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Resumo alargado 

A diabetes insípida (DI) é uma doença rara, caracterizada principalmente pela excreção de 

elevados volumes de urina na forma diluída podendo, entre várias causas possíveis, ter origem 

num defeito genético. 

O desenvolvimento da doença pode dever-se a quatro causas possíveis. A mais comum deve-se 

a uma deficiência na secreção da hormona antidiurética arginina vasopressina (AVP), sendo 

referida como DI central ou neurohipofisária. Outra possível causa da doença deve-se a uma 

insensibilidade, por parte das células renais, aos efeitos da AVP, sendo neste caso designada 

como DI nefrogénica. A DI pode também dever-se a uma excessiva ingestão de líquidos, que 

conduz à supressão da libertação da hormona AVP, sendo referida como polidipsia primária. 

Por fim, um aumento do metabolismo da hormona AVP durante a gravidez pode também ser 

uma causa da doença, designada por DI gestacional. 

A hormona AVP é sintetizada nos neurónios magnocelulares. Estes têm origem no núcleo 

supra-óptico e para-ventricular do hipotálamo e os seus prolongamentos terminam na 

neurohipófise. A destruição destes neurónios resulta numa deficiência na produção da 

hormona, conduzindo à DI central. Esta destruição pode ter inúmeras causas, incluindo 

acidentes, cirurgias, doenças autoimunes, entre outras. Contudo, a doença também 

apresenta uma base familiar, correspondendo a 1% de todas as causas de DI central. A DI 

central apresenta sintomas persistentes de poliúria, polidipsia e sede, que geralmente se 

começam a manifestar vários meses ou anos após o nascimento.  

A DI central familiar apresenta duas características principais: está associada a mutações num 

único alelo do gene que codifica a hormona (gene AVP), apresentando assim uma transmissão 

autossómica dominante; e é causada por uma deficiência progressiva pós-natal na secreção da 

hormona AVP, que se pensa resultar da degeneração seletiva dos neurónios magnocelulares. 

O gene AVP é composto por 3 mil pares de bases e encontra-se localizado no braço curto do 

cromossoma 20. Este gene contém três exões que codificam para o péptido sinalizador, para a 

hormona AVP, para a neurofisina II (transportador da hormona) e ainda para um glicopéptido, 

conhecido como copeptina. Após sintetizados, a hormona, a neurofisina II e o glicopéptido são 

armazenados em vesiculas secretoras, nos terminais axonais dos neurónios, e são libertados 

após a ocorrência de estímulos. Após a entrada na corrente sanguínea, a hormona vai atuar a 

nível das células renais de modo a aumentar a sua permeabilidade para as moléculas de água, 

favorecendo assim a absorção de água no rim. 

Até à data do início deste trabalho, a doença estava associada a 70 mutações diferentes no 

gene AVP localizadas ao longo de todo o precursor proteico. Pensa-se que estas mutações são 

a causa da doença uma vez que interferem na estabilidade da cadeia de aminoácidos, 

alterando a sua estrutura primária. Teoricamente, mutações que afetem a conformação de 
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proteínas secretoras resultam no desenvolvimento de patologias devido ao seu impacto na 

função da proteína não conseguindo alcançar o seu destino, ficando retidas no reticulo 

endoplasmático. Contudo, a razão dos precursores AVP mutados serem tóxicos para os 

neurónios produtores de AVP está ainda por esclarecer. 

Existem, até ao momento, três teorias que tentam explicar o mecanismo da doença. O 

mecanismo não tóxico defende que há uma expressão simultânea dos precursores “wild-type” 

e dos precursores mutados resultando numa associação de ambos. Assim, o precursor “wild-

type” é alterado, uma vez que ambos ficam retidos no reticulo endoplasmático. Contudo, 

este mecanismo não explica a morte dos neurónios magnocelulares. O mecanismo tóxico 

defende que a constante acumulação de precursores com conformações alteradas pode 

interferir com a produção de proteínas essenciais à sobrevivência celular, resultando assim na 

morte neuronal. Recentemente, um novo mecanismo foi proposto para explicar a patogénese 

da doença. Observou-se a formação de vesiculas autofágicas, após acumulação de precursores 

mutados, que resultam na destruição dos retículos endoplasmáticos danificados, juntamente 

com os agregados proteicos. Durante este processo, se as células forem expostas a insultos 

metabólicos e ambientais, pode ocorrer apoptose dependente de autofagia, resultando na 

destruição dos neurónios magnocelulares. 

A DI central familiar apresenta uma natureza benigna, contudo é uma doença que apresenta 

uma intensa pesquiza em torno dos seus mecanismos moleculares uma vez que se trata de um 

modelo de interesse para o estudo de doenças neuro-endócrinas e de transmissões 

autossómica dominante. 

O presente estudo tem por objetivos fazer uma revisão das mutações descritas na literatura 

científica para o gene AVP, aumentar o número de mutações descritas com a análise de novos 

pacientes diagnosticados com DI central familiar e caracterizar as consequências funcionais 

das novas mutações identificadas. 

Para alcançar os objetivos descritos, utilizou-se a seguinte metodologia: a revisão de todas as 

mutações descritas até à data, através de pesquisa bibliográfica de artigos científicos; 

realização de estudos genéticos, baseados na amplificação por PCR e na posterior 

sequenciação dos três exões do gene AVP de 9 pacientes diagnosticados com DI central 

familiar; inserção das novas mutações num vector de expressão contendo o cDNA do gene 

AVP, através de técnicas de clonagem, digestão enzimática e mutagénese dirigida; e 

finalmente a realização de estudos funcionais, por otimização das técnicas de transfecção e 

imunocitoquímica com o vector de expressão AVP “wild-type”. 

Os resultados obtidos mostraram que as 3 famílias apresentam mutações no gene AVP. O 

paciente III-1, da família A, apresenta a alteração de uma timina para uma citosina na 

posição 154 do cDNA (c.154T>C) que origina a substituição de uma cisteína por arginina na 

posição 52 da proteína (p.C52R). O paciente II-1, da família B, apresenta uma alteração de 
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citosina para guanina na posição 289 do cDNA (c.289C>G) que resulta na substituição de uma 

arginina por glicina, na posição 97 da proteína. O paciente II-4 da família C apresenta a 

alteração de uma guanina para uma timina na posição 343 do cDNA (c.343G>T) que resulta na 

substituição de um ácido glutâmico por um codão de terminação na posição 115 da proteína. 

As três mutações estão em heterozigotia e as duas mutações encontradas no exão 2 

correspondem a mutações novas, enquanto a mutação presente no exão 3 já se encontra 

descrita na literatura. 

Um vector de expressão contendo o cDNA do gene AVP (pRc/RSV-AVP), foi-nos gentilmente 

oferecido por investigadores da área. O cDNA do gene AVP contido no vector de expressão 

(pRc/RSV-AVP) foi sub-clonado no vector pVAX/lacZ e, através de mutagénese dirigida, as 

mutações desejadas (c.154T>C e c.289C>G) foram introduzidas no cDNA. Assim, o cDNA com 

as mutações está pronto a ser inserido no plasmídeo de expressão. Os ensaios de transfecção 

e imunocitoquímica foram otimizados para o vector de expressão “wild-type”, uma vez que 

foi observada marcação para a neurofisina II nos prolongamentos dos neurónios após 

transfecção de uma linha celular neuronal (N2A) e marcação com anticorpos específicos. 

Com este estudo, o número de mutações descritas para o gene AVP aumentou de 70 para 72 e 

mais três famílias fazem parte do número total de famílias estudadas com DI central familiar. 

É importante continuar o desenvolvimento de estudos funcionais, de modo a obter respostas 

sobre os mecanismos moleculares responsáveis pelo desenvolvimento da doença uma vez que 

estas serão importantes não só para a DI central familiar, mas também para o esclarecimento 

de outras doenças que apresentem mecanismos moleculares semelhantes. 
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Diabetes insípida central, mutações AVP.  

 

    

     

 

  



Mutations in patients with neurohypophyseal diabetes insipidus 
 

viii 
 

Abstract 

Diabetes insipidus (DI) is associated with defects that involve the secretion and the action of 

hormone arginine vasopressin (AVP) resulting in the excretion of abnormally large volumes of 

diluted urine. The most common defect that results in disease development is the deficient 

secretion of the hormone AVP and the disease is referred to as central or neurohypophyseal 

DI.  The AVP hormone is synthesized in magnocellular neurons, that originate in the 

supraoptic and paraventricular nuclei of the hypothalamus and are projected to 

neurohypophysis, and the destruction of these neurons leads to a deficiency of AVP hormone, 

resulting in neurohypophyseal DI. The familial form of disease represents 1% of all causes of 

neurohypophyseal DI and the main points of the disease are: it is associated with mutations in 

one allele of the AVP gene, and it is caused by postnatal development of deficient AVP 

secretion, proposed to result from selective degeneration of the magnocellular neurons.  

The aims of this thesis are: to review AVP mutations described in the scientific literature, to 

expand the spectrum of mutations through the analysis of additional patients with DI and to 

characterize the functional consequences of identified novel AVP mutations. To achieve these 

aims a bibliographic research was developed; genetic studies were performed to amplify and 

to sequence the three exons of the AVP gene in 9 patients; an expression vector containing 

the desired mutations was constructed by subcloning, site-directed mutagenesis and 

enzymatic digestion; and the functional studies were initialized by optimization of 

transfection and immunocytochemistry assays for WT AVP cDNA expression vector. 

Three mutations were identified: c.154T>C, c.289C>G and c.343G>T. The first two mutations 

are novel and the last mutation is already described in the scientific literature. The AVP cDNA 

from the expression vector was subcloned in the pVAX/lacZ vector and the mutations were 

inserted in the AVP cDNA by site-directed mutagenesis and enzymatic digestion. The mutated 

AVP cDNAs were sequenced and have been prepared to be inserted in the expression vector. 

The transfection and immunocytochemistry protocols have been optimized for WT AVP cDNA 

expression vector. 

This study allowed the increase in the number of mutations from 70 to 72 different 

mutations, although further work is necessary in order to understand the molecular 

mechanisms responsible for the development of the disease and to give help and information 

to patients affected with this disease. 
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1. Introduction 

 

1.1. Definition and classification of  Diabetes Insipidus 

Blood osmolality in healthy individuals is maintained within restricted limits by a series of 

complex mechanisms. Adjustments in water balance determine the level of that osmolality. 

These adjustments are mediated by delicate alterations in the thirst mechanism plus the 

capacity of the kidney to alter urine flow rate and its osmolality in response to small changes 

in the plasma concentration of the hormone arginine vasopressin (AVP) [1]. Thus, through all 

these mechanisms, healthy humans can conserve their osmotic level despite extreme climatic 

conditions and, to a certain degree, when water supply is inadequate [1]. 

However, alterations in these mechanisms can occur and lead to one of two main states: 

inappropriate accumulation of water in organism, which is recognized as hypoosmolar states, 

and loss of renal water, which is recognized as hyperosmolar syndrome [1].  

Diabetes insipidus (DI) is a rare disease and is characterized by excretion of abnormal large 

volumes, known as polyuria (>50mL/Kg/day) of dilute urine (<300mmol/Kg) [2, 3]. This 

definition allows the exclusion of osmotic diuresis, which occurs when an excess of solute is 

being excreted, like in the case of glucose in patients with diabetes mellitus and this is the 

main difference between the two disorders [3]. This disorder can be acquired as a result of 

various injuries or diseases, but can also be idiopathic or have a genetic origin [2]. 

In DI, the magnitude of the abnormality in concentration and excretion of the urine varies 

according to some factors like the severity of the defect which results in the disorder, the age 

of the patient, and the rate of solute and water intake [2]. 

Four basic defects are responsible for the development of DI. The first and the most common 

defect that occurs in this disorder is the deficient secretion of the hormone AVP, and in this 

case the DI is referred as neurohypophyseal, neurogenic, central or hypothalamic [3]. This 

form of DI can be completely controlled by administration of AVP or its analogue, des-amino-

D-arginin vasopressin (DDAVP) [4]. The second type of DI is caused by renal defects, where the 

cells of the kidneys are insensitive to the antidiuretic effects of AVP and is referred as 

nephrogenic DI. In this case, the patients are unresponsive or poorly responsive to the 

administration of AVP or DDAVP [3, 4]. In both forms of disease, the thirst mechanism remains 

normal to regulate water balance [1]. Another defect that causes DI is excessive water intake 

(polydipsia) that leads to suppression of AVP release and consequent polyuria. This form of DI 

is called primary polydipsia and may be due to defects in the thirst mechanism or to cognitive 

impairment. Hormone supplements like AVP and DDAVP can reduce the symptoms of polyuria, 
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although these treatments should not be used because they can originate water intoxication, 

since they reduce polyuria more than polydipsia, which results in rapid retention of excess 

water and development of hyponatremia [1, 3, 4]. The fourth type of DI is due to increased 

metabolism of AVP during pregnancy resulting in gestational DI. This form of DI can be 

treated with DDAVP but is unresponsive to AVP. This occurs because the analogue of AVP is 

much less susceptible to degradation by placental vasopressinase [3, 4]. 

Depending on the cause that originates DI, the deficiency in vasopressin action or secretion 

can be partial or nearly total. Thus, the deficiency may or may not be associated with 

concentration of the urine after a fluid-deprivation test or in response to other strong stimuli 

like in the case of nausea, severe hypovolemia or severe hypotension [2].  

Differentiating between the forms of DI is relatively easy if patients have severe deficiency in 

either the secretion or action of AVP. In both cases, the patients undergo dehydration 

induced by fluid deprivation, but the urine remains dilute [4]. This first result excludes the 

possibility of primary polydipsia since in this form of disease, a fluid deprivation results in 

concentration of urine because the hormonal mechanism remains normal and the problem 

resides in excess of water intake. The next step to differentiate nephrogenic DI from 

neurohypophyseal and gestational DI is the injection of AVP and DDAVP and measurement of 

the urinary response [4]. Patients with nephrogenic DI do not respond to treatment since their 

problem resides in renal insensitivity to AVP and not in hormonal deficiency and their urine 

remains dilute. However, patients with neurohypophyseal or gestational DI are able to 

concentrate their urine when AVP or DDAVP are administered because of the increased 

plasma levels of AVP. If fluid deprivation results in concentration of urine, other tests are 

necessary to differentiate between primary polydipsia and a less severe deficiency in the 

secretion or action of AVP [4]. The most reliable way to make this distinction is to measure 

plasma AVP and to relate the results to the plasma and urine osmolality during a fluid 

deprivation and/or hypertonic saline infusion test [4]. 

