

UNIVERSIDADE DA BEIRA INTERIOR Faculdade de Engenharia Departamento de Engenharia Civil e Arquitectura

# AVALIAÇÃO DA INFLUÊNCIA DA VEGETAÇÃO NA VARIAÇÃO DAS CARACTERÍSTICAS HIDRODINÂMICAS EM LEITOS DE ESCOAMENTO SUBSUPERFICIAL E HORIZONTAL

RODRIGO MENDONÇA BANDEIRAS

Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Civil

Covilhã

Agosto 2009



UNIVERSIDADE DA BEIRA INTERIOR Faculdade de Engenharia Departamento de Engenharia Civil e Arquitectura

# AVALIAÇÃO DA INFLUÊNCIA DA VEGETAÇÃO NA VARIAÇÃO DAS CARACTERÍSTICAS HIDRODINÂMICAS EM LEITOS DE ESCOAMENTO SUBSUPERFICIAL E HORIZONTAL

RODRIGO MENDONÇA BANDEIRAS

Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Civil

Covilhã

Agosto 2009

## AGRADECIMENTOS

Agradece-se a todos os que, de forma directa ou indirecta, contribuíram com a sua colaboração, com o seu apoio ou simplesmente com as suas palavras de encorajamento que permitiram realizar esta dissertação, mas gostava de destacar alguns nomes.

Em primeiro lugar agradeço ao Orientador Cientifico da Dissertação, Doutor António João Carvalho de Albuquerque, pelo apoio contínuo, estímulo, críticas, ensinamentos, comentários, sugestões e muito especialmente, pela forma como, apesar dos seus muitos afazeres, soube estar presente, ser actuante e eficaz nos momentos importantes.

À Fundação para Ciência e Tecnologia, através do projecto PTDC/AMB/73081/2006, por ter permitido o financiamento do trabalho.

À empresa MAXIT – argilas expandidas SA, pelo fornecimento do material de enchimento, pela informação e esclarecimentos prestados pela Eng.ª Inês Santos.

À minha família, meus pais, irmão e aos meus amigos pelo apoio e amizade dado ao longo da minha vida.

### RESUMO

A avaliação das condições de escoamento em leitos de escoamento subsuperficial e horizontal (LESH) é essencial para a detecção de mecanismos que podem provocar quebra de rendimento na remoção de poluentes (*e.g.* zonas pouco irrigadas, zonas de volume morto, curto-circuito hidráulico, recirculações internas e dispersão).

Realizaram-se duas séries de ensaios de traçagem em dois LESH laboratoriais, um sem vegetação e o outro plantado com *Phragmites australis*, cerca de um ano após o seu arranque, para cargas orgânicas de 10,6 g CQO m<sup>-2</sup> d<sup>-1</sup> e cargas de azoto de 1,1 g N-NH<sub>4</sub> m<sup>-2</sup> d<sup>-1</sup> e uma carga hidráulica de 0,035 m<sup>3</sup> m<sup>-2</sup> d<sup>-1</sup>. Utilizou-se o tipo de impulso discreto, tendo a resposta sido detectada em 3 pontos de amostragem localizados a 0,33 m, 1 m e 1,9 m relativamente ao local da injecção de traçador.

Os resultados permitiram concluir que, independentemente da presença de vegetação, a dispersão foi forte em todos os troços dos leitos, com maior intensidade nos primeiros 33 cm do leito sem vegetação, onde se registaram condições de mistura e a presença de maior percentagem de volume morto.

O atraso detectado na saída de traçador em todos os ensaios, terá estado relacionado com a presença de maiores extensões de zonas pouco irrigadas, embora tenham também ocorrido zonas de volume morto, com maior predominância no troço inicial do leito sem vegetação. A presença de vegetação parece ter tido um efeito benéfico no controlo das condições hidrodinâmicas, em particular em zonas sujeitas a maior perturbação hidrodinâmica como são as que estão próximas do ponto de alimentação.

A solução analítica do modelo de advecção-dispersão-reacção utilizada, representa satisfatoriamente as curvas de distribuição de tempos de residência obtidas, com melhores resultados nos ensaios com vegetação, e permitiu verificar que a presença de vegetação atenua a variação da dispersão ao longo do leito.

O rendimento da remoção, quer de CQO, quer de N-NH<sub>4</sub>, diminuiu com o aumento, quer de  $V_m$ , quer de  $N_d$ , independentemente do tipo de leito, tendo, no entanto, a queda sido mais acentuada no leito sem vegetação.

Assim, a utilização de vegetação em LESH, além de contribuir para a diminuição, quer da dispersão longitudinal, quer de volume morto, retarda a colmatação do leito, permitindo manter um rendimento de remoção elevado, quer de matéria orgânica, quer de azoto.

**Palavras-chave:** leito de escoamento subsuperficial e horizontal, hidrodinâmica, carga orgânica, dispersão longitudinal, volume morto

### ABSTRACT

The evaluation of flow conditions in horizontal subsurface flow beds (LESH) is essential for detecting mechanisms that can cause decrease in the removal of pollutants (e.g. low active areas, dead volume areas, hydraulic short-circuiting hydraulic, internal recirculation and dispersion).

Two series of tracer tests were carried out in two LESH, one without vegetation, the other planted with *Phragmites australis*, approximatly a year after its star-up, for the organic load of 10.6 g COD m<sup>-2</sup> d<sup>-1</sup> and the nitrogen load of 1.1 g NH<sub>4</sub>-N m<sup>-2</sup> d<sup>-1</sup> and for a hydraulic load of 0.035 m<sup>3</sup> m<sup>-2</sup> d<sup>-1</sup>. A slag impulse was used and the response was detected in 3 sampling points located at 0.33 m, 1 m and 1.9 m from the point of injection.

The results showed that, regardless of the presence of vegetation, longitudinal dispersion was strong in all sections of the beds, with greater intensity in the first 33 cm of the bed without vegetation, where there were observed mixing conditions and the presence of higher percentage of dead volume.

The delayed of tracer exit observed in all the experiments it seems to have been related to the presence of larger areas of low active areas, but dead volume was already presented with higher prevalence in the initial section of the bed without vegetation. The presence of vegetation appears to have had a beneficial effect in the control of hydrodynamic conditions, particularly in areas subject to more hydrodynamic disturbance as the ones close to the feeding point.

The analytical solution of the model advection-dispersion-reaction better represents the residential time distribution curves, with better results in the experiments with vegetation, and allowed to observe that the presence of vegetation reduces the variation of dispersion along the bed.

The efficiency of removal both for COD and  $NH_4$ -N decreased with the increase of either  $V_m$  and  $N_d$ , regardless of the type of bed. However, that decrease was higher in the bed without vegetation.

Therefore, the use of vegetation in LESH besides contributing to the decrease of both longitudinal dispersion and dead volumes, delays the clogging of the bed, helping to maintain a high removal efficiency of both organic matter and nitrogen.

**Key-words:** horizontal subsurface flow bed, Hydrodynamic, organic load, longitudinal dispersion, dead volume

# ÍNDICE GERAL

|                                                      | Página |
|------------------------------------------------------|--------|
| AGRADECIMENTOS                                       | i      |
| RESUMO                                               | ii     |
| ABSTRACT                                             | iv     |
| ÍNDICE GERAL                                         | vi     |
| ÍNDICE DE TABELAS                                    | viii   |
| ÍNDICE DE FIGURAS                                    | х      |
| NOMENCLATURAS                                        | xiii   |
| 1. INTRODUÇÃO                                        | 1      |
| 1.1 Enquadramento e justificação                     | 1      |
| 1.2 Objectivos                                       | 4      |
| 1.3 Estrutura da tese                                | 4      |
| 2. LEITOS DE ESCOAMENTO SUBSUPERFICIAL E HORIZONTAL  | 6      |
| 2.1 Características das águas residuais              | 6      |
| 2.2 Processos de tratamento                          | 7      |
| 2.3 Leitos de escoamento subsuperficial e horizontal | 9      |
| 2.3.1 Descrição                                      | 9      |
| 2.3.2 Tipos de leitos                                | 16     |
| 2.3.3 Elementos do sistema                           | 17     |
| 2.3.4 Parâmetros de dimensionamento e controlo       | 24     |
| 3. CARACTERÍSTICAS HIDRODINÂMICAS EM LEITOS DE       |        |
| ESCOAMENTO SUBSUPERFICIAL E HORIZONTAL               | 25     |
| 3.1 Transporte de solutos subsuperficial             | 25     |
| 3.2 Avaliação das características hidrodinâmicas     | 28     |
| 3.2.1 Realização de ensaios de traçagem              | 28     |
| 3.2.2 Utilização de modelos matemáticos para estimar | 0.4    |
| parâmetros caracterizadores da hidrodinâmica         | 31     |
| 4. PLANO DE TRABALHOS                                | 35     |
| 5. MATERIAL E MÉTODOS                                | 37     |
| 5.1 Instalações laboratoriais                        | 37     |
| 5.2 Fonte de alimentação                             | 40     |
| 5.3 Modo de operação                                 | 42     |
| 5.4 Métodos analíticos                               | 44     |

| 6. RESULTADOS                                                       | 45  |
|---------------------------------------------------------------------|-----|
| 6.1 Determinação da curvas DTR                                      | 45  |
| 6.2 Estimativa de parâmetros caracterizadores das condições         |     |
| hidrodinâmicas                                                      | 47  |
| 6.2.1 Solução analítica para o modelo ADR                           | 48  |
| 6.2.2 Solução analítica para o modelo NTS                           | 51  |
| 6.2.3 Ajustamento paramétrico das soluções                          | 51  |
| 6.3 Cargas orgânicas e de azoto removidas                           | 52  |
| 7. ANÁLISE E DISCUSSÃO DE RESULTADOS                                | 56  |
| 7.1 Análise das curvas DTR                                          | 56  |
| 7.2 Influência da vegetação na variação da hidrodinâmica            | 60  |
| 7.3 Influência da vegetação e das características hidrodinâmicas no |     |
| rendimento dos leitos                                               | 66  |
| 8. CONCLUSÃO E PERSPECTIVAS DE TRABALHO FUTURO                      | 73  |
| 8.1 – Conclusões                                                    | 73  |
| 8.2 – Perspectivas de trabalho futuro                               | 74  |
| 9. BIBLIOGRAFIA                                                     | 75  |
| ANEXOS                                                              | 81  |
| Anexo I – Resultados do teste de adsorção e curvas de calibraç      | 82  |
| Anexo II – Resultados dos ensaios de traçagem                       | 86  |
| Anexo III - Resultado das determinações de CQO e N-NH <sub>4</sub>  | 110 |

## ÍNDICE DE TABELAS

|                                                                                                                                                                                                                                    | Página |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Tabela 2.1 – Valores limite de descarga de acordo com legislação vigente                                                                                                                                                           | 7      |
| <b>Tabela 2.2 -</b> Variação de alguns parâmetros característicos para diferentes tipos de águas residuais domésticas (adaptado de Metcalf e Eddy (2003), Albuquerque (2003))                                                      | 8      |
| <b>Tabela 2.3</b> - Eficiências de remoção poluentes em operações e processos detratamento convencionais (adaptado de EPA (1999), IWA (2000), Albuquerque(2003), Metcalf e Eddy (2003), Vymazal (2003), Albuquerque et al. (2008)) | 9      |
| <b>Tabela 2.4</b> – Principais poluentes e mecanismos de remoção em LESH (EPA (1999), IWA (2000), Vymazal (2003))                                                                                                                  | 13     |
| <b>Tabela 2.5</b> - Características de alguns tipos de material de enchimento utilizados em LESH (adaptado de EPA (1999), Relvão (1999), Metcalf e Eddy (2003), IWA (2000), Vymazal (2003)                                         | 19     |
| <b>Tabela 2.6</b> – Critérios hidráulico-sanitários para LESH (EPA (1999), IWA (2000), Vymazal (2003) e Korkusuz (2005))                                                                                                           | 24     |
| <b>Tabela 3.1</b> - Variação do número de dispersão para diferentes graus de dispersão(Santamaria et al. (1999))                                                                                                                   | 33     |
| Tabela 4.1. – Plano de trabalhos (Fase experimental)                                                                                                                                                                               | 35     |
| Tabela 4.2. – Cronograma de trabalhos (Fase experimental)                                                                                                                                                                          | 36     |
| Tabela 5.1 – Características da instalação laboratorial e do meio de enchimento                                                                                                                                                    | 39     |
| Tabela 5.2 – Soluções usadas para preparar a solução de alimentação nos ensaios         experimentais                                                                                                                              | 41     |
| Tabela 6.1 – Resultados dos ensaios de traçagem para as duas Séries                                                                                                                                                                | 47     |
| Tabela 6.2 – Resultados dos ajustamentos às curvas DTR para as duas Séries                                                                                                                                                         | 52     |
| Tabela 6.3 – Variação da CQO e N-NH4 para as duas Séries                                                                                                                                                                           | 53     |

| <b>Tabela 7.1</b> – Cargas orgânicas e de azoto aplicadas e removidas em cada troço<br>dos leitos |     |  |  |  |
|---------------------------------------------------------------------------------------------------|-----|--|--|--|
| Tabela I.1. – Resultados do ensaio de adsorção                                                    | 83  |  |  |  |
| Tabela I.2 – Curvas de calibração para conductividade e NaCl                                      | 84  |  |  |  |
| Tabela II.1 – Resultados para a Série I (sem plantas)                                             | 87  |  |  |  |
| Tabela II.2 – Resultados para a Série II (com plantas)                                            | 99  |  |  |  |
| Tabela III.1 – Resultados para o ensaio I.1                                                       | 111 |  |  |  |
| Tabela III.2 – Resultados para o ensaio I.2                                                       | 111 |  |  |  |
| Tabela III.3 – Resultados para o ensaio I.3                                                       | 111 |  |  |  |
| Tabela III.4 – Resultados para o ensaio II.1                                                      | 111 |  |  |  |
| Tabela III.5 – Resultados para o ensaio II.2                                                      | 112 |  |  |  |
| Tabela III.6 – Resultados para o ensaio II.3                                                      | 112 |  |  |  |

# ÍNDICE DE FIGURAS

|                                                                                                                                                                                       | Página |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Figura 2.1 - Representação esquemática da planta e corte de um LESH com vegetação emergente (adaptada de Relvão (1999))                                                               | 10     |
| Figura 2.2 - LESH com vegetação emergente (leito de macrófitas)                                                                                                                       | 11     |
| Figura 2.3 - LESH sem vegetação (leito filtrante)                                                                                                                                     | 12     |
| Figura 2.4 – Phragmites australis aplicadas numa LESH                                                                                                                                 | 15     |
| Figura 2.5 – Representação esquemática de um LESH com vegetação (adaptada de lweme et al. (2005))                                                                                     | 17     |
| Figura 2.6 – Aspecto do desenvolvimento de biofilme sobre brita e leito com brita e raízes                                                                                            | 18     |
| Figura 2.7 – Aspecto do desenvolvimento de biofilme sobre raízes e LECA                                                                                                               | 18     |
| Figura 2.8 – Exemplos de diferentes tipos de plantas macrófitas                                                                                                                       | 21     |
| Figura 2.9 – Tubagem de alimentação do leito                                                                                                                                          | 23     |
| <b>Figura 3.1</b> – Representação esquemática do transporte dispersivo: a) e b) transporte dispersivo mecânico; c) difusão molecular (adaptada de Bear and Verruijt (1998))           | 26     |
| <b>Figura 3.2</b> – Representação esquemática do desenvolvimento de zonas mortas e curto-circuíto hidráulico num estimulo por impulso discreto (adaptada de Santamaria et al. (1999)) | 30     |
| <b>Figura 5.1</b> – Representação esquemática da instalação laboratorial: a) planta; b) vista lateral                                                                                 | 37     |
| Figura 5.2 – Instalação laboratorial sem vegetação utilizada nos ensaios da Série I                                                                                                   | 38     |
| Figura 5.3 – Instalação laboratorial com vegetação utilizada nos ensaios da Série II                                                                                                  | 38     |
| Figura 5.4 – Filtralite NR: grão seco                                                                                                                                                 | 39     |
| Figura 5.5 – Filtralite NR: grãos colonizados no leito                                                                                                                                | 39     |
| Figura 5.6 – LESH laboratorial: dispositivo de alimentação no leito com vegetação                                                                                                     | 40     |

| Figura 5.7 - LESH laboratorial: dispositivo de descarga final no leito com vegetação                                        | 40 |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| Figura 5.8 – Esquema representativo dos ensaios de traçagem                                                                 | 43 |
| Figura 5.9 – Ensaios de traçagem: medição de conductividade no ponto 5 no leito com vegetação - ensaio II.2                 | 44 |
| Figura 5.10 – Ensaios de traçagem: sistema de aquisição e armazenamento de dados                                            | 44 |
| Figura 6.1 – Variação de NaCl no tempo (ensaios I.1 e II.1)                                                                 | 45 |
| Figura 6.2 – Variação de NaCl no tempo (ensaios I.2 e II.2)                                                                 | 46 |
| Figura 6.3 – Variação de NaCl no tempo (ensaios I.3 e II.3)                                                                 | 46 |
| Figura 6.4 – Variação das curvas E() para os ensaios da Série I                                                             | 49 |
| Figura 6.5 – Variação das curvas E() para os ensaios da Série II                                                            | 49 |
| Figura 6.6 – Variação da CQO afluente e efluente no tempo (ensaios I.1 e II.1)                                              | 53 |
| Figura 6.7 – Variação da CQO afluente e efluente no tempo (ensaios I.2 e II.2)                                              | 53 |
| Figura 6.8 – Variação da CQO afluente e efluente no tempo (ensaios I.3 e II.3)                                              | 54 |
| Figura 6.9 – Variação do N-NH4 afluente e efluente no tempo (ensaios I.1 e II.1)                                            | 54 |
| Figura 6.10 – Variação da N-NH4 afluente e efluente no tempo (ensaios I.2 e II.2)                                           | 55 |
| Figura 6.11 – Variação da N-NH4 afluente e efluente no tempo (ensaios I.3 e II.3)                                           | 55 |
| Figura 7.1 – Aspecto de um aglomerado de raízes, rizomas e Filtralite, extraído do leito com vegetação no final da Série II | 58 |
| <b>Figura 7.2</b> – Variação de t(m, $\theta$ ) ao longo do leito para ensaios com Filtralite e brita                       | 59 |
| Figura 7.3 – Variação da dispersão longitudinal ao longo do leito para ensaios com<br>Filtralite e brita                    | 61 |
| Figura 7.4 – Curvas DTR experimentais e calculadas (ensaio I.1., sem vegetação)                                             | 62 |
| Figura 7.5 – Curvas DTR experimentais e calculadas (ensaio I.2., sem vegetação)                                             | 62 |
| Figura 7.6 – Curvas DTR experimentais e calculadas (ensaio I.3., sem vegetação)                                             | 63 |
| Figura 7.7 – Curvas DTR experimentais e calculadas (ensaio II.1., com vegetação)                                            | 63 |

| Figura 7.8 – Curvas DTR experimentais e calculadas (ensaio II.2., com vegetação)                              | 64 |
|---------------------------------------------------------------------------------------------------------------|----|
| Figura 7.9 – Curvas DTR experimentais e calculadas (ensaio II.3., com vegetação)                              | 64 |
| Figura 7.10 – Variação do volume morto ao longo do leito para ensaios com Filtralite<br>e brita               | 65 |
| Figura 7.11 – Variação da remoção de CQO no tempo (ensaios I.1. e II.1.)                                      | 67 |
| Figura 7.12 – Variação da remoção de CQO no tempo (ensaios I.2. e II.2.)                                      | 67 |
| Figura 7.13 – Variação da remoção de CQO no tempo (ensaios I.3. e II.3.)                                      | 67 |
| Figura 7.14 – Variação da remoção de N-NH4 no tempo (ensaios I.1. e II.1.)                                    | 68 |
| Figura 7.15 – Variação da remoção de N-NH4 no tempo (ensaios I.2. e II.2.)                                    | 68 |
| Figura 7.16 – Variação da remoção de N-NH4 no tempo (ensaios I.3. e II.3.)                                    | 68 |
| Figura 7.17 – Variação da eficiência de remoção de CQO ao longo de cada troço do leito para ambas as Séries   | 69 |
| Figura 7.18 – Variação da eficiência de remoção de N-NH4 ao longo de cada troço do leito para ambas as Séries | 70 |
| Figura 7.19 – Influência do volume morto na remoção de CQO                                                    | 71 |
| Figura 7.20 – Influência da dispersão longitudinal na remoção de CQO                                          | 71 |
| Figura 7.21 – Influência do volume morto na remoção de N-NH4                                                  | 72 |
| Figura 7.22 – Influência da dispersão longitudinal na remoção de N-NH4                                        | 72 |
| Figura I.1 – Adsorção NaCI na Filtralite para várias concentrações em solução                                 | 84 |

## NOMENCLATURAS

### Abreviaturas

| ADR     | Advecção – Dispersão - Reacção                                                |
|---------|-------------------------------------------------------------------------------|
| DTR     | Distribuição de Tempos de Residência                                          |
| DAFO    | DAta Fitting and Optimization                                                 |
| DECA    | Departamento de Engenharia Civil e Arquitectura                               |
| EG      | Entidade Gestora                                                              |
| LECA    | Light Expanded Clay Aggregates                                                |
| LESH    | Leito de Escoamento Subsuperficial Horizontal                                 |
| LSA     | Laboratório de Saneamento Ambiental                                           |
| MULPDAS | Multiparametric Data Acquisition System                                       |
| NTS     | N tanques em Série                                                            |
| NTS-VM  | N tanques em Série para estimativa do Volume Morto                            |
| PE      | População equivalente                                                         |
| PEAASAR | Plano Estratégico de Abastecimento de Água e de Saneamento de Águas Residuais |

### Símbolos

| AES            | Área Específica Superficial                                                        | $L^2$                            |
|----------------|------------------------------------------------------------------------------------|----------------------------------|
| А              | Área total                                                                         | L <sup>2</sup>                   |
| A <sub>u</sub> | Área efectivo ou útil do leito                                                     | L <sup>2</sup>                   |
| С              | Concentração de soluto                                                             | ML <sup>-3</sup>                 |
| C <sub>f</sub> | Concentração final de soluto                                                       | ML⁻³                             |
| C <sub>0</sub> | Concentração inicial de soluto                                                     | ML⁻³                             |
| Cs             | Massa de soluto adsorvido ou dessorvido por unidade de massa do meio de enchimento | MM⁻¹                             |
| CNA            | Carga de Azoto Aplicada                                                            | ML <sup>-3</sup> T <sup>-1</sup> |
| COA            | Carga Orgânica Aplicada                                                            | ML <sup>-3</sup> T <sup>-1</sup> |
| CSA            | Carga de Sólidos Aplicada                                                          | ML <sup>-3</sup> T <sup>-1</sup> |
| $CBO_5$        | Carência Bioquímica de Oxigénio                                                    | ML⁻³                             |
| CQO            | Carência Química de Oxigénio                                                       | ML⁻³                             |
| d <sub>p</sub> | Diâmetro médio de partículas do meio poroso                                        | L                                |
| E(t)           | Função distribuição dos tempos de residência                                       | T <sup>-1</sup>                  |
| Ε(θ)           | Função adimensional da distribuição dos tempos de residência                       | -                                |

| L                 | Comprimento de um troço do Leito                            | L                |
|-------------------|-------------------------------------------------------------|------------------|
| M <sub>0</sub>    | Massa de soluto inicial à entrada do sistema                | М                |
| Ms                | Massa de soluto à saída do sistema                          | М                |
| $M_{MS}$          | Massa de material sólido numa amostra do meio de enchimento | М                |
| n                 | Porosidade                                                  | -                |
| Ν                 | Número de tanques de igual volume                           | -                |
| N <sub>d</sub>    | Número de dispersão ou módulo de dispersão                  | -                |
| N-NH <sub>4</sub> | Azoto amoniacal                                             | ML⁻³             |
| N-NO <sub>3</sub> | Azoto associado ao ião nitrato                              | ML⁻³             |
| N-NO <sub>2</sub> | Azoto associado ao ião nitrito                              | ML⁻³             |
| NT                | Azoto total                                                 | ML⁻³             |
| OD                | Oxigénio Dissolvido                                         | ML⁻³             |
| Q                 | Caudal médio afluente                                       | $L^{3}T^{-1}$    |
| PT                | Fósforo total                                               | ML⁻³             |
| R                 | Factor de retardamento                                      | -                |
| R <sub>e</sub>    | Número de Reynolds                                          |                  |
| s <sup>2</sup>    | Variância                                                   | T <sup>-2</sup>  |
| ${s_{\theta}}^2$  | Variância adimensional                                      | -                |
| SST               | Sólidos Suspensos Totais                                    | ML <sup>-3</sup> |
| SSV               | Sólidos Suspensos Voláteis                                  | ML⁻³             |
| t <sub>m</sub>    | Tempo médio de residência                                   | Т                |
| $t_{(m,\theta)}$  | Tempo médio de residência adimensional                      | Т                |
| TRH               | Tempo de Retenção Hidráulico                                | Т                |
| U                 | Velocidade aparente                                         | Т                |
| v                 | Velocidade média intersticial                               | MT <sup>-1</sup> |
| V                 | Volume total                                                | $L^3$            |
| V <sub>m</sub>    | Volume morto                                                | $L^3$            |
| Vu                | Volume efectivo ou útil do leito                            | $L^3$            |
| x                 | Vector posição                                              | L                |
| θ                 | Tempo adimensional                                          | -                |
| ξмd               | Erro médio padrão                                           | -                |
| τ:                | Tempo de retenção hidráulico teórico                        | Т                |

## 1. INTRODUÇÃO

#### 1.1 Enquadramento e justificação

Com a entrada do terceiro quadro comunitário de apoio, e a elaboração do Plano Estratégico de Abastecimento de Água e de Saneamento de Águas Residuais (PEAASAR I, 2000-2006), Portugal deu um salto qualitativo e quantitativo a nível de atendimento e cobertura de sistemas de águas e águas residuais. Em 2006 o nível de cobertura nacional em sistemas de tratamento de águas residuais chegava aos 80% (MAOT, 2007) contra 65% na região Centro (INE, 2007). Os níveis de cobertura que falta satisfazer dizem respeito a aglomerados populacionais com menos de 2 000 habitantes, que se espera poderem beneficiar de investimentos do quarto quadro comunitário de apoio ao abrigo do PEAASAR II (2007-2013).

Os sistemas de pequena dimensão, com soluções ao nível do aglomerado populacional, podem tornar-se onerosos para as entidades gestoras (EG), em especial se apresentarem grande dispersão espacial e multiplicidade de ligações. Estes sistemas, para serem sustentáveis deverão cumprir com os limites de descarga definidos na legislação vigente, apresentar custos reduzidos de investimento (construção e equipamentos) e de operação e exploração (pessoal, reagentes e energia), apresentar boa integração paisagística e terem aceitação social (Galvão e Matos (2006)).

De acordo com o Decreto-Lei 152/97 de 19 de Junho (Tratamento de águas residuais urbanas), os aglomerados com menos de 2 000 habitantes deverão proceder a um tratamento de efluentes "apropriado", estando as EG orientadas para um grau de exigência similar ao requerido naquele diploma. Para minimizar os custos de investimento e manutenção, algumas EG têm vindo a instalar, para aquela dimensão de aglomerado, sistemas de tratamento por leitos de escoamento subsuperficial e horizontal (LESH), sendo designados por leitos de macrófitas os que são colonizados com plantas.

Estas soluções, associadas a tanque Imhoff ou fossas sépticas colectivas já existentes, são referidas por vários autores como sendo de baixo custo, porque, além de proporcionarem um adequado tratamento de efluentes, consomem menos energia e menos reagentes químicos e utilizam menos meios mecânicos que os processos de tratamento convencionais (EPA (1999), IWA (2000), Vymazal (2003), Wallace & Knight (2006), Vymazal & Kropfelova (2008), Kadlec & Wallace (2008)).

Esta tecnologia, além de tratamento secundário, pode também proporcionar tratamento de afinação, especialmente útil quando o meio receptor é considerado sensível ou se pretende instalar a opção de reutilização, que é uma solução com potencial para associar a este tipo de sistema (Bixio and Wintgens (2006); Asano *et al.* (2007), Marecos do Monte e Albuquerque (2009)).

Contudo, o meio de enchimento, como em qualquer sistema de tratamento que utiliza um meio filtrante, apresenta, normalmente, problemas de colmatação, associados às características das águas residuais, crescimento excessivo de biomassa, acumulação de matéria sólida em suspensão, formação de precipitados e desenvolvimento de rizomas e de raízes, que podem diminuir a sua capacidade de tratamento, e, consequentemente, põe em causa o cumprimento dos limites de emissão estabelecidos pela legislação vigente.

A análise do funcionamento dos sistemas é, portanto, uma ferramenta importante para a redefinição de procedimentos de operação. No caso dos LESH, a avaliação do risco de colmatação precoce do filtro pode minimizar custos de operação e manutenção relacionados com a substituição do meio de enchimento, colonização e arranque das instalações. Os procedimentos de análise incluem, normalmente, a avaliação de parâmetros de carga orgânica ou de sólidos, do tempo de retenção hidráulico e do rendimento do sistema com base em resultados de análises físico-químicas (Metcalf e Eddy (2003)). A componente de escoamento hidráulico e os mecanismos associados ao transporte de solutos são, com frequência, negligenciados (i.e. os planos de exploração não incluem, normalmente, procedimentos para avaliação das condições do escoamento).

A quebra de rendimento do tratamento está, muitas vezes, associada à ocorrência de mecanismos causadores de perturbações do escoamento (*e.g.* zonas pouco irrigadas, zonas de volume morto, curto-circuito hidráulico, recirculações internas e dispersão) que provocam uma irregular distribuição, quer dos compostos poluentes a remover, quer dos subprodutos libertados durante o tratamento. Ainda que as instalações tenham sido adequadamente dimensionadas, de acordo com os critérios hidráulico-sanitários normalmente utilizados ao nível do projecto, estas situações provocam, muitas vezes, a descarga de compostos nos meios receptores com concentrações passíveis de provocar impactos ambientais significativos.

Outro aspecto que não tem sido muito estudado é a influência da vegetação (raízes e rizomas) nas condições de escoamento, em especial na dispersão longitudinal, em leitos colonizados com plantas hidrófilas (os designados leitos de macrófitas).

Um dos métodos utilizados para avaliação das características hidrodinâmicas em LESH são os ensaios de traçagem que permitem detectar mecanismos que interferem com o escoamento (*e.g.* dispersão longitudinal, volume morto e curto-circuito hidráulico). A caracterização do escoamento é abordada com base na interpretação da distribuição dos elementos de volume à saída do sistema, sendo utilizadas ferramentas como o método dos momentos e testes de consistência, enquanto, para a quantificação de parâmetros caracterizadores da dispersão (*e.g.* número de Dispersão e volume morto), são utilizados modelos como o de N Tanques em Série e o de Advecção-Dispersão-Reacção, tal como nos estudos de Chazarenc *et al.* (2003), Albuquerque e Bandeiras (2007) e Araújo *et al.* (2008).

A utilização de meios de enchimento alternativos ao clássico (brita), como a argila expandida (LECA), é apontada com uma solução para minimizar os problemas de escoamento e reduzir a colmatação, aumentado a vida útil do leito, mantendo uma elevada capacidade de tratamento (Metcalf and Eddy (2003), Vilpas *et al.* (2005)). Este tipo de material apresenta maior porosidade e superfície específica que a brita, o que beneficia a sua colonização com biofilme com capacidade para remover poluentes e aumenta a capacidade de filtração do leito. Vários estudos realizados em LESH mostraram as vantagens deste material para o aumento da condutividade hidráulica e a remoção de fósforo por adsorção (Wehrle-Werk (2003), Vilpas *et al.* (2005), van Deun & van Dyck (2008)), bem como o seu potencial para a remoção biológica de matéria orgânica e azoto (Vilpas *et al.* (2005), Cortés *et al.* (2006), Scholz (2006), Albuquerque *et al.* (2009)).

Contudo, não são conhecidos estudos sobre a avaliação da variação das características hidrodinâmicas em LESH com enchimento á base de argila expandida, nem da influência da vegetação na dispersão longitudinal.

O interesse do trabalho relaciona-se com a importância de avaliar a extensão destes mecanismos, que afectam a remoção de cargas poluentes e reduzem os volumes úteis disponíveis para tratamento em LESSH, tendo sido integrado no projecto EVAWET (Avaliação do funcionamento hidrodinâmico e ambiental de leitos de macrófitas para tratamento e reutilização de águas residuais), financiado pela FCT (PTDC/AMB/73081/2006), em desenvolvimento no Laboratório de Saneamento Ambiental (LSA) do Departamento de Engenharia Civil e Arquitectura (DECA) da Universidade da Beira Interior (UBI).

### 1.2 Objectivos

O objectivo principal do trabalho centra-se na avaliação da influência que a vegetação pode causar na variação das condições hidrodinâmicas em LESH sujeitos a diferentes condições de cargas orgânica e de azoto, com identificação dos principais mecanismos que podem causar interferência no escoamento e na distribuição, quer de compostos poluentes, quer de produtos resultantes da degradação.

Assim, os objectivos específicos do estudo compreenderam os seguintes aspectos:

1) Identificação dos principais mecanismos responsáveis pela variação da hidrodinâmica em LEHS e estimativa do grau de dispersão e extensão do volume morto e curto-circuito hidráulico ao longo do leito.

 Avaliação do efeito da vegetação na variação das condições hidrodinâmicas ao longo do leito, para diferentes condições de carga orgânica e de azoto.

 Avaliação do efeito da variação da dispersão longitudinal e da extensão de volume morto no rendimento dos leitos.

Os resultados permitirão avaliar se a vegetação interfere com a variação das condições hidrodinâmica dos leitos, nomeadamente no que diz respeito à extensão da dispersão longitudinal, zonas pouco irrigadas, zonas de volume morto e curto-circuito hidráulico, e, consequentemente, com a remoção de carga orgânica e azoto.

#### 1.3 Estrutura da tese

A tese encontra-se estruturada em 9 Capítulos e 3 Anexos

No Capítulo 1 apresenta-se o enquadramento do tema, esclarecendo-se a importância da avaliação das condições hidrodinâmica em LESH para minimizar quebras de rendimento, as vantagens da utilização de argila expandida para minimizar os problemas de colmatação e o modo de execução de ensaios de traçagem.

