_RTEMS : / / e ven to i n s e r i d o na queue pe lo i s c do

r tems
14 case TT_GRETH :
15 / /@ ensures l i nu x_ha rdwa re_hand l e r _ i n_p r og r e s s == 1 ;
16 l i nu x_ha rdwa re_hand l e r _ i n_p r og r e s s = 1 ;
17 case TT_LINUX_SYSCALL :
18 case TT_SYNC_KILL_USER :
19 case TT_SYNC_CLEAR_WINDOW:
20 case TT_MNA:
21 case TT_FPD :
22 case TT_DATA_ACCESS :
23 case TT_INST_ACCESS :
24 i r q _ b u i l d _ l i n u x _ f r a m e ( event , l i n u x _ i s f ) ;
25 / /@ ensures l i n u x _ i s f == NULL ;
26 l i n u x _ i s f = NULL ;
27 r tems_ task_suspend (RTEMS_SELF) ;
28 break ;
29 case TT_XLUNA_SYSCALL :
30 i r q _ x l u n a _ s y s c a l l _ d i s p a t c h e r ( data ) ;
31 break ;
32 case TT_UNHANDLED_EXCEPTION:
33 i rq_do_unhand led_excep t i on ( data ) ;
34 break ;
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35 }
36 }

Listing A.7: Function irq handle event

The contracts included in this function are explained as follows:

- Line 1, 2, 3 and 4: These are all precondition related to the switch case in the
program. To run well the function needs that the event field is one of the cases
of switch.

- Line 15 and 25: They are postconditions that guarantees that if the event is that
then those attribution are ensured.

The VCGen created 50 proof obligations for this function.

A.1.8 Function irq monitor entry

Description: This function is used to assess if the IRQ queue is empty or not.

Function C Code:

1 / /@ r e q u i r e s MAX_EVENTS == 10 ;
2 s t a t i c r t ems_ task i r q _ m o n i t o r _ e n t r y ( r tems_task_argument igno red )
3 {
4 i r q _ e n t r y i r q ;
5 i n t even ts_hand led =0;
6 / / @loop v a r i a n t MAX_EVENTS - even ts_hand led ;
7 whi le (MAX_EVENTS>even ts_hand led ) {
8 i f ( even t_queue_has_sync_event ( ) ) {
9 / /@ i n v a r i a n t even ts_hand led <= MAX_EVENTS;

10 even ts_hand led++;
11 break ;
12 ASSERT( i r q_hand l e_e ven t ( i r q . event , i r q . data ) ) ;
13 } e lse i f ( LINUX_INTERRUPT_ENABLED) {
14 ASSERT( i r q_hand l e_e ven t ( i r q . event , i r q . data ) ) ;
15 } e lse {
16 r tems_ task_suspend (RTEMS_SELF) ;
17 }
18 even ts_hand led++;
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19 }
20 r tems_ task_suspend (RTEMS_SELF) ;
21 }

Listing A.8: Function irq monitor entry

The contracts included in this function are explained as follows:

- Line 1: A precondition that requires that the variable MAX EVENTS is equal to
10. That is a requirement of the IRQ Manager.

- Line 6: It’s a loop variant that guarantees that the loop ends.

- Line 9: A invariant to guarantee that the variable events handled don’t go
overflow.

The VCGen created 46 proof obligations for this function.

A.1.9 Function irq set interrupt on off

Description: This function is used to change if Linux is to be interrupted or not.

Function C Code:

1 /∗@ r e q u i r e s o n _ o f f==0 | | o n _ o f f ==1;
2 ensures \ r e s u l t == r e t ;
3 ∗ /
4 i n t i r q _ s e t _ i n t e r r u p t _ o n _ o f f ( i n t o n _ o f f )
5 {
6 i n t r e t = l i n u x _ i n t e r r u p t _ e n a b l e d ;
7 / / ensures l i n u x _ i n t e r r u p t _ e n a b l e d == o n _ o f f ;
8 l i n u x _ i n t e r r u p t _ e n a b l e d = o n _ o f f ;
9 #i f 0

10 i f ( l i n u x _ i n t e r r u p t _ e n a b l e d ) DEBUG_puts_no_cr ( "+" ) ;
11 e lse DEBUG_puts_no_cr ( " - " ) ;
12 #e n d i f
13 r e t u r n r e t ; }

Listing A.9: Function irq set interrupt on off

The contracts included in this function are explained as follows:
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- Line 1: A precondition that requires that the variable on off must be 0 or 1. It’s
0 if the interruptor is enabled. 1 if it is disabled.

- Line 2: A postcondition that guarantees that the output of the function is the
variable ret.

- Line 7: A postcondition that says that the variable linux interrupt enabled will
be equal to the variable on off.

The VCGen created 4 proof obligations for this function.

A.1.10 Function xluna send to linux

Description: Send a message to Linux. It consists on 3 main steps:

- Obtain N EMPTY semaphore to check how many slots are available.

- Write on the message queue.

- Add and IRQ to signal Linux’s N FULL semaphore.