However, with time the diagnosis becomes more complicated and the forms of the disease 

can be confused. After prolonged periods of polydipsia, a decrease in maximal urine-

concentration ability occurs in the kidneys, regardless of the primary cause [5]. The passage of 

large amounts of dilute urine through the distal nephron removes existent solutes from the 

renal medullary interstitium, a process known as washout phenomenon, and results in the 

decrease of osmotic gradient across the collecting tubular cells [1]. Since this gradient is 

essential for the antidiuretic action of AVP, any mechanism responsible for DI may lead to an 

additional defect at the renal level that complicates the interpretation of diagnostic tests 

based on indirect analyses of the antidiuretic action of AVP [1].  
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1.2. Clinical aspects of Familial Neurohypophyseal Diabetes 

Insipidus 

AVP is synthesized in magnocellular neurons that originate in the supraoptic and 

paraventricular nuclei of the hypothalamus, which project down through the diaphragma 

sellae to form the neurohypophysis [3, 4]. In contrast to the adenohypophysis, the 

neurohypophysis does not synthesize hormones but functions as a reservoir for the storage 

and release of hormones synthesized in the hypothalamus [6]. 

Destruction of magnocellular neurons results in a deficiency of AVP, leading to 

neurohypophyseal DI. This neuronal destruction can have a variety of causes, including 

trauma from surgery or accident, infections, autoimmune disease, congenital brain 

malformations, aneurysms, and others [6]. However, neurohypophyseal DI can also occur on an 

inherited, or familial, basis representing 1% of all causes of neurohypophyseal DI [7]. Usually, 

the disease has an autosomal dominant transmission, however in 1996 an X-linked recessive 

form was discovered [4]. 

There is another type of neurons that can produce and segregate AVP, known as parvocellular 

neurons [4]. The projections of these neurons are located in the median eminence of the 

hypothalamus [4]. In some studies, it was observed that these projections are apparently 

unaffected in patients with neurohypophyseal DI and this fact may explain the preservation of 

normal circadian rhythm and pituitary-adrenal function in these patients [4] because these 

neurons also produce corticotrophin releasing factor, which is thought to interact with AVP in 

the regulation of adrenocorticotropic hormone secretion [8]. Since these neurons are not 

affected by neurohypophyseal DI, it is believed that the two types of AVP-producing neurons 

have very different susceptibilities to the cytotoxic effects of the genetic mutations that lead 

to development of the disease [4].   

Autosomal dominant familial neurohypophyseal DI (adFNDI) is a rare disease with persistent 

symptoms of polyuria, polydipsia and thirst which usually manifest several months or years 

after birth [9]. Studies performed with mice with AVP gene mutations revealed some 

differences, when compared with mice with the normal AVP gene: mice with a mutated AVP 

gene consumed larger volumes of water, they excreted much more urine and the volume of 

urine excreted is worse over time, and their urine osmolality is lower [9]. Thus, like in humans 

with adFNDI, mice with certain mutations produce excessive amounts of dilute urine but 

compensate by increasing water intake and so they can avoid severe dehydration and this fact 

demonstrates that thirst mechanisms remain intact in the presence of the disease [9]. Despite 

these symptoms, adFNDI causes relatively few and well-tolerated symptoms. Nocturia 

(elimination of urine at night, disturbing sleep) is common and in children may present as 
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enuresis (urine during sleep) [4]. Physical exams and routine laboratorial analyses are usually 

within normal limits and hypernatremia or signs of hypertonic dehydration are minimal or 

absent, except in the case of patients that are comatose, have an impaired thirst mechanism 

or if the patients are unable to increase fluid intake [4].  

The symptoms of severe polyuria and polydipsia, which segregate in an autosomal-dominant 

pattern and respond to exogenous DDAVP, show several intriguing features. First, the 

affected family members show a completely normal water balance at birth and during early 

infancy but develop progressive symptoms of compulsive drinking at some point in childhood 

[10]. Second, in some studies it was demonstrated that during repetitive fluid-deprivation 

tests, the secretion of AVP is normal before the onset of the disease but then starts 

diminishing during early childhood [11]. Finally, once fully developed, the symptoms of 

polyuria and polydipsia continue throughout life [10]. Occasionally, spontaneous remissions of 

polyuria and polydipsia during middle-age are observed, even though the patients continue to 

have a deficient AVP secretion as severe as in their symptomatic kin. However, this remission 

mechanism remains unexplained [4]. 

Magnetic resonance image (MRI) exams have been used to investigate neurohypophysis 

anatomy in patients with adFNDI [4]. Some authors found that anterior and posterior lobes of a 

normal pituitary gland have different signal intensities in images of magnetic resonance. The 

posterior lobe presents a well-defined oval or round area of hyperintensity in both normal and 

abnormal pituitary glands, although there are some variations in size and shape of the signal 

from one person to another [6]. Some patients with adFNDI lack the characteristic bright spot, 

or high-intensity signal [4, 12], which is common in the posterior lobe of the pituitary in 52%-

100% of healthy adults [6]. Signal intensity seems to be correlated closely with posterior lobe 

function as it is suspected to result from neurovesicles in axon endings of AVP-producing 

neurons [7, 13]. If neurovesicles really are responsible for the bright spot, it is not clear why 

oxytocin-containing vesicles or vesicles located in the hypothalamus do not cause a high-

intense signal, maybe their concentration is insufficient [7]. Thus, the absence of the bright 

spot in the posterior pituitary lobe could result from a neurotoxic accumulation of precursor 

proteins that consequently lead to cell death [7, 12, 13].   

However, the significance of MRI results is uncertain because the exact cellular source of the 

signal is not yet known [4]. It is believed that the bright spot is absent in all patients with 

neurohypophyseal DI due to destructive or unidentified pathological processes [6], however to 

date relatively few patients with adFNDI have been studied and the results have been 

conflicting since in some affected individuals the bright spot has been observed [4]. A positive 

bright spot in a patient with adFNDI can be caused by a defect in hormone release from the 

posterior pituitary leading to accumulation of neurovesicles and, thus, to a normal MRI 

instead of defects in intra-axonal transport or processing of proteins [7]. However, at present, 

neither the presence nor the absence of the bright spot can be related with the presence or 
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absence of AVP-producing neurons in the posterior pituitary [4]. Thus, it is important that 

additional MRI studies including adFNDI patients are performed to clarify the importance and 

significance of the high-intensity signal found in some people [4]. 

 

1.3. AVP gene and AVP processing 

adFNDI is caused by mutations in one allele of the gene that encodes for AVP. The gene has 

approximately 3 kb (Gene ID: ENSG00000101200, Esemble) and is located on the short arm of 

chromosome 20 (20p13) [3]. It consists of 3 exons and 2 introns and encodes AVP and 

neurophysin II (NPII), the carrier of AVP. The first exon encodes the signal peptide, the 

hormone AVP, and the NH2-terminal region of NPII [3]. The second exon encodes the highly 

conserved central region of NPII and the third exon encodes the COOH-terminal region of NPII 

and the glycopeptide, which is known as copeptin [3, 14]. The small size of the AVP gene 

facilitates the mutational analysis [3] and the study of the mutations at the protein level (Fig. 

1).            

 

Fig. 1. Structural organization of the AVP gene and the protein vasopressin precursor. The gene is 

composed of 3 exons and 2 introns. The signal peptide contains 19 amino acids, AVP hormone contains 9 

amino acids, NPII contains 93 amino acids and copeptin contains 39 amino acids. SP, signal peptide; 

AVP, arginine vasopressin; NPII, neurophysin II; GP, glycopeptide.  

 

Several studies to analyze the expression of the AVP gene were performed using AVP 

transgenes derived from some animals. These results support the hypothesis that cell-specific 

enhancers and/or silencers that restrict expression of the AVP gene to specific neuronal cell-

types in the hypothalamus are present in the regions either downstream or upstream of the 

AVP gene [15]. Recently, some authors demonstrated that DNA sequences in a 178 bp region 

immediately downstream of exon 3 of the AVP are necessary for cell-specific expression of 

AVP in rat hypothalamus [16].  
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AVP and NPII are synthesized as a single precursor, prepro-vasopressin. The prepro-hormone 

presumably is translated on ribosomes in the cytosol and translocated across the membrane 

of the rough endoplasmic reticulum [4]. Once inside the endoplasmic reticulum, it is supposed 

that the signal peptide remains attached noncovalently to the inner surface of the membrane 

via the positive charges at its N-terminal. This ligation is thought to facilitate accurate 

cleavage of the signal peptide by ensuring proper alignment with the signal peptidase [4]. 

However, the presence of certain small and neutral amino acids at the -1 and -3 positions 

immediately adjacent to the cleavage site of the signal peptide are required for efficient and 

accurate cleavage [4]. In this case, the signal peptide of AVP gene has an alanine and serine at 

-1 and -3 positions, respectively [4]. The pro-hormone is generated by removal of the signal 

peptide from the prepro-hormone and from by addition of a carbohydrate chain to the 

copeptin [3, 9].  There are no certainties that the glycosylation process and copeptin are 

important for protein proper folding, trafficking or further processing, however, it seems 

possible that copeptin glycosylation plays an important role by assisting refolding of misfolded 

AVP pro-hormone monomers through its interaction with the calnexin-calreticulin system in 

the endoplasmic reticulum [17]. This system monitors protein folding and interacts principally 

with the sugars of glycosylated proteins and places these proteins into the proximity of a 

glycoprotein-specific member of the protein disulfide isomerase family [17].  

After removal of the signal peptide, the precursor generally must fold and dimerize correctly 

in the lumen of the endoplasmic reticulum [4], where the unique oxidizing environment allows 

the formation of disulphide bridges [10], before they can proceed through the Golgi apparatus 

[4]. If folding is not correct, usually precursors are retained in the endoplasmic reticulum, 

where they may be taken up by chaperones or heat shock proteins and degraded [4]. In vitro 

studies suggest that the stability of folding is dependent on binding of the N-terminal of the 

hormone to a specific site located in the N-terminal of NPII [4]. Also, in the case of AVP and 

NPII, like in others proteins, the correct folding of AVP-NPII in the endoplasmic reticulum 

probably also depends of the position of critically situated amino acids, like in the case of 

glycine or proline residues that enable the molecule either to rotate freely or to form a rigid 

bend. Cysteine positions are also very important because, under the action of a disulphide 

isomerase found in endoplasmic reticulum, they form specific disulphide bridges, which also 

serve to stabilize the molecule in the correctly folded conformation [4]. Binding of AVP to NPII 

also facilitates self-association of the folded pro-hormone into dimmers which are then 

transported to the Golgi apparatus [4]. Here, final glycosylation takes place and the correctly 

folded pro-hormones are finally packaged into dense granules which are transported along the 

axon to the posterior pituitary [4, 9]. The pro-hormone has different cleavage signal sequences. 

Whereas the hormone is followed by a sequence of three residues, glycine-lysine-arginine, 

NPII is followed by a monobasic cleavage site, an arginine residue (Fig. 2) [10].  During axonal 

transport, additional posttranslation processing occurs inside granules yielding AVP, NPII and 

the glycopeptides in separated forms [3]. This posttranslation process consists of two 
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successive cleavages; the first occurs between the hormone and the NPII by the action of a 

dibasic endopeptidase, and the second between NPII and copeptin by a monobasic 

endopeptidase [18]. Then, these molecules are stored within neurosecretory vesicles in the 

nerve terminals and released into the blood in response to osmotic stimuli [9]. Inside the 

vesicles, reversible noncovalent interactions between AVP and NPII persist until these 

complexes are secreted into the bloodstream and they dissociate into free hormone and NPII 

[4]. NPII can be seen as a chaperone-like molecule facilitating intracellular transport in 

magnocellular cells [3], protecting AVP from proteolytic degradation during axonal transport of 

the secretory granule to the posterior pituitary [13].  

 

Fig. 2. Structural organization of the AVP pro-hormone. Each rectangle represents the individual 

domains of the pro-hormone. The amino acid sequence of the hormone and the cleavage sites are 

represented. 

 

AVP controls serum osmolality by altering renal water absorption. Its release is a calcium-

mediated process of exocytosis when the axon is depolarized by an appropriate stimulus [2, 19], 

which is determined mainly by the osmotic pressure of the plasma and extracellular fluid of 

the body [2]. There are specialized hypothalamic cells, called osmoregulatory neurons, which 

mediate the secretion of the hormone by responding to extremely small alterations in the 

plasma concentration of sodium and other exogenous solutes [2]. The secretion of AVP is 

stimulated by increases in serum osmolality, like in the case of hypernatremia, and by more 

pronounced decreases in extracellular fluid [3].     

The antidiuretic function of AVP can be summarized in few steps. After AVP release into the 

systemic circulation, it binds to arginine vasopressin type 2 receptors (V2) on the basolateral 

membrane of the collecting ducts cells of the kidneys, initiating a signal-transduction cascade 

[3, 10]. The V2 receptor is coupled to a Gs protein and when AVP is present, the V2 receptor 

activates the α subunit of the G protein which stimulates the adenylyl cyclase leading to an 

increase in cyclic AMP (cAMP) inside collecting ducts cells and to the consequent activation of 

protein kinase A (PKA) [2, 3]. The activation of the cAMP-PKA pathway originates two related 

mechanisms: it increases the expression of a specific water pore, known as aquaporin 2 

(AQP2) [2, 20], and it leads to the phosporylation of homotetrameric AQP2, which results in the 

fusion of AQP2-containing vesicles with the luminal membrane of these cells [2, 21]. When 

these channels are incorporated into the luminal membrane, water molecules diffuse into the 
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cells and exit through the basolateral sides via different water channels, called aquaporin 3 

and 4 (Fig. 3) [21]. 

