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Resumo 

 

O ácido retinóico (AR) desempenha uma função importante no desenvolvimento do sistema 

nervoso dos mamíferos e tem sido evidenciado como uma opção terapêutica para diversas 

doenças neurodegenerativas devido às suas propriedades neuroprotetoras, anti-inflamatórias 

e pro-neurogénicas. Contudo, o AR apresenta propriedades indesejáveis, tais como: a fraca 

solubilidade em água e o curto tempo de semi-vida. Por este motivo, as nanopartículas (NPs) 

apresentam-se como uma excelente alternativa de modo a contornar essas propriedades 

indesejáveis garantindo o transporte intracelular e a libertação controlada de AR. O objectivo 

deste trabalho foi avaliar os efeitos da administração intracerebral (estriado) de NPs 

carregadas com AR (NPs+-AR) num modelo da doença de Parkinson (DP) em murganho 

utilizando a neurotoxina MPTP (1-metil-4-fenil-1,2,3,6-tetrahidropiridina), e a sua 

comparação com os efeitos da administração de AR solúvel. Curiosamente, em murganhos 

adultos observou-se que as NPs+-AR reduziram significativamente a lesão provocada pelo 

MPTP, aumentando a percentagem de neurónios dopaminérgicos positivos para a tirosina 

hidroxilase (TH+) na substantia nigra (SN) para níveis similares ao controlo, bem como, a 

intensidade e área ocupada pelas fibras TH+ no estriado. Este efeito protetor mediado pelas 

NPs+-AR foi mais robusto que o efeito proporcionado pelo AR solúvel. Estes efeitos foram 

acompanhados por um aumento da expressão na SN e estriado de RNAm de Nurr1 e Pitx3, 

ambos factores de transcrição envolvidos na especificação e sobrevivência neuronal 

dopaminérgica. O mesmo padrão de expressão de RNAm para Pitx3 foi detectado na SN de 

murganhos idosos. Em suma, as NPs+-AR apresentam um efeito protetor robusto contra a lesão 

dopaminérgica quando comparadas com o AR solúvel, sugerindo que as NPs+-AR podem ser 

uma boa estratégia para promover a reparação cerebral na DP.  
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Resumo alargado 

 

O ácido retinóico (AR) é um produto resultante do metabolismo da vitamina A (retinol) que 

modula a transcrição genética envolvida na proliferação e diferenciação celular através da 

ativação de receptores nucleares do ácido retinóico (RAR) e a receptores retinóicos (RXR). 

Neste sentido, o AR desempenha uma função importante no desenvolvimento do sistema 

nervoso dos mamíferos e tem sido evidenciado como uma opção terapêutica para diversas 

doenças neurodegenerativas devido às suas propriedades antioxidantes, neuroprotetoras, 

anti-inflamatórias e pro-neurogénicas. Contudo, o AR apresenta propriedades indesejáveis, 

tais como: uma fraca solubilidade em água e um curto tempo de semi-vida devido à rápida 

metabolização pelas células. Por este motivo, as nanopartículas (NPs) apresentam-se como 

uma excelente alternativa de administração do fármaco garantindo o transporte intracelular 

e a libertação controlada de AR.  

 

O objectivo deste trabalho foi avaliar os efeitos da administração intracerebral (estriado) de 

NPs carregadas com AR (NPs+-AR) num modelo da doença de Parkinson (DP) em murganho e a 

sua comparação com os efeitos da administração de AR solúvel. Neste sentido, murganhos 

C57BL6 adultos foram injetados com 100 ng/ml NPs+-AR, 100 ng/ml NPs desprovidas de AR 

(“blank”) ou 10 µM AR solúvel no estriado lateral direito. Murganhos C57BL6 idosos também 

foram submetidos a injeção intrastriatal com 100 ng/ml NPs+-AR. Ambos os grupos etários de 

murganhos foram submetidos a uma lesão aguda com MPTP (1-metil-4-fenil-1,2,3,6-

tetrahidropiridina), administrado intraperitonealmente (i.p.) 3 dias após as injeções 

intrastriatais. Os murganhos foram sacrificados sete dias após a lesão aguda induzida por 

MPTP e as regiões da substantia nigra (SN) e do estriado foram recolhidas para posterior 

análise histoquímica ou de expressão de genes por PCR quantitativo.  

 

A extensão da lesão foi avaliada por quantificação tanto do número neurónios dopaminérgicos 

positivos para tirosina hidroxilase (TH+), na SN, como da imunoreactividade para fibras TH+ no 

estriado. Como esperado, o MPTP provocou uma redução de cerca de 50% dos neurónios TH+ 

na SN e uma redução dos terminais dopaminérgicos no estriado, quando comparado com os 

murganhos salinos (controlo). Curiosamente, as NPs+-AR reduziram significativamente a lesão 

provocada pelo MPTP, aumentando a percentagem de neurónios TH+ na SN para níveis 

similares ao controlo, bem como, a intensidade e área ocupada pelas fibras TH+ no estriado. 

Este efeito protetor mediado pelas NPs+-AR foi mais robusto que o efeito proporcionado pelo 

AR solúvel. Estes efeitos foram apoiados pela análise da expressão de RNAm de Nurr1 e Pitx3, 

factores de transcrição envolvidos na especificação e sobrevivência neuronal dopaminérgica, 

por PCR quantitativo. Na SN dos murganhos adultos expostos às NPs+-AR e ao MPTP houve um 

aumento da expressão de RNAm de ambos os factores de transcrição, quando comparada com 
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células expostas apenas ao MPTP. Em murganhos idosos, foi obtido o mesmo padrão de 

expressão de RNAm de Pitx3. Verificou-se também que a lesão provocada pelo MPTP provocou 

um aumento na expressão dos marcadores dos astrócitos (GFAP) e da microglia (CD11b) assim 

como uma alteração de morfologia associada à reatividade glial. Curiosamente, as NPs+-AR 

parecem diminuir a reatividade dos astrócitos e microglia em murganhos tratados com MPTP. 

Em suma, as NPs+-AR apresentam um maior efeito protetor contra a lesão dopaminérgica 

induzida pelo MPTP quando comparadas com o AR solúvel. Este efeito protetor foi 

acompanhado por um aumento de expressão de factores de transcrição que são responsáveis 

pela sobrevivência e especificação neuronal. Estes resultados sugerem que as NPs+-AR podem 

ser uma boa estratégia para promover a reparação cerebral na DP.  
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Abstract 

 

Retinoic acid (RA) plays an important role in the developing mammalian nervous system and 

has been highlighted as a therapeutic option for some neurodegenerative diseases due to its 

neuroprotective, anti-inflammatory and pro-neurogenic properties. However, RA presents 

undesirable properties like poor water solubility and short half-life. Therefore, nanoparticles 

(NPs) are an excellent alternative to control the undesired side effects and to ensure 

intracellular transport and controlled release of RA. Thus, the aim of this work was to 

evaluate the effects of RA-loaded NPs (RA+-NPs) in an in vivo mouse model of Parkinson’s 

disease (PD) using a MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxin, and to 

compare with effects of soluble RA. Interestingly, in adult mice, RA+-NPs significantly reduced 

the MPTP lesion by increasing the percentage of tyrosine hydroxylase positive (TH+) 

dopaminergic neurons in the SN to levels similar to control as well as increasing the intensity 

and area occupied by TH+ fibers in the striatum. This protective effect mediated by RA+-NPs 

was more robust than when compared with effect of soluble RA. These effects were 

accompanied by an increase in mRNA expression in SN and striatum of Nurr1 and Pitx3, both 

transcription factors involved in dopaminergic survival and specification. The same pattern of 

Pitx3 mRNA expression was found in the SN of old mice. In conclusion, RA+-NPs show a robust 

protective effect against dopaminergic injury when compared to soluble RA, suggesting that 

RA+-NPs could be a good strategy to boost brain repair in PD. 

 

 

Keywords 

 

Retinoic-acid, nanoparticles, neuroprotection, dopaminergic neurons, MPTP, Parkinson’s 
disease 
 

 

 

 

 

 

 

 

 



vii 

 

Table of contents 

 

List of figures ix 

List of abbreviations x 

CHAPTER 1 - INTRODUCTION 1 

1.1 Neurodegenerative disorders 1 

1.1.1 Parkinson’s disease 1 

1.1.2 Experimental animal models of PD 2 

1.2 Transcription factors involved in dopaminergic survival 4 

1.3 Retinoic acid 5 

1.3.1 Retinoic acid receptors 6 

1.4 Involvement of retinoic acid signaling in PD 8 

1.5 Nanoparticles as a delivery system of retinoic acid 9 

CHAPTER 2 - OBJECTIVES 11 

 

CHAPTER 3 – MATERIALS AND METHODS 12 

3.1 Animals 12 

3.2 Intrastriatal injection 12 

3.3 MPTP - induced lesion 13 

3.4 Immunohistostainings 14 

3.4.1 Tissue preparation 14 

3.4.2 TH staining 14 

3.4.3 Fluorescence immunohistostaining for glial cells 15 

3.5 Cell countings and quantitative analysis 15 

3.6 RNA isolation 16 

3.7 Reverse transcription-polymerase chain reaction (RT-PCR) 16 

3.8 Gene expression analysis by quantitative real-time PCR (qPCR) 17 

3.9 Data analysis and statistics 17 

 



viii 

 