Function C Code:

1 /∗@ r e q u i r e s ( op t _ s e t==RTEMS_WAIT) | | ( o p t _ s e t==RTEMS_NO_WAIT) ;
2 @ r e q u i r e s s i ze >=0;
3 @ r e q u i r e s ( t imeout >0) | | ( t imeou t==RTEMS_NO_TIMEOUT) ;
4 @∗ /
5 r t ems_s ta t u s_ code x l u n a _ s e n d _ t o _ l i n u x ( vo id ∗message , r tems_uns igned32

s i ze ,
6 r tems_uns igned32 op t_se t , r t e m s _ i n t e r v a l t imeou t )
7 {
8 i f ( s i z e > ISC_MAX_MSG_SIZE ) r e t u r n RTEMS_INVALID_SIZE ;
9 /∗ 1 - Obtain N_EMPTY semaphore to check how many s l o t s are a v a i l a b l e ∗ /

10 CHECK_STATUS_CODE( r tems_semaphore_obta in ( n_empty_id , op t_se t , t imeou t )
) ;

11 /∗ 2 - Write on the message queue ∗ /
12 CHECK_STATUS_CODE( rtems_message_queue_send ( r t e m s _ t o _ l x _ i d ,
13 message , s i z e ) ) ;
14 / / 3 -Add an IRQ to s i g n a l L inux ’ s N_FULL semaphore
15 i r q _ i n s e r t ( TT_ISC_RTEMS_TO_LX , ASYN_EVENT) ;
16 r e t u r n RTEMS_SUCCESSFUL;
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17 }

Listing A.10: Function xluna send to linux

The contracts included in this function are explained as follows:

- Line 1: A precondition that requires that the variable opt set must be the global
variable RTEMS WAIT or RTEMS NO WAIT.

- Line 2: Precondition that says that the size of the message must be equal or
bigger that 0.

- Line 3: This precondition requires that the variable timeout must be bigger than
0 or equal to the global variable RTEMS NO TIMEOUT.

The VCGen created 10 proof obligations for this function.

A.1.11 Function xluna receive from linux

Description: Receives a message from Linux. It consists on 3 main steps:

- Obtain N FULL semaphore.

- Get the message from the message queue.

- Add and IRQ to signal Linux’s N EMPTY semaphore.

Function C Code:

1 /∗@ r e q u i r e s ( op t _ s e t==RTEMS_WAIT) | | ( o p t _ s e t==RTEMS_NO_WAIT) ;
2 @ r e q u i r e s s i ze >=0;
3 @ r e q u i r e s ( t imeout >0) | | ( t imeou t==RTEMS_NO_TIMEOUT) ;
4 @ ensures \ r e s u l t==RTEMS_SUCCESSFUL;
5 @∗ /
6 r t ems_s ta t u s_ code x l u n a _ r e c e i v e _ f r o m _ l i n u x ( vo id ∗ b u f f e r ,

r tems_uns igned32 s i ze ,
7 r tems_uns igned32 op t_se t ,
8 r t e m s _ i n t e r v a l t imeou t )
9 {

10 CHECK_STATUS_CODE( r tems_message_queue_rece i ve ( l x _ t o _ r t e m s _ i d ,
11 b u f f e r , s i ze ,
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12 op t_se t ,
13 t imeou t ) ) ;
14
15 i r q _ i n s e r t ( TT_ISC_LX_TO_RTEMS , ASYN_EVENT) ;
16
17 r e t u r n RTEMS_SUCCESSFUL;
18 }

Listing A.11: Function xluna receive from linux

The contracts included in this function are explained as follows:

- Line 1: A precondition that requires that the variable opt set must be the global
variable RTEMS WAIT or RTEMS NO WAIT.

- Line 2: Precondition that says that the size of the message must be equal or
bigger that 0.

- Line 3: This precondition requires that the variable timeout must be bigger than
0 or equal to the global variable RTEMS NO TIMEOUT.

- Line 4: A postcondition that ensures that the output of the function will be the
global variable RTEMS SUCCESSFUL.

The VCGen created 9 proof obligations for this function.

A.1.12 Function isc init

Description: This function is used to initialize the ISC manager. Creates/Initializes
write and read resources.

Function C Code:

1 /∗@ r e q u i r e s ISC_N_SLOTS==20 && N_FULL_ATT==0 && N_FULL_PRIO==0;
2 @ r e q u i r e s N_EMPTY_ATT==0 && RTEMS_TO_LX_ATT==0 && LX_TO_RTEMS_ATT

==2;
3 @ r e q u i r e s ISC_MAX_MSG_SIZE==512 && N_EMPTY_PRIO==0;
4 @ r e q u i r e s r t e m s _ t o _ l x _ i d >=0 && n _ f u l l _ i d >=0 && l x _ t o _ r t e m s _ i d >=0;
5 @∗ /
6 r t ems_s ta t u s_ code i s c _ i n i t ( vo id )
7 {
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8 /∗ Create w r i t e r e s o u r c e s ∗ /
9 CHECK_STATUS_CODE( r tems_semaphore_c rea te (N_EMPTY_NAME, ISC_N_SLOTS ,

N_EMPTY_ATT , N_EMPTY_PRIO,& n_empty_id ) ) ;
10 CHECK_STATUS_CODE( r tems_message_queue_create (RTEMS_TO_LX_NAME,
11 ISC_N_SLOTS ,
12 ISC_MAX_MSG_SIZE ,
13 RTEMS_TO_LX_ATT ,
14 &r t e m s _ t o _ l x _ i d ) ) ;
15 /∗ Create read r e s o u r c e s ∗ /
16 CHECK_STATUS_CODE( r tems_semaphore_c rea te (N_FULL_NAME, 0 ,
17 N_FULL_ATT ,
18 N_FULL_PRIO ,
19 &n _ f u l l _ i d ) ) ;
20 r e t u r n r tems_message_queue_create (LX_TO_RTEMS_NAME, ISC_N_SLOTS ,
21 ISC_MAX_MSG_SIZE , LX_TO_RTEMS_ATT ,
22 &l x _ t o _ r t e m s _ i d ) ;
23 }

Listing A.12: Function isc init

The contracts included in this function are explained as follows:

- Line 1, 2, 3 and 4: All these preconditions it’s to guarantee that when entering
the function all the properties defined by the xLuna are respected. For example,
the value ISC MAX MSG SIZE must be 512 by definition.

The VCGen created 14 proof obligations for this function.
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