 

Fig. 3. Model of the regulation of water permeability in renal collecting duct cells. AVP binds to its 

receptor (V2) which activates adenylyl cyclase (AC), increasing the cyclic AMP (cAMP) concentration. 

This intermediate activates protein kinase A (PKA) which stimulates aquaporin 2 (AQP2) synthesis and its 

phosporylation, leading these transporters to the apical membrane in renal cells. AQP3, aquaporin 3; 

AQP4, aquaporin 4; AQP2-P, phosphorilated aquaporin 2. 

 

The described process is the molecular basis of the vasopressin-induced increase in the water 

permeability of the apical membrane of the collecting tubule leading to a decrease in renal 

water excretion [3]. In the absence of AVP stimulation, the cells of the collecting duct remain 

impermeable to water and the large volumes of diluted urine that enter the collecting 

tubules pass unmodified [2]. Thus, the excretion of urine reaches high rates and low 

osmolarity [2]. 

AVP also increases the water reabsorption capacity of the kidney by regulating the urea 

transporter in the collecting duct and the permeability of principal collecting duct cells to 

sodium [20]. Thus, in the absence of AVP stimulation, the collecting duct cells have very low 

permeability to water, sodium and urea, allowing the excretion of large volumes of hypotonic 

urine [10]. 

Some patients with adFNDI retain some limited capacity to secrete AVP during severe 

dehydration, however in most cases the deficiency of AVP secretion progresses and eventually 

becomes so severe that the organism can no longer concentrate urine, even during severe 

hypertonic dehydration [3, 4]. Symptoms of the disease usually appear after the first year of 

life, in contrast with nephrogenic DI, in which the defects result from mutations in V2 
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receptors or in AQP2 and the symptoms are present during the first week of life [3]. In the first 

years of life, AVP deficiency can be partial and patients can concentrate their urine during a 

fluid deprivation test [4]. Thus, this result can lead to a misdiagnosis of primary polydipsia and 

to a delay in effective treatment [4].  

 

1.4. Genetic basis of adFNDI 

Until now, adFNDI has been associated with several different mutations in the AVP gene and 

all, except two, are located in the coding region [10] (Human Gene Mutation Database). Most 

of the mutations are single base substitutions, few are dinucleotide substitutions and the 

remaining are deletions of 1 or 3 nucleotides [10].  

Although varied in location and nature, mutations appear to have several characteristics in 

common. The first similarity is that mutations appear to result in a similar clinical phenotype. 

Second, most of the mutations affect residues that are in hydrophilic regions of the molecule. 

Finally, all except one of the mutations are predicted to alter or remove one or more residues 

that are important for folding and self-association of the pro-hormone [4, 10, 22], changing its 

primary structure. Production of an abnormal precursor caused by changes in its primary 

structure may be due to three types of mutations: those predicted to interfere with binding 

of the AVP and NPII, those predicted to alter the flexibility, rigidity and disulphide bridge 

formation of the pro-hormone and mutations predicted to encode a truncated NPII by 

introducing premature stop codons [4, 10].  Mutations that interfere with binding of AVP and 

NPII can result from changes in the N-terminal of AVP, like mutations that impair or misdirect 

cleavage of the signal peptide or mutations that alter any of the first three amino acids of 

AVP, or can result from alterations in the shape of the NPII binding pocket [4]. The second 

type of mutations is the most common, and these mutations modify pro-hormone 

characteristics by replacing, deleting or creating de novo a glycine, proline or cysteine 

residue [4]. Mutations that delete glycine residues would be expected to interfere with folding 

of the pro-hormone due to a loss of flexibility at those sites, mutations that replace or create 

proline residues increase the rigidity of the molecule and mutations that replace or delete 

cysteine residues are likely to impair folding by eliminating or modifying one or more of the 

eight disulphide bridges that normally stabilize the pro-hormone into its proper conformation 

[4, 13]. 

The mutations responsible for disease development are distributed throughout the precursor 

protein [12]. Several mutations modify the signal peptide but the substitution of a alanine for 

threonine at position 19 (A19T) is the most common mutation described in adFNDI and has 

been found in several unrelated families around the world [10, 14]. This mutation is caused by a 

single base substitution (guanine to adenine) in exon 1 [14] and gives rise to an aberrant 

prepro-hormone that is glycosylated but retains the signal peptide as a result of inefficient 
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cleavage by the signal peptidase [9, 23]. In mouse studies, mice that had this mutation did not 

develop an apparent DI phenotype and the authors did not detect loss of AVP-producing 

neurons, even in homozygous mice. Thus, like in humans, this mutation originates a relatively 

mild phenotype in mice [9]. As for mutations in the NPII domain, a number of different 

mutations have been identified, including missense mutations, nonsense mutations and a 

single amino acid deletion [9]. There is evidence suggesting that the age of onset of the 

symptoms is lower in several kindreds with mutations in the NPII domain than in those with 

the A19T mutation in the signal peptide [4]. This fact can be explained because mutations 

affecting the signal peptide cleavage site would be expected to allow the formation of some 

normal pro-hormone from the mutant alleles, whereas the NPII mutations would not [14]. 

Mutations that alter the AVP hormone were also found [10]. No mutations predicting changes in 

the linker regions connecting the pro-hormone domains or in the copeptin domains have been 

identified, apart from the premature stop codons, which also truncate copeptin together with 

distal portions of the NPII domain [4, 10]. Recently, Hedrich et al. identified one variant in the 

copeptin domain which predicts a replacement of guanine by adenosine. However, individuals 

carrying this nucleotide substitution alone do not show disease symptoms and authors 

concluded that this alteration seems to be a rare polymorphism and not a disease-causing 

mutation [13]. To date, the intronic mutation, found by Tae and colleagues [24], is the only 

described mutation that does not occur in the exon regions of the AVP gene and is predicted 

to cause retention of intron 2 during mRNA splicing. This mutation causes a frameshift from 

position +1 of intron 2 and the introduction of a premature stop codon in exon 3 [24]. The 

aberrant protein formed consists of 167 amino acids that lack the C-terminal of NPII due to a 

premature codon insertion, whereas the protein translated by normal mRNA sequence of AVP 

gene consists of 164 amino acids that include signal peptide, the hormone AVP, NPII and 

copeptin [24].   

All of the mutations described seem to be completely penetrant, although a few mutations 

might not result in appearance of adFNDI until late adolescence [2].  

 

1.5. Pathogenesis of adFNDI 

The pathogenesis of adFNDI has been studied in different model systems during the past few 

years [10]. The main points of the disease are: the disease is associated with mutations in one 

allele of the AVP gene and is caused by postnatal development of deficient AVP secretion 

proposed to result from selective degeneration of the magnocellular neurons that produce the 

hormone in normal conditions [10].  

Theoretically, mutations that affect the folding of secretory proteins result in loss-of-function 

phenotypes due to their direct impact on protein function because these mutant proteins are 

prevented from reaching their final destination [3]. Thus, mutant proteins that fail to fold 
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correctly are retained initially in the endoplasmic reticulum [3], as this organelle has the 

ability to recognize, retain and degrade misfolded, incompletely folded or partially assembled 

copies of the proteins in a mechanism known as endoplasmic reticulum quality control [25], 

and subsequently the proteins are degraded either by proteasomes or by another degradation 

mechanism (Fig. 4) [3]. However, why AVP misfolded mutants are cytotoxic to AVP-producing 

neurons is a question without answer, for now [3].  

 

Fig. 4. Synthesis and processing of secretory proteins like AVP. mRNA and respective ribosomes migrate 

to endoplasmic reticulum. Then, ribosomes attach to endoplasmic reticulum by a signal recognition 

peptide (SRP) and the SRP receptor (SR). The growing peptide passes through the membrane via a 

translocon (TR). Proteins with the correct fold are stored in vesicles which will proceed to the Golgi 

apparatus. Misfolded proteins are initially retained in the endoplasmic reticulum, but then they are 

translocated to the cytosol and degraded by proteasomes. C, vesicle coat protein. Adapted from [3]. 

 

Mutant hormone precursors that do not fold and self-associate correctly probably do not move 

from the endoplasmic reticulum to the Golgi apparatus and to neurosecretory granules, 

finally, where processing mechanisms that leads to NPII, copeptin and active AVP normally 

occur [4]. The block in trafficking and processing of the precursor could completely eliminate 

AVP production from the mutant allele [4]. However, the other allele remains normal and a 

simple block in processing of the mutant allele would be insufficient to cause the clinical 

symptoms that patients with adFNDI develop, especially because the deficiency of AVP 

secretion is much greater than 50% [4]. This means that the mutations also interfere with the 

expression of the normal allele, in a mechanism known as dominant negative effect and this 
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mechanism can occur at any level like in transcription, translation, precursor processing and 

in molecule secretion [4]. Based on some studies, the processing and secretion of mutant 

precursors are delayed relative to processing of the wild type (WT) precursors [12] and this 

fact can explain the accumulation of the mutant precursor in the endoplasmic reticulum. 

Evidence that proves the existence of misfolded proteins in the endoplasmic reticulum is the 

induction of a molecular chaperone called BiP, a member of the 70 kilodalton heat shock 

proteins (HSP70) family [9]. This chaperone binds to misfolded proteins whose transport from 

the endoplasmic reticulum is blocked and BiP expression is increased as part of the unfolded 

protein response [9]. 

There are at least two mechanisms by which retention of misfolded mutant precursors in the 

endoplasmic reticulum could impair production of AVP from the normal allele [4]. In the first 

place, there is a ‘nontoxic’ mechanism when the mutant precursor is expressed at the same 

time as the WT precursor leading to the association of both precursors to form abnormal 

heteroligomers [4]. Thus, the mutant precursor impairs the trafficking of the WT precursor and 

both precursors are retained in the endoplasmic reticulum where they can be degraded or 

otherwise eliminated by the cell, leading to a decrease in protein activity of the WT 

precursors [4, 26]. With time and the high rate of mutant precursors/dimers accumulation in 

endoplasmic reticulum, together with the rapid degradation by the cytosolic proteasome of 

these heterodimers, this mechanism could easily result in the development of a severe AVP 

deficiency, even though the normal allele remains to be expressed at its usual rate [4, 10]. The 

formation of heterodimers and homodimers between mutant and WT AVP pro-hormones was 

already shown, such as the impairment of WT precursor trafficking by the mutant precursor 

during heterologous expression in cell cultures [26], resulting in formation of abnormally 

configured heterodimers that are retained in the endoplasmic reticulum [10].     

However, the nontoxic mechanism does not explain the autopsy evidence for selective 

degeneration of AVP-producing magnocellular neurons [4]. Thus, it is postulated that the 

continuous accumulation of unfolded or misfolded mutant precursors in the endoplasmic 

reticulum prevents expression of the normal allele by interfering with the production of 

essential proteins that are important for survival of these neurons leading to a toxic 

mechanism [4]. However, there is little evidence of cell death caused by apoptosis, suggesting 

that it may occur by other pathways [9]. Some studies using immunohistochemical analyses to 

detect cell death of AVP-producing neurons were negative to apoptosis by using apoptosis 

markers [9]. But, this observation does not mean that apoptosis really does not occur in these 

neurons because given the small number of AVP-producing neurons and the progressive loss of 

cells over weeks to months, these assays may not be sensitive enough to detect apoptosis of a 

small number of neurons [9].   

The nontoxic and the toxic theories are not mutually exclusive and together they could 

explain some facts like the delayed onset of the disease and its occurrence despite the 
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presence of a normal allele [9]. On the other hand, these two mechanisms can represent 

different phases of the same pathologic process (Fig. 5) [4].   

 

Fig. 5.  A proposed model for the molecular basis of adFNDI. Functional and physical interactions occur 

between WT and mutated precursor that are retained in endoplasmic reticulum, impairing the transport 

and processing of WT. These aggregates will lead to cellular toxicity and to posterior cell death. 

Adapted from [26]. 

 

The hypothesis of toxicity caused by misfolded proteins (misfolding-neurotoxicity hypothesis) 

is consistent with all clinical, hormonal and biochemical existent data [4]. However, it is based 

on several factors that remain to be tested and validated and they include the following: the 

disease is always linked to a mutant AVP gene that originates a mutant precursor that does 

not fold and self-associate like the WT precursor and is not carried from the endoplasmic 

reticulum to the Golgi apparatus; the endoplasmic reticulum retention results in lethal 

accumulation and/or aggregation of mutant precursors; the decrease in AVP secretion is 

associated with selective degeneration of the AVP-producing magnocellular neurons; and AVP-

producing parvocellular neurons are not affected by mutations that cause death in 

magnocellular neurons due to a much lower rate of AVP production by these cells, and/or 

more robust elimination mechanisms to eliminate misfolded proteins [4, 10]. 

Recently, new studies suggested a new mechanism that explains the pathogenesis of adFNDI. 

Castino et al. [27] have shown that some mutations result in accumulation of mutated 
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precursores in the endoplasmic reticulum, forming insoluble aggregates [27]. This accumulation 

results in the development of a pathology characterized by a grossly deranged endoplasmic 

reticulum which contains both mutated and WT protein [27]. With the aid of morphological 

observations, Davies et al. suggest that these structures represent autophagic vesicles [28]. 

Autophagy results in organelle destruction together with the WT AVP, resulting in a 

progressive AVP deficiency [27]. Under these circumstances, autophagy is a cell survival 

mechanism that removes the deranged structures [27].  However, the cells are continuously 

exposed to environmental and metabolic insults that can lead the cell to an autophagy-

dependent apoptosis once the neurons are frail, already undergoing autophagy in order to 

clear mutant proteins [29]. This hypothesis does not exclude the misfolded-neurotoxicity 

hypothesis as, although authophagy may be responsible for the initiation of adFNDI’s 

symptoms, it does not exclude the possibility that degeneration of the AVP-producing 

magnocellular neurons can be a long-term consequence [10].                       

The accumulation and cellular death caused by cytotoxicity of mutated precursors is a slow 

and prolonged process, which explains some facts like the progressive onset of the symptoms 

of the disease and the AVP deficiency [3, 14]. Autopsy studies performed in adFNDI patients 

show a selective loss of AVP-producing magnocellular neurons in the supraoptic and, to a 

lesser extent, in the paraventricular nucleus along with loss of their axonal extensions into 

the neurohypophysis [4, 30]. These studies also show atrophy of the neurohypophysis and gliosis 

[4, 30].           