CHAPTER 4 - RESULTS 19 

4.1 RA+-NPs induce neuroprotection of the SN dopaminergic neurons against the 

MPTP-induced lesion 19 

4.2 RA+-NPs induce neuroprotection of TH+ striatal fibers against the MPTP-induced 

lesion  21 

4.3 Effects of RA+-NPs in glial reactivity 23 

4.4 Effects of RA+-NPs in Nurr1 and Pitx3 mRNA expression 25 

4.4.1 Nurr1 and Pitx3 mRNA expression in adult mice 25 

4.4.2 Nurr1 and Pitx3 mRNA expression in old mice 27 

CHAPTER 5 - DISCUSSION 29 

 

CHAPTER 6 - CONCLUSIONS 32 

6.1 Future Perspectives 32 

CHAPTER 7 - REFERENCES 33 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

List of figures 
 

 
Chapter 1 

 

Figure 1.1 The pathology of Parkinson’s disease.           2 

Figure 1.2 Schematic representation of MPTP metabolism.          3 

Figure 1.3 Mechanisms of MPTP neurotoxicity.            4 

Figure 1.4 Retinoic acid synthesis and signaling.                                                               6 

Figure 1.5 Mode of action of retinoic acid.            7 

Figure 1.6 Transmission electron microscopy image and release profile of RA+-NPs.       10 

 

Chapter 3 

 

Figure 3.1 Schematic representation of experimental treatments and assays performed in 

vivo.                                                                                                                                13  

Figure 3.2 Experimental groups.             18 

 

Chapter 4 

 

Figure 4.1 RA+-NPs pre-treatment increased survival of TH+ cells in the MPTP-injured SN.   20  

Figure 4.2 RA+-NPs pre-treatment increases TH+ fibers immunoreactivity in the MPTP-

injured striatum.     22                                                       

Figure 4.3 Fluorescence immunohistostaining of astrocytes and microglia in striatum.        24 

Figure 4.4 RA+-NPs induce the expression of Nurr1 and Pitx3 mRNA expression in the SN 

of adult mice exposed to MPTP. 26              28 

Figure 4.5 RA+-NPs induce Nurr1 and Pitx3 mRNA expression in MPTP-treated old mice.      28 

 

 
 
 
 
 
 
 
 
 
 
 

 

 



x 

 

List of abbreviations 

 
6-OHDA 6-hydroxidopamine 

9cRA 9-cis retinoic acid 

AD Alzheimer’s disease 

ALDH Aldehyde dehydrogenase 

ATP Adenosine triphosphate 

atRA All-trans retinoic acid 

BBB Blood-brain barrier 

BMP-7 Bone morphogenic protein-7 

BSA Bovine serum albumin 

CD11b Alpha chain of αMβ2-integrin or cluster of differentiation molecule 11b 

cDNA Complementary DNA 

CNS Central nervous system 

CRABP2 Cellular retinoic acid-binding protein 2 

CRBP Cellular retinol-binding protein 

CYP26 Cytochrome P450 isoform 26 

DA Dopamine 

DAB 3,3’-diaminobenzidine 

DAT Dopamine transporter 

DMSO Dimethyl sulfoxide 

DS Dextran sulfate 

FBS Fetal bovine serum 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GFAP Glial fibrillary acidic protein 

HPLC High performance liquid chromatography 

i.p. intraperitoneal 

LPS Lipopolysaccharide 

MAO-B Monoamine oxidase-B 

mDA Midbrain dopaminergic 

MPDP+ 1-methyl-4-phenyl-2,3-dihydropyridinium 

MPP+ 1-methyl-4-phenylpyridinium 

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

mRNA Messenger RNA 

NaCl Sodium chloride 

NPs Nanoparticles 

Nurr1 Nuclear receptor related 1 

OCT Optimal cutting temperature gel 

OCT-3 Organic cation transporter 3 



xi 

 

PBS Phosphate buffer saline 

PBS-T Phosphate buffer saline-Tween 20 

PCR Polymerase chain reaction 

PD Parkinson’s disease 

PEI Polyethylenimine 

PFA Paraformaldehyde 

Pitx3 Paired-like homeodomain 3 

qPCR Quantitative real-time polymerase chain reaction  

RA Retinoic acid 

RA+-NPs Retinoic acid-loaded polymeric nanoparticles 

RALDH Retinaldehyde dehydrogenase 

RAR Retinoic acid receptor 

RARE Retinoic acid-response element 

RBP4 Retinol-binding protein 

RDH10 Retinol dehydrogenase 10 

RT Room temperature 

RT-PCR Reverse transcription - polymerase chain reaction 

RXR Retinoid X receptor 

SN Substantia nigra 

SNpc Substantia nigra pars compacta 

TBS Tris buffer saline 

TH Tyrosine hydroxylase 

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling 

VTA Ventral tegmental area 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



1 

 

Chapter 1  

Introduction 
 
 
1.1 Neurodegenerative disorders 

Diseases that cause the degeneration of nerve cells in central nervous system (CNS) have a 

huge economic and social impact in aging populations all over the world. These debilitating 

and incurable conditions are characterized by the progressive loss of neuronal cell function 

and are often associated with atrophy of the affected nervous system structures. Parkinson’s 

disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s 

disease (AD), affecting more than 1% of the population over 60 years of age (von 

Campenhausen et al., 2005). 

 

1.1.1 Parkinson’s disease 

PD occurs in an idiopathic manner in 95% of cases, whilst in the remaining 5-10% of cases a 

genetic mutation is present (Toulouse and Sullivan, 2008). Nevertheless the etiology of PD has 

not been completely understood yet. The causes of this disorder are likely to be multiple and 

to involve not only single factors alone, but instead several intrinsic and/or environmental 

factors acting together (Schapira, 2006).  

In a healthy brain, the cell bodies of dopaminergic neurons reside within the substantia nigra 

pars compacta (SNpc), region of the ventral midbrain, while the nerve terminals project to 

the dorsolateral striatum forming the nigrostriatal dopaminergic pathway which has an 

important role in the control of movements. However, PD is characterized mainly by a 

progressive and selective loss of the dopaminergic neurons that synthesize the 

neurotransmitter dopamine (DA) in the SNpc, resulting in the loss of dopaminergic nerve 

terminals, accompanied by DA deficiency in the striatum (Figure 1.1) (Jankovic, 2008).  
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Figure 1.1 The pathology of Parkinson’s disease. Simplified view of the main neuropathological events 
in PD at three levels from left to right. At the level of the brain, a major pathway is degeneration of the 
dopaminergic projections from the substantia nigra (in black) to the striatum (in purple), both of which 
are in the midbrain underneath the cerebral cortex. At the level of substantia nigra, the neurons that 
form the presynaptic portion of this pathway are normally melanized and are easily identified by this 
pigment in control brains (upper panel). In contrast, the loss of neurons in this region is so substantial 
that the whole area becomes depigmented in PD cases (lower panel). Of the few remaining cells, many 
show pathological changes, including the accumulation of proteins and lipids in Lewy bodies. Figure 
adapted from Cookson, 2012. 

 

 

The resulting lack of the neurotransmitter DA leads to decreased signaling within the 

nigrostriatal pathway and produces abnormal motor behavior, including tremor, bradykinesia 

(slow movement), muscular rigidity and postural instability (Dauer and Przedborski, 2003). 

These motor manifestations can also be accompanied by non-motor symptoms such as sleep 

disturbances, neuropsychiatric symptoms and autonomic and cognitive dysfunction (Dauer and 

Przedborski, 2003, Reichmann et al., 2009). Although the loss of dopaminergic neurons within 

SNpc is the primary pathological feature of PD, widespread neuronal loss also occurs in the 

locus coeruleus, with a consequent loss of norepinephrine (Gesi et al., 2000). The histological 

hallmark of this disease is characterized by the accumulation of a protein called α-synuclein 

into neuronal eosinophilic insoluble cytoplasmic inclusions, known as Lewy bodies, in the 

residual neurons of the substantia nigra (SN) (Figure 1.1) (Dickson et al., 2009).  

 

1.1.2 Experimental animal models of PD 

In order to better elucidate the etiology, pathogenesis, mechanisms of cell death and to 

evaluate therapeutic strategies for PD, numerous animal models have been developed (Dauer 

and Przedborski, 2003). In this thesis, I will emphasize on common neurotoxic murine models 

in which toxic molecules are used to lesion the nigrostriatal dopaminergic system. Among the 

neurotoxic models, compounds that produce both reversible (reserpine) and irreversible 

(MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), 6-OHDA (6-hydroxidopamine), 

paraquat and rotenone) effects on dopaminergic neurons have been used widely.  

 

MPTP administration (either acute or chronic) represents the most frequently neurotoxin-

based model used to produce experimental models of PD in rodents and nonhuman primates 
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(Zigmond et al., 1989). In humans and nonhuman primates, depending on the regimen used, 

MPTP can produce an irreversible and severe parkinsonian syndrome that replicates almost all 

of the features of PD, including tremor, rigidity, bradykinesia, postural instability and 

freezing (Tetrud and Langston, 1989).  

 

After systemic administration, MPTP which is highly lipophilic rapidly crosses the blood-brain 

barrier (BBB). Once in the brain, MPTP is metabolized to 1-methyl-4-phenyl-2,3-

dihydropyridinium (MPDP+) by the enzyme monoamine oxidase-B (MAO-B) in glia and 

serotonergic neurons, the only cells that contain this enzyme (Vila et al., 2000). MPDP+ is 

then converted to 1-methyl-4-phenylpyridinium (MPP+), which is the active toxic compound. 