No Capítulo 2 é realizada uma breve revisão bibliográfica sobre LESH, nomeadamente sobre os tipos de sistemas mais utilizados, sua classificação, constituição, aplicabilidade e parâmetros de controlo e critérios de dimensionamento.

No Capítulo 3 abordam-se os principais mecanismos que podem causar perturbação ao escoamento, como podem ser identificados através de ensaios de traçagem, que tipos de ensaios podem ser utilizados e como alguns parâmetros podem ser quantificados através da utilização de modelos matemáticos.

No Capítulo 4 inclui-se a descrição do plano de trabalhos.

No Capítulo 5 descrevem-se os materiais e métodos utilizados, incluindo os LESH, a metodologia seguida para a execução dos ensaios e o tratamento dos dados, as técnicas de amostragem e os procedimentos experimentais utilizados.

No Capítulo 6 apresentam-se, de forma resumida, os resultados das duas séries de ensaios, que são incluídos na totalidade no Anexo II e Anexo III.

No Capítulo 7 inclui-se a análise e discussão dos resultados, incluindo a comparação com os resultados obtidos noutros estudos.

No Capítulo 8 são apresentadas as conclusões e recomendações para trabalhos futuros e no Capítulo 9 são listadas as referências bibliográficas utilizadas.

# 2. LEITOS DE ESCOAMENTO SUBSUPERFICIAL E HORIZONTAL

#### 2.1 Características das águas residuais

As águas residuais domésticas contêm entre 60 a 80% de matéria orgânica de fácil biodegradabilidade (Metcalf e Eddy (2003)), cujos principais componentes são carbohidratos (*e.g.* açucares e amidos), compostos azotados e gorduras, e entre 20 a 40% de compostos de difícil biodegradabilidade (*e.g.* óleos, detergentes, celulose e hidrocarbonetos), matéria inerte, metais pesados e sais. As águas residuais domésticas apresentam características biológicas associadas à evacuação de excreta, tais como, microrganismos patogénicos (bactérias, vírus, fungos, protozoários e helmintas), responsáveis por doenças como a cólera, a hepatite A ou gastroenterites.

O tratamento de águas residuais tem como objectivo principal a remoção da sua carga poluente, manifestada pelas suas características físicas, químicas e biológicas, de forma a fim de produzir um efluente final com características conforme as normas de descarga ou de reutilização impostas pela legislação vigente, nomeadamente o Decreto-lei nº 152/97 de 19 de Junho (Tratamento de águas residuais urbanas) para populações superiores a 2 000 habitantes-equivalente (PE), que transpõe a directiva comunitária 91/271/CEE e o Decreto-lei nº 236/98 de 1 de Agosto (Qualidade da água para diferentes usos). Para populações inferiores a 2 000 PE a Lei apenas exige um tratamento adeguado de acordo com os objectivos de gualidade definidos para o meio receptor. Estas normas referem valores limite de emissão para determinados parâmetros que caracterizam as águas residuais, tais como a carência bioquímica de oxigénio (CBO<sub>5</sub>), carência química de oxigénio (CQO), azoto total (NT), iões amónio (NH4<sup>+</sup>) e nitrato (NO3<sup>-</sup>), fósforo total (PT) e sólidos suspensos totais (SST), que são apresentados na Tabela 2.1. No caso de o meio receptor ser considerado zona sensível à poluição por nitratos, prevalecem os limites definidos no Decreto-lei nº 152/97.

A eficácia do tratamento de águas residuais é normalmente avaliada com base na remoção de carga orgânica, de azoto ou de matéria sólida, a partir da determinação dos parâmetros CBO<sub>5</sub>, CQO, NT,  $NH_4^+$  ou azoto amoniacal (N-NH<sub>4</sub>), nitrito ( $NO_2^-$ ) ou azoto nitroso (N- NO<sub>2</sub>),  $NO_3^-$  ou azoto nítrico (N-NO<sub>3</sub>), PT e SST.

O pH também é avaliado a fim de se controlarem as condições de acidez e alcalinidade do meio, bem como o oxigénio dissolvido (OD), que dá indicação das condições de oxidação-redução, e os sólidos suspensos voláteis (SSV), que representam a concentração de biomassa no sistema.

| Parâmetro                          | Decreto-Lei nº152/97 | Decreto Lei 236/98       |
|------------------------------------|----------------------|--------------------------|
| CQO (mg L <sup>-1</sup> )          | 125                  | 150                      |
| $CBO_5 (mg L^{-1})$                | 25                   | 40                       |
| SST (mg L <sup>-1</sup> )          | 35                   | 60                       |
| NT (mg $L^{-1}$ )                  | 10; 15 <sup>1)</sup> | 15                       |
| $NO_{3}^{-}$ (mg L <sup>-1</sup> ) | _                    | 50                       |
| $NH_4^+$                           | _                    | 10                       |
| PT (mg L <sup>-1</sup> )           | 1; 2 <sup>2)</sup>   | 0,5; 3; 10 <sup>3)</sup> |

Tabela 2.1 – Valores limite de descarga de acordo com legislação vigente

<sup>1)</sup> 15 mg L<sup>-1</sup> entre 10 000 e 100 000 PE; 10 mg L<sup>-1</sup> para mais de 100 000 PE

<sup>2)</sup> 2 mg L<sup>-1</sup>entre 10 000 e 100 000 PE; 1 mg L<sup>-1</sup>para mais de 100 000 PE

<sup>3)</sup> 10 mg L<sup>-1</sup> (geral); 3 mg L<sup>-1</sup> (águas que alimentam lagoas ou albufeiras); 0,5 mg L<sup>-1</sup> (lagoas ou albufeiras)

#### 2.2 Processos de tratamento

O aperfeiçoamento de tecnologias de tratamento tem como objectivo principal aumentar a sua eficiência utilizando processos que consumam menos energia e materiais. Neste contexto, os processos biológicos são aqueles que tecnicamente ou economicamente, têm produzido melhores resultados para tratamento de efluentes urbanos com uma componente importante de matéria biodegradável produzida (Metcalf e Eddy (2003)).

A remoção ou a redução significativa da carga poluente associada a águas residuais numa instalação de tratamento envolve a combinação de operações e processos unitários, que se distribuem por diferentes níveis de tratamento (preliminar, primário, secundário, terciário e de afinação e o tratamento de lamas). A remoção de sólidos grosseiros e sedimentáveis é conseguida através de processos físicos de separação, como gradagem, tamisação e decantação.

A remoção da carga orgânica na forma solúvel ou coloidal é, no essencial, realizada por microrganismos, através de processos que privilegiam biomassa fixa, em suspensão ou mista. Na Tabela 2.2 apresentam-se as características típicas de diferentes tipos de águas residuais em função do nível de tratamento realizado, enquanto a Tabela 2.3 apresenta as eficiências do tratamento típicas para diferentes processos e operações de tratamento.

 Tabela 2.2 - Variação de alguns parâmetros característicos para diferentes tipos de águas residuais domésticas (adaptado de Metcalf e Eddy (2003), Albuquerque (2003))

| Tipo de água                     | CBO₅                                 | CQO                                  | NT                    | SST                   | ${\rm NH_4}^+$        | PT       |
|----------------------------------|--------------------------------------|--------------------------------------|-----------------------|-----------------------|-----------------------|----------|
| residual                         | (mg O <sub>2</sub> L <sup>-1</sup> ) | (mg O <sub>2</sub> L <sup>-1</sup> ) | (mg L-1) |
| Não tratada                      | 140 – 400                            | 350 – 1000                           | 20–80                 | 100 – 350             | 25 – 50               | 5 – 12   |
| Após<br>tratamento<br>primário   | 80 – 250                             | 200 – 500                            | 20–60                 | 80 – 140              | 20 – 40               | 5 – 10   |
| Após<br>tratamento<br>secundário | 20 – 40                              | 80 – 150                             | 5–10                  | 10 – 50               | 10 – 20               | 1 – 3    |

Quando o meio receptor apresenta, pelas suas características, sensibilidade à descarga de efluentes tratados ou, a jusante, é utilizado para determinado uso, a ETAR deve ser dotada de níveis de tratamento complementares, como o terciário/avançado ou de afinação, de forma a reduzir a presença de compostos residuais e de microrganismos patogénicos, podendo, alternativamente, integrar-se a possibilidade de reutilização, de acordo com as oportunidades e aplicações apresentadas em Marecos do Monte e Albuquerque (2009).

Os processos de tratamento por *biomassa fixa* (*e.g.* leitos percoladores, leitos compactos ou leitos de macrófitas) apresentam, normalmente, um enchimento constituído por brita, seixo rolado, material sintético ou mais usado recentemente a argila expandida (LECA), e são muito utilizados como tratamento secundário, terciário ou de afinação de vários tipos de efluentes (*e.g.* águas residuais domésticas, efluentes industriais, escorrências de rodovias e lixiviados de aterros sanitários).

A remoção de poluentes ocorre maioritariamente por contacto da água residual com o filme biológico (*biofilme*) que envolve o meio de enchimento.

**Tabela 2.3** - Eficiências de remoção poluentes em operações e processos de tratamento convencionais (adaptado de EPA (1999), IWA (2000), Albuquerque (2003), Metcalf e Eddy (2003), Vymazal (2003), Albuquerque *et al.* (2008))

| Tipos de tratamento |                                                             | Eficiência de remoção (%) |         |         |         |         |                   |  |  |  |
|---------------------|-------------------------------------------------------------|---------------------------|---------|---------|---------|---------|-------------------|--|--|--|
|                     |                                                             | CBO <sub>5</sub>          | CQO     | SST     | PT      | NT      | N-NH <sub>4</sub> |  |  |  |
| SOSS                | Gradagem e<br>Desarenamento                                 | 0 – 0,5                   | 0 - 0,5 | 0 – 1   | 0       | 0       | 0                 |  |  |  |
| Proce               | Decantação Primária                                         | 20 – 40                   | 30 – 40 | 50 – 60 | 10 – 20 | 10 – 20 | 0                 |  |  |  |
| Operações           | Lamas Activadas<br>(sistema<br>convencional)                | 80 – 95                   | 80 – 90 | 85 – 90 | 10 – 30 | 15 – 50 | 10 – 15           |  |  |  |
|                     | Leitos Percoladores<br>(alta carga,<br>enchimento de brita) | 60 – 90                   | 60 – 80 | 60 – 90 | 10 – 15 | 15 – 20 | 8 – 15            |  |  |  |
|                     | Leitos Percoladores<br>(alta carga,<br>enchimento sintético | 65 – 85                   | 65 – 85 | 65 – 85 | 10 – 15 |         |                   |  |  |  |
|                     | Discos Biológicos                                           | 80 – 90                   | 80 – 85 | 80 – 85 | 10 – 25 | 15 – 50 | 8 – 15            |  |  |  |
|                     | Leitos de<br>escoamento<br>horizontal                       | 50-95                     | 60-90   | 60-90   | 10-35   | 50-90   | 40-70             |  |  |  |
|                     | Leitos de<br>escoamento vertical                            | 25-99                     | 50-90   | 30-85   | 30-90   | 30-90   | 45-95             |  |  |  |

### 2.3 Leitos de escoamento subsuperficial e horizontal

#### 2.3.1 Descrição

Os Leitos de escoamento subsuperficial e horizontal (LESH) têm sido utilizados para o tratamento de efluentes de origem diversificada, principalmente os domésticos, de actividades industriais e agrícolas, lixiviados de aterros sanitários, de actividades mineiras e de escorrências de rodovias (EPA(1999), IWA (2000), Kadlec e Wallace

(2008)), beneficiando de processos naturais envolvendo plantas, solo e uma comunidade microbiana de constituição diversificada e adaptada a diferentes ambientes bioquímicos.

Na última década, os LESH têm recebido mais atenção por parte da comunidade científica nacional (Relvão (1999), Galvão e Matos (2005), Renker e Albuquerque (2007), Calheiros *et al.* (2007, 2008), Oliveira (2008), Albuquerque *et al.* (2008)) e internacional (Kowalik *et al.* (1995), EPA (1999), IWA (2000), Vymazal (2003), Korkusuz (2005), Wallace e Knight (2006), Vymazal e Kropfelova (2008), Kadlec e Wallace (2008)), em especial as colonizadas com plantas macrófitas (Figuras 2.1. e 2.2.). Esta procura está associada à necessidade das EG em aplicarem sistemas de baixo custo ao tratamento de efluentes de aglomerados com menos de 2 000 PE, apresentando-se estas tecnologias sustentáveis e consistentes com a conservação dos recursos hídricos e a protecção do ambiente, com custos de operação e manutenção mais baixos que as tecnologias convencionais, que são consumidores de mais energia, produtos químicos e utilizadores de meios mecânicos mais intensivos.



**Figura 2.1 -** Representação esquemática da planta e corte de um LESH com vegetação emergente (adaptada de Relvão (1999))



Figura 2.2 - LESH com vegetação emergente (leito de macrófitas)

Nos LESH o escoamento dá-se através de um meio poroso, de forma subsuperficial, e de raízes e rizomas quando são plantados, onde ocorrem fenómenos de filtração, sedimentação, volatilização, decomposição por processos de oxidação-redução, adsorção e precipitação, resultando a remoção de matéria orgânica, matéria sólida e nutrientes (particularmente de azoto e fósforo), bem como de microrganismos patogénicos e metais pesados (EPA (1999), IWA (2000), Wallace e Knight (2006), Vymazal e Kropfelova (2008), Kadlec e Wallace (2008)). No entanto, as características dos LESH, a qualidade e quantidade de água residual a tratar e as variações do ciclo hidrológico, são factores bastante importantes no desenvolvimento de mecanismos de remoção de poluentes.

Nos leitos sem vegetação, também conhecidos como leitos filtrantes (Figura 2.3.), a remoção de poluentes ocorre, essencialmente, através do biofilme que se desenvolve à volta do suporte e através de mecanismos físicos de filtração, adsorção e precipitação. Nos leitos com vegetação (leitos de macrófitas) a remoção de poluentes ocorre, essencialmente, através do biofilme que se desenvolve à volta do suporte e das raízes e rizomas, do consumo de nutrientes e metais pesados pelas plantas e através de mecanismos físicos de filtração.

Os últimos, normalmente, são mais rentáveis, exigindo menos área de implantação e com bom enquadramento ecológico e, por estas razões, são os mais utilizados pelas EG.



Figura 2.3 - LESH sem vegetação (leito filtrante)

A remoção de matéria orgânica ocorre por via aeróbia (respiração), anóxica (desnitrificação) ou anaeróbia (fermentação), sendo as duas últimas mais relevantes, já que os LESH são limitados em OD.

A remoção de azoto ocorre essencialmente por nitrificação seguida de desnitrificação ou em simultâneo (EPA (1999), IWA (2000), Vymazal (2003)). Contudo, estudos mais recentes (Ahn (2006), Paredes *et al.* (2007), Albuquerque *et al.* (2009)), referem, para os sistemas de escoamento subsuperficial (em particular os LESH), limitados em oxigénio dissolvido, poderem ocorrer mecanismos de remoção de azoto não convencionais como a nitrificação parcial, a remoção autorófica total através do nitrito (de amónio a nitrato e azoto gasoso) em condições limitantes de oxigénio, a remoção heterotrófica de amónia, a desnitrificação autotrófica, a desnitrificação heterotófica na presença de concentrações apreciáveis de oxigénio e a oxidação autotrófica anaeróbia de amónio (Anammox).

Assim, nas zonas onde se sobrepõem ambientes aeróbios, anaeróbios e anóxicos, a remoção de formas de azoto estará associada a nitrificação/desnitrificação e à combinação destas formas de remoção não convencionais, além dos processos assimilativos e da remoção pelas plantas.

Os principais poluentes a remover em LESH são apresentados na Tabela 2.4.

| Tabela  | 2.4 - | <ul> <li>Principais</li> </ul> | poluentes | е | mecanismos | de | remoção | em | LESH | (EPA | (1999), | IWA |
|---------|-------|--------------------------------|-----------|---|------------|----|---------|----|------|------|---------|-----|
| (2000), | Vyma  | zal (2003))                    |           |   |            |    |         |    |      |      |         |     |

| Parâmetro         | Mecanismos de remoção                                                                                                                                                                                                    |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Sólidos suspensos | Sedimentação, floculação e filtração/intercepção.                                                                                                                                                                        |  |  |  |  |  |
| Matéria orgânica  | Matéria orgânica particulada removida com os sólidos<br>suspensos. Adsorção/absorção de matéria orgânica solúvel.<br>Adsorção no solo. Conversão bioquímica da matéria orgânica.<br>Volatilização de compostos voláteis. |  |  |  |  |  |
| Azoto             | Nitrificação e desnitrificação. Nitrificação parcial. Oxidação<br>anaeróbia de amónia. Remoção heterotrófica de amónia.<br>Remoção autotrófica de NOx. Adsorção no solo. Remoção<br>pela planta. Volatilização.          |  |  |  |  |  |
| Fósforo           | Sedimentação e adsorção/absorção da matéria particulada<br>orgânica ou inorgânica no biofilme. Absorção radicular e<br>microbiana do fósforo solúvel. Precipitação de fosfatos.<br>Adsorção nos minerais de argila.      |  |  |  |  |  |

Estes sistemas são, normalmente, utilizados como tratamento secundário em aglomerados urbanos de pequena e média dimensão (até 2000 PE), dispensando o recurso a sistemas mecanizados de manutenção onerosa.

As suas principais vantagens são (Relvão (1999), EPA (1999), IWA (2000), Vymazal e Kropfelova (2008), Kadlec e Wallace (2008)):

- Elevadas eficiências de remoção de matéria orgânica, matéria sólida, nutrientes (azoto e fósforo) e metais pesados;
- Facilidade de operação e manutenção;
- Elevada capacidade para lidar com variação de cargas hidráulicas e orgânicas;

• Custos de construção e operação relativamente baixos comparativamente com os sistemas convencionais de lamas activadas e leitos percoladores;

- Reduzida emissão de odores;
- Gastos de energia relativamente baixos;
- Possibilidade de reutilização do efluente final;

• Obtenção de benefícios adicionais, nomeadamente, espaços verdes, habitats naturais e áreas de recreio ou educacionais.

As suas principais desvantagens são (Relvão (1999), EPA (1999), IWA (2000), Vymazal e Kropfelova (2008), Kadlec e Wallace (2008)):

- Necessidade de maiores áreas para implantação que os sistemas convencionais como as lamas activadas ou leitos percoladores;
- Colmatação do leito devido à presença de elevadas concentrações de matéria orgânica e principalmente matéria sólida;
- As eficiências de tratamento mais elevadas podem só ser atingidas dois a três anos após o inicio da exploração;
- Apresentam eficiências sazonais, influenciadas pelas épocas vegetativas e não vegetativas;
- Possível aparecimento de roedores e insectos, nomeadamente mosquitos;

A utilização de escoamento subsuperficial (verticais, horizontais ou mistos), a inclusão de um sistema eficiente de remoção de sólidos a montante (para evitar a colmatação do meio poroso) e a selecção de enchimento com elevada porosidade, superfície especifica e conductividade hidráulica, permite minimizar muitas das desvantagens apresentadas.

Os LESH também têm sido utilizados com sucesso no tratamento de águas residuais agro-industriais (*e.g.* indústria de processamento de fruta, matadouros e lagares de azeite), desde que não apresentem toxicidade para a biomassa ou plantas (Davies *et al.* (1990), Vymazal (2003), Korkusuz (2005), Kadlec e Wallace (2008)). Bons resultados foram também encontrados em sistemas dimensionados para a remoção de corantes produzidos na indústria têxtil (Husband *et al.* (2000)) ou metais pesados na indústria de curtumes (Calheiros *et al.* (2007), Calheiros *et al.* (2008)).

A sua utilização para o tratamento de efluentes agro-pecuários (*e.g* vacarias, suiniculturas e aviários) pode provocar a colmatação rápida dos leitos, dada a presença de elevadas concentrações de matéria orgânica e matéria sólida. Também é conhecida a sua aplicação no tratamento de escorrências provenientes de solos agrícolas e de rodovias (Nuttall *et al.* (1997), Romero *et al.* (1999), Crumpton (2000), Thorén *et al.* (2003)), tendo sido reportadas elevadas remoções de sólidos e metais pesados.

Nos sistemas com vegetação que estão a ser implementados em Portugal, normalmente para aglomerados com dimensão inferior a 2000 PE, prevalece a colonização com a espécie *Phragmites australis* (Figura 2.4), sendo a alimentação, normalmente, subsuperficial e o escoamento do tipo horizontal.



Figura 2.4 – Phragmites australis aplicadas numa LESH

#### 2.3.2 Tipos de leitos

A classificação de LESH baseia-se nas seguintes características (EPA (1999), IWA (2000), Vymazal (2003), Wallace e Knight (2006), Kadlec e Wallace (2008)):

- Com ou sem vegetação;
- Nos que apresentam vegetação, de acordo com o tipo de macrófita (emergente, flutuante, enraizada ou submersa);
- Tipo de configuração dos leitos (híbridos, com uma passagem ou com recirculação);
- Nível de tratamento (secundário, terciário ou de afinação);
- Tipo de meio de enchimento (brita, areia ou areão grosso, seixo rolado, argila expandida ou material sintético);
- De acordo com o tipo de operação (continuo ou descontinuo);

Neste Capítulo, apenas são caracterizados os leitos de escoamento subsuperficial e horizontal, porque são os utilizados na parte experimental.

#### Sistemas de escoamento subsuperficial e horizontal

No sistema de escoamento subsuperficial o nível do líquido mantém-se abaixo da superfície do leito, podendo a sua profundidade variar de 0,3 a 1,0 m, sendo 0,6 m a mais vulgar (Relvão (1999), IWA (2000), Vymazal (2003), Kadlec e Wallace (2008)). Este tipo de configuração minimiza ocorrência de odores e o risco de contacto das pessoas com a água residual, uma vez que esta é mantida abaixo da superfície do leito, evitando ainda a proliferação de insectos e roedores.

De acordo com a alimentação, é possível distinguir-se os sistemas de escoamento subsuperficial horizontal (LESH) e os de escoamento subsuperficial vertical (LESV). O sistema LESH é o mais usual no nosso País e na maioria dos países europeus e mediterrânicos e será também o utilizado neste trabalho (na Figura 2.5. apresenta-se um esquema representativo de um sistema com vegetação). O afluente é distribuído à entrada do leito ao longo de toda a sua largura, deslocando-se horizontalmente,

penetrando através do meio poroso e da rizosfera, não existindo, portanto, escoamento superficial. Enquanto ocorre o escoamento com transporte de poluentes, sucedem-se mecanismos de adsorção, precipitação e degradação microbiana. O efluente tratado é recolhido no extremo oposto à entrada, para ser descarregado num destino final, normalmente em linha de água.



Figura 2.5 – Representação esquemática de um LESH com vegetação (adaptada de lweme et al. (2005))

#### 2.3.3 Elementos do sistema

#### Meio de enchimento

O meio de enchimento, essencial para a fixação das plantas e para o desenvolvimento de biofilme com capacidade para a remoção de poluentes, apresenta, normalmente, problemas de colmatação, cujas causas são conhecidas e que se relacionam com as características da água residual, propriedades do material de enchimento, crescimento excessivo de biomassa, acumulação de matéria sólida em suspensão, formação de precipitados e desenvolvimento de rizomas e de raízes.

Nesta matriz de material de enchimento (com raízes e rizomas nos colonizados com plantas) e material sólido retido (Figuras 2.6. e 2.7.) coabita uma grande variedade de microrganismos, nomeadamente bactérias, fungos, algas e protozoários, que utilizam os compostos poluentes para obterem carbono, nutrientes e energia para as suas actividades de crescimento e manutenção.

A maior parte dos microorganismos responsáveis pela alteração de poluentes está presente no biofilme que se desenvolve nas raízes e rizomas das plantas ou nas partículas do meio de enchimento inerte.



Figura 2.6 – Aspecto do desenvolvimento de biofilme sobre brita e leito com brita e raízes



Figura 2.7 – Aspecto do desenvolvimento de biofilme sobre raízes e LECA

O meio de enchimento é, normalmente, constituído por camadas de material natural (normalmente brita, mas pode também ser utilizado solo arenoso, areia ou areão grosso e seixo rolado), reciclado (*e.g.* geopolimeros e agregados de argila expandida e lamas residuais) ou sintético (*e.g.* poliestireno), de profundidade tipicamente inferior a um metro. As características de alguns materiais são apresentadas na Tabela 2.5.

| Material             | Diâmetro da<br>partícula (mm) | Porosidade (n) | Superfície<br>específica<br>(m² m⁻³) |  |
|----------------------|-------------------------------|----------------|--------------------------------------|--|
| Areia                | 2 – 3                         | > 0,4          | 1500                                 |  |
| Argila calcinada     | 2 – 6                         | > 0,4          | 1000 - 1500                          |  |
| Esferas poliestireno | 3                             | 0,30 – 0,35    | 1200                                 |  |
| Brita                | 10 - 70                       | 0,40 - 0,45    | 700 - 1000                           |  |

Tabela 2.5 - Características de alguns tipos de material de enchimento utilizados em LESH(adaptado de EPA (1999), Relvão (1999), Metcalf e Eddy (2003), IWA (2000), Vymazal (2003))

O leito pode incluir camadas de granulometria crescente, normalmente no sentido ascendente, até camadas homogéneas do mesmo tipo de material. A superfície específica deve ser elevada a fim de favorecer o desenvolvimento de biofilme. Deve, contudo, apresentar uniformidade, porosidade e condutividade hidráulica adequadas, pois estas características podem afectar o escoamento e o desempenho do sistema (EPA (1999), IWA (2000), Vymazal e Kropfelova (2008)).

É importante manter a uniformidade das partículas. Se a dimensão das partículas forem muito diferentes, as mais pequenas acabam por obstruir os poros, diminuindo assim o volume disponível para o escoamento e transporte de materiais, além de contribuírem para uma mais rápida colmatação do leito. A condutividade hidráulica deve ser suficientemente elevada para permitir que o escoamento seja subsuperficial, evitando o escoamento superficial e caminhos preferenciais no interior do leito, susceptíveis de provocar curto-circuito hidráulico e consequentemente a diminuição do rendimento do sistema. A condutividade hidráulica vai sendo alterada ao longo do tempo de operação, devido ao desenvolvimento dos rizomas e das raízes, pela formação de precipitados e pela acumulação de partículas contidas nas águas residuais afluentes.

O material de enchimento é particularmente útil na remoção de sólidos em suspensão e de microrganismos patogénicos, sendo aconselhável, nestas circunstâncias, a utilização de um meio com baixa granulometria. Um leito muito permeável admitirá cargas hidráulicas mais elevadas e estará menos sujeito a colmatação mas, em contrapartida, não assegurará condições adequadas de filtração e retenção (IWA (2000)). Nos sistemas de leito com brita e areão, podem admitir-se cargas hidráulicas entre 2,5 x  $10^{-2}$  a 6 x  $10^{-2}$  m<sup>3</sup>.m<sup>-2</sup>.d<sup>-1</sup> (2 a 20 cm d<sup>-1</sup>, de acordo com EPA (1999), IWA (2000), Vymazal (2003), e Vymazal e Kropfelova (2008)). A espessura da camada porosa pode variar entre 0,4 m e 1,0 m, sendo mais frequente e recomendável o valor de 0,6 m (Relvão (1999), IWA (2000)).

A colmatação gradual do leito leva a alteração das condições hidrodinâmicas no seu interior o que, para determinada condições, pode levar à quebra de rendimento na remoção de poluentes. Assim, a avaliação da variação de parâmetros como a dispersão longitudinal, o volume morto e o curto-circuito hidráulico no tempo e ao longo do leito, são aspectos essenciais para antecipar problemas de funcionamento e alterar procedimentos de operação.

#### Plantas

As plantas macrófitas (Figura 2.8.) são hidrófitas por necessitarem de água para a sua manutenção e crescimento e, portanto, são características de ambientes húmidos ou encharcados (*e.g.* pântanos e as galerias ripícolas) que toleram a submersão em períodos longos, e que incluem macroalgas, líquenes, briófitos, pteridófitos e plantas superiores. A distribuição das espécies no ambiente aquático é variável, dependendo do grau da adaptação da espécie, consoante ela habita regiões mais rasas ou mais profundas.

Ssão normalmente classificadas nos seguintes quatro grupos (EPA (1999), IWA (2000), Vymazal (2003), Korkusuz (2005), e Vymazal e Kropfelova (2008)):

- <u>Macrófitas emergentes</u> plantas enraizadas no solo com a maior parte dos caules e folhas fora de água, como por exemplo o caniço (*Phragmites australis*), as espadanas (*Typha latifolia*), os juncos do pântano ou lírios do pântano (*Íris pseudocorus*), e o junco (*Scirpus lacustris*). Encontram-se geralmente nas margens dos cursos e massas de água (Figura 2.8a)).
- <u>Macrófitas flutuantes</u> plantas que flutuam à superfície da água, não estando enraizadas no leito, como por exemplo, o jacinto-aquático (*Eichhornia crassipes*),
as lentilhas-de-água (*Lemna* spp.) e a azola (*Azolla filiculoides*). Têm a maior parte dos caules e folhas emersos (Figura 2.8b)).

- <u>Macrófitas enraizadas com folhas flutuantes</u> plantas enraizadas ou ancoradas ao leito mas que têm a maioria das folhas à superfície, como por exemplo de a pinheirinha de água (*Myriophyllum aquaticum*), e os nenúfares (*Nymphaea* sp. e *Nuphar* sp.) (Figura 2.8c)).
- <u>Macrófitas submersas</u> plantas enraizadas ou ancoradas ao leito ou em suspensão na água, que têm as partes vegetativas abaixo da superfície da água embora, muitas vezes, os órgãos reprodutores estejam à superfície ou acima dela. Alguns exemplos são o limo mesto (*Potamogeton pectinatus*) e *Elodea canadensis*. (Figura 2.8d))



Figura 2.8 – Exemplos de diferentes tipos de plantas macrófitas

No tratamento de águas residuais podem ser utilizadas várias espécies de plantas macrófitas, dependendo do tipo de sistema e escoamento a utilizar. As plantas desempenham um papel eficaz no tratamento das águas residuais, pois permitem criar em torno das suas raízes e rizomas um meio rico em oxigénio, onde se geram condições de oxidação que estimulam a decomposição aeróbia da matéria orgânica e o crescimento das bactérias nitrificantes (Vymazal (2003), Cabral (2004), e Vymazal e Kropfelova (2008)), bem como o desenvolvimento de biofilme. O oxigénio libertado na rizosfera permite um acréscimo da remoção aeróbia de carbono orgânico e azoto (nomeadamente amónio), sendo, contudo rapidamete consumido (Randerson *et al.* (2005)).

A espécie *Phragmites australis* é das mais utilizadas nas instalações do nosso País, sendo caracterizada por rizomas robustos, muitas vezes com rebentos que podem atingir os 10 m de comprimento, folhas lanceoladas com 15 a 60 cm de comprimento e 1 a 6 cm de largura, sem pêlos e de coloração verde ou verde-azulada (Vymazal (2003)), panícula densamente florida de cor amarela acastanhada ou arroxeada, com 15 a 40 cm de comprimento, espículas com 10 a 17 mm e flósculo inferior com estames.

#### Dispositivos de operação

O dispositivo de entrada na lagoa é, normalmente, constituído por uma tubagem horizontal em "T", perfurada a meia cana, e instalada perpendicularmente à direcção do escoamento (Figura 2.9). Assim, a alimentação é distribuída homogeneamente através da secção transversal da lagoa, minimizando-se o aparecimento de zonas mortas e de curto-circuito hidráulico e optimizando-se o volume disponível para a remoção de poluentes.

Os dispositivos de saída incluem normalmente: uma tubagem de recolha do efluente (normalmente em "T", perfurada a meia cana, e colocada transversalmente à direcção do escoamento), uma tubagem ou ponto de descarga de fundo; um sistema sifonado para controlo de nível e uma caixa de recepção do efluente final antes da sua descarga no meio receptor.



Figura 2.9 – Tubagem de alimentação do leito

A recirculação do efluente pode ser uma opção incluída no sistema, para permitir uma flexibilidade na operação (funcionamento dos leitos em paralelo ou em série). Contudo, trata-se de uma opção de recurso e, mesmo que instalada, não é muito utilizada porque aumenta consideravelmente os custos de operação. A sua utilização está confinada a sistemas onde a afluência é marcadamente sazonal em termos de cargas, ou quando a sua variação entre o ano de arranque e o de horizonte é significativa, podendo a sua utilização ajudar a manter um fluxo de cargas hidráulicas, orgânicas e inorgânicas que permitem a manutenção do desempenho do leito e das plantas. Normalmente, inclui um sistema elevatório para recircular o efluente final para a entrada das lagoas.

No entanto, em situações de baixas afluências, o aumento da carga hidráulica através da recirculação pode melhorar a distribuição do efluente no leito, reduzindo a possibilidade de instalação de zonas de volume morto e as áreas secas ou a morte de plantas. Por outro lado, a recirculação do efluente mantém o atrito necessário para o desprendimento do biofilme, particularmente nas zonas onde se verifica crescimento excessivo, reduzindo os problemas de acumulação excessiva de sólidos e colmatação.

#### 2.3.4 Parâmetros de dimensionamento e controlo

Os principais parametros hidráulico-sanitários utilizados para o controlo da operação de LESH são: tempo de retenção hidráulico (TRH), carga hidráulica, carga orgânica aplicada (COA), carga de azoto aplicada (CNA), carga de sólidos (CSA) velocidade transversal e área específica superficial por habitante-equivalente (AES), apresentando-se os valores característicos de alguns destes parâmetros na Tabela 2.6.

