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Resumo 

As células microgliais, células imunitárias residentes no cérebro, desempenham um papel 

crítico na etiologia e progressão de várias doenças neurodegenerativas. A doença de 

Parkinson (DP) é uma doença neurodegenerativa caraterizada por uma grande perda dos 

neurónios dopaminérgicos na Substantia Nigra (SN), diminuição dos níveis de dopamina no 

estriado e complicações motoras. Várias evidências clínicas e experimentais sugerem que a 

neuroinflamação tem um papel crítico na patogénese da DP através da ativação das células 

microgliais e consequente produção de mediadores inflamatórios, incluindo o óxido nítrico 

(ON). A Histamina (HIS), uma amina que atua como neurotransmissor e mediador 

inflamatório, tem sido descrita como tendo um importante papel na patogénese da DP. 

Alterações nas inervações histaminérgicas no estriado e SN bem como um aumento das 

concentrações de histamina no sangue, estriado e SN foram observadas em pacientes com DP. 

Com base nestes dados, o nosso objetivo foi avaliar o efeito da histamina nas células 

microgliais obtidas da Substantia Nigra de ratos Wistar e seguidamente avaliar de que forma 

fatores solúveis libertados pela microglia previamente estimulada com histamina podem 

modular a sobrevivência neuronal dopaminérgica. Inicialmente foram utilizadas culturas de 

células microgliais para estudar o efeito da histamina e os seus recetores na produção de ON, 

o qual foi quantificado pelo teste de Griess. Demostramos que a HIS provoca um aumento da 

produção de ON quando comparado com o controlo, um efeito mediado pela ativação do 

recetor 4 da histamina (H4R). Contudo, num contexto inflamatório induzido pelo 

Lipopolissacarídeo (LPS), a HIS inibe a produção de ON induzida pelo LPS não só pelo R4H, 

mas também possivelmente através da ativação do recetor 1 da histamina (R1H). Em seguida, 

recolhemos o meio condicionado das células microgliais (MCM) tratado com HIS e/ou LPS para 

avaliar o seu efeito na viabilidade dos neurónios dopaminérgicos presentes em co-culturas de 

neurónios e astrócitos isoladas do mesencéfalo. De facto, o meio condicionado obtido das 

células microgliais expostas ao LPS ou à HIS levaram a uma diminuição do número de 

neurónios positivos para a Tirosina Hidroxilase; sendo este efeito anulado quando o MCM é 

obtido das células microglias tratadas com a HIS mais LPS. Curiosamente, o mesmo efeito foi 

observado quando a HIS e/ou LPS foram adicionados diretamente nas co-culturas de neurónios 

e astrócitos. Assim, estes resultados sugerem que a HIS por si só atua como um mediador pró-

inflamatório, enquanto, num contexto inflamatório, a HIS tem supostamente um efeito anti-

inflamatório promovendo desta forma a sobrevivência dos neurónios dopaminérgicos. 
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Abstract 

Microglia cells, the resident immune cells in the brain, play a critical role in the development 

and progression of several neurodegenerative diseases. Parkinson's disease (PD) is a 

neurodegenerative disorder characterized by a dramatic loss of dopaminergic neurons (DA) in 

the substantia nigra (SN), striatal dopamine depletion and motor impairments. Accumulating 

clinical and experimental evidences suggest that neuroinflammation plays a critical role in 

the pathogenesis of PD through the activation of microglia cells and the subsequent 

production of a vast array of inflammatory mediators, including nitric oxide (NO). Histamine 

(HIS), an amine that acts as a neurotransmitter and inflammatory mediator, has been 

reported to play a role in the pathogenesis of PD. Indeed, alterations in the histaminergic 

innervations in the striatum and SN and increased histamine concentrations in the blood, 

striatum and SN were found in PD patients.  

Based on these data, our aim was to uncover the effects of histamine on microglia cells 

derived from the SN of Wistar rats and then evaluate whether soluble factors released by 

microglia previously stimulated with histamine could modulate dopaminergic neuronal 

survival. Firstly, microglia cell cultures were used to study the effects of HIS and its receptors 

on NO production, which was measured by the Griess assay. We demonstrated that HIS 

triggered an increase of NO production as compared with control, an effect mediated by 

histamine H4 receptor (H4R) activation. Interestingly, in the presence of an inflammatory 

context, mimicked by lipopolysaccharide (LPS), HIS inhibited LPS-induced NO production not 

only by H4R but, possibly through histamine H1 receptor (H1R) activation. Then, conditioned 

medium derived from microglia cells (MCM) challenged with HIS and/or LPS was collected to 

evaluate its effects on the viability of DA neurons present in neuron-astrocyte midbrain co-

cultures. In fact, conditioned medium derived from microglia cells exposed to LPS or HIS 

induced a decrease in the number of Tyrosine Hydroxylase positive neurons; whereas this 

noxious effect was abolished when MCM obtained from microglia challenged with HIS plus LPS 

was used. Curiously, the same effects were observed when HIS and/or LPS were added 

directly on neuron-astrocyte midbrain co-cultures. Together, our results suggest that HIS per 

se acts as a pro-inflammatory mediator, whereas, in an inflammatory context, HIS has a 

putative anti-inflammatory profile that can protect dopaminergic neurons. 
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Chapter 1 

INTRODUCTION 

 

 

1.1. NEUROINFLAMMATION 

 

In the past, the central nervous system (CNS) was considered an immune-privileged site. 

Nowadays, it is well established that the activation of the immune cells present in the CNS to 

infection, trauma, toxins, among other stimuli plays a crucial role in the development and 

progression of neurodegenerative and neuropsychiatric diseases, including Alzheimer’s 

disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), bipolar disorder (BD), 

schizophrenia (SZ) and depression. The inflammatory responses in the brain, also known as 

neuroinflammation, are a complex combination of acute and chronic responses of several 

types of cells, including neurons, microglia, astrocytes and infiltrating leukocytes. The acute 

inflammatory responses are believed to be beneficial, since it tends to minimize further 

injury and contributes to repair of damaged tissue. On the other hand, chronic 

neuroinflammation produces long-lasting and self-perpetuating neuroinflammatory mediators 

that remain after the initial neuroinflammatory insult has passed (Frank-Cannon et al., 2009; 

Kraft and Harry, 2011; Rao et al., 2012).  