Thereafter, MPP+ is released through the organic cation transporter 3 (OCT-3) into the 

extracellular space where it is taken up by the dopaminergic neurons via the dopamine 

transporter (DAT) (Figure 1.2) (Cui et al., 2009). Once accumulated in dopaminergic neurons, 

MPP+ induces neurotoxicity primarily by inhibiting complex I of the mitochondrial electron 

transport chain resulting in ATP depletion and increases oxidative stress (Figure 1.3) (Nicklas 

et al., 1985, Mizuno et al., 1987). MPTP is usually systemically administered via 

intraperitoneal, subcutaneous, intravenous or intramuscular injection. For unknown reasons, 

rats are less sensitive to MPTP toxicity than mice (Giovanni et al., 1994). 

 

In summary, although of its acute toxic property as seen with other neurotoxic PD models, 

MPTP will continue to play a major role in PD research based on its ability to produce PD-like 

effects in nonhuman primates and mice, its reproducible L-dopa-responsive lesion on the 

nigrostriatal system and its ease of administration. 

 

 

Figure 1.2 Schematic representation of MPTP metabolism. After its systemic administration, MPTP 
crosses the BBB. Once in the brain, MPTP is converted to MPDP+ by MAO-B within non-dopaminergic 
cells, and then to MPP+. Thereafter, MPP+ is released in the extracellular space. From there, MPP+ is 
taken up by the DAT and enters into dopaminergic neurons. Figure adapted from Przedborski and Vila, 
2001. 
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Figure 1.3 Mechanisms of MPTP neurotoxicity. Within dopaminergic neurons, MPP+ inhibits enzymes in 
the mitochondrial electron transport chain, resulting in ATP deficit and increased ‘leakage’ of 
superoxide (O2) from the respiratory chain. Superoxide remains in the cell in which it is produced. On 
the other hand, NO, which is produced by nNOS and iNOS outside dopaminergic neurons, is membrane-
permeable and can diffuse into neighboring neurons. If the neighboring cell has elevated levels of 
superoxide, then there is an increased probability of superoxide reacting with NO to form peroxynitrite, 
which can damage lipids, proteins, and DNA. Damaged DNA stimulates PARS activity, which further 
depletes ATP stores. On the other hand, MPP+ may induce the release of cytochrome c from the 
mitochondria to the cytosol where it initiates a cascade of caspase activation. Figure adapted from 
(Przedborski and Vila, 2001). 
 
 
1.2 Transcription factors involved in dopaminergic survival 

Some transcriptional factors have been described to be involved in the survival, functionality 

and maturation of dopaminergic neurons in the nigrostriatal pathway, and so, consequently 

altered in PD conditions. Among them, Nurr1 is a critical transcription factor for the 

development and functional maintenance of dopaminergic neurons and is also considered as a 

crucial regulator for the expression of several genes involved in PD pathology including DAT 

and tyrosine hydroxylase (TH), which is the rate-limiting enzyme in DA synthesis. Nurr1 has 

also been indicated to have a role in the neuroprotection of mature dopaminergic cells in 

several studies (Smits et al., 2003, Jankovic et al., 2005). This transcription factor is highly 

expressed in dopaminergic neurons and other cells including microglia, where it is involved in 

the modulation of the inflammatory response (Saijo et al., 2009). Nurr1 appears to interact 

with other transcription factor, Pitx3, which is specifically expressed in dopaminergic 

neurons. Pitx3 is highly expressed in SN and ventral tegmental area (VTA) of midbrain and is 

essential for the development and survival of these neurons (Smidt et al., 2004). Recently, 

Volpicelli et al. reported that Nurr1 can act as either a monomer or homodimer in controlling 

Pitx3 expression and, moreover, also demonstrated that Nurr1 RNA silencing reduced Pitx3 

transcripts, leading to the hypothesis that Nurr1 may regulates Pitx3 expression by binding to 

its promoter (Volpicelli et al., 2012).  
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Nurr1 and Pitx3 have been shown to play a crucial role in the maturation, specification and 

survival of midbrain dopaminergic (mDA) neurons, and both of them are potential 

susceptibility genes for PD. The Nurr1-null mice failed to generate mDA neurons, leading to 

98% decrease of DA in the striatum and reduced expression of Nurr1 increased the 

vulnerability of mDA neurons to MPTP-induced injury (Le et al., 1999b) . MPTP also decreases 

TH and Pitx3 gene expression leading to selective loss of dopaminergic neuronal population in 

the SNpc (Le et al., 1999a, Luk et al., 2013) and consequently to the loss of projections from 

de SN to the striatum (Nunes et al., 2003). 

 

1.3 Retinoic acid 

Until now, there is no cure for PD and current therapies can provide temporary relief of 

motor symptoms but do not prevent disease progression. Thus, new therapeutic agents and 

new approaches are desperately needed in PD. The origin of dopaminergic cell degeneration 

present in this disease is largely unknown, but is suggested to be caused by agents causing 

oxidative damage and energy depletion in the nigrostriatal pathway (Langston, 1998). 

Preventing the neurodegeneration, especially in nigrostriatal area, is important for 

controlling of the disease. Thus, besides the other therapeutic approaches, treatment with 

antioxidants gains gradually importance in pharmacotherapy of PD. In this context, a 

molecule of particular interest is retinoic acid (RA), specially the all-trans retinoic acid (atRA) 

isoform. 

 

RA is a metabolic product of vitamin A ingested in the diet and plays an important role in the 

developing mammalian nervous system (Xu and Drew, 2006). RA has been highlighted as a 

therapeutic option for some neurodegenerative disorders due to its neuroprotective, anti-

inflammatory and pro-neurogenic properties (Xu and Drew, 2006, Maia et al., 2011, Yin et al., 

2012). RA exists in several stereoisomeric forms including predominantly atRA, 13-cis RA and 

less-stable isomer such as 9-cis-RA (9cRA). 

 

Tissue distribution of RA is tightly regulated by a complex metabolic pathway, consisting of 

multiple steps of synthesizing and catabolic enzymes. When vitamin A is ingested in the diet 

as retinyl esters, these compounds are stored mainly in the liver; animals are unable to 

synthesize retinoids by other mechanisms. Depending on cell needs, retinyl esters are cleaved 

into retinol (the liposoluble form of vitamin A) and this molecule is secreted by the liver, 

transported into the blood and can cross the BBB to target tissues bound to plasma retinol-

binding protein (RBP4) (Ruberte et al., 1993, Vogel et al., 2001). Retinol enters cells via a 

specific membrane receptor STRA6 (Kawaguchi et al., 2007) and in the cytoplasm, retinol is 

converted to retinaldehyde by retinol dehydrogenase 10 (RDH10) and consequently to atRA 

via the enzyme retinaldehyde dehydrogenase (RALDH1/ALDH1). RA can then be released from 

the cytoplasm and taken up by a receiving cell (paracrine signaling) or can act directly on its 
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cell nucleus (autocrine signaling). In its way to the nucleus, RA has to interact with the 

cellular retinoic acid-binding protein 2 (CRABP2) (Budhu and Noy, 2002) that facilitates 

uptake of RA and transport to the nucleus where RA binds to the RA receptors.  

 

 

 

Figure 1.4 Retinoic acid synthesis and signaling. Depicted is the paracrine mechanism of retinoic acid 
(RA) signaling. Retinol is transported in plasma by retinol-binding protein (RBP4) secreted from the 
liver. Retinol enters cells via a specific receptor STRA6, and cellular retinol-binding protein (CRBP) 
facilitates conversion of retinol to retinyl esters for storage. In RA-generating tissues, retinol is oxidized 
to retinaldehyde by either alcohol dehydrogenase (ADH) or retinol dehydrogenase (RDH), and 
retinaldehyde is oxidized to RA by retinaldehyde dehydrogenase (RALDH). RA is then released and taken 
up by surrounding cells. Cells that express cytochrome P450 (CYP26) initiate the further oxidation of RA 
for degradation and excretion and are not target cells. Some RA target cells express cellular RA-binding 
protein 2 (CRABP2) that facilitates uptake of RA and transport to the nucleus where RA binds the RA 
receptor (RAR). The ternary complex of ligand-bound RAR with RXR and a retinoic acid response 
element (RARE) regulates transcription of RA target genes. Figure adapted from Duester, 2008. 

 

 

1.3.1 Retinoic acid receptors 

It is well known that RA signal is transduced by binding to specific nuclear receptors: retinoic 

acid receptors (RAR) and retinoid X receptors (RXR), which are members of the nuclear 

receptor superfamily. Both RAR and RXR include three subtypes designated as α, β and γ, and 

expression of these receptor subtypes is observed in several brain regions in the adult CNS. 

RAR bind and are activated by atRA and its 9cRA isomer while RXR are only activated by the 

9cRA (Allenby et al., 1993).  
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A classical mechanism of RAR action involves formation of heterodimer with RXR and binding 

to a DNA sequence called retinoic acid-response element (RARE) located in the promoter 

region of target genes (Bastien and Rochette-Egly, 2004). In the absence of ligand (RA), the 

RAR-RXR heterodimer is constitutively bound to DNA on RARE and associated with co-

repressors complexes. These complexes induce transcriptional silencing through histone 

deacetylation associated with target sequences thus increasing chromatin condensation. The 

binding of RA to RAR induces conformational changes in the receptors bound to RARE causing 

the dissociation of co-repressors and the binding of co-activators. The co-activators 

subsequently mediate histone acetylation resulting in decondensation of the chromatin and 

activation of target gene expression (Figure 1.5) (Marletaz et al., 2006).  