**Tabela 2.6** – Critérios hidráulico-sanitários para LESH (EPA (1999), IWA (2000), Vymazal (2003) e Korkusuz (2005))

| TRH (d) | Carga hidráulica | COA                                       | COA                                      | AES                                 |
|---------|------------------|-------------------------------------------|------------------------------------------|-------------------------------------|
|         | (cm d⁻¹)         | (g CBO₅ m <sup>-2</sup> d <sup>-1</sup> ) | (g CQO m <sup>-2</sup> d <sup>-1</sup> ) | (m <sup>2</sup> hab <sup>-1</sup> ) |
| 5 – 15  | 2 – 20           | 5 – 15                                    | 8 – 20                                   | 3 – 6                               |

A carga hidráulica representa o caudal escoado por unidade de área, sendo, no caso dos sistemas por filtração numericamente igual à velocidade média aparente de escoamento. O desenvolvimento de biofilme, raízes e plantas, associado à acumulação de sólidos e à desfragmentação do material de enchimento provoca o aumento da perda de carga do escoamento e, consequentemente, contribui para a colmatação progressiva do meio diminuindo a área disponível para a percolação assim como o volume disponível para tratamento.

A carga orgânica (em termos de CBO ou CQO), a carga de azoto e a carga de sólidos representam a carga mássica de poluentes aplicada por unidade de área ou por unidade de volume no tempo. No projecto e na operação de LESH é comum utilizar-se o critério de carga superficial, calculada em função do caudal médio diário, da concentração média diária de poluentes, da área total ou efectiva do leito.

# 3. CARACTERÍSTICAS HIDRODINAMICAS EM LEITOS DE ESCOAMENTO SUBSUPERFICIAL

## 3.1 Transporte de solutos subsuperficial

A análise do funcionamento hidráulico-sanitário de LESH é, usualmente, baseada na estimativa de parâmetros de carga e do TRH e na avaliação do rendimento do sistema com base em resultados analíticos. A componente de escoamento hidráulico e os mecanismos associados ao transporte de solutos são, frequentemente, negligenciados, quando, como referem Albuquerque (2003) e Kadlec e Wallace (2008), podem constituir factores que influenciam o rendimento dos sistemas.

O transporte de partículas, quer do líquido, quer de sólidos (solutos) presentes na fase aquosa de LESH é governada por leis elementares da conservação da massa, energia e quantidade de movimento. O transporte de solutos ou transporte de massa (*e.g.* poluentes orgânicos e inorgânicos) é determinado pela acção conjunta de mecanismos como o transporte de massa por advecção, dispersão ou difusão, a sorção (adsorção e absorção) e alterações químicas e bioquímicas (*e.g.* biodegradação). Esta mobilidade pode ser afectada por características intrínsecas do meio (*e.g.* porosidade, tipo de material utilizado e superfície específica), pela quantidade, tipo e forma de crescimento da biomassa, pelas condições de funcionamento hidráulico-sanitárias (*e.g.* velocidade e direcção do escoamento e carga orgânica aplicada), pelas suas características físicas (*e.g.* geometria, relação comprimento/largura ou altura/diâmetro e sistema de ventilação) e pelas características das plantas (*e.g.* espécie e profundidade e dimensão dos rizomas), como referido em EPA (1999), IWA (2000) e Kadlec e Wallace (2008).

A quebra de rendimento do tratamento de LESH está, muitas vezes, associada à ocorrência de mecanismos que provocam uma irregular distribuição quer dos compostos poluentes, quer dos subprodutos libertados durante o tratamento (*e.g.* zonas pouco irrigadas, zonas de volume morto, curto-circuito hidráulico, recirculações internas e dispersão). Nestes termos, a avaliação das características hidrodinâmicas no meio poroso revela-se fundamental para a detecção de problemas de funcionamento e o estabelecimento de procedimentos de operação adequados.

Nos LESH assume-se que o escoamento é laminar, também designado de fluxo pistão, com número de Reynolds (Re) inferior á unidade, assumindo-se que cada elemento de volume abandona o meio nas mesmas condições que entrou (*i.e.* cada

elemento está exposto à mistura reaccional durante o mesmo período de tempo), de forma uniforme e sem se verificar mistura (Santamaria *et al.* (1999), Vymazal e Kropfelova (2008), Kadlec e Wallace (2008)). Este tipo de escoamento assume que o perfil de velocidades é uniforme (van Genuchten (1980), van Genuchten e Alves (1982), Santamaria *et al.* (1999)), ou seja, a velocidade é independente da posição radial, pressupondo, ainda, que não existe gradiente na direcção radial e ausência de dispersão na direcção axial (*i.e.* o transporte é essencialmente advectivo).

O transporte de massa por advecção é caracterizado por movimentos descritos pela velocidade intrínseca média das partículas do fluído, assumindo que todas se movem com a mesma velocidade, não havendo, no caso do regime laminar, flutuações em torno do valor médio temporal. Em LESH, o escoamento dá-se, em geral, no plano xy, sendo comum utilizar-se uma velocidade média aparente (U) e uma velocidade média intersticial (v), na direcção longitudinal.

Na prática, contudo, tal não acontece já que a velocidade de cada partícula pode diferir de v. As principais razões para esta ocorrência relacionam-se com o transporte de massa por difusão, já que, à escala microscópica, todo o transporte é afectado pelos gradientes de concentração, pela tortuosidade do meio e pela heterogeneidade dos poros, que produzem quebra da uniformidade da velocidade. A velocidade média das partículas que se deslocam no centro dos poros é, geralmente, superior à das que se deslocam próximo dos grãos e, por outro lado, a tortuosidade do meio obriga-as a mudar frequentemente de direcção (Bear and Verruijt (1998)). Quando o transporte dispersivo mecânico (Figura 3.1.a) e Figura 3.1.b)) se torna relevante, o regime de escoamento pode afastar-se do laminar, tornando-se de transição.



**Figura 3.1.** – Representação esquemática do transporte dispersivo: a) e b) transporte dispersivo mecânico; c) difusão molecular (adaptada de Bear and Verruijt (1998))

O mecanismo de difusão molecular (Figura 3.1.c)) ao longo de um gradiente de concentração pode, quando o escoamento é quase permanente, de acordo com Bedient *et al.* (1999), ser explicado pela primeira lei de Fick, que assume que a quantidade de soluto que atravessa uma secção, por unidade de tempo, é proporcional à diferença de concentração que se verifica na vizinhança dessa secção e inversamente proporcional à distância que as separa. Nestes termos, pode considerar-se que o transporte dispersivo, à escala microscópica, resulta da combinação dos mesmos factores que influenciam o transporte difusivo, admitindo-se proporcional ao gradiente de concentrações, acrescido das condições hidrodinâmicas.

A equação fundamental do transporte de poluentes em meios porosos é a da conservação da massa, de acordo com a qual, a quantidade de massa que entra num troço do meio é igual à que sai, deduzida da que ficou retida e adicionada da que foi produzida, por acção de processos abióticos e bióticos, no mesmo troço, num dado intervalo de tempo. Durante o transporte de massa processam-se reacções químicas e bioquímicas mais ou menos rápidas, reversíveis ou irreversíveis, entre a matriz aquosa, o meio poroso sólido e os solutos, podendo retardar ou acelerar os processos envolvidos, sendo este mecanismos designado por transporte reactivo.

Os mecanismos mais frequentes são a sorção, a degradação química e a degradação bioquímica (biodegradação). A sorção compreende os mecanismos de absorção e de adsorção. A absorção consiste, genericamente, no transporte de solutos para o interior de uma matriz de material absorvente por acção de forças de natureza química ou física. A adsorção ocorre quando, na presença de um fluído gasoso, os solutos são removidos do meio líquido e imobilizados à superfície de uma matriz, em geral sólida, por forças electrostáticas (adsorção física) ou químicas (adsorção química). Quando o soluto se desprende da matriz e regressa ao fluído, o mecanismo é designado por dessorção.

A degradação de compostos pode ocorrer, quer através de processos abióticos (degradação química), sendo os mecanismos mais comuns a hidrólise, as reacções de oxidação-redução e certas reacções de eliminação, quer por acção de microrganismos (degradação biológica ou biodegradação), aparecendo, como produtos finais, entre outros, dióxido de carbono, água e compostos inorgânicos simples (*e.g.* amónio e nitratos).

A perda de massa devida ao decaimento químico, tem sido associada à degradação do soluto, quer na fase aquosa, quer quando este se encontra aglomerado à matriz sólida (Van Genuchten e Alves (1982)), assumindo-se que a taxa de eliminação é proporcional à sua concentração, de acordo com uma reacção de primeira ordem.

## 3.2 Avaliação das características hidrodinâmicas

#### 3.2.1 Realização de ensaios de traçagem

Um dos métodos aplicáveis ao estudo das características hidrodinâmicas LESH, desde que o escoamento seja considerado quase permanente, são os ensaios de traçagem que, ao detectarem e avaliarem desvios do escoamento ideal, podem permitir optimizar as condições de funcionamento do sistema. A caracterização do escoamento é abordada com base na interpretação da distribuição dos elementos de volume à saída do sistema, utilizando ferramentas como o método dos momentos (Chazarenc *et al.* (2003), Albuquerque e Bandeiras (2007)).

A realização de ensaios de traçagem permite identificar esta distribuição e definir uma função densidade dos tempos de residência dos elementos de volumes que é comum designar por curva de distribuição dos tempos de residência (curva DTR). A informação obtida pode ser utilizada para a avaliação de interferências no escoamento, tornando-se uma fonte de informação importante para a detecção de problemas de operação, a definição de planos de acção e o estabelecimento de critérios de dimensionamento para sistemas semelhantes.

Uma das técnicas mais utilizadas é a de estímulo-resposta (Santamaria et al. (1999), Chazarenc *et al.* (2003), Albuquerque e Bandeiras (2007)) que permite determinar as curvas DTR. Consistem, basicamente, na introdução de um composto não reactivo (traçador) com o meio, à entrada do leito (estímulo), e na avaliação da reacção à saída (resposta), através de uma curva C(t). Os elementos de volume do traçador tomam diferentes percursos ao longo do leito, o que lhes confere diferentes tempos de residência no interior do mesmo. A distribuição desses tempos é que define a curva DTR.

A distribuição das idades externas dos vários elementos de volume, para o ensaio por injecção discreta de um volume de traçador, é uma função densidade de probabilidades, com unidades de T<sup>-1</sup>, definida pela fracção dos elementos de volume à saída do ponto de detecção, com tempos de residência entre t e t+dt, designada por E(t). O somatório das fracções, para todos os tempos de residência, será, portanto, igual à unidade. A relação entre as curvas E(t) e C(t) é dada pela seguinte expressão (Santamaria *et al.* (1999)):

$$\mathsf{E}(\mathsf{t}) = \frac{\mathsf{C}(\mathsf{t})}{\int\limits_{0}^{\infty} \mathsf{C}(\mathsf{t}) \mathsf{d}\mathsf{t}}$$
(3.1)

A informação recolhida nos ensaios de traçagem pode ser utilizada para o diagnóstico do funcionamento, a modelação ou a previsão de cenários do leito. A análise e interpretação das curvas DTR incluem, em geral, a determinação de propriedades da distribuição, através da estimativa de momentos, como o tempo médio de residência  $(t_m)$  e a variância  $(s^2)$ , e o ajustamento paramétrico de modelos teóricos aos dados experimentais.

 $t_m$ , primeiro momento da curva E(t), com unidades T, representa o centróide da área definida pela curva e pode ser determinado através da integração da área sob a curva (Eq. (3.2)). A variância (s<sup>2</sup>), segundo momento da curva E(t), reflecte a dispersão da distribuição, tem unidades T<sup>2</sup> e pode ser estimada a partir do primeiro momento (Eq. (3.3)). A maior ou menor dispersão dos pontos numa curva resposta permite avaliar se o escoamento se aproxima ou se afasta do ideal fluxo pistão.

$$\mathbf{t}_{m} = \int_{0}^{\infty} \mathbf{t} \cdot \mathbf{E}(\mathbf{t}) d\mathbf{t}$$
(3.2)

$$s^{2} = \int_{0}^{\infty} (t - t_{m})^{2} \cdot E(t) dt$$
 (3.3)

Para mais facilmente se compararem os resultados de vários ensaios, é usual, de acordo com Santamaria *et al.* (1999), estimar o tempo médio de residência adimensional ( $t_{(m,\theta)}$ ), que traduz o quociente  $t_m/\tau$ , sendo  $\tau$  o tempo de retenção hidráulico teórico (dado pelo quociente entre o volume útil do meio poroso (V<sub>u</sub>) e o caudal médio afluente (Q). Outro parâmetro normalmente estimado é a variância adimensional ( $s_{\theta}^2$ ), que traduz a relação  $s^2/t_m^2$ .

A ocorrência de zonas pouco irrigadas, zonas de volume morto, curto-circuito hidráulico e de recirculações internas (Figura 3.2.) pode ser detectada através da interpretação da variação de  $t_{(m,\theta)}$  e da taxa de recuperação de traçador. Esta última, reflecte a razão entre a massa total de traçador detectada no efluente (M<sub>s</sub>) e a massa inicialmente introduzida (M<sub>0</sub>), tal como se pode observar nos estudos de Chazarenc *et al.* (2003), Martinez e Wise (2003) e Albuquerque e Bandeiras (2007).



**Figura 3.2.** – Representação esquemática do desenvolvimento de zonas mortas e curtocircuíto hidráulico num estimulo por impulso discreto (adaptada de Santamaria *et al.* (1999))

O valor de  $t_{(m,\theta)}$  pode ajudar a identificar as causas da maior ou da menor retenção de líquido no interior do leito. Se o seu valor for superior à unidade, significa que o centro de massa do impulso está atrasado relativamente ao esperado e, consequentemente, indica a retenção de traçador no sistema, normalmente em zonas pouco irrigadas. No caso contrário, significa que a maior parte do traçador saiu do leito mais depressa do que teoricamente esperado e, logo, sugere a ocorrência de zonas de volume morto precursoras de curto-circuito hidráulico.

M<sub>s</sub> pode ser calculado através da seguinte expressão (Santamaria et al. (1999)):

$$M_{s} = \int_{0}^{\infty} Q C(t) dt$$
(3.4)

A massa de traçador que entrou no sistema (M<sub>0</sub>) pode ser estimada através do produto entre a sua concentração inicial e o volume de traçador injectado (V<sub>i</sub>).

Alguns dos mecanismos atrás mencionados podem retardar a saída do traçador, que se manifesta, na prática, por uma cauda mais ou menos longa na curva de resposta ao ensaio. Para minimizar este efeito, além da selecção de um traçador não reactivo, o tempo de ensaio deve ter uma duração suficiente, que permita a colecta da totalidade do traçador à saída, sendo comuns valores entre três a dez vezes superior a  $\tau$ .

A taxa de recuperação de traçador ( $M_s/M_0$ ) pode, também, fornecer informações sobre os mecanismos causadores de resistência ao escoamento. Valores baixos daquele rácio, podem indicar a ocorrência de mecanismos de retenção no meio poroso se, simultaneamente, se observarem longas caudas na curva de resposta. O valor de  $M_s$  pode ser estimado através da integração gráfica da área sob a curva resposta C(t) e do caudal escoado.

Como referem Martinez e Wise (2003), em LESH, podem considerar-se 3 tipos de zonas com diferentes resistências ao escoamento: zonas de escoamento efectivo, zonas pouco irrigadas ou estagnadas (onde o escoamento tem maior resistência) e zonas de volume morto (sem escoamento). Estas últimas contribuem para o aumento do curto-circuito hidráulico, podendo daí resultar a diminuição da eficiência da remoção de poluentes.

# 3.2.2 Utilização de modelos matemáticos para estimar parâmetros caracterizadores da hidrodinâmica

O recurso à modelação matemática pode ajudar a simular os mecanismos detectados e na estimativa de parâmetros caracterizadores da dispersão. As condições iniciais e de fronteira para o sistema dependem, essencialmente, da forma como se produz a distribuição dos elementos de volume à entrada, e se determina a resposta à saída, e do tipo de estímulo utilizado. A definição das condições de fronteiras incluem, normalmente, abordagem ao fenómeno dispersivo e ao gradiente de concentrações no limite a montante ou a jusante, como demonstram os resultados dos estudos de van Genuchten e Alves (1982), Albuquerque e Bandeiras (2007) e Araújo *et al.* (2008).

A dispersão longitudinal pode ser quantificada através do ajustamento paramétrico de soluções analíticas de modelos como a a equação de Advecção-Dispersão-Reacção (ADR) (van Genuchten e Alves (1982), Chazarenc *et al.* (2003), Albuquerque e Santana (2004), Albuquerque e Bandeiras (2007), Kadlec e Wallace (2008)) ou o modelo de N Tanques em Série (NTS) (Chazarenc *et al.* (2003), Albuquerque e Bandeiras (2007), Kadlec e Wallace e Wallace e Wallace e Bandeiras (2007), Kadlec e Wallace e Bandeiras (2007), Kadlec e Wallace e Bandeiras (2008)), utilizando técnicas como os métodos dos momentos ou não linear dos mínimos quadrados (Albuquerque e Bandeiras (2005)).

As condições iniciais e de fronteira para o sistema dependem, essencialmente, da forma como se produz a distribuição dos elementos de volume à entrada, e se determina a resposta à saída, e do tipo de estímulo utilizado. A definição das condições de fronteiras pode incluir várias abordagens, sendo as mais utilizadas as que se referem ao fenómeno dispersivo e ao gradiente de concentrações no limite a montante ou a jusante. O recurso a métodos não lineares dos mínimos quadrados tem-se revelado mais fiável para a estimativa de parâmetros caracterizadores do regime de escoamento, em especial quando as interferências são de natureza

complexa, como demonstram os resultados dos estudos de van Genuchten e Alves (1982), Chazarenc *et al.* (2003), Martinez e Wise (2003) e Araújo *et al.* (2008)).

#### Modelo de Advecção-Dispersão-Reacção (ADR)

Uma das formulações matemáticas que combina os mecanismos de advecção, dispersão mecânica e difusão é a equação ADR que traduz o transporte advectivodispersivo em meios porosos (Bear and Verruijt (1998), Bedient *et al.* (1999)):

$$R\frac{\partial C}{\partial t} = D\frac{\partial^2 C}{\partial x^2} - v\frac{\partial C}{\partial x}$$
(3.5)

onde R é o factor de retardamento e D o coeficiente de difusão molecular. R é adimensional e exprime a variação da massa de soluto devido à ocorrência de reacções químicas como a adsorção. Sempre que ocorre adsorção, assume valores superiores à unidade.

De acordo com Bedient *et al.* (1999), se o transporte for maioritariamente advectivo, o movimento de solutos aproxima-se do ideal fluxo pistão. Se o transporte for maioritariamente difusivo, o escoamento pode afastar-se ideal do fluxo pistão. A contribuição do termo difusivo na Eq. (3.5) está incluída no termo que caracteriza a dispersão (D). Na maioria dos casos práticos, o segundo termo é muito superior ao primeiro e negligencia-se este último.

Em LESH, com meio poroso homogéneo, isotrópico, onde a lei de Darcy é valida, saturado e com espessura conhecida, os efeitos do movimento do líquido na direcção vertical são desprezáveis em relação ao movimento vertical (Bedient *et al.* (1999), Bear e Verruijt (1998)) e o escoamento é considerado próximo do fluxo pistão.

Considerando as unidades adimensionais  $\theta_i = \frac{t_i}{\tau}$  e  $\zeta_i = \frac{z_i}{L}$ , a Eq. (3.5) transformase na seguinte forma 1-D adimensional:

$$\mathsf{R}\frac{\partial \mathsf{C}}{\partial \theta} = \left(\frac{\mathsf{D}}{\mathsf{v}\mathsf{L}}\right)\frac{\partial^2 \mathsf{C}}{\partial \zeta^2} - \frac{\partial \mathsf{C}}{\partial \zeta}$$
(3.6)

onde  $\theta$  representa tempo de retenção, ou de residência, hidráulico adimensional,  $\zeta$  a direcção na vertical adimensional e (D/vL) o número de dispersão ou módulo da dispersão (N<sub>d</sub>), que permite avaliar a extensão deste parâmetro e que é igual ao inverso do número de Peclet (P<sub>e</sub>) (van Genuchten (1980); van Genuchten e Alves

(1982), Kadlec e Wallace (2008)). Na Tabela 3.1. apresenta-se a relação de  $N_d$  com a intensidade da dispersão.

**Tabela 3.1.** - Variação do número de dispersão para diferentes graus de dispersão (Santamaria *et al.* (1999))

| Grau de dispersão      | Valores típicos de N <sub>d</sub> |
|------------------------|-----------------------------------|
| Fluxo pistão ideal     | 0                                 |
| Pequena dispersão      | 0.000 - 0.002                     |
| Dispersão intermédia   | 0.002 - 0.025                     |
| Forte dispersão        | 0.025 - 0.200                     |
| Mistura completa ideal | Aproxima a infinito               |

#### Modelo com N Tanques em Série (NTS)

O princípio de funcionamento do modelo de N Tanques em Série (NCS) assenta no escoamento através de N tanques de igual volume e igualmente agitados, colocados em série, admitindo que a distribuição de concentrações de soluto no enésimo compartimento é dado pela Eq. (3.7). A concentração de soluto em cada compartimento, em cada instante, é obtida através de balanços de massa realizados a cada unidade individualmente, conduzindo à seguinte condição (Santamaria *et al.* (1999)):

$$QC_{1} = V_{1} \frac{dC_{1}}{dt}, (QC_{1} - QC_{2}) = V_{2} \frac{dC_{2}}{dt}, K, (QC_{(N-1)} - QC_{N}) = V_{N} \frac{dC_{N}}{dt},$$
 (3.7)

Admitindo  $\tau_i = V_i/Q$  e as condições  $C_{(N+1)} = 0$  e t = 0 e integrando em relação a variável tempo resulta a seguinte sequência:

$$C_{1} = C_{0} \frac{1}{\tau_{1}} \exp(-\frac{t}{\tau_{1}}), C_{2} = C_{0} \frac{t}{\tau_{2}} \exp(-\frac{t}{\tau_{2}}), K$$
  
K ,  $C_{N} = C_{0} \frac{t^{(N-1)}}{((N-1)!\tau_{N}^{N})} \exp(-\frac{t}{\tau_{N}})$  (3.8)

As respectivas curvas E(t) de acordo com Levenspiel (1986) e Santamaria *et al.* (1999), são dadas pela Eq. (3.7).

$$E_{1(t)} = \frac{1}{\tau_{1}} \exp(-\frac{t}{\tau_{1}}), E_{2(t)} = \frac{t}{\tau_{2}^{2}} \exp(-\frac{t}{\tau_{2}})$$

$$K_{1}, E_{N(t)} = \frac{t^{(N-1)}}{((N-1)!\tau_{N}^{N})} \exp(-\frac{t}{\tau_{N}})$$
(3.9)

Em unidades adimensionais a solução generaliza-se à seguinte expressão:

$$\mathsf{E}(\theta) = \frac{\mathsf{N}^{\mathsf{N}}}{(\mathsf{N}-1)!} \, \theta^{(\mathsf{N}-1)} \exp(-\mathsf{N}\theta) \tag{3.10}$$

Para valores de N superiores a quatro a curva torna-se cada vez mais simétrica e semelhante a uma distribuição normal, indicando que o escoamento se aproxima do ideal fluxo pistão. Valores de N inferiores a quatro indicam que o escoamento se afasta do ideal fluxo pistão. O valor inicial de N, de acordo com Santamaria *et al.* (1999), pode ser estimado a partir do inverso da variância da curva DTR adimensional (N =  $1/s_{\theta}^2 = t_m^2/s^2$ ).

#### Estimativa de parâmetros característicos através de ajustamento paramétrico

No ajustamento de soluções analíticas a dados experimentais é comum utilizar-se as concentrações ( $\Psi_i = C_i/C_0$ ), o tempo ( $\theta_i = t_i/$ ) e as distâncias ( $\zeta = z_i/L$ ) em valores adimensionais para mais facilmente comparar resultados de vários ensaios à mesma escala (Santamaria *et al.* (1999)). Obtém-se, desta forma, uma curva resposta normalizada E( $\theta$ ), dada pela Eq. (3.11), que mais não é que a função E(t) expressa em unidades adimensionais, sendo  $\theta$  o tempo de residência adimensional.

$$\mathsf{E}(\theta) = \mathsf{t}_{\mathsf{m}} \,.\, \mathsf{E}(\mathsf{t}) \tag{3.11}$$

A curva resposta  $E(\theta)$  de um determinado ensaio pode ser, então, numericamente comparada com as de outros, bem como com as  $E(\theta)$  características de vários modelos teóricos. As curvas E(t) e  $E(\theta)$  constituem as curvas DTR na forma dimensional e adimensional, respectivamente.

# 4. PLANO DE TRABALHOS

Para a concretização dos objectivos propostos elaborou-se um Plano de trabalhos que incluiu duas series de ensaios de traçagem (injecção discreta de traçador salino, com volume e concentração pré-estabelecidas) em dois LESH, tendo a resposta sido detectada instantaneamente em 3 pontos através de um conductívimetro, tal como apresentado na Tabela 4.1.

| Série | Ensaio | Comprimento<br>de leito | Ponto de   | Ponto de Secção                          |                                        | Presença<br>de |
|-------|--------|-------------------------|------------|------------------------------------------|----------------------------------------|----------------|
|       |        | (m)                     | amostragem | (g CQO m <sup>-2</sup> d <sup>-1</sup> ) | (g N m <sup>-2</sup> d <sup>-1</sup> ) | vegetação      |
|       | I.1    | 0,33                    | P2         | 60,0                                     | 6,0                                    | Não            |
| I     | 1.2    | 1,00                    | P5         | 20,0                                     | 2,0                                    | Não            |
|       | 1.3    | 1,90                    | P8         | 10,6                                     | 1,1                                    | Não            |
|       | II.1   | 0,33                    | P2         | 60,0                                     | 6,0                                    | Sim            |
| Ш     | II.2   | 1,00                    | P5         | 20,0                                     | 2,0                                    | Sim            |
|       | II.3   | 1,90                    | P8         | 10,6                                     | 1,1                                    | Sim            |

**Tabela 4.1.** – Plano de trabalhos (Fase experimental)

<sup>1)</sup> Calculada em relação à área útil (Au)

Os ensaios foram realizados cerca de 1 ano após os leitos terem sido colonizados, em condições de cargas orgânica e de azoto de 300 mg CQO L<sup>-1</sup> e 30 mg N-NH<sub>4</sub> L<sup>-1</sup>, para uma carga hidráulica constante (0,035 m<sup>3</sup> m<sup>-2</sup> d<sup>-1</sup>). Com estes ensaios pretendeu-se identificar mecanismos responsáveis pela alteração das condições hidrodinâmica nos leitos (*e.g.* dispersão longitudinal e volume morto), bem como avaliar a sua influência na remoção de CQO e N-NH<sub>4</sub>.

Tendo em atenção as condições de realização dos ensaios seleccionaram-se duas soluções analíticas, uma do modelo de NTS (com volume morto) e outra do modelo de ADR (grande intensidade, sistema *aberto-aberto*), desenvolvidas para condições de fronteira próximas das dos ensaios experimentais, a fim de serem estimados parâmetros caracterizadores da dispersão (N, V<sub>m</sub> e Nd). Para a realização de ajustamento paramétrico dos modelos aos dados experimentais foi utilizado o software DAFO (Albuquerque e Mendes, 2008).

Na Figura 4.2 apresenta-se um cronograma relativo à parte experimental.

| Tarefas                    | 1º trimestre | 2º trimestre | 3º trimestre |
|----------------------------|--------------|--------------|--------------|
| 1. Preparação dos leitos   |              |              |              |
| 2. Execução dos ensaios    |              |              |              |
| Série I                    |              |              |              |
| Série II                   |              |              |              |
| 3. Tratamento dados        |              |              |              |
| 5. Ajustamento paramétrico |              |              |              |

Tabela 4.2. – Cronograma de trabalhos (Fase experimental)

# **5. MATERIAIS E MÉTODOS**

# 5.1 Instalações laboratoriais

Para a realização do plano experimental, utilizaram-se duas instalações piloto à escala laboratorial, construídas em acrílico e de dimensões 2,0 m x 0,8 m x 0,7 m (Figura 5.1), cujo aspecto é apresentado nas Figuras 5.1 (Série I) e 5.2 (Série I).



Figura 5.1 – Representação esquemática da instalação laboratorial: a) planta; b) vista lateral



Figura 5.2 - Instalação laboratorial sem vegetação utilizada nos ensaios da Série I



Figura 5.3 – Instalação laboratorial com vegetação utilizada nos ensaios da Série II

Utilizou-se, como meio de enchimento, uma argila expandida com a designação comercial de Filtralite NR 4-8mm, fornecida pela empresa MAXIT – argilas expandidas S.A., apresentando-se as características do material e do leito na Tabela 5.1 e algumas imagens do material nas Figuras 5.4. e 5.5. Um dos leito foi colonizado com *Phragmites australis*.

Foram instalados nove pontos de amostragem internos (P1 a P9) ao longo dos leitos, para permitir a recolha de amostras e a detecção de traçador, como se pode observar nas Figuras 5.1 e 5.2. Os pontos de amostragem internos foram elaborados em rede de arame com malha de 0,5 x 0,5 cm, moldada numa forma cilíndrica, e revestidos com geotextil para impedir a entrada de partículas do material de enchimento.



Figura 5.4 – Filtralite NR: grão seco



Figura 5.5 – Filtralite NR: grãos colonizados no leito

| Características                                         | P2                | P5         | P8   |  |  |
|---------------------------------------------------------|-------------------|------------|------|--|--|
| Leito                                                   |                   |            |      |  |  |
| Comprimento (m)                                         | 0,33              | 1,00       | 1,90 |  |  |
| Largura (m)                                             |                   | 0,8        |      |  |  |
| Nível de água (m)                                       | 0,2               |            |      |  |  |
| Altura do meio de enchimento (m)                        | 0,5               |            |      |  |  |
| Porosidade                                              |                   | 0,45       |      |  |  |
| Área útil (m²)                                          | 0,12 0,36 0,68    |            |      |  |  |
| Volume útil (m <sup>3</sup> )                           | 0,024 0,072 0,136 |            |      |  |  |
| Declive (%)                                             | 1                 |            |      |  |  |
| Grão                                                    |                   |            |      |  |  |
| Diâmetro médio da partícula (mm)                        |                   | 4 - 8      |      |  |  |
| Superfície específica (m <sup>2</sup> m <sup>-3</sup> ) | 1250              |            |      |  |  |
| Diâmetro médio da partícula (mm)                        |                   | 700 - 1250 |      |  |  |

|                               | ~             |                   |                      |
|-------------------------------|---------------|-------------------|----------------------|
| l abela 5.1 – Características | da instalação | laboratorial e do | o meio de enchimento |

O volume útil e a área útil foram calculados tendo em atenção o comprimento máximo admitido para o leito (1,90 m), ou seja, entre o ponto de alimentação e o ponto onde foram localizados os pontos de amostragem PI7, PI8 e PI9 (ver Figura 5.1). Em estudos anteriores realizados por Renker e Albuquerque (2007), Albuquerque e Bandeiras (2007) e Araújo et al. (2008), numa das instalações, admitiu-se o ponto PI8 como representativo das condições à saída. Os ensaios de traçagem e monitorização efectuados neste ponto, localizado a cerca de 1 cm do ponto de descarga (ponto 5 assinalado na Figura 5.1 e Figura 5.7.), revelaram resultados similares aos efectuados no ponto de descarga. Nestes termos, o ponto PI8 foi seleccionado para a monitorização do efluente final nos ensaios realizados neste estudo.

A alimentação foi efectuada através de um tubo em "T" perfurado longitudinalmente (Figura 5.6.). O escoamento ocorreu de forma subsuperficial e horizontalmente. Foram instalados três piezómetros, referenciados como PIEZ1, PIEZ3 e PIEZ5, para medição da carga hidrostática ao longo do leito. A temperatura dentro do laboratório foi mantida próxima dos 20 °C.



alimentação no leito com vegetação



Figura 5.6 – LESH laboratorial: dispositivo de Figura 5.7 - LESH laboratorial: dispositivo de descarga final no leito com vegetação

## 5.2 Fonte de alimentação

O meio de alimentação utilizado foi sintético e representativo de uma água residual doméstica. Incluiu um meio mineral, uma fonte de carbono (acetato de sódio) e uma fonte de azoto (cloreto de amónio), também utilizados por Albuquerque (2003) e Renker e Albuquerque (2007). Este meio base foi enriquecido com uma solução de oligoelementos, de cloreto de férrico, de sulfato de magnésio, de cloreto de cálcio e uma solução tampão (para regular o pH), de acordo com as características

apresentadas em Dang *et al.*, (1989), estando as proporções base utilizadas e composição indicadas na Tabela 5.2.

| Solução                                       | Composição                                                                         | Concentração<br>.(g L <sup>-1</sup> ) | Volume usado na<br>alimentação<br>(mL L <sup>_1</sup> ) |
|-----------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|
|                                               | KH <sub>2</sub> PO <sub>4</sub>                                                    | 8,50                                  |                                                         |
| Tampão                                        | K <sub>2</sub> HPO <sub>4</sub>                                                    | 21,75                                 | 2                                                       |
| Γαπρασ                                        | Na <sub>2</sub> HPO <sub>4</sub> *7H <sub>2</sub> 0                                | 33,40                                 | 2                                                       |
|                                               | NH <sub>4</sub> CI                                                                 | 1,70                                  |                                                         |
| Sulfato de magnésio                           | MgSO <sub>4</sub> *7H <sub>2</sub> O                                               | 22,50                                 | 0,2                                                     |
| Cloreto de calcio                             | CaCl <sub>2</sub> *2H <sub>2</sub> O                                               | 36,43                                 | 0,2                                                     |
| Cloreto de ferro (III)                        | FeCl <sub>3</sub> *6H <sub>2</sub> O                                               | 0,250                                 | 0,2                                                     |
|                                               | MnSO <sub>4</sub> *4H <sub>2</sub> O                                               | 0,040                                 |                                                         |
|                                               | H <sub>3</sub> BO <sub>3</sub>                                                     | 0,060                                 |                                                         |
| Oligoelementos                                | ZnSO <sub>2</sub> *7H <sub>2</sub> O                                               | 0,040                                 | 0.2                                                     |
| oligoelementoo                                | EDTA                                                                               | 0,0555                                | 0,2                                                     |
|                                               | FeCl <sub>3</sub> *6H <sub>2</sub> O                                               | 0,0445                                |                                                         |
|                                               | (NH <sub>4</sub> ) <sub>6</sub> Mo <sub>7</sub> O <sub>24</sub> *4H <sub>2</sub> O | 0,032                                 |                                                         |
| Cloreto de amónio<br>(20g N.L <sup>-1</sup> ) | NH <sub>4</sub> Cl                                                                 | 76,41                                 | 1,5                                                     |
| Acetato de sódio<br>(80g C.L <sup>-1</sup> )  | CH <sub>3</sub> COONa*3H <sub>2</sub> O                                            | 453,60                                | 1,4                                                     |

**Tabela 5.2** – Soluções usadas para preparar a solução de alimentação nos ensaios experimentais

As soluções de acetato e de azoto eram preparadas de forma concentrada, sendo diluídas, de acordo com os volumes apresentados na Tabela 5.2., a fim de se obterem as cargas orgânicas e de azoto definidas na Tabela 4.1. (i.e. 300 mg CQO  $L^{-1}$  e 30 mg NH<sub>4</sub>-N  $L^{-1}$ ).