 

 

1.1.1 MICROGLIA IN HEALTH AND DISEASE  

 

Microglia are the resident immune-competent cells of the CNS and have a role in 

monitoring the brain for immune insults and invading pathogens. Ramon and Cajal considered 

microglia to be part of the ‘third element’ of the CNS, being neither neuronal nor astrocytic 

(Long-Smith et al., 2009). 

The origin of microglia still remains highly debated. The hypothesis most accepted is 

the ‘‘myeloid-monocytic hypothesis’’, which states that resident microglia, as well as the 

other tissue resident macrophages, are derived from circulating blood monocytes, during the 

late embryonic life and post-natally (Flügel et al., 2001; Kaur et al., 2001; Polazzi and Monti, 

2010;). 

Microglia cells are distributed throughout the CNS, represent around 5–20% of the 

total adult brain cells, depending on the species, and constitute approximately 20% of the 

glial cell population. Interestingly, the density and the morphology of microglia are region-
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specific. This strongly suggests that these differences might be related to a microglial 

functional heterogeneity (Lawson et al., 1990; Polazzi and Monti, 2010). 

Major features of microglia are their highly ramified morphology and plasticity that 

allow them to supervise the extracellular CNS parenchyma and to be quickly activated in 

response to pathological conditions, thus exerting typical macrophagic functions, such as 

phagocytosis, secretion of proinflammatory cytokines  and antigen presentation (Gehrmann et 

al., 1995; Stence et al., 2001; Ladeby et al., 2005;).  

It was presumed for many years that under normal physiological conditions microglial 

cells are quiescent and in a resting state. But in vivo two-photon microscopy studies in living 

mice showed that microglial processes are substantially motile, and survey their local 

surroundings thought formation of random filopodia-like protrusions, extensions and 

withdrawal of bulbus endings. This state of high motility facilitates the microglial processes 

to perceive the status of their microenvironment, to endocytose nutrients and to clear debris 

and apoptotic cellular material (Nimmerjahn et al., 2005; Napoli and Neumann, 2009). They 

are also actively involved in the determination of cell fate (elimination/survival) of 

developing neurons by enforcing the programmed elimination of neural cells or enhance 

neuronal survival through the release of trophic and anti-inflammatory factors. In addition, in 

the mature brain, microglia facilitate brain repair through the guided migration of stem cells 

to the site of inflammation and injury, and might be involved in neurogenesis (Marín-Teva et 

al., 2004; Ekdahl, 2012). Microglia are potentially also promoters of the migration, axonal 

growth, and terminal differentiation of different neuronal subsets, through the release of 

extracellular matrix components, soluble factors and direct cell–cell contact. Moreover, the 

cross–talk with neurons is believed to be an important factor in guarding microglia cells in a 

quiescent state. For example, interaction of the neuronal membrane protein CD200 with the 

myeloid cell receptor CD200R dampens microglial activation. Mice deficient in CD200 show 

morphological and molecular signs of microglia activation in the resting CNS, and the 

microglial response to different forms of experimental brain injury is excessive (Polazzi and 

Contestabile, 2002; Streit, 2002). The interaction between microglia and other glial cells 

namely astrocytes is also complicated due the reciprocal interaction, both in health and 

unhealthy brain, and like microglia cells, astrocytes play diverse functions in the brain, both 

harmful and beneficial. For example, it is known that activated microglia facilitates 

astrocytic activation and activated astrocytes in turn regulate microglial activities and also 

promote microglial activation. Astrocytes play a dual role in CNS inflammatory diseases, not 

only having the ability to enhance immune responses and postpone restoration, but also 

limiting CNS inflammation and being neuroprotective (inhibitory effect on activated 

microglia). Therefore an important question is how these two totally opposite effects coexist 

because the degree of inflammation is crucial (De Keyser et al., 2008; Liu et al., 2011; Rocha 

et al., 2012). Clearly, much more remains to be learned about the intricate functional inter-

relationships that exist between microglia and astrocytes, as well as their meaning for 

neuronal regeneration and degeneration. 
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Apart from these important roles of microglial cells in healthy brain, microglia also 

plays an important role in unhealthy brain since it is exquisitely sensitive to disturbance of 

their microenvironment. Microglia detect the changes in its environment through the 

expression of a great number of cellular surface receptors and nuclear receptors that play a 

critical role in the initiation and/or modulation of its immunitary responses (Hanisch, 2002; 

Block, 2007). 

Virtually, every neurological disorder leads to inflammation, with activation of 

resident microglia, accompanied by an increase in number and change in phenotype of glial 

cells, a phenomenon generally termed ‘‘reactive gliosis’’. Acute neurodegenerative diseases, 

such as stroke, hypoxia, and trauma, compromise neuronal survival and indirectly trigger 

neuroinflammation, as microglia become activated in response to the insult itself, thus 

adopting a phagocytic phenotype and releasing inflammatory mediators, mainly cytokines and 

chemokines. This acute neuroinflammatory response is generally beneficial to the CNS, since 

it tends to minimize further injury and it contributes to repair of damaged tissues. 

In contrast, chronic neurodegenerative diseases, including AD and PD, are known to 

be associated with chronic neuroinflammation, even if several differences have been 

identified among these pathologies. Chronic neuroinflammation is a long-standing and often 

self-perpetuating response that persists long after an initial injury or insult either genetical or 

environmental in nature. It is generally characterized by a long-standing activation of 

microglia and subsequent sustained release of inflammatory mediators leading to increased 

oxidative and nitrosative stress. This, in turn, works to perpetuate the inflammatory cycle, 

activating additional microglia, promoting their proliferation and resulting in a further release 

of inflammatory factors (Fig. 1). Besides playing a protective role as acute neuroinflammation 

does, chronic neuroinflammation is most often considered detrimental and damaging to 

nervous tissue. Thus, whether neuroinflammation has beneficial or harmful outcomes in the 

brain may depend critically on the duration of the inflammatory response and on the kind of 

microglial activation (Frank-Cannon et al., 2009; Polazzi et al., 2010).  