Some authors suggest that cell survival depends on its efficiency to degrade unfolded or 

incompletely folded proteins. Thus, degradation-resistant proteins that accumulate in the 

endoplasmic reticulum cause a more profound cytotoxic effect than proteins that are not 

resistant to the degradation process [12].     

It is difficult to determine significant differences in the severity of the disease produced by 

the various AVP gene mutations [14]. The number of patients available for careful evaluation is 

very limited and there is a high degree of variability, even for patients of the same family, 

like the debut of symptoms, severity of polyuria and the degree of AVP deficiency [14]. Thus, 

these factors result in a lack of genotype-phenotype correlation which could help to 

determine the best treatment for the patients. 

     

1.6. Diagnosis and treatment  

The clinical diagnosis of DI can be made easily by measuring urine osmolality during a fluid-

deprivation test, at least when the disease is present in its complete form, as described 

above [10]. However, with the development of knowledge related with the disease, some 

authors suggested a new diagnosis based on molecular genetic evaluation that should be 
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performed in all patients with familial occurrence of DI symptoms [10]. Once the molecular 

diagnosis is established in adFNDI kindreds, it is easier to screen other family members for the 

same mutations [10]. This fact has particular importance in infants at risk of inheriting the 

mutation as this method allows the presymptomatic diagnosis, relieving years of parental 

concern about the evolution of the disease in their offspring [10]. As adFNDI presents very few 

symptoms and allows a normal quality of life, at least when offered an appropriable 

treatment, and because there is little evidence for an associated risk of severe central 

nervous system sequelae [31] compared with nephrogenic DI, a prenatal diagnosis seems not to 

be indicated [10]. 

The treatment of adFNDI is relatively simple as the administration of the AVP analogue, 

DDAVP, 2 to 3 times daily eliminates symptoms [32]. Patients with adFNDI have preservation of 

the osmoregulation of thirst, thus only minor fluctuations in plasma osmolality are seen even 

during irregular pharmacological treatment and the risk of inducing hyponatremia is very 

small in these patients [10]. To date, no other V2 receptor agonist has been introduced in the 

treatment of adFNDI but several delivery methods have been investigated and they are 

available in nasal sprays, in common tablets and more recently in sublingual instant melting 

tablet [10, 33]. However, it remains unknown if each delivery method results in better control 

of polyuria and polydipsia or if it is only a matter of preference [10]. 

In an ideal perspective, the treatment of adFNDI should be able to provide a long-lasting 

antidiuretic effect with the possibility to provide escape in case of higher-than-required fluid 

intake, like in case of social reasons. This treatment can be obtained with gene therapy which 

provides constantly high levels of AVP through the expression of the AVP gene contained in a 

viral vector [10]. Many studies have shown the efficiency of gene therapy in AVP-deficient rats 

using electroporation [34]. The next step in this treatment is the escape from the constant 

antidiuresis induced by gene therapy and this can be achieved using the recently developed 

V2 receptor antagonists [34]. However, there are several diverging opinions relative to the 

safety of such viral approaches [10] and a further work is needed to clarify all the questions 

around gene therapy.                            

 

1.7. Future perspectives 

adFNDI is a disease with low morbidity and an effective treatment but, despite its benign 

nature, the disease has been subject of intense research. This fact occurs due to its potential 

value as a model for studies of neuroendocrinological diseases and for studies of dominant 

negative mutations and due to its importance in the understanding of the effects of such 

mutations on the folding of hormone precursors and the role of the protein quality control 

machinery in the cellular handling of misfolded protein [35].  
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Russel et al. [9] proposed that adFNDI could be considered a neurodegenerative disorder like 

Alzheimer disease, Parkinson disease and others [9]. This suggestion is due to accumulation of 

cytotoxic precursors inside neuronal cells in adFNDI, as in the above diseases, leading to the 

posterior death of the cell. 

A possible therapeutic approach to diseases caused by accumulation of misfolded proteins 

inside the endoplasmic reticulum can be the use of pharmacologic chaperones to promote the 

escape of proteins from this organelle [3]. Thus, the proteins can proceed their transport to its 

target cells. In this case, without trafficking impairment, the mutant proteins could be 

sufficiently functional if the problem resided in the transport of the proteins [3].  

It is very important to proceed with genetic and molecular studies of adFNDI as the results 

can give answers not only about adFNDI, but also help to explain other diseases that have the 

same molecular mechanism like the case of neurodegenerative diseases or other pathologies 

that involve protein misfolding or aggregates. On the other hand, it is necessary that patients 

are informed about their state more deeply, principally in case of genetic diseases that are 

transmitted through several generations. 

 

1.8. Aims of the thesis 

The present study is based on three main aims. First, to review AVP mutations described in 

the scientific literature. Second, to expand the spectrum of mutations through the analysis of 

additional patients with DI. Third, and last, to characterize the functional consequences of 

identified novel AVP mutations.     
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2. Methods  

 

2.1. Literature search of AVP gene mutations 

A database of the described and published AVP gene mutations was constructed by searching 

the National Center Of Biotechnology Information Pubmed literature ~database for articles in 

English, using the keywords AVP, mutation and Neurohypophyseal Diabetes Insipidus. 

A total of 61 articles that described 70 different mutations were identified and evaluated. 

The most relevant information was analyzed and a new nomenclature was assigned to each 

mutation, based on recommendations from the authors Dunnen and Antonarakis [36]. Beyond 

the alteration in AVP cDNA, others changes were also taken into account like the exon in 

which mutations occur, the alterations caused at the protein level (amino acid changes), 

protein domain, the population and the existence of functional studies.       

 

2.2. Subjects and clinical procedures  

A total of 9 patients diagnosed with neurohypophyseal DI, consisting of 3 familial cases and 6 

sporadic cases, gave their informed consent for genetic studies of their AVP gene, in order to 

identify possible mutations which could be responsible for their disease. Diagnosis of patients 

was performed at the Endocrinology, Diabetes and Metabolism Service (University Hospital 

from Coimbra, Portugal) and was based on a fluid deprivation test followed by DDAVP 

administration.  

The present study was approved by the Ethics Committee of the Faculty of Health Sciences at 

the University of Beira Interior.  

 

2.3. DNA extraction 

When a blood sample is collected to perform molecular analysis, like the identification of 

genetic mutations, the first step in laboratorial procedure is DNA extraction. The method 

chosen for DNA extraction from peripheral blood is very important as it is necessary to obtain 

a highly purified DNA without fragmentation. Some points are very important when a 

particular technique is chosen like technical requirements, the time required to develop the 

protocol, the efficiency of the method and its monetary cost [37].  Several methods are used 

to extract DNA, including the use of organic solvents, but the contamination with proteins is a 

frequent problem [38]. Miller et al. published, in 1987, a new method to extract DNA that 
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involves the salting out of the cellular proteins by dehydration and precipitation with a 

saturated NaCl solution [38]. 

A total of 10 mL of blood was collected from each patient with Neurohypophyseal DI and the 

genomic DNA was extracted by the salting out method. The first stage in DNA extraction is 

cell lysis in order to have the DNA in solution. To perform the red blood cells (RBC) lysis, 

blood was transferred to 50 mL tubes and 30 mL of cold RBC lysis buffer (155 mM NH4Cl; 20 

mM KHCO3; 0,1 mM Na2EDTA; pH 7,4), was added. This buffer is a hypotonic solution which 

allows water intake into RBC, promoting their disruption. The mixture was incubated on ice 

during 15 min and was centrifuged at 2500 rpm, during 10 min at 4ºC. It is very important to 

remove hemoglobin, since its iron content can be a limitation to further downstream 

applications, so the previous step is repeated as long as the pellet remains red.  During 

leucocyte lysis, 5mL of secondary extraction (SE) buffer (75mM NaCl; 25mM Na2EDTA; pH 8,0), 

12,5µL of proteinase K (20mg/mL) and 500µL of 10% (w/v) sodium dodecyl sulfate (SDS) was 

added to the mixture and it was incubated overnight at 55ºC in a thermal block (Star Lab). 

Each reagent has a specific function: SE buffer contains chelating agents, which bind to 

nuclease cofactors and prevent DNA degradation by these enzymes, SDS is a detergent so it 

dissolves the cell membrane and denatures proteins and proteinase K digests proteins [39].  

Protein precipitation was performed by adding 3mL of saturated NaCl (6M), since this reagent 

decreases the solubility of proteins, followed by an incubation time of 10 min at 55ºC. The 

mixture was vortexed during 25 sec and finally it was centrifuged at 4000 rpm, during 30 min 

at 15ºC. The pellet was rejected and 100% (v/v) cold ethanol was added to the supernatant. 

As DNA is insoluble in ethanol, when this reagent is added, DNA molecules form aggregates 

that can be obtained in a pellet form upon centrifugation at 4500 rpm, during 5 min at 4ºC. 

The pellet was washed with 70% (v/v) cold ethanol followed by a last centrifugation at 4500 

rpm, during 5 min at 4ºC. In the end, the pellet was solubilized in 1mL of Tris-EDTA (TE) 

buffer. 

A most common method to quantify DNA samples is based on using a spectrophotometer, in a 

wave length (λ) of 260 nm. This method permits to estimate the quantity (Beer-Lambert law: 

A260=εbc, where A260 corresponds to absorbance, ε corresponds to molar absorbitivity with a 

value of 20cm.mg.ml-1, b corresponds to path length of the cuvette in which the sample is 

contained, and c corresponds to the concentration of the compound in solution) and the 

relative purity of DNA samples (in the case of proteins or RNA contamination), since proteins 

absorb light at 280 nm. A pure DNA sample will have a ratio (A260/A280) value of approximately 

1.8 - 2.     

The DNA was quantified using nanophotometer (IMPLEN).   
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2.4. Amplification of the AVP gene by polymerase chain 

reaction 

The preparation of large amounts of specific DNA fragments is an indispensable tool in 

experiments in molecular biology. Polymerase chain reaction (PCR) is an enzymatic 

amplification technique that can be used, when the nucleotide sequences at the ends of a 

particular DNA region are known, to prepare significant quantities of a specific DNA fragment 

[40, 41]. 

The PCR procedure begins with heat-denaturation (95ºC) of a DNA sample into single strands 

(denaturation step) so that in the next step, two synthetic oligonucleotides, added in great 

excess, complementary to the 3’ ends of the DNA fragment of interest can hybridize with 

their complementary sequences (annealing step). Annealing step occurs at lower 

temperatures (50-60ºC). The hybridized oligonucleotides will serve as primers for synthesis of 

a new DNA chain (extension step), in the presence of deoxynucleotides (dNTPs) and a 

thermoresistant DNA polymerase, such as that from Thermus aquaticus (hence, its name Taq 

polymerase). These three steps form a cycle, and when the extension step finishes, the whole 

mixture is heated again to 95º C to denature the newly formed double stranded DNA and a 

new annealing step occurs, since an excess of primers is present. Repeated cycles, each one 

with a denaturation step, an annealing step and an extension step, quickly amplify the 

sequence of interest [41].   

The three exons of AVP gene were amplified separately by PCR, using specific primers 

flanking each exon (Table 1). The PCR reaction was performed in a total volume of 25 µL with 

100 ng of purified genomic DNA, 0.2 mM of deoxyribonucleotides (dNTPs) (nzytech), 1U of 

Dream Taq DNA polymerase and complete Dream Taq buffer in a final MgCl2 concentration of 

1 mM (Fermentas) and 0.25 µM of each primer (AVP_1F and AVP_1R for exon 1, AVP_2Fc and 

AVP_2Rc for exon 2 and AVP_3Fd and AVP_2+3R for exon 3) (Stabvida). The PCR protocol was 

initiated with a denaturation step at 95ºC during 5 min followed by 35 cicles, each cycle with 

a denaturation step at 95ºC during 30 sec, an annealing step at 59ºC for exon 1, 75ºC for exon 

2 and 66ºC for exon 3, during 30 sec and a extension step at 72ºC during 30 sec and finally a 

longer extension step at 72ºC during 10 min so that Taq polymerase can synthesize the 

remaining DNA chains. PCR protocols were performed in a T100 thermal cycler (Bio-Rad). 
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Table 1. Sequence of the primers used for amplification of AVP exons. 

Primers name Exon Sequence 

AVP_1F 

1 

5' CACCAAGCAGTGCTGCATAC 3' 

AVP_1R 5' CTCTTTCCTAGCCCCTGACC 3' 

AVP_2Fc 

2 

5' ACTCCCGGCTCCCCTCCTCC 3' 

AVP_2Rc 5' TGCGCGGCGGGGGCGGGCCTG 3' 

AVP_3Fd 

3 

5' AGGGCGCCCGTGCTCACACG 3' 

AVP_2+3R 5' CCTCTCTCCCCTTCCCTCTTCCCGCCAGAG 3' 

AVP_3R 5’ CATTGGCGGAGGTTTATTGT 3’ 

 

 

2.5. Gel electrophoresis 

Electrophoresis in agarose gel is used to separate, identify and purify DNA fragments. The 

technique is rapid and simple to perform, and the DNA location within the gel is determined 

by staining of fluorescent intercalating dyes, such as ethidium bromide and greensafe 

(nzytech), allowing the detection of DNA bands by directed examination of the gel under 

ultra-violet (UV) light [42]. The matrix is formed by agarose, which is a linear polymer 

composed of D- and L-galactose [42]. When agarose is dissolved in a hot buffer and after it 

gelates by lowering the temperature, the chains of agarose will form helical fibers that 

aggregate into supercoiled structures resulting in a network of channels, for which diameters 

will depend on the agarose concentration [42, 43].    

Electrophoresis will depend on the capacity of the charged molecules to migrate through gel 

pores when placed in an electric field [43]. Near neutral pH, DNA molecules have a negative 

charge due to phosphate backbone and therefore they migrate towards the positive electrode 

[41].  The rate of migration of DNA through agarose gels depends on some factors like the 

molecular size of DNA (larger molecules migrate more slowly than the smaller molecules), the 

concentration of agarose (the more concentrated the gel is, the more closed are the gel pores 

and, in consequence, the more difficult it is for the migration of larger DNA fragments), the 

conformation of DNA (superhelical circular, nicked circular and linear forms of DNA migrate at 

different rates in the same agarose gel and their migration depend primarily on the 

concentration and type of agarose used but the migration is also influenced by the strength of 

the applied current, the ionic strength of the buffer used and others factors) and the applied 

voltage (at low voltage, the rate of migration of linear DNA is proportional to the applied 
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voltage but at higher voltages the mobility of high-molecular-weight DNA fragments increases 

differentially) [43].          