A única fonte de carbono orgânico foi fornecida pelo acetato de sódio e assegurou-se, com a solução de cloreto de amónio, que o azoto não era limitante para os microrganismos. A aplicação das proporções indicadas na Tabela 5.2 garantiu a

manutenção de uma relação mínima entre o carbono e os nutrientes azoto e fósforo, indispensável para a actividade microbiológica.

A solução de alimentação (afluente) foi mantida numa estufa ISCO FTD 220 a 4°C, para evitar a biodegradação, e enviada para a entrada dos leitos através de uma bomba peristáltica Ismatec MCP, a um caudal de 1 L.h<sup>-1</sup>.

Para evitar o desenvolvimento de biofilme no sistema de alimentação, a tubagem foi substituída a cada três dias durante a preparação da alimentação. Os tubos eram mantidos durante 3 dias numa solução de acido clorídrico diluído a pH inferior a 2, para remoção do biofilme.

## 5.3 Modo de operação

Os leitos foram operados continuamente com um caudal de 1 L h<sup>-1</sup>, ao qual correspondeu uma carga hidráulica de 0,035 m<sup>3</sup> m<sup>-2</sup> d<sup>-1</sup> e TRH teóricos de aproximadamente 1 d, 3 d e 5,7 d (até P2, P5 e P8, respectivamente), para as cargas orgânicas e de azoto apresentadas no Tabela 4.1. Utilizaram-se 3 troços diferentes de cada leito, entre o ponto de injecção e os pontos der amostragem P2, P5 e P8 com 0,33 m, 1,00 m e 1,90 m de comprimento (ver Figura 5.1.), respectivamente, de forma a poderem ser analisadas as variações das características hidrodinâmicas ao longo dos leitos, para diferentes condições de operação.

Utilizou-se a técnica de estímulo por injecção discreta de um pequeno volume ( $V_i$ ) de uma solução de cloreto de sódio (traçador), utilizado também nos estudos realizados por Albuquerque e Bandeiras (2007) e Araújo *et al.* (2008), com concentração de 100 g L<sup>-1</sup>, tendo a resposta sido avaliada pela variação de condutividade nos pontos de amostragem P2, P5 e P8 (Figura 5.8 e pormenor das medição nas Figuras 5.9. e 5.10.)).

Os ensaios foram efectuados com os leitos em condições *quase estacionárias*, em relação à remoção de CQO e N-NH4, como definido em Oliveira (2008) e Albuquerque *et al.* (2009).

Para cada ensaio, e adoptando o procedimento seguido por Albuquerque e Bandeiras (2007) e Araújo et al. (2008), registaram-se medições horárias ( $\Delta t = 1h$ ), através de um conductimetro, sendo os resultados registados num sistema de armazenamento de dados (MULPDAS, Albuquerque e Mendes (2007)) desenvolvido no LSA da UBI (Figura 5.10)). No início de cada experiência, registou-se a conductividade residual

nos pontos de amostragem para, posteriormente, ser descontada aos valores das amostras.

A injecção do traçador foi efectuada à entrada do leito. Utilizaram-se 500 mL de solução, num intervalo de tempo inferior a 5% de  $\tau$ , como recomendado por Riemer *et al.* (1980) e Santamaria *et al.* (1999). Apesar de o traçador utilizado estar referenciado como conservativo relativamente à Filtralite (Albuquerque e Bandeiras (2007)), para despistar a hipótese de adsorção nos grãos de Filtralite, realizaram-se ensaios de adsorção. Utilizaram-se soluções de NaCl com concentrações de 0 mg L<sup>-1</sup>, 5 mg L<sup>-1</sup>, 10 mg L<sup>-1</sup>, 20 mg L<sup>-1</sup>, 30 mg L<sup>-1</sup>, 40 mg L<sup>-1</sup> e 50 mg L<sup>-1</sup> e uma relação sólido/líquido de 0,5 (equivalente à existente nos leitos). O método utilizado bem como os resultados destes ensaios são no Anexo I.



Figura 5.8 – Esquema representativo dos ensaios de traçagem

No inicio, a meio e no final de cada ensaio recolheram-se amostras à entrada e no respectivo ponto de amostragem para determinação da CQO e NH<sub>4</sub>-N.



Figura 5.9 – Ensaios de traçagem: medição de conductividade no ponto 5 no leito com aquisição e armazenamento de dados vegetação - ensaio II.2



Figura 5.10 – Ensaios de traçagem: sistema de

# 5.4 Métodos analíticos

Para medição da condutividade foi utilizada uma sonda TetraCon 325 ligada a um medidor multiparamétrico Multi 340i, ambos da marca WTW.

Para determinação da CQO e N-NH<sub>4</sub> foram utilizados cuvetes-teste e um espectrofotómetro de visível (340 nm a 900 nm) Cadas 50, com tecnologia de raio de referência (RBT), da HACH LANGE.

Para a CQO utilizaram-se os testes LCK 314 (15-150 mg O<sub>2</sub>.L<sup>-1</sup>) e LCK 514 (100- 2000 mg O<sub>2</sub>.L<sup>-1</sup>). O método utilizado incluiu uma oxidação com dicromato de potássio, de acordo com a norma DIN 38409-4. O N-NH₄ foi determinado através do teste LCK 303  $(2 - 47 \text{ mg L}^{-1} \text{ N-NH}_4)$ , de acordo com o procedimento da norma DIN 38406-5.

Para aquisição e armazenamento de dados das medições utilizou-se o software MULPDAS (Albuquerque e Mendes (2007)) e para o ajustamento paramétrico e optimização de soluções analíticas aos dados experimentais utilizou-se software DAFO (Albuquerque e Mendes (2008)), ambos desenvolvidos no Laboratório de Saneamento Ambiental da UBI no âmbito do projecto ENVIROLEARNING.

# 6. RESULTADOS

## 6.1 Determinação das curvas DTR

As curvas-resposta obtidas em cada ensaio (conductividade no tempo), foram convertidas em curvas-resposta C(t) (concentração de NaCl no tempo) utilizando-se, para o efeito, a expressão deduzida da respectiva curva de calibração, apresentada no Tabela I.2. do Anexo I. A sua variação é apresentada nas Figuras 6.1. a 6.3. Os resultados globais (tempo e conductividade) para todos os ensaios são apresentados no Anexo II.



Figura 6.1. – Variação de NaCl no tempo (ensaios I.1 e II.1)



Figura 6.2. – Variação de NaCl no tempo (ensaios I.2 e II.2)



Figura 6.3. – Variação de NaCl no tempo (ensaios I.3 e II.3)

Foram calculadas as curvas E(t) a partir das curvas C(t) e da integração numérica das áreas por elas definidas, de acordo com a Eq. (3.1), bem como os momentos da distribuição ( $t_m e s^2$ ) para cada curva resposta, a partir das Eq. (3.2) e Eq. (3.3), tendo sido utilizado um algoritmo programado em Matlab. As curvas E(t) constituem as curvas DTR na forma dimensional e os resultados são apresentados no Anexo II.

A variância adimensional (s<sup>2</sup><sub>θ</sub>), que traduz a relação s<sup>2</sup>/t<sub>m</sub><sup>2</sup>, e o tempo médio de residência adimensional (t<sub>(m,θ)</sub>), que traduz a relação t<sub>m</sub>/τ foram, igualmente, estimados. A massa total de traçador recolhida no efluente (M<sub>s</sub>) ao longo de cada ensaio foi calculada analiticamente pela Eq. (3.4).

Os resultados para as duas Séries são apresentados na Tabelas 6.1. Os ensaios de adsorção, realizados para despistar a possibilidade de adsorção do NaCl nos grãos de Filtralite, cuja metodologia e resultados são apresentados no ponto I.1. do Anexo I, revelaram baixa dependência da massa adsorvida com o aumento da concentração de traçador em solução. A adsorção de NaCl no material de enchimento foi, então, considerada negligenciável.

| Ensaio | Ponto de<br>amostragem | Tempo de<br>ensaio (d) | τ<br>(h) | t <sub>m</sub><br>(h) | t <sub>(m,θ)</sub> | ${s_{\theta}}^2$ | M <sub>S</sub> /M <sub>0</sub> |
|--------|------------------------|------------------------|----------|-----------------------|--------------------|------------------|--------------------------------|
| I.1    | P2                     | 4,7                    | 23,8     | 44,0                  | 1,85               | 0,19             | 56                             |
| 1.2    | P5                     | 13,9                   | 72,0     | 134,0                 | 1,87               | 0,13             | 36                             |
| 1.3    | P8                     | 21,2                   | 137,0    | 234,0                 | 1,71               | 0,07             | 18                             |
| II.1   | P2                     | 5,0                    | 23,8     | 52,3                  | 2,20               | 0,11             | 68                             |
| II.2   | P5                     | 14,1                   | 72,0     | 155,0                 | 2,15               | 0,11             | 40                             |
| II.3   | P8                     | 20,4                   | 137,0    | 261,0                 | 1,91               | 0,07             | 22                             |

Tabela 6.1. – Resultados dos ensaios de traçagem para as duas Séries

# 6.2 Estimativa de parâmetros caracterizadores das condições hidrodinâmicas

As curvas resposta E(t) foram tornadas adimensionais, através da aplicação da Eq. (3.11), considerando  $\theta_i = t_i/t_m$  para a variável independente, resultando as respectivas curvas respostas E( $\theta$ ). Estas curvas constituem as curvas DTR na forma adimensional e são apresentadas nas Figuras 6.4. e 6.5.

Uma forma de avaliar a magnitude da dispersão e a extensão de zonas que podem interferir com o escoamento consiste na estimativa de parâmetros caracterizadores da dispersão (*e.g.* número de dispersão, número de Peclet e volume morto), que pode ser obtida por ajustamento paramétrico de soluções analíticas dos modelos ADR (Eq. (3.5)) e NTS (Eq. (3.9), desenvolvidas para condições iniciais e de fronteira semelhantes às observadas nos ensaios de traçagem, como sugerido por Santamaria *et al.* (1999).

A injecção do traçador à entrada do leito pode ter induzido a formação de condições de mistura, imediatamente no troço de jusante, podendo este volume ter actuado como um impulso no leito. Nestas condições, assumiu-se que não houve perturbação das condições de escoamento na fronteira de montante, (*i.e.* as características do escoamento fora, na fronteira e dentro do troço em estudo foram assumidas como tendo permanecido constantes). A resposta foi avaliada pela medição contínua de condutividade, embora tenha sido apenas armazenado um valor horário, e, desta forma, não terá existido perturbação das condições de escoamento a jusante.

Nestes termos, tal como sugerido por van Genuchten e Alves (1982), Levenspiel (1986) e Santamaria *et al.* (1999), poderão ser utilizadas soluções 1-D na forma adimensional das Eq. (3.6) e Eq. (3.9). Relativamente ao modelo ADR, optou-se por aplicar a solução de Santamaria *et al.* (1999) desenvolvida para o sistema *aberto* (grande dispersão), para avaliar a magnitude da dispersão. Para o modelo NTS, optou-se por utilizar uma solução que permite calcular N e o volume morto (V<sub>m</sub>) (Santamaria *et al.* (1999), Debaliz (2002)).

#### 6.2.1 Solução analítica para o modelo ADR

A solução analítica para o sistema *aberto* é proposta por Santamaria *et al.* (1999), assumindo que não existe dispersão ao longo das fronteiras:

C (x, 0) = 0 Inicial  $\left[ -D\frac{\partial C}{\partial x} + vC \right] \Big|_{x=0^{+}} = \left[ -D\frac{\partial C}{\partial x} + vC \right] \Big|_{x=0^{-}} Montante$   $\left[ -D\frac{\partial C}{\partial x} + vC \right] \Big|_{x=L^{-}} = \left[ -D\frac{\partial C}{\partial x} + vC \right] \Big|_{x=L^{+}} Jusante$ 

- 48 -



Figura 6.4. – Variação das curvas  $E(\theta)$  para os ensaios da Série I



Figura 6.5. – Variação das curvas  $E(\theta)$  para os ensaios da Série II

A respectiva solução é apresentada na Eq. (6.1).

$$\mathsf{E}(\theta) = \frac{1}{2\sqrt{\pi \bullet N_{d} \bullet \theta}} e^{\left(-\frac{(1-\theta)^{2}}{4\theta \bullet N_{d}}\right)}$$
(6.1)

Sendo conhecida a distribuição de elementos de volume à saída, N<sub>d</sub> pode ser estimado inicialmente através da Eq. (6.2), que relaciona os dois primeiros momentos da distribuição (Santamaria *et al.*, (1999)):

$$s_{\theta}^{2} = \frac{s^{2}}{t_{m}^{2}} = 2 \bullet (N_{d}) + 8 \bullet (N_{d})^{2}$$
(6.2)

Se a curva de resposta a uma injecção discreta de traçador não for simétrica e apresentar um prolongamento em forma de cauda e com variância elevada, a dispersão é considerada importante (forte a muito forte), predominando o transporte dispersivo, com valores de  $N_d$  superiores a 0,002.

Qualquer das soluções analíticas apresentadas para o modelo ADR admite, como pressuposto, que o meio poroso é homogéneo e isotrópico, que o leito se encontra em condições *quase estacionárias*, sendo portanto válida a Lei de Darcy, e que o escoamento é maioritariamente longitudinal (fluxo 1-D no plano *xy*). Para poderem ser adequadamente aplicadas, avaliou-se o modo de escoamento no leito em função da velocidade utilizada, com recurso do número de Reynolds (R<sub>e</sub>), utilizando a seguinte expressão (Lencastre (1996), Quintela (2000)):

$$R_{e} = \frac{Ud_{p}}{v}$$
(6.3)

sendo U a velocidade média aparente de escoamento (m s<sup>-1</sup>), d<sub>p</sub> o diâmetro efectivo do grão (m) e v o coeficiente de viscosidade cinemática (m<sup>2</sup> s<sup>-1</sup>) do fluído escoado.

Considerando v igual a 1 x 10<sup>-6</sup> m<sup>2</sup> s<sup>-1</sup>, a 20 °C (Quintela (2000)),  $d_p$  igual a 6 mm e U igual a 9,8 x 10<sup>-6</sup> m s<sup>-1</sup>, aplicando a Eq. (6.3), resultou um R<sub>e</sub> de 0,06. Como o valor de R<sub>e</sub> é inferior à unidade, o escoamento foi considerado laminar e, assumindo válidas as condições de homogeneidade, isotropia e *quase estacionárias*, foi aplicada a Eq. (6.1) aos resultados apresentados no Anexo II.

#### 6.2.2 Solução analítica para o modelo NTS

Admitindo  $\tau_i = V_i/Q$ , as condições  $C_{(N+1)} = 0$  e t = 0 e m como o quociente entre o volume activo e o volume útil total do leito (*i.e.* o volume morto (V<sub>m</sub>) igual a 1-m), integrando a Eq. (3.7) no tempo e incluindo a variável adimensional temporal  $\theta$ , obtêm-se a solução analítica do modelo NTS para estimativa de volume morto (NTS-VM) (Santamaria *et al.* (1999), Dabaliz (2002)):

$$\mathsf{E}(\theta) = \frac{1}{m^{N}} \bullet \frac{N^{N}}{(N-1)!} \bullet \theta^{(N-1)} \bullet e^{(-\frac{N \bullet \theta}{m})}$$
(6.4)

Para valores de N superiores a 4 a curva torna-se cada vez mais simétrica e semelhante a uma distribuição normal, indicando que o escoamento se aproxima do ideal fluxo pistão. Valores de N inferiores a 4 indicam que o escoamento se afasta do ideal fluxo pistão, apresentando condições de mistura. O valor inicial de N, de acordo com Levenspiel (1986), pode ser estimado a partir do inverso da variância da curva DTR adimensional (N =  $1/s_{\theta}^2 = t_m^2/s^2$ ). V<sub>m</sub> pode também ser estimado através das relações S<sub> $\theta$ </sub><sup>2</sup> = m<sup>2</sup>/N e V<sub>m</sub> = 1-m (Dabaliz (2002)).

#### 6.2.3 Ajustamento paramétrico das soluções

A estimativa de N<sub>d</sub>, N e V<sub>m</sub> foi realizada por ajustamento paramétrico das Eq. (6.1) e Eq. (6.4), com aproximações iniciais para a Eq. (6.1) dada pela Eq. (6.2), através da aplicação do método de Newton-Raphson, aos resultados adimensionalisados das Séries I e II (valores de E( $\theta$ ) e  $\theta$ ). Utilizou-se, para o efeito, o software DAFO (Albuquerque e Mendes (2008)), que apresenta, como algoritmo, uma simplificação do método não linear de Meeter dos mínimos quadrados. A técnica de ajustamento utiliza um algoritmo que incluiu uma combinação dos métodos de Gauss-Newton e Levenberg-Marquardt.

Para melhor comparar o ajustamento realizado com as diferentes soluções, adoptouse o erro médio quadrático ( $\xi$ ), calculado por aproximação à Eq. (6.5) (Rangaiah e Krishnaswamy (1990)):

$$\xi = \frac{\left\{ \int_{0}^{\infty} \left[ vc(t, t_{m}, \mathbf{P}) - ve(t) \right]^{2} dt \right\}^{0,5}}{\left\{ \int_{0}^{\infty} \left[ ve(t) \right]^{2} dt \right\}^{0,5}}$$
(6.5)

Para um número discreto de valores  $\xi$  é estimado por aproximação e designado por erro médio padrão ( $\xi_{MD}$ ). A vantagem de utilizar este erro, reside no facto de, por se apresentar adimensional, pode ser facilmente comparável para diferentes conjuntos de resultados das curvas DTR.

Na Tabela 6.2. apresentam-se os resultados do ajustamento paramétrico aos resultados obtidos nas duas Séries de ensaios, para as duas das soluções adoptadas.

| Ensaio | Ponto de   | Modelo ADR (Eq. (6.1)) |      | Modelo NTS-VM (Eq. (6.4)) |                    |      |  |
|--------|------------|------------------------|------|---------------------------|--------------------|------|--|
|        | amostragem | N <sub>d</sub>         | ξmd  | Z                         | V <sub>m</sub> (%) | ξmd  |  |
| l.1    | P2         | 0,14                   | 0,24 | 4                         | 22                 | 0,16 |  |
| 1.2    | P5         | 0,07                   | 0,22 | 7                         | 14                 | 0,19 |  |
| 1.3    | P8         | 0,04                   | 0,23 | 13                        | 8                  | 0,27 |  |
| II.1   | P2         | 0,06                   | 0,17 | 8                         | 11                 | 0,16 |  |
| II.2   | P5         | 0,06                   | 0,12 | 10                        | 10                 | 0,29 |  |
| II.3   | P8         | 0,04                   | 0,16 | 13                        | 7                  | 0,17 |  |

Tabela 6.2. - Resultados dos ajustamentos às curvas DTR para as duas Séries

#### 6.3 Cargas orgânicas e de azoto removidas

As concentrações médias afluentes e efluentes de CQO e N-NH<sub>4</sub> observadas nos vários pontos de amostragem em cada ensaio são apresentadas na Tabela 6.3. As Figuras 6.6 a 6.11 mostram a variação de ambos os parâmetros no tempo, para cada ensaio. No Anexo III apresentam-se os resultados globais.

| Ensaio  | CQO (mg L <sup>-1</sup> ) |                        | Eficiência de | N-NH₄ (                | Eficiência de          |             |
|---------|---------------------------|------------------------|---------------|------------------------|------------------------|-------------|
| LIISalo | Afluente <sup>1)</sup>    | Efluente <sup>1)</sup> | remoção (%)   | Afluente <sup>1)</sup> | Efluente <sup>1)</sup> | remoção (%) |
| l.1     | 305 ± 9                   | 149 ± 7                | 51,1          | 28,3 ± 2,8             | 22,7 ± 0,7             | 19,8        |
| 1.2     | 309 ± 7                   | 129 ± 4                | 58,3          | $32,3 \pm 0,7$         | 21,7 ± 2,8             | 32,8        |
| 1.3     | 301 ± 6                   | 118 ± 4                | 60,8          | 30,3 ± 3,6             | 21,0 ± 1,1             | 30,7        |
| II.1    | 296 ± 5                   | 132 ± 4                | 55,4          | 33,1 ± 1,4             | 22,5 ± 0,9             | 32,0        |
| II.2    | 302 ± 5                   | 93 ± 6                 | 69,2          | 31,5 ± 2,2             | 18,4 ± 0,9             | 41,6        |
| II.3    | 301 ± 4                   | 45 ± 6                 | 85,0          | 31,3 ± 1,3             | 12,4 ± 1,1             | 60,4        |

Tabela 6.3. – Variação da CQO e N-NH4 para as duas Séries

<sup>1)</sup> Os intervalos de confiança foram calculados considerando um nível de confiança de 95% e 3 determinações



Figura 6.6. – Variação da CQO afluente e efluente no tempo (ensaios I.1 e II.1)



Figura 6.7. – Variação da CQO afluente e efluente no tempo (ensaios I.2 e II.2)



Figura 6.8. – Variação da CQO afluente e efluente no tempo (ensaios I.3 e II.3)



Figura 6.9. – Variação do N-NH<sub>4</sub> afluente e efluente no tempo (ensaios I.1 e II.1)



Figura 6.10. – Variação da N-NH<sub>4</sub> afluente e efluente no tempo (ensaios I.2 e II.2)



Figura 6.11. – Variação da N-NH<sub>4</sub> afluente e efluente no tempo (ensaios I.3 e II.3)

# 7. ANÁLISE E DISCUSSÃO DE RESULTADOS

### 7.1 Análise das curvas DTR

Observando as curvas DTR adimensionais (Figuras 6.4. e 6.5.) verifica-se que são assimétricas negativas em torno de  $\theta$  igual à unidade, evidenciando, de acordo com Santamaria *et al.* (1999) e Kadelec e Wallace (2008), uma resposta típica de uma injecção discreta de traçador num meio poroso de comprimento finito com presença de zonas pouco irrigadas (que potenciam as recirculações internas e que podem evolui para zonas de volume morto), zonas de volume morto e de curto-circuito hidráulico.

A análise da variância adimensional das curva  $E(\theta)$  permite verificar um aumento da dispersão de dados no ensaio sem vegetação, em especial para o troço inicial (primeiros 33 cm, até P2) que apresenta um valor 42% mais elevado do observado no ensaio com vegetação. Verifica-se, em geral, uma diminuição da dispersão de dados em torno do centróide, com o aumento do comprimento do leito.

O tempo de residência adimensional ( $t_{(m,\theta)}$ ) da curva E( $\theta$ ) dá indicação da maior ou menor retenção de traçador no interior do leito, tendo sido sempre superior à unidade em todos os ensaios, o que significa que o centro de massa do impulso se atrasou relativamente ao expectável. Contudo, a observação de valores mais elevados na Série II (ver Tabela 6.1.) indica que a presença de vegetação retardou mais a saída do traçador como pode ser também observado nas Figuras 6.1 a 6.3. Nos dois primeiros troços do leito o valor de t<sub>(m, $\theta$ )</sub> foi cerca de 20% e 15% superior nos ensaios com vegetação.

A análise dos resultados dos ensaios de adsorção (apresentados no ponto I.1. do Anexo I) permitiu, por outro lado, constatar uma atípica distribuição da massa de traçador adsorvida na Filtralite com o aumento da respectiva concentração em solução. Não se tendo verificado qualquer tendência de crescimento da massa adsorvida ( $C_s$ ) relativamente à crescente massa de traçador adicionada ( $C_o$ ) (Figura I.1), não foi possível ajustar qualquer das isotérmicas de adsorção sugeridas por Weber Jr. e DiGiano (1996) e Charbeneau (2000), e, à semelhança do observado no estudo de Albuquerque e Bandeiras (2007), considerou-se negligenciável a adsorção de traçador na matriz sólida. Assim, o retardamento da saída do traçador observado nos ensaios de ambas as Séries não esteve relacionado com fenómenos de adsorção.

Nestas circunstâncias, como constataram Martinez e Wise (2003), Santamaria *et al.* (1999) e Albuquerque (2003), o retardamento da saída de traçador pode ter estado
relacionado com a presença de importantes extensões de zonas pouco irrigadas (*i.e.* zonas com pouca dinâmica de escoamento que, normalmente, evoluem para zonas de volume morto). Esta ocorrência pode ter provocado recirculações internas que podem ter retido parte do traçador no interior daquelas zonas e contribuído também para a dispersão longitudinal (Santamaria *et al.* (1999)). A presença de zonas de volume morto é também comum em LESH (Martinez e Wise (2003), Chazarenc *et al.* (2003), Albuquerque e Bandeiras (2007), Araujo *et al.* (2008)), mas, quando este mecanismo é mais importante que as zonas pouco irrigadas e as recirculações internas, normalmente, a resposta da curva é antecipada devido a excessivo curto-circuito hidráulico e, consequentemente, ( $t_{(m,0)}$ ) é inferior à unidade.

As zonas pouco irrigadas podem ter actuado, como referem Jiménez *et al.* (1988), como zonas estagnadas, o que pode ter favorecido a criação de gradientes de concentração durante a passagem do impulso de traçador, com consequente transporte de moléculas NaCl para o seu interior e, até, para o interior do grão, ou seja, um fenómeno de dispersão mecânica. Quando a perturbação abandonou estes pontos, a concentração de traçador terá sido maior no interior das zonas pouco irrigadas do que no seu exterior, podendo ter provocado uma inversão do gradiente, com consequente difusão do NaCl para o espaço exterior. Estas fracções de traçador apresentaram, consequentemente, tempos de permanência superiores às das fracções que acompanharam a frente do impulso, o que poderá ajudar a explicar a retenção de traçador em todos os ensaios.

Nos ensaios com vegetação, a presença em todo o leito de uma matriz complexa de agregados de Filtralite, raízes e rizomas, envolvidos com biofilme, e com material em suspensão acoplado (Figura 7.1), pode indicar a presença de maior extensão zonas pouco irrigadas, em comparação com os ensaios sem vegetação, que terão provocado uma maior retenção de moléculas de traçador, o que originou valores de  $(t_{(m,\theta)})$  superiores em todos os troços do leito.

Estes resultados são um pouco diferentes dos observados por Albuquerque e Bandeiras (2007) num estudo similar efectuado em LESH com brita, onde apenas observaram diferenças significativas entre leitos com e sem vegetação no troço inicial dos leitos (Figura 7.2), tendo  $t_{(m,\theta)}$  sido superior nos ensaios sem vegetação nos restantes troços. Esta circunstancia estará relacionada com as diferentes propriedades do material, uma vez que a Filtralite apresenta maior porosidade e superfície especifica que a brita, bem como com a utilização de uma carga hidráulica cerca de 50% inferior à utilizada neste estudo.



Figura 7.1 – Aspecto de um aglomerado de raízes, rizomas e Filtralite, extraído do leito com vegetação no final da Série II



Figura 7.2 – Variação de  $t_{(m,\theta)}$  ao longo do leito para ensaios com Filtralite e brita

A quantidade de traçador recuperada, em todos os ensaios, foi sempre inferior à introduzida, o que era expectável, até porque só foi colocado um ponto de amostragem ao longo da secção de escoamento. Os valores decresceram ao longo do leito, o que comprova ter existido forte dispersão ao longo de todo o leito, tendo sido sempre mais baixos nos ensaios sem vegetação. Estes valores são ligeiramente inferiores aos obtidos por Chazarenc et al. (2003), que registou recuperações entre 78% e 90%, mas utilizando um traçador diferente e uma técnica de detecção mais próxima do ponto de descarga. Albuquerque e Bandeiras (2007), utilizando o mesmo traçador e a mesma técnica de detecção, mas um enchimento à base de brita, recuperaram entre 21% (P5) e 61% (P1), com o leito sem vegetação, e entre 25% (P5) e 72% (P1), com o leito sem vegetação, da massa de traçador injectada. Estes últimos resultados podem ser justificados pela utilização de um enchimento com propriedades diferentes, nomeadamente o diâmetro efectivo (30-80mm da brita contra 4-8mm da Filtralite), a porosidade (0,4 da brita contra 0,45 da Filtralite) e a superfície específica diferentes (700 m<sup>2</sup> m<sup>-3</sup> da brita contra 1250 m<sup>2</sup> m<sup>-3</sup> da Filtralite) e por ter sido detectado considerável curto-circuito hidráulico.

Os resultados obtidos, para qualquer das Séries, parecem indicar a presença relevante de zonas pouco irrigadas, com maior significado no leito com vegetação, em particular nos primeiros 33 cm do leito, provavelmente com diferentes dinâmicas no que respeita à transferência de massa e à actividade biológica, que foram

responsáveis pela retenção temporária do traçador e tiveram diferentes contribuições relativamente ao processo de transporte.

### 7.2 Influência da vegetação na variação da hidrodinâmica

Os resultados do ajustamento paramétrico (Tabela 6.2.) permitem verificar que, na generalidade dos ensaios, em especial para os realizados na presença de vegetação, a solução analítica do modelo ADR (Eq.(6.1)) representa melhor as curvas DTR obtidas, apresentando erros de ajustamento inferiores. A dispersão longitudinal pode considerar-se forte, pois  $N_d$  variou entre 0,025 e 0,2 (ver Tabela 3.1.), com um valor cerca de 50% superior no ensaio sem vegetação realizado no primeiro troço do leito (primeiros 33 cm do leito), valores que são coerentes com os estimados por Chazarenc *et al.* (2003) em LESH com vegetação.

A dispersão no leito com vegetação, apesar de ter sido forte, manteve-se aproximadamente constante ao longo do seu comprimento e, para distâncias superiores a 33 cm (a partir de P2), foi semelhante à observada no leito sem vegetação. Ou seja, a presença de raízes e rizomas parece ter tido um efeito benéfico no controlo das condições hidrodinâmicas em LESH, em particular em zonas sujeitas a maior perturbação hidrodinâmica como são as que estão próximas de pontos de alimentação.

A dispersão longitudinal foi inferior à observada por Albuquerque e Bandeiras (2007) em LESH com enchimento á base de brita, operados para cargas hidráulicas inferiores (cerca de 50% do valor utilizado neste estudo). A análise da Figura 7.3. permite verificar que, independentemente do tipo de material utilizado, a dispersão foi superior nos leitos sem vegetação. Assim, a presença de raízes e rizomas em LESH com maior porosidade, como é o caso da Filtralite, parece ter atenuado a dispersão longitudinal. Por outro lado, a utilização de cargas hidráulicas muito baixas parece ter conduzido ao aumento da dispersão longitudinal que, em sistemas com meio poroso, pode levar a distribuição de substratos uma anormal (Santamaria et al. (1999))е, consequentemente, reduzir a capacidade de tratamento.

O ajustamento com a solução analítica do modelo NTS (Eq. (6.4)) permitiu comprovar que existiram condições de mistura no troço inicial do leito (primeiros 33 cm do leito) nos ensaios sem vegetação, uma vez que o valor de N foi de 4 (valor máximo abaixo do qual o escoamento começa a apresentar condições de mistura, sendo a mistura completa teoricamente atingida quando N é igual à unidade).



**Figura 7.3** – Variação da dispersão longitudinal ao longo do leito para ensaios com Filtralite e brita

Nas Figuras 7.4. a 7.9. apresentam-se, para os ensaios das duas Séries, as curvas DTR experimentais, na forma adimensional, bem como as calculadas por aplicação das soluções analíticas representadas pelas Eq. (6.1) e Eq. (6.4) e com os valores das variáveis características ( $N_d$ ,  $N \in V_m$ ) apresentados na Tabela 6.2. O prolongamento da curva na parte final dos ensaios é, de acordo com Santamaria *et al.* (1999), comprovativo da presença de dispersão acentuada em ambos os leitos, que parece ter sido mais importante nos dois primeiros troços nos ensaios sem vegetação.



Figura 7.4. – Curvas DTR experimentais e calculadas (ensaio I.1., sem vegetação)



Figura 7.5. – Curvas DTR experimentais e calculadas (ensaio I.2., sem vegetação)



Figura 7.6. – Curvas DTR experimentais e calculadas (ensaio I.3., sem vegetação)



Figura 7.7. – Curvas DTR experimentais e calculadas (ensaio II.1., com vegetação)



Figura 7.8. – Curvas DTR experimentais e calculadas (ensaio II.2., com vegetação)



Figura 7.9. – Curvas DTR experimentais e calculadas (ensaio II.3., com vegetação)

Verifica-se, ainda, que a percentagem de volume morto foi sempre superior nos ensaios sem vegetação. No troço inicial,  $V_m$  foi 50% superior no ensaio sem vegetação, o que parece indicar que a presença de vegetação minimizou a formação de zonas de volume morto ou retardou a passagem de zonas mal irrigadas a zonas de volume morto, o que, além de ser benéfico para o escoamento, evita a redução do volume útil necessário para tratamento. Por outro lado, a maior presença de  $V_m$  nos

primeiros 33 cm do troço sem vegetação é indicativo de ter existido maior curto-circuito hidráulico naquele troço.



Figura 7.10 – Variação do volume morto ao longo do leito para ensaios com Filtralite e brita

Estes resultados contariam os obtidos por Albuquerque e Bandeiras (2007), realizados para condições similares em LESH com enchimento à base de brita, onde se registaram valores mais elevados de  $V_m$  nos ensaios com vegetação e para comprimentos mais longos do leito (Figura 7.10).