 

 

 

Figure 1: Microglia activation by endogenous and/or exogenous stimuli. (1) In the healthy brain 

microglia support neuronal well-being, and in turn receives cues from neurons and glial cells to remain 

in the resting state. (2) In response to a wide array of noxious stimuli microglia undergo activation. 
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Activation may be beneficial to the host (3) when reactive oxygen spices (ROS) and secreted cytokines 

are kept at low and/or transient levels. In this instance these proinflammatory mediators are 

neuroprotective. However, when they surpass a certain level of host tolerance (4) these mechanisms 

become neurotoxic and result in neuronal dysfunction and cell death, which may further contribute to 

microglial activation (from Vilhardt, 2005). 

  

 

1.1.2 CONTRIBUTION OF NEUROINFLAMMATION TO EXCITOTOXICITY  

 

Neuroinflammation may play a critical role in the modulation of excitotoxicity that 

occurs in several neurodegenerative diseases. Excitotoxicity refers to a process of neuronal 

death caused by excessive or prolonged activation of receptors for the excitatory amino acid 

neurotransmitter glutamic acid (Zimmer et al., 2000). Glutamate-induced death of neurons 

can be mediated by: (a) activation of the N-Methyl-D-aspartate (NMDA) subtype of glutamate 

receptor, resulting in Ca2+ and/or Na+ overload of the neuron; (b) activation of α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) or (c) glutamate inhibition of 

cystine uptake, resulting in oxidative stress/death of the neuron. Calcium elevation may: (a) 

stimulate calcineurin causing Bcl-2-associated death promoter (Bad) and Bcl-2–associated X 

protein (Bax) activation; (b) stimulate mitochondrial oxidant production and mitochondrial 

permeability transition (MPT); and (c) stimulate neuronal Nitric Oxide Synthases (nNOS) 

production of NO and oxidants. Activation of Bax pores and/or MPT may result in release of 

apoptosis inducing factor (AIF) and cytochrome c, and/or cause ATP depletion (Fig. 2) (Brown 

and Bal-Price, 2003; Ankarcrona et al., 1995; Doble, 1999).  

Microglial cells express both ionotropic and metabotropic glutamatergic receptors, 

that when overactivated in pathological conditions induce microglia activation and 

subsequent release of pro-inflammatory cytokines (Noda et al., 2000 and Taylor et al., 2005). 

In addition to glutamate, adenosine triphosphate (ATP) is a co-transmitter also released by 

injuried or dying neurons following brain insults that can modulate microglial activation, via 

interaction with both metabotropic (P2YR) and ianotropic (P2XR) receptors (Davalos et al., 

2005). All these mechanisms lead to neuronal cell death and therefore, we can’t consider a 

single mechanism involved in chronic neurodegenerative disease, but a set of mechanisms 

that may act in synergy, where microglial cells play a central role.  
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Figure 2: Possible mechanisms of glutamate induced neuronal death. Arrows indicate movement of 

reaction/production; thunderbolts indicate activation (from Brown et al., 2003). 

 

 

1.1.3 ROLE OF NO IN NEUROINFLAMMATION 

 

Several mechanisms underlying the activation of the microglia, such as oxidative 

stress and mitochondrial dysfunction may be involved in neuronal cell death (Doble, 1999; 

Andersen, 2004; Witte et al., 2010). The NO released from microglial cells, play an important 

link between microglia activation and these mechanisms that lead to neuronal cell death 

(Duncan and Heales, 2005). NO is an important second messenger, having a crucial role in 

intercellular communication and in intracellular signaling in many tissues (Moncada et al., 

1989; Kerwin et al., 1995), including the brain (Garthwaite et al. 1988). NO can be produced 

by three nitric oxide synthase (NOS) genetically different isoforms: the neuronal NOS (nNOS), 

the endothelial isoform (eNOS) and, the inducible NOS (iNOS). The iNOS is expressed in 

microglia and cells from the immune system, leading to a production of large amounts of NO 

that may be cytotoxic. For example, NO itself can causes rapid, selective, potent but 

reversible inhibition of cytochrome oxidase that leads to mitochondrial respiration inhibition 

and consequently ATP depletion, ATP depletion causing failure of the sodium pump, resulting 

in plasma-membrane depolarization and removal of the Mg2+ block of the NMDA channel with 

glutamate release (Brownand Bal-Price, 2003).  

Certainly the actions of NO in neuroinflammation are complex and varied, thus future 

research to cover the regulatory and signalling effects of NO on cell death are necessary.  
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1.2. ETIOLOGY AND PATHOGENESIS OF PARKINSON’S DISEASE  

 

PD was first described in 1817 by Dr. James Parkinson in his monography entitled “An 

essay on the Shaking Palsy”. The median age of onset is 60 years and the mean duration of 

the disease from diagnosis to death is 15 years, with a mortality ratio of 2 to 1. Evidence 

exists that men are about 1.5 times more likely than women to develop PD (Andrew, et al., 

2009; Trimmer and Bennett, 2009). PD is characterized by cardinal motor features such 

tremor, rigidity, slowed body movements (bradykinesia), unstable posture and difficulty in 

walking (characterized by the patient’s shuffling gait). Although non-motor symptoms are also 

typically observed in patients with PD including neuropsychiatric symptoms, sleep 

disturbances, autonomic impairments, and sensory dysfunctions (Singh et al., 2007; Kim et 

al., 2009). Yet, as there are no specific markers to identify the onset of PD or any of the 

stages of disease progression, the diagnosis is based on clinical signs and symptoms. 

