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Abstract 

Presently breast cancer arises as one of the most prevalent malignancy in women worldwide, 

contributing for high rates of mortality and morbidity in several million patients. Currently 

there is still no available cure for this disease and to further aggravate this scenario the 

existing treatments such as chemotherapy, are generally ineffective due to poor tumor 

bioavailability. Moreover, the commonly used anti-tumoral compounds also lead to the 

development of drug resistant malignant cells after repeated administration, a fact that 

originates the development of more aggressive cells that possess the capacity to metastasize 

and spread to healthy organs. These facts evidence the urgent need for the development of 

novel therapeutic approaches that improve the therapeutic outcome and patient survival. The 

recent developments in the field of Nanotechnology, particularly regarding the capacity to 

manipulate matter at the nanoscale, has brought forth the opportunity to devise novel drug 

delivery systems to tackle some of these issues. From this stand point, the research work 

presented in this thesis describes the development of a novel drug delivery system based on 

micellar carriers, with a core-shell structure, that are capable to simultaneously deliver 

multiple drugs to breast cancer cells. These nanocarriers are comprised by a hydrophilic and a 

hydrophobic polymer organized in a block-by-block structure that was synthesized through 

macromolecular chemistry. The manipulation of the various reaction conditions yielded block 

co-polymers with different hydrophobic chains, which influenced the available space in the 

nanocarrier core. The nanocarriers were formulated by co-polymer self-assembly into 

nanosized micelles that demonstrated the capacity to encapsulate with high efficiency, an 

anti-tumoral drug, Crizotinib and a potent inhibitor of the cell transporters responsible for 

drug resistance, Sildenafil. The drug release profile of the micellar carriers revealed a 

spatiotemporally controlled release that was faster for Sildenafil than Crizotinib. Moreover, 

the drug loaded micelles demonstrated to be highly biocompatible and accomplished uptake 

into adherent breast adenocarcinoma cells. This relevant finding let to the intracellular 

localization of both the anti-tumoral drug and the drug resistance inhibitor, and thus, 

improved the bioavailability of the bioactive therapeutics. Subsequently, the study of the 

therapeutic performance of the co-delivery systems illustrated that the simultaneous delivery 

of both drugs improved the anti-tumoral capacity of Crizotinib evidencing the existence of a 

highly synergistic effect. Strikingly, the micellar systems achieved the same anti-tumoral 

effect of the free drugs, using 2-fold less drug concentration. Besides indicating that the 

release profile maintains drug concentrations in the therapeutic window, these crucial results 

highlight the effect of dual drug conjugation and the use of Crizotinib as an anti-tumoral 

compound for breast cancer therapy and Sildenafil as a multidrug resistance inhibitor. 

Overall, the unique approach developed in this thesis possesses tremendous potential for a 

future clinical application in breast cancer patients that acquired resistance to standard 

therapies. 
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Resumo alargado 

Atualmente, o cancro de mama surge como uma das neoplasias com maior prevalência no 

sexo feminino em todo o mundo, contribuindo para altas taxas de mortalidade e morbilidade 

em vários milhões de pacientes. Atualmente, ainda não se encontra disponível uma cura para 

esta doença e para agravar ainda mais este cenário, os tratamentos existentes geralmente 

baseados na quimioterapia, são extremamente ineficazes devido à baixa biodisponibilidade do 

fármaco no local do tumor. Além destas limitações, estes tratamentos também provocam 

graves efeitos secundários que afetam órgãos vitais como o fígado, coração ou rins. Este facto 

contribui para uma progressão desta neoplasia de forma mais acelerada e é responsável por 

um prognóstico bastante limitado em termos do tempo de vida das pacientes. 

Não obstante, devido à necessidade de manter a concentração terapêutica dos fármacos no 

organismo são efetuadas múltiplas administrações em regimes que usualmente se prolongam 

durante meses, para promover um aumento da probabilidade de localização dos fármacos nas 

células alvo. Esta abordagem terapêutica é crucial para a redução da massa tumoral, no 

entanto, foi recentemente descoberto que este tratamento origina a formação de células 

tumorais mamárias com mutações que lhes permitem adquirir um fenótipo muito mais 

agressivo e resistente ao fármaco anti-tumoral administrado. Esta resistência é muitas vezes 

atribuída ao aumento da expressão de proteínas membranares que têm a capacidade de 

expelir os ingredientes farmacêuticos ativos para o meio extracelular, eliminando-os assim do 

seu local alvo. Além do desenvolvimento de resistência, é despoletada também nas células 

tumorais a capacidade de metastização, permitindo o alastrar da doença para os órgãos 

saudáveis. Estes factos evidenciam a necessidade urgente do desenvolvimento de novas 

abordagens terapêuticas com vista a melhorar o prognóstico clínico e a qualidade de vida do 

paciente. 

Neste contexto, os desenvolvimentos recentes no campo da Nanotecnologia, particularmente 

em relação à capacidade de manipular a matéria à escala nanométrica, têm trazido a 

oportunidade de conceber novos sistemas de entrega de drogas para resolver alguns destes 

problemas. Diversos nanoveículos, com base polimérica e/ou lipídica, têm sido desenvolvidos 

durante as últimas décadas, tendo sido alguns deles já aprovados e usados no tratamento de 

doentes em unidades hospitalares. No entanto, apesar dos grandes avanços obtidos no design 

e produção de nano-veículos para aplicação na terapia do cancro da mama num âmbito 

clínico, a sua maioria apenas consegue melhorar a biodisponibilidade e biodistribuição do 

fármaco anti-tumoral nas células alvo. De facto, até à data, apesar da panóplia de 

nanotransportadores disponívels para terapia do cancro da mama muito poucos exploram a 

entrega de vários fármacos ou moléculas bioativas em simultâneo, como forma de combater 

os problemas associados à multirresistência adquirida pelas células neoplásicas. 

Com o conhecimento destas limitações atuais, e tendo como objetivo principal melhorar cada 

vez mais a terapia contra o cancro da mama, o trabalho de investigação apresentado nesta 
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tese descreve o desenvolvimento de um novo sistema de entrega de drogas baseado em nano-

veículos micelares, com uma estrutura "núcleo-concha” que lhes permite transportar e 

entregar simultaneamente múltiplas drogas a células de cancro da mama. Estas micelas, são 

formadas por dois polímeros rearranjados numa estrutura em bloco. Cada um dos blocos é 

constituído por um polímero hidrofílico e outro polímero hidrofóbico, um facto que imprime 

características anfifilicas aos nanotransportadores produzidos com estes biomateriais. Esta 

estrutura única foi sintetizada por intermédio de reações químicas macromoleculares. A 

manipulação das diversas condições da reação originou a síntese de co-polímeros com 

diferentes cadeias hidrofóbicas, um factor crucial visto que este influencia o espaço 

disponível no núcleo da micela, assim como a sua estabilidade e capacidade de encapsulação 

de moléculas bioativas. Os materiais sintetizados foram caracterizados física e químicamente 

por intermédio de técnicas referidas nas diretivas internacionais como adequadas para 

caraterizar nanomateriais para aplicações biomédicas. As micelas foram posteriormente 

formuladas pelos co-polímeros sintetizados recorrendo a um método de formação espontânea 

que origina micelas nanoméricas com uma morfologia esférica, como revelado por 

microscopia eletrónica de varrimento. 

O Crizotinib, um conhecido fármaco anti-tumoral neste momento em ensaios clínicos de fase 

IV e o Sildenafil, um potente inibidor dos transportadores celulares responsáveis pela 

resistência aos fármacos, foram escolhidos posteriormente para serem incluídos dentro das 

nano-micelas poliméricas. Após a otimização do processo de encapsulação foi obtida uma 

elevada eficácia de inclusão destes dois fármacos no interior dos transportadores micelares. O 

perfil de liberação destes fármacos dos transportadores micelares revelou ser controlado, 

sendo mais rápido para o Sildenafil do que para o Crizotinib. Além disso, as micelas 

produzidas demonstraram ser altamente biocompatíveis quando administradas a células 

humanas saudáveis. A sua internalização nas células cancerígenas da mama revelou ser muito 

elevada, um resultado extremamente vital pois, evidencia, a entrega intracelular de ambos 

os fármacos, o anti-tumoral e o inibidor da resistência celular, levando a um aumento da sua 

biodisponibilidade. 

Consequentemente, o estudo do desempenho terapêutico destes nanotransportadores 

demonstrou que a co-entrega de ambos os fármacos potenciou a atividade anti-tumoral do 

Crizotinib, evidenciando a obtenção de um efeito sinérgico. Surpreendentemente, os sistemas 

micelares obtiveram um efeito anti-tumoral similar ao obtido com os fármacos na sua 

formulação farmacêutica livre, administrando no entanto concentrações de fármaco duas 

vezes menores. Estes resultados ilustram a importância do sistema desenvolvido na terapia do 

cancro da mama. Além deste facto, uma vez que o perfil de libertação mantém as 

concentrações dos fármacos dentro da janela terapêutica, estes resultados realçam o efeito 

da conjugação das duas drogas e a utilização do Crizotinib como um composto anti-tumoral 

para a terapia do cancro da mama. 
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Em geral, a abordagem exclusiva desenvolvida nesta tese demonstra um enorme potencial 

para aplicação futura em pacientes com cancro da mama, que apresentem resistência às 

terapias convencionais. 
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1. Cancer 
1.1. Malignant Phenotype and Cancer Cell Hallmarks 

Cancer is a disease that is mainly characterized by an uncontrolled cell proliferation that 

ultimately leads to the formation of a tumor mass. Generally, healthy cells accurately control 

their growth by carefully delivering signalling agents to nearby cells and guaranteeing tissue 

homeostasis [1]. When homeostasis is affected, for example, by the accumulation of genetic 

mutations, cells begin to acquire a malignant phenotype (Figure 1) [2]. Age, growth signal 

molecules, hormones, genetic background, ionizing radiation, pollution and unhealthy 

working environments are the major risk factors for the development of cancer [3, 4]. These 

factors normally induce genetic mutations in normal cells, that often result in metabolically 

and physicochemical dysfunctional cells [5]. These genetic abnormalities present in tumor 

cells are generally correlated with the activation oncogenes (c-MET) and silencing of tumor 

suppressor genes (p53) [2]. This fact results in the deregulation of major signalling pathways 

that promote cell survival and proliferation [1]. Usually, cancer cells overexpress proteins 

responsible for cell cycle progression and underexpress proteins involved in growth 

suppression [1].  

 

Figure 1 – Schematic representation of the tumorigenesis process (Adapted from [6]). 
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After acquiring the malignant phenotype, cancer cells commonly exhibit major 

characteristics, the so termed “Hallmarks of cancer” (Figure 2). This set of unique features 

ultimately differentiates malignant cells from  their healthy counterparts [1]. 

 

Figure 2 - Cancer hallmarks and their possible therapeutic pathways to overcome cancer. A multi-

combinational drug therapy could be an interesting approach to fight some of hallmarks described. 

(Adapted from [1]).  

 

One of the most relevant hallmarks that tumor cells possess is their capacity to sustain 

proliferative signalling. To successfully promote sustained proliferation, cancer cells need to 

bypass growth suppressor supervision mechanisms, that are commonly mediated by p53 and 

retinoblastoma-associated proteins (Rb) [1]. Remarkably, it is currently known that 

approximately 50% of all cancer cells have a mutation in the p53 gene, a fact that completely 

eliminates its pro-apoptotic activity [1, 7]. Yet another strategy that cancer cells acquire in 

order to resist to cell death is the increase of expression of anti-apoptotic proteins from the 

Bcl family, such as Bcl-2 and Bcl-xL [1]. Moreover, the immortalized (i.e., limitless replicative 

potential of cancer cells), is also a hallmark that greatly impairs patient survival rates [1]. To 

achieve this unique characteristic cancer cells recruit telomere stabilizing proteins, such as 

reverse transcriptase telomerase, that maintain telomere size across all the cell division 

cycles [8]. Telomeres are the main actors in the unlimited proliferation and cell immortality 

process. They regulate the cell replication capacity by shortening at each division till restrict 

completely cell division, a fact that hence does not occur in most cancer cells [9]. Another 

important hallmark of cancer cells is their highly activated metabolic rates that constantly 
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need an uptake of nutrients in order to remain metabolically overactive [1]. To sustain the 

need for large amounts of nutrients, tumor cells trigger the development of new blood vessels 

from nearby vasculature by constantly expressing angiogenesis inducers, like vascular 

endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) [10-13]. This 

relentless expression of VEGF induces the formation of aberrant vasculature characterized by 

a leaky profile due to the existence of large fenestrations (600-800nm) in the endothelial 

walls [14, 15].  The high abundance of rich vascular networks together with the lack of 

expression of cell adhesion molecules such as E-cadherin, leads to cell extravasation. These 

cells consequently invade and colonize other organs and tissues throughout the body, a 

process known as metastization [16]. These unique characteristics are common to all types of 

cancer and contribute for a poor patient’s clinical prognostic and disease progression. 

 

 

1.2. Breast Cancer and its heterogeneity 

Focusing particularly on breast cancer, this is actually the most diagnosed malignancy in 

women, in what concerns to solid tumors [17, 18]. This disease affected about 1.5 million of 

women worldwide in 2010 [17, 18] and 464.000 new cases have arisen in 2012, in the 

European Union, representing the third most deadliest cause among women [19]. When this 

disease is diagnosed at a very early stage of development, it has an excellent long-term 

prognosis in terms of patient free survival (PFS) rate [20]. However, in late stages of disease 

(stage III and IV) that often involve metastization, especially to adjacent lymph nodes, the 

survival rate decreases dramatically [20]. In this scenario even after mastectomy, 40% of 

women still develop metastasis in auxiliary lymph nodes [20]. Surprisingly, this type of tumor 

represents a particularly heterogeneous group with defined biological features and responses 

to therapy [21]. Actually, nowadays breast cancers are divided accordingly to their gene-

expression subtypes into: i.) luminal (related with estrogen and progesterone receptors) ii.) 

human epidermal growth factor receptor 2 (HER2) and iii.) basal-like, which typically do not 

express HER2hormone receptors, having generally a triple negative phenotype [21-23]. HER2 

are characteristic of different breast cancer subtypes. Cancers that do not have ERBB2, 

progesterone (PR) or estrogen (ER) receptors, are called triple negative breast cancer cells 

[24]. These type of cells present a constitutively enhanced Protein Kinase B (AKT) activity due 

to a mutation in MAGI3–AKT3 gene [21]. Currently available chemotherapies for cancer 

treatment are still largely limited by deleterious side effects that contribute for a limited 

therapeutic outcome. These side-effects are often associated with the lack of tumor cell 

specificity, with the consequent drug partitioning in other tissues and organs, such as the 

liver and lungs [20]. Such bottlenecks significantly reduce the bioavailability of 

chemotherapeutics at the target tumor site and are responsible for the administration of anti-

tumoral drugs to patients for an extended period of time, at lower dosages (commonly 

between each 21 days across 6 to 8 sessions of chemotherapy [25]. Moreover, the rapid 
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systemic clearance of drugs and the difficult vascular access to lymph nodes of patients with 

breast cancer, contribute for the ineffectiveness of the treatments [26]. This therapeutic 

regime is also commonly associated with the development of drug resistant breast cancer 

cells. 