Chazarenc *et al.* (2003), em estudos de traçagem efectuados em LESH com vegetação, com enchimento à base de brita, obteve  $V_m$  entre 20% e 55%. Esta diferença de resultados poderá estar associada, quer às características do leito com brita, que apresenta uma capacidade de filtração inferior à Filtralite (Simões (2009)), deixando passar e acumular mais material sólido nos troços a jusante que vão ser precursores de zonas mal irrigadas e de volume morto, quer à velocidade de escoamento que, tendo sido inferior à utilizada neste estudo, originou TRH mais elevados (superiores a 12 d), o que terá levado ao aumento de  $V_m$ , cisrcunstancia esta que também é sugerida por Vymazal e Kropfelova (2008) e Kadlec e Wallace (2008).

## 7.3 Influência da vegetação e das características hidrodinâmicas no rendimento dos leitos

Na Tabela 7.1 apresentam-se os valores médios das cargas aplicadas e das cargas removidas (calculadas em função da carga afluente ou removida por unidade de área útil de cada troço do leito), sendo  $r_{CQO}$  e  $r_{N-NH4}$  os coeficientes de remoção de CQO e de azoto amoniacal, respectivamente.

| Ensaio | Carga orgânica         | (g CQO m <sup>-2</sup> d <sup>-1</sup> ) | Carga de azoto         |                                              |         |
|--------|------------------------|------------------------------------------|------------------------|----------------------------------------------|---------|
|        | Aplicada <sup>1)</sup> | Removida (r <sub>cqo</sub> )             | Aplicada <sup>1)</sup> | Removida (r <sub>N-NH4</sub> ) <sup>1)</sup> | Au (m²) |
| l.1    | 60,9 ± 1,8             | 31,1 ± 0,5                               | 5,7 ± 0,6              | 1,1 ± 0,6                                    | 0,12    |
| 1.2    | $20,6 \pm 0,5$         | $12,0 \pm 0,6$                           | 2,2 ± 0,1              | 0,7 ± 0,1                                    | 0,36    |
| 1.3    | 10,6 ± 0,2             | 6,5 ± 0,1                                | 1,1 ± 0,1              | 0,3 ± 0,1                                    | 0,68    |
| II.1   | 59,2 ± 1,0             | 32,8 ± 0,5                               | 6,6 ± 0,3              | 2,1 ± 0,1                                    | 0,12    |
| 11.2   | $20,1 \pm 0,4$         | $14,0 \pm 0,3$                           | 2,1 ± 0,1              | $0,9 \pm 0,1$                                | 0,36    |
| II.3   | 10,6 ± 0,1             | 9,0 ± 0,2                                | 1,1 ± 0,1              | 0,7 ± 0,1                                    | 0,68    |

Tabela 7.1 – Cargas orgânicas e de azoto aplicadas e removidas em cada troço dos leitos

<sup>1)</sup> Os intervalos de confiança foram calculados considerando um nível de confiança de 95% e 3 determinações

A remoção, quer de CQO, quer de N-NH<sub>4</sub>, foi sempre superior no leito com vegetação, independentemente do troço de leito analisado, como se pode observar nas Figuras 7.11 a 7.16. No caso da CQO, a maior remoção observada no leito com vegetação terá estado relacionada com a presença de maior quantidade de biofilme, que se desenvolveu quer nas raízes e rizomas, quer nos grãos de Filtralite, e da oxigenação do meio através de raízes e rizomas que contribuíram para uma maior remoção de matéria orgânica por via aeróbia. A maior remoção de amónio no leito com vegetação, tal como observado em Oliveira (2008), terá estado associado com o consumo através das plantas (cerca de 15%, de acordo com Vymazal e Kropfelova (2008), com a maior presença de biofilme nitrificante e, como constataram Albuquerque *et al.* (2009), com a presença de mecanismos não convencionais de remoção de azoto.



Figura 7.11 – Variação da remoção de CQO no tempo (ensaios I.1. e II.1.)



Figura 7.12 – Variação da remoção de CQO no tempo (ensaios I.2. e II.2.)



Figura 7.13 – Variação da remoção de CQO no tempo (ensaios I.3. e II.3.)



Figura 7.14 – Variação da remoção de N-NH4 no tempo (ensaios I.1. e II.1.)



Figura 7.15 – Variação da remoção de N-NH<sub>4</sub> no tempo (ensaios I.2. e II.2.)



Figura 7.16 – Variação da remoção de N-NH<sub>4</sub> no tempo (ensaios I.3. e II.3.)

Os valores médios de  $r_{CQO}$  são superiores aos observados por Oliveira (2008), que registou até 25 g CQO m<sup>-2</sup> d<sup>-1</sup>, utilizando os mesmos leitos, mas um ano antes do presente trabalho, mas os valores de  $r_{N-NH4}$  são similares. Nestes termos, apesar das condições de dispersão detectadas e do volume morto estimado, o leito apresentou, à data da realização dos ensaios (cerca de um ano após o arranque dos leitos), uma maior capacidade de remoção de matéria orgânica e não perdeu capacidade de remover azoto.

Independentemente do tipo de leito utilizado, à semelhança do detectado por Oliveira (2008) e Albuquerque *et al.* (2009), a remoção, quer de CQO (Figura 7.17), quer de N-NH<sub>4</sub> (Figura 7.18), foi superior nos troços iniciais (até P2), o que se justifica pela maior disponibilidade de oxigénio à entrada dos leitos, apesar de terem sido detectados, naqueles troços, valores mais elevados de V<sub>m</sub> e dispersão longitudinal.

Apesar da ER, no primeiro troço (primeiros 33 cm), ter sido inferior no leito com vegetação, registaram-se, para este leito, valores superiores nos restantes troços (entre 33 cm e 190 cm), o que significa que a presença de vegetação promoveu uma remoção de poluentes mais homogénea ao longo do seu comprimento, ao passo que, no leito sem vegetação, a remoção ocorreu, essencialmente, no troço inicial (*i.e.* o restante volume de leito esteve subaproveitado).



**Figura 7.17** – Variação da eficiência de remoção de CQO ao longo de cada troço do leito para ambas as Séries



**Figura 7.18** – Variação da eficiência de remoção de N-NH₄ ao longo de cada troço do leito para ambas as Séries

A análise das Figuras 7.19. a 7.22. permite verificar que o rendimento da remoção, quer de CQO, quer de N-NH<sub>4</sub>, diminui com o aumento, quer do V<sub>m</sub>, quer de N<sub>d</sub>, independentemente do tipo de leito. Assim, o aumento de zonas de volume morto e da dispersão longitudinal em LESH afecta a eficiência de remoção de poluentes. Contudo, a queda mais acentuada foi observada nos ensaios sem vegetação, o que poderá significar que a presença de vegetação atenuou a quebra de rendimento de LESH.

Assim, a utilização de vegetação em LESH, além de ter melhorado o rendimento de remoção de matéria orgânica e azoto, contribuiu para retardar o desenvolvimento de zonas de volume morto e para atenuar a dispersão longitudinal, dois factores que podem afectar o rendimento do sistema.



Figura 7.19 - Influência do volume morto na remoção de CQO



Figura 7.20 – Influência da dispersão longitudinal na remoção de CQO



Figura 7.21 – Influência do volume morto na remoção de N-NH4



Figura 7.22 – Influência da dispersão longitudinal na remoção de N-NH4

# 8. CONCLUSÕES E PERSPECTIVAS DE TRABALHO FUTURO

## 8.1 Conclusões

Independentemente da utilização de vegetação, os resultados demonstram que o centro de massa do impulso se atrasou relativamente ao expectável, o que é indicativo de terem coexistido zonas pouco irrigadas, com eventual presença de recirculações internas, e zonas de volume morto, precursoras de curto-circuito hidráulico, tendo a dispersão de dados sido maior nos ensaios sem vegetação e para distâncias inferiores a 33 cm.

Para as condições de operação utilizadas, verificou-se forte dispersão longitudinal ao longo de ambos os leitos, com maior amplitude no leito sem vegetação, tendo, no entanto, o escoamento sido do tipo laminar. A dispersão, apesar de ter sido forte, manteve-se praticamente constante ao longo do leito com vegetação e apresentou uma variação acentuada no leito sem vegetação, para distâncias inferiores a 33 cm.

O atraso na saída de traçador, comprovado pelas baixas taxas de recuperação e pela detecção de uma cauda alongada nas curvas-resposta, terá estado relacionada com a presença de maior extensões de zonas pouco irrigadas do que de zonas de volume morto. A presença em todo o leito de uma matriz complexa de agregados de Filtralite, raízes e rizomas, envolvidos com biofilme, e com material em suspensão acoplado poderá justificar a existência de maior extensão de zonas mal irrigadas no leito com vegetação, que terá sido responsável pela maior retenção de traçador detectada.

Para a generalidade dos ensaios, a solução de grande intensidade de dispersão do modelo ADR representou melhor os resultados dos ensaios experimentais, com erros de ajustamento mais baixos nos ensaios com vegetação. O ajustamento com a solução analítica do modelo NTS permitiu comprovar que a dispersão foi muito forte no troço inicial do leito sem vegetação, podendo ter ocorrido condições de mistura, onde também se registou o valor mais elevado de volume morto e, consequentemente, terá existido maior curto-circuito hidráulico.

Apesar da forte dispersão observada no leito com vegetação, a remoção de matéria orgânica e azoto foi superior neste leito, o que estará relacionada com a presença de maiores quantidades de biofilme, quer nas raízes e rizomas, quer nos grãos de Filtralite, e a oxigenação do meio através de raízes e rizomas. A remoção de CQO, e em especial de azoto amoniacal, ocorreu a taxas elevadas em todos os troços do leito

com vegetação, enquanto no leito sem vegetação praticamente só ocorreu nos primeiros 33 cm.

O aumento da dispersão e do volume morto afectou o rendimento da remoção de CQO e azoto amoniacal, tendo este efeito sido menor no leito com vegetação.

A presença de vegetação contribuiu para uma menor retenção de traçador no interior do leito, permitiu que a dispersão longitudinal fosse aproximadamente constante em todos os troços do leito e atenuou a formação de zonas de volume morto, tendo contribuído para o retardamento do processo de colmatação do leito e para a manutenção de um volume útil adequado para a remoção de matéria orgânica e azoto a elevadas taxas de remoção.

## 8.2 Perspectivas de trabalho futuro

Seguidamente resume-se os trabalhos complementares que poderiam dar continuidade a este estudo:

- Realização de ensaios de traçagem com detecção múltipla da chegada de traçador em vários pontos ao longo da secção de escoamento, para melhor avaliar a variação das condições hidrodinâmicas ao longo de cada troço;
- Realização de ensaios a velocidades de escoamento diferente, para avaliar a interferência da velocidade na variação das condições hidrodinâmicas;
- Utilização de soluções numéricas para os modelos ADR e NTS, afim de melhor caracterizar o número de dispersão e a percentagem de volume morto.
- Determinação experimental do volume morto, para comparação com os valores estimados analiticamente.

## 9. **BIBLIOGRAFIA**

- Ahn Y. (2006). Sustainable nitrogen elimination biotechnologies: A review. *Process Biochemistry*, V. 41, 1709–1721
- Albuquerque A., Oliveira J., Semitela S. e Amaral L. (2009). Influence of bed media characteristics on ammonia and nitrate removal in shallow horizontal subsurface flow constructed wetlands. *Bioresource Technology*. (aceite para publicação em 2009.07.08, doi: 10.1016/j.biortech.2009.07.016).
- Albuquerque A., Arendacz M., Obarska–Pempkowiak H., Borges M. e Correia M. (2008). Simultaneous removal of organic and solid matter and nitrogen in a SSHF constructed wetland in temperate Mediterranean climate. *KKU Research Journal* (Issue on Science, Engineering and Technology), V. 13 (10), 1117-1128. (seleccionado da 12th International Conference on *Integrated Diffuse Pollution Management (IWA DIPCON 2008)*; Universidade de Khon Khaen, Tailândia).
- Albuquerque A. e Mendes P. (2008). <u>DAFO 1.0 Manual de Utilização</u>. Ref. LSA/TT09/07, UBI, Covilhã, Portugal, Dezembro de 2007, 32 pp.
- Albuquerque A. e Mendes P. (2007). <u>MULPDAS 1.0 Manual de Utilização</u>. Ref. LSA/TT08/07, UBI, Covilhã, Portugal, Agosto de 2007, 38 pp.
- 6) Albuquerque A. e Bandeiras R. (2007). Analysis of hydrodynamic characteristics of a horizontal subsurface flow constructed wetland. In <u>Water Pollution in Natural</u> <u>Porous Media at Different Scales</u>, L. Candela, I. Vadillo, P. Aagaard, E. Bedbur, M. Trevisan, M. Vanclooster, P. Viotti & J. Lopez-Geta (Eds.), Instituto Geologico Y Minero de Espana, Serie nº 22, Madrid, Espanha, 329-338.
- 7) Albuquerque A. e Bandeiras R. (2005). Analysis of conservative pollutants transport in a saturated soil column using moment analysis and least-square optimization. Actas da *10th Conference on Biosolids and Biowastes*, 13 a 16 de Novembro de 2005, Wakefield, Inglaterra, Paper 13, 10 pp.
- Albuquerque A. e Santana F. (2004). Hydrodynamic behaviour of a biological packed bed under different hydraulic and organic loading. In <u>Applications of Porous</u> <u>Media</u>, A. H. Reis & A. F. Miguel (Eds.), Geophysics Centre, Évora, Portugal, 319-327.

- Albuquerque, A. (2003): <u>Contribuição para o estudo da remoção de residuais de</u> <u>carbono em filtros biológicos de leito imerso e fluxo descendente</u>. Tese de doutoramento, Universidade da Beira Interior, Covilhã, Portugal, 441 pp.
- Araújo A., Sousa, E. e Albuquerque A. (2008). Longitudinal dispersion in a horizontal subsurface flow constructed wetland: a numerical solution. *ANZIAM Journal*, V. 50, 339-353.
- 11) Asano T., Burton F., Leverenz H., Tsuchihashi R.E. e Tchobanoglous G. (2007). <u>Water reuse</u>. McGrawHill, Nova York, EUA.
- 12) Bandeiras R. (2006). <u>Avaliação do funcionamento hidráulico de unidades de</u> <u>tratamento por leito de macrófitas</u>. Relatório de estágio LSA/PID01/06, POCI 2010, Covilhã., Portugal, Abril de 2006, 329 pp
- 13) Bear J. e Verruijt A. (1998). <u>Modeling groundwater flow and pollution</u>. D. Reidel Publishing Company, Dordrecht, Holanda, 414 pp.
- 14) Bedient P., Rifai H. e Newell C. (1999). <u>Ground water contamination transport and remediation</u>. 2<sup>a</sup> Edição, Prentice Hall PTR, New Jersey, EUA, 604 pp.
- 15) Bixio D. e Wintgens T. (2006). <u>Water reuse system management Manual</u> <u>AQUAREC</u>. Directorate-General for Research, EC, Bruxelas, Bélgica.
- 16) Calheiros, C., Rangel, A. e Castro, P. (2008). The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. *Arch. Environ. Contam. Toxicol. V. 55, 3,* 404-414.
- 17) Calheiros, C., Rangel, A. e Castro, P. (2007). Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. *Water Research*, V. 41, 8, 1790-1798.
- 20. Charbeneau R. (2000). <u>Groundwater hydraulics and pollutant transport</u>.
  Prentice Hall PTR, New Jersey, EUA, 593 pp.
- 19) Chazarenc F., Merlin G. e Gonthier Y. (2003). Hydrodynamics of horizontal subsurface flow constructed wetlands. *Ecological Engineering*, V. 21, 165-173.
- 20) Cortés J., Herrera A., Méndez V., Hernández G., Robles J. e Rivera E. (2006). Uso de arcilla natural en el tratamiento del agua residual de la industria de celulosa. Actas do XV Congreso Nacional de Ingeniería Sanitaria y Ciencias Ambientales, 24 a 26 de Maio de 2006, EXPO Guadalajara, Espanha.

- 21) Crumpton (2000). Using wetlands for water quality improvement in agricultural watersheds. The importance of a watershed scale approach. *7th International IWA Conference on Wetland Systems for Water Pollution Control*. Lake Buena Vista, Florida, EUA.
- 22) Dabaliz A. (2002). <u>Etude d'un réacteur (contacteur) gaz-liquide à jet vertical</u> <u>immergé en vue de son application dans le traitment dês eaux usées</u>. PhD thesis, INSA de Lyon, Lyon, France, 192 pp.
- 23) Dang, J., Harvey, D., Lobbary, A., Grady Jr, C., 1989. Evaluation of biodegradation kinetic with respirometric data. *Res. J. Water Poll. Cont. Fed.*, V. 61, 11/12, 1711-1721.
- 24) Davies, T.H., Watson, J.T. e Jenkins D.B. (1990). Treat ability assessment of industrial wastes by a portable wetland unit. In <u>Constructed Wetlands In Water</u> <u>Pollution Control</u>. WRc Swindon, Wiltshire, Reino Unido.
- 25) di Nardi I., Zaiat M. e Foresti E. (1999). Influence of the tracer characteristics on hydrodynamic models of packed-bed bioreactors. *Biop. Eng.*, V. 21, 5, pp 469-476.
- 26) EPA (1999). <u>Constructed wetlads treatment of municipal wastewater</u>. Office of Research and Development, Relatório nº EPA/625/R-99/010, Cincinnati, Ohio, EUA, 166 pp.
- 27) Galvão A. e Matos J. (2006). Leitos de macrófitas: uma alternativa sustentável para o tratamento de efluentes de pequenos aglomerados. Actas do *I Encontros Técnicos em Gestão e Tratamento de Água*, BIOTEMPO Consultoria, Braga.
- 28) INE (2007). <u>Anuário estatístico de Portugal</u>. Instituto Nacional de Estatística, Lisboa, Portugal, 624 pp.
- 29) IWA (2000). <u>Constructed wetlands for pollution control: processes, performance,</u> <u>design and operation</u>. Scientific and Technical Report No. 8, International Water Association, Londres, Reino Unido.
- 30) Iweme, A., Raby, D. e Lesavre, J. (2005). <u>Épuration des eaux usées domestiques</u> <u>par filtres plantes de macrophytes - Guide pour la conception et la réalisation</u>. Versão nº1. Agence de l'eau, França.
- Kadlec, R. e Wallace, S. (2008). <u>Treatment wetlands</u>. 2<sup>a</sup> Edição. CRC Press, Boca Raton, EUA, 1016 pp.

- 32) Kowalik P., Mierzejewski M., Obarska Pempkowiak H. e Toczylowska I. (1995). <u>Constructed wetlands for wastewater treatment from small communities</u>, Technology University of Gdansk, Gdansk, Polónia.
- 33) Korkusuz E. (2005). <u>Manual of practice on constructed wetlands for wastewater</u> <u>treatment and reuse in Mediterranean countries</u>. Technical report AVKR 5, MED-REUNET, Creta, Grécia, 300 pp.
- 34) Leitão T., Smets S., van Beek C. e Ferreira J. (2001). Migration of heavy metals in saturated porous media – Simulation in laboratory experiments. Actas da *Conferência de Geotecnia Ambiental sobre Contaminação de Solos e de Àguas Subterrâneas*, 18 a 19 de Novembro 2001, FEUP, Porto, 45-63.
- Lencastre A. (2005). <u>Hidráulica geral</u>. Luso-Brasileira Edition, Lisboa, Portugal, 656 pp.
- 36) MAOT (2000). <u>PEAASAR I Plano estratégico de abastecimento de água e de</u> <u>saneamento de águas residuais (2000 – 2006)</u>. Ministério do Ambiente e do Ordenamento do Território, Lisboa, 143 pp.
- 37) MAOT (2007). <u>PEAASAR II Plano estratégico de abastecimento de água e de saneamento de águas residuais (2007 2013)</u>. Ministério do Ambiente e do Ordenamento do Território, Lisboa, 2007, 172 pp.
- 38) Marecos do Monte M. H. e Albuquerque A. (2009). <u>Wastewater reuse</u>. Guia Técnico Nº 11, IRAR, Lisboa, Portugal, 363 pp.
- 39) Martinez C. e Wise W. (2003). Analysis of constructed treatment wetland hydraulics with the transient storage model OTIS. *Ecological Engineering*, V. 20, 3, 211-222.
- Metcalf e Eddy. (2003). <u>Wastewater engineering: treatment, disposal and reuse</u>. 4<sup>a</sup> edição, McGraw-Hill, Nova Iorque, EUA.
- 41) Nuttall, P.M., Boon, A.G. e Rowell, M.R. (1997). <u>Review of the design and</u> <u>management of constructed wetlands,</u> Report 180, Construction Industry Research and Information Association, Londres, Reino Unido.
- 42) Oliveira J. (2008). <u>Estudo da influência do material de enchimento na remoção de</u> <u>matéria orgânica, azoto e sólidos em leitos de macrófitas do tipo ESSH</u>. Tese de Mestrado de Engenharia Sanitária, Universidade Nova de Lisboa, Monte de Caparica, Portugal, 125 pp.

- 43) Paredes D., Kuschk P., Mbwette T., Stange F., Müller R. e Köser H. (2007). New aspects of microbial nitrogen transformations in the context of wastewater treatment – a review. *Eng. Life Sci.*, V. 7, 1, 13–25.
- 44) Quintela A. (2000). <u>Hidráulica</u>. 7<sup>a</sup> Edição, Fundação Calouste Gulbenkian, Lisboa, Portugal, 539 pp.
- 45) Randerson P., Jordan, G. e Williams H. (2005). The role of willow roots in subsurface oxygenation of vegetation filter beds – mass spectrometer investigations. *Wastewater Treatment in Wetlands*, 10 – 17 Setembro, Starbienino, Polónia, 159-165.
- 46) Rangaiah G. e Krishnaswamy P. (1990). Application of time domain curve-fitting to parameter estimation in RTD models. *J. Chem. Eng.g of Japan*, V. 23, N<sup>o</sup> 2, 124-130.
- 47) Riemer M., Kristensen G. H. e Harremoes P. (1980). Residence time distribution in submerged biofilters. *Water Research*, V. 14, 949-958.
- 48) Rodrigues, J., Galvão, A., Matos, J. e Heath, P. (2004). Sustainable Sewage Solutions for Small Agglomerations. *Water Sci Technol.* V. 52, 12, 25-32.
- 49) Rangaiah G. e Krishnaswamy P. (1990). Application of time domain curve-fitting to parameter estimation in RTD models. *Journal of Chemical Engineering of Japan*, V. 23, N° 2, pp. 124-130.
- 50) Romero, J.A., Comin, F.A. e Garcia, C. (1999). Restored wetlands as filters to remove nitrogen. *Chemosphere*, V. 39, 2, 323-332.
- 51) Relvão, A. (1999). <u>Sistemas de tratamento de efluentes em aglomerados urbanos</u> <u>por leitos de macrófitas emergentes</u>. Comissão Coordenação Desenvolvimento Regional do Centro, Coimbra, Portugal.
- 52) Renker M. e Albuquerque A. (2007). Evaluation of the influence of loading conditions on the simultaneous removal of organic matter and nitrogen in SSHF constructed wetlands. Actas do *World Environmental & Water Resources Congress*, 15 a 19 de Maio de 2007, Tampa, Florida, EUA, 12 pp.
- 53) Santamaria J., Heguido J., Menéndez M. E Monzón A. (1999) <u>Ingeniería de</u> <u>reactores</u>. Editorial Síntesis SA, Espanha, 347 pp.

- 54) Scholz M. (2006). Comparison of novel membrane bioreactors and constructed wetlands for treatment of pre-processed animal rendering plant wastewater in Scotland. *E-Water* (publicação on-line da EWA), 14 pp.
- 55) Simões M. (2009). <u>Avaliação da influência do tipo de enchimento no rendimento de</u> <u>leitos de macrófitas de escoamento subsuperficial e horizontal</u>. Tese de Mestrado de Engenharia Civil, Universidade da Beira Interior, Covilhã, Portugal, 126 pp.
- 56) Thorén, A.-K., Legrand, C. e Herrmann, J. (2003). Transport and transformation of de-icing urea from airport runways in a constructed wetland system. *Water Science and Technology*, V. 48, 5, 283-290.
- 57) van Deun, R. e van Dyck, M. (2008). Expanded clay and lava rock as potential filter media for nutrient removal in vertical subsurface flow constructed wetlands. Actas do SWS Society of Wetland Scientists European Chapter Meeting, 29th June – 3rd July 2008, Kuressaare, Saaremaa, Estonia, 23 pp.
- 58) van Genuchten and Alves W. (1982) <u>Analytical solutions of the one-dimensional</u> <u>convective-dispersive solute transport equation</u>. Technical Bulletin N° 1661. Agricultural Research Service. USDA Riverside, California, EUA, 149 pp.
- 59) Vilpas, R., Valve, M. e Raty, S. (2005). <u>Pilot plants in Finland</u>. Technical report, Syke, MAXIT-Norden, Filandia, 48 pp.
- 60) Vymazal, J., Kropfelova, I. (2008). <u>Wastewater treatment in constructed wetlands</u> <u>with horizontal sub-surface flow.</u> Series of Env. Pollution 14, Springer, Alemanha, 566 pp.
- 61) Vymazal, J. (2003). Types of constructed wetlands. Actas do International Seminar on the Use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands, 8 e 10 de Maio de 2003, Lisboa, Portugal, 35-79.
- 62) Wallace S.D., Knight R. L. (2006). <u>Small-scale Constructed Wetland Treatment</u> <u>Systems – Feasibility, Design Criteria, and O&M Requirements</u>. 1<sup>a</sup> Edição, IWA report, Water Environment Research Federation, EUA, 304 pp.
- 63) Weber Jr W. e DiGiano F. (1996). <u>Process dynamics in environmental systems</u>. John Willey & Sons Inc., Toronto, Canada, 943 pp.
- 64) Wehrle-Werk (2003). <u>BIOMEMBRAT-plus</u>. Commercial information material. Wehrle-Werk AG, Emmendingen, Alemanha.

# ANEXOS

# ANEXO I

Resultados do teste de adsorção e curvas de calibração

#### I.1. Ensaio de adsorção do NaCI na Filtralite

Prepararam-se soluções concentradas de 0 mg L<sup>-1</sup>, 5 mg L<sup>-1</sup>, 10 mg L<sup>-1</sup>, 20 mg L<sup>-1</sup>, 30 mg L<sup>-1</sup>, 40 mg L<sup>-1</sup> e 50 mg L<sup>-1</sup> de NaCI em água destilada. Colocou-se cerca de 30 g de Filtralite em 100 mL de cada uma das soluções em erlenmeyers de 250 mL de forma a obter uma relação sólido/líquido de 0,5 (semelhante à utilizada nos leitos). Determinou-se a conductividade inicial de cada uma das soluções.

Os frascos foram agitados durante 24 horas à temperatura de 20 °C  $\pm$  1 °C, tal como sugerido por Leitão *et al.* (2001), tendo-se avaliado a conductividade final em cada uma das 7 amostras. Para a estimativa das concentrações iniciais (C<sub>0</sub>) e finais (C<sub>f</sub>) de NaCl a partir dos valores de conductividade foi utilizada a curva de calibração correspondente, apresentada no Quadro I.2. A quantidade de massa adsorvida por unidade de massa de meio de enchimento (C<sub>s</sub>) em cada frasco foi calculada através da seguinte expressão (Leitão *et al.*, 2001):

$$C_{s} = \frac{(V\Delta s)}{M_{MS}}$$
(I.1)

sendo V o volume de solução,  $\Delta s$  a taxa de redução da concentração de soluto determinada pela diferença entre C<sub>0</sub> e C<sub>f</sub>, e M<sub>MS</sub> a massa de material sólido numa amostra do meio de enchimento.

A isotérmica de adsorção foi obtida através da relação entre  $C_s \in C_0$ . No Quadro I.1. apresentam-se os resultados dos ensaios e na Figura I.1. a respectiva curva de adsorção em termos de  $C_s$ , calculada através da Eq. (I.1), sendo V igual a 50 mL e  $M_{MS}$  igual a 0,0297 kg.

| C <sub>0</sub><br>(mg L <sup>-1</sup> ) | M <sub>MS</sub><br>(kg) | C <sub>f</sub><br>(mg L <sup>-1</sup> ) |
|-----------------------------------------|-------------------------|-----------------------------------------|
| 0,0                                     | 0,0303                  | 0,0                                     |
| 4,8                                     | 0,0295                  | 4,7                                     |
| 11,6                                    | 0,0295                  | 11,7                                    |
| 19,8                                    | 0,0293                  | 19,6                                    |
| 29,6                                    | 0,0300                  | 29,7                                    |
| 40,5                                    | 0,0292                  | 40,8                                    |
| 50,3                                    | 0,0296                  | 50,1                                    |

Tabela I.1. – Resultados do ensaio de adsorção



Figura I.1. – Adsorção NaCI na Filtralite para várias concentrações em solução

## I.2. Curva de calibração para conductividade e NaCI

Na Tabela I.2. apresentam-se a conductividade correspondentes ao intervalo de concentrações de NaCl entre 0 mg L<sup>-1</sup> e 50 mg L<sup>-1</sup>, bem como as respectivas curvas de calibração.

| Ensa                          | ios de adsorção             | Ensaios de traçagem           |                             |  |  |
|-------------------------------|-----------------------------|-------------------------------|-----------------------------|--|--|
| NaCl<br>(mg L <sup>-1</sup> ) | Conductividade<br>(μS cm⁻¹) | NaCl<br>(mg L <sup>-1</sup> ) | Conductividade<br>(μS cm⁻¹) |  |  |
| 0,0                           | 2,1                         | 0,0                           | 2,9                         |  |  |
| 4,8                           | 15,4                        | 5,1                           | 15,1                        |  |  |
| 11,6                          | 31,7                        | 10,8                          | 28,8                        |  |  |
| 19,8                          | 51,4                        | 20,8                          | 52,8                        |  |  |
| 29,6                          | 75,0                        | 30,2                          | 75,3                        |  |  |
| 40,5                          | 101,0                       | 39,5                          | 97,6                        |  |  |
| 50,3                          | 124,5                       | 49,4                          | 121,3                       |  |  |
| a:                            | 2,4174                      | a:                            | 2,3971                      |  |  |
| b:                            | 3,2198                      | b:                            | 2,9048                      |  |  |
| R <sup>2</sup> :              | 0,9991                      | R <sup>2</sup> :              | 0,9998                      |  |  |

Tabela I.2 – Curvas de calibração para conductividade e NaCI

Nota: Conductividade = a x (concentração de NaCl) + b

As curvas de calibração foram utilizadas para estimar as concentrações de NaCl nos ensaios de traçagem e para avaliar a adsorção do NaCl aos grãos de Filtralite.