The causes of PD are unknown but considerable evidences suggest a multifactorial 

etiology involving genetic and environmental factors, neuronal injury such as traumatic brain 

injury or stroke, bacterial or viral infections and age-related factors (Collins et al., 2012). 

Pathological hallmarks  comprise  the loss of dopaminergic neurons in the Substantia Nigra 

(SN) that results in the loss of dopaminergic neurotransmission in the striatum and by the 

presence of insoluble protein inclusions termed Lewy bodies and Lewy neurites, located in 

either the neuronal cell body or neuronal processes, respectively (Dunning et al., 2012). 

Therefore, cerebrospinal fluid (CSF) profiles of dopamine and its metabolites are potential 

neurochemical biomarkers and together with the 6-[18F]fluorodopa positron emission 

tomographic (PET) scanning, can help in diagnosis of PD (Goldstein et al., 2008; Vernon, 2008; 

Andrew et al., 2009). 

PD is still an incurable progressive disease, but treatment substantially improves quality 

of life and functional capacity. Dopamine replacement with Levedopa remains the gold 

standard regarding symptomatic efficacy. However, long-term treatment with Levedopa is 

often complicated by the development of various types of motor response oscillations over 

the day. Dopamine agonists as early treatment have been reported to reduce the risk of 

motor fluctuations. Deprenyl, a monoamina oxidase-B (MAO-B) inhibitor was found to be 

effective in parkinsonian patients (Caraceni and Musicco, 2001; Poewe et al., 2010). Deep 

brain stimulation of the subthalamic nucleus (STN-DBS) is an established therapy for advanced 

PD patients with motor complications (Weaver et al., 2009). Furthermore several 

neuroprotective agents have been study in order to delay the progression of disease. 

Antiapoptotic agents, antioxidants, glutamate antagonists, neurotrophic factors and 

nonaspirin nonsteroidal anti-inflammatory drug (NSADs) are some examples (Bornebroek et 

al., 2007; Löhle and Reichmann, 2010). Other promising therapeutics is the intrabody 

technology as a novel tool to modulate the function of intracellular proteins such as alpha-

synuclein (α-syn) or the use of stem cells which enables the replacement of dopaminergic 
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neurons and others systems that degenerate in PD patients (Svendsen, 2008; Zhou and 

Przedborski, 2009). However, there is still much to learn in order to design a fully effective 

therapy to cure PD. 

 

 

1.2.1 ROLE OF MICROGLIAL CELLS IN PARKINSON’S DISEASE 

 

Even if the causes and underlying mechanisms of PD remain uncertain, recent studies 

suggest that neuroinflammation and microglia activation play important roles in PD 

pathogenesis (Tansey and Goldberg, 2010; Collins et al., 2012). Activated microglial cells 

might contribute to dopaminergic cell death by releasing cytotoxic inflammatory compounds 

such as proinflammatory cytokines (TNF-α, IL-1β, and interferon γ (IFN-γ)) (Fig. 3). Among 

these cytokines, TNF-α might have a direct damaging effect on dopaminergic neurons by 

activating an intracellular death pathway coupled with TNF-α receptor 1 (TNFR-1) expressed 

on the cell surface of these neurons (Mogi et al., 2000; Long-Smith et al., 2010). Pathways 

transduced by activation of TNFR-1 are linked to the induced expression of cyclo-oxygenase 2 

(COX2) within dopaminergic neurons. COX-2-positive neurons release prostaglandin E2 (PGE2), 

which promotes the production of microglial-derived mediators, which, in turn, help in killing 

neurons (Teismann et al., 2003; Sánchez-Pernaute et al., 2004 Hewet et al., 2006). These 

cytokines might also stimulate the expression of iNOS within microglial cells (Sheng et al., 

2011). This process might lead to the production of toxic amounts of NO free radicals (Hunot 

et al., 1996). In turn, these free radicals could potentiate the expression and release of TNF-α 

by adjacent microglial cells, thereby amplifying further the inflammatory reaction (McCoy et 

al., 2006; Hirsch and Hunot, 2009).  

Besides these proinflammatory factors, others cytotoxic factors, such glutamate, 

eicosanoids, reactive oxygen species (ROS) and others reactive nitrogen species (RNS) are 

released by activated microglia (Smith et al., 2012).  In addition, several cytokines released 

from microglia can increase the blood–brain-barrier (BBB) permeability and enhanced 

movement of leukocytes into the CNS by increasing expression of cell adhesion molecules 

essential for extravasation (e.g., intracellular adhesion molecule 1 [ICAM-1], vascular cell 

adhesion molecule 1 [VCAM-1]) and trafficking. For example, activated CD4+ T cells might 

express and release several inflammatory factors, such as TNF-α, IFN-γ, and Fas ligand. In 

fact, Fas ligand-derived CD4+ T cells might have a deleterious effect on dopaminergic neurons 

directly (by activating an intracellular death pathway coupled with Fas receptor expressed on 

the cell surface of dopaminergic neurons) or indirectly (by activating Fas receptor expressed 

on activated microglial and reactive astrocytic glial cells), thereby stimulating their 

activation and the release of additional inflammatory factors (Hirsch and Hunot, 2009). 
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Figure 3: Relationship between microglia activation and dopaminergic neuronal damage. Schematic 

representation of the impact of microglial activation on dopaminergic neuronal survival, and the 

consequent effects of substances released from dying dopaminergic neurons on microglial activation 

(from Collins et al., 2012). 

 

 

1.2.2 LIPOPOLYSACCHARIDE-INDUCED PARKINSON’S DISEASE 

ANIMAL MODEL  

 

As stated above, PD is characterized by a selective and gradual loss of dopaminergic 

innervations from the SN to the striatum of the basal ganglia. Findings from epidemiological 

studies and analysis of postmortem PD brains and animal PD models have provided increasing 

evidence to support a role for inflammation and microglia activation in the pathogenesis of 

PD. Due to the role of inflammation in PD, the need for purely inflammation-driven animal 

models has emerged. An animal model widely used is the lipopolysaccharide PD animal model 

(Gao et al., 2002).  