 

 

1.3. Multidrug Resistant Cancer Cells 

One of the main causes of chemotherapy failure in the improvement of PFS is the acquired 

drug resistance of cancer cells, after a few rounds of chemotherapy, a phenomenon that is 

termed multi-drug resistance (MDR) [27, 28]. MDR can result from non-cellular and cellular 

based mechanisms [28-30]. Furthermore, barrier mechanisms, that are not directly related to 

cells, such as poorly vascularized tumor regions that are protected against chemotherapy 

drugs also contribute to the MDR phenotype [29-31]. High interstitial pressure and the lack of 

microvasculature are additional barriers that affect drug extravasation into tumor tissues 

[32]. To overcome these issues the administration multiple chemotherapy drugs, can arise as 

a very promising approach  [32]. In fact, since the acquired MDR by cancer cells  is related to 

an over-expression of enzymes with specific drug metabolization or efflux capacity, the 

additional administration of chemical compounds that can shut-down their activity can 

contribute to MDR reversal [28-30]. Among the different resistance mechanisms, drug efflux 

pumps are currently the most extensively studied [30]. The resistance mediated by these 

efflux pumps can be attributed to an overwhelming decrease in drug uptake, since  drug 

efflux to the extracellular medium is constantly promoted by P-glycoprotein (P-gp) and other 

ATP-binding cassettes (ABC) proteins that are over-expressed in these type of cells [30]. 

ABC’s are a particularly relevant superfamily of transmenbrane proteins that have the 

capacity to transport various kinds of substrates, such as hydrophobic drugs (Doxorubicin, 

Cisplatin, Paclitaxel) [30, 33]. Some types of cancer cells over-express particular types of 

ABC’s, such as ABCB1 (P-gp), ABCC1, and ABCG2 (also termed Breast Cancer Resisting Protein, 

BCRP), that are involved in the regulation of the intra cellular concentration of chemotherapy 

agents [27, 34]. It is described that these ABC transporters are highly expressed in inner 

regions of the tumors, due to the existence of hypoxic microenvironments [35]. In addition, 

MDR can also result from coordinated detoxification processes mediated by cytochrome P450 

and deoxyribonucleic acid (DNA) repair mechanisms [36] reducing the effect of some drugs 

that have DNA damaging as a target (Cisplatin, Doxorubicin), however to a less extent than 

that dependent on ABC transporters [28]. Since the majority of efflux activity is ATP 

dependent, researchers have recently begun to explore more powerful P-gp inhibitors to 

overcome this critical hurdle [30].  
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1.4. Anti-tumoral drugs used for breast cancer therapy 

The vast majority of drugs currently used for cancer therapy are severely limited by their low 

specificity to target tissues and cells, a fact that is responsible for deleterious side-effects 

[37]. A part from this, also drug physicochemical characteristics contribute for a rather 

ineffective biological activity. The latter is a consequence of the poor water solubility of anti-

tumoral pharmaceuticals [38]. Due to this characteristic, chemotherapeutics have a narrow 

mean residence time (MRT) in blood circulation and a higher administered dosage is required 

to produce a therapeutic effect, dangerously increasing the associated toxic side-effects [38]. 

A particularly potent drug used for the treatment of breast cancer is Tamoxifen [39]. This 

drug is an antagonist of breast cancer cells oestrogen receptor (ER) and is currently used also 

against several other types of cancer [40]. Despite this, the effective doses that reach the 

tumor site limits its effectiveness [40, 41]. Other anthracycline-based therapeutics, such as 

Doxorubicin, Trastuzumab, Daunorubicin and Mitoxantrone are effectively used as 

chemotherapy agents for breast cancer [42]. However, their high cardiotoxic effects restrains 

their widespread use in a clinical context [40]. In addition, it has been extensively reported in 

the literature that after the administration of these drugs, breast cancer cells acquire an 

aggressive MDR phenotype, making different therapeutics ineffective [39].  

Recently an interesting approach based on the use of multiple drugs has been proposed to 

overcome these issues [43, 44]. This unique strategy relies on the establishment of a 

synergistic effect by attacking various intracellular targets, with diverse drugs during the 

various stages of treatment, thereby improving treatment effectiveness [43]. Unique 

conjugation of compounds (Doxorubicin and Sildenafil [44]) has shown to reverse drug 

resistance to a certain extent, increasing the refractory period of the development of novel 

cancers [45, 46]. Nevertheless, regardless of this potential, the differences in the 

pharmacokinetic/pharmacodynamic profiles of each administered drug, the low stability and 

permeability still limits their in vivo application [45].  

 

 

1.5. Exploring novel combinatorial drug therapies to 

overcome MDR and improve anti-cancer therapy 

Currently, the investigation of novel drug combinations that target key hallmarks in cancer 

cells may unlock the possibility to discover extremely valuable synergies. Such investigation 

of new combinations using recently approved drugs is particularly valuable since, in the last 

decade, several improvements have been made in the drug development pipeline, especially 

in drugs aimed to be used in cancer therapy. 
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Taking this into account, Crizotinib (PF-2341066), an anti-tumoral drug that has been recently 

approved by the United States Food and Drug Administration (FDA) for non-small lung cancer 

arises as an interesting bioactive molecule to be used also in breast cancer therapy  [47].  

 

Figure 3 – Molecular structure of Crizotinib (PF-2341066). 

 

In fact, regarding the specific antitumoral activity of Crizotinib in breast cancer cells, it has 

been reported that this particular drug has a half maximum inhibitory concentration (IC50) of 

3.34 ± 0.52 µM in  Michigan Cancer Foundation-7 (MCF-7) cell line, illustrating its possible use 

in the treatment of this malignancy [48]. Crizotinib mechanism of action is based on its 

capacity to be an ATP-competitive molecule (inhibiting ATP-dependent efflux pumps), and a 

potent inhibitor of c-MET phosphorylation [49, 50]. c-MET is a receptor that is overexpressed 

in most cancers, including breast cancer cells [51, 52]. When over-expressed c-MET receptors 

are activated by hepatocyte growth factor (HGF) binding, a massive cellular proliferation and 

invasion are stimulated and these are deeply related with tumor progression and growth [53]. 

Complementary studies have shown that Crizotinib has the ability to induce apoptosis via 

Caspase-3, as well as reduce micro vessel density [49]. Furthermore, it is described that this 

drug also specifically inhibits the ABCB1 efflux transporter, both in vitro and in vivo [33]. The 

anti-angiogenic effects, some MDR reversal capacity and the direct inhibition of tumor growth 

render it as a potent drug with very suitable characteristics for cancer therapy if it achieves 

high levels of bioavailability at target cells [33, 49]. However, since Crizotinib, as other 

chemotherapy drugs, is rather limited in the inhibition of several other ABC transporters, it is 

valuable to explore its conjugation with other drugs that have a broad spectrum of ABC 

inhibition [54].  
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Figure 4 – Molecular structure of Sildenafil (PF-4540124). 

  

Sildenafil, also known commercially as Viagra®, is a potent antagonist of ABC efflux pumps, 

since it inhibits the action of ABCG1, ABCC4, ABCC5 and ABCG2 that are present in breast 

cancer cells (Figure 5) [27]. This drug is also a phosphodiesterase 5 (PDE5) inhibitor that has 

been widely used to treat male erectile dysfunction and pulmonary hypertension [27, 55]. 

Recently, its application for anti-cancer therapy has been evaluated, and the obtained results 

[27, 55-57], suggested that this drug has the capacity to potentiate the effect of standard 

chemotherapeutics, by blocking the above mentioned ABC proteins [34, 55, 56, 58, 59]. The 

inhibition of these ABC transporters, that are involved in the efflux of chemotherapy drugs to 

the extracellular medium, results in drug accumulation inside the cell cytoplasm, thus 

potentiating the therapeutic effects. Besides, it is described that PDE 5 expression is 

enhanced in diverse human carcinomas such as metastatic breast cancer, giving Sildenafil an 

excellent potential to be used synergistically with other potent chemotherapy drugs [60].  

Interestingly, Sildenafil has also shown to protect the heart from toxic effects of 

chemotherapeutic drugs, such as Doxorubicin [34, 56]. The cardio protective effect is 

assigned to the enhanced expression of nitric oxide synthase, a enzyme that is involved in the 

activation of protein kinase C and G, and up-regulation of Bcl-2/Bax [56, 58, 61, 62].  
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Figure 5 – Proposed mechanism of action for Sildenafil synergic activity in conjugation with other 

chemotherapy drugs by blocking drug efflux from MDR transporters (ABC’s) and increasing intracellular 

cyclic guanosine monophosphate (cGMP) levels (Adapted from [27]). 

 

 

2. Nanotechnology-based carriers for cancer 

drug delivery 

In the last couple of decades the technological breakthrough of manipulating matter at the 

nanoscale, has encouraged an emerging and compelling interconnection between 

Nanotechnology, Pharmacy and Medicine, that will surely remain for many years to come 

[63]. This close affiliation has opened up the opportunity to devise novel and effective 

therapeutic approaches based on miniaturized nanoscale delivery systems to treat a 

multitude of impairing diseases, such as cancer [64]. Nanomedicine focused on cancer 

therapeutics is a particularly interdisciplinary field, that gathers knowledge from Biology, 

Chemistry, Engineering, Physics and Medicine in order to tackle the complexity associated 

with cancer cells through the development of drug delivery systems (DDS), that can increase 

drug bioavailability in diseased tissues and also minimize deleterious side effects in healthy 

cells [65]. Nano-sized devices, commonly with size ranges within 1 to 100 nm [66], or  1 to 

1000 nm [67], provide a unique molecular interaction with biological systems and particularly 

with single cells [15, 40, 68, 69]. In fact, the sub-cellular size of nanoparticles is a unique 

characteristic that renders them as an ideal platform to concentrate highly potent anti-
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tumoral drugs inside malignant cells, since they are readily internalized by various cell uptake 

pathways [70]. This concept was initially described in the late 60’s, when liposomes where 

proposed as carriers for proteins and drugs, in order to enhance their delivery to a broad 

spectrum of pathologies (Figure 6) [71]. Since then, a wide variety of nanomaterials has been 

used for the manufacture of ever more evolved and efficient DDS’s [15, 45]. 

 

 
Figure 6 – Evolution of drug delivery systems along time (Adapted from [45]). 

 

The use of nanoparticulated carriers changes the pharmacological properties of anti-tumoral 

compounds, to an extent that dramatically increases their overall therapeutic effect and 

prolongs PFS rates [72]. In fact, the inclusion of chemotherapeutics in DDS, utterly modulates 

their pharmacokinetic/pharmacodynamic profiles, especially their serum half-life and 

bioavailability at the target site (Figure 7) [72]. More importantly, their loading in DDS 

significantly reduces their toxicity, unlocking the potential to administrate pharmaceutic 

compounds with remarkable anti-tumoral activity [15, 45], using these nanotransporters. 

Furthermore, they can also contribute to reduce the frequency of administration to achieve 

an increased therapeutic effect, in comparison to systemic free-drug administration [15, 45].  
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Figure 7 – Enhancement of drug concentration and bioavailability through nanoparticle conjugation. 

(Adapted from [73]). 

 

Nanocarriers designed for cancer therapy may be administered through various routes such 

as: i.) nasal airways, ii.) oral-bucal, iii.) intra-dermic and intramuscular, iv.) intra-ocular and 

v.) systemic injection through the blood stream [74]. The administration modality affects the 

overall biodistribution of the nanocarrier-drug conjugate and should be carefully chosen 

according to each cancer type and location [72]. Regardless of the administration route, once 

the nanocarriers interact with biological fluids their physicochemical properties change to 

such an extent that influences nanocarrier-cell interactions, and consequently internalization 

in target cells [74]. Opsonization process is one of the major barriers that DDS need to 

overcome [75]. Opsonization and consequent phagocytosis is mediated by the Mononuclear 

Phagocytic System (MPS). This system is comprised by immune system cells such as phagocytic 

cells, that are especially present in the spleen and liver. Depending on nanoparticle surface 

and size, opsonins, proteins present in serum, rapidly bind to nanoparticles enabling 

macrophages to remove these nanovehicles from blood circulation, affecting their function 

[75, 76]. It has been previously reported by Letchford and co-workers that  nanoparticles with 

less than 200 nm present a decreased elimination by MPS, and accordingly longer blood 

circulation times [67]. This size-dependent interaction with the immune system determines 

the extent of nanoparticle susceptibility to phagocytosis [77]. Once nanocarriers successfully 
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evade MPS, they can fulfil their accumulation in tumor tissues. The accumulation of DDS in 

diseased tissues after intravenous administration is a critical parameter, since it dictates drug 

delivery efficiency into target cells. Presently, two major strategies can be employed to 

promote this accumulation in the tumor microenvironment, the so-termed active and passive 

targeting [78]. The latter will be particularly focused in this work.  

 

2.1. Passive Targeting – The Enhanced permeability and 

Retention Effect 

Passive targeting takes advantage of the biological characteristics of the tumor 

microenvironment itself, namely by exploiting the existence of a highly vascularized network 

of leaky blood vessels that surround tumor tissues [79, 80]. The lack of lymphatic drainage 

also contributes for molecule retention in tumors [81]. This phenomenon is generally termed 

as the enhanced permeability and retention (EPR) effect and is characteristic of solid tumors 

(Figure 8) [82]. EPR is a probabilistic effect that depends on an extended serum half-life of 

molecules, such as nanoparticulated carriers, and on their capacity to extravasate through 

the fenestrations on the endothelial wall of blood vessels to the tumor periphery [83]. 

 

 

Figure 8 – Presentation of nanoparticle EPR effect and enhanced intracellular drug concentration due to 

efflux pump inhibition. Nanoparticles extravasate through the leaky vasculature due to the fenestrations 

in the endothelial wall surrounding the tumor microenvironment (Adapted from [68]). 

 

These fenestrations are formed due to the uncontrolled angiogenesis. Such process causes 

high vascular density originating large gaps [68]. It is clear that free chemotherapy drugs 

distribute throughout the entire body will be partitioned through the various organs (e.g. the 

liver, kidney or lungs), but due to the EPR effect they can also be accumulated in diseased 

tissues, although to a far less extent than that of their initial concentration. This EPR effect 
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has provided the basis for the formulation of nanodevices suitable for anti-cancer therapy 

[81, 82]. Studies with animal models conclude that neutral to slightly negatively charged 

drug-loaded nanoparticles, with sizes below 150 nm, have the ability to accumulate into 

tumor tissues by the EPR effect [84]. This tumor accumulation potentiates the anti-tumoral 

effect, since it increases the bioavailability of chemotherapeutics at the tumor site [15]. 