 

Although RAR agonists can autonomously active transcription through RAR-RXR heterodimers, 

RXR cannot respond to RXR-selective agonists in the absence of a RAR ligand (Chen et al., 

1996). This phenomenon is generally referred to as RXR “subordination” or RXR “silencing”. 

RAR and RXR are not active in their monomeric forms. While RAR are specifically involved in 

retinoid signaling, RXR also participate in many other signaling pathways by serving as 

heterodimerization partners not only for the RAR but also for other nuclear receptors, such as 

Nurr1 (Perlmann and Jansson, 1995, Chawla et al., 2001). 

 

 

 

 

 

Figure 1.5 Mode of action of retinoic acid. The RAR-RXR heterodimer mediates the effects of RA. In 
the absence of ligand (RA), the RAR/RXR heterodimer is bound to DNA and co-repressors. This complex 
induces transcriptional repression through histone deacetylation. Binding of the ligand (RA) induces 
conformational changes and the binding of co-activators leading to histone acetylation and activation of 
transcription. Figure adapted from Marletaz et al., 2006. 
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1.4 Involvement of retinoic acid signaling in PD 

RA is likely to be important for mDA neurons since receptors and RA-synthesizing enzymes are 

expressed at high levels both in the SN dopaminergic neurons and their target regions 

(McCaffery and Drager, 1994).  

 

Several lines of evidences suggest an involvement of RA in the development, maintenance and 

protection of the nigrostriatal pathway. However the cellular and molecular mechanisms 

underlying these effects are not yet known. Regarding the expression of RA receptors, it is 

known that RARα and RARβ are expressed in mDA neurons, suggesting that RA signaling may 

be involved in regulating gene expression in these neurons, whereas RARγ has not been 

detected in the nigrostriatal pathway. RXR (α, β, γ) have been detected in the midbrain and 

striatum (Ruberte et al., 1993). Most importantly, it was shown that stimulation of RAR with a 

RAR agonist AM80 prevented dopaminergic cell loss induced by lipopolysaccharide (LPS) in the 

SN (Katsuki et al., 2009). In accordance, it was shown by Yin and collaborators that the 

intranasal delivery of RA reduces neurodegeneration of dopaminergic neurons induced by 6-

OHDA (Yin et al., 2012). 

 

Clinically, there is a marked reduction in the expression levels of the enzyme RALDH1 

(ALDH1), which is necessary for the conversion of retinal to RA, in the SN dopaminergic 

neurons of post-mortem brain PD patients (Galter et al., 2003). The ALDH1 expression levels 

found in the peripheral blood have been recently reported as a candidate biomarker for PD 

diagnosis (Grunblatt et al., 2010). It is not possible to know if this decrease in ALDH1 gene 

expression precedes the onset of PD or is a consequence of the degenerative process. It may 

be possible that the reduced availability of RA in the midbrain, through reduced ALDH1 

expression, increases the susceptibility of the mDA neurons to the degenerative processes, 

pushing the balance towards neuronal death instead of neuroprotection. Mutations in genes 

encoding for this enzyme were also proposed to represent a genetic risk factor for human PD 

either alone or in conjunction with environmental risk factors.  

 

We should take in consideration that RA has also been pointed as a key neuroprotective 

therapeutic agent for other neurodegenerative diseases. It was shown that RA has 

neuroprotective effects against ischemic brain injury by the possible involvement of the 

trophic factor bone morphogenic protein-7 (BMP-7) (Shen et al., 2009). It also reduces 

mitochondrial oxidative damage, which is an important pathological factor of AD (Zhu et al., 

2006). 
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1.5 Nanoparticles as a delivery system of retinoic acid 

RA presents undesirable properties like poor water solubility, short half-life, and requires a 

fine-tuning of concentration window to achieve its results, posing difficulties in the delivery 

of therapeutic doses (Szuts and Harosi, 1991). Therefore, nanoparticles (NPs) are an excellent 

alternative to control the undesired side effects and to ensure intracellular transport and 

controlled release of RA. As has been said, retinoic acid receptors (RXR/RAR) are located on 

the nucleus and therefore RA needs to be delivered to the intracellular milieu. A successful 

approach was achieved by ~200 nm sized NPs, which were rapidly taken up by cells, 

delivering RA onto the cytoplasm (Maia et al., 2011). Several NPs formulations have been 

reported for the controlled release of this molecule (Castro et al., 2007, Narvekar et al., 

2012) however, none of the formulations was designed to deliver RA within cells for 

dopaminergic neuroprotection.  

 

Polymeric NPs were prepared through the electrostatic interaction of polyethylenimine (PEI) 

polycation and dextran sulfate (DS) polyanion (Maia et al., 2011). Since RA is a hydrophobic 

molecule, the presence of polycations, such as PEI, increase its water solubility due to 

electrostatic interactions, allowing the manipulation of significant quantities of this 

hydrophobic molecule. NPs can be internalized via endocytosis, macropinocytosis or 

phagocytosis, but these processes confine the compounds to closed vesicles (endosomes or 

phagosomes), where the pH is progressively lowered to 5.5-6.5 (Vasir and Labhasetwar, 2007, 

Breunig et al., 2008). Polycations, such as PEI, that absorb protons in response to the 

acidification of endosomes (i.e., cationic polymers with a pK around or slightly below 

physiological pH) can disrupt these vesicles via the “proton sponge” effect that promotes the 

osmotic swelling of the endosome resulting in the release of the NPs into the cytoplasm 

(Akinc et al., 2005). When polymeric NPs reach the cytosol, the bioactive molecule may be 

released by desorption, diffusion through the nanoparticle, or nanoparticle erosion and 

perform its function. It is was shown previously by our group that the internalization of the 

RA-loaded polymeric NPs (RA+-NPs) has a minimal effect on cell viability and proliferation but 

enhanced neurogenesis at the subventricular zone stem cell niche, both in vitro and in vivo 

(Maia et al., 2011).  
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Figure 1.6 Transmission electron microscopy image (A) and release profile (B) of RA+-NPs. Figure 
adapted from Maia et al., 2011. 
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Chapter 2  

Objectives 
 
RA offers great potential as a therapeutic molecule due to its numerous beneficial properties 

namely as antioxidant, anti-inflammatory, neuroprotective and proneurogenic. However, due 

to its hydrophobic nature, when is directly administrated into the body it is rapidly 

metabolized by cells thus reducing their bioavailability. In this sense, to maximize the 

therapeutic response, the administration of RA-containing NPs becomes an effective method 

for the delivery of RA.  

 

Thus, the general aim of this work was to evaluate the neuroprotective effects of RA+-NPs in a 

mouse model of PD and to compare with effects of soluble RA. For that purpose, a 

dopaminergic injury was induced in young adult or old C57BL6 mice by using the dopaminergic 

neurotoxin MPTP. 

 

 

The specific objectives are as follows: 

 

 

 To evaluate the extension of dopaminergic injury induced by MPTP in the nigrostriatal 

pathway and consequently the putative protective effects induced by RA+-NPs or 

soluble RA; 

 

 To determine whether the RA+-NPs induce glial reactivity; 

 

 To analyze the effects of RA+-NPs in Pitx3 and Nurr1 mRNA expression. 
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Chapter 3 

Materials and Methods 
 

 

3.1 Animals 

All animals were handled in accordance with protocols approved by the national ethical 

requirements for animal research, and in accordance with the Directive 2010/63/UE of the 

European Parliament and the Council on the protection of animals used for scientific 

purposes. All animals were kept in appropriate cages, under temperature controlled 

conditions (20±2°C) with a fixed 12h light⁄dark cycle (7:00 am/7:00 pm), with food and water 

freely available. All efforts were made to reduce the number of animals used and to minimize 

their suffering. 

 

For this study were used 49 young adult (2-3 months-old) and 13 old (25-26 months-old) male 

C57BL6 mice. 

 

3.2 Intrastriatal injection 

Both adult and old C57BL6 mice were subjected to intrastriatal administrations of RA+-NPs, 

blank (void formulation) NPs, soluble RA or 0.1 M sterile phosphate buffer saline (PBS1). 

 

Animals were anesthetized by intraperitoneal (i.p.) injection of ketamine (90 mg/Kg) and 

xylazine (10 mg/Kg). Then, the animals were placed on the stereotaxic frame and were 

unilaterally injected in the right lateral striatum with 1 µl of 100 ng/ml RA+-NPs (dissolved in 

PBS), 100 ng/ml blank NPs, 10 µM soluble atRA (dissolved in dimethyl sulfoxide (DMSO); final 

dilution of 1:10000) or 0.1 M sterile PBS through a 10 µl Hamilton syringe at a speed of 0.2 

µl/min. The needle was retained in place for 3 min after injection. After the needle was 

removed and the incision sutured, mice were kept arm during recovery (27°C). RA+-NPs and 

soluble atRA solutions were prepared freshly in the morning just before the injections and the 

atRA solution was protected from light and kept in ice until the beginning of the surgery. The 

coordinates for intrastriatal injection were: +0.6 mm posterior to the bregma (X,AP), -1.8 mm 

lateral to the midline (Y,ML) and - 2.8 mm below the dura surface (Z,DV) according to the 

mouse brain atlas of Paxinos and Franklin, 2001. 