After the PCR reaction, the results were analyzed by electrophoresis. The agarose gel (1% 

(w/v)) was prepared with TAE buffer (40mM Tris-acetate, 1mM EDTA, pH=8,0). Agarose was 

dissolved in TAE buffer and, in order to visualize the PCR products, greensafe (nzytech) was 

added (1 µL per mL of gel). After gel polymerization, it was placed in a TAE buffer-containing 

electrophoresis tank with opposing immersed electrodes (Bio-Rad). The samples and the DNA 

size standard (VC 100bp Plus DNA Ladder, Vivantis) were loaded in the slots along the top of 

the gel and a 120 voltage was applied. At the end of the run, the gel was analyzed by UV 

illumination (Uvitec) and it was photographed using FireReader software (Version 15.15, 

Uvitec). 

 

2.6. AVP gene sequencing 

In order to identify mutations in genes, their sequence must be analyzed. The dideoxy chain-

termination method was described first in 1977 by Sanger F. and colleagues. The principal 

aim of this method is to synthesize a set of daughter strands, from the DNA fragment of 

interest, that are labeled at one end and differ in length by one nucleotide. When these 

daughter strands are separated by gel electrophoresis, the nucleotide sequence of the 

fragment can be established in automated DNA sequencing machines, since a fluorescence 

detector that can distinguish the four fluorescent tags is located at the end of the gel. 

Synthesis of truncated strands is due to the use of 2’,3’-dideoxyribonucleoside triphosphates 

(ddNTPs) that, in contrast to normal dNTPs, lack a 3’-hydroxyl group. Due to the lack of this 

group in ddNTPs, they can be incorporated into a growing DNA chain by the action of a DNA 

polymerase, but once incorporated they cannot form a phosphodiester bond with the next 

nucleotide leading to termination of the chain synthesis [41].      

The method begins with the denaturation of a double-stranded DNA sample to generate the 

template strands where a primer will hybridize for the polymerization reaction. In these 

reactions, the ddNTPs, at lower concentrations when compared with dNTPs, are randomly 

incorporated at the positions of the corresponding dNTP, causing termination of synthesis at 

those positions in the sequence. The inclusion of different fluorochromes in each ddNTP 

allows the identification of each truncated fragment after their migration through the 

electrophoresis gel and thus, the DNA sequence can be determined by the order in which 

each fragment passes through the fluorescence detector [41]. 

Before sequencing, the PCR products were purified by spin column technique following the 

manufacturer’s instructions (JETQUICK PCR purification Spin Kit, Genomed). After 
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purification, the presence of DNA was confirmed by electrophoresis in agarose gel (1% (w/v)) 

with DNA size standard HyperLadder II (Bioline). 

DNA sequencing has three main steps: preparation of the DNA sequencing reaction, ethanol 

precipitation and sample preparation for loading into the sequencing equipment (GenomeLab 

GeXP, Beckman Coulter). In preparation of the DNA sequencing reaction, for one DNA sample, 

two reactions were done. Each 20 µL reaction was prepared with approximately 14 ng of DNA 

sample, 0.25 µM of the primer (Stabvida) and 8 µL of DTCS Quick Start Master Mix 

(GenomeLab, Beckman Coulter). The primers used for sequencing reaction were the same 

used in the PCR reaction. The reactions were placed in T100 thermal cycler with the following 

protocol: 30 cycles, each cycle with one denaturating step at 96ºC during 20 sec, one 

annealing step at 55ºC for exon 2 and 50ºC for exon 1 and 3 during 20 sec and one extension 

step at 60ºC during 4 min. At the end of DNA sequencing reaction, ethanol precipitation and 

sample preparation were performed according to manufacturer’s instructions (GenomeLab, 

Beckman Coulter). The method used to sequence the samples comprised a capillary 

temperature of 50ºC, a denature temperature of 90ºC during 120 sec, an injection voltage of 

2.0 kV during 15 sec and a separation voltage of 4.0 kV during 70 min..   

The results were analyzed using GenomeLab Genetic Analysis System software (Version 

10.2.3, Beckman Coulter). 

 

2.7. pRc/RSV Sequencing 

The expression vector pRc/RSV (Fig. 6), which contains the human AVP cDNA, was a kind gift 

from Dr. J. Larry Jameson (University of Pennsylvania, USA). The cDNA was sequenced by the 

Sanger method. For preparation of DNA sequencing reaction, 190 ng of plasmid DNA (pDNA) 

was initially denaturated at 95ºC during 3 min. Then, two reactions with a final volume of 20 

µL were prepared. 0.25 µM of BHG-R primer (5’ GGCTGGCAACTAGAAGGCACAGTCGAGG 3’) 

was added in one reaction and 0.25 µM of AVP_1F in the other reaction. Finally, 8 µL of DTCS 

Quick Start Master Mix were added in both reactions. The reactions were placed in T100 

thermal cycler with the following protocol: 30 cycles, each cycle with one denaturating step 

at 96ºC during 20 sec, one annealing step at 50ºC during 20 sec and one extension step at 

60ºC during 4 min. At the end of DNA sequencing reaction, ethanol precipitation and sample 

preparation for loading into the instrument were performed according to manufacturer’s 

instructions (GenomeLab, Beckman Coulter). The method used to sequence the pDNA was the 

same used to sequence AVP exons with the exception of separation duration which was 150 

min.   

The results were analyzed using GenomeLab Genetic Analysis System software (Version 

10.2.3, Beckman Coulter). 
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Fig. 6. Expression vector pRc/RSV (Adapted from Invitrogen). 

 

2.8. Cloning of AVP cDNA into pVAX1/lacZ 

In order to study the effects of AVP mutations on gene expression at the molecular level, it is 

important to have large quantities of the gene in a pure form. DNA cloning allows the 

preparation of large numbers of identical DNA molecules [41]. The DNA fragment of interest, 

AVP cDNA, is linked to a vector which allows the transport of foreign DNA and its replication 

into a host cell, such as the bacterium Escherichia coli (E. coli). Once inside the host cell, the 

inserted DNA is replicated along with the vector generating a large number of identical DNA 

molecules [41, 43].  

The aim of this experimental step was the transfer (subcloning) of AVP cDNA, present in the 

expression vector pRc/RSV, to the pVAX1/lacz (Fig. 7) plasmid in order to insert the desired 

mutations in cDNA AVP. This step was crucial since the expression vector had restriction sites 

to the enzymes chosen for the insertion of the mutations. The XbaI (New England 

BioLabs)/HindIII (Takara Biotechnology) cDNA fragment was transferred from pRc/RSV to 

pVAX1/lacZ in the same sites.   

A total of 2.7 µg of pRc/RSV were digested in a total volume of 50 µL with 40U of XbaI, 1x 

NEBuffer 4 (New England Biolabs) and 100 µg/mL of bovine serum albumin (BSA). A total of 3 

µg of pVAX1/lacZ were digested in a total volume of 50 µL with 40 U of XbaI, 1x NEBuffer 4 

and 100 µg/mL of BSA. Both reactions were incubated during 2 hours (h) at 37ºC in a thermal 

block. An electrophoresis in agarose gel (1% (w/v)) was undertaken to analyze the digestion 

results. About 40-100 U of HindIII were added to pRc/RSV and pVAX1/lacZ. The reactions 

were incubated at 37ºC during 2 h and 30 min in a thermal block. A final electrophoresis was 

done in agarose gel (1% (w/v)) in order to analyze the digested fragments.  
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Fig. 7. Cloning vector (Adapted from Invitrogen). 

To purify the AVP cDNA (XbaI/HindIII) released from pRc/RSV, a low-melting point agarose 

(2.5% (w/v)) (nzytech) was prepared. A 120 voltage was applied and at the end of migration 

the corresponding bands were excised. DNA was extracted from gel by spin column technique 

(JETQUICK Gel Extraction Spin Kit, Genomed) and the results analyzed by electrophoresis in 

agarose gel (1% (w/v)). Regarding digested pVAX1/lacZ, the purification step was performed 

by spin column technique (JETQUICK PCR purification Spin Kit, Genomed). 

After purification, XbaI/HindIII AVP cDNA was ligated to XbaI/HindIII pVAX1/lacZ. Three 

reactions were prepared: reaction A with a final volume of 16 µL, contained  200 ng of 

XbaI/HindIII pVAX1/lacZ, 65 ng of XbaI/HindIII AVP cDNA, 3 U of T4 DNA ligase (pGEM-T Easy 

Vector System I, Promega) and 1x Rapid Ligation Buffer (pGEM-T Easy Vector System I, 

Promega); reaction B with a final volume of 20 µL, contained 200 ng of XbaI/HindIII 

pVAX1/lacZ, 91 ng of XbaI/HindIII AVP cDNA, 3 U of T4 DNA ligase and 1x Rapid Ligation 

Buffer; reaction C with a final volume of 14 µL, contained 100 ng of XbaI/HindIII pVAX1/lacZ, 

65 ng of XbaI/HindIII AVP cDNA, 3 U of T4 DNA ligase and 1x Rapid Ligation Buffer. The 

reactions were incubated during 1h at room temperature. 

  

2.9. Competent cells 

There are two methods that allow the cells to acquire competence in order to take up the 

DNA from the medium: a chemical and a physical method. The chemical method is based on 

washing E. coli cells with simple salt solutions, which allow cells to achieve the desired 

competence state [42]. Then, DNA is added to the bacterial culture, which is subjected to a 

brief heat shock that stimulates the cells to take up DNA from their surrounding medium [43]. 

Once inside the cell, the plasmid replicates autonomously and is passed to the next 

generations during cell division [43].            
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This simple chemical procedure generates enough transformed colonies four routine tasks but 

the mechanisms by which these combinations of chemical agents and physical treatments 

induce a state of competence remains unknown, such as the mechanism by which the plasmid 

DNA enters and establishes itself in competent cells [42]. 

In order to prepare competent cells, the material and all solutions needed were sterile. The 

environment in which cells were prepared was sterile too. Initially, 100 µL of E. coli (JM109) 

cells were inoculated in 5 mL of LB – Broth medium at 37ºC with orbital shaking of 200 rpm 

overnight. The following day, 2 mL of growing culture were inoculated in 250 mL of new LB-

Broth mediu at 37ºC with orbital shaking of 250 rpm until an optical density between 0.3 and 

0.4 was obtained (λ = 600 nm). The absorbance was measured using a spectrophotometer 

(Ultraspec 3000, Pharmacia Biotech). Then, the culture was centrifuged at 5000 rpm during 

10 min at 4ºC. The pellet was resuspended in 62.5 mL of MgCl2 100 mM at 4ºC, during 3 min 

and a new centrifugation was performed at 4000 rpm, during 10 min at 4ºC. Then, the pellet 

was resuspended in 12.5 mL of CaCl2 100 mM at 4ºC and a further 112.5 mL of CaCl2 100mM at 

4ºC were added. The mixture was maintained on ice during 30 min and one last centrifugation 

was performed at 4000 rpm during 10 min at 4ºC. Finally, the cells were resuspended in 5 mL 

of CaCl2 85 mM at 4ºC with 15% (v/v) of glycerol and aliquots of 100 µL were immersed in 

liquid nitrogen and stored at -80ºC. 

 

2.10. Transformation of competent cells with recombinant 

pVAX1/lacZ 

After 1h of ligation between XbaI/HindIII pVAX1/lacZ and XbaI/HindIII AVP cDNA, performed 

in section 2.8, competent E. coli cells (JM109) were transformed with the ligation reaction 

product. For each ligation, the total volume of reaction was added to 50 µL of competent 

cells and the mixtures were incubated on ice during 30 min. Then, a heat shock at 42ºC 

during 1 min was performed in a thermal block for each mixture and a new incubation on ice 

during 2 min was performed. After this step, 200 µL of LB-Broth medium, without antibiotic, 

was added and the cells were incubated during 2h at 37ºC with orbital shaking of 250 rpm. A 

volume of 100 µL of the previous mixture was spread on LB-agar/Kanamycin plates (50 

µg/mL) that were incubated at 37ºC overnight. A control was performed with 50 ng of initial 

pVAX1/lacZ.  

The following day, 6 colonies of each plate (except the control) were inoculated in 20 µL of 

LB – Broth medium in order to performed PCR as a confirmation method of insertion of AVP 

cDNA in the plasmid. The PCR were performed in a total volume of 25 µL using 2 µL of 

inoculum, 0.2 mM of dNTPs, 1 U of Dream Taq DNA polymerase and complete Dream Taq 

buffer in a final MgCl2 concentration of 1.5 mM and 0.25 µM of each primer (AVP_Mut1 (5’ 
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GCCCCGGGGGCAAAGGCCGCT 3’) and AVP_Mut4 (5’ CAAGGCCCCGGCCGGCCCGT 3’)). The PCR 

protocol was initiated with a denaturation step at 95ºC during 5 min followed by 35 cicles, 

each cycle with a denaturation step at 95ºC during 30 sec, an annealing step at 60ºC during 30 

sec and a extension step at 72ºC during 30 sec and finally a longer extension step at 72ºC 

during 10 min. PCR protocols were performed in T100 thermal cycler. An electrophoresis in 

agarose gel (1% (w/v)) was performed to analyze the PCR results by comparer to a DNA size 

standard (100bp DNA Ladder, New England Biolabs). 

The positive colonies were inoculated in 4 mL of LB – Broth medium with kanamycin (50 

µg/mL) and incubated overnight at 37ºC with orbital shaking of 250 rpm. After overnight 

growth, the cells were harvested and the recombinant plasmids were purified using Wizard 

Plus SV Minipreps DNA Purification System (Promega).  