However, despite this potential, the EPR effect still presents some limitations, especially due 

to the pathophysiological heterogeneity of each tumor and the high, interstitial pressure [85]. 

However, the increased blood flow and reduced blood pressure caused by the tumor 

vasculature, enhances nanoparticle extravasation into tumors [86, 87]. 

 

 

3. Organic and Inorganic biomaterials used for 

self-assembly drug delivery systems 

Among the different types of nanoparticles produced, they can be classified according to 

their composition into two major groups: inorganic and organic [40]. Inorganic DDS are 

characterized by their stability, good loading capacity and controlled release of drugs. 

However, some inorganic nanoparticles can have cytotoxic effects such as those associated 

with the accumulation of iron, silver and gold in the human body. Nevertheless, these are 

versatile systems that can also be employed in theranostic applications, due to their 

bioimaging capacity [88, 89].  

Organic DDS are particularly advantageous for the formulation of anti-cancer therapeutics for 

breast cancer therapy, due to their high biocompatibility, biodegradability, high loading 

capacity and versatile chemical composition that allows their modification with bioactive 

macromolecules [90, 91]. Among organic DDS, amphiphilic nanoparticles present advantages 

over the other organic nanoparticles due to their self-assembly behaviour [92]. This particular 

class comprises: i.) liposomes; ii.) dendrimers; iii.) protein nanoparticles and iii.) polymeric 

DDS, namely micelles, polymersomes and nanocapsules among others, some of which are 

present in Figure 9.  
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Figure 9 – Representation of the drug-delivery systems currently available. (Adapted from [93]).  

 

Lipid-based nanoparticles, also termed liposomes, where one of the first delivery vehicles 

used in medicine [15].  Liposomes are generally comprised of natural or synthetic lipids, 

having diverse architectures (multilamelar, core shell, rod like or star shaped), which can 

accommodate both hydrophilic and hydrophobic molecules [15, 94, 95] like liposome based 

nanoparticle designed for delivery Tamoxifen to breast cancer cells [96]. However, the use of 

liposomes as DDS for cancer therapy has several issues that hinder their widespread 

application in the clinic. Liposomes present a very rapid blood clearance, which is further 

accelerated after multiple administrations of liposomal formulations coated with hydrophilic 

polymers that are aimed to increase their blood circulation time. This phenomenon has been 

only recently described [97]. Opsonisation of liposomes and consequent capture by MPS [68, 

94] and their cytotoxicity to healthy cells are the main disadvantages of this class of DDS. 

Nevertheless, some polymer-modified liposomes that take advantage of the EPR effect and 

prove to be non-toxic, have been developed for cancer therapy [38, 98]. Doxil®, is a FDA 

approved and commercially available pegylated-liposomal formulation, that carries 

Doxorubicin for cancer therapy [99, 100]. Polymeric nanocarriers provide several advantages 

over liposomes such as better overall drug/carrier stability [101] and sustained drug 

controlled release [102]. Polymers used in drug delivery can be synthetic or natural [103]. 

The synthetic polymers have some advantages over the natural. They can provide a 
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spatiotemporally controlled drug delivery of bioactive pharmaceutics for longer periods than 

some natural polymers, such as chitosan or alginate that suffer from extensive swelling [103].  

Among the different DDS that can be formulated with polymeric materials, micelle carriers 

are one of the most versatile vehicles for being applied in cancer therapy. They can be used 

for increasing the solubility of poor water soluble chemotherapeutic drugs, by approximately 

one thousand fold, a fact that renders them ideal candidates for cancer treatment [104]. 

Micelles are commonly formulated by two blocks of polymers, hydrophobic and hydrophilic, 

that are generally grafted together by chemical linkages [67]. The so termed block co-

polymers are generally formed by a hydrophilic shell and a hydrophobic core, thus having an 

amphiphilic character (Figure 10). The hydrophobic core is used to encapsulate hydrophobic 

molecules, such as chemotherapy drugs. Micelle formation occurs spontaneously in water 

solutions, if the concentration of the amphiphilic polymer increases to a point in which the 

hydrophobic chains establish favourable hydrophobic interactions, among each other. This is 

an interesting phenomena that ultimately results in the formation of the so termed core-shell 

structure [67]. The minimum concentration required for a micelle self-assembly is called 

Critical Micellar Concentration (CMC) [67]. Micelles formed with amphiphilic co-polymers are 

advantageous due to the lower CMC, than those formed with the use of surfactants [67]. In 

this unique core-shell architecture the drug is protected from biological degradation and its 

deleterious side effects are significantly reduced [38]. Polymeric micelles can also be easily 

modified by imprinting targeting moieties on their surface, in order to increase their tissue 

specificity [105, 106]. Furthermore, the drug loading efficiency and the release profile can be 

largely improved by simply manipulating the size of hydrophobic or hydrophilic polymer 

backbones [38, 107]. Poly (ethylene glycol) (PEG) is one of the most used hydrophilic 

polymers (generally between 1 and 15 kDa) for the formation of the outer shell [38]. 

However, in the last decade other hydrophilic polymers have also been used to assemble 

polymeric micelles such as poly (2-hydroxyethyl methacrylate) (PHEMA) and poly (oxazoline) 

(PEOz) [108, 109]. Nowadays, several formulations of polymeric micelles are currently 

available for cancer therapy. These include SP1049C® a Pluronic-based micelle for 

Doxorubicin delivery [101], Genexol-PM® a Poly (ethylene glycol)-Poly (lactic acid) (PEG-PLA) 

micelle loaded with paclitaxel, among others (Table 1) [101]. 

  

http://pubs.rsc.org/en/content/articlehtml/2012/jm/c2jm30700f
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Table 1 – Comparison of micelles approved or enrolled in clinical trials by FDA. NA (not applicable)  
(Adapted from [68]). 

Name Formulation 
Diameter 

(nm) 
t½ (h) 

Clearance 

(mL/min/kg) 
Comments 

Doxorubicin 0.9% NaCl NA 0.8 14.4 Small-molecule drug 

SP1049C 
Pluronic micelle + 

Doxorubicin 
22–27 2.4 12.6 Micelle nanoparticle 

NK911 
PEG–Asp micelle + 

Doxorubicin 
40 2.8 6.7 Micelle nanoparticle 

Doxil 
PEG–liposome + 

Doxorubicin 
80–90 84.0 0.02 

PEGylated liposome 

nanoparticle with 

long circulation 

Cremophor EL  

 Polyethoxylated 

Castor Oil 

Taxol (Paclitaxel) 

NA 
21.8 

(20.5) 
3.9 (9.2) Small-molecule drug 

Genexol-PM 
PEG–PLA micelle + 

Paclitaxel 
20–50 11.0 4.8 Micelle nanoparticle 

Abraxane Albumin + Paclitaxel 120 21.6 6.5 

Albumin nanoparticle 

before injection; 

status in 

vivo unknown 

XYOTAX PG + Paclitaxel Unknown 70–120 0.07–0.12 Polymer nanoparticle 

Camptosar 

(prodrug of SN-

38) 

0.9% NaCl NA 11.7 5.8 
Small-molecule 

prodrug 

LE-SN-38 Liposome + SN-38 Unknown 7–58 3.5–13.6 
Liposome 

nanoparticle 

Topotecan 

(camptothecin 

analogue) 

0.9% NaCl NA 3.0 13.5 Small-molecule drug 

CT-2106 PG + Camptothecin Unknown 65–99 0.44 Polymer nanoparticle 

IT-101 

Cyclodextrin-

containing polymer + 

Camptothecin 

30–40 38 0.03 

Polymer nanoparticle 

with extended 

circulation times 
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In a recent study, a combination of two block co-polymers (poly(HEMA-co-histidine)-g-PLA and 

PEG-PLA) was used to specifically target HeLa cells and deliver Doxorubicin [110]. A modified 

poly (ethylene glycol)-block-poly (ε−caprolactone) (PEG-PCL) micelle, carrying paclitaxel, 

showed to be effective against MCF-7 cells and breast cancer stem cells [111]. 

 

 

Figure 10 – Polymeric micelle structure composed with block co-polymers that self-assemble in water 

solutions (Adapted from [68]). 

 

 

3.1. Hydrophobic polymers used for the production of 

self-assembled DDS micelles for cancer therapy 

Poly (lactic acid) (PLA) and poly (D,L-lactide-co-glycolide) (PLGA) have been extensively used 

for the manufacture of DDS [112]. These synthetic polymers are highly biocompatible and 

biodegradable, since their hydrolysis yields degradation products (lactic acid or glycolic acid) 

that are inserted in natural metabolic pathways. Particularly, L-Lactic acid integrates the 

citric acid cycle [103], or is converted to glucose, in the Cori cycle [113, 114]. Moreover, 

since  these degradation products are formed at a slow rate, they do not affect normal cell 

metabolism [103, 114]. These polymers have been largely tested in animals and are currently 

used for bone implants, sutures and other applications in humans, such as cancer therapy, as 

previously mentioned (Genexol-PM®) [101, 113, 115].  

Lactic acid (LA) is the monomeric unit of the PLA polymer backbone [114]. This monomer can 

be formed by bacterial sugar conversion, which makes the LA an inexpensive raw material to 

obtain [114]. PLA can be produced by direct condensation or ring opening polymerization 

(ROP) of L-lactide, under specific conditions, yielding very homogeneous polymeric chains 

with low size and low polydispersity index (PDI) [116, 117]. As a hydrophobic polymer, PLA 

presents good hydrophobic drug encapsulation capacity, up to 10% of its weight. PCL is more 
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hydrophobic than PLA and promotes a slightly better encapsulation of hydrophobic drugs 

[118], but its rather slow biodegradation is a factor that can impair its biological applicability 

[119]. 

 

 

3.2. Hydrophilic polymers used for the production of self-

assembled DDS micelles for cancer therapy  

PEG is a widely investigated synthetic polymer approved by the FDA and by the European 

Medicines Agency (EMA) for nanocarriers production to be used for drug delivery applications 

due to its unique and versatile physicochemical characteristics [93, 120]. In fact, PEG is so 

versatile that it can be chemically synthesized with a plethora of pendant groups (e.g. -OH, -

NH2, -COOH, -SH, -Maleimide, -NHS esters, among others) that unlock the possibility to graft 

PEG chains to virtually any other polymers including PLA and PLGA [121]. Moreover, the 

relative low cost of PEG polymers and their capacity to endow DDS with stealth ability in 

serum, as discussed henceforth, account for its ever growing use [93, 122]. PEG is also 

biocompatible, being generally considered to have low toxicity in comparison with cationic 

Liposomal formulations. Presently, PEG is used as an excipient in several intravenous 

medicines such as Ativan®, or in daily products such as toothpaste [123]. In fact, the World 

Health Organization as set as limit a daily dose of 10 mg/Kg for administration via oral route, 

although only for PEGs with a molecular weight (Mw) up to 10 kDa [123].  

The latter parameter is crucial since PEG Mw and PDI plays an important role in envisioned 

biomedical applications [93]. The molar mass of PEG used in pharmaceutical and biomedical 

applications commonly ranges from 400Da to 50kDa [93]. Longer PEG chains have been 

conjugated to low-Mw drugs and other small molecules, like small interfering RNA (siRNA) and 

oligonucleotides, slowing down their clearance [93]. PEGs with 1 kDa to 5 kDa are more 

suitable for DDS production [93, 101]. PEG chains with this length range are very flexible, and 

the polymer can acquire various conformations which is very important for evading 

interaction with blood components such as opsonins [93]. PEG chains create a water barrier 

on nanoparticle surface that prevents opsonins adhesion [67]. Less opsonin coating results in 

lower immunological response and elimination by MPS is therefore reduced [93]. This 

protective character is only possible due to the steric hindrance effects that PEG promotes, 

functioning as an actual shield for protein or cell adsorption to DDS [124]. PEG also reduces 

enzymatic degradation and has the ability to shield the polymer from cationic charges that 

could contribute for erythrocyte lysis [93]. Regarding the PDI parameter, the polymer should 

have a PDI lower than 1.1 to ensure homogeneity in biological responses [125]. Due to these 

valuable characteristics PEG-based micelles have been widely used in self-assembled DDS 

formulations with core-shell structures, since the PEG moiety is highly hydrophilic [126].  
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PEG-PLA nanoparticles are widely used to deliver hydrophobic drugs due to their self-

assembly capacity, high stability, relatively small size (20 to 200 nm), safe administration in 

humans and high drug loading capacity [93, 127]. The hydrophobic interaction between drugs 

and the hydrophobic moiety of the amphiphilic co-polymer governs the encapsulation stage 

[128]. A PEG-PLA micelle loaded with Paclitaxel (Genexol-PM) is currently approved in South 

Korea, for cancer therapy [129]. Moreover, PEG-PLA nanocarriers are also under stage II 

clinical trial, in United Stated of America (USA) for Doxorubicin delivery [15, 68]. Since this 

drug is considered to be more suitable for breast cancer therapy than standard Cremophor EL, 

a castor oil pegylated nanoparticle with encapsulate paclitaxel [130]. The high dose required 

for intravenous injection of Cremophor EL (26 mL per injection for treatment of an average 

weight patient) elicits side effects [104]. Besides, Genexol-PM proved in clinical trials with 

breast cancer patients, to have better therapeutic efficiency, since it presented a higher 

maximum tolerated dose (MTD), and improved pharmacokinetic profile, delaying the time of 

disease progression in 9 months [130]. 

Synthesis of block co-polymer PEG-PLA can be performed by ROP between PEG, which acts as 

macro initiator of the reaction and L-lactide [131]. Commonly tin(II), zinc and aluminium 

salts, such as stannous octoate (Sn(Oct)2), are used to catalyze the ROP reaction, as shown in 

Figure 11 [132, 133]. The length of polymer can then be controlled by changing the weight 

ratio between the initiator and L-lactide monomer [126].  

 

Figure 11 - Mechanism of polymerization of L-lactide. mPEG acts as macroinitiator and Sn(Oct)2 act as a 

catalyst (Adapted from [131]). 

 

The amphiphilic character of PEG-PLA allows its self-assembly in water [134]. Various 

methods can be used to assemble PEG-PLA micelles, such as: i.) direct dissolution in water, 

ii.) film rehydration, that consists in using an organic volatile solvent followed by 

evaporation-solubilisation cycles [135] and iii.) sonication [118], with this method yielding the 

highest encapsulation efficiency of hydrophobic drugs [118].  
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Aims 

The global aim of this thesis was to develop a new approach for breast cancer therapy 

through the synthesis of micellar nanovehicles capable of co-delivery of two drugs to breast 

cancer cells. The specific aims of this research include the: 

 Synthesis and characterization of amphiphilic block co-polymers capable of self-

assembling into nanosized micelles; 

 Characterization of the physicochemical properties of the self-assembled micelles; 

 Evaluation of multi-drug loading efficiency by produced micelles and investigation of 

their release profile; 

 Assessment of micelle uptake by breast cancer cells; 

 Study of the anti-tumoral potential of free drug pharmaceutical formulations; 

 Evaluation of the anti-tumoral and synergic effect through micellar vehicle delivery. 
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Chapter 2 

Materials and Methods 
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2. Materials and Methods 

All methods performed in this thesis are according to the directives set forth by the 

International Standards Organization (ISO) in the following standard guidelines: i.) 