 

 

                                                 
1 PBS: NaCl 140 mM, KCl 2.7 mM, KH2PO4 1.5 mM and Na2HPO4 8.1 mM, pH 7.4). 
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3.3 MPTP - induced lesion  

Acute MPTP administration was made 3 days after intrastriatal injections. MPTP (Sigma 

Aldrich) was dissolved in sterile 0.9% NaCl and was injected in both adult and old mice in 4 

i.p. injections at 2h intervals using a dose of 15 mg/Kg body weigh in adult mice (Kong et al., 

2008) and 7 mg/Kg body weight in old mice (Peng and Andersen, 2011), to the total dose of 

60 and 28 mg/Kg, respectively. Saline animals, subjected to the same procedure, received an 

equivalent volume of sterile 0.9% NaCl. Animals were sacrificed 7 days following the MPTP 

acute intoxication protocol (Figure 3.1).  

 

At the end of experiment, the animals were divided into two groups. The first group was 

deeply anesthetized with an overdose of ketamine and killed by transcardial perfusion with 

0.1 M PBS followed by perfusion with 4% paraformaldehyde (PFA). Brains were then removed 

surgically for immunohistostainings. The second group was sacrificed by spinal cord 

dislocation and the brains were removed and the regions of interest, SN and striatum, were 

quickly microdissected from both hemispheres and stored at -80°C for gene expression 

analysis. 

 

MPTP was handled in accordance with “Protocol for the MPTP mouse model of Parkinson’s 

disease” that provide a detailed protocol as well as a list of recommendations and guidelines 

to handle and produce MPTP mouse model of PD in a reliable and safe manner (Jackson-Lewis 

and Przedborski, 2007). 

 

 

 

Figure 3.1 Schematic representation of the experimental treatments and assays performed in vivo. 
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3.4 Immunohistostainings 

 
3.4.1 Tissue preparation 

Brains were post-fixed by immersion in the 4% PFA solution for 24h at 4°C. After fixation, 

brains were then transferred to 30% sucrose solution (in 0.1 M PBS) for cryoprotection and 

were kept at 4°C until they sank.  

 

Brains where then frozen, embedded in optimal cutting temperature (OCT) gel and were cut 

into coronal sections at a thickness of 35 µm from the frontal pole to the midbrain on a 

freezing cryostat-microtome (Leica CM 3050S, Leica Microsystems) at -20°C. The sections 

corresponding to the SN and striatum of each animal were collected sequentially in six 

compartments of 24-well plate (Orange Scientific), free-floating in PBS supplemented with 

0.02% sodium azide at 4°C, until processing for immunohistostainings. 

 

3.4.2 TH staining 

This immunohistochemistry assay was used to detect dopaminergic neurons in SN and striatal 

fibers in striatum by TH staining. 

 

Sections were incubated on a 10 mM citrate solution (pH 6.0) at 80°C for 30 min for antigen 

retrieval. After cooled to room temperature (RT) inside the solution, sections were placed in 

water for 5 min and were then washed for 10 min in PBS-Tween 20 (PBS-T). Then, the 

sections were permeabilized and blocked with PBS containing 10% fetal bovine serum (FBS) 

and 0.1% Triton X-100 for at least 1h at RT and then washed with PBS-T for 20 min. For the 

inhibition of endogenous peroxidase activity, sections (protected from visible light) were 

incubated with 3% hydrogen peroxide (H2O2) in water for 10 min at RT and then washed with 

PBS-T for 20 min. Sections were incubated with primary antibody mouse anti-TH (dilution 

1:1000, Transduction Laboratories) diluted in PBS containing 5% FBS. Incubation with primary 

antibody was performed overnight at 4°C. After several rinses with PBS-T for 30 min, the 

sections were incubated with the secondary biotinylated goat anti-mouse antibody (dilution 

1:200, Vector Laboratories) diluted in PBS containing 1% FBS for 1h at RT. Subsequently, the 

sections were washed with PBS-T for 30 min and were then incubated with avidin-biotin 

peroxidase complex reagent (Vectastain ABC KIT, Vector Laboratories Inc.) for at least 30 min 

at RT. The sections were first washed with PBS-T for 30 min and then with tris buffer saline 

solution (TBS2) for 10 min. The reaction product was visualized using 3,3’-diaminobenzidine 

(DAB) (Sigma-Aldrich) in TBS containing 0.08% H2O2 until color develops (5-10 min) and the 

reaction was stopped by adding TBS. Sections were mounted onto slides (Thermo Scientific), 

                                                 
2 TBS: 20 mM Tris and 137 mM NaCl solution, pH 7.6 
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dried, and dehydrated in graded ethanol (70%-->80%-->95%-->100%), cleared in xylene and 

coversliped using a permanent mounting medium, Entellan (Merck) for light microscopy. 

Digital images of the TH staining were acquired in the Zeiss Axiovert 200 imaging Microscope 

(Axiobserver Z1, Zeiss) at the 4x magnification. 

 

3.4.3 Fluorescence immunohistostaining for glial cells 

Double immunofluorescence staining against GFAP (glial fibrillary acidic protein) and CD11b 

(alpha chain of αMβ2-integrin or cluster of differentiation molecule 11b) was performed to 

reveal astrocytes and microglia cells, respectively, on coronal sections of the striatum. 

Sections were initially permeabilized with 0.1 M PBS containing 1% Triton X-100 for 45 min. 

For blocking of non-specific bindings sites, sections were incubated with PBS solution 

containing 10% FBS at RT for at least 30 min. Then, slices were incubated with primary Rat 

monoclonal anti-CD11b (dilution 1:600, Serotec) and Rabbit monoclonal anti-GFAP (dilution 

1:200, Sigma) antibodies, both diluted in PBS containing 10% FBS for 24h at 4°C. After rinses 

with PBS containing 1% Triton X-100 for 45 min, sections were incubated with secondary Anti-

Rat 594 (dilution 1:200, Invitrogen) and anti-Rabbit 488 (dilution 1:200, Invitrogen) antibodies 

diluted in PBS, for 1h30min at RT. After rinses with PBS for 45 min, sections were incubated 

with Hoechst-33342 (15 µg/ml; Invitrogen) in PBS at RT for 5 min. Sections were then washed 

with PBS for 10 min and mounted in Dako fluorescent mounting medium (DAKO). Digital 

images were acquired at the Zeiss inverted confocal microscope (AxiobserverZ1, Zeiss) under 

a 40x magnification. 

 

3.5 Cell countings and quantitative analysis 

Quantitative analysis of dopaminergic neurons in the SN was carried out by serial section 

analysis of the total number of TH-positive (TH+) neurons throughout the rostro-caudal axis. 

The SN does not have exactly well-defined borders with adjacent brain structures in all 

mesencephalic sections, so the region corresponding to the SNpc was carefully delineated and 

the total number of TH+-neurons in the full extent of structure was counted per section in 

each hemisphere. The total number of TH+-neurons for each representative mesencephalic 

section (4 coronal sections per mouse from -2.80 to -3.80 mm relative to bregma) was 

calculated under the magnification of 10x at the Zeiss Axiovert 200 imaging microscope 

(Axiobserver Z1, Zeiss). 

 

The quantitative analysis of the intensity and area occupied by TH+-fibers staining was carried 

out in 4 coronal sections of the striatum, from 1.10 to 0.38 mm relative to bregma, of each 

mouse, selected throughout the rostro-caudal axis, under the magnification of 5x at the Zeiss 

Axiovert 200 imaging microscope (Axiobserver Z1, Zeiss). Quantitative analysis of striatal TH-

fiber staining was performed using ImageJ program wherein striatal images converted to gray 
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scale were delineated and the intensity and area occupied by the TH staining were assessed 

for the entire region of the striatum. Background intensities of TH staining were subtracted 

from every measurement.  

 

3.6 RNA isolation 

Total RNA was extracted from the striatum and SN using illustra RNAspin Mini KIT (GE 

Healthcare) according to manufacturer’s protocol.  

 

Briefly, the samples were first lysed in Lysis Solution containing guanidine thiocyanate which 

ensured the inactivation of RNases. Samples were applied to spin mini filters to filtrate the 

lysate and the remaining filter was discarded. Afterwards, ethanol 70% was added to the 

filtrate to complex nucleic acids so that forms a stringy visible precipitate. Samples were 

then transferred to spin mini columns where total RNA bound to the membrane. Then, salts 

were removed from silica membrane by the addition of desalting buffer and this step makes 

the subsequent DNA digestion with DNase I much more effective. After incubation with DNase 

I, the column was washed and dried by the addition of a series of wash buffers promoting 

inactivation of DNase I and removing contaminants from de membrane-bound RNA, allowing 

the purification of high-quality mRNA enriched solution. At the end, mRNA samples were 

dissolved in 25 µl of RNase-free water and stored at -80°C until quantification. The total 

amount of mRNA was quantified spectrophotometrically by the Nanophotometer (Implen) at 

260 nm, and the purity was determined by measuring the 260/280 nm ratio. 

 

3.7 Reverse transcription-polymerase chain reaction (RT-PCR) 

cDNA synthesis was performed using Transcriptor First Stand cDNA Synthesis KIT (Roche) 

according the manufacturer’s instructions.  

 

Total mRNA extracted from adult (0.2 µg) and old mice (0.4 µg) tissue samples was mixed 

with 1 µl anchored-oligo (dT) 18 primers, 4 µl reverse transcriptase reaction buffer 5x, 0.5 µl 

RNase inhibitor, 2 µl deoxynucleotide mix (dNTPs), 0.5 µl reverse transcriptase and sterile 

water in a 20 µl final volume. The reaction was performed at 55°C for 30 min and stopped at 

85°C for 5 min step by a thermal cycler (Biometra). The samples were then stored at -80°C 

until further use. 