In order to confirm the recombinant plasmids, pDNA was subjected to digestion with XbaI. In 

a final volume of 10 µL, 5 µL of each purified pDNA, 10 U of XbaI, 1x of respective buffer and 

100 µg/mL of BSA were added. The reactions were incubated during 2 h at 37ºC and an 

electrophoresis in agarose gel (1%(w/v)) was performed using a new DNA size standard (1 kb 

DNA Ladder, New England Biolabs). The recombinant plasmid which presented the size 

corresponding to recombinant pVAX1/lacZ (with XbaI/HindIII AVP cDNA) (pVAX/AVP) was also  

digested with XbaI and HindIII to confirm the AVP cDNA presence in a final volume of 25 µL, 

where 20 U of XbaI, 16-40 U of HindIII, 1x of XbaI buffer and 100 µg/mL of BSA were added. 

The reaction was incubated at 37ºC during 3 h and the results analyzed by an electrophoresis 

in agarose gel (1% (w/v)). Then, competent E. coli cells were transformed by the same 

protocol with approximately 34 ng of pVAX/AVP. The recombinant plasmids were purified 

using Wizard Plus SV Minipreps DNA Purification System. The pDNA (pVAX/AVP) was quantified 

using nanophotometer, as in section 2.3. 

 

2.11. Site – directed mutagenesis 

Site-directed mutagenesis allows researchers to make small and specific changes in a DNA 

sequence of interest. Alterations like substitutions of one base, deletions or insertions of a 

very small number of bases can be performed by this technique [43].        

The PCR site-directed mutagenesis required the synthesis of four DNA oligonucleotides 

wherein two of them contained the desired mutation. Two primary PCR reactions produced 

two overlapping DNA fragments and each fragment contained the same mutation introduced 

by the primers, in the region of overlap. This overlap region allowed the recombination of 

two fragments after their mixture, denaturation and renaturation, and could be extended by 

DNA polymerase in order to produce a complete double-stranded DNA fragment which served 

as template, for a second PCR reaction using only the outermost two primers to amplify the 
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final sequence [40]. Finally, the modified DNA could be cloned in an expression vector and 

their effect analyzed by introducing the DNA into a host cell.  

In order to introduce the two desired mutations in the expression vector, site-directed 

mutagenesis was used to create them. Seven primers were designed and synthesized 

(Stabvida), one of them is common to both mutations (Table 2).    

 

Table 2. Sequence of primers used for site-directed mutagenesis. 

Name Sequence Mutation 

AVP_Mut1 5’ GCCCCGGGGGCAAAGGCCGCT 3’ c.289C>G 

AVP_Mut2B 5’ AAGGCGGCGCAGCCGCCCCCGCT 3’ c.289C>G 

AVP_Mut3B 5’ AGCGGGGGCGGCTGCGCCGCCTT 3’ c.289C>G 

AVP_Mut4 5’ CAAGGCCCCGGCCGGCCCGT 3’ 
c.289C>G 
c.154T>C 

AVP_Mut5 5’GCAAAGGCCGCCGCTTCGGGCCCA 3’ c.154T>C 

AVP_Mut6 5’TGGGCCCGAAGCGGCGGCCTTTGC 3’ c.154T>C 

AVP1F_Mut7 5’ ATGCCTGACACCATGCTGCCCGCC 3’ c.154T>C 

 

For the first mutation (c.154T>C) (Fig. 8), two initial PCR reactions were performed and 

primers AVP_Mut6 and AVP1F_Mut7 were used to create fragment 1 (Frag1) and primers 

AVP_Mut5 and AVP_Mut4 were used to create fragment 2 (Frag2). In a final volume of 25 µL, 

for both reactions, the following reagents were added: 95 ng of expression vector (pRc/RSV), 

0.2 mM of dNTPs, 1 U of Dream Taq DNA polymerase and complete Dream Taq buffer, in a 

final MgCl2 concentration of 1 mM for both fragments and 0.25 µM of each primer. The PCR 

protocol was the same for both reactions: a denaturation step at 95ºC during 5 min followed 

by 35 cycles, each cycle with a denaturation step at 95ºC during 30 sec, an annealing step at 

75ºC during 30 sec and a extension step at 72ºC during 30 sec and, finally, a longer extension 

step at 72ºC during 10 min. The results were confirmed by an electrophoresis in agarose gel 

(1% (w/v)). The PCR products were purified using Wizard SV Gel and PCR Clean-Up System 

(Promega) and a new electrophoresis in agarose gel (1% (w/v)) was performed to analyze and 

quantify the purified DNA. Finally, a third PCR reaction was prepared using primers 

AVP1F_Mut7 and AVP_Mut4 yielding fragment 3 (Frag3). For a final volume of 25 µL, 

approximately 10 ng of Frag 1 and 16 ng of Frag2 were added, together with 0.2 mM of 

dNTPs, 1 U of Dream Taq and complete Dream Taq buffer, in a final MgCl2 concentration of 

1mM, and 0.25 µL of each primer. The PCR protocol was initiated with a denaturation step at 
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95ºC during 5 min followed by 40 cycles, each cycle with a denaturation step at 95ºC during 

30 sec and an annealing/extension step at 72ºC during 1 min and finally a longer extension 

step at 72ºC during 10 min. A final electrophoresis in agarose gel (1% (w/v)) was prepared to 

analyze the PCR results. 

 

Fig. 8. AVP cDNA with primers used in site-directed mutagenesis for the first mutation (c.154T>C). 

Orange represents first exon, black represents second exon and blue represents third exon. Red 

nucleotide represents nucleotide to be substituted and pink nucleotide, in the center of the primer, 

represents the altered nucleotide. Surrounded by pink is the restriction site for SmaI and surrounded by 

green is the restriction site for FseI. 

 

The Frag 3 was sequenced in order to confirm the insertion of the desired mutation. PCR 

products were purified by enzymatic digestion using exonuclease I (Fermentas) and alkaline 

phosphatase (Thermo Scientific FastAP Thermosensitive Alkaline Phosphatase, Fermentas). 

The manufacturer’s instructions for nucleotide purification were followed with an exception: 

10 µL of PCR product were used instead of 5 µL. For DNA sequencing reaction, two reactions 

with a final volume of 20 µL were prepared. 50 ng of purified PCR product were used in each 

reaction and 0.25 µM of AVP_Mut4 was added in one reaction and 0.25 µM of AVP1F_Mut7 in 

the other reaction. Finally, 4 µL of DTCS Quick Start Master Mix were added in both reactions. 

The reactions were placed in the thermal cycler with the following protocol: a initial 

denaturation step ate 96ºC during 3 min and 30 cycles, each cycle with one denaturating step 

at 96ºC during 20 sec, one annealing step at 55ºC during 20 sec and one extension step at 

60ºC during 4 min. At the end of the DNA sequencing reaction, ethanol precipitation and 

sample preparation for loading into the instrument were performed according to 

manufacturer’s instructions (GenomeLab, Beckman Coulter). The method used to sequence 

the Frag3 was the same used to sequence the AVP exons with the exception of separation 
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duration that was 120 min. The final results were analyzed using GenomeLab Genetic Analysis 

System software (Version 10.2.3, Beckman Coulter). 

For the second mutation (c.289C>G) (Fig. 9), primers AVP_Mut1 and AVP_Mut2B were used to 

create fragment AB (FragAB) in a first PCR and primers AVP_Mut3B and AVP_Mut4 were used 

to create fragment BB (FragBB) in a second PCR. In a final volume of 25 µL, for both 

reactions, the following reagents were added: 95 ng of expression vector (pRc/RSV), 0.2 mM 

of dNTPs, 1 U of Dream Taq DNA polymerase and complete Dream Taq buffer, in a final MgCl2 

concentration of 1.5 mM for FragAB and 1 mM for FragBB, and 0.25 µM of each primer. The 

PCR protocol used in both reactions was the same used for Frag1 and Frag2. An 

electrophoresis in agarose gel (1% (w/v)) was performed to confirm the PCR reaction. The 

products were purified using PCR & Gel Band Purification Kit (Grisp) and a new 

electrophoresis was performed to analyze and quantify the purified DNA fragment. Finally, a 

third PCR reaction was done using primers AVP1F_Mut7 and AVP_Mut4 yielding fragment CB 

(FragCB). For a final volume of 25 µL, 16 ng of each fragment were added, together with 0.2 

mM of dNTPs, 1 U of Dream Taq and complete Dream Taq buffer, in a final MgCl2 

concentration of 1mM, and 0.25 µL of each primer. The PCR protocol was the same used to 

amplify Frag3 and a final electrophoresis in agarose gel (1% (w/v)) was performed to analyze 

the PCR results. 

 

Fig. 9. AVP cDNA with primers used in site-directed mutagenesis for the second mutation (c.289C>G). 

Orange represents first exon, black represents second exon and blue represents third exon. Red 

nucleotide represents nucleotide to be substituted and pink nucleotide, in the center of the primer, 

represents the altered nucleotide. Surrounded by pink is the restriction site for SmaI and surrounded by 

green is the restriction site for FseI. 

 



Mutations in patients with neurohypophyseal diabetes insipidus 
 

30 
 

FragCB was sequenced in order to confirm the insertion of the desired mutation. PCR 

products were purified as previously. For preparation of DNA sequencing, two reactions with a 

final volume of 20 µL were prepared. 10 ng of purified PCR product were used in each 

reaction and 0.25 µM of AVP_Mut1 was added in one reaction and 0.25 µM of AVP_Mut4 in the 

other reaction. Finally, 4 µL of DTCS Quick Start Master Mix were added in both reactions. 

The reactions were placed in T100 thermal cycler with the same protocol used for Frag3. At 

the end of the DNA sequencing reaction, ethanol precipitation and sample preparation for 

loading into the instrument were performed according to manufacturer’s instructions 

(GenomeLab, Beckman Coulter). The method used to sequence FragCB was the same used to 

sequence Frag3 and the results were analyzed using the same software. 

 

2.12. Cloning of Frag3 and Frag CB  

Fragments containing the desired mutation were digested with restricted enzymes in order to 

be introduced in pVAX/AVP. Both mutagenesis fragments and pVAX/AVP were digested using 

SmaI (New England Biolabs) and FseI (New England Biolabs). For a final volume of 50 µL, 2.5 

µg of pVAX/AVP and 1 µg of PCR product (Frag3 and FragCB), 20 U of SmaI and 1x of 

respective buffer were added and the mixtures were incubated during 1 h and 30 min at 25ºC 

in a thermal cycler. An electrophoresis in agarose gel (1% (w/v)) was performed to analyze 

the results and the digested continued with addition of 10 U of FseI and 100 µg/mL of BSA. 

The reactions were incubated during 1 h and 30 min at 37ºC in a thermal block and an 

electrophoresis in agasore gel (1% (w/v) was performed to analyze the digest. 

An electrophoresis in low melting point agarose (2.5% (w/v)) was performed in order to purify 

the desired fragments. The excised fragments were purified using Wizard SV Gel and PCR 

Clean-Up System (Promega) and the results analyzed by electrophoresis in agarose gel (1% 

(w/v)). Purified fragments were quantified. 

A molar ratio of 1:3 was used to ligate SmaI/FseI Frag CB to SmaI/FseI pVAX/AVP and to ligate 

SmaI/FseI Frag CB to SmaI/FseI pVAX/AVP. In each reaction, 50 ng of vector and 15 ng of 

insert were used. T4 DNA ligase (DNA ligation kit, Takara) was used to ligate fragments. The 

reactions were incubated at 16ºC overnight in a T100 thermal cycler. The following day, NEB 

5-alpha Competent E. coli (High Efficiency cells) (New England Biolabs) were transformed 

with ligated vectors according to manufacturer’s instructions. Different colonies were 

incubated in LB-Broth/kanamycin medium overnight, at 37ºC with 250 rpm and pDNA were 

purified using Wizard Plus SV Minipreps DNA Purification System. The pDNA was quantified. 

The pDNA of each colony was sequenced using the Sanger method. For preparation of the DNA 

sequencing reaction, 150 ng of pDNA was initially denaturated at 95ºC during 3 min. Then, 

two reactions for each colony were prepared to a final volume of 20 µL. 0.25 µM of 
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AVP1F_Mut7 primer was added in one reaction and 0.25 µM of AVP_Mut4 in the other 

reaction. Finally, 4 µL of DTCS Quick Start Master Mix were added in both reactions. The 

reactions were placed in a thermal cycler with the following protocol: a denaturing step at 

95ºC during 3 min and 30 cycles, each cycle with one denaturating step at 96ºC during 20 sec, 

one annealing step at 50ºC during 20 sec and one extension step at 60ºC during 4 min. At the 

end of the DNA sequencing reaction, ethanol precipitation and sample preparation for loading 

into the instrument were performed according to manufacturer’s instructions (GenomeLab, 

Beckman Coulter). The method used to sequence the pDNA was the same used to sequence 

the AVP exons with exception of separation duration that was 110 min. The results were 

analyzed using the same software. 

 

2.13. Expression of the normal AVP gene in Neuro 2A cells  

Several authors published functional studies where they show the effect of adFNDI mutations 

in neuronal cell lines, allowing an advancement in the understanding of consequences of the 

AVP gene mutations at the level of protein expression [12, 13, 44]. Several of these studies used 

neuroblastoma cells, known as neuro2A (N2A), as these cells are from neuronal origin and 

provide adequate conditions for the expression of the AVP gene [12]. 

N2A cells were kindly provided by Prof. Luis Pereira de Almeida (Center for Neurosciences and 

Cell Biology & Faculty of Pharmacy, University of Coimbra, Portugal). The cells were seeded 

in 12-well plates and growth in Dulbecco’s modified eagle’s medium (DMEM) (Biochrom AG) 

with 10% of fetal bovine serum (FBS) and 5% of antibiotics (penicillin and streptomycin) at 

37ºC in an atmosphere of 5% of CO2. One day before transfection, the medium was changed to 

DMEM with 10% of FBS and without antibiotics. To optimize the optimum ratio of DNA to 

lipofectamine reagent, the following day, cells were transfected with 5 µg or 10 µg of wild 

type AVP cDNA construct (pRc/RSV-AVP) and 4 µL or 8 µL of Lipofectamine 2000 (Invitrogen) 

per well (table 3). Two transfection controls were performed, one to analyze endogenous 

protein production, where no pRc/RSV-AVP neither lipofectamine were added to cells, and 

another to monitor cytotoxicity from the transfection reagent, where 8 µL of lipofectamine 

were added to cell culture. Another two controls for immunocytochemistry assays were 

performed where 5 µg of pRc/RSV-AVP and 4 µL of lipofectamine were added at each assay. 