# ANEXO II

Resultados dos ensaios de traçagem

## II.1. Resultados dos ensaios de traçagem

| Série I |       |                             |       |                                            |        |   |             |      |                             |
|---------|-------|-----------------------------|-------|--------------------------------------------|--------|---|-------------|------|-----------------------------|
|         | P2    |                             |       | P5                                         |        |   |             | P8   |                             |
| Tempo   | NaCl  | E (t)<br>(h <sup>-1</sup> ) | Tempo | TempoNaClE (t)(h) $(mg L^{-1})$ $(h^{-1})$ |        |   | Tempo       | NaCl | E (t)<br>(h <sup>-1</sup> ) |
| (1)     |       | 0,0000                      | (1)   |                                            | 0,0000 | ŀ | <u>(II)</u> |      | 0,0000                      |
| 1       | 0,00  | 0,0000                      | 1     | 0,00                                       | 0,0000 |   | 1           | 0,00 | 0,0000                      |
| 2       | 0,00  | 0,0000                      | 2     | 0,00                                       | 0,0000 | Ì | 2           | 0,00 | 0,0000                      |
| 3       | 0,00  | 0,0000                      | 3     | 0.00                                       | 0,0000 | - | 3           | 0,00 | 0,0000                      |
| 4       | 0.00  | 0.0000                      | 4     | 0.00                                       | 0.0000 |   | 4           | 0.00 | 0.0000                      |
| 5       | 0.00  | 0.0000                      | 5     | 0.00                                       | 0.0000 |   | 5           | 0.00 | 0.0000                      |
| 6       | 0.87  | 0.0015                      | 6     | 0.00                                       | 0.0000 | - | 6           | 0.00 | 0.0000                      |
| 7       | 1.71  | 0.0029                      | 7     | 0.00                                       | 0.0000 | ľ | 7           | 0.00 | 0.0000                      |
| 8       | 2.54  | 0.0043                      | 8     | 0.00                                       | 0.0000 | Ì | 8           | 0.00 | 0.0000                      |
| 9       | 3.79  | 0.0064                      | 9     | 0.00                                       | 0.0000 | - | 9           | 0.00 | 0.0000                      |
| 10      | 4,21  | 0,0071                      | 10    | 0,00                                       | 0,0000 | Ì | 10          | 0,00 | 0,0000                      |
| 11      | 4,63  | 0,0078                      | 11    | 0,00                                       | 0,0000 | ľ | 11          | 0,00 | 0,0000                      |
| 12      | 5,05  | 0,0085                      | 12    | 0,00                                       | 0,0000 | ľ | 12          | 0,00 | 0,0000                      |
| 13      | 4,63  | 0,0078                      | 13    | 0,00                                       | 0,0000 | Ì | 13          | 0,00 | 0,0000                      |
| 14      | 5,05  | 0,0085                      | 14    | 0,00                                       | 0,0000 | Ī | 14          | 0,00 | 0,0000                      |
| 15      | 5,46  | 0,0092                      | 15    | 0,00                                       | 0,0000 |   | 15          | 0,00 | 0,0000                      |
| 16      | 5,88  | 0,0099                      | 16    | 0,00                                       | 0,0000 | Ī | 16          | 0,00 | 0,0000                      |
| 17      | 6,30  | 0,0106                      | 17    | 0,00                                       | 0,0000 |   | 17          | 0,00 | 0,0000                      |
| 18      | 5,88  | 0,0099                      | 18    | 0,00                                       | 0,0000 |   | 18          | 0,00 | 0,0000                      |
| 19      | 6,30  | 0,0106                      | 19    | 0,00                                       | 0,0000 |   | 19          | 0,00 | 0,0000                      |
| 20      | 5,88  | 0,0099                      | 20    | 0,00                                       | 0,0000 |   | 20          | 0,00 | 0,0000                      |
| 21      | 5,88  | 0,0099                      | 21    | 0,00                                       | 0,0000 |   | 21          | 0,00 | 0,0000                      |
| 22      | 6,71  | 0,0113                      | 22    | 0,00                                       | 0,0000 | ſ | 22          | 0,00 | 0,0000                      |
| 23      | 7,13  | 0,0120                      | 23    | 0,00                                       | 0,0000 |   | 23          | 0,00 | 0,0000                      |
| 24      | 7,55  | 0,0127                      | 24    | 0,00                                       | 0,0000 |   | 24          | 0,00 | 0,0000                      |
| 25      | 7,97  | 0,0134                      | 25    | 0,00                                       | 0,0000 |   | 25          | 0,00 | 0,0000                      |
| 26      | 8,38  | 0,0141                      | 26    | 0,00                                       | 0,0000 |   | 26          | 0,00 | 0,0000                      |
| 27      | 8,80  | 0,0148                      | 27    | 0,00                                       | 0,0000 |   | 27          | 0,00 | 0,0000                      |
| 28      | 9,22  | 0,0155                      | 28    | 0,00                                       | 0,0000 | _ | 28          | 0,00 | 0,0000                      |
| 29      | 9,63  | 0,0162                      | 29    | 0,04                                       | 0,0000 | _ | 29          | 0,00 | 0,0000                      |
| 30      | 9,63  | 0,0162                      | 30    | 0,04                                       | 0,0000 |   | 30          | 0,00 | 0,0000                      |
| 31      | 10,47 | 0,0176                      | 31    | 0,04                                       | 0,0000 |   | 31          | 0,00 | 0,0000                      |
| 32      | 11,72 | 0,0197                      | 32    | 0,46                                       | 0,0003 |   | 32          | 0,00 | 0,0000                      |
| 33      | 10,89 | 0,0183                      | 33    | 0,46                                       | 0,0003 |   | 33          | 0,00 | 0,0000                      |
| 34      | 12,14 | 0,0204                      | 34    | 0,04                                       | 0,0000 |   | 34          | 0,00 | 0,0000                      |
| 35      | 12,55 | 0,0211                      | 35    | 0,87                                       | 0,0005 |   | 35          | 0,00 | 0,0000                      |
| 36      | 12,14 | 0,0204                      | 36    | 0,87                                       | 0,0005 |   | 36          | 0,00 | 0,0000                      |
| 37      | 12,97 | 0,0218                      | 37    | 2,13                                       | 0,0012 |   | 37          | 0,00 | 0,0000                      |
| 38      | 12,97 | 0,0218                      | 38    | 2,13                                       | 0,0012 |   | 38          | 0,00 | 0,0000                      |
| 39      | 12,55 | 0,0211                      | 39    | 2,96                                       | 0,0016 |   | 39          | 0,00 | 0,0000                      |
| 40      | 12,97 | 0,0218                      | 40    | 3,38                                       | 0,0019 |   | 40          | 0,00 | 0,0000                      |
| 41      | 12,97 | 0,0218                      | 41    | 4,63                                       | 0,0026 |   | 41          | 0,00 | 0,0000                      |

Tabela II.1 – Resultados para a Série I (sem plantas)

# P2

#### P5

|            | P2                 |                             |          | P5                |                             | P8       |      |                             |
|------------|--------------------|-----------------------------|----------|-------------------|-----------------------------|----------|------|-----------------------------|
| -          |                    |                             | -        |                   | = (1)                       | -        |      | = (1)                       |
| Tempo      | NaCI               | E (t)<br>(h <sup>-1</sup> ) | Tempo    | NaCI              | E (t)<br>(h <sup>-1</sup> ) | Tempo    | MaCI | E (t)<br>(h <sup>-1</sup> ) |
| (II)<br>42 | (IIIG L )<br>12 14 | 0.0204                      | (1)      | (iiig ∟ )<br>4 21 | 0.0023                      | (11)     |      | 0,0000                      |
| 42         | 12,14              | 0,0204                      | 42       | 4,21              | 0,0025                      | 42       | 0,00 | 0,0000                      |
| 43         | 12,55              | 0,0211                      | 40       | 5.05              | 0,0020                      | 43       | 0,00 | 0,0000                      |
| 45         | 12,00              | 0.0204                      | 45       | 5.05              | 0.0028                      | 45       | 0,00 | 0,0000                      |
| 46         | 11 30              | 0,0204                      | 46       | 5 46              | 0.0030                      | 46       | 0,00 | 0,0000                      |
| 47         | 10.89              | 0.0183                      | 47       | 5.46              | 0.0030                      | 47       | 0.00 | 0.0000                      |
| 48         | 11.30              | 0.0190                      | 48       | 5.46              | 0.0030                      | 48       | 0.00 | 0.0000                      |
| 49         | 10.89              | 0.0183                      | 49       | 5.05              | 0.0028                      | 49       | 0.00 | 0.0000                      |
| 50         | 10,47              | 0,0176                      | 50       | 4,63              | 0,0026                      | 50       | 0,00 | 0,0000                      |
| 51         | 9,22               | 0,0155                      | 51       | 4,63              | 0,0026                      | 51       | 0,00 | 0,0000                      |
| 52         | 10,05              | 0,0169                      | 52       | 4,63              | 0,0026                      | 52       | 0,00 | 0,0000                      |
| 53         | 10,05              | 0,0169                      | 53       | 4,63              | 0,0026                      | 53       | 0,00 | 0,0000                      |
| 54         | 10,47              | 0,0176                      | 54       | 5,05              | 0,0028                      | 54       | 0,00 | 0,0000                      |
| 55         | 10,05              | 0,0169                      | 55       | 5,46              | 0,0030                      | 55       | 0,00 | 0,0000                      |
| 56         | 9,63               | 0,0162                      | 56       | 5,88              | 0,0032                      | 56       | 0,00 | 0,0000                      |
| 57         | 9,63               | 0,0162                      | 57       | 5,88              | 0,0032                      | 57       | 0,00 | 0,0000                      |
| 58         | 9,22               | 0,0155                      | 58       | 5,88              | 0,0032                      | 58       | 0,04 | 0,0000                      |
| 59         | 8,80               | 0,0148                      | 59       | 5,88              | 0,0032                      | 59       | 0,46 | 0,0003                      |
| 60         | 7,97               | 0,0134                      | 60       | 5,88              | 0,0032                      | 60       | 0,00 | 0,0000                      |
| 61         | 7,55               | 0,0127                      | 61       | 6,30              | 0,0035                      | 61       | 0,00 | 0,0000                      |
| 62         | 6,71               | 0,0113                      | 62       | 6,30              | 0,0035                      | 62       | 0,46 | 0,0003                      |
| 63         | 6,30               | 0,0106                      | 63       | 6,30              | 0,0035                      | 63       | 0,46 | 0,0003                      |
| 64         | 5,88               | 0,0099                      | 64       | 5,88              | 0,0032                      | 64       | 0,00 | 0,0000                      |
| 65         | 5,88               | 0,0099                      | 65       | 5,88              | 0,0032                      | 65       | 0,00 | 0,0000                      |
| 66         | 6,30               | 0,0106                      | 66       | 5,88              | 0,0032                      | 66       | 0,00 | 0,0000                      |
| 67         | 5,05               | 0,0085                      | 67       | 5,88              | 0,0032                      | 67       | 0,00 | 0,0000                      |
| 68         | 4,63               | 0,0078                      | 68       | 6,71              | 0,0037                      | 68       | 0,46 | 0,0003                      |
| 69         | 5,05               | 0,0085                      | 69       | 6,71              | 0,0037                      | 69       | 0,46 | 0,0003                      |
| 70         | 5,05               | 0,0085                      | 70       | 6,71              | 0,0037                      | 70       | 0,46 | 0,0003                      |
| 71         | 4,21               | 0,0071                      | 71       | 6,71              | 0,0037                      | 71       | 0,87 | 0,0006                      |
| 72         | 3,79               | 0,0064                      | 72       | 7,13              | 0,0039                      | 72       | 0,04 | 0,0000                      |
| 73         | 3,79               | 0,0064                      | 73       | 6,71              | 0,0037                      | 73       | 0,04 | 0,0000                      |
| 74         | 3,38               | 0,0057                      | 74       | 6,71              | 0,0037                      | 74       | 0,87 | 0,0006                      |
| 75         | 2,54               | 0,0043                      | 75       | 6,71              | 0,0037                      | 75       | 0,87 | 0,0006                      |
| /6         | 2,96               | 0,0050                      | /6       | 7,13              | 0,0039                      | 76       | 0,87 | 0,0006                      |
| //         | 2,96               | 0,0050                      | //       | 7,13              | 0,0039                      | //       | 0,87 | 0,0006                      |
| 78         | 2,54               | 0,0043                      | /8       | 7,55              | 0,0042                      | /8       | 0,87 | 0,0006                      |
| 79         | 2,13               | 0,0036                      | 79       | 7,13              | 0,0039                      | 79       | 0,87 | 0,0006                      |
| 80         | 2,13               | 0,0036                      | 80       | 7,13              | 0,0039                      | 80       | 0,46 | 0,0003                      |
| 81         | 2,54               | 0,0043                      | 81       | 7,97              | 0,0044                      | 81       | 0,46 | 0,0003                      |
| 82         | 1,/1               | 0,0029                      | 82       | 8,80              | 0,0049                      | 82       | 0,46 | 0,0003                      |
| 83         | 2,13               | 0,0036                      | 83       | 9,63              | 0,0053                      | 83       | 0,46 | 0,0003                      |
| 84<br>85   | 1,/1               | 0,0029                      | 84<br>05 | 9,63              | 0,0053                      | 84<br>05 | 1,29 | 0,0008                      |
| 60         | 1,/1               | 0,0029                      | 60       | 9,03              | 0,0053                      | 60       | 1,29 | 0,0008                      |
| 86         | 0,87               | 0,0015                      | 86       | 8,80              | 0,0049                      | 86       | 1,29 | 0,0008                      |

|       | P2            |                    |       | P5            |                    | P8    |               |                    |
|-------|---------------|--------------------|-------|---------------|--------------------|-------|---------------|--------------------|
| Tempo | NaCl          | E (t)              | Tempo | NaCl          | E (t)              | Tempo | NaCl          | E (t)              |
| (h)   | $(mg L^{-1})$ | (h <sup>-1</sup> ) | (h)   | $(mg L^{-1})$ | (h <sup>-1</sup> ) | (h)   | $(mg L^{-1})$ | (h <sup>-1</sup> ) |
| 87    | 1,29          | 0,0022             | 87    | 8,80          | 0,0049             | 87    | 1,29          | 0,0008             |
| 88    | 0,87          | 0,0015             | 88    | 9,63          | 0,0053             | 88    | 1,29          | 0,0008             |
| 89    | 0,87          | 0,0015             | 89    | 10,89         | 0,0060             | 89    | 1,29          | 0,0008             |
| 90    | 0,87          | 0,0015             | 90    | 10,47         | 0,0058             | 90    | 1,71          | 0,0011             |
| 91    | 1,29          | 0,0022             | 91    | 10,05         | 0,0055             | 91    | 1,71          | 0,0011             |
| 92    | 0,87          | 0,0015             | 92    | 10,05         | 0,0055             | 92    | 1,71          | 0,0011             |
| 93    | 0,87          | 0,0015             | 93    | 10,05         | 0,0055             | 93    | 1,29          | 0,0008             |
| 94    | 0,87          | 0,0015             | 94    | 10,05         | 0,0055             | 94    | 1,29          | 0,0008             |
| 95    | 0,46          | 0,0008             | 95    | 10,47         | 0,0058             | 95    | 1,29          | 0,0008             |
| 96    | 0,46          | 0,0008             | 96    | 10,89         | 0,0060             | 96    | 1,29          | 0,0008             |
| 97    | 0,46          | 0,0008             | 97    | 11,72         | 0,0065             | 97    | 1,29          | 0,0008             |
| 98    | 0,87          | 0,0015             | 98    | 12,14         | 0,0067             | 98    | 1,29          | 0,0008             |
| 99    | 0,87          | 0,0015             | 99    | 11,72         | 0,0065             | 99    | 2,13          | 0,0014             |
| 100   | 0,46          | 0,0008             | 100   | 11,72         | 0,0065             | 100   | 2,13          | 0,0014             |
| 101   | 0,46          | 0,0008             | 101   | 12,55         | 0,0069             | 101   | 2,13          | 0,0014             |
| 102   | 0,04          | 0,0001             | 102   | 12,14         | 0,0067             | 102   | 2,13          | 0,0014             |
| 103   | 0,46          | 0,0008             | 103   | 12,14         | 0,0067             | 103   | 2,13          | 0,0014             |
| 104   | 0,04          | 0,0001             | 104   | 12,55         | 0,0069             | 104   | 2,13          | 0,0014             |
| 105   | 0,04          | 0,0001             | 105   | 12,97         | 0,0072             | 105   | 2,54          | 0,0017             |
| 106   | 0,04          | 0,0001             | 106   | 13,81         | 0,0076             | 106   | 2,54          | 0,0017             |
| 107   | 0,04          | 0,0001             | 107   | 13,81         | 0,0076             | 107   | 2,54          | 0,0017             |
| 108   | 0,00          | 0,0000             | 108   | 12,97         | 0,0072             | 108   | 2,54          | 0,0017             |
| 109   | 0,00          | 0,0000             | 109   | 13,81         | 0,0076             | 109   | 2,54          | 0,0017             |
| 110   | 0,04          | 0,0001             | 110   | 13,81         | 0,0076             | 110   | 2,13          | 0,0014             |
| 111   | 0,00          | 0,0000             | 111   | 13,81         | 0,0076             | 111   | 2,13          | 0,0014             |
| 112   | 0,00          | 0,0000             | 112   | 13,39         | 0,0074             | 112   | 2,13          | 0,0014             |
|       |               |                    | 113   | 13,81         | 0,0076             | 113   | 2,13          | 0,0014             |
|       |               |                    | 114   | 14,22         | 0,0078             | 114   | 2,13          | 0,0014             |
|       |               |                    | 115   | 14,64         | 0,0081             | 115   | 2,13          | 0,0014             |
|       |               |                    | 116   | 13,39         | 0,0074             | 116   | 2,13          | 0,0014             |
|       |               |                    | 117   | 13,81         | 0,0076             | 117   | 2,54          | 0,0017             |
|       |               |                    | 118   | 15,06         | 0,0083             | 118   | 2,54          | 0,0017             |
|       |               |                    | 119   | 14,64         | 0,0081             | 119   | 2,54          | 0,0017             |
|       |               |                    | 120   | 15,06         | 0,0083             | 120   | 2,54          | 0,0017             |
|       |               |                    | 121   | 14,22         | 0,0078             | 121   | 2,54          | 0,0017             |
|       |               |                    | 122   | 14,64         | 0,0081             | 122   | 2,54          | 0,0017             |
|       |               |                    | 123   | 15,06         | 0,0083             | 123   | 2,54          | 0,0017             |
|       |               |                    | 124   | 13,81         | 0,0076             | 124   | 3,38          | 0,0022             |
|       |               |                    | 125   | 13,81         | 0,0076             | 125   | 3,38          | 0,0022             |
|       |               |                    | 126   | 13,81         | 0,0076             | 126   | 3,38          | 0,0022             |
|       |               |                    | 127   | 13,81         | 0,0076             | 127   | 3,38          | 0,0022             |
|       |               |                    | 128   | 14,22         | 0,0078             | 128   | 2,54          | 0,0017             |
|       |               |                    | 129   | 15,06         | 0,0083             | 129   | 2,54          | 0,0017             |
|       |               |                    | 130   | 15,00         | 0,0083             | 130   | 2,54          | 0,0017             |
|       |               |                    | 131   | 15,48         | 0,0085             | 131   | 2,54          | 0,0017             |
|       |               |                    | 132   | 15,48         | 0,0085             | 132   | 2,54          | 0,0017             |

|       | P5            |                             | P8 |       |               |                    |
|-------|---------------|-----------------------------|----|-------|---------------|--------------------|
| Tompo | NaCl          | E (+)                       |    | Tompo | NaCl          | E (+)              |
| (h)   | $(mg L^{-1})$ | ∟ (t)<br>(h <sup>-1</sup> ) |    | (h)   | $(mg L^{-1})$ | (h <sup>-1</sup> ) |
| 133   | 15.48         | 0.0085                      |    | 133   | 2.54          | 0.0017             |
| 134   | 15.06         | 0.0083                      |    | 134   | 2.54          | 0.0017             |
| 135   | 15.06         | 0.0083                      |    | 135   | 2.96          | 0.0019             |
| 136   | 15,48         | 0,0085                      |    | 136   | 2,96          | 0,0019             |
| 137   | 15,48         | 0,0085                      |    | 137   | 2,96          | 0,0019             |
| 138   | 15,06         | 0,0083                      |    | 138   | 2,96          | 0,0019             |
| 139   | 14,22         | 0,0078                      |    | 139   | 2,96          | 0,0019             |
| 140   | 14,22         | 0,0078                      |    | 140   | 2,96          | 0,0019             |
| 141   | 14,22         | 0,0078                      |    | 141   | 3,38          | 0,0022             |
| 142   | 14,64         | 0,0081                      |    | 142   | 3,38          | 0,0022             |
| 143   | 14,64         | 0,0081                      |    | 143   | 3,79          | 0,0025             |
| 144   | 13,81         | 0,0076                      |    | 144   | 3,79          | 0,0025             |
| 145   | 12,97         | 0,0072                      |    | 145   | 3,79          | 0,0025             |
| 146   | 13,39         | 0,0074                      |    | 146   | 3,79          | 0,0025             |
| 147   | 13,81         | 0,0076                      |    | 147   | 3,79          | 0,0025             |
| 148   | 13,81         | 0,0076                      |    | 148   | 3,79          | 0,0025             |
| 149   | 13,39         | 0,0074                      |    | 149   | 3,79          | 0,0025             |
| 150   | 12,97         | 0,0072                      |    | 150   | 3,79          | 0,0025             |
| 151   | 13,39         | 0,0074                      |    | 151   | 3,79          | 0,0025             |
| 152   | 12,97         | 0,0072                      |    | 152   | 3,79          | 0,0025             |
| 153   | 12,97         | 0,0072                      |    | 153   | 3,79          | 0,0025             |
| 154   | 12,97         | 0,0072                      |    | 154   | 4,21          | 0,0028             |
| 155   | 12,55         | 0,0069                      |    | 155   | 4,21          | 0,0028             |
| 156   | 12,14         | 0,0067                      |    | 156   | 4,21          | 0,0028             |
| 157   | 12,14         | 0,0067                      |    | 157   | 4,21          | 0,0028             |
| 158   | 12,14         | 0,0067                      |    | 158   | 3,79          | 0,0025             |
| 159   | 11,72         | 0,0065                      |    | 159   | 3,79          | 0,0025             |
| 160   | 11,30         | 0,0062                      |    | 160   | 3,79          | 0,0025             |
| 161   | 11,30         | 0,0062                      |    | 161   | 4,21          | 0,0028             |
| 162   | 12,14         | 0,0067                      |    | 162   | 4,21          | 0,0028             |
| 163   | 12,55         | 0,0069                      |    | 163   | 4,21          | 0,0028             |
| 164   | 12,55         | 0,0069                      |    | 164   | 4,63          | 0,0030             |
| 165   | 12,97         | 0,0072                      |    | 165   | 4,63          | 0,0030             |
| 166   | 12,55         | 0,0069                      |    | 166   | 4,21          | 0,0028             |
| 167   | 12,14         | 0,0067                      |    | 167   | 4,21          | 0,0028             |
| 168   | 12,14         | 0,0067                      |    | 168   | 4,63          | 0,0030             |
| 169   | 12,55         | 0,0069                      |    | 169   | 4,21          | 0,0028             |
| 170   | 12,97         | 0,0072                      |    | 170   | 4,21          | 0,0028             |
| 171   | 12,55         | 0,0069                      |    | 171   | 4,21          | 0,0028             |
| 172   | 12,14         | 0,0067                      |    | 172   | 4,63          | 0,0030             |
| 173   | 12,14         | 0,0067                      |    | 173   | 4,63          | 0,0030             |
| 1/4   | 11,72         | 0,0065                      |    | 174   | 4,63          | 0,0030             |
| 175   | 11,30         | 0,0062                      |    | 175   | 4,21          | 0,0028             |
| 176   | 10,89         | 0,0060                      |    | 176   | 4,63          | 0,0030             |
| 1//   | 10,89         | 0,0060                      |    | 1/7   | 4,63          | 0,0030             |
| 178   | 10,05         | 0,0055                      |    | 178   | 5,05          | 0,0033             |

P5

#### **P8**

|            | P5     |        | P8 |            |        |        |
|------------|--------|--------|----|------------|--------|--------|
| -          |        | = 40   |    | -          |        |        |
| Tempo      |        | E (t)  |    | Tempo      |        | E (t)  |
| (n)<br>170 | (mg L) | (n)    |    | (n)<br>170 | (mg L) | (n)    |
| 179        | 9,03   | 0,0053 |    | 179        | 5,05   | 0,0033 |
| 180        | 9,63   | 0,0053 |    | 180        | 5,05   | 0,0033 |
| 181        | 8,80   | 0,0049 |    | 181        | 5,40   | 0,0036 |
| 182        | 8,80   | 0,0049 |    | 182        | 5,40   | 0,0036 |
| 183        | 8,38   | 0,0046 |    | 183        | 5,88   | 0,0039 |
| 184        | 8,38   | 0,0046 |    | 184        | 5,88   | 0,0039 |
| 185        | 7,97   | 0,0044 |    | 185        | 5,88   | 0,0039 |
| 186        | 8,38   | 0,0046 |    | 186        | 6,30   | 0,0041 |
| 187        | 8,38   | 0,0046 |    | 187        | 6,30   | 0,0041 |
| 188        | 7,97   | 0,0044 |    | 188        | 5,88   | 0,0039 |
| 189        | 7,55   | 0,0042 |    | 189        | 6,30   | 0,0041 |
| 190        | 7,55   | 0,0042 |    | 190        | 6,30   | 0,0041 |
| 191        | 7,97   | 0,0044 |    | 191        | 6,71   | 0,0044 |
| 192        | 7,13   | 0,0039 |    | 192        | 6,71   | 0,0044 |
| 193        | 7,55   | 0,0042 |    | 193        | 7,55   | 0,0049 |
| 194        | 7,13   | 0,0039 |    | 194        | 7,55   | 0,0049 |
| 195        | 6,71   | 0,0037 |    | 195        | 7,55   | 0,0049 |
| 196        | 6,71   | 0,0037 |    | 196        | 7,55   | 0,0049 |
| 197        | 6,30   | 0,0035 |    | 197        | 7,55   | 0,0049 |
| 198        | 5,46   | 0,0030 |    | 198        | 7,55   | 0,0049 |
| 199        | 5,88   | 0,0032 |    | 199        | 7,55   | 0,0049 |
| 200        | 5,88   | 0,0032 |    | 200        | 7,55   | 0,0049 |
| 201        | 5,88   | 0,0032 |    | 201        | 7,55   | 0,0049 |
| 202        | 5,46   | 0,0030 |    | 202        | 7,55   | 0,0049 |
| 203        | 5,05   | 0,0028 |    | 203        | 7,13   | 0,0047 |
| 204        | 5,05   | 0,0028 |    | 204        | 7,13   | 0,0047 |
| 205        | 5,05   | 0,0028 |    | 205        | 7,97   | 0,0052 |
| 206        | 5,46   | 0,0030 |    | 206        | 7,97   | 0,0052 |
| 207        | 5,46   | 0,0030 |    | 207        | 7,97   | 0,0052 |
| 208        | 5,05   | 0,0028 |    | 208        | 7,97   | 0,0052 |
| 209        | 4,63   | 0,0026 |    | 209        | 7,97   | 0,0052 |
| 210        | 3,79   | 0,0021 |    | 210        | 8,38   | 0,0055 |
| 211        | 3,79   | 0,0021 |    | 211        | 8,38   | 0,0055 |
| 212        | 2,96   | 0,0016 |    | 212        | 8,38   | 0,0055 |
| 213        | 3,79   | 0,0021 |    | 213        | 7,97   | 0,0052 |
| 214        | 2,96   | 0,0016 |    | 214        | 7,97   | 0,0052 |
| 215        | 2,54   | 0,0014 |    | 215        | 7,97   | 0,0052 |
| 216        | 2,54   | 0,0014 |    | 216        | 8,38   | 0,0055 |
| 217        | 2,54   | 0,0014 |    | 217        | 8,38   | 0,0055 |
| 218        | 2,54   | 0,0014 |    | 218        | 7,97   | 0,0052 |
| 219        | 2,13   | 0,0012 |    | 219        | 7,97   | 0,0052 |
| 220        | 2,13   | 0,0012 |    | 220        | 8,38   | 0,0055 |
| 221        | 2,13   | 0,0012 |    | 221        | 8,38   | 0,0055 |
| 222        | 2,13   | 0,0012 |    | 222        | 8,80   | 0,0058 |
| 223        | 1,71   | 0,0009 |    | 223        | 8,38   | 0,0055 |
| 224        | 2,13   | 0,0012 |    | 224        | 8,80   | 0,0058 |

- 91 -

|       | P5            |                    | P8    |               |                    |
|-------|---------------|--------------------|-------|---------------|--------------------|
| Tempo | NaCl          | E (t)              | Tempo | NaCl          | E (t)              |
| (h)   | $(mg L^{-1})$ | (h <sup>-1</sup> ) | (h)   | $(mg L^{-1})$ | (h <sup>-1</sup> ) |
| 225   | 1,71          | 0,0009             | 225   | 8,80          | 0,0058             |
| 226   | 1,71          | 0,0009             | 226   | 8,80          | 0,0058             |
| 227   | 1,71          | 0,0009             | 227   | 9,22          | 0,0060             |
| 228   | 1,71          | 0,0009             | 228   | 9,22          | 0,0060             |
| 229   | 1,29          | 0,0007             | 229   | 9,22          | 0,0060             |
| 230   | 1,29          | 0,0007             | 230   | 9,63          | 0,0063             |
| 231   | 1,29          | 0,0007             | 231   | 9,63          | 0,0063             |
| 232   | 1,29          | 0,0007             | 232   | 10,05         | 0,0066             |
| 233   | 0,87          | 0,0005             | 233   | 10,05         | 0,0066             |
| 234   | 0,87          | 0,0005             | 234   | 10,05         | 0,0066             |
| 235   | 0,87          | 0,0005             | 235   | 10,05         | 0,0066             |
| 236   | 0,87          | 0,0005             | 236   | 10,05         | 0,0066             |
| 237   | 0,87          | 0,0005             | 237   | 10,05         | 0,0066             |
| 238   | 0,87          | 0,0005             | 238   | 10,05         | 0,0066             |
| 239   | 0,87          | 0,0005             | 239   | 9,63          | 0,0063             |
| 240   | 1,29          | 0,0007             | 240   | 9,63          | 0,0063             |
| 241   | 1,29          | 0,0007             | 241   | 9,63          | 0,0063             |
| 242   | 1,29          | 0,0007             | 242   | 9,63          | 0,0063             |
| 243   | 1,29          | 0,0007             | 243   | 9,22          | 0,0060             |
| 244   | 1,29          | 0,0007             | 244   | 9,22          | 0,0060             |
| 245   | 0,87          | 0,0005             | 245   | 10,05         | 0,0066             |
| 246   | 0,87          | 0,0005             | 246   | 10,05         | 0,0066             |
| 247   | 0,46          | 0,0003             | 247   | 9,22          | 0,0060             |
| 248   | 0,46          | 0,0003             | 248   | 9,22          | 0,0060             |
| 249   | 1,29          | 0,0007             | 249   | 9,22          | 0,0060             |
| 250   | 1,29          | 0,0007             | 250   | 10,05         | 0,0066             |
| 251   | 1,29          | 0,0007             | 251   | 10,05         | 0,0066             |
| 252   | 1,29          | 0,0007             | 252   | 10,05         | 0,0066             |
| 253   | 1,29          | 0,0007             | 253   | 9,22          | 0,0060             |
| 254   | 1,29          | 0,0007             | 254   | 9,22          | 0,0060             |
| 255   | 1,29          | 0,0007             | 255   | 9,22          | 0,0060             |
| 256   | 0,87          | 0,0005             | 256   | 9,22          | 0,0060             |
| 257   | 0,87          | 0,0005             | 257   | 9,22          | 0,0060             |
| 258   | 0,87          | 0,0005             | 258   | 8,80          | 0,0058             |
| 259   | 0,87          | 0,0005             | 259   | 8,80          | 0,0058             |
| 260   | 1,29          | 0,0007             | 260   | 8,80          | 0,0058             |
| 261   | 1,29          | 0,0007             | 261   | 8,38          | 0,0055             |
| 262   | 0,87          | 0,0005             | 262   | 8,38          | 0,0055             |
| 263   | 0,87          | 0,0005             | 263   | 8,38          | 0,0055             |
| 264   | 0,87          | 0,0005             | 264   | 8,38          | 0,0055             |
| 265   | 0,46          | 0,0003             | 265   | 9,63          | 0,0063             |
| 266   | 0,46          | 0,0003             | 266   | 9,63          | 0,0063             |
| 267   | 0,87          | 0,0005             | 267   | 10,05         | 0,0066             |
| 268   | 0,87          | 0,0005             | 268   | 10,05         | 0,0066             |
| 269   | 0,46          | 0,0003             | 269   | 9,63          | 0,0063             |
| 270   | 0,46          | 0,0003             | 270   | 10,05         | 0,0066             |
Γ

| P5    |               |                            |   | P8    |               |            |
|-------|---------------|----------------------------|---|-------|---------------|------------|
| Tompo | NaCl          | E (+)                      |   | Tompo | NaCl          | E (+)      |
| (h)   | $(mg L^{-1})$ | Ľ(l)<br>(h <sup>-1</sup> ) |   | (h)   | $(mg L^{-1})$ | $(h^{-1})$ |
| 271   | 0.46          | 0.0003                     |   | 271   | 8.80          | 0.0058     |
| 272   | 0.87          | 0.0005                     | ł | 272   | 10.05         | 0.0066     |
| 273   | 0.46          | 0.0003                     |   | 273   | 10.05         | 0.0066     |
| 274   | 0.87          | 0.0005                     | ľ | 274   | 9.22          | 0.0060     |
| 275   | 0.87          | 0.0005                     | Ì | 275   | 9.22          | 0.0060     |
| 276   | 0.46          | 0.0003                     | ľ | 276   | 9.22          | 0.0060     |
| 277   | 0.87          | 0.0005                     |   | 277   | 9.63          | 0.0063     |
| 278   | 0,87          | 0,0005                     | Ì | 278   | 9,22          | 0,0060     |
| 279   | 0,87          | 0,0005                     |   | 279   | 8,80          | 0,0058     |
| 280   | 0,87          | 0,0005                     | Ì | 280   | 8,80          | 0,0058     |
| 281   | 0,87          | 0,0005                     | Ì | 281   | 9,22          | 0,0060     |
| 282   | 0,46          | 0,0003                     |   | 282   | 8,80          | 0,0058     |
| 283   | 0,46          | 0,0003                     |   | 283   | 8,38          | 0,0055     |
| 284   | 0,04          | 0,0000                     | Ì | 284   | 8,38          | 0,0055     |
| 285   | 0,46          | 0,0003                     |   | 285   | 7,97          | 0,0052     |
| 286   | 0,46          | 0,0003                     | Ì | 286   | 7,97          | 0,0052     |
| 287   | 0,46          | 0,0003                     | Ì | 287   | 7,55          | 0,0049     |
| 288   | 0,46          | 0,0003                     |   | 288   | 7,55          | 0,0049     |
| 289   | 0,46          | 0,0003                     |   | 289   | 7,55          | 0,0049     |
| 290   | 0,46          | 0,0003                     |   | 290   | 7,97          | 0,0052     |
| 291   | 0,46          | 0,0003                     |   | 291   | 7,97          | 0,0052     |
| 292   | 0,04          | 0,0000                     |   | 292   | 8,38          | 0,0055     |
| 293   | 0,46          | 0,0003                     |   | 293   | 7,97          | 0,0052     |
| 294   | 0,04          | 0,0000                     |   | 294   | 7,55          | 0,0049     |
| 295   | 0,04          | 0,0000                     |   | 295   | 7,55          | 0,0049     |
| 296   | 0,04          | 0,0000                     |   | 296   | 7,55          | 0,0049     |
| 297   | 0,04          | 0,0000                     |   | 297   | 7,55          | 0,0049     |
| 298   | 0,04          | 0,0000                     |   | 298   | 7,97          | 0,0052     |
| 299   | 0,04          | 0,0000                     |   | 299   | 7,55          | 0,0049     |
| 300   | 0,04          | 0,0000                     |   | 300   | 7,55          | 0,0049     |
| 301   | 0,00          | 0,0000                     |   | 301   | 6,71          | 0,0044     |
| 302   | 0,00          | 0,0000                     |   | 302   | 6,71          | 0,0044     |
| 303   | 0,00          | 0,0000                     |   | 303   | 6,71          | 0,0044     |
| 304   | 0,00          | 0,0000                     |   | 304   | 6,30          | 0,0041     |
| 305   | 0,00          | 0,0000                     |   | 305   | 6,30          | 0,0041     |
| 306   | 0,00          | 0,0000                     |   | 306   | 5,88          | 0,0039     |
| 307   | 0,00          | 0,0000                     |   | 307   | 5,88          | 0,0039     |
| 308   | 0,00          | 0,0000                     |   | 308   | 5,46          | 0,0036     |
| 309   | 0,00          | 0,0000                     |   | 309   | 5,46          | 0,0036     |
| 310   | 0,00          | 0,0000                     |   | 310   | 5,46          | 0,0036     |
| 311   | 0,00          | 0,0000                     |   | 311   | 5,46          | 0,0036     |
| 312   | 0,00          | 0,0000                     |   | 312   | 4,63          | 0,0030     |
| 313   | 0,00          | 0,0000                     |   | 313   | 5,05          | 0,0033     |
| 314   | 0,00          | 0,0000                     |   | 314   | 4,63          | 0,0030     |
| 315   | 0,00          | 0,0000                     |   | 315   | 4,63          | 0,0030     |
| 316   | 0,00          | 0,0000                     |   | 316   | 4,63          | 0,0030     |