 

 

 

 



17 

 

3.8 Gene expression analysis by quantitative real-time PCR 

(qPCR) 

The qPCR assays for gene expression analysis of Nurr1 in the striatum and SN and Pitx3 in the 

SN were performed by adding 2 µl of sample cDNA, 10 µl SYBR Green Supermix (BioRad), 1/10 

dilution of each primer (accordingly to primers datasheet) and RNAse free water to a 20 µl 

total volume. The reaction was initiated with activation of Taq polymerase by heating at 94°C 

during 3 min followed by 40 cycles of a 15 seconds denaturation step at 94°C and a 30 

seconds annealing and elongation step at 60°C. Validated primer sets (GAPDH, Nurr1 and 

Pitx3) for use in qPCR were obtained from selected QuantiTect Primer Assays (Qiagen). 

 

The fluorescence was measured after the extension step by the iQ5 Multicolor Real-time PCR 

detection system (BioRad). After the thermocycling reaction, a melting curve was performed 

with slow heating, starting at 55°C and with a rate of 0.5°C per 10 seconds, up to 95°C, with 

continuous measurement of fluorescence, allowing detection of possible nonspecific products. 

The assay included a non-template control (sample was substituted by RNase- Dnase-free 

sterile water). All reactions run in duplicates.  

 

The threshold cycle (Ct) was measured in the exponential phase and therefore was not 

affected by the possible limiting components in the reaction. Data analysis was performed 

with BioRad iQ5 software (BioRad). Fluorescent reading from qPCR was quantitatively 

analyzed by determining the difference of Ct (ΔCt) between Ct of the target gene and GAPDH 

control housekeeping gene using the comparative Ct method as described by Pfaffl’s formula 

(Pfaffl, 2001). 

 

3.9 Data analysis and statistics 

Statistical analysis of group differences was performed using GraphPad Prism 5.0 (GraphPad 

Software Inc.) by one-way analysis of variance (ANOVA) followed by Dunnett’s test for 

comparison with control condition. Control and MPTP values correspond to the pool of all 

contralateral sides of saline- or MPTP-treated mice, respectively. All other conditions 

correspond to ipsilateral sides of saline- or MPTP-treated mice. Blank NPs were used as 

negative control (Figure 3.2). Data are expressed as percentages of values obtained relative 

to the control or MPTP and are presented as the means ± standard error of mean (SEM). 

Statistical significance was considered relevant for p value < 0.05. 
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Figure 3.2 Experimental groups. 
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Chapter 4 

Results 
 

 

To investigate whether RA+-NPs protects dopaminergic neurons in vivo, we used the MPTP 

mouse model of PD. For this purpose adult and old C57BL6 male mice were injected with 

MPTP (60 and 28 mg/Kg, respectively) or saline (equal volume of 0.9% NaCl) in 4 i.p. 

injections at 2h intervals 3 days after intrastriatal injections with 100 ng/ml RA+-NPs, 100 

ng/ml blank NPs, 10 µM soluble RA or 0.1 M sterile PBS in the right lateral striatum (ipsilateral 

side). The SN and striatum regions were collected 7 days after the neurotoxin injection and 

processed for immunohistostainings or qPCR analysis. 

 

4.1 RA+-NPs induce neuroprotection of the SN dopaminergic 

neurons against the MPTP-induced lesion 

To analyze the extension of dopaminergic lesion produced by MPTP and consequently the 

neuroprotective effects driven by RA+-NPs against this neurotoxin, we performed TH 

immunohistostainings in midbrain coronal brain sections of adult mice (Figure 4.1C). The 

percentages of TH+ cells were analyzed in saline- and MPTP-treated mice groups as described 

in the figure 3.2. 

 

In the SN of saline mice (i.p. 0.9% NaCl) we could not found any difference in the percentage 

of TH+ cells when comparing ipsilateral side - i.e. intrastriatal injection with RA+- or blank-NPs 

- with the contralateral side (98±14.4% and 87.6±8.3% of control, respectively) (Figure 4.1A). 

These results suggest that both RA+- and blank-NPs per se did not interfere with the 

dopaminergic neuronal survival. By contrast, exposure to MPTP triggered about 50% reduction 

of TH+ cells in SN as compared with saline mice (control group) (51.3±3.7% of control) (Figure 

4.1B, C-left panel). Intrastriatal injection with RA+-NPs before MPTP i.p. administration 

significantly reduced the MPTP-induced lesion by increasing the percentage of TH+ cells in 

ipsilateral SN to levels similar to control (94.5±6.6% of control) (Figure 4.1B, C-right panel). 

This neuroprotective effect was more robust than when compared with soluble RA (63.2±4.7% 

of control) (Figure 4.1B). Moreover, intrastriatal injections of blank NPs, used as a negative 

control, were not able to protect TH+ neurons against the MPTP-induced lesion. These results 

suggest that the prophylactic administration of RA+-NPs was very effective in protecting SN 

dopaminergic neurons against the MPTP-induced lesion. 
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Figure 4.1 RA+-NPs pre-treatment increased survival of TH+ cells in the MPTP-injured SN.  Adult mice 
received RA+-NPs, blank NPs or soluble RA by stereotaxic injections in the right striatum. MPTP or saline 
(0.9% sterile NaCl) were administered intraperitoneally (i.p.) three days after stereotaxic injections. 
Seven days after MPTP or saline i.p. injections, coronal brain slices containing the SN region were 
collected for TH staining. Therefore, the contralateral SN contains MPTP-only exposed cells, whereas, 
the ipsilateral SN receives the influence of both MPTP and NPs. (A) Quantitative analysis of TH+ cells in 
the SN of control mice (saline, i.p.) injected or not with RA+-NPs (RA+-NPs + saline) or blank NPs (blank + 
saline). The saline condition corresponds to the contralateral SN whereas both RA+-NPs and blank 
conditions correspond to the ipsilateral SN. (B) Quantitative analysis of TH+ cells in the contralateral SN 
of saline or MPTP-treated mice and in the ipsilateral SN of RA+-NPs-, blank- and soluble RA-treated MPTP 
mice (C) Representative photomicrographs of midbrain sections immunostained for TH of a mouse 
injected with RA+-NPs in the right striatum followed by the i.p. MPTP-induced lesion. Data are expressed 
as the percentage of control and represent the mean±SEM (n=3—8 mice). Statistical analysis was 
performed using one way ANOVA followed by Dunnett’s test. ***P<0.0001, **P<0.001 and *P<0.05 
compared to control and ###P<0.0001 compared to MPTP. 
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4.2 RA+-NPs induce neuroprotection of TH+ striatal fibers 

against the MPTP-induced lesion 

 

We then performed TH immunohistostainings in striatal coronal sections of adult mice in 

order to analyze the extension of lesion produced by MPTP in dopaminergic striatal terminals 

and consequently the neuroprotective effects driven by RA+-NPs against this neurotoxin 

(Figure 4.2C). The intensity and area occupied by TH+ immunoreactive fibers were analyzed in 

saline and MPTP-treated mice groups (as described in the figure 3.2). 

 

No statistical difference was found in the intensity (black bars) and area (white bars) 

occupied by TH+ fibers in the contralateral striatum of saline animals (line set to 100%; Figure 

4.2A) as compared with the ipsilateral side of the same animals injected with RA+-NPs or 

blank NPs (intensity: 91.4±5.6% and 94.6±0.1% of control; area: 78.9±9.8% and 89.8±14.2% of 

control, respectively). As expected, MPTP caused a significant decrease in the intensity 

(29.3±4.3% of control) and in the percentage of area occupied by TH+ fibers (14±0.6% of 

control) as compared with saline animals (set to 100%) (Figure 4.2A, C-right panel). Exposure 

to RA+-NPs before MPTP-induced lesion significantly increased the intensity and area occupied 

by TH+ fibers in the ipsilateral striatum (135.2±7.5% and 218.1±44.4% of MPTP, respectively) 

(Figure 4.2B, C-left panel) as compared with MPTP-only exposed contralateral striatum (set to 

100%). As expected, the intensity and percentage of area occupied by TH+ fibers found in the 

ipsilateral side of the striatum exposed to both blank NPs and MPTP was not different from 

the contralateral side of the same animals (MPTP-only exposed cells) (98.1±15.2% and 

135.1±49.7% of MPTP, respectively) (Figure 4.2B). These data suggest that RA+-NPs per se did 

not modulate TH+ fibers staining in the striatum but they increased its immunoreactivity in 

the presence of MPTP-induced dopaminergic injury. 
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Figure 4.2 RA+-NPs pre-treatment increases TH+ fibers immunoreactivity in the MPTP-injured 
striatum.  Adult mice received RA+-NPs or blank NPs by stereotaxic injections in the right striatum. 
MPTP or saline were administered intraperitoneally three days after stereotaxic injections. The striatum 
region was collected for TH immunostaining seven days after MPTP or saline injections. (A) Quantitative 
analysis of the intensity and area occupied by TH+ fibers in control (contralateral side; set to 100%) and 
in RA+-NPs- or blank-treated saline mice (ipsilateral sides). (B) Quantitative analysis of the intensity and 
area occupied by TH+ fibers in contralateral striatum of MPTP-treated mice (set to 100%) and in RA+-NPs- 
and blank-treated MPTP mice (ipsilateral sides). (C) Photomicrographs of striatum sections 
immunostained for TH of a mouse injected with RA+-NPs in the right striatum followed by the i.p. MPTP-
induced lesion. Data are expressed as the percentage of control (A) or MPTP (B) (both contralateral 
sides) and represent the mean±SEM (n=2—4 mice). Statistical analysis was performed using one way 
ANOVA followed by Dunnett’s test. ***P<0.0001 compared to control and ##P<0.001 compared to MPTP. 