All assays were duplicated and were summarized in table 3. Lipofectamine was diluted in 100 

µL of Opti-modified eagle’s medium (Opti-MEM) (Gibco) and incubated during 5 min at room 

temperature. The expression vector was diluted in 100 µL of Opti-MEM. The diluted DNA and 

lipofectamine were combined, mixed and incubated during 20 min at room temperature. 

Finally, this combined mixture was added to cell culture and incubated at 37ºC in an 

atmosphere of 5% of CO2. 24 h latter, the medium was changed to DMEM with 5% of antibiotic 

without FBS and remained at 37ºC during 72 h. 
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Table 3. Summary of transfection assay conditions. 

Wells A B C D 

1 
5 µg pRc/RSV-AVP 

8 µL lipofectamine 

5 µg pRc/RSV-AVP 

8 µL lipofectamine 

Without 

lipofectamine 

Without pRc/RSV-

AVP 

Without 

lipofectamine 

Without pRc/RSV-

AVP 

2 
10 µg pRc/RSV-AVP 

8 µL lipofectamine 

10 µg pRc/RSV-AVP 

8 µL lipofectamine 

2 µL lipofectamine 

Without pRc/RSV-

AVP 

2 µL lipofectamine 

Without pRc/RSV-

AVP 

3 
5 µg pRc/RSV-AVP 

4 µL lipofectamine 

5 µg pRc/RSV-AVP 

4 µL lipofectamine 

5 µg pRc/RSV-AVP 

4 µL lipofectamine 

5 µg pRc/RSV-AVP 

4 µL lipofectamine 

 

 

2.14. Immunocytochemistry 

Immunocytochemistry is a technique that uses antibodies that target specific peptides or 

protein antigens in the cell via specific epitopes. Bound antibodies can be detected using 

several different methods. Earlier, the technique was based on labeling the specific antibody 

with a fluorophore which was applied to the cells to identify the antigen sites. This method is 

known as the direct method [45]. Later, some alterations were performed and the specific 

antibody, bound to the antigen, was detected with a secondary antibody that was tagged with 

either a fluorophore or an enzyme. This method is the indirected method widely used in 

immunocytochemistry [45]. Different fluorophores with different emission spectra made it 

possible to detect two or more antigens in the same cells but fluorescent labeling also has 

several disadvantages like the requirement of special instrumentation and the interpretation 

of background details, like autofluorescence [45]. Concerning antibodies, the most desirable 

display high specificity and affinity for the antigen, in order to avoid false-positive reactions, 

and are produced in high titer so that they can be used at high dilution [45]. 

Three important steps in immunocytochemistry are: cell fixation, membrane permeabilization 

and the block of unspecific reactions. Most studied antigens are soluble in aqueous solutions 

and they need to be fixed in place in cells before antibody addition. On the other hand, 

insoluble antigens also need to be structurally preserved [45]. All chemical fixatives cause 

chemical and conformational changes in the protein structure and usually, they disturb the 

secondary and tertiary structure of proteins that are mostly responsible for eliciting 

antigenicity [45]. Thus, it is important to choose a fixation method that minimally interferes 

with cellular structure and chemical composition [45]. Regarding permeabilization, it is 

important to note that antibodies are larger molecules that cannot diffuse into and out of 

cells, so, specific reagents must be used in order to permeabilize the cell and organelle 
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membranes allowing antibody access to intracellular and intraorganellar antigens [45]. With 

respect to blocking of unspecific reactions, secondary antibodies can react with charged 

groups like unbound aldehydes from the fixative reagents or cell components such as 

histones. Thus, in order to minimize these reactions, it is important to block the charged 

groups with proteins containing no important antigens [46]. 

After transfection, the medium was aspirated and the cells were washed with 1x phosphate-

buffered saline (PBS) buffer. The fixation and permeabilization were performed using a 1:1 

ratio of methanol:acetone with both solutions at -20ºC. Then, a 12-well plate was incubated 

at -20ºC during 10 min. Solvents such as alcohols and acetone are strong coagulant fixatives 

and they act by displacing water, which causes cellular shrinkage and the destruction of most 

organelles, breaking hydrogen bonds and thus disrupting the tertiary structure of proteins [45]. 

On the other hand, these solvents also dissolve membrane lipids leading to their 

permeabilization [45]. Cells were washed again with 1x PBS buffer and blocked with blocking 

buffer containing: 1x PBS, 0.1% Tween and 1% BSA for 1 h at room temperature. Then, cells 

were washed with 1x PBS and 0.1% Tween (PBST) and incubated with respective antibodies 

according to tables 4 and 5. The antibodies dilutions were performed with dilution solution 

containing PBST and 1% FBS. After incubation with each antibody, cells were washed with PBST 

during 15 min. Post-stained cell cultures on cover-slips were mounted using Dako fluorescent 

mounting medium (Sigma). According to table 3 (3C and 3D), two more controls for 

immunocytochemistry were performed: the first was used as labeling control (to analyze the 

contribution of endogenous fluorescence) and the second was used as secondary antibody 

control (to eliminate the nonspecific binding hypothesis).  

The results were observed by Confocal laser scanning microscopy and the images were 

obtained using the software Zen 2011 (Zeiss).  

 

Table 4. Antibodies used for immunocytochemistry assays with dilutions and incubation times. 

Antibody type Antibody Species Dilution Incubation time 

1º 
Anti-NPII 

(Neurophysin II, goat polyclonal IgG, 
Santa Cruz Biotechnology) 

Goat 1/50 2 h 

1º 
Anti-endoplasmic reticulum 

(anti-protein disulfide isomerase, 
mouse IgG2b monoclonal, Invitrogen) 

Mouse 1/1000 1h30 

2º 
Anti-goat 

(Alexa Fluor 350 donkey anti-goat 
IgG, Invitrogen) 

Donkey 1/1000 1 h 

2º 
Anti-mouse 

(Alexa Fluor 488 goat anti-mouse IgG, 
Invitrogen) 

Goat 1/1000 30 min 
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Table 5. Immunocytochemistry assay. 

Experiments A B C D 

1 NPII staining 
NPII staining + 
Endoplasmic 

reticulum staining 
NPII staining 

NPII staining + 
Endoplasmic 

reticulum staining 

2 NPII staining 
NPII staining + 
Endoplasmic 

reticulum staining 
NPII staining 

NPII staining + 
Endoplasmic 

reticulum staining 

3 NPII staining 
NPII staining + 
Endoplasmic 

reticulum staining 

Without primary 
antibodies + with 

secundary 
antibodies 

Without primary 
and secondary 

antibodies 
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3. Results  

 

3.1. Reported mutations in the AVP gene  

After a literature search, a table was drawn with all the mutations so far described in the AVP 

gene (Table 6). The first mutation was described in 1991 and since then, numerous families 

with a FNDI diagnosis have been studied and found to have mutations in the AVP gene. 

So far, there are 70 different mutations described in the scientific literature and 104 

different families reported with one of these mutations (families and mutations reported in 

this study were not taken into account). In these 70 mutations, 60 correspond to the 

substitution of a single nucleotide, 3 correspond to the substitution of 2 nucleotides, 2 

correspond to the deletion of a single nucleotide, 3 correspond to the deletion of 3 

nucleotides and 1 mutation corresponds to an almost complete deletion of the AVP gene (with 

the exception of exon 1). For one mutation it was not possible to determine the exact 

nucleotide change due to insufficient data. According to these variants, 54 mutations cause 

missense changes, 2 mutations cause deletion of a single amino acid residue, 3 mutations 

cause deletion of 4 amino acids residues, 7 mutations lead to the insertion of a premature 

stop codon (nonsense), 1 mutation causes a frameshift, 1 mutation causes an indel 

(insertion/deletion) and two mutations have an unknown effect at protein (p.?). Several 

families shared the same mutations; the most relevant was the c.55G>A mutation, 

corresponding to 8% of studied families. Regarding the type of alteration at the protein level, 

Fig. 10 presents their distribution between all reported families (families reported in this 

study were not taken into account).  

 

Fig. 10. Percentage of each type of protein change caused by the mutations in 104 reported families. 

 

The mutations are distributed throughout the gene (Fig. 11) 

77% 

8% 

3% 
8% 

1% 1% 2% Missense 

Deletion of a single amino acid 

Deletion of 4 amino acids 

Nonsense 

Frameshift 

Indel 

p.? 
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Fig. 11. Unique mutations described in the human AVP gene. Black arrows represent described 

mutations in scientific literature. Pink arrows represent the novel mutations studied in this thesis and 

the orange arrow represents the third analyzed mutation, which as previously been described. 

 

3.2. Identification of kindreds with mutations 

Nine patients were diagnosed with neurohypophyseal DI. A blood sample of each patient 

arrived to the Health Sciences Research Centre and the DNA of each individual was extracted 

from leucocytes, in order to analyze the AVP gene and detect possible mutations. 

In all these patients, only the three familial cases presented mutations in the AVP gene. 

Although several individuals, in each family, were reported to have disease symptoms, only 

patients indicated by arrows (Fig. 12) were available for genetic studies, with the exception 

of family B (Fig. 12) in which both the index cass and his mother were studed and found to 

have an AVP mutation. None of the 6 sporadic cases were found to have mutations in the AVP 

gene. 

 

3.3.  Identification of mutations in  the AVP gene 

All three exons of the patients were amplified by PCR. Exon 1 amplification resulted in a 240 

bp fragment, exon 2 amplification resulted in a 268 bp fragment and exon 3 amplification 

resulted in a 322 bp fragment (Fig 13).  
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Fig. 12. Pedigrees of three families with adFNDI. Index cases are marked by an arrow. Closed symbols 

represent individuals with historical or laboratory evidence of DI and open symbols represent healthy 

individuals. 

 

The subsequent sequencing revealed three different mutations of which two of them are 

novel mutations. Patient III-1 from family A showed a heterozygous T to C transition at 

position 154 of AVP cDNA (c.154T>C) (Fig. 14 A). This alteration occurs in the second exon and 

results in an amino acid substitution of cysteine to arginine at position 52 in the protein 

(p.C52R), affecting NPII in amino acid position 21. Patient II-1 from family B showed a 

heterozygous C to G transition at position 289 of AVP cDNA (c.289C>G) (Fig. 14 B). The 

mutation also occurs in the second exon and results in an amino acid substitution of Arg to 

glycine (Gly/G) at position 97 in protein (p.R97G) which corresponds to amino acid 66 of NPII. 

The AVP gene of the patient’s mother (I-2, family B) was found to have the same mutation. 

Patient II-4 from family C showed a heterozygous G to T transition at position 343 of AVP 

cDNA (c.343G>T) (Fig. 14 C). The transition occurs in the third exon and results in a nonsense 

mutation as the amino acid glutamic acid is substituted by a termination codon at position 

115 in the protein (p.E115X). This mutation results in a truncated protein which ends at 

amino acid 84 in NPII.    
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Fig. 13. Electrophoresis of PCR products for each AVP gene exon. A, B and C correspond to first, second 

and third exon, respectively. Lane 1 corresponds to DNA size standard, lane 2 corresponds to the 

negative control of PCR reaction (without DNA), lane 3 corresponds to the positive control of PCR 

reaction, which contains DNA of a healthy individual and the remaining lanes correspond to nine 

analyzed patients. 

The mutations found in the patients from family A and B are novel mutations, whereas the 

mutation found in patient from family C has been already described [85]. 
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Fig. 14. Electropherograms from fragments of the AVP gene of one healthy individual and three 

clinically affected subjects with novel identified mutations. A, missense mutation founded in patient III-

1 (family A) compared to a healthy individual in exon 2. B, missense mutation found in patients II-1 

(family B) compared to a healthy individual in exon 2. C, nonsense mutation found in patient II-4 (family 

C) compared to a healthy individual in exon 3.The heterozygous mutations are indicated by black 

arrows. 

 

3.4. Construction of the pVAX/AVP vector 

pRc/RSV-AVP was sequenced to confirm the AVP cDNA sequence. There were no divergences 

compared with the Ensembl (Gene ID: ENSG00000101200) sequence. Therefore, the pRc/RSV-

AVP was appropriate to be used as the wild-type form of AVP gene for further functional 

studies. 

The transfer of AVP cDNA from pRc/RSV-AVP to pVAX1/lacz was not an easy process and 

required optimization. The transformation protocol of E. coli cells with pVAX/lacZ was only 

achieved with a stabilization step of 2 h with agitation, after transformation. The best yields 

of the three ligation ratios (of XbaI/HindIII AVP cDNA and XbaI/HindIII pVAX/lacZ) were 

obtained with reactions A and B, refered in section 2.8. 

PCR reaction is a convenient method to confirm the presence of an insert in bacteria’s pDNA. 

However, in this study, we observed the existence of several false positives when the 

pVAX/AVP was analyzed by PCR reaction, from LB-agar/ Kanamycin clones. When pVAX1/lacZ, 

with 6100 bp, was digested with XbaI and HindIII, two fragments were obtained: a larger 

fragment of 3125 bp, which represents the polylinker zone, and a smaller one with 2975 bp 

where the AVP cDNA will be inserted, leading to a 3594 bp plasmid. Thus, both plasmids 
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would be present in transformed colonies and in order to select the recombinants of interest, 

a screening of pDNA from some colonies was performed with XbaI, revealing some pVAX/AVP 

with 3594 bp length (Fig. 15, lanes 5,6,7,8,12,14,16 and 19). 

 

Fig. 15. Analysis of purified pDNA after enzymatic digestion with XbaI. Lane 1 corresponds to 1 kb DNA 

ladder and the remaining lanes correspond to several purified and digested pDNA. The bands with 

greater molecular size correspond to digested pVAX/lacZ and the bands with lower molecular size 

correspond to digested pVAX/AVP. The enzymatic digestion represented an efficient method to analyze 

the presence of different pDNA.  