LPS, an endotoxin found in the Gram-negative bacteria cell wall, is a potent inducer 

of inflammation, a powerful activator of microglia cells. LPS associates with the soluble LPS 

binding protein (LBP) and CD14 which is anchored in the outer leaflet of the plasma 

membrane. Signal transduction across the plasma membrane is made possible through the 

interaction of the LPS CD14 complex with the transmembrane Toll-like receptor-4 (TLR-4) and 

the extracellular accessory protein MD-2 (Dutta et al., 2008). Activation of this receptor 

triggers major intracellular signaling pathways such as the mitogen-activated protein kinase 
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(MAPK) pathway. MAPK are serine-theronine kinases that mediate intracellular signaling and 

leads to a variety of cellular responses including cell proliferation, differentiation, survival 

and cell death. There are three main members of the MAPK family, extracellular signal-

regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK, each member exerts 

different biological functions. For instance, activated ERK1/2 pathway is involved in 

proliferation and survival whereas JNK and p38 MAPK are associated with apoptosis (Svensson 

et al., 2011). Downstream the activation of MAPK leads to activation of transcription factors, 

such as, nuclear factor (NF)-kB and activator protein 1 (AP-1). These transcription factors 

may be thus involved in the expression of genes involved in pro-inflammatory processes (Kim 

and Kim, 2005). 

Besides these signaling pathways activated by LPS that leads to inflammation, various 

brain regions are differentially susceptible to LPS-induced degeneration. Neurons in the 

Substantia Nigra (SN) are the most sensitive region to bacterial endotoxin LPS-induced 

neurotoxicity, whereas neurons in hippocampus or cortex remain insensitive to this 

treatment, even with higher concentrations of LPS. In the SN, LPS induce a rapid activation of 

microglia followed by a delayed, progressive and selective destruction of nigral dopaminergic 

neurons (Gao et al., 2002). The region-specific susceptibility to LPS-induced degeneration is 

most likely attributable to the abundance of microglia in that region and consequently a high 

concentration of the inflammation-related factors produced by these cells, such as TNF-α and 

NO (Pintado et al., 2001; Kim et al., 2000). Selective degeneration of nigral dopaminergic 

neurons can be also related with the particular vulnerability of these neurons to oxidative 

stress as they operate under high oxidant conditions due to reduced levels of the anti-oxidant 

glutathione and increased nigral iron content. Moreover dopamine can generates redox 

metabolites including semiquinone, quinone, zwitterionic 5,6-hydroxyindoles, and possibly 

oxygen free radicals that increases the susceptibility of dopaminergic neurons to oxidative 

stress and consequently contributes to LPS-induced degeneration (De Pablos et al., 2005; 

Machado et al., 2011).  
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Figure 4: Simplified schematic representation of the link between LPS-induced microglial activation 

and dopaminergic neurodegeneration. LPS activates microglia cells by binding to its intermediate 

receptor CD14, in concert with TLR4 and the accessory adaptor protein MD2. This complex triggers the 

activation of the MyD88-dependent cascade which initiates NFκB activation, leading to the upregulated 

expression of pro-inflammatory cytokines (TNFα, IL-1β) and increased production of other inflammatory 

mediators (NO and PGE2, synthesized by iNOS and COX-2, respectively). These soluble mediators 

collectively damage nigral dopaminergic neurons. Conversely, MMP-3 and alpha-Synuclein (α-SYN) 

released by stressed neurons may aggravate microglial activation and, ultimately, exacerbate 

dopaminergic degeneration (from Tufekci et al., 2011). 

 

 

1.3 HISTAMINE  

 

Histamine (4-imidazolyl-2-ethylamine) is a biogenic amine present as a normal 

constituent of the body with multiple effects in several organs (Fernández-Novoa and 

Cacabelos, 2001). 

Histamine is mostly stored in the granules of mast cells and basophils. Other sources of 

histamine include T cells, dendritic cells, platelets and gastric enterochromaffin like cells, to 

name a few (Schneider et al., 2002). In the CNS, there are three main types of histamine-

producing cells: neurons (where it acts as a neurotransmitter), mast cells and microglial cells 

(Katoh et al., 2002). Histamine exerts its effects by activating four types of receptors, 

namely: H1R, H2R, H3R, and H4R. All of these histamine receptors belong to the G protein–
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coupled receptor family (Marson, 2011). Depending on the type of receptor, histamine plays 

multiple functions (Table 1). 

 

 

Table 1: Expression, Function, and Signaling of Histamine Receptors and the G Proteins Involved 

(Adapted from: Jadidi-Niaragh and Mirshafiey, 2010; Marson, 2011). 

 

The H4R was the last receptor discovered, and its expression appears to be mostly in 

cells of the immune system, especially in mast cells, lymphocytes, and dendritic cells. This 

receptor is linked to a chemotactic effect on mast cells and eosinophils (Marson, 2011). 

However, the expression of H4R in the brain has remained controversial. Several groups could 

not detect any H4R mRNA in the brain, while a few labs reported their expression by RT-PCR 

in various parts of the CNS, including amygdala, cerebellum, hippocampus, caudate nucleus, 

substantia nigra, thalamus and hypothalamus (Strakhova et al., 2009). Interestingly, a recent 

report demonstrated that all known HRs are expressed in a N9 microglia cell line. Moreover, 

 

Histamine 

receptor 

 

Expression 

 

Function 

 

Intracellular 

signaling  pathway 

 

G protein 

involved 

 

 

 

H1 

 

nerve cells, smooth muscle, 

neutrophils, eosinophils, 

monocytes, dendritic cells, T 

and B cells, etc. 