ISO/Technical Report (TR) 13014-2013 - Nanotechnologies guidance on physicochemical 

characterization of engineered nanoscale materials for toxicological assessment; and ii.) ISO 

10993-5:2009 - Biological evaluation of medical devices - Part 5: Tests for in vitro 

cytotoxicity. 

 

 

2.1. Materials 

Metoxy Poly(ethylene glycol) (mPEG) 2000 was obtained from Nanocs (New York, USA). 

Acetone, Acetonitrile (HPLC-grade), Dichloromethane, Dulbecco’s Modified Eagle’s Medium 

(DMEM), Methanol (MetOH) (High Performance Liquid Chromatography (HPLC)-grade), 

Resazurin, Rhodamine B Isothiocyanate (RITC), Toluene, were acquired from VWR 

Internacional (Carnaxide, Portugal). Antibiotic–Antimycotic (penicillin and streptomycin), 

Cacodylate, Cellulose dialysis membrane, Collagen type I, Fetal bovine serum (FBS), 

Glutaraldehyde, Paraformaldehyde, Phosphoric acid, and Triton X-100 were obtained from 

Sigma–Aldrich (Sintra, Portugal). MCF-7 (ATCC® HTB-22) mammary gland adenocarcinoma cell 

line was obtained from ATCC (Middlesex, United Kingdom) and primary normal human dermal 

fibroblasts (hFIB) from Promocell (Heidelberg, Germany). Rompun (Xylazine) was purchased 

from Bayer Health Care (Carnaxide, Portugal) and Imalgene (Ketamine) was obtained from 

Merial Laboratories, (Lyon, France). Stannous Octoate was purchased from (Cymit Quimica, 

Barcelona, Spain). All the glassware used in polymer synthesis was borosilicate 3.3 supplied 

by Afora SA (Spain). PF-02341066 (Crizotinib) and PF-4540124 (Sildenafil) were purchased 

from Tocris Bioscience (Nortpoint, United Kingdom). CellEventTM Caspase-3/7® and Hoechst 

33342® where obtained from Invitrogen (Carlsbad, USA). L-Lactide monomer and the Pyrene 

fluorescent probe were acquired from TCI (Tokyo Chemical Industry, Co., LTD., Japan). 3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) 

(MTS) was obtained from Promega (Madison, WI, USA). Phalloidin CruzFluor® 647 was obtained 

from Santa Cruz Biotechnology (Santa Cruz Biotechnology, Santa Cruz, Canada). All the used 

salts were of analytical grade and used without further purification.  
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2.2. Methods 

2.2.1. Synthesis of mPEG-PLA 

The polymerization process of PEG-PLA co-polymers was performed as described previously in 

the literature [131]. Initially, a 1:305 molar ratio of mPEG:L-LA were weighted into a reaction 

flask that was previously dried. 

 
 

Prior to all reactions the system was purged with N2 and sealed. Afterwards, 44.0 x 105 mL of 

toluene/mol of PEG where injected in the reaction flask. The system was then heated to 

100°C and 0.1% of Sn(Oct)2 was added. The reaction proceeded at 120°C to start the ROP. In 

order to obtain different block co-polymers the reactions were performed during three 

different time frames: i.) 4h; ii.) 8h and iii.) 30h. From this point onwards the nomenclature 

used to describe the co-polymers synthesized in function of ROP polymerization time is as 

follows: i.) PL4, ii.) PL8 and iii.) PL30, for the 4, 8 and 30h, respectively. After the above 

mentioned time the reaction was evaporated in a Buchi Rotavapor (R-250 Postfach Flawil, 

Switzerland) until the organic solvent was completely evaporated. The co-polymer film that 

was formed after evaporation was then dissolved and recovered by selective precipitation in 

excess MetOH. 

The precipitation stage was allowed to proceed until a white precipitate was formed. The 

block co-polymers were afterwards dialyzed against mili-Q water (double deionised and 

filtered water) during 5 days to remove water soluble contaminants. The recovered product 

was finally freeze-dried in a Scanvac freez-drier (Scanvac CoolSafe™, ScanLaf A/S, Denmark). 

The purified powder was stored at 4°C until further use.  

 

 

2.2.2. Nuclear Magnetic Resonance 

The molecular characterization of the different synthesized co-polymers was performed 

through proton (1H) Nuclear Magnetic Resonance (NMR) spectroscopy, by using a Brüker 

Advance III 400 MHz spectrometer (Brüker Scientific Inc, USA). Prior to spectra acquisition 

polymer samples were dissolved in 1 mL of Deuterated Chloroform (CDCl3). The samples were 

then carefully transferred to 5 mm NMR glass tubes. All the 1H homonuclear spectra were 

acquired at a constant temperature of 298 K using a water pre-saturation pulse program 

(zgpr, Brüker Scientific Inc.). The data was recorded with a spectral width of 1 to 8.00 kHz. 

The recorded spectra where processed and integrated with the TOPSPIN 3.1 software (Brüker 

Scientific Inc), where a line broadening of 3 Hz was used. All data was also processed with an 

exponential window function in order to increase signal-to-noise ratio and eliminate possible 

acquisition artefacts. NMR peak integration was used to calculate the number average 

molecular weight (Mn) of the PLA chain, the molecular weight (Mw) of synthesized co-

polymers, and the degree of polymerization of PLA as described by the following formulas:  
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where EO is the Mw of ethylene oxide (PEG monomer) 
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where LA is the Mw of Lactide (PLA monomer). 

 

For this calculation the mPEG characteristic peak (δ=3.6 ppm) and the PLA characteristic 

peak (δ=5.2 ppm), were used as references for both polymers as previously described by Li 

and co-workers [136]. A total of five integrations were performed for all samples. 

 
 

2.2.3. Fourier Transform Infrared Spectroscopy  

The polymerization of PEG-PLA block co-polymers was additionally confirmed by Fourier 

Transform Infrared Spectroscopy (FTIR). The FTIR interferograms were acquired in a Nicolet 

iS10 spectrometer (Thermo Scientific Inc., USA) by recording 128 scans with a spectral width 

ranging from 4000 cm-1 to 600 cm-1, at a spectral resolution of 4 cm-1. A baseline correction 

and atmospheric suppression was performed in all the acquired data in order to avoid possible 

interferences in the FTIR spectra. Posterior data analysis and peak peaking was executed in 

the OMNIC Spectra software (Thermo Scientific). 

 

 

2.2.4. Gel Permeation Chromatography 

Gel Permeation Chromatography (GPC) measurement was performed at 25°C, with a fast 

protein liquid chromatography (FPLC) instrument (Amersham Biosciences, Sweden), equipped 

with Sephacryl S-100 HR column and a conductance detector. The column was equilibrated 

with 3 volumes of 0.2M of NaCl solution, at a flow rate of 0.5 mL/min. For GPC analysis, 1 mL 

of each sample was injected in the column. Molecular weights of analysed samples were 

calibrated with polyethylene glycol standards (PEG 2000, 4000 and 8000). All solutions used 

were previously filtrated with 0.22 µm filters and sonicated for at least 15 minutes. 

Sigma Plot software (Jandel Corp., Corte Madera, Canada) was used to analyse the obtained 

chromatograms.  
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2.2.5. X-ray Powder Diffraction  

The characteristic crystallinity of the synthesized polymers was evaluated by X-ray Powder 

Diffraction (XRD) analysis. For these analysis freeze-dried samples of the different block co-

polymers were mounted in appropriated silica supports by using a spatula and compressing 

the material into double sided adhesive tape. The mounted samples were then acquired in a 

Rigaku Geigger Flex D-max III/c diffractometer (Rigaku Americas Corporation, USA), equipped 

with a copper ray tube operated at voltage of 30 kV and current of 20 mA.  XRD data was 

recorded over a range of 5 to 90°, with continuous scans at a rate of 1°C/min. The XRD 

diffractograms were compared to an international materials database, provided in the JADE 6 

data processing software. Percentage of crystallinity of synthesized polymers can be 

calculated by the following formula: 

 

                
                                 

                        
     [137] 

 

 

2.2.6. Differential Scanning Calorimetry 

Thermal analysis of the different block co-polymers synthesized was performed in a DSC-204 

Phoenix (Netzsch Gerätebau, Germany) differential scanning calorimeter. For Differential 

Scanning Calorimetry (DSC) analysis approximately 3 mg of powder samples were deposited 

inside standard aluminium pans. The samples were then heated from room temperature 

(approximately 25°C)  to 200°C, at a rate of 5°C/min, as previously described in the 

literature [138]. Protective gas (argon) was kept at a constant rate of 65 mL/min and was 

used to remove possible artefacts and maximize heat transfer. Calculation of the heat 

enthalpy (ΔH) and melting temperature (Tm) for each block co-polymer was performed 

through peak integration in the Proteus® software (Netzsch). 

 

 

2.2.7. Micelle self-assembly - Film Hydration Method 

PEG-PLA micelles were formulated via the film-hydration method, as described in the 

literature [139]. For micelle self-assembly, PEG-PLA block co-polymers dissolved in 1 mL of an 

equivolumetric mixture of dichloromethane/MetOH were placed in a round-bottom flask. 

2.22x10-8 mol of Crizotinib/mg of polymer of a previously prepared solution were then added 

and gently mixed. The mixture was then evaporated on a Rotary evaporator (Rotavap® R-

215, Büchi, Switzerland) to form a thin film. The polymer-drug film was then hydrated with 1 

mL mili-Q water and sonicated for 30 min, in a Brandson 5510 bath sonicator 

(Branson Ultrasonic Corp., CT, USA). The obtained single drug micelles where pelleted at 

30000 g during 30 min. The micelle pellets were then resuspended in mili-Q water until 

further use. To promote the self-assemble of the dual drug micelles, performed similar 
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procedure was used. For this purpose 2.11x10-8 mol of Sildenafil/mg of polymer and 2.22x10-8 

mol of Crizotinib/mg of polymer were co-dissolved with PEG-PLA polymer as above 

mentioned. This methodology was carried out for the three different polymers (PL4, PL8 and 

PL30). Additionally, blank micelles, i.e., with no addition of drug, were also prepared as 

described before.  

 

 

2.2.8. Determination of the Critical Micellar Concentration 

The CMC of the different PEG-PLA co-polymers was determined by fluorescence spectroscopy. 

Pyrene was used as a model fluorescent probe as previously described by Laek and co-

workers, 2013 [140]. To determine the CMC different polymer concentrations ranging from 

0.001 to 2000 µg/mL were used to encapsulate pyrene (0.6 µM). Because of its 

hydrophobicity, pyrene tends to move to micelles core, and because it shows a shift on 

emitted fluorescence, when inside the micelles, micelle stability can be evaluated. The shift 

in pyrene fluorescence was measured in a Spectramax Gemini XS spectrofluorometer 

(Molecular Devices LLC, USA). To record the differences in pyrene fluorescence an excitation 

wavelength of λex ≈ 333 nm and λex ≈ 335 nm and an emission wavelength of λem ≈ 390 nm 

were used, as previously described. The obtained data is presented as the ratio of the 

fluorescence intensity of the pyrene excitation peaks (Iλex ≈ 335 / Iλex ≈ 333) as a function of 

co-copolymer concentration.  

 

 

2.2.9. Haemolysis Assay 

In order to assess the blood compatibility of carriers, the synthesized micelles were incubated 

with rat erythrocytes. All the procedures used to manipulate animals were in agreement with 

European regulatory guidelines for care and use of laboratory animals (Directive 2010/63/UE). 

In addition, the experiments were performed in specialized in house facilities certified by the 

Portuguese Veterinary Department for animal research (ISO 9001 certification). 

Initially for blood collection female Wistar rats were euthanized by terminal anaesthesia. 

Blood samples were then collected by cardiac puncture. The whole blood was immediately 

transferred to EDTA containing tubes. For the haemolysis experiments, 2mL of whole blood 

were pelleted for red blood cell (RBC) isolation. The supernatant containing platelets and 

plasma was then discarded and the RBC’s pellet resuspended in 2 mL of Phosphate Buffer 

Saline (PBS) and rinsed twice as before mentioned to remove residual contaminants. 

Afterwards, the purified RBC’s where incubated with a range of concentrations of PL4, PL8 

and PL30 micelles (50 and 500 µg/mL), for 1 h, at 37 °C. PBS and Triton-X100 incubated RBC’s 

were used as negative and positive controls, respectively. After the incubation period, the 

RBC’s where pelleted and the supernatants recovered for further quantification. The 
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determination of free haemoglobin was performed by ultraviolet-visible (UV-vis) analysis at 

λ=540 nm in a Shimadzu–1700, UV-vis spectrophotometer (Shimadzu Inc., Japan). 

Additionally, the integrity of the RBC’s was also characterized by Scanning Electron 

Microscopy (SEM). For this analysis RBC’s incubated with polymers were pelleted after the 

incubation period. The cells were then fixed by gentle resuspension with 0.1 M of sodium 

cacodilate for 10 min, at 4°C, and pelleted as before. This stage was followed by an 

additional fixation with 2.5 % (w/v) glutaraldehyde, for 1h, at room temperature (RT) with 

subsequent centrifugation. After fixation, pelleted RBC´s were dehydrated by sequential 

resuspension-centrigufation steps in which cells were progressively immersed in ethanol 

solutions of growing concentration (50 to 100 % (v/v)). The final dehydrated pellet was 

resuspended and dispersed in a cover glass (ø = 15 mm) for posterior SEM analysis as below 

described in section 2.2.11 (Page 52).  

 

 

2.2.10. Encapsulation Efficiency and Release Profile samples 

analysis. 

Encapsulation efficiency was quantified using an Agilent 1200 Ultra Performance Liquid 

Chromatography (UPLC). Separation was obtained using an Agilent ZORBAX Eclipse C18 Rapid 

Resolution column (Agilent Technologies, CA, USA). Resulting supernatant of centrifuged 

micelles was injected in UPLC to perform analysis. The balloon where nanoparticles where 

assembled was rinsed with MetOH to solubilize any rest of drug and was also analyzed. The 

total quantified, non-encapsulated drug was subtracted to initial drug concentration, to 

calculate the percentage of encapsulation efficiency as described below. 