#### P5

|       |                       | -      |
|-------|-----------------------|--------|
| Tempo | NaCl                  | E (t)  |
| (h)   | (mg L <sup>-1</sup> ) | (h⁻¹)  |
| 317   | 0,00                  | 0,0000 |
| 318   | 0,00                  | 0,0000 |
| 319   | 0,00                  | 0,0000 |
| 320   | 0,00                  | 0,0000 |
| 321   | 0,00                  | 0,0000 |
| 322   | 0,00                  | 0,0000 |
| 323   | 0,00                  | 0,0000 |
| 324   | 0,00                  | 0,0000 |
| 325   | 0,00                  | 0,0000 |
| 326   | 0,00                  | 0,0000 |
| 327   | 0,00                  | 0,0000 |
| 328   | 0,00                  | 0,0000 |
| 329   | 0,00                  | 0,0000 |
| 330   | 0,00                  | 0,0000 |
| 331   | 0,00                  | 0,0000 |
| 332   | 0,00                  | 0,0000 |
| 333   | 0,00                  | 0,0000 |
| 334   | 0,00                  | 0,0000 |

| Tempo | NaCl                  | E (t)  |
|-------|-----------------------|--------|
| (h)   | (mg L <sup>-1</sup> ) | (h⁻¹)  |
| 317   | 4,21                  | 0,0028 |
| 318   | 3,79                  | 0,0025 |
| 319   | 3,79                  | 0,0025 |
| 320   | 2,96                  | 0,0019 |
| 321   | 2,54                  | 0,0017 |
| 322   | 2,54                  | 0,0017 |
| 323   | 2,54                  | 0,0017 |
| 324   | 2,54                  | 0,0017 |
| 325   | 2,54                  | 0,0017 |
| 326   | 2,54                  | 0,0017 |
| 327   | 2,54                  | 0,0017 |
| 328   | 2,54                  | 0,0017 |
| 329   | 1,71                  | 0,0011 |
| 330   | 1,71                  | 0,0011 |
| 331   | 1,71                  | 0,0011 |
| 332   | 1,71                  | 0,0011 |
| 333   | 1,71                  | 0,0011 |
| 334   | 1,71                  | 0,0011 |
| 335   | 1,71                  | 0,0011 |
| 336   | 1,71                  | 0,0011 |
| 337   | 1,29                  | 0,0008 |
| 338   | 1,29                  | 0,0008 |
| 339   | 1,29                  | 0,0008 |
| 340   | 1,71                  | 0,0011 |
| 341   | 1,71                  | 0,0011 |
| 342   | 1,71                  | 0,0011 |
| 343   | 1,29                  | 0,0008 |
| 344   | 1,71                  | 0,0011 |
| 345   | 1,29                  | 0,0008 |
| 346   | 1,29                  | 0,0008 |
| 347   | 1,29                  | 0,0008 |
| 348   | 1,29                  | 0,0008 |
| 349   | 1,29                  | 0,0008 |
| 350   | 1,29                  | 0,0008 |
| 351   | 1,29                  | 0,0008 |
| 352   | 1,29                  | 0,0008 |
| 353   | 1,29                  | 0,0008 |
| 354   | 1,29                  | 0,0008 |
| 355   | 1,29                  | 0,0008 |
| 356   | 1,29                  | 0,0008 |
| 357   | 1,29                  | 0,0008 |
| 358   | 0,87                  | 0,0006 |
| 359   | 0,87                  | 0,0006 |
| 360   | 1,29                  | 0,0008 |
| 361   | 1,29                  | 0,0008 |
| 362   | 1,29                  | 0,0008 |

г

| P8    |      |        |  |  |  |  |
|-------|------|--------|--|--|--|--|
| Tempo | NaCI | E (t)  |  |  |  |  |
| 363   | 1 29 | 0.0008 |  |  |  |  |
| 364   | 0.87 | 0,0006 |  |  |  |  |
| 365   | 1 29 | 0,0008 |  |  |  |  |
| 366   | 0.87 | 0,0000 |  |  |  |  |
| 367   | 0.87 | 0,0000 |  |  |  |  |
| 368   | 0.87 | 0,0006 |  |  |  |  |
| 369   | 0.87 | 0,0006 |  |  |  |  |
| 370   | 0.87 | 0,0006 |  |  |  |  |
| 371   | 0.87 | 0,0006 |  |  |  |  |
| 372   | 0.87 | 0.0006 |  |  |  |  |
| 373   | 0.87 | 0.0006 |  |  |  |  |
| 374   | 0.87 | 0.0006 |  |  |  |  |
| 375   | 0,87 | 0,0006 |  |  |  |  |
| 376   | 0,87 | 0,0006 |  |  |  |  |
| 377   | 0,87 | 0,0006 |  |  |  |  |
| 378   | 0,87 | 0,0006 |  |  |  |  |
| 379   | 0,87 | 0,0006 |  |  |  |  |
| 380   | 0,46 | 0,0003 |  |  |  |  |
| 381   | 0,46 | 0,0003 |  |  |  |  |
| 382   | 0,87 | 0,0006 |  |  |  |  |
| 383   | 0,87 | 0,0006 |  |  |  |  |
| 384   | 0,46 | 0,0003 |  |  |  |  |
| 385   | 0,46 | 0,0003 |  |  |  |  |
| 386   | 0,46 | 0,0003 |  |  |  |  |
| 387   | 0,46 | 0,0003 |  |  |  |  |
| 388   | 0,46 | 0,0003 |  |  |  |  |
| 389   | 0,46 | 0,0003 |  |  |  |  |
| 390   | 0,46 | 0,0003 |  |  |  |  |
| 391   | 0,46 | 0,0003 |  |  |  |  |
| 392   | 0,87 | 0,0006 |  |  |  |  |
| 393   | 0,87 | 0,0006 |  |  |  |  |
| 394   | 0,46 | 0,0003 |  |  |  |  |
| 395   | 0,46 | 0,0003 |  |  |  |  |
| 396   | 0,46 | 0,0003 |  |  |  |  |
| 397   | 0,46 | 0,0003 |  |  |  |  |
| 398   | 0,46 | 0,0003 |  |  |  |  |
| 399   | 0,46 | 0,0003 |  |  |  |  |
| 400   | 0,46 | 0,0003 |  |  |  |  |
| 401   | 0,46 | 0,0003 |  |  |  |  |
| 402   | 0,46 | 0,0003 |  |  |  |  |
| 403   | 0,46 | 0,0003 |  |  |  |  |
| 404   | 0,46 | 0,0003 |  |  |  |  |
| 405   | 0,46 | 0,0003 |  |  |  |  |
| 406   | 0,46 | 0,0003 |  |  |  |  |
| 407   | 0,04 | 0,0000 |  |  |  |  |
| 408   | 0,04 | 0.0000 |  |  |  |  |

| P8    |                       |                    |  |  |  |  |
|-------|-----------------------|--------------------|--|--|--|--|
| Tempo | NaCl                  | E (t)              |  |  |  |  |
| (h)   | (mg L <sup>-1</sup> ) | (h <sup>-1</sup> ) |  |  |  |  |
| 409   | 0,46                  | 0,0003             |  |  |  |  |
| 410   | 0,46                  | 0,0003             |  |  |  |  |
| 411   | 0,46                  | 0,0003             |  |  |  |  |
| 412   | 0,46                  | 0,0003             |  |  |  |  |
| 413   | 0,46                  | 0,0003             |  |  |  |  |
| 414   | 0,04                  | 0,0000             |  |  |  |  |
| 415   | 0,04                  | 0,0000             |  |  |  |  |
| 416   | 0,04                  | 0,0000             |  |  |  |  |
| 417   | 0,04                  | 0,0000             |  |  |  |  |
| 418   | 0,04                  | 0,0000             |  |  |  |  |
| 419   | 0,04                  | 0,0000             |  |  |  |  |
| 420   | 0,04                  | 0,0000             |  |  |  |  |
| 421   | 0,04                  | 0,0000             |  |  |  |  |
| 422   | 0,04                  | 0,0000             |  |  |  |  |
| 423   | 0,04                  | 0,0000             |  |  |  |  |
| 424   | 0,04                  | 0,0000             |  |  |  |  |
| 425   | 0,04                  | 0,0000             |  |  |  |  |
| 426   | 0,04                  | 0,0000             |  |  |  |  |
| 427   | 0,04                  | 0,0000             |  |  |  |  |
| 428   | 0,00                  | 0,0000             |  |  |  |  |
| 429   | 0,04                  | 0,0000             |  |  |  |  |
| 430   | 0,00                  | 0,0000             |  |  |  |  |
| 431   | 0,04                  | 0,0000             |  |  |  |  |
| 432   | 0,00                  | 0,0000             |  |  |  |  |
| 433   | 0,00                  | 0,0000             |  |  |  |  |
| 434   | 0,00                  | 0,0000             |  |  |  |  |
| 435   | 0,00                  | 0,0000             |  |  |  |  |
| 436   | 0,00                  | 0,0000             |  |  |  |  |
| 437   | 0,00                  | 0,0000             |  |  |  |  |
| 438   | 0,00                  | 0,0000             |  |  |  |  |
| 439   | 0,00                  | 0,0000             |  |  |  |  |
| 440   | 0,00                  | 0,0000             |  |  |  |  |
| 441   | 0,00                  | 0,0000             |  |  |  |  |
| 442   | 0,00                  | 0,0000             |  |  |  |  |
| 443   | 0,00                  | 0,0000             |  |  |  |  |
| 444   | 0,00                  | 0,0000             |  |  |  |  |
| 445   | 0,00                  | 0,0000             |  |  |  |  |
| 446   | 0,00                  | 0,0000             |  |  |  |  |
| 447   | 0,00                  | 0,0000             |  |  |  |  |
| 448   | 0,00                  | 0,0000             |  |  |  |  |
| 449   | 0,00                  | 0,0000             |  |  |  |  |
| 450   | 0.00                  | 0.0000             |  |  |  |  |

451

452 453 454 0,00

0,00

0,00

0,0000

0,0000 0,0000

0,0000

г

| P8           |                               |                |  |  |  |  |
|--------------|-------------------------------|----------------|--|--|--|--|
| Tempo<br>(h) | NaCl<br>(mg L <sup>-1</sup> ) | E (t)<br>(h⁻¹) |  |  |  |  |
| 455          | 0.00                          | 0.0000         |  |  |  |  |
| 456          | 0.00                          | 0.0000         |  |  |  |  |
| 457          | 0.00                          | 0.0000         |  |  |  |  |
| 458          | 0.00                          | 0.0000         |  |  |  |  |
| 459          | 0.00                          | 0.0000         |  |  |  |  |
| 460          | 0.00                          | 0.0000         |  |  |  |  |
| 461          | 0.00                          | 0.0000         |  |  |  |  |
| 462          | 0.00                          | 0.0000         |  |  |  |  |
| 463          | 0.00                          | 0.0000         |  |  |  |  |
| 464          | 0,00                          | 0,0000         |  |  |  |  |
| 465          | 0,00                          | 0,0000         |  |  |  |  |
| 466          | 0,00                          | 0,0000         |  |  |  |  |
| 467          | 0,00                          | 0,0000         |  |  |  |  |
| 468          | 0,00                          | 0,0000         |  |  |  |  |
| 469          | 0,00                          | 0,0000         |  |  |  |  |
| 470          | 0,00                          | 0,0000         |  |  |  |  |
| 471          | 0,00                          | 0,0000         |  |  |  |  |
| 472          | 0,00                          | 0,0000         |  |  |  |  |
| 473          | 0,00                          | 0,0000         |  |  |  |  |
| 474          | 0,00                          | 0,0000         |  |  |  |  |
| 475          | 0,00                          | 0,0000         |  |  |  |  |
| 476          | 0,00                          | 0,0000         |  |  |  |  |
| 477          | 0,00                          | 0,0000         |  |  |  |  |
| 478          | 0,00                          | 0,0000         |  |  |  |  |
| 479          | 0,00                          | 0,0000         |  |  |  |  |
| 480          | 0,00                          | 0,0000         |  |  |  |  |
| 481          | 0,00                          | 0,0000         |  |  |  |  |
| 482          | 0,00                          | 0,0000         |  |  |  |  |
| 483          | 0,00                          | 0,0000         |  |  |  |  |
| 484          | 0,00                          | 0,0000         |  |  |  |  |
| 485          | 0,00                          | 0,0000         |  |  |  |  |
| 486          | 0,00                          | 0,0000         |  |  |  |  |
| 487          | 0,00                          | 0,0000         |  |  |  |  |
| 488          | 0,00                          | 0,0000         |  |  |  |  |
| 489          | 0,00                          | 0,0000         |  |  |  |  |
| 490          | 0,00                          | 0,0000         |  |  |  |  |
| 491          | 0,00                          | 0,0000         |  |  |  |  |
| 492          | 0,00                          | 0,0000         |  |  |  |  |
| 493          | 0,00                          | 0,0000         |  |  |  |  |
| 494          | 0,00                          | 0,0000         |  |  |  |  |
| 495          | 0,00                          | 0,0000         |  |  |  |  |
| 496          | 0,00                          | 0,0000         |  |  |  |  |
| 497          | 0,00                          | 0,0000         |  |  |  |  |
| 498          | 0,00                          | 0,0000         |  |  |  |  |
| 499          | 0,00                          | 0,0000         |  |  |  |  |
| 500          | 0,00                          | 0,0000         |  |  |  |  |

| P8           |                               |                             |  |  |  |  |
|--------------|-------------------------------|-----------------------------|--|--|--|--|
| Tempo<br>(h) | NaCl<br>(mg L <sup>-1</sup> ) | E (t)<br>(h <sup>-1</sup> ) |  |  |  |  |
| 501          | 0,00                          | 0,0000                      |  |  |  |  |
| 502          | 0,00                          | 0,0000                      |  |  |  |  |
| 503          | 0,00                          | 0,0000                      |  |  |  |  |
| 504          | 0,00                          | 0,0000                      |  |  |  |  |
| 505          | 0,00                          | 0,0000                      |  |  |  |  |
| 506          | 0,00                          | 0,0000                      |  |  |  |  |
| 507          | 0,00                          | 0,0000                      |  |  |  |  |
| 508          | 0,00                          | 0,0000                      |  |  |  |  |

#### Tabela II.2 – Resultados para a Série II (com plantas)

#### Série II

|--|--|

P5

| Tempo    | NaCl         | E (t)      | Tempo | NaCl         | F (t)      | Tempo | NaCl         | F (t)      |
|----------|--------------|------------|-------|--------------|------------|-------|--------------|------------|
| (h)      | $(mal^{-1})$ | $(h^{-1})$ | (h)   | $(mal^{-1})$ | $(h^{-1})$ | (h)   | $(mal^{-1})$ | $(h^{-1})$ |
| (1)      |              |            | (1)   |              |            | (1)   |              |            |
| 1        | 0,00         | 0,0000     | 1     | 0,00         | 0,0000     | 1     | 0,00         | 0,0000     |
| 2        | 0,00         | 0,0000     | 2     | 0,00         | 0,0000     | 2     | 0,00         | 0,0000     |
| 3        | 0,00         | 0,0000     | 3     | 0,00         | 0,0000     | 3     | 0,00         | 0,0000     |
| 4        | 0.46         | 0,0004     | 4     | 0.00         | 0,0000     | 4     | 0.00         | 0,0000     |
| 5        | 0.46         | 0.0004     | 5     | 0.00         | 0,0000     | 5     | 0.00         | 0,0000     |
| 6        | 1.29         | 0.0010     | 6     | 0.00         | 0.0000     | 6     | 0.00         | 0.0000     |
| 7        | 1.29         | 0.0010     | 7     | 0.00         | 0.0000     | 7     | 0.00         | 0.0000     |
| 8        | 0.87         | 0.0007     | 8     | 0.00         | 0.0000     | 8     | 0.00         | 0.0000     |
| 9        | 0,87         | 0,0007     | 9     | 0,00         | 0,0000     | 9     | 0,00         | 0,0000     |
| 10       | 1,71         | 0,0013     | 10    | 0,00         | 0,0000     | 10    | 0,00         | 0,0000     |
| 11       | 1,71         | 0,0013     | 11    | 0,00         | 0,0000     | 11    | 0,00         | 0,0000     |
| 12       | 2,13         | 0,0016     | 12    | 0,00         | 0,0000     | 12    | 0,00         | 0,0000     |
| 13       | 2,54         | 0,0020     | 13    | 0,00         | 0,0000     | 13    | 0,00         | 0,0000     |
| 14       | 3,38         | 0,0026     | 14    | 0,00         | 0,0000     | 14    | 0,00         | 0,0000     |
| 15       | 4,63         | 0,0036     | 15    | 0,00         | 0,0000     | 15    | 0,00         | 0,0000     |
| 16       | 4,21         | 0,0032     | 16    | 0,00         | 0,0000     | 16    | 0,00         | 0,0000     |
| 17       | 4,21         | 0,0032     | 17    | 0,00         | 0,0000     | 17    | 0,00         | 0,0000     |
| 18       | 5,05         | 0,0039     | 18    | 0,00         | 0,0000     | 18    | 0,00         | 0,0000     |
| 19       | 5,46         | 0,0042     | 19    | 0,00         | 0,0000     | 19    | 0,00         | 0,0000     |
| 20       | 6,30         | 0,0048     | 20    | 0,00         | 0,0000     | 20    | 0,00         | 0,0000     |
| 21       | 6,30         | 0,0048     | 21    | 0,00         | 0,0000     | 21    | 0,00         | 0,0000     |
| 22       | 6,71         | 0,0052     | 22    | 0,00         | 0,0000     | 22    | 0,00         | 0,0000     |
| 23       | 7,55         | 0,0058     | 23    | 0,00         | 0,0000     | 23    | 0,00         | 0,0000     |
| 24       | 8,38         | 0,0064     | 24    | 0,00         | 0,0000     | 24    | 0,00         | 0,0000     |
| 25       | 8,38         | 0,0064     | 25    | 0,00         | 0,0000     | 25    | 0,00         | 0,0000     |
| 26       | 10,05        | 0,0077     | 26    | 0,04         | 0,0000     | 26    | 0,00         | 0,0000     |
| 27       | 10,05        | 0,0077     | 27    | 0,46         | 0,0002     | 27    | 0,00         | 0,0000     |
| 28       | 10,89        | 0,0084     | 28    | 0,04         | 0,0000     | 28    | 0,00         | 0,0000     |
| 29       | 10,47        | 0,0080     | 29    | 0,04         | 0,0000     | 29    | 0,00         | 0,0000     |
| 30       | 10,89        | 0,0084     | 30    | 0,04         | 0,0000     | 30    | 0,00         | 0,0000     |
| 31       | 12,97        | 0,0100     | 31    | 0,46         | 0,0002     | 31    | 0,00         | 0,0000     |
| 32       | 15,06        | 0,0116     | 32    | 0,87         | 0,0004     | 32    | 0,00         | 0,0000     |
| 33       | 15,89        | 0,0122     | 33    | 0,04         | 0,0000     | 33    | 0,00         | 0,0000     |
| 34       | 15,89        | 0,0122     | 34    | 0,04         | 0,0000     | 34    | 0,00         | 0,0000     |
| 35       | 18,40        | 0,0141     | 35    | 0,87         | 0,0004     | 35    | 0,00         | 0,0000     |
| 36       | 19,23        | 0,0148     | 36    | 2,54         | 0,0012     | 36    | 0,00         | 0,0000     |
| 37       | 20,90        | 0,0161     | 37    | 2,54         | 0,0012     | 37    | 0,00         | 0,0000     |
| 38<br>20 | 22,57        | 0,0173     | 38    | 2,13         | 0,0010     | 38    | 0,00         | 0,0000     |
| 39       | 21,73        | 0,0167     | 39    | 2,13         | 0,0010     | 39    | 0,00         | 0,0000     |
| 40       | 22,98        | 0,0177     | 40    | 2,13         | 0,0010     | 40    | 0,00         | 0,0000     |
| 41       | 24,24        | 0,0100     | 41    | 2,13         | 0,0010     | 41    | 0,00         | 0,0000     |
| 42       | 21,51        | 0,0212     | 42    | 2,54         | 0,0012     | 42    | 0,00         | 0,0000     |
| 43       | ∠0,41        | U,U∠Iŏ     | 43    | ∠,04         | 0,0012     | 43    | 0,04         | 0,0000     |

|       | P2             |            |       | P5            |            | P8    |               |            |
|-------|----------------|------------|-------|---------------|------------|-------|---------------|------------|
| Tompo | NaCl           | E (t)      | Tompo | NaCl          | E (t)      | Tompo | NaCl          | E (t)      |
| (h)   | $(ma   ^{-1})$ | $(h^{-1})$ | (h)   | $(mg l^{-1})$ | $(h^{-1})$ | (h)   | $(mg l^{-1})$ | $(h^{-1})$ |
| 44    | 27 57          | 0.0212     | 44    | 2 54          | 0.0012     | 44    | 0.04          | 0,0000     |
| 45    | 27,99          | 0,0212     | 45    | 2,54          | 0.0012     | 45    | 0.00          | 0,0000     |
| 46    | 27.57          | 0.0212     | 46    | 2 13          | 0.0010     | 46    | 0.00          | 0,0000     |
| 47    | 29.66          | 0.0228     | 47    | 2.54          | 0.0012     | 47    | 0.00          | 0.0000     |
| 48    | 30.49          | 0.0234     | 48    | 2.96          | 0.0014     | 48    | 0.00          | 0.0000     |
| 49    | 29.66          | 0.0228     | 49    | 2.96          | 0.0014     | 49    | 0.00          | 0.0000     |
| 50    | 30.49          | 0.0234     | 50    | 2.96          | 0.0014     | 50    | 0.46          | 0.0002     |
| 51    | 31.74          | 0.0244     | 51    | 2.96          | 0.0014     | 51    | 0.46          | 0.0002     |
| 52    | 31,74          | 0,0244     | 52    | 2,54          | 0,0012     | 52    | 0,87          | 0,0005     |
| 53    | 30.91          | 0.0237     | 53    | 3.38          | 0.0016     | 53    | 0.87          | 0.0005     |
| 54    | 31,74          | 0,0244     | 54    | 3,79          | 0,0018     | 54    | 0.00          | 0,0000     |
| 55    | 30,49          | 0,0234     | 55    | 2,96          | 0,0014     | 55    | 0,00          | 0,0000     |
| 56    | 29,66          | 0,0228     | 56    | 2,96          | 0,0014     | 56    | 0,00          | 0,0000     |
| 57    | 30,91          | 0,0237     | 57    | 2,54          | 0,0012     | 57    | 0,00          | 0,0000     |
| 58    | 29,66          | 0,0228     | 58    | 2,96          | 0,0014     | 58    | 0,46          | 0,0002     |
| 59    | 28,41          | 0,0218     | 59    | 2,96          | 0,0014     | 59    | 0,46          | 0,0002     |
| 60    | 26,74          | 0,0205     | 60    | 3,38          | 0,0016     | 60    | 0,46          | 0,0002     |
| 61    | 25,90          | 0,0199     | 61    | 3,79          | 0,0018     | 61    | 0,46          | 0,0002     |
| 62    | 25,49          | 0,0196     | 62    | 3,79          | 0,0018     | 62    | 0,00          | 0,0000     |
| 63    | 23,40          | 0,0180     | 63    | 3,79          | 0,0018     | 63    | 0,00          | 0,0000     |
| 64    | 22,57          | 0,0173     | 64    | 4,21          | 0,0020     | 64    | 0,00          | 0,0000     |
| 65    | 22,57          | 0,0173     | 65    | 4,21          | 0,0020     | 65    | 0,00          | 0,0000     |
| 66    | 21,32          | 0,0164     | 66    | 4,21          | 0,0020     | 66    | 0,00          | 0,0000     |
| 67    | 19,23          | 0,0148     | 67    | 4,63          | 0,0022     | 67    | 0,00          | 0,0000     |
| 68    | 19,65          | 0,0151     | 68    | 4,63          | 0,0022     | 68    | 0,00          | 0,0000     |
| 69    | 18,40          | 0,0141     | 69    | 4,21          | 0,0020     | 69    | 0,00          | 0,0000     |
| 70    | 17,14          | 0,0132     | 70    | 4,21          | 0,0020     | 70    | 0,46          | 0,0002     |
| 71    | 15,06          | 0,0116     | 71    | 4,63          | 0,0022     | 71    | 0,46          | 0,0002     |
| 72    | 12,14          | 0,0093     | 72    | 4,63          | 0,0022     | 72    | 0,87          | 0,0005     |
| 73    | 11,30          | 0,0087     | 73    | 3,79          | 0,0018     | 73    | 0,87          | 0,0005     |
| 74    | 10,05          | 0,0077     | 74    | 3,79          | 0,0018     | 74    | 0,00          | 0,0000     |
| 75    | 10,05          | 0,0077     | 75    | 4,21          | 0,0020     | 75    | 0,00          | 0,0000     |
| 76    | 9,22           | 0,0071     | 76    | 4,21          | 0,0020     | 76    | 0,00          | 0,0000     |
| 77    | 8,80           | 0,0068     | 77    | 4,63          | 0,0022     | 77    | 0,00          | 0,0000     |
| 78    | 7,97           | 0,0061     | 78    | 5,46          | 0,0026     | 78    | 0,00          | 0,0000     |
| 79    | 7,97           | 0,0061     | 79    | 5,46          | 0,0026     | 79    | 0,46          | 0,0002     |
| 80    | 6,71           | 0,0052     | 80    | 5,46          | 0,0026     | 80    | 0,46          | 0,0002     |
| 81    | 7,13           | 0,0055     | 81    | 5,88          | 0,0027     | 81    | 0,46          | 0,0002     |
| 82    | 5,88           | 0,0045     | 82    | 6,30          | 0,0029     | 82    | 0,87          | 0,0005     |
| 83    | 5,46           | 0,0042     | 83    | 6,30          | 0,0029     | 83    | 0,87          | 0,0005     |
| 84    | 4,63           | 0,0036     | 84    | 6,30          | 0,0029     | 84    | 0,87          | 0,0005     |
| 85    | 4,63           | 0,0036     | 85    | 6,71          | 0,0031     | 85    | 0,46          | 0,0002     |
| 86    | 4,21           | 0,0032     | 86    | 5,88          | 0,0027     | 86    | 0,87          | 0,0005     |
| 87    | 3,79           | 0,0029     | 87    | 5,88          | 0,0027     | 87    | 0,87          | 0,0005     |
| 88    | 2,96           | 0,0023     | 88    | 6,71          | 0,0031     | 88    | 0,46          | 0,0002     |
| 89    | 3,38           | 0,0026     | 89    | 8,38          | 0,0039     | 89    | 0,87          | 0,0005     |

|       | P2            |            |       | P5            |            | P8    |               |                    |
|-------|---------------|------------|-------|---------------|------------|-------|---------------|--------------------|
| Temno | NaCl          | E (t)      | Tempo | NaCl          | E (t)      | Tempo | NaCl          | E (t)              |
| (h)   | $(mg L^{-1})$ | $(h^{-1})$ | (h)   | $(mg L^{-1})$ | $(h^{-1})$ | (h)   | $(mg L^{-1})$ | (h <sup>-1</sup> ) |
| 90    | 3 38          | 0.0026     | 90    | 7.97          | 0.0037     | 90    | 0.87          | 0.0005             |
| 91    | 2.96          | 0.0023     | 91    | 8.38          | 0.0039     | 91    | 0.46          | 0.0002             |
| 92    | 2.54          | 0.0020     | 92    | 8.80          | 0.0041     | 92    | 0.46          | 0.0002             |
| 93    | 3.38          | 0.0026     | 93    | 8.38          | 0.0039     | 93    | 0.00          | 0.0000             |
| 94    | 2,96          | 0,0023     | 94    | 8,80          | 0,0041     | 94    | 0,00          | 0,0000             |
| 95    | 2,96          | 0.0023     | 95    | 8,80          | 0,0041     | 95    | 0,00          | 0,0000             |
| 96    | 2,54          | 0,0020     | 96    | 8,80          | 0,0041     | 96    | 0,00          | 0,0000             |
| 97    | 2,13          | 0,0016     | 97    | 9,63          | 0,0045     | 97    | 0,00          | 0,0000             |
| 98    | 1,29          | 0,0010     | 98    | 10,05         | 0,0047     | 98    | 0,00          | 0,0000             |
| 99    | 2,54          | 0,0020     | 99    | 10,05         | 0,0047     | 99    | 0,00          | 0,0000             |
| 100   | 2,96          | 0,0023     | 100   | 10,05         | 0,0047     | 100   | 0,00          | 0,0000             |
| 101   | 1,71          | 0,0013     | 101   | 10,05         | 0,0047     | 101   | 0,46          | 0,0002             |
| 102   | 0,87          | 0,0007     | 102   | 10,47         | 0,0049     | 102   | 0,46          | 0,0002             |
| 103   | 0,87          | 0,0007     | 103   | 10,47         | 0,0049     | 103   | 0,46          | 0,0002             |
| 104   | 0,87          | 0,0007     | 104   | 10,89         | 0,0051     | 104   | 0,87          | 0,0005             |
| 105   | 0,46          | 0,0004     | 105   | 10,89         | 0,0051     | 105   | 0,46          | 0,0002             |
| 106   | 0,87          | 0,0007     | 106   | 10,89         | 0,0051     | 106   | 0,87          | 0,0005             |
| 107   | 0,46          | 0,0004     | 107   | 10,89         | 0,0051     | 107   | 0,87          | 0,0005             |
| 108   | 0,46          | 0,0004     | 108   | 11,72         | 0,0055     | 108   | 0,87          | 0,0005             |
| 109   | 0,46          | 0,0004     | 109   | 11,30         | 0,0053     | 109   | 0,87          | 0,0005             |
| 110   | 0,46          | 0,0004     | 110   | 11,30         | 0,0053     | 110   | 0,87          | 0,0005             |
| 111   | 0,04          | 0,0000     | 111   | 11,72         | 0,0055     | 111   | 1,29          | 0,0007             |
| 112   | 0,04          | 0,0000     | 112   | 11,72         | 0,0055     | 112   | 1,29          | 0,0007             |
| 113   | 0,00          | 0,0000     | 113   | 11,72         | 0,0055     | 113   | 1,71          | 0,0009             |
| 114   | 0,00          | 0,0000     | 114   | 11,30         | 0,0053     | 114   | 1,71          | 0,0009             |
| 115   | 0,00          | 0,0000     | 115   | 11,30         | 0,0053     | 115   | 1,29          | 0,0007             |
| 116   | 0,00          | 0,0000     | 116   | 11,30         | 0,0053     | 116   | 1,71          | 0,0009             |
| 117   | 0,00          | 0,0000     | 117   | 11,72         | 0,0055     | 117   | 1,29          | 0,0007             |
| 118   | 0,00          | 0,0000     | 118   | 12,14         | 0,0057     | 118   | 1,29          | 0,0007             |
| 119   | 0,00          | 0,0000     | 119   | 12,14         | 0,0057     | 119   | 1,71          | 0,0009             |
| 120   | 0,00          | 0,0000     | 120   | 12,55         | 0,0059     | 120   | 1,71          | 0,0009             |
| 121   | 0,00          | 0,0000     | 121   | 12,97         | 0,0061     | 121   | 2,13          | 0,0011             |
|       |               |            | 122   | 12,97         | 0,0061     | 122   | 2,13          | 0,0011             |
|       |               |            | 123   | 12,97         | 0,0061     | 123   | 2,13          | 0,0011             |
|       |               |            | 124   | 13,81         | 0,0065     | 124   | 2,13          | 0,0011             |
|       |               |            | 125   | 13,81         | 0,0065     | 125   | 1,29          | 0,0007             |
|       |               |            | 126   | 13,81         | 0,0065     | 126   | 1,29          | 0,0007             |
|       |               |            | 127   | 12,97         | 0,0061     | 127   | 2,54          | 0,0013             |
|       |               |            | 128   | 13,81         | 0,0065     | 128   | 2,54          | 0,0013             |
|       |               |            | 129   | 14,22         | 0,0066     | 129   | 2,54          | 0,0013             |
|       |               |            | 130   | 15,06         | 0,0070     | 130   | 2,13          | 0,0011             |
|       |               |            | 131   | 15,06         | 0,0070     | 131   | 2,13          | 0,0011             |
|       |               |            | 132   | 14,64         | 0,0068     | 132   | 2,54          | 0,0013             |
|       |               |            | 133   | 15,48         | 0,0072     | 133   | 2,13          | 0,0011             |
|       |               |            | 134   | 16,31         | 0,0076     | 134   | 2,13          | 0,0011             |
|       |               |            | 135   | 15,48         | 0,0072     | 135   | 2,13          | 0,0011             |