 

Wakefulness, 

inflammatory 

responses, decreasing 

blood pressure 

 

Ca2+, cGMP, 
phospholipaseD 

phospholipase A, 
NF-κB 

 

 

GRq 

 

 

 

H2 

 

nerve cells, airway and 

vascular smooth muscle, 

hepatocytes, epithelial and 

endothelial cells, neutrophils, 

monocytes, dendritic cells, T 

and B cells 

 

Regulation of gastric 

acid secretion, 

relaxationof airway 

and vascular smooth 

muscle 

 

 

adenylate cyclase, 

cAMP, c-FOS,-Jun, 

PKC 

 

 

GRs 

 

 

 

H3 

 

 

histaminergic neurons, 

eosinophils, dendritic cells, 

monocytes; low expression in 

peripheral tissues 

 

neurotransmitter 

modulation: 

decreases release of 

histamine, 

acetylcholine, 

serotonin, and 

norepinephrine 

 

 

enhanced Ca2+, 

MAPK, inhibition of 

cAMP 

 

 

Gi/o 

 

 

H4 

 

Hematopoietic cells, 

Cerebellum, hippocampus 

 

immunomodulation 

 

Inhibition of PKA, 

activation of PLC, 

MAPK 

 

Gi/o 
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was also demonstrated the expression of H4R in microglia from the cortex. The same authors 

show that histamine per se stimulates microglia motility and most interestingly they saw that 

in a LPS-induced inflammatory context histamine plays an inhibitory action on microglia 

migration and in the release of IL-1β (Ferreira et al., 2012).These findings could provide a 

new approach for the treatment of CNS pathologies or neurodegenerative disorders which are 

commonly accompanied by inflammation. 

 

 

1.3.1 ROLE OF THE HISTAMINERGIC SYSTEM IN PARKINSON’S 

DISEASE  

 

Histaminergic neurons are located exclusively in the tuberomammillary nucleus (TM) 

of the hypothalamus, from where they project to practically all brain regions including SN 

(Lee et al., 2008). The dopaminergic and histaminergic systems interact extensively, but little 

is known about the role of the histaminergic system in diseases affecting the dopaminergic 

neurons (Anichtchik et al., 2000). However, it is known that several functions regulated by 

the histaminergic system including the sleep-wake cycle, sensory and motor adjustment, 

cognition, attention, learning and memory are altered  in PD (Shan et al., 2012). 

In post-morten brain from PD patients, has been reported a dramatic increase of 

histaminergic innervations and histamine concentration in the SN (Anichtchik et al., 2000; 

Rinne et al., 2002). Moreover, a Thr105Ile polymorphism of histamine methyltransferase 

(HMT), the main enzyme breaking down histamine, was observed to be associated with PD, 

suggesting that a changed histamine homeostasis in the CNS is associated with the risk for PD 

(Palada et al., 2012). Besides, histamine is able to produce a specific degeneration of 

dopaminergic neurons in SN along with a highly inflammatory process (Vizuete et al., 2000). 

Based on these studies, it has been proposed that histamine may play a role in the 

pathogenesis of PD. However, it is still unclear the exact role of histamine in the 

degeneration of mesencephalic dopaminergic neurons in the context of PD.   
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Chapter 2 

OBJECTIVES 

 

Recently, Ferreira and collaborators showed that microglial cells from the cortex express the 

H4R and that histamine may trigger dual effects (in the presence or absence of LPS) in 

microglia migration and cytokines release (Ferreira et al., 2012). However, there is no 

information regarding the effects of histamine in microglia derived from the SN, a brain 

region with a high density of these cells and highly susceptible to dopaminergic neuronal loss 

present in Parkinson’s disease.  With this in mind, we proposed to:  

 

 Analyze the expression of histamine H4 receptor in primary microglia cell cultures 

from SN; 

 

 Study the effects of histamine on the production of NO by microglial cells derived 

from SN, in the presence or absence of an inflammatory context mimicked by LPS; 

 

 Spell out which histamine receptors are involved on the production of NO, both in the 

presence or absence of an inflammatory stimulus; 

 

 Evaluate the effects of conditioned medium derived from microglial cells previously 

treated with LPS and/or histamine in cellular viability of dopaminergic neurons; 

 

 Evaluate the effects of histamine and/or LPS per se in cellular viability of 

dopaminergic neurons. 
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Chapter 3 

MATERIALS AND METHODS 

 

 

3.1. IN VITRO CELL CULTURES 

3.1.1. N9 MICROGLIA CELL LINE CULTURE 

Murine N9 microglia cell line (kind gift from Prof. Claudia Verderio, CNR Institute of 

Neuroscience, Cellular and Molecular Pharmacology, Milan, Italy) was grown in RPMI medium 

supplemented with 30 mM glucose (Sigma, St. Louis, MO, USA), 100 U/ml penicillin and 100 

μg/ml streptomycin (GIBCO, Invitrogen, Barcelona, Spain). Cells were kept at 37ºC in a 95% 

atmospheric air and 5% CO2 humidified atmosphere. When cells reached an approximately 70% 

confluence was carried out the passage of the cells with a trypsin solution (Sigma, St. Louis, 

USA).  Number of viable cells was evaluated counting trypan blue-excluding cells which were 

then plated at a density of 2×104 cells per well in 24-well trays. Cell treatments included the 

following incubation setup: histamine dihydrochloride (1-100 μM, Sigma) or LPS (100 ng/ml, 

Sigma) for 24h. 

 

 

3.1.2. PRIMARY MICROGLIA CELL CULTURES FROM SUBSTANTIA NIGRA  

 

All animals were handled in accordance with the national ethical requirements for 

animal research, and with the European Convention for the Protection of Vertebrate Animals 

Used for Experimental and Other Scientific Purposes (2010/63/EU). 