 

                              
[    ]         ([    ]            [    ]     )

[    ]       
     

 

The method for dual drug quantification was optimized following previously reported 

Sildenafil method [141]. Mobile phase used for separation and quantification of Crizotinib and 

Sildenafil were composed of Na2HPO4 and 0.01% Triethylamine (TEA) (v/v) at a concentration 

of 0.015M. pH was set to at 7.4 and temperature to 30°C. Sample analysis was performed at 

constant flow of 1mL/min. All mobile phases were prepared with MilliQ water to a final 

volume of 1 or 2 L, filtered through a 0.2 µm pore nylon membrane and degassed before use. 

Chemstation software was used to perform analysis of the obtained chromatograms. 

Integration of area under curve of the two analytes, as well as internal standart, were 

performed and ratio analyte/internal standard was calculated to eliminate mobile phase or 

equipment related fluctuations. 
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2.2.11. Morphological Characterization of PEG-PLA micelles 

Self-assembled micelles morphological properties were visualized by SEM. Micelle suspensions 

were stained with the electron dense phosphotungstic acid (PTA) anionic stain (0.1 % w/v) for 

5 min. Afterwards the stained micelles were dispersed in a cover glass (ø = 15 mm). All 

samples were dried overnight at 40°C, in an oven to remove residual water. The micelles 

were then mounted on aluminium stubs and sputter coated with gold by using an Emitech 

K550 sputter coater (Emitech Ltd, UK). The nano sized carriers where then observed on a 

Hitachi S-2700 (Hitachi, Tokyo, Japan) electron microscope configured with optimal detection 

settings, namely 20kV of accelerating voltage, using different acquisition modes and 

magnifications.  

 

 

2.2.12. Characterization of PEG-PLA Micelle Size and Zeta 

Potential 

Following the self-assembly of the drug loaded micelles their size and zeta potential (surface 

charge) was determined by dynamic light scattering (DLS). Prior to analysis the micelles were 

resuspended in 900 µL of mili-Q water, sonicated and analyzed immediately. Sample analysis 

was performed at 25 °C by using a disposable folded capillary cell. All sample measurements 

were performed in a Zetasizer Nano Zs instrument (Malvern Instruments, Worcestershire, UK) 

equipped with a He-Ne 633 nm laser, at a detection angle of 173°. This detection mode was 

used to minimize possible artefacts due to backscattering of the light. Micelle size was then 

determined by Cumulants/Correlogram analysis and by the Stokes-Einstein equation for 

colloidal dispersions. 

  

  
   

    
 

 

Zeta potential was computed by using the Smoluchowski model (ƒ[Ka] =1.50) included in the 

Zetasizer software (v 6.32). 

   
        

  
 

 

 

 

2.2.13. Release profile of encapsulated drugs 

Drug release was performed using multiple samples of PL8 micelles resuspended in PBS 1% at 

a concentration of 0.1 mg/mL. Various samples were used to collect data at different time 
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points (1h, 2h, 3h, 1 to 8 days) and were incubated at 37°C with gentle agitation. After 

completing the time of incubation, each sample was centrifuged at 30 000 g for 30 min before 

UPLC analysis. Supernatant was analyzed using the methodology described above in 1.2.5. 

 

 
2.2.14. Cell susceptibility with blank micelles  

To evaluate micelle cytotoxicity, MCF-7 cells were initially seeded at a density of 8 x 103 

cells/well in a 96-well flat bottom culture plates, containing DMEM-F12 supplemented with 

10% FBS. Adherent cells were grown at 37 °C, in an incubator with a humidified atmosphere, 

containing 5 % CO2. The following day, culture medium was refreshed and cells were 

incubated with different concentrations of PL8 blank micelles, to a final concentration 

ranging between 5 and 2000 µg/mL. Cell cytotoxicity was monitored by using the Resazurin 

assay. This method uses a highly sensitive and non-toxic reagent (Resazurin) that is reduced 

to a fluorescent substrate (Resofurin) by intracellular mitochondrial enzymes such as flavin 

mononucleotide dehydrogenase and nicotinamide adenine dehydrogenase [142]. Briefly, to 

perform this evaluation the culture medium was replaced at pre-determined periods after 

polymer incubation (24 and 48h), and the cells were incubated with 10 % (v/v) of Resazurin (1 

mg/mL) during 4 h, at 37° C and 5 % CO2 in the dark. The resofurin present in the culture 

medium was then transferred into black clear bottom 96-well plates for analysis. 

Fluorescence measurements were then performed in a plate reader spectrofluorometer 

(Spectramax Gemini XS, Molecular Devices LLC, USA) at an excitation/emission wavelength of 

λex = 560 and λem = 590 nm respectively. Ethanol treated cells were used as positive controls 

(K+) and non-incubated cells were used as negative controls (K-). 

 

 

2.2.15. Flow Cytometry 

Characterization of micelle uptake was performed by flow cytometry. For uptake 

experiments, 6 well culture plates were seeded with 2 x 105 cells in DMEM-10 % FBS and 

grown for 24h. To evaluate micelle uptake, PL8 micelles were prepared by self-assembly in 

order to encapsulate RITC (10 µM) that was used as model hydrophobic fluorescent probe. 

Micelles were then resuspended in culture medium without antibiotics before their 

incubation. The particles were allowed to interact with MCF-7 cells for 2 and 4h and removed 

afterwards by extensive rinsing with PBS. The cells were then recovered by trypsinization 

(0.18 % trypsin – 5 mM EDTA), pelleted and resuspended in 500 µL of PBS for flow cytometry 

analysis. All the experiments were performed on a BD FACSCalibur flow cytometer equipped 

with 488 nm and 633 nm lasers. Data collection was performed using CellQuestTM Pro 

software where the fluorescent signals of 8 x 103 events present in the gated region of 

interest (ROI) were recorded with the FL-2 (585/42) band pass filter. Flow cytometry data 
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was analyzed in FlowJo software (Treestar, Inc., CA, USA) and is presented as mean 

fluorescence intensity (MFI). 

 

 

2.2.16. Micelle uptake by Breast Cancer cells 

Micelle uptake capacity and intracellular distribution in MCF-7 malignant cells was studied by 

confocal laser scanning microscopy (CLSM). Prior to CLSM experiments RITC was encapsulated 

in the micellar carriers as reported in section 2.2.7 (Page 49), using the film hydration 

method. For the visualization of micelle uptake 20 x 103 MCF-7 cells were seeded in µ-Slide 8 

well Ibidi imaging plates pre-coated with fibronectin or collagen (Ibidi GmbH, Germany). On 

the following day, the cells were incubated with PL8 micelles during 4 h. After incubation, 

cells were fixed with 4% paraformaldehyde (PFA) (15 min, RT) and washed with PBS. MCF-7 

cells were prepared for imunocytochemistry analysis by permeabilization with 1% Triton X-100 

for (10 min, RT). Permeabilized cells were then blocked with a blocking solution (10 % FBS, 

0.1 % Tween-20, in PBS) in order to avoid antibody binding to unspecific protein epitopes. 

After blocking the cells were extensively rinsed with PBS and incubated with the anti-F-actin 

Phalloidin CruzFluor® 647 conjugate antibody for 1h, at RT, in a humidified chamber. MCF-7 

cells were then washed with PBS for 5 to 10 times to remove excess antibody and then 

labelled with the Hoechst 33342® (2 µM) nuclear probe, for 15 min at RT. After labelling cells 

were extensively rinsed with PBS. Imaging experiments were performed in a Zeiss LSM 710 

confocal microscope (Carl Zeiss SMT Inc., USA), equipped with a Plan Apofluar 40x/1.4 Oil 

Differential Interference Contrast (DIC) objective. Image acquisition was performed in Z-stack 

mode where consecutive Z-stacks with a slice thickness of 0.23 µm were acquired. 3D 

reconstruction and image analysis was performed in Zeiss Zen 2010. 

 

 

2.2.17. IC50 determination and Synergic effect evaluation 

To evaluate IC50 of MCF-7 cells relatively to Crizotinib, MCF-7 cells were initially seeded at a 

density of 8 x 103 cells/well in a 96-well flat bottom culture plates, containing DMEM-F12 

supplemented with 10% FBS. Adherent cells were grown in the same conditions described in 

2.2.14 section (Page 53). The following day, culture medium was replaced and cells were 

incubated with crescent concentrations of Crizotinib ranging from 0.33 µM to 334 µM. 

To evaluate synergic effect of both drugs (Crizotinib and Sildenafil), MCF-7 cells were initially 

seeded at a density of 8 x 103 cells/well in a 96-well flat bottom culture plates, containing 

DMEM-F12 supplemented with 10% FBS. Adherent cells were grown at the same conditions 

described in 2.2.14 section (Page 53). The following day, culture medium was changed and 

cells were incubated 48 h with Crizotinib (108.67 µM), Sildenafil (79.33 µM) and the 

(Crizotinib + Sildenafil) at the same concentrations that were used for each single drug. 
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Ethanol treated cells were used as positive controls (K+) and cells without incubation of 

micelles were used as negative controls (K-). 

 

 

2.2.18. Drug Loaded Nanoparticle Incubation 

The anti-tumoral activity of the different micelles was determined by the MTS assay to 

evaluate cell viability. Initially, 8 x 103 MCF-7 cells were seeded in 96 well plates, 24 h before 

the experiment in DMEM-F12 – 10% FBS. In the following day, the culture medium was 

replaced and the cells were incubated with PL8C and PL8CS micelles, at a final drug 

concentration of 55.25 µM of Crizotinib and 40.33 µM of Sildenafil. Cell viability was 

determined at various time periods (24 and 48 h) by incubating MCF-7 cells with the MTS 

reagent. The formazan product absorbance was measured at 492nm. Ethanol treated cells 

were used as positive controls (K+) and cells without be incubated with micelles were used as 

negative controls (K-). 

 

 

2.2.19. Apoptosis assay 

Apoptosis effect of PL8CS micelles on MCF-7 malignant cells was studied by CLSM. Prior to 

CLSM experiments, 20 x 103 MCF-7 cells were seeded in µ-Slide 8 well Ibidi imaging plates 

(Ibidi GmbH, Germany). After 24 h in culture, cells were incubated with PL8CS micelles 

during 12 h using the same final concentration of Crizotinib and Sildenafil described in section 

2.2.18 (Page 55). After micelle incubation, cells were incubated with 7.5 µM of CellEventTM 

Caspase-3/7 detection reagent during 30 min. Afterwards they were fixed with 4% 

paraformaldehyde (15 min, RT), washed with PBS and finally visualized in CLSM as described 

in 2.2.16 (Page 54). 

 

 

2.2.20. Statistical Analysis 

One-way analysis of variance (ANOVA) with the post-hoc Newman-Keuls test was used to 

compare the results obtained for the different groups used in the various assays. A p value 

below 0.05 (p< 0.05) was considered statistically significant. Additional p values (p<0.01 and 

p<0.001) were used to ascertain higher degrees of significance. The analysis of all data was 

performed in the GraphPad Prism v.5.0 software (Trial version, GraphPad Software, CA, USA). 
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3. Results and Discussion 

3.1. Synthesis of PEG-PLA block co-polymers  

 Block co-polymers represent a novel class of polymers with invaluable properties that are 

essential for the formulation of micellar DDS for cancer therapy [143]. Nanomicelles 

comprised of block co-polymers have the capacity to self-assemble in aqueous dispersions, 

forming very stable core-shell structures [144]. PEG-PLA block co-polymers are particularly 

interesting colloidal carriers due to their high loading capacity and controlled drug release 

[145]. Therefore, PEG-PLA co-polymers were chemically synthesized with the aim to promote 

the encapsulation of multiple drugs in self-assembled micelles. To improve drug 

encapsulation, the hydrophobic compartment of the nanocarrier must possess sufficient space 

to accommodate several hydrophobic drugs. However, it should be underscored that the 

polymer chain length also affects micelle size, a parameter that could compromise the 

envisioned therapeutic applications. Therefore, the block co-polymers were intentionally 

synthesized with an application-focused design, in order to tailor certain polymer features 

that could improve drug delivery and release. 

The synthesis of various PEG-PLA co-polymers was promoted through the establishment of a 

living ROP reaction in which the monomer of L-Lactide was used as a template for PLA 

synthesis. The method of polymerization occurs via a COI mechanism where the L-Lactide ring 

is opened and two lactic acid molecules are added on the hydroxyl (–OH) terminal group of a 

macroinitiator, as shown in Figure 12. In this particular block co-polymer the macroinitiator 

used was mPEG. The monomethoxy-terminal of mPEG provides a perfect inert group, leaving 

only the –OH terminal to react with the living monomers. The ROP and consequent bulk 

polymerization of L-Lactide was initiated by the catalyst Sn(Oct)2. This catalyst promotes ROP 

through the COI mechanism and provides an improved ROP in terms of the reaction rate and 

the polymerization yield. In fact it has been previously reported that Sn(Oct)2 leads to the 

conversion of more than 90% of L-Lactide monomers [146]. Moreover, by using this approach 

the racemization of L-Lactide during ROP is largely reduced, with literature reports indicating 

that polymer racemization is generally less than 1%, in optimal conditions. Racemization of 

the polymer chain reduces its stereochemical purity, a limiting factor that ultimately 

influences the physichochemical properties of the synthesized polymer and should be 

addressed during the synthesis of PEG-PLA block co-polymers for therapeutic applications. 

Interestingly, a part from reducing racemization, the use of Sn(Oct)2 provides further 

advantages in the synthesis of block co-polymers for drug delivery, since higher or lower Mw 

polymer chains can be obtained according to the envisioned applications only by modulating 

the the concentration of catalyst in ROP [146]. 
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Figure 12 – COI mechanism of ROP of L-LA polymerization using mPEG as macroinitiator and Sn(Oct)2 as 

catalyst. (Adapted from [147]). 

 

Taking the former into account, the ROP reaction was performed with a L-Lactide-PEG 

monomer-to-macroinitiator mass ratio of 2:1, since it has been previously described that this 

is the optimal ratio of polymerization to synthesize PEG-PLA co-polymers with suitable Mw for 

therapeutic applications [148]. The ROP of PEG-PLA co-polymers were performed at various 

time points (4, 8 and 30 h) in order to modulate the length of the hydrophobic polymer chain. 

This strategy allows the existence of different block co-polymer batches with various 

physicochemical characteristics, bringing forth the opportunity to evaluate the most suitable 

synthesis for the envisioned therapeutic application. After establishing this initial 

experimental setup all the ROP reactions proceeded under inert and water-free conditions, as 

described in Section 2.2.1 (Page 46). The latter parameter is critical for ROP, since the 

presence of H2O molecules in a Sn/-OH system leads to the conversion of Sn into stannous 

hydroxide derivatives that are less reactive [149]. This fact limits the rate of ROP and thus 

affects the final Mw of the PLA polymer chain.  