 

 

4.3 Effects of RA+-NPs in glial reactivity 

To evaluate whether RA+NPs induce glial reactivity in vivo, we then performed a fluorescence 

immunostaining against GFAP (astrocyte marker) and CD11b (microglia marker) in striatal 

coronal sections. Analysis were performed only in striatal sections where the injection site 

was detected and images were captured about 100-150 µm away from the injected site. 

 

Immunohistochemistries suggest that the MPTP-induced lesion robustly increased the 

reactivity of astrocytes and microglia in the contralateral striatum (Figure 4.3). Interestingly, 

it seems that the RA+-NPs decreased the reactivity of astrocytes and microglia by decreasing 

the GFAP and CD11b expression/staining in the ipsilateral side of RA+-NPs-treated MPTP mice 

(Figure 4.3). However, in the ipsilateral side of RA+-NPs- and saline-treated saline mice 

groups, some reactive astrocytes and microglia were also observe. This occurs probably due 

to the tissue lesion caused by the intrastriatal injection. These results suggest that RA+-NPs 

decrease glial reactivity in the striatum in the presence of MPTP-induced dopaminergic 

injury. 
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Figure 4.3 Fluorescence immunostaining of astrocytes and microglia in the striatum. Representative 
images of fluorescence immunostaining against GFAP (green) and CD11b (red) in the striatum of adult 
mice that received RA+-NPs or saline by stereotaxic injections in the right striatum.  MPTP or saline were 
administered intraperitoneally three days after stereotaxic injections. Hoechst 33342 staining (blue) was 
performed to detect cell nuclei. Scale bar: 10 µm. 
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4.4 Effects of RA+-NPs in Nurr1 and Pitx3 mRNA expression  

 

To investigate the role of RA+-NPs in the expression of transcription factors that are involved 

in dopaminergic survival and specification, SN and striatum regions were then collected from 

adult and old mice. For this purpose, Nurr1 and Pitx3 mRNA expression was examined through 

qPCR in saline- and MPTP-treated mice groups (Figure 3.2). Nurr1 mRNA expression was 

evaluated in SN and striatum whereas Pitx3 mRNA expression was evaluated only in SN.  

 

4.4.1 Nurr1 and Pitx3 mRNA expression in adult mice 

As shown in figure 4.4 (A, B), the intrastriatal injection with RA+-NPs in saline-treated adult 

mice (ipsilateral side) did not changed the mRNA expression levels of Nurr1 in the striatum 

and SN and of Pitx3 in the SN (108.2±4.7%; 107±3.7% and 112.2±21.5% of control, respectively) 

as compared with the contralateral hemisphere (saline i.p.; set to 100%). As expected, when 

mice were exposed to MPTP there was a significant decrease in Nurr1 transcript levels in both 

striatum (68.4±8.7% of control) and SN (72.9±7.2% of control) and also in the Pitx3 mRNA 

expression levels found in the SN (38.2±5.7% of control). 

 

In the SN of mice exposed to both RA+-NPs and MPTP there was an increase of Nurr1 and Pitx3 

mRNA levels as compared to MPTP, however no statistically significant differences were 

detected (201.1±62.9% and 153.7±35.7% of MPTP) (Figure 4.4 C, D). In same conditions, no 

changes were detected in Nurr1 mRNA levels in the striatum exposed to both RA+-NPs plus 

MPTP (ipsilateral) when compared with MPTP-only exposed cells (contralateral; set to 100%) 

(Figure 4.4 C). In accordance with previous data, blank NPs did not change neither Nurr1 

(striatum: 72±14.4% of MPTP; SN: 85.4±11.9% of MPTP) nor Pitx3 mRNA expression (106.6±11% 

of MPTP) as compared with MPTP-only exposed cells (Figure 4.4 C, D).  
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Figure 4.4 RA+-NPs induce the expression of Nurr1 and Pitx3 mRNA in the SN of adult mice exposed 
to MPTP. Adult mice received RA+-NPs or blank NPs by stereotaxic injections. MPTP or saline (0.9% NaCl) 
were administered intraperitoneally three days after stereotaxic injections in the right striatum 
(ipsilateral side). Seven days after MPTP or saline injections, the SN and striatum regions were collected 
for measurement of Nurr1 and Pitx3 mRNA expression by qPCR. The expression levels were normalized 
to the GAPDH housekeeping gene. (A, B) Bar graphs indicate the percentage of Nurr1 and Pitx3 mRNA 
expression, respectively, expressed as the percentage of control (saline, contralateral). (C, D) Bar 
graphs indicate the percentage of Nurr1 and Pitx3 mRNA expression, respectively, expressed as the 
percentage of MPTP. Data represent the mean±SEM (n=3—4 mice). Statistical analysis was performed 
using one way ANOVA followed by Dunnett’s test. **P<0.001 compared to control. 
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4.4.2 Nurr1 and Pitx3 mRNA expression in old mice 

 

The same analysis regarding the expression of both Nurr1 and Pitx3 mRNAs was also 

performed in old mice (25-26 months). The aim of these experiments was to better mimic 

what happens in PD, since the most predominant form of this disease (idiopathic) occurs 

mainly in older people and not in young adults. 

 

First we showed that the striatal administration of RA+-NPs in saline mice, did not 

significantly alter both SN and striatal mRNA expression of Nurr1 (84.1±3.3% and 77.9±14.1% 

of control, respectively) and SN mRNA expression of Pitx3 (92.3±41.7% of control) (Figure 4.5 

A, B) as compared with saline animals (control; set to 100%). As expected, a robust decrease 

in Nurr1 mRNA expression in the striatum and SN (21±2% and 54.1±7.5% of control, 

respectively) as well as a decrease in Pitx3 mRNA levels in SN (42.6±3.7% of control) was 

found in the brain hemisphere exposed to MPTP only as compared with saline animals 

(control; set to 100%) (Figure 4.5 A, B). 

 

Treatment with both RA+-NPs and MPTP triggered a significant increase of Pitx3 mRNA levels 

in the ipsilateral SN and of Nurr1 mRNA levels in ipsilateral striatum (290.9±67% and 

245.6±53% of MPTP, respectively) as compared to MPTP (set to 100%; Figure 4.5 C, D). 

However, in the same conditions there was an increase in Nurr1 mRNA levels in the ipsilateral 

SN but no statistical difference was observed when compared to MPTP (130.5±23.2% of MPTP) 

(Figure 4.5 C).These data suggest that RA+-NPs enhance the mRNA expression of both Nurr1 

and Pitx3 in the striatum and SN, respectively, as compared with MPTP-exposed cells. Even if 

this data suggest that RA+-NPs can promote protection of dopaminergic neurons by increasing 

the expression of transcription factors involved in their survival and maintenance, future 

immunostaining studies should be performed to disclose whether the Pitx3 and Nurr1 

increased expression is found specifically in the nuclei of dopaminergic neurons and if a clear 

recovery in the percentage of TH+ neurons occurs in the SN of these animals. The blank plus 

MPTP experimental group was not carried out due to the limited availability of mice with a 

substantially advanced age. 
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Relative to saline (set to 100%) 
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Figure 4.5 RA+-NPs induce Nurr1 and Pitx3 mRNA expression in MPTP-treated old mice. Old mice 
received RA+-NPs by stereotaxic injections. MPTP or saline (0.9% NaCl) were administered 
intraperitoneally three days after stereotaxic injections. Seven days after MPTP or saline injections, SN 
and striatum regions were collected for measurement of Nurr1 and Pitx3 mRNA expression by qPCR. The 
expression levels were normalized to the GAPDH housekeeping gene. (A, B) Bar graphs indicate the 
percentage of Nurr1 and Pitx3 mRNA expression, respectively, expressed as the percentage of control 
(saline, 0.9% NaCl i.p.). (C, D) Bar graphs indicate the percentage of Nurr1 and Pitx3 mRNA expression, 
respectively, expressed as percentage of MPTP. Data represent the mean±SEM (n=3—7 mice). Statistical 
analysis was performed using one way ANOVA followed by Dunnett’s test. ***P<0.0001 compared to 
control and #P<0.05 compared to MPTP. 
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Chapter 5 

Discussion 
 

In this thesis, we investigated the putative neuroprotective role of RA in a mouse model of PD 

taking advantage of a recently described nanoparticle delivery system. RA regulates multiple 

biological processes including cell proliferation and differentiation, by virtue of its ability to 

modulate the rate of transcription of numerous target genes. It was also described that RA 

has a protective effect against neurodegeneration of dopaminergic neurons in the SN (Ulusoy 

et al., 2011). However, it requires a fine-tuning of concentration window to achieve its 

results posing difficulties in the delivery of therapeutic doses. The nanoparticle formulation 

used in this thesis avoids the use of large concentrations of RA and the use of toxic solvents 

such as DMSO and ensures intracellular transport and controlled release of RA. Previously, it 

was shown that this RA+-NPs formulation enhances subventricular zone neurogenesis both in 

vitro and in vivo (Maia et al., 2011, Santos et al., 2012). However, there are no studies 

showing intracellular transport and controlled release of this molecule by a delivery system 

for dopaminergic neuroprotection in a context of PD.  