 

Briefly, the ventral midbrain of postnatal day 2 or 3 Wistar rat pups was dissected, 

carefully stripped of the meninges, and put in iced phosphate buffer saline (PBS: NaCl 140 

mM, KCl 2.7 mM, KHPO4 1.5 mM and Na2HPO4 8.1 mM, pH 7.4). The tissue was then digested 

in cysteine solution (1.9 mM CaCl2, 1.3 mM cysteine) and H&B solution (116 mM NaCl, 5.4 mM 

KCl, 26 mM NaHCO3, 12 mM NaH2PO4.H2O, 1 mM MgSO4.7H2O, 0.5 mM EDTA, 25 mM glicose, pH 

7.3) supplemented with 20 U/ml papain and 0.001% phenol red. The average time for 

digestion was 4 min at 37ºC. After the digestion, the tissue was removed to a sterile tube and 

washed 3 times with 5 mL of warmed Dulbecco’s modified Eagle’s medium  (DMEM, Life 
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Technologies) with 10% Fetal Bovine Serum (FBS, Biochrom AG), and 100 U/ml penicillin plus 

100 µg/ml streptomycin (Sigma). The tissue was then mechanically dissociated with a 5 mL 

pipette, followed by further 5-10 sequential passes with techtips. Finally, the tissue was 

pelleted by centrifugation (3K18C Bioblock Scientific; Sigma Laboratory Centrifuges) for 3 

min at 405 g and then resuspended in DMEM. Number of viable cells was evaluated counting 

trypan blue-excluding cells which were then plated at a density of 0.233 x 106 cells per well 

in 48-well trays (NO release) and 0.402 x 106 cells per well in 24-well trays in slides coated 

with poly-D-lysine (Sigma-Aldrich, St. Louis, USA) (immunocytochemistry). The cultures were 

kept at 37oC under a 5% CO2 and 95% air atmosphere. The medium was changed every 7 days. 

After 20-21 days in vitro, the microglia were obtained by trypsinization of astrocytes with a 

trypsin solution (Sigma) diluted 1:3 in DMEM (without FBS, penicillin and streptomycin) for 40 

min. Microglia were kept in DMEM with 10% FBS, and 100 U/ml penicillin plus 100 µg/ml 

streptomycin at 37 ºC in a 5% CO2, 95% air atmosphere for further 5 days.  

 

 

3.1.3 NEURON-ASTROCYTE MIDBRAIN CO-CULTURES  

The embryos of Wistar pregnant females with 15 or 16 days of gestation were 

removed and the ventral midbrain was dissected, carefully stripped of the meninges, and put 

in phosphate buffer saline (PBS: NaCl 140 mM, KCl 2.7 mM, KH2PO4 1.5 mM and Na2HPO4 8.1 

mM, pH 7.4). The tissue was then dissociated by enzymatic digestion (Tripsin 4.5 mg/ml and 

DNAse 2.5 mg/ml diluted in PBS) and incubated at 37º C for 5 min. The cells were pelleted by 

centrifugation (3K18C Bioblock Scientific; Sigma Laboratory Centrifuges) for 1 minute at 88 g. 

A solution containing PBS with 10% Fetal Bovine Serum (FBS) heat-inactivated (Biochrom, 

Holliston, USA) was used to stop the enzymatic digestion and the pellet was then 

centrifugated for 1 min at 88 g. After discarding the supernatant, cells were rinsed with the 

PBS solution and then mechanically dissociated with a 5 mL pipette, followed by further 5-10 

sequential passes with techtips. Cell suspension was then collected by centrifugation for 3 

minutes at 405 g and then resuspended in Neurobasal Medium (Gibco, Paisley, Scotland, UK) 

supplemented with B27 2%, glutamate 25 M/mL, glutamine 0.5 mM/mL and gentamicine 120 

g/mL. Viable cells were counted by the trypan blue exclusion method and were plated at a 

density of 0.8x106 cells per well in 24-well trays in slides coated with poly-D-lysine (Sigma-

Aldrich, St. Louis, USA). The cultures were kept at 37º C in a 5% CO2 and 95% air atmosphere 

during 5-6 days. After cells reach confluence, a 5- fluorodeoxyuridine solution (FDU: uridine 

16.5 µg/mL and 5-Fluoro-5′-deoxyuridine 6.7 µg/mL) (Sigma-Aldrich, St. Louis, USA) was 

added to inhibit further cell culture growth. 
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3.2. CELL TREATMENTS 

Cell treatments include the following incubation setup: histamine dihydrochloride 

(100 μM, Sigma) and/or LPS (100 ng/ml, Sigma) for 24h (cell death assays); histamine 

dihydrochloride (1-100 μM, Sigma), LPS (100 ng/ml, Sigma), H1 receptor antagonist, 2-((2-

(dimethylamino)ethyl)(p-methoxybenzyl)amino)-pyridine maleate (mepyramine maleate, 1 

μM), H2 receptor antagonist, N-cyano-N’-methyl-N’’-[2-[(5-methyl-1Himidazol- 4-

yl)methyl]thio]ethyl]guanidine (cimetidine, 5 μM), H3 receptor antagonist 3-amino-N-[2-(1H-

imidazol-4-yl)ethyl]propanamide ditrifluoroacetate (carcinine ditrifluoroacetate, 5 μM), H4 

receptor antagonist, 1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine (JNJ7777120, 1 

μM) and H4 receptor agonist, 5-(2-aminoethyl)-4-8methylimidazole dihydrochloride (4-

methylhistamine dihydrochloride, 20 μM), (all from Tocris, MO, USA) for 24h (NO release). All 

histamine receptor antagonists were added 40 min prior to cell treatments. 

 

To assess the effects of soluble mediators released by microglia on dopaminergic 

neuronal viability, primary microglia cell cultures were exposed for 24h with HIS 100 µM 

and/or LPS 100 ng/ml and the resulting  conditioned medium (MCM) was collected and stored 

at -80 ºC. The MCM was then added to neuron-astrocyte midbrain co-cultures for further 24h 

and the viability of TH-neurons was evaluated. In another set of experiments, HIS 100 µM 

and/or LPS 100 ng/ml were added directly to neuron-astrocyte midbrain co-cultures for 24h 

and the viability of dopaminergic neurons was then evaluated. 