P5

| P5    |               |            |   | P8    |               |                             |  |
|-------|---------------|------------|---|-------|---------------|-----------------------------|--|
| Tomno | NaCl          | E (1)      | ĺ | Tomno | NaCl          | E (4)                       |  |
| (h)   | $(mg L^{-1})$ | $(h^{-1})$ |   | (h)   | $(mg L^{-1})$ | ⊑ (l)<br>(h <sup>-1</sup> ) |  |
| 136   | 15 48         | 0.0072     |   | 136   | 2.96          | 0.0015                      |  |
| 137   | 16,10         | 0.0076     |   | 137   | 2,50          | 0.0013                      |  |
| 138   | 16.31         | 0.0076     |   | 138   | 2 54          | 0.0013                      |  |
| 139   | 15,48         | 0.0072     |   | 139   | 2.54          | 0.0013                      |  |
| 140   | 15.48         | 0.0072     |   | 140   | 2.96          | 0.0015                      |  |
| 141   | 15.48         | 0.0072     |   | 141   | 2.96          | 0.0015                      |  |
| 142   | 15.48         | 0.0072     |   | 142   | 2.96          | 0.0015                      |  |
| 143   | 15.89         | 0.0074     |   | 143   | 2.96          | 0.0015                      |  |
| 144   | 15,89         | 0,0074     |   | 144   | 2,96          | 0,0015                      |  |
| 145   | 16,31         | 0,0076     |   | 145   | 3,38          | 0,0018                      |  |
| 146   | 16,31         | 0,0076     |   | 146   | 3,38          | 0,0018                      |  |
| 147   | 16,31         | 0,0076     |   | 147   | 2,96          | 0,0015                      |  |
| 148   | 15,48         | 0,0072     |   | 148   | 3,38          | 0,0018                      |  |
| 149   | 15,48         | 0,0072     |   | 149   | 3,38          | 0,0018                      |  |
| 150   | 16,31         | 0,0076     |   | 150   | 3,38          | 0,0018                      |  |
| 151   | 16,31         | 0,0076     |   | 151   | 3,79          | 0,0020                      |  |
| 152   | 15,48         | 0,0072     |   | 152   | 3,79          | 0,0020                      |  |
| 153   | 15,48         | 0,0072     |   | 153   | 3,79          | 0,0020                      |  |
| 154   | 15,06         | 0,0070     |   | 154   | 4,21          | 0,0022                      |  |
| 155   | 15,06         | 0,0070     |   | 155   | 4,21          | 0,0022                      |  |
| 156   | 16,31         | 0,0076     |   | 156   | 3,79          | 0,0020                      |  |
| 157   | 16,31         | 0,0076     |   | 157   | 3,79          | 0,0020                      |  |
| 158   | 16,31         | 0,0076     |   | 158   | 3,79          | 0,0020                      |  |
| 159   | 15,06         | 0,0070     |   | 159   | 3,38          | 0,0018                      |  |
| 160   | 14,64         | 0,0068     |   | 160   | 3,38          | 0,0018                      |  |
| 161   | 14,64         | 0,0068     |   | 161   | 3,79          | 0,0020                      |  |
| 162   | 15,06         | 0,0070     |   | 162   | 3,79          | 0,0020                      |  |
| 163   | 15,06         | 0,0070     |   | 163   | 4,21          | 0,0022                      |  |
| 164   | 14,64         | 0,0068     |   | 164   | 3,79          | 0,0020                      |  |
| 165   | 14,64         | 0,0068     |   | 165   | 3,79          | 0,0020                      |  |
| 166   | 14,64         | 0,0068     |   | 166   | 4,21          | 0,0022                      |  |
| 167   | 14,22         | 0,0066     |   | 167   | 4,21          | 0,0022                      |  |
| 168   | 14,22         | 0,0066     |   | 168   | 4,63          | 0,0024                      |  |
| 169   | 15,06         | 0,0070     |   | 169   | 4,21          | 0,0022                      |  |
| 170   | 15,06         | 0,0070     |   | 170   | 4,21          | 0,0022                      |  |
| 171   | 15,06         | 0,0070     |   | 171   | 4,63          | 0,0024                      |  |
| 172   | 15,48         | 0,0072     |   | 172   | 4,63          | 0,0024                      |  |
| 173   | 16,31         | 0,0076     |   | 173   | 4,63          | 0,0024                      |  |
| 174   | 16,31         | 0,0076     |   | 174   | 4,63          | 0,0024                      |  |
| 175   | 16,31         | 0,0076     |   | 175   | 5,05          | 0,0026                      |  |
| 176   | 16,31         | 0,0076     |   | 176   | 4,63          | 0,0024                      |  |
| 1//   | 16,31         | 0,0076     |   | 1/7   | 5,05          | 0,0026                      |  |
| 1/8   | 15,89         | 0,0074     |   | 1/8   | 5,46          | 0,0029                      |  |
| 1/9   | 15,06         | 0,0070     |   | 1/9   | 5,46          | 0,0029                      |  |
| 180   | 15,06         | 0,0070     |   | 180   | 5,88          | 0,0031                      |  |
| 181   | 13,81         | 0,0065     |   | 181   | 5,88          | 0,0031                      |  |

| P5 |
|----|

|       | P5            |                    |       | P8            |                    |  |
|-------|---------------|--------------------|-------|---------------|--------------------|--|
| Tempo | NaCl          | E (t)              | Tempo | NaCl          | E (t)              |  |
| (h)   | $(mg L^{-1})$ | (h <sup>-1</sup> ) | (h)   | $(mg L^{-1})$ | (h <sup>-1</sup> ) |  |
| 182   | 13,81         | 0,0065             | 182   | 5,88          | 0,0031             |  |
| 183   | 14,22         | 0,0066             | 183   | 6,30          | 0,0033             |  |
| 184   | 13,81         | 0,0065             | 184   | 6,30          | 0,0033             |  |
| 185   | 13,81         | 0,0065             | 185   | 6,71          | 0,0035             |  |
| 186   | 13,81         | 0,0065             | 186   | 6,71          | 0,0035             |  |
| 187   | 13,81         | 0,0065             | 187   | 6,71          | 0,0035             |  |
| 188   | 13,81         | 0,0065             | 188   | 6,71          | 0,0035             |  |
| 189   | 12,97         | 0,0061             | 189   | 6,71          | 0,0035             |  |
| 190   | 13,39         | 0,0063             | 190   | 7,13          | 0,0037             |  |
| 191   | 13,81         | 0,0065             | 191   | 6,71          | 0,0035             |  |
| 192   | 13,81         | 0,0065             | 192   | 7,13          | 0,0037             |  |
| 193   | 15,06         | 0,0070             | 193   | 6,71          | 0,0035             |  |
| 194   | 15,06         | 0,0070             | 194   | 7,13          | 0,0037             |  |
| 195   | 15,48         | 0,0072             | 195   | 7,13          | 0,0037             |  |
| 196   | 16,31         | 0,0076             | 196   | 7,13          | 0,0037             |  |
| 197   | 16,31         | 0,0076             | 197   | 7,55          | 0,0039             |  |
| 198   | 15,06         | 0,0070             | 198   | 7,55          | 0,0039             |  |
| 199   | 15,06         | 0,0070             | 199   | 7,13          | 0,0037             |  |
| 200   | 13,81         | 0,0065             | 200   | 7,13          | 0,0037             |  |
| 201   | 13,81         | 0,0065             | 201   | 7,55          | 0,0039             |  |
| 202   | 13,39         | 0,0063             | 202   | 7,55          | 0,0039             |  |
| 203   | 12,97         | 0,0061             | 203   | 7,97          | 0,0042             |  |
| 204   | 12,14         | 0,0057             | 204   | 7,55          | 0,0039             |  |
| 205   | 11,30         | 0,0053             | 205   | 7,97          | 0,0042             |  |
| 206   | 11,72         | 0,0055             | 206   | 7,55          | 0,0039             |  |
| 207   | 11,30         | 0,0053             | 207   | 7,55          | 0,0039             |  |
| 208   | 11,30         | 0,0053             | 208   | 7,13          | 0,0037             |  |
| 209   | 10,89         | 0,0051             | 209   | 7,55          | 0,0039             |  |
| 210   | 10,89         | 0,0051             | 210   | 7,55          | 0,0039             |  |
| 211   | 10,89         | 0,0051             | 211   | 7,97          | 0,0042             |  |
| 212   | 10,05         | 0,0047             | 212   | 8,38          | 0,0044             |  |
| 213   | 10,05         | 0,0047             | 213   | 8,38          | 0,0044             |  |
| 214   | 10,05         | 0,0047             | 214   | 8,80          | 0,0046             |  |
| 215   | 9,63          | 0,0045             | 215   | 8,38          | 0,0044             |  |
| 216   | 10,05         | 0,0047             | 216   | 8,38          | 0,0044             |  |
| 217   | 8,80          | 0,0041             | 217   | 8,80          | 0,0046             |  |
| 218   | 7,97          | 0,0037             | 218   | 8,80          | 0,0046             |  |
| 219   | 7,97          | 0,0037             | 219   | 8,38          | 0,0044             |  |
| 220   | 6,71          | 0,0031             | 220   | 8,80          | 0,0046             |  |
| 221   | 7,13          | 0,0033             | 221   | 9,22          | 0,0048             |  |
| 222   | 7,13          | 0,0033             | 222   | 9,22          | 0,0048             |  |
| 223   | 0,30          | 0,0029             | 223   | 9,63          | 0,0050             |  |
| 224   | 0,30          | 0,0029             | 224   | 9,63          | 0,0050             |  |
| 225   | 0,30          | 0,0029             | 225   | 10,05         | 0,0053             |  |
| 220   | 0,71          | 0,0031             | 220   | 10,05         | 0,0053             |  |
| 227   | 6,30          | 0,0029             | 227   | 10,05         | 0,0053             |  |

Γ

| P5    |               |                    |   | P8    |               |                    |  |
|-------|---------------|--------------------|---|-------|---------------|--------------------|--|
| Tempo | NaCl          | E (t)              | - | Tomno | NaCl          | E (t)              |  |
| (h)   | $(mg L^{-1})$ | (h <sup>-1</sup> ) |   | (h)   | $(mg L^{-1})$ | (h <sup>-1</sup> ) |  |
| 228   | 6.30          | 0.0029             |   | 228   | 10.47         | 0.0055             |  |
| 229   | 6.71          | 0.0031             |   | 229   | 10.47         | 0.0055             |  |
| 230   | 5.88          | 0.0027             |   | 230   | 10.05         | 0.0053             |  |
| 231   | 5.88          | 0.0027             |   | 231   | 10.05         | 0.0053             |  |
| 232   | 5,46          | 0,0026             |   | 232   | 10,47         | 0.0055             |  |
| 233   | 5.46          | 0.0026             |   | 233   | 10.47         | 0.0055             |  |
| 234   | 4,63          | 0,0022             |   | 234   | 9,63          | 0,0050             |  |
| 235   | 4,63          | 0,0022             |   | 235   | 9,63          | 0,0050             |  |
| 236   | 4,63          | 0,0022             |   | 236   | 10,47         | 0,0055             |  |
| 237   | 3,79          | 0,0018             |   | 237   | 10,47         | 0,0055             |  |
| 238   | 3,79          | 0,0018             |   | 238   | 8,80          | 0,0046             |  |
| 239   | 2,54          | 0,0012             |   | 239   | 8,80          | 0,0046             |  |
| 240   | 2,54          | 0,0012             |   | 240   | 9,22          | 0,0048             |  |
| 241   | 2,54          | 0,0012             |   | 241   | 9,63          | 0,0050             |  |
| 242   | 2,96          | 0,0014             |   | 242   | 9,63          | 0,0050             |  |
| 243   | 2,54          | 0,0012             |   | 243   | 9,63          | 0,0050             |  |
| 244   | 2,54          | 0,0012             |   | 244   | 8,80          | 0,0046             |  |
| 245   | 2,54          | 0,0012             |   | 245   | 8,80          | 0,0046             |  |
| 246   | 2,54          | 0,0012             |   | 246   | 9,63          | 0,0050             |  |
| 247   | 2,13          | 0,0010             |   | 247   | 9,22          | 0,0048             |  |
| 248   | 2,54          | 0,0012             |   | 248   | 9,22          | 0,0048             |  |
| 249   | 2,13          | 0,0010             |   | 249   | 9,22          | 0,0048             |  |
| 250   | 2,54          | 0,0012             |   | 250   | 9,22          | 0,0048             |  |
| 251   | 2,13          | 0,0010             |   | 251   | 9,63          | 0,0050             |  |
| 252   | 2,13          | 0,0010             |   | 252   | 10,47         | 0,0055             |  |
| 253   | 2,13          | 0,0010             |   | 253   | 10,89         | 0,0057             |  |
| 254   | 1,71          | 0,0008             |   | 254   | 10,89         | 0,0057             |  |
| 255   | 1,71          | 0,0008             |   | 255   | 10,47         | 0,0055             |  |
| 256   | 1,71          | 0,0008             |   | 256   | 10,89         | 0,0057             |  |
| 257   | 2,13          | 0,0010             |   | 257   | 10,89         | 0,0057             |  |
| 258   | 2,54          | 0,0012             |   | 258   | 10,47         | 0,0055             |  |
| 259   | 1,71          | 0,0008             |   | 259   | 10,47         | 0,0055             |  |
| 260   | 1,71          | 0,0008             |   | 260   | 10,47         | 0,0055             |  |
| 261   | 0,87          | 0,0004             |   | 261   | 10,89         | 0,0057             |  |
| 262   | 1,29          | 0,0006             |   | 262   | 10,89         | 0,0057             |  |
| 263   | 0,87          | 0,0004             |   | 263   | 10,05         | 0,0053             |  |
| 264   | 0,87          | 0,0004             |   | 264   | 10,89         | 0,0057             |  |
| 265   | 0,46          | 0,0002             |   | 265   | 10,47         | 0,0055             |  |
| 266   | 0,46          | 0,0002             |   | 266   | 10,47         | 0,0055             |  |
| 267   | 0,46          | 0,0002             |   | 267   | 11,30         | 0,0059             |  |
| 268   | 0,46          | 0,0002             |   | 268   | 10,89         | 0,0057             |  |
| 269   | 0,46          | 0,0002             |   | 269   | 11,30         | 0,0059             |  |
| 270   | 0,87          | 0,0004             |   | 270   | 10,89         | 0,0057             |  |
| 271   | 0,46          | 0,0002             |   | 271   | 10,89         | 0,0057             |  |
| 272   | 0,46          | 0,0002             |   | 272   | 10,47         | 0,0055             |  |
| 273   | 0,46          | 0,0002             |   | 273   | 10,89         | 0,0057             |  |

| P5    |               |                    | P8    |               |            |  |
|-------|---------------|--------------------|-------|---------------|------------|--|
| Temno | NaCl          | F (t)              | Tempo | NaCl          | E (t)      |  |
| (h)   | $(ma L^{-1})$ | (h <sup>-1</sup> ) | (h)   | $(ma L^{-1})$ | $(h^{-1})$ |  |
| 274   | 0.87          | 0.0004             | 274   | 10.89         | 0.0057     |  |
| 275   | 0.46          | 0.0002             | 275   | 10.47         | 0.0055     |  |
| 276   | 0.46          | 0.0002             | 276   | 10.05         | 0.0053     |  |
| 277   | 0,04          | 0,0000             | 277   | 9,63          | 0.0050     |  |
| 278   | 0,04          | 0,0000             | 278   | 9,63          | 0,0050     |  |
| 279   | 0,04          | 0,0000             | 279   | 10,47         | 0.0055     |  |
| 280   | 0,87          | 0,0004             | 280   | 10,47         | 0,0055     |  |
| 281   | 0,04          | 0,0000             | 281   | 10,89         | 0,0057     |  |
| 282   | 0,04          | 0,0000             | 282   | 10,89         | 0,0057     |  |
| 283   | 0,00          | 0,0000             | 283   | 10,89         | 0,0057     |  |
| 284   | 0,00          | 0,0000             | 284   | 10,89         | 0,0057     |  |
| 285   | 0,46          | 0,0002             | 285   | 11,30         | 0,0059     |  |
| 286   | 0,46          | 0,0002             | 286   | 10,89         | 0,0057     |  |
| 287   | 0,46          | 0,0002             | 287   | 10,89         | 0,0057     |  |
| 288   | 0,46          | 0,0002             | 288   | 11,30         | 0,0059     |  |
| 289   | 1,29          | 0,0006             | 289   | 11,30         | 0,0059     |  |
| 290   | 1,29          | 0,0006             | 290   | 10,89         | 0,0057     |  |
| 291   | 1,71          | 0,0008             | 291   | 10,47         | 0,0055     |  |
| 292   | 0,87          | 0,0004             | 292   | 10,89         | 0,0057     |  |
| 293   | 0,87          | 0,0004             | 293   | 10,89         | 0,0057     |  |
| 294   | 0,87          | 0,0004             | 294   | 10,47         | 0,0055     |  |
| 295   | 0,46          | 0,0002             | 295   | 10,47         | 0,0055     |  |
| 296   | 0,46          | 0,0002             | 296   | 9,63          | 0,0050     |  |
| 297   | 0,04          | 0,0000             | 297   | 9,63          | 0,0050     |  |
| 298   | 0,04          | 0,0000             | 298   | 8,80          | 0,0046     |  |
| 299   | 0,04          | 0,0000             | 299   | 8,80          | 0,0046     |  |
| 300   | 0,04          | 0,0000             | 300   | 8,80          | 0,0046     |  |
| 301   | 0,00          | 0,0000             | 301   | 7,97          | 0,0042     |  |
| 302   | 0,00          | 0,0000             | 302   | 7,97          | 0,0042     |  |
| 303   | 0,00          | 0,0000             | 303   | 8,80          | 0,0046     |  |
| 304   | 0,04          | 0,0000             | 304   | 7,97          | 0,0042     |  |
| 305   | 0,87          | 0,0004             | 305   | 8,80          | 0,0046     |  |
| 306   | 0,87          | 0,0004             | 306   | 8,80          | 0,0046     |  |
| 307   | 0,87          | 0,0004             | 307   | 8,80          | 0,0046     |  |
| 308   | 0,87          | 0,0004             | 308   | 8,38          | 0,0044     |  |
| 309   | 1,29          | 0,0006             | 309   | 8,38          | 0,0044     |  |
| 310   | 1,29          | 0,0006             | 310   | 8,38          | 0,0044     |  |
| 311   | 0,87          | 0,0004             | 311   | 7,97          | 0,0042     |  |
| 312   | 0,87          | 0,0004             | 312   | 7,97          | 0,0042     |  |
| 313   | 0,46          | 0,0002             | 313   | 7,97          | 0,0042     |  |
| 314   | 0,46          | 0,0002             | 314   | 8,38          | 0,0044     |  |
| 315   | 0,46          | 0,0002             | 315   | 8,38          | 0,0044     |  |
| 316   | 0,00          | 0,0000             | 316   | 7,97          | 0,0042     |  |
| 317   | 0,00          | 0,0000             | 317   | 7,97          | 0,0042     |  |
| 318   | 0,00          | 0,0000             | 318   | 8,38          | 0,0044     |  |
| 319   | 0,00          | 0,0000             | 319   | 7,97          | 0,0042     |  |

P5

| Tempo | NaCl                  | E (t)  |  |
|-------|-----------------------|--------|--|
| (h)   | (mg L <sup>-1</sup> ) | (h⁻¹)  |  |
| 320   | 0,00                  | 0,0000 |  |
| 321   | 0,00                  | 0,0000 |  |
| 322   | 0,04                  | 0,0000 |  |
| 323   | 0,46                  | 0,0002 |  |
| 324   | 0,46                  | 0,0002 |  |
| 325   | 0,04                  | 0,0000 |  |
| 326   | 0,00                  | 0,0000 |  |
| 327   | 0,00                  | 0,0000 |  |
| 328   | 0,00                  | 0,0000 |  |
| 329   | 0,00                  | 0,0000 |  |
| 330   | 0,00                  | 0,0000 |  |
| 331   | 0,00                  | 0,0000 |  |
| 332   | 0,00                  | 0,0000 |  |
| 333   | 0,00                  | 0,0000 |  |
| 334   | 0,00                  | 0,0000 |  |
| 335   | 0,00                  | 0,0000 |  |
| 336   | 0,00                  | 0,0000 |  |
| 337   | 0,00                  | 0,0000 |  |
| 338   | 0,00                  | 0,0000 |  |
| 339   | 0,00                  | 0,0000 |  |
|       |                       |        |  |
|       |                       |        |  |

| Tempo      | NaCl                  | E (t)              |  |  |  |
|------------|-----------------------|--------------------|--|--|--|
| (h)        | (mg L <sup>-1</sup> ) | (h <sup>-1</sup> ) |  |  |  |
| 320        | 7,13                  | 0,0037             |  |  |  |
| 321        | 7,13                  | 0,0037             |  |  |  |
| 322        | 7,13                  | 0,0037             |  |  |  |
| 323        | 6,71                  | 0,0035             |  |  |  |
| 324        | 7,13                  | 0,0037             |  |  |  |
| 325        | 7,13                  | 0,0037             |  |  |  |
| 326        | 7,13                  | 0,0037             |  |  |  |
| 327        | 7,13                  | 0,0037             |  |  |  |
| 328        | 7,13                  | 0,0037             |  |  |  |
| 329        | 7,13                  | 0,0037             |  |  |  |
| 330        | 6,71                  | 0,0035             |  |  |  |
| 331        | 6,71                  | 0,0035             |  |  |  |
| 332        | 6,71                  | 0,0035             |  |  |  |
| 333        | 6,71                  | 0.0035             |  |  |  |
| 334        | 6.30                  | 0.0033             |  |  |  |
| 335        | 6.30                  | 0.0033             |  |  |  |
| 336        | 6.71                  | 0.0035             |  |  |  |
| 337        | 6.71                  | 0.0035             |  |  |  |
| 338        | 6.30                  | 0.0033             |  |  |  |
| 339        | 6.30                  | 0.0033             |  |  |  |
| 340        | 5.88                  | 0,0000             |  |  |  |
| 341        | 5.88                  | 0.0031             |  |  |  |
| 342        | 6 30                  | 0,0001             |  |  |  |
| 343        | 6 30                  | 0,0000             |  |  |  |
| 244        | 5.88                  | 0,0000             |  |  |  |
| 245        | 5.88                  | 0,0001             |  |  |  |
| 246        | 5.88                  | 0,0031             |  |  |  |
| 247        | 1 63                  | 0,0031             |  |  |  |
| 2/10       | 4,00<br>5 46          | 0,0024             |  |  |  |
| 340<br>240 | 5,40                  | 0,0029             |  |  |  |
| 349<br>350 | 5,40                  | 0,0029             |  |  |  |
| 350        | 5,00                  | 0,0031             |  |  |  |
| 351        | 5,05                  | 0,0020             |  |  |  |
| 352        | 5,05                  | 0,0020             |  |  |  |
| 353        | 5,05                  | 0,0020             |  |  |  |
| 354        | 5,46                  | 0,0029             |  |  |  |
| 355        | 5,46                  | 0,0029             |  |  |  |
| 356        | 4,63                  | 0,0024             |  |  |  |
| 357        | 5,05                  | 0,0026             |  |  |  |
| 358        | 5,05                  | 0,0026             |  |  |  |
| 359        | 4,63                  | 0,0024             |  |  |  |
| 360        | 4,63                  | 0,0024             |  |  |  |
| 361        | 4,63                  | 0,0024             |  |  |  |
| 362        | 4,63                  | 0,0024             |  |  |  |
| 363        | 4,21                  | 0,0022             |  |  |  |
| 364        | 4,21                  | 0,0022             |  |  |  |
| 365        | 3.79                  | 0.0020             |  |  |  |

| P8    |               |                    |  |  |  |
|-------|---------------|--------------------|--|--|--|
| Tempo | NaCl          | F (t)              |  |  |  |
| (h)   | $(mg L^{-1})$ | (h <sup>-1</sup> ) |  |  |  |
| 366   | 3.79          | 0.0020             |  |  |  |
| 367   | 4.21          | 0.0022             |  |  |  |
| 368   | 4 21          | 0.0022             |  |  |  |
| 369   | 3 79          | 0.0020             |  |  |  |
| 370   | 3 79          | 0.0020             |  |  |  |
| 371   | 3.38          | 0.0018             |  |  |  |
| 372   | 3.38          | 0,0018             |  |  |  |
| 373   | 3 79          | 0,0010             |  |  |  |
| 374   | 2.96          | 0,0020             |  |  |  |
| 375   | 2,30          | 0,0015             |  |  |  |
| 376   | 2,30          | 0,0015             |  |  |  |
| 377   | 2,50          | 0,0013             |  |  |  |
| 378   | 2,54          | 0,0013             |  |  |  |
| 370   | 2,04          | 0,0015             |  |  |  |
| 200   | 2,90          | 0,0015             |  |  |  |
| 201   | 2,90          | 0,0015             |  |  |  |
| 201   | 3,30          | 0,0016             |  |  |  |
| 38Z   | 2,90          | 0,0015             |  |  |  |
| 383   | 2,54          | 0,0013             |  |  |  |
| 384   | 2,54          | 0,0013             |  |  |  |
| 385   | 2,54          | 0,0013             |  |  |  |
| 386   | 2,54          | 0,0013             |  |  |  |
| 387   | 2,13          | 0,0011             |  |  |  |
| 388   | 2,13          | 0,0011             |  |  |  |
| 389   | 2,54          | 0,0013             |  |  |  |
| 390   | 2,54          | 0,0013             |  |  |  |
| 391   | 2,13          | 0,0011             |  |  |  |
| 392   | 2,13          | 0,0011             |  |  |  |
| 393   | 1,71          | 0,0009             |  |  |  |
| 394   | 1,71          | 0,0009             |  |  |  |
| 395   | 1,71          | 0,0009             |  |  |  |
| 396   | 1,29          | 0,0007             |  |  |  |
| 397   | 1,71          | 0,0009             |  |  |  |
| 398   | 1,29          | 0,0007             |  |  |  |
| 399   | 1,71          | 0,0009             |  |  |  |
| 400   | 1,29          | 0,0007             |  |  |  |
| 401   | 1,29          | 0,0007             |  |  |  |
| 402   | 1,29          | 0,0007             |  |  |  |
| 403   | 1,71          | 0,0009             |  |  |  |
| 404   | 1,29          | 0,0007             |  |  |  |
| 405   | 1,29          | 0,0007             |  |  |  |
| 406   | 1,29          | 0,0007             |  |  |  |
| 407   | 0,87          | 0,0005             |  |  |  |
| 408   | 0,87          | 0,0005             |  |  |  |
| 409   | 0,87          | 0,0005             |  |  |  |
| 410   | 1,29          | 0,0007             |  |  |  |
| 411   | 1,29          | 0,0007             |  |  |  |

| P8    |               |            |  |  |  |
|-------|---------------|------------|--|--|--|
| Tompo | NaCl          | E (t)      |  |  |  |
| (h)   | $(ma l^{-1})$ | $(h^{-1})$ |  |  |  |
| 412   | 0.87          | 0.0005     |  |  |  |
| /12   | 0,07          | 0,0005     |  |  |  |
| 413   | 0,07          | 0,0005     |  |  |  |
| 414   | 0,07          | 0,0005     |  |  |  |
| 410   | 0,40          | 0,0002     |  |  |  |
| 410   | 0,40          | 0,0002     |  |  |  |
| 417   | 0,40          | 0,0002     |  |  |  |
| 410   | 0,40          | 0,0002     |  |  |  |
| 419   | 0,46          | 0,0002     |  |  |  |
| 420   | 0,87          | 0,0005     |  |  |  |
| 421   | 0,87          | 0,0005     |  |  |  |
| 422   | 0,87          | 0,0005     |  |  |  |
| 423   | 0,46          | 0,0002     |  |  |  |
| 424   | 0,46          | 0,0002     |  |  |  |
| 425   | 0,46          | 0,0002     |  |  |  |
| 426   | 0,46          | 0,0002     |  |  |  |
| 427   | 0,46          | 0,0002     |  |  |  |
| 428   | 0,46          | 0,0002     |  |  |  |
| 429   | 0,46          | 0,0002     |  |  |  |
| 430   | 0,04          | 0,0000     |  |  |  |
| 431   | 0,46          | 0,0002     |  |  |  |
| 432   | 0,46          | 0,0002     |  |  |  |
| 433   | 0,87          | 0,0005     |  |  |  |
| 434   | 0,87          | 0,0005     |  |  |  |
| 435   | 0,87          | 0,0005     |  |  |  |
| 436   | 0,46          | 0,0002     |  |  |  |
| 437   | 0,04          | 0,0000     |  |  |  |
| 438   | 0,04          | 0,0000     |  |  |  |
| 439   | 0,46          | 0,0002     |  |  |  |
| 440   | 0,04          | 0,0000     |  |  |  |
| 441   | 0,04          | 0,0000     |  |  |  |
| 442   | 0,04          | 0,0000     |  |  |  |
| 443   | 0,04          | 0,0000     |  |  |  |
| 444   | 0,04          | 0,0000     |  |  |  |
| 445   | 0,04          | 0,0000     |  |  |  |
| 446   | 0,04          | 0,0000     |  |  |  |
| 447   | 0,46          | 0,0002     |  |  |  |
| 448   | 0,46          | 0,0002     |  |  |  |
| 449   | 0,46          | 0,0002     |  |  |  |
| 450   | 0.46          | 0,0002     |  |  |  |
| 451   | 0.46          | 0.0002     |  |  |  |
| 452   | 0.04          | 0.0000     |  |  |  |
| 453   | 0.04          | 0.0000     |  |  |  |
| 454   | 0.00          | 0,0000     |  |  |  |
| 455   | 0,00          | 0,0000     |  |  |  |
| 456   | 0.00          | 0,0000     |  |  |  |
| 457   | 0,00          | 0,0000     |  |  |  |
| +57   | 0,00          | 0,0000     |  |  |  |

| P8    |                       |                    |  |  |  |
|-------|-----------------------|--------------------|--|--|--|
| Tempo | NaCl                  | E (t)              |  |  |  |
| (h)   | (mg L <sup>-1</sup> ) | (h <sup>-1</sup> ) |  |  |  |
| 458   | 0,00                  | 0,0000             |  |  |  |
| 459   | 0,04                  | 0,0000             |  |  |  |
| 460   | 0,46                  | 0,0002             |  |  |  |
| 461   | 0,00                  | 0,0000             |  |  |  |
| 462   | 0,00                  | 0,0000             |  |  |  |
| 463   | 0,00                  | 0,0000             |  |  |  |
| 464   | 0,00                  | 0,0000             |  |  |  |
| 465   | 0,00                  | 0,0000             |  |  |  |
| 466   | 0,00                  | 0,0000             |  |  |  |
| 467   | 0,00                  | 0,0000             |  |  |  |
| 468   | 0,00                  | 0,0000             |  |  |  |
| 469   | 0,00                  | 0,0000             |  |  |  |
| 470   | 0,00                  | 0,0000             |  |  |  |
| 471   | 0,00                  | 0,0000             |  |  |  |
| 472   | 0,00                  | 0,0000             |  |  |  |
| 473   | 0,00                  | 0,0000             |  |  |  |
| 474   | 0,00                  | 0,0000             |  |  |  |
| 475   | 0,00                  | 0,0000             |  |  |  |
| 476   | 0,00                  | 0,0000             |  |  |  |
| 477   | 0,00                  | 0,0000             |  |  |  |
| 478   | 0,00                  | 0,0000             |  |  |  |
| 479   | 0,00                  | 0,0000             |  |  |  |
| 480   | 0,00                  | 0,0000             |  |  |  |
| 481   | 0,00                  | 0,0000             |  |  |  |
| 482   | 0,00                  | 0,0000             |  |  |  |
| 483   | 0,00                  | 0,0000             |  |  |  |
| 484   | 0,00                  | 0,0000             |  |  |  |
| 485   | 0,00                  | 0,0000             |  |  |  |
| 486   | 0,00                  | 0,0000             |  |  |  |
| 487   | 0,00                  | 0,0000             |  |  |  |
| 488   | 0,00                  | 0,0000             |  |  |  |
| 489   | 0,00                  | 0,0000             |  |  |  |

- 109 -

# ANEXO III

Resultados das determinações de CQO e N-NH<sub>4</sub>

# III.1. Resultados das análises ao CQO e N-NH<sub>4</sub> (Série I)

| Ensaio | Tempo (d)   | CQO (mg L <sup>-1</sup> ) |     | N-NH₄ (mg L <sup>-1</sup> ) |      |
|--------|-------------|---------------------------|-----|-----------------------------|------|
|        | i onipo (a) | Afluente                  | P2  | Afluente                    | P2   |
| I.1.1  | 0,0         | 307                       | 152 | 28,0                        | 22,0 |
| I.1.2  | 1,5         | 296                       | 142 | 31,0                        | 23,0 |
| I.1.3  | 4,7         | 311                       | 153 | 26,0                        | 23,0 |

Tabela III.1 – Resultados para o ensaio I.1

Tabela III.2 – Resultados para o ensaio I.2

| Ensaio | Tempo (d) | CQO (mg L <sup>-1</sup> ) |     | N-NH₄ (mg L <sup>-1</sup> ) |      |
|--------|-----------|---------------------------|-----|-----------------------------|------|
|        |           | Afluente                  | P5  | Afluente                    | P5   |
| I.2.1  | 0,0       | 315                       | 130 | 32,0                        | 19,0 |
| 1.2.2  | 5,0       | 309                       | 125 | 33,0                        | 22,0 |
| 1.2.3  | 13,9      | 303                       | 132 | 32,0                        | 24,0 |

Tabela III.3 – Resultados para o ensaio I.3

| Ensaio | Tempo (d) | CQO (mg L <sup>-1</sup> ) |     | N-NH₄ (mg L <sup>-1</sup> ) |      |
|--------|-----------|---------------------------|-----|-----------------------------|------|
|        |           | Afluente                  | P8  | Afluente                    | P8   |
| I.3.1  | 0,0       | 302                       | 117 | 29,0                        | 20,0 |
| 1.3.2  | 9,0       | 295                       | 115 | 34,0                        | 21,0 |
| 1.3.3  | 21,2      | 306                       | 121 | 28,0                        | 22,0 |

## III.2. Resultados das análises ao CQO e N-NH<sub>4</sub> (Série II)

| Ensaio | Tempo (d) | CQO (mg L <sup>-1</sup> ) |     | N-NH₄ (mg L <sup>-1</sup> ) |      |
|--------|-----------|---------------------------|-----|-----------------------------|------|
|        | po (a)    | Afluente                  | P2  | Afluente                    | P2   |
| II.1.1 | 0,0       | 295                       | 133 | 32,1                        | 22,0 |
| II.1.2 | 1,5       | 292                       | 128 | 32,6                        | 22,1 |
| II.1.3 | 4,7       | 301                       | 135 | 34,5                        | 23,5 |

Tabela III.4 - Resultados para o ensaio II.1

| Ensaio | Tempo (d) | CQO (mg L <sup>-1</sup> ) |    | N-NH₄ (mg L⁻¹) |      |
|--------|-----------|---------------------------|----|----------------|------|
|        |           | Afluente                  | P5 | Afluente       | P5   |
| II.2.1 | 0,0       | 307                       | 95 | 32,1           | 17,8 |
| II.2.2 | 5,0       | 298                       | 87 | 29,4           | 18,2 |
| II.2.3 | 13,9      | 301                       | 96 | 33,1           | 19,3 |

Tabela III.5 – Resultados para o ensaio II.2

| Ensaio | Tempo (d) | CQO (mg L <sup>-1</sup> ) |    | N-NH₄ (mg L⁻¹) |      |
|--------|-----------|---------------------------|----|----------------|------|
|        |           | Afluente                  | P8 | Afluente       | P8   |
| II.3.1 | 0,0       | 297                       | 41 | 30,0           | 12,8 |
| II.3.2 | 9,0       | 302                       | 51 | 32,3           | 11,3 |
| II.3.3 | 21,2      | 303                       | 43 | 31,5           | 13,0 |

Tabela III.6 - Resultados para o ensaio II.3