 

PD is characterized mainly by a progressive and preferential loss of dopaminergic neurons in 

SNpc who projected their terminals to the striatum, resulting in reduced striatal levels of 

dopamine (Jankovic, 2008). In this way, in the first part of this study, we investigated 

whether RA+-NPs protects TH dopaminergic neurons from MPTP-induced lesion by performing 

TH immunohistostainings on midbrain and striatal sections. We demonstrated that 

intrastriatal injections with RA+-NPs before MPTP i.p. administration significantly reduced the 

loss of TH cells in the ipsilateral SN to levels similar to control (saline mice). Moreover this 

neuroprotective effect mediated by 100 ng/ml RA+-NPs was more robust than when compared 

with 10 µM soluble RA. In fact, the amount of RA payload present in 100 ng/ml of RA+-NPs 

corresponds to 4 nM of RA (Santos et al., 2012) and this concentration is 2500-fold lower than 

the concentration of 10 µM. Similarly, there was significant reduction in intensity and area 

occupied by TH+ fibers in contralateral striatum of MPTP-treated mice and this reduction was 

counteracted with the presence of RA+-NPs (ipsilateral).Our results are in line with previous 

findings by others showing that RA can be an effective neuroprotective agent for 

dopaminergic neurons. In fact, a recent report showed that the intranasal delivery of RA can 

also protects dopaminergic neurons against neurodegeneration in nigrostriatal dopaminergic 

neurons (Yin et al., 2012). Other recent studies also indicated that RA reduced the density of 

TUNEL labeling, a marker for apoptosis, in the ischemic cortex after middle cerebral artery 

occlusion in rats (Shen et al., 2009). Interestingly, RA has also been widely used to trigger 

stem cells differentiation into dopaminergic neurons that are required for relevant cell based 

therapies for PD (Cooper et al., 2010). 
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To disclose whether RA+-NPs could induce glial reactivity, striatal slices were immunostained 

against GFAP and CD11b, markers of astrocytes and microglia, respectively. It is known that 

in the presence of an excitotoxic or inflammatory stimulus, there is an increase of GFAP 

expression by astrocytes and an alteration of microglia functional state from resting 

(ramified) to an activated (ameboid) state. Moreover, others authors showed that the 

administration of several types of biomaterials can trigger an inflammatory reaction in the 

brain parenchyma (Fournier et al., 2006, Xue et al., 2012). Accordingly, we found that in 

saline animals, the striatal administration of RA+-NPs induced a mild increase of GFAP 

expression and microglia activation (ameboid state), especially in the proximity of the 

injection site. However, in the presence of a MPTP-lesion, it seems that RA+-NPS were able to 

reduce, at least in part, the increased expression and reactivity of both glial markers. This 

may be due to an anti-inflammatory role of RA already reported by several other authors 

(Dheen et al., 2005, Xu and Drew, 2006). However, a more robust and careful analysis should 

be done including, for instance, the measurement of GFAP and CD11b staining intensity or the 

evaluation of cytokines (Interleukin-1 beta or Tumor Necrosis Factor-alpha) expression. 

 

Although the precise pathogenesis of PD remains largely unknown, there are increasing 

evidences suggesting that dysfunction of some transcription factors involved in the 

differentiation and survival of mDA neurons may be responsible for the development of PD 

(Jankovic et al., 2005, Luk et al., 2013). Amongst them, Nurr1 and Pitx3 are the most 

extensively studied. Nurr1 is one of the key regulators for development of dopaminergic 

neurons which is also considered as a crucial regulator for the expression of several genes 

involved in PD pathology including DAT and TH (Smits et al., 2003). Pitx3, another key factor 

for the development of dopaminergic neurons, is highly expressed in the SN and VTA of 

midbrain and is maintained throughout adult life in both rodents and humans (Nunes et al., 

2003). In a recent study, it was shown that the mRNA expression of both Nurr1 and Pitx3 were 

significantly decreased under PD conditions, suggesting that both genes were potential 

susceptibility genes for PD (Liu et al., 2012). Interestingly, in our experiments using adult 

mice, we also found that MPTP induced a robust decrease of both Nurr1 and Pitx3 mRNAs and 

that RA+-NPs were able to counteract, at least in part, this decrease.  

 

The neurotoxin MPTP has been used extensively as a research toll to investigate the various 

neuroanatomical and biochemical abnormalities characteristic of PD. One finding to emerge 

from this research is the observation that older mice are much more susceptible to the 

neurotoxic effects of MPTP than adult mice. This may occur because the MAO-B activity 

increases with age, so both lethality and neurotoxicity of MPTP are age-dependent (Jarvis and 

Wagner, 1985). Because the risk of developing PD by itself is associated with advancing age, 

the finding that the toxic actions of this neurotoxin also increase with age, at least during the 

first half of the rodent’s life span, has generated considerable interest. So, it is important to 

evaluate the effects of RA+-NPs in older animals since age is a risk factor of PD.  
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For this reason, in the second part of this study, we also evaluated the effects of RA+-NPs in 

Nurr1 and Pitx3 mRNA expression in MPTP-treated old mice by qPCR analysis. The expression 

levels of Nurr1 in the SN and striatum and Pitx3 in the SN in MPTP-treated adult mice were 

significant lower than when compared to control group (saline). This effect mediated by MPTP 

is more robust in SN and striatum of older mice than in young adult mice which is in 

agreement with the fact of the older mice being more susceptible to effects of MPTP than the 

younger mice. Our results also showed that RA+-NPs increased both Nurr1 and Pitx3 mRNA 

expression in injured SN of adult mice but not show increased expression of Nurr1 in striatum. 

Surprisingly in old mice, there was an increase of Pitx3 in injured SN and also an increase of 

Nurr1 mRNA levels in injured striatum but not in the SN. This suggests that Nurr1 and Pitx3 

may be RA target genes and, therefore, RA can activate their transcription by binding to RAR-

RXR heterodimers. Dopaminergic system is particularly susceptible to the influences of aging, 

possible as a result of age-related decrease in Nurr1 expression. Nurr1 was found 

predominantly expressed in dopaminergic neurons and in microglia cells, whereas Pitx3 is 

expressed selectively in dopaminergic cells present in the ventral SN. Therefore, Nurr1 also 

has a role in inflammation, by suppressing the production of inflammatory mediators by 

microglia and astrocytes. Therefore, we can hypothesize that the decrease of Nurr1 with age 

will create a pro-inflammatory milieu responsible for a dopaminergic susceptibility to 

degeneration (Blasko et al., 2004). To better elucidate these results, it could be relevant to 

perform double immunostainings for TH/Nurr1 and CD11b/Nurr1 in striatum and SN to analyze 

if this changes occurs in dopaminergic neurons or in microglia. Moreover, as stated before, 

the increased expression levels of these transcription factors in the RA+-NPs plus MPTP 

condition as compared with MPTP-only exposed cells per se does not directly correlate with a 

neuroprotective effect. Future immunostaining studies should be performed to disclose 

whether the Pitx3 and Nurr1 increased expression found specifically in the nuclei of 

dopaminergic neurons could correlate with a clear recovery in the percentage of TH+ neurons 

in the SN of old animals. Adult and old mice were also exposed to both RA+-NPs and blank NPs 

in saline animals and as expected, no effect was observed regarding the expression of both 

transcription factors as compared with the saline contralateral hemisphere (control).  

 

In conclusion, we showed for the first time that RA+-NPs were able to induce robust 

neuroprotective effects of SN dopaminergic neurons against an acute i.p. MPTP-induced 

lesion, an effect accompanied by an increase of Pitx3 and Nurr1 mRNA expression. 
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Chapter 6  

Conclusions 
 
In this thesis, we reported for the first time the neuroprotective effect triggered by RA-

containing nanoparticles on a MPTP mouse model of PD. In addition, these RA+-NPs also 

increased the mRNA expression of Pitx3 and Nurr1, which are transcription factors responsible 

for dopaminergic neuronal specification and survival. Notably, this formulation offers a 

significant advantage over soluble RA, either by avoiding the use of solvents like DMSO and by 

achieving higher neuroprotective effects.  
 

Thus, our results suggest that RA+-NPs could be a good strategy to boost brain repair in PD and 

maybe to open new perspectives for the treatment of others neurodegenerative diseases.  
 

 

6.1 Future Perspectives 

 

 In order to strengthen the results presented in this thesis, it would be pertinent to evaluate 

the effects of RA+-NPs on nigrostriatal DA levels by the HPLC assay.  

 

It would be also important to quantify the protein levels of both Nurr1 and Pitx3 transcription 

factors by Western blot or immunostaining. The immunostaining has the advantage of 

identifying double positive cells for TH/Pitx3 and for TH/Nurr1, and in this way, to evaluate 

the pattern of expression of these transcription factors specifically in dopaminergic neurons.  

 

It would be relevant to deliver RA+-NPs into the brain by a less invasive route of 

administration, such as the intranasal delivery. 

  

Since the RA+NPs were delivered before the MPTP-induced injury (prophylaxis) it would be 

also advantageous to administrate these NPs before and/or after the MPTP-induced lesion.  

 

In this study, we did not evaluate the percentage of TH+ cells in the SN of old mice due to the 

limited availability of mice with a substantially advanced age. These experiments are very 

relevant to prove that this formulation can also protect dopaminergic neurons upon a MPTP-

induced lesion in old mice.  
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