 

Some of the purified pDNAs were also analyzed by XbaI and HindIII digestion, to confirm the 

cDNA presence, and the correct fragments were obtained: XbaI/HindIII pVAX/AVP with 2975 

bp and XbaI/HindIII AVP cDNA with 619 bp (Fig. 16). 

 

Fig. 16. Confirmation of AVP cDNA in the recombinant pVAX/AVP. Lane 1 corresponds to 1 kb DNA 

ladder, lanes 2 and 3 correspond to two different purified pDNAs, XbaI and HindIII digested, and lane 

number 4 corresponds to 100 bp DNA ladder. 
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3.5. Site-directed mutagenesis as a method to introduce 

desired mutations in AVP cDNA 

Site-directed mutagenesis proves to be a very efficient technique to introduce substitutions in 

a DNA chain. However, it is important to consider an important factor: the position of the 

mutated nucleotide in the primer sequence. Initially, the mutated nucleotide was in the 3’ 

extremity of the primer and all attempts, to insert the desired mutation in the PCR product, 

failed. Thus, the mutated primers were altered so that the position of the mutated 

nucleotide was in the middle of the primer. 

The technique of site directed mutagenesis was the same for both mutations, the mutation 

from family A (c.154T>C) and the mutation from family B (c.289C>G). For the first mutation 

(c.154T>C), the PCR reaction using WT AVP cDNA as template, with primers AVP1F_Mut7 and 

AVP_Mut6 originated Frag1 (166 bp), and the PCR reaction with primers AVP_Mut5 and 

AVP_Mut4 originated Frag2 (284 bp) (Fig. 17 A). For the second mutation (c.289C>G), the PCR 

reaction with primers AVP_Mut1 and AVP_Mut2B originated FragAB (169 bp), and the PCR 

reaction with primers AVP_Mut3B and AVP_Mut4 originated FragBB (147 bp) (Fig. 17 B). 

After purification of the amplified PCR products, the pairs were used as DNA template in a 

new PCR reaction to obtain the complete fragments (Fig. 8 and 9). For the first mutation, 

primers AVP1F_Mut7 and AVP_Mut4 originated Frag3, with 430 bp (Fig. 18 A), and for the 

second mutation, primers AVP_Mut1 and AVP_Mut4 originated FragCB, with 293 bp (Fig. 18 B). 

 

Fig. 17. First PCR reactions for site directed mutagenesis for both mutations. A corresponds to 

amplification of Frag1 (lane 3) and Frag2 (lane 5) whereas B corresponds to amplification of FragAB 

(lane 3) and FragBB (lane 5). In both images, lanes 1 correspond to 100 bp DNA ladder, lanes 2 and 4 

corresponds to the negative control of the PCR reaction. 
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Fig. 18. Subsequent PCR reactions for both mutations. A corresponds to amplification of Frag3 (lane 4) 

whereas B corresponds to amplification of FragCB (lane 4) and FragBB (lane 4). In both images, lanes 1 

correspond to 100 bp DNA ladder, lanes 2 to the negative control of the PCR reaction and lanes 3 to 

positive control (pRc/RSV-AVP). 

 

The products of 430 and 293 bp were sequenced in order to confirm the correct insertion of 

mutations, and the results were consistent with the expected. Through electropherogram 

analysis the presence of the mutated nucleotides was observed (the cytosine in Frag3 and the 

guanine in FragCB) together with the WT nucleotide (thymine in Frag3 and cytosine in FragCB) 

(Fig. 19). 

 

Fig. 19. Electropherograms from site-directed mutagenesis fragments. A represents a portion of Frag3 

where the inserted mutation is observed and indicated by the black arrow. B represents a portion of 

FragCB where the inserted mutation is observed and indicated by the black arrow. 
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3.6.  Cloning of mutations in pVAX/AVP 

The process of introducing the mutations in AVP cDNA, previously inserted in pVAX/AVP, 

proved to be difficult. Initially, the BbvcI enzyme was used, in both mutations, and the 

fragments were correctly digested but, after ligation no transformation products were 

obtained. After analysis of BbvcI characteristics it was concluded that the BbvcI enzyme was 

not the most appropriate enzyme for re-ligation since the ligation efficacy of the digested 

fragments is less than 10% (New England Biolabs).  

Thus, the strategy of inserting Frag3 and FragCB in pVAX/AVP was modified by the use of the 

FseI restriction enzyme, whose digestion products present a ligation percentage greater than 

95% (New England Biolabs). Frag3 was digested with SmaI and FseI, originating three 

fragments with 138 bp, 275 bp and 13 bp. The 275 bp’s fragment (SmaI/FseI Frag3) was 

inserted in pVAX/AVP which, when digested with the same enzymes, releases the same 

fragment length of 275 bp (Fig. 20). FragCB when digested with SmaI and FseI originates three 

fragments with, 275 bp, 13 bp and 5 bp. The fragment with 275 bp (SmaI/FseI FragCB) was 

inserted in SmaI/FseI pVAX/AVP (Fig. 20).  

 

Fig. 20. SmaI/FseI digestion of FragCB, Frag3 and pVAX/AVP. Lane 1 corresponds to 100 bp DNA ladder, 

lanes 2 and 3 correspond to FragCB digested with SmaI and FseI, lanes 4 and 5 correspond to Frag3 

digested with SmaI and FseI and lanes 6 and 7 correspond to pVAX/AVP digested with SmaI and FseI. 

 

Competent E. coli cells (Promega) were transformed with ligation products, resulting from 

various molar ratios (1:1, 1:3, 1:5, 3:1 (vector:insert)) of SmaI/FseI Frag3 or SmaI/FseI FragCB 

and SmaI/FseI pVAX/AVP but no transformation products were obtained. Thus, high efficiency 

competent cells (New England Biolabs) were used. A molar ratio of 1:3 (vector:insert) was 

used to transform the cells and several transformed colonies were obtained. There were 

colonies with the WT nucleotide and colonies with alternative nucleotide (Fig. 21).  
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Fig. 21. Electropherograms from the sequences of the mutated pVAX/AVP vector. A represents 

pVAX/AVP with mutation c.154T>C and the mutated nucleotide is indicated by the black arrow. B 

represents pVAX/AVP with mutation c.289C>G and the mutated nucleotide is indicated by the black 

arrow. 

 

3.7.  Analysis of AVP WT gene expression in N2A cells 

Immunocytochemistry was the chosen method to analyze the expression of the WT AVP gene 

in the transfected N2A cells. The transfection protocol was optimized. Initially, after 

transfection, the cells remained only 6 hours in medium with DNA and lipofectamine and the 

incubation step with DMEM with 5% of antibiotics and without FBS lasted 48 h. However, after 

the immunocytochemistry assay, several aggregates of poorly differentiated cells were 

observed and no staining for NPII was obtained. Thus, we increased the time in medium with 

DNA and lipofectamine to 24 h, and the incubation time with DMEM with 5% of antibiotics and 

without FBS to 72 h. The resulting cells were much more differentiated and some NPII staining 

was observed, mostly in transfection assays containing 5 µg of DNA and 8 µL of lipofectamine 

(Fig. 22). 

The immunocytochemistry protocol was also optimized. After the transfection protocol, cells 

were fixed with paraformaldehyde and permeabilized with a solution containing 1x PBS and 

1% Triton and were blocked with blocking buffer containing 1x PBS, 0.1% Tween and 20% FBS. 

The results obtained revealed a high green fluorescence, even without staining (Fig. 22). This 

fluorescence indicated that N2A cells presented autofluorescence when the 

immunocytochemistry was performed according to the previously protocol. Thus, the 

immunocytochemistry protocol was altered to that described in section 2.13 but some 

autofluorescence remained. 
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Fig. 22. Cellular localization of NPII protein in transiently transfected N2A cells as visualized by confocal 

laser microscopy. NPII was detected by incubation with a goat anti-NPII and an Alexa Fluor 350 donkey 

anti-goat (blue staining). NPII is localized in cellular axons and it is indicated by the white arrows. The 

green staining represents cells’ autofluorescence. 

 

After transfection and immunocytochemistry optimization, the WT AVP gene was expressed in 

N2A cells, as the NPII protein was observed in cells’ axons using confocal laser scanning 

microscopy. However, a double staining of NPII and endoplasmic reticulum was not possible 

with the use of antibodies referred in table 4. This was due to a possible cross-reactivity 

between antibodies since there are two goat antibodies (anti-NPII and anti-mouse) and one 

anti-goat antibody which can react with both goat antibodies and, thus, eliminate the 

staining for NPII. To confirm this hypothesis, several double stainings were performed, for 

NPII and endoplasmic reticulum, and no staining for NPII was observed.      
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4. Discussion 

Until now, adFNDI linked to mutations in the gene encoding the AVP precursor has been 

reported in 104 families. A total of 70 mutations have been already described, and with the 

novel mutations discovered and presented in this study, the total number of mutations is 

extended to 72. 

Most mutations are located in the coding region of AVP gene, with two exceptions in mutation 

c.322+1delG [24], which is localized in intron 1, and a mutation recently described [102], which 

deletes the majority of the AVP gene and its regulatory sequences, in the intergenic region 

between the AVP and the oxytocin gene [102]. The mutations described in our study are also 

localized in the coding region of AVP gene, and, as most mutations, have an autosomal 

dominant transmission. 

Within a total number of 72 described mutations, only two are autosomal recessive. The most 

recent case is reported by Christensen and colleagues [102], in which, a deletion of 

approximately 10 kb was described [102]. The authors suggest that, a recessive pattern is 

observed due to a complete abolishment of the transcription of the AVP gene [102]. Family 

members that are heterozygous for this deletion showed no symptoms of adFNDI, as the 

normal allele of AVP appears to be enough to produce sufficient AVP secretion. The second 

case of an autosomal recessive mutation was described by Willcutts and colleagues [58], in 

1999. Their study described a mutation in the AVP domain, which results in a progressive loss 

of antidiuretic activity despite continued secretion of the anomalous hormone [58]. 

As described in the introdution, there are three types of mutations capable of producing an 

abnormal precursor, by causing changes in its primary structure: mutations predicted to 

interfere in the interaction between AVP and NPII, mutations predicted to alter the 

flexibility, rigidity and disulphide bridge formation of the pro-hormone, and mutations 

predicted to encode a truncated NPII by introducing premature stop codons [4, 10]. The three 

mutations identified in this study can be introduced in one, or more, groups. 

Mutation c.154T>C, localized in exon 2, results in an amino acid substitution of cysteine to 

arginine at position 52 in the protein domain. Several mutations altering cysteine residues 

have been described. All these mutations are responsible for the adFNDI phenotype, since 

they disrupt the protein structure by eliminating a disulfide bridge that normally stabilizes 

the pro-hormone into its proper conformation [4, 10, 13]. This novel mutation will eliminate the 

disulfide bridge formed between cysteine at position 21 and cysteine at position 44 in NPII 

peptide. In addition to eliminate a disulfide bridge that is important to protein structure, this 

disulfide bridge forms the outer edge of the peptide-binding site, thus interfering with the 

binding of AVP hormone to NPII [103]. 
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Mutation c.289C>G, present also in exon 2, results in an amino acid substitution of arginine to 

glycine at position 97 in protein domain. This mutation is similar to other described mutations 

that also introduce glycine residues, leading to an increase in protein flexibity and, thus 

impairing its correct folding [4, 13]. 

Mutation c.343G>T, located in exon 3, results in a substitution of glutamic acid to a stop 

codon, resulting in a truncated protein without copeptin and some residues in the COOH-

terminal of NPII. The role of copeptin is uncertain, howerever, it is possible that copeptin 

glycosylation plays an important role by assisting refolding of misfolded AVP pro-hormone 

monomers [17], as described in the introduction. Functional studies have not yet been 

performed, however, protein expression can be expected for the same reason pointed for the 

recessive pattern of the deletion described by Christensen and colleagues [102]. Thus, this 

mutation can cause adFNDI phenotype by eliminating important residues that help in the 

folding of the precursor. 

Although the novel mutations identified in this study are likely to be pathogenic, further 

studies are needed to demonstrate the functional effects of these mutations. For this 

purpose, these mutations are already been cloned into an expression vector (pRc/RSV) and 

the cells transfection protocol as already been optimized for the WT AVP gene. This WT AVP 

gene is a crucial control for immunocytochemistry assays measurement of AVP levels, western 

blot and apoptosis assays. It will be used as a control in all future functional studies in order 

to clarify the cellular mechanisms that are altered by the mutations. 

The immunocytochemistry assay has also been completely optimized for the WT AVP cDNA. It 

will allow the analysis of NPII protein localization in N2A cells, since an accumulation of NPII 

protein arround the cell nucleous, and in the endoplasmic reticulum is expected to be 

observed. This may occur due to the aggregation of mutated precursors in the endoplasmic 

reticulum, since they cannot continue to the Golgi apparatus, in contrast with the WT AVP 

protein, which is transported along the cell axons [14]. 
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5. Conclusion  

adFNDI is a rare disease, however, with time, more studies about this disease are being 

reported, more mutations are being found and more cases are being studied. But, the 

understanding of the molecular basis underlying the disease faces a lack of answers around 

some questions. Why is the number of magnocellular neurons decreased in autopsies of 

adFNDI patients? Why do so many mutations originate so similar clinical phenotypes? 

Further work will be necessary to explain the points that remain without clarification and 

functional studies are a useful tool in order to create the most similar environment to 

neuronal cells, in this case, magnocellular neurons. Thus, it may be possible to identify the 

mechanisms responsible for the progression of the disease and, once the cause of cellular 

death is identified, a therapeutic approach can be developed in order to avoid this 

progressive neuronal death. 

Although functional studies are relevant, genetic studies also deserve a greater attention 

since they can be used as a preventing tool. When a family presents an adFNDI history and a 

genetic alteration is confirmed, the AVP gene of the younger members, despite the absence 

of symptoms, can be analyzed for mutations. Thus, a child without symptoms can be a 

potential patient, and face a dangerous situation, which can be avoided. 

The understanding of the disease molecular mechanisms can be used not only in adFNDI, but 

in other diseases with similar mechanisms like the case of neurodegenerative diseases and 

other diseases that develop due to protein aggregates. Thus, it is important to continue the 

research work, not only to enrich scientific knowledge, but also with the intention of 

providing help and information to patients.           
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