The block co-polymer synthesis performed at different time frames yielded hydrophobic 

polymer chains with variable Mw’s. This time-dependent manipulation of the PLA polymer 

length is only possible due to the existence excess L-Lactide in all the reactions performed. L-

Lactide polymerization is temperature dependent [150]. A temperature of 120˚C was 

reported to be the optimal temperature of polymerization, resulting in longer PLA chains 

[151]. After ROP, the co-polymers were recovered by a three-step precipitation with MetOH. 

This recovery process was employed since PLA is highly insoluble in MetOH, and thus a 

selective precipitation of the PEG-PLA blocks is achieved. This procedure has been previously 

described as one of the most effective forms for PEG-PLA co-polymer recovery [152]. 

However, throughout the recovery process it was discovered that by using MetOH, the 

recovery yield was further improved. Due to this approach a faster precipitation process 
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occurred for longer PLA chains, a finding that is in accordance to what was expected, since 

MetOH lowers the solubility limit of PLA chains. It is also important to underscore that during 

this recovery process non-reacted mPEG polymer chains are also removed, since mPEG is 

highly soluble in MetOH. Nevertheless, an additional purification of the block co-polymers 

synthesized was performed through dialysis-freeze drying cycles, in order to remove traces of 

contaminants and obtain fully purified polymers. All the synthesized PEG-PLA polymers were 

then analyzed by NMR. 

 

3.2. NMR analysis of PEG-PLA block co-polymers 

 

NMR analysis was performed to evaluate the success of the ROP process since it is a highly 

sensitive technique that allows to evaluate the effectiveness of synthesis and purification 

stages. This in-line analysis unlocked the opportunity to control the synthesis process and to 

manipulate all the parameters accordingly to the intended final application. 

The 1H NMR spectra obtained for the different PEG-PLA block co-polymers are shown in Figure 

14. In comparison with the NMR spectra of mPEG and L-Lactide (Figure 13) it can be observed 

that the spectra of the ROP synthesized polymers presents the characteristic proton peaks of 

mPEG, suggesting that the synthesis process does not alter the native structure of the 

hydrophilic block (Figures 13 and 14). To further characterize the synthesized co-polymers a 

full assignment of the proton peaks obtained in the NMR spectra was also performed. All the 

proton assignments were performed accordingly to the chemical shifts previously reported in 

the literature [136, 147]. 

As shown in figure 14, the proton peaks appearing at δ=5.2ppm and δ=1.5 ppm were assigned 

to the methyne (R1-CH=R2) and methyl (-CH3) protons of the PLA monomers, respectively 

[136, 147]. The mPEG monomers are characterized to have a peak at approximately δ≈3.7 

ppm, that is assigned to methylene (=CH2) protons [136, 147]. Moreover, the peak present at 

δ=3.4 ppm is correlated with the methyl (-CH3) protons at the end of the mPEG polymer chain 

[136, 147]. The CDCl3 characteristic peak (δ=7.3 ppm) was also seen in all spectra. It is also 

important to underline that no additional peaks were obtained, an important finding that 

illustrates the purity of the block co-polymers after synthesis. Interestingly, the 1H spectra 

shows that the proton peaks at δ=5.2ppm and δ=1.5ppm were increased for longer 

polymerization periods. The EO/LA ratio was calculated through the integration of peaks as 

previously reported [136]. mPEG methylene protons peak δ=3.7 ppm and δ=5.2 ppm peak of 

PLA were integrated. Due to the constant length of mPEG in the different polymerization 

times, this correlation is possible, and so block-co polymer Mn can be calculated. 



60 

 

 

Figure 13 – NMR of the synthesized mPEG and L-Lactide raw materials used in the polymerization process. 
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Figure 14 – NMR of the synthesized PEG-PLA block co-polymers with different polymerization times, (PL4, PL8 and PL30). 
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In fact as displayed in Table 2 the PLA different average weights can be obtained through 

NMR analysis. This is a valuable information that is crucial for the characterization of the 

synthesis process, since it allows the determination of the length of the hydrophobic chain 

and its correlation with the ROP polymerization time used. 

 

Table 2 - Degree of polymerization, Mn of PLA and mPEG-PLA calculated by proton peak 

integration. n=5 integrations of each characteristic peak where performed. 

Time of 

Polymerization 

(h) 

Degree of 

Polymerization 

PLA 

(Mn) 
EO/LA (n=5) 

Mean PEG-PLA 

Mn 

(PEG Mn=2000) 

4 203.05 738 4.47 4.46 4.43 4.36 4.39 2738±7.64 

8 160.46 932 3.53 3.50 3.50 3.51 3.53 2932±4.06 

30 83.14 1898 1.76 1.72 1.74 1.72 1.72 3898±15.88 

 

Interestingly, as the results in Table 2 demonstrate, the increase of polymerization time was 

proportional to an increase in the PLA chain length. The polymerization of 4h led to the 

synthesis of the smallest hydrophobic blocks (Mn ≈738). On the contrary, extending the ROP 

for 30 h resulted in the largest PLA obtained herein (Mn ≈1898). These findings are in 

accordance to the results previously reported in the literature, that for longer times of 

polymerization results in longer PLA chains [151], and emphasize the feasibility of this 

straightforward approach in the optimization of the length of the hydrophobic block.  

 

 

3.3. FTIR analysis of PEG-PLA co-polymers 

In addition, FTIR analysis was also performed to characterize the L-Lactide polymerization 

(Figure 15). The FTIR data obtained for mPEG shows a characteristic C-O-C stretching band at 

1085 cm-1. The strong band observed at 1755 cm-1 a (green color) is assigned to the carbonyl 

ester (C=O) of PLA [153]. The bands obtained at 2880 and 2946 cm−1 are assigned to the C-H 

stretching vibration of (-CH3) (yellow color) and -CH- (red color) groups of PLA, respectively 

[153]. The characteristic bands obtained for PL4, PL8 and PL30 are the similar to those of 

PEG-PLA co-polymers, already described in literature [153], further corroborating the success  

of the synthesis process.  
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Figure 15 – FTIR spectra of the native materials (L-Lactide and PEG) and of the synthesized block co-

polymers (PL4, PL8 and PL30). mPEG and L-LA spectra were used as controls. 

 

 

3.4. GPC analysis of block co-polymer  

Gel permeation chromatography was performed to further characterize the molecular weight 

of the various PEG-PLA co-polymers. 

 

Figure 16 – Chromatograms of PEG standards (PEG 2000, PEG 4000 and PEG 8000) and of the 

synthesized materials (PL4, PL8 and PL30). 
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The GPC analysis provides important insights into the molecular weight distribution of the 

PEG-PLA co-polymers synthetized. As the chromatograms in Figure 16 demonstrate the PL4, 

PL8 and PL30 co-polymers present Gaussian distribution profiles instead of highly broad 

peaks. This result indicates that the PL polymers have relatively low polidispersity, an 

important characteristic for therapeutic applications, envisioned since this parameter 

ultimately influences batch-to-batch reproducibility of polymer-based pharmaceutical 

formulations [93]. Moreover, it should be emphasized that PL chromatograms present well 

resolved peaks since the average molecular weight of the different samples is higher than 

10%, which is above the resolution limit of GPC [154]. It is also important to mention the 

experimental conditions of the chromatographic run, since a salt solution (0.2M NaCl) was 

used as both equilibration and eluent. This fact led to an increase in the mean residence time 

of larger polymers and a decrease for smaller ones. Generally, in GPC the separation is based 

on the radius of gyration of the analytes, with larger analytes having a lower mean residence 

time than smaller ones, with the latter being those that are retained in the gel for longer 

periods of time [155]. The obtained results demonstrate that after running the three PEG 

standards, the retention times of the polymers where inverted, i.e., PEG 2000 had a lower 

retention time than PEG 4000 and 8000. Eluent used (0.2 M NaCl) have high conductivity. 

After retention of polymer inside the column it passes through the conductance detector, 

overall eluent conductivity thus decreases, and the signal is registered in a chromatographic 

detector. In accordance with the previous results, the loading of PL4, Pl8 and PL30 into the 

column led to the the same pattern of elution, i.e., longer polymers have been retained more 

than shorter polymers (Figure 16). This can be explained by the establishment of some non-

specific interactions between the polymer samples and the Sephacryl S-100 HR column matrix 

which is composed of allyl dextran and N,N’-methylene bisacrylamide. It is postulated that 

NaCl salt concentration has a large influence in the radius of gyration of the mPEG polymer or 

co-polymer chains as recently described by Heeb and co-workers, 2009 and this might 

contribute for the observed results [156]. 

 

 

3.5. XRD analysis of PEG-PLA co-polymers 

The XRD characterization of the co-polymers reveals that the crystalline structure of mPEG 

was maintained after synthesis. This is evidenced by the appearance of the characteristic 

diffraction peaks at 19.1° and 23.3°. These peaks are obtained in the diffractograms of all 

co-polymer samples (PL4, PL8 and PL30). Interestingly, a new crystallization peak, derived 

from the PLA chain, was found at 16.6°. New occurrence peak means that PLA chain is long 

enough to crystalize [136]. L-LA crystallization peak does not appear in synthesized materials 

spectra, which suggests a good purity at the end of the purification steps. Moreover, as 

previously described by Nampoothiri and co-workers, the high crystallinity of PLA interferes 

with controlled degradation, reducing biocompatibility [157].  
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Characteristic peak of PLA crystallinity (16.6°) was used to perform the calculation of % of 

crystallinity. The obtained results show an increase of crystallinity for longer PLA chains as 

described in Table 3.  

 

Table 3 – Calculated percentage of crystallinity of PL4, PL8 and PL30. 

 
PL4 PL8 PL30 

Crystallinity (%) 14.52 ± 0.90 16.33 ± 0.16 19.05 ± 0.19 

 

 

Figure 17 – X-ray diffraction spectra of native materials (L-Lactide and mPEG) and of the 

synthesized block co-polymers (PL4, PL8 and PL30). 

 

 

3.6. DSC characterization 

Differential scanning calorimetry was performed to evaluate the thermal properties of novel 

PEG-PLA materials and correlate them with their native precursors. PLA is described to suffer 

degradation with temperature [158]. Degradation can occur through depolymerization, 

transesterification or oxidative processes [158]. Moreover, unreacted L-Lactide monomer 

and/or residues of catalyst can increase the degradability of PLA [158].  

Modification of mPEG polymer chains with the inclusion of PLA, changed the melting 

temperature (Tm) and the enthalpy (∆H) of melting temperature transition in comparison 

with the original materials. As described by Li and co-workers the PEG melting temperature 

decreases (approximately 10ºC) when PLA is added to its backbone [136]. This decrease is 
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indicative of the attachment of the PLA chain to the PEG macroinitiator. It is also important 

to mention that mPEG characteristic Tm and ΔH decrease as the PLA chain is longer, a fact 

that can be explained by the reduction in the mobility of PEG chains due to PLA 

polymerization in its backbone [136]. By analyzing the thermograms (Figure 18) and their 

peak integrations it can be observed that the Tm of PEG in the PL samples decreases by 

approximately 10% (Table 4). These results are corroborated by the above mentioned 

findings. Moreover, in respect to PLA thermal characteristics, it is interesting to denote that 

an increase in the PLA degree of polymerization is proportional to its melting temperature, 

i.e., the longer the PLA chain gets, the greater Tm and ΔH will be. These findings were also 

obtained by Li and co-workers, 2007 [136]. 

 

 

Figure 18 – DSC analysis of mPEG, L-Lactide, PL4, PL8 and PL30. 
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Table 4 - DSC data analysis of L-LA, mPEG, PL4, PL8 and PL30. (NA - non-applicable). 

Polymer Tm PEG (°C) ΔH PEG (J/g) Tm PLA (°C) ΔH PLA (J/g) 

L-LA N/A N/A 99.03 9.33 

mPEG 53.25 64.21 N/A N/A 

PL 4 43.80 27.79 120 26.03 

PL 8 43.65 22.71 129.26 29.30 

PL 30 44.69 11.68 147.15 34.42 

 

 

3.7. CMC Determination 

Following polymer synthesis and physicochemical characterization, the ability of PEG-PLA 

block co-polymers to form micelles with core-shell structures was evaluated. For this purpose 

the CMC of the various synthesized polymers was determined. CMC, is defined as the 

minimum concentration necessary for an amphiphilic material to be able to form 

nanomicelles by self-assembly, in aqueous environments [159]. CMC is also a measure of  

micelle stability in solution [159]. It is generally accepted that a lower CMC, leads to the 

formation of more stable self-assembled micelles, in aqueous dispersions [159]. It is 

important to emphasize that as a potential DDS, PEG-PLA micelles must be stable at a low 

concentration for being administered for instance in the blood stream and maintain their 

structure, thus keeping its drug payload inside the core [159]. By using pyrene as hydrophobic 

fluorescent probe, it was possible to determine the CMC for the three synthesized co-

polymers. Actually, this methodology if very valuable since by simply measuring fluorescence 

emission after a double excitation (335 and 333 nm) as described previously, in section 2.2.8 

(Page 50), it was possible to obtain a steep shift in the I335/I333 fluorescence intensity ratio 

when the polymer concentration was high enough to allow polymers to self-assemble into 

micelles. The interception of the two trend lines presented in Figure 19 represents the CMC 

of the different polymers. The obtained CMC results demonstrate that the increase in the 

hydrophobic chain length from PL4 to PL30 markedly decreases the CMC value, suggesting 

that the critical concentration is dependent on the PLA chain length (Figure 19). This is in 

agreement with the definition of self-assembled micelles, since the higher the hydrophobic 

chain the lower is the polymer concentration needed for micelle formation [160]. The CMC’s 

obtained in this study are comparable to those reported in the literature. However a special 

emphasis should be given to the PL30 CMC (7.8 x 10-4 mg/mL) that is 10-fold lower than the 

average CMC’s reported for PEG-PLA micelles [122]. 
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Figure 19 – CMC determination for (A) PL4, (B) PL8 and (C) PL30 micelles self-assembly. 

 

These important findings indicate that the PEG-PLA co-polymers synthesized have the ability 

to form very stable micellar carriers due to their amphiphilic character, having suitable 

characteristics for loading the hydrophobic anti-tumoral drugs [161]. 

 

 

3.8. Haemocompatibility Assay 

Based on the concept that the formulated micelles will be applied in cancer therapy through 

their administration via systemic injection, it is crucial to characterize the blood 

haemocompatibility of the carriers. For this purpose, the synthesized materials where 

incubated with freshly drawn rat whole blood to ascertain if there is any interference in the 

envisioned intravenous injection of PEG-PLA micelles. As shown in Figure 20, all samples 

incubated with PEG-PLA amphiphilic polymers present supernatants similar to those of 

negative control (PBS). In contrast the supernatant of the positive control is clearly red 

colored, indicating the release of hemoglobin by the lysed Red blood cells (RBCs). Moreover, 

as the SEM micrographs demonstrate, the integrity of the RBCs morphology is maintained 

even after incubation with the amphiphilic polymers. To further provide a quantitative 
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analysis the percentage of hemolysis was determined. The results obtained suggest that all 

the materials present excellent RBC viability, up to 500 µg/mL (Figure 20). This achievement 

allows to state that the different synthesized PEG-PLA’s are DDS have the suitable properties 

for being used in subsequent in vivo studies. 

 

 

Figure 20 – Supernatants resulting from the haemolysis assay (A). On the bottom of the image two 

representative SEM images of RBC previously incubated with nanoparticles: (B) PL8 and (C) PL30. 

 

Figure 21 – Quantification of free heme groups (indicator of haemolysis) after incubation with 

synthesized micelles (PL4, PL8 and PL30). K+ (positive control) represents Triton X-100 treated RBC, K- 

represents RBCs incubated with PBS. n=3; *p < 0.05; **p < 0.01; ***p < 0.001; ns=non-significant. 

 

All the results of quantification where equals to, or smaller than the negative control (PBS), 

therefore no significant difference was observed (Figure 21). These results are within the % of 
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haemolysis set forth by the ISO 13014-2013, which determines that values for hemolysis lower 

than 5% are in the interval of security, further revealing an excellent compatibility of 

synthesized materials with RBCs. Furthermore, it is important to state that values were 

normalized by the maximum percentage of hemolysis (performed by Triton-X 100). 

   

 

3.9. Analysis of Single and Multiple Drug Loading into 

Micellar Carriers  

Subsequent to the CMC determination, the different co-polymers were used to formulate 

micellar carriers for the encapsulation of the anti-tumoral drugs, Crizotinib and Sildenafil, 

either performing just Crizotinib-loading, or throught the simultaneous encapsulation of both 

drugs in micelles. As previously described in Chapter 2, all drug-loaded micelles were 

formulated by the film hydration-sonication method [139]. It is described in the literature 

that this provides enhanced loading in comparison with others, such as solvent evaporation 

method or dialysis method [118]. UPLC was then used to determine the amount of drug 

encapsulated. This technique provides a unique sensitivity, since its detection limits are in a 

concentration range of ng/mL. For establishing a viable approach two different 

methodologies were optimized to quantify the presence of Crizotinib and Sildenafil, either 

alone, or simultaneously, in various solvents: i.) MetOH, ii.) Water and iii.) PBS. Since no 

previous methodology was established to simultaneously quantify Crizotinib and Sildenafil, 

the initial method used was adapted from the one previously used by Quintero and co-

workers, that reports the quantification of Sildenafil and metabolites in blood plasma [162]. 

In the preliminary studies, several combinations of the mobile phases were used, in order to 

discover the most suitable solvent system to separate Sildenafil, Crizotinib and the internal 

standard used, Protriptiline. 

During the optimization process, different pH values, ranging between 6 and 7.4, were 

tested. In addition, the gradient of acetonitrile/ammonium acetate (NH4C2H3O2), as well as 

the run temperature and the mobile phase flow rate were also manipulated during this stage. 

However, problems in detection of Sildenafil and Crizotinib were found when the samples 

were injected in PBS, probably due to the excess of salt in both samples and the mobile phase 

(Figure 22). Therefore, another Sildenafil separation method, with a new mobile phase di-

sodium hydrogen phosphate (Na2HPO4), was adapted from [141] (. Once again the gradient of 

acetonitrile and column temperature where adjusted to investigate the optimal separation 

conditions for the three compounds. An increase in the acetonitrile fraction of the mobile 

phase promoted faster chromatographic runs. Actually after the final optimization stage with 

the second mobile phase, the running time was reduced from 10 minutes (first mobile phase 

tested (NH4C2H3O2)) to 7 minutes (Na2HPO4). These findings can be explained by a decreased 

exposure of the C18 column groups when acetonitrile flows through. With this approach 

Sildenafil was easily separated, however, to resolve the Crizotinib and Protriptiline peaks, the 
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mobile phase gradients and the run temperature had to be optimized, as described in the 

materials and methods section 2.2.10 (Page 51). A selective separation of the three 

compounds was then obtained as shown in Figure 22 B. 

 

 

Figure 22 – Representative chromatograms of the separation of Crizotinib and Sildenafil analytes and 

the Internal Standard (Protriptiline) with two different mobile phases: CH3CO2NH4 (A) and Na2HPO4 (B). 

 

After optimization process, the method was completely validated according to FDA [163], as 

can be seen in Table 5, 6, 7 and 8 on Appendix section (Page 98).  

After method validation, the amount of drug encapsulated was determined by measuring the 

drug concentration present in the supernatant. As the results in Figure 23 show, the 

encapsulation efficiency of Crizotinib was above 65% in all PEG-PLA micelles (Crizotinib alone, 

Crizotinib+Sildenafil). 
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Figure 23 – Encapsulation efficiency of Crizotinib and Crizotinib/Sildenafil combination in PL4, PL8 and 

PL30 nanoparticles. n=5; *p < 0.05; **p < 0.01; ***p < 0.001; ns=non-significant. Data is presented as 

mean ± s.d. 

 

The encapsulation efficiency of Crizotinib alone is particularly high for the PL8 micelle 

formulations, achieving 100% of the initial Crizotinib amount. This important finding 

highlights the unique drug loading capacity of these particular micelles. Further analysis 

reveals that Crizotinib is encapsulated to a slightly higher extent in PL8 micelles than in PL30 

micelles, however, no significant differences were found. In addition, in comparison with the 

PL4 micelles, the other formulations with increased PLA chain lengths presented better 

encapsulation efficiency (Figure 23). This fact is likely correlated with the hydrophobic 

characteristics of Crizotinib and suggests that encapsulation efficiency varies according to the 

hydrophobic chain lengths. Sildenafil was encapsulated with an efficiency of 73% in PL8 

formulation and 61% in the PL30 micelles, which is related to the slightly less hydrophobic 

character of this drug. In fact, the encapsulation of Sildenafil by PL4 micelles is 

approximately 0%. This fact can be explained due to shorter PLA chains that promote lower 

hydrophobic interactions with drug molecules, hence originating lower encapsulation 

efficiency. Besides, PL4 micelles have the lowest single and dual drug encapsulation in 

comparison with all other formulations, due to this fact, from this point onwards PL8 and 

PL30 have been chosen for the subsequent studies. This can be explained by the large amount 

of hydrophobic chains in the inner micelle core that occupies the free space required for 

molecule entrapment. 
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3.10. Morphological Characterization of Nano-sized PEG-

PLA micelles 

SEM images were acquired in order to evaluate the morphological characteristics of PEG-PLA 

micelles. As show in the electron microscopy images of Figure 24, all the micelles presented 

spherical-like morphologies. These results are corroborated by different studies in the 

literature, that describe the formulation of PEG-PLA spherical micelles [147, 164, 165]. 

Nanoparticle morphology is crucial to maximize cellular uptake. Spherical shape is thought to 

maximize cellular uptake, as previously described by Albanese et al [75]. Spherical form 

contributes for a better hydrodynamic behavior  in the blood stream [75]. 

 

Figure 24 – SEM micrographs of: PL8 micelles with ecapsulated Crizotinib (A) and Crizotinib+Sildenafil 

(B) respectively; and PL30 micelles with loaded Crizotinib (C) and Crizotinib+Sildenafil (D) respectively. 

White arrows indicate micellar carriers. 
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3.11. Micelle physicochemical characterization – Size and 

Surface Charge 

Micelle size is a critical characteristic since it ultimately determines nanocarriers   

accumulation in tumor tissues through the EPR effect. The size characterization results show 

that PL30 formulations are able to form nano-sized micelles with narrower size range (98 to 

101 nm) than that of PL8 formulations (126 to 132 nm) (figure 25). This difference in micelle 

size is observed in both Crizotinib and Crizotinib+Sildenafil-loaded micelles. Because these 

two co-polymers only differ in the PLA chain length, the difference in size can be explained 

by the fact that PL30 has less drug encapsulation efficiency, with less core space being 

occupied [166]. The drug-loaded micelles formulated with a single or dual drugs present 

slightly lower size than those reported in the literature for these DDS [167, 168]. Nanoparticle 

size plays a critical role in biodistribution and blood clearance [169]. It is described that 

nanoparticles with less than 200 nm have a longer blood circulation time than that of larger 

sized particles [169]. Furthermore, nanoparticles larger than 250 nm are described to be 

extensively accumulate in organs such as the spleen, liver and lungs [169]. Therefore, it is 

very important to produce micellar carriers with suitable size ranges in order to avoid these 

issues. PDI, of the produced micelles is under 0.25, which shows good properties for 

biomedical application, since low PDI of nanoparticle is required for good biological response 

[170]. Regarding the zeta potential, the results show that PL8 formulations present a more 

negative surface charge than the PL30-based formulations. This finding is observed in single 

drug and dual drug-loaded micelles (Figure 25). The lower negativity of PL30 nanoparticles is 

due to better capping of carboxyl acid groups of PLA by PEG chain. Because of the lower 

mobility of PEG, when attached to longer PLA chains [171]. These results are in accordance 

with those reported in the literature for PEG-PLA micelles that commonly possess zeta 

potential values in the range of +10 to -10 mV [167, 168].  
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Figure 25 – Size, PDI and zeta potential of PL micelles loaded with drugs. (A and B) PL8 loaded with 

Crizotinib and loaded with Crizotinib+Sildenafil, respectively; (C and D) PL30 nanoparticles loaded with 

Crizotinib and with Crizotinib+Sildenafil, respectively. n=3. Data is presented as mean ± s.d. 

 

The more negative zeta potential values obtained for PL8 provide an important advantage in 

respect to non-specific interactions with blood components, especially erythrocytes [172]. 

Another important aspect involved in cell-nanoparticle interaction is the surface charge of 

nanoparticles. Positively charged nanoparticles are quickly involved by serum proteins, which 
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impairs their function, since they are eliminated by mononuclear phagocytic system in spleen 

and liver [75]. This is a critical finding for the envisioned application of this DDS, since its 

administration route will be primarily by systemic injection. Overall, the formulated PEG-PLA 

micelles had relatively low size and zeta potential variations, regardless whether they are 

used for encapsulation of one or two drugs simultaneously. 

Due to higher loading efficiency and more negative zeta potential, PL8 formulations gather 

the optimal DDS characteristics for therapeutic applications, and were then chosen from this 

point onwards to perform all the in vitro studies. 

 

 

3.12. Evaluation of Drug Release Profile 

It is important that a micelle can retain the drug in its inner core during relatively long 

periods of time, in order to provide its controlled release. In addition, increasing the period 

among which drug is released it is important to reduce de number of administrations, whilst 

always assuring that the drug concentrations are within the therapeutic window. After an 

intravenous injection it is highly important to ensure that the greatest possible amount of 

drug reaches its final destination, i.e., tumor cells. This characteristic is ensured by a slow 

release profile [173]. The release profile of nanoparticles was quantified as described above 

using UPLC technology. Regarding the release profile obtained, several aspects have 

contribute for the behavior of drugs encapsulated in micellar carriers [174]. Drug solubility, 

desorption of surface bound drugs, DDS degradation, drug diffusion, or the combination of all 

of these characteristics determines the release profile of an encapsulated drug [174]. PEG-

PLA micelles are described to hold encapsulated hydrophobic drugs with high efficacy [175]. 

Based on the better encapsulation efficiency of PL8 formulation, as well as greater negative 

zeta potential, the following studies were performed with PL8 formulation only. The micelles 

produced herein were able to sustain 80% of its payload of Crizotinib, resulting on a release of 

only 20% during 8 days of study (Figure 26). On the contrary, sildenafil appears to have a 

burst release profile, which is slightly explained by its increased water solubility in 

comparison with than of Crizotinib. As Sildenafil is more soluble in water (medium used for 

micelle self-assembly), its interaction with the hydrophobic chains of the polymer will be 

lower. Due to poor hydrophobic interaction with PLA hydrophobic chain, encapsulated 

sildenafil might be weakly interacting with PEG chains, which in turn promotes its faster 

release [176].  

In the literature, it is reported that some micelles can sustain 80% of the drug in their core 

for long periods, up to 4 days [147, 177]. The results obtained here revealed that these DDS 

have similar release profile to that previously reported for PEG-PLA micelles in the literature 

[178]. However, these micelles were loaded with other drugs, since Crizotinib and Sildenafil 

approach were never tested. A combination of different release profiles can explain this 

simultaneous release. Wu and co-workers [177] encapsulated Doxorubicin (a potent 
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chemotherapy drug) and obtained a comparable release profile in respect to that of  

Crizotinib alone. Moreover as described by Yoo and co-workers a burst release was also 

obtained for PEG-PLA micelles [179]. The difference observed between Crizotinib and 

Sildenafil in the release profile can be related to hydrophobic drug interactions with the 

hydrophobic PLA polymer chain. 

 
Figure 26 - Release profile of PL8 formulations at physiologic pH (pH = 7.4) (A) and at the characteristic 

acidic tumor pH (pH = 6.5) (B). PL8C/CS represents Crizotinib and Sildenafil loaded PL8 micelles. 

 

 

3.13. PEG-PLA co-polymers biocompatibility 

PEG-PLA is described as a highly biocompatible block co-polymer [180]. Nevertheless, to 

further characterize the synthesized materials, cytotoxic profile was characterized by using 

breast carcinoma cells (MCF-7) and human fibroblasts (Fib-H) [181]. 
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Figure 27 – Characterization of PL8 micelles cytotoxicity using: MCF-7 cells (A) and Fib-H (B). n=5; *p < 

0.05; **p < 0.01; ***p < 0.001; ns=non-significant. Data is presented as mean ± s.d. 

 

 

The results presented in Figure 27 show that cells present viability values above 95%, which is 

a similar cellular viability to that of K-. Both cell types maintained their viability in the 

presence of blank micelles up to concentrations of 2000 µg/mL. For MCF-7 cells the viability 

remains near 100% after their incubation with the same concentrations of polymers previously 

tested.  
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3.14. Characterization of Micelle Cellular Uptake 

3.14.1. Flow Cytometry analysis  

In order to address micelle cell uptake in MCF-7 breast cancer cells the carriers were loaded 

with RITC in their hydrophobic core using the same loading method that was previously used 

for loading drugs. Micelle uptake was evaluated at both 2 and 4 h after micelle incubation. 

During the different incubation times no relevant difference in the percentage of cells 

containing micelles was obtained, 99.82% (2h) and 98.02% (4h) (Figure 28). These results 

suggest that after 2h of incubation almost all the MCF-7 cells had internalized the PEG-PLA 

micelles, indicating the suitability of the delivery systems to be applied in cancer therapy. 

Moreover, further analysis of flow cytometry data reveals that the Mean Fluorescent Intensity 

(MFI) was increased from 92.2, at 2 h of incubation to 128.9, at 4 h of incubation. These 

results suggest that MCF-7, have internalized more micelles than the cells incubated with 

micelles only for 2h, providing therefore important insights for the future administration 

schedule of these DDS’s. 

 

Figure 28 – Overlaid cytometry histograms of MCF-7 cells incubated during 2 and 4 h with RITC-micelles. 

Black color represents auto fluorescence of MCF-7 cells, red represents fluorescence of MCF-7 incubated 

during 2 hours with RITC-micelles and blue shows incubation with the same RITC-micelles during 4 

hours. 

 

To further confirm cell internalization of PEG-PLA micelles in MCF-7 cells, RITC-Micelles 

where incubated with MCF-7 cells and then analyzed by CLSM. In Figure 29 the white arrows 

show the RITC-micelles internalized in MCF-7 cells, being extensively localized the cell 
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cytoplasm. This is a very relevant finding since when the micelles start to release the drugs 

these will be available in their site of action. In fact this increase in drug bioavailability 

improves the therapeutic effect. 

 

Figure 29 – CLSM images of MCF-7 cell with internalized PEG-PLA micelles encapsulating RITC. White 

arrows indicate micellar carriers. (A) 3D reconstruction of micelle cellular uptake; (B) Orthogonal slices 

of MCF-7 internalized micelles; (C) High resolution 3D surface rendering of micelle uptake. Green 

channel: Phalloidin-labelled F-actine; Blue channel: Hoechst 33342®; Red channel: RITC-loaded 

micelles. Yellow color is the result of co-localization of RITC (red) and phalloidin-F-actin (green). White 

arrows indicate some of the labeled micelles internalized in MCF-7 Cells. 
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3.14.2. Determination of the Inhibitory concentration of 

free Crizotinib in Breast Cancer Cells  

 

 

Figure 30 – IC 50 determination of Crizotinib anti-tumoral activity in MCF-7 breast cancer cells. Blue 

curve represents the mathematical fitting performed for IC50 calculation. n=5; Chi2=Chi-Squared; R2=R-

Squared. 

 

 

After the characterization of the biocompatibility it is important to address the actual anti-

tumoral activity of Crizotinib before further studies are performed. Therefore the IC 50 of 

Crizotinib was determined (Figure 30). The IC50 of a drug is the minimum concentration that 

is able to kill half of the tumor cell population. Due to possible variations in in vitro cell line 

models during cell passages, it is critical to assess the experimental IC50. Experimental IC50 

calculated trough fitting (34.19 ± 0.001 µM) is almost 10-fold higher than that reported in the 

literature 3.34 ± 0.52 µM [33]. This fact can be explained by the possible acquisition of a 

resistant phenotype from behalf of the MCF-7 breast cancer cells while in culture for long 

periods. Should be noted that R2 and Chi2 values obtained in this IC50 curve fit provide a high 

confidence in the obtained results. 

 

  



82 

 

3.15. Evaluation of the anti-tumoral effect of 

combinational drugs 

3.15.1. Free Crizotinib and Sildenafil 

In order to primarily address one of the main objectives of this thesis workplan, the anti-

tumoral effect of free Crizotinib in MCF-7 cancer cells was evaluated. Moreover, the 

synergistic application of free Crizotinib with free Sildenafil was also investigated, since it 

was initially postulated that this novel combinatorial approach could further improve any 

anti-tumoral effect of Crizotinib. Therefore, to prove these concepts, several assays were 

performed with an experimental design based on the use of single or multiple free drugs.  

 

Figure 31 – Evaluation of anti-tumoral activity of Crizotinib (alone) and Sildenafil (alone) and when 

Sildenafil was compbined with Crizotinib after 48 h incubation. n=5; *p < 0.05; **p < 0.01; ***p < 0.001; 

ns=non-significant. Data is presented as mean ± s.d.  

 

 

As demonstrated by Figure 31, after 48 h, only Sildenafil incubation does not elicit an anti-

tumoral effect. Actually, the MCF-7 cells incubated with Sildenafil alone, present a higher 

rate of proliferation than non-incubated cells. On the other hand, the anti-tumoral effect of 

Crizotinib was markedly pronounced with only 22% of MCF-7 remaining viable after their 

incubation with this drug. The simultaneous incubation of cells with Crizotinib and Sildenafil 

resulted in a steep decrease in cellular viability (only 10% of cells remained viable), when 

compared with the incubation of Crizotinib alone. Based on this achievement, it is possible to 

state with 99.5% of assurance, that there is a significatively improved anti-tumoral effect, 

and hence, corroborates the synergic effect obtained when these two drugs are administered 

into breast cancer cells. This synergy effect is likely due to occur because of the inhibitory 
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effect of Sildenafil on ABC transporters, which are one of the efflux pumps that transport 

drugs from the cytoplasm to the extracellular medium [59]. 

  

 

3.15.2. Single and Multiple Drug-loaded Micelles 

After establishing that there is an actual synergic effect associated with the use Crizotinib 

and Sildenafil, the PL8 micellar formulations containing both drugs were then incubated with 

MCF-7 breast cancer cells. These experiments were performed with half of the dose of 

Crizotinib and Sildenafil, that was previously used for free drugs, either alone or in 

combination. When drugs were delivered by micellar carriers to MCF-7 cells, a marked 

decrease in cell proliferation was observed for both single and dual drug formulations (Figure 

32). Particularly, even after only 24h the PL8C micelles decreased breast cancer cells viability 

to 37% (Figure 32). More importantly, the administration of dual-loaded micelles reduced cell 

viability to 25% with 24h incubation, revealing that combinational therapy of Crizotinib and 

Sildenafil remains significantly different when delivery through PL8 micelles. After 48 hours, 

the differences in cell viability in the single and dual micelle formulations were still 

observed. At this stage, single-loaded PL8C micelles (Crizotinib alone) promoted a decrease in 

MCF-7 cell viability levels up to 14%. Nonetheless, in the dual-loaded PL8CS micelles cell 

viability levels decreased to about 4%, a significant difference that undeniably illustrates 

once more the therapeutic potential of this co-delivery approach. These results are in 

agreement with the therapeutic effect that Chen and co-workers reported in 2012 [55], when 

they manipulated the activity of Pg-p (ABC1) and ABCC10/MRP7 proteins of MCF-7 cells, as an 

approach that led to an enhanced anti-tumoral effect of chemotherapy drugs [55] 

 

Figure 32 – Evaluation of the anti-tumoral activity of Crizotinib, Sildenafil and synergic effect between 

both when delivery through PEG-PLA micelles. n=5; *p < 0.05; **p < 0.01; ***p < 0.001; ns=non-

significant. Data is presented as mean ± s.d. 
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In addition, the results of these experiments also indicate that the synthesized PEG-PLA 

micelles are an excellent drug delivery platform since it should be underlined that MCF-7 cell 

viability was outstandingly reduced with only half of the Crizotinib and Sildenfil concentration 

used in the assays with free drug, when these were delivered by the micellar carriers. This 

fact is correlated with the excellent micelle cell uptake, demonstrated by CLSM and flow 

cytometry which accounts for the increase in drug bioavailability within cell cytoplasm and 

for the consequent improvement in the therapeutic effect. Interestingly, the remarkable 

decrease in cancer cell viability also indicates that the spatiotemporal release profile of the 

drugs is suitable enough to maintain drug concentration levels within the therapeutic window. 

  

 

3.16. Breast cancer cell apoptosis 

As an attempt to shed light on the biological events triggered by the use of Crizotinib in 

combination with Sildenafil in MCF-7 cancer cells, a fluorescence-based apoptosis assay using 

the CellEventTM Caspase-3/7 detection reagent was performed. As shown in Figure 33, the 

incubation of dual-loaded PL8CS micelles for 24h induced caspase-3 and caspase-7 activation, 

since a bright fluorescence yellow signal is acquired in CLSM images. This signal is provided by 

a substrate that once cleaved by active caspase-3/7 emits fluorescence. This evidences the 

role of Crizotinib in promoting cell death trough apoptosis. Cell death by apoptosis promoted 

by Crizotinib action via caspase-3/7 activation was already reported by Zhou in 2007 [49], 

emphasizing that this is a valuable approach to promote breast cancer cell death. 
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Figure 33 - CLSM images of apoptotic MCF-7 cells that were incubated 24 h with PL8CS 

micelles. (A) 3D reconstruction of MCF-7 cell nucleous; (B) High resolution reconstruction of apoptotic 

cell nucleous; (C) Merged 3D image of MCF-7 cells. Yellow channel represents caspase-3 activated MCF-7 

cells, derived from CellEventTM Caspase-3/7 detection probe.  
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Conclusion and Future Perspectives 
 
Cancer therapy is a fast growing research field that gathers the efforts from both the 

scientific and medical communities towards the development of an ultimate cure that can 

eradicate cancer cells and improve patient life-style. However, despite the outstanding 

achievements made to date, cancer cells maintain their capacity to tackle the majority of 

anti-tumoral drugs and survive. Nevertheless, the future of cancer therapeutics must rely on 

the combination of therapeutic approaches that can target particular hallmarks of cancer. 

The straightforward research described in this thesis elucidates the applicability of Crizotinib 

and Sildenafil against breast cancer, when delivered through highly efficient micellar carriers, 

like those synthesized herein. The results obtained showed the biocompatibility and 

haemocompatibility, of the synthesized materials, providing important insights for their 

potential use in biomedical applications. In fact, it should be emphasized that the materials 

used for micelle self-assembly are approved by FDA and EMEA. These self-assembly 

characteristics of the block co-polymers synthesized in aqueous environments originated 

highly stable micelles as evidenced by the low CMC values obtained. 

 Furthermore, the optimized method allowed the production of self-assembled micelles with 

optimum size and zeta potential for being applied as DDSs. Both drugs used in this study were 

encapsulated with high efficiency on the synthesized micelles. The carriers have also 

demonstrated to have a long term sustained release with good efficacy at both physiological 

and tumor acidic pH. Moreover, produced micelles demonstrated to have an excellent uptake 

by breast cancer cells at very short time frames. The synergic effect between Sildenafil and 

Crizotinib was observed when free drugs where incubated with MCF-7 cells. This evidence 

shows the improvement of the anti-tumoral effect of Crizotinib when used in combination 

with Sildenafil. This effect is even more evident when both drugs where delivered using the 

produced micelles. The anti-tumoral effect of these two drugs was much higher when both 

drugs were simultaneously used in DDS Furthermore, the concentration required to produce 

same therapeutic effect of free drugs was reduced to half when drugs were loaded in 

micelles. 

In the future the produced micelles can be modified with specific targeting moieties at their 

surface to enhance uptake and target specificity to malignant cells in vivo. Moreover, this 

novel co-delivery approach can be extended to novel combinatorial experiments that use 

more than two drugs. Moreover, in vivo studies can also be performed on suitable mice 

models of breast cancer in order to further demonstrate the applicability of these systems in 

a clinical context. 

In summary, the results obtained in this work open a whole new window of opportunities in 

what concerns the combinatorial discovery of drug conjugations with synergistic and potent 

anti-tumoral capacity. 
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Appendix 

 
Table 5 – Calibration standards with injection on mobile phase, coefficient of variation (CV) and bias. 

 Concentration 
(ug/mL) 

Measured 
Concentration 

(ug/mL) 

CV (%) BIAS (%) 

Sildenafil 1 0.84±0.13 16.06674 0.716 
2.5 2.41±0.23 9.690798 -8.981 
5 5.31±0.35 6.499651 -7.345 
10 10.70±0.69 6.458676 -10.722 
25 31.81±5.22 16.4119 3.957 
50 68.34±8.70 12.73484 10.212 
100 144.66±2.33 1.612328 2.945 

Crizotinib 1 1.50±0.16 10.54124 4.060 
2.5 4.02±0.28 6.929635 -8.156 
5 8.76±0.65 7.446644 -6.421 
10 17.66±0.10 5.639156 -8.832 
25 50.07±7.37 14.71209 1.582 
50 107.77±13.29 12.33603 8.128 
100 217.89±31.58 14.494 2.792 

 
 
Table 6 – Calibration standards with injection on PBS, coefficient of variation (CV) and bias. 

 Concentration 
(ug/mL) 

Measured 
Concentration 

(ug/mL) 

CV (%) BIAS (%) 

Sildenafil 0.05 0.050±0.01 10.13897 5.940 
0.075 0.07±0.01 12.11502 -1.886 
0.1 0.10±0.01 3.834572 3.636 
0.25 0.22±0.01 2.835565 -12.539 
0.5 0.47±0.08 6.477353 -5.910 
1 0.97±0.20 8.672041 -3.794 
3 3.23±0.41 6.219391 6.714 

Crizotinib 0.05 0.053±0.01 4.05882 5.296 
0.075 0.072±0.01 4.369462 -3.811 
0.1 0.096±0.01 7.696951 -4.499 
0.25 0.236±0.05 2.729624 -5.805 
0.5 0.479±0.09 11.68526 -5.378 
1 0.974±0.24 9.322478 -3.357 
3 3.169±0.58 7.653258 4.879 
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Table 7 – Calibration standards with injection on water, coefficient of variation (CV) and bias. 

 Concentration 
(ug/mL) 

Measured 
Concentration 

(ug/mL) 

CV (%) BIAS (%) 

Sildenafil 3 2.99±0.07 2.332422 -0.220 
10 10.26±0.72 7.049127 2.109 
25 23.43±2.78 11.86824 -7.814 
50 50.72±2.25 4.426129 1.271 
100 102.44±10.50 10.24554 1.506 

Crizotinib 3 3.07±0.12 3.920651 1.047 
10 9.69±1.02 10.48906 -0.512 
25 22.25±0.65 2.938635 -13.194 
50 52.39±3.92 7.48131 1.215 
100 105.24±13.53 12.85894 6.845 

 
 
 
Table 8 – Linearity data of Sildenafil and Crizotinib (n=5). m – Slope, b – intercept, LLOQ – lower limit of 
quantification. 

  Weightin
g factor 

Calibration 
Range 

(µg/mL) 

Regression R2 LLOQ 
(µg/mL) 

m b 

MetOH 
Calibration 

Sildenafil 1/X2 1 - 100 -0.41 
±0.18 

1.23 
±0.13 

0.99 
±0.01 

1 

Crizotinib 1/X2 1 - 100 1.98 
±0.17 

-0.56 
±0.27 

0.99 
±0.01 

1 

PBS 
Calibration 

Sildenafil 1/X2 0.05 - 3 0.08 
±0.01 

0.00 
±0.01 

0.99 
±0.01 

0.05 

Crizotinib 1/X2 0.05 - 3 1.23 
±0.51 

0.04 
±0.03 

0.99 
±0.01 

0.05 

H2O 
Calibration 

Sildenafil 1/X2 3 - 100 1.03 
±0.29 

0.09 
±0.51 

0.99 
±0.01 

3 

Crizotinib 1/X2 3 - 100 1.27 
±0.09 

2.88 
±0.27 

0.98 
±0.01 

3 

 