 

 

3.3. EVALUATION OF CELL DEATH ASSAYS  

 3.3.1. PROPIDIUM IODIDE UPTAKE  

 

The propidium iodide (PI; 3,8-diamino-5-(3-(diethylmethylamino)propyl)-6-phenyl 

phenanthridinium diiodide) is a stable fluorescent dye absorbing blue-green light (493 nm) 

and emitting red fluorescence (630 nm). As a polar substance it only enters dead or dying 

cells with a damaged or leaky cell membrane, interacting with DNA to yield a bright red 

fluorescence. PI is non-toxic to cells and has been used as an indicator for cellular membrane 

integrity and cell damage. After cell exposure to histamine and/or LPS for 24h, 3 µg/ml of PI 

was added for further 40 min at 37º C in a 5% CO2 and 95% air atmosphere. Then, the cells 

were fixed for 30 min in PFA 4% at room temperature (RT). For nuclear labeling, cell 

preparations were counterstained with Hoechst (2 μg/ml) (Molecular Probes) in PBS, for 5 min 

at RT and mounted with a fluorescent mounting medium (DAKO, Glostrup, Denmark). The 

cellular uptake of PI was recorder by fluorescence microscopy (Zeiss Axio imaging Microscope 

(Axiobserver Z1, Zeiss) using a 63x lens). 
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3.3.2. TUNEL LABELING 

 

Cell apoptosis in microglial cells was evaluated by the terminal deoxynucleotidyl 

transferase (TdT)-mediated dUTP nick-end labeling (TUNEL). This method in based on the 

specific binding of TdT, which attaches nucleotides (dUTP), to 3’-OH ends of the DNA 

generated during apoptotic-induced DNA fragmentation. Incorporation of biotinylated dUTPs 

allows the detection of cell apoptosis by immunocytochemistry procedures. At the end of 

each Histamine and/or LPS incubation (24h), microglia cells were fixed for 30 min in PFA 4% 

at RT and rinsed in PBS. Then, cells were incubated in a humidified atmosphere with a TUNEL 

reaction mix (Roche kit, REF: 11684795910) for 60 min at 37ºC. For nuclear labeling, cell 

preparations were counterstained with Hoechst (2 μg/ml) (Molecular Probes) in PBS, for 5 min 

at RT and mounted with a fluorescent mounting medium (DAKO, Glostrup, Denmark). TUNEL 

labeling were assessed using fluorescence microscopy (Zeiss Axio imaging Microscope 

(Axiobserver Z1, Zeiss) using a 63x lens). 

 

  

3.4. MEASUREMENT OF NITRIC OXIDE (NO) RELEASE 

 

Nitric oxide concentration was determined by measuring the total amount of nitrite 

(NaNO2, including nitrate that is converted to nitrite by the Griess reagent), one end product 

of NO oxidation that is released to the culture medium. This assay relies on a diazotization 

reaction that was originally described by Griess in 1879, and is based on the chemical 

reaction which uses sulfanilamide and NED (N-1-napthylethylenediamine dihydrochloride) 

under acidic conditions. The amount of NO formed was determined from the accumulation of 

the stable NO metabolite (nitrite) in the supernatant after 24h of stimulation. Supernatants 

(50 μl) were collected, transferred to a 96-well plate, and mixed with an equal volume of the 

Griess reagent (sulfanilamide plus NED). The mixture was incubated in the dark for 10 min at 

RT, and the absorbance was read at 540 nm. To ensure accuracy of the nitrite quantification, 

a reference curve was prepared using as a matrix DMEM. The concentration of nitrite in the 

samples was determined from a sodium nitrite (NaNO2) standard curve. 

 
 
 

3.5. IMMUNOCYTOCHEMISTRY 

  

Cells were fixed in 4% PFA for 20 min at RT. After washing with PBS, unspecific binding 

was prevented by incubating cells in a PBS solution with 3% Bovine Serum Albumin  (BSA) and 

0.5% Triton X-100 for 30 min, at RT. The cells were then incubated overnight at 4°C with the 

primary antibodies diluted in a PBS solution with 0.3% BSA and 0.1% Triton X-100, then 

washed with PBS the following day, and incubated for 1h at RT with the corresponding 
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secondary antibodies diluted in PBS. Antibodies were used as listed on Table 1. For nuclear 

labeling, cell preparation were stained with Hoechst (2 μg/ml) (Molecular Probes) for 5 min at 

RT and mounted with a fluorescent mounting medium (DAKO, Glostrup, Denmark). 

Fluorescent images were acquired using a fluorescence microscopy (Zeiss Axio imaging 

Microscope (Axiobserver Z1, Zeiss) using a 63x lens). 

 

 

Table 2. Primary and secondary antibodies used for immunocytochemistry. 
 

Primary 

antibody 

 

Target 

 

Dilution 

 

Company 

Secondary 

antibody 

 

Dilution 

 

Company 

Mouse anti 

CD11b 

 

Microglia 

 

1:600 

 

Chemicon 

Goat anti 

mouse 488 

 

1:200 

 

Invitrogene 

Mouse anti 

TH 

Dopaminergic 

neurons 

 

1:1000 

 

Abcam 

Goat anti 

mouse 488 

 

1:1000 

 

Invitrogene 

Rabbit anti 

MAP2 

 

Neurons 

 

1:200 

 

Chemicon 

Goat anti 

rabbit 594 

 

1:1000 

 

Invitrogene 

Goat anti 

H4R 

Histamine H4 

receptor 

 

1:100 

Santa Cruz 

Biotechonology 

Rat anti 

Goat 488 

 

1:200 

 

Molecular 

probes 

Legend: CD11b, cluster of differentiation molecule 11B; TH, tyrosin hydroxylase; MAP2, Microtubule-associated 

protein 2; H4R, histamine H4 receptor.  

 

 

3.6 DATA ANALYSIS  

Data are expressed as percentages of values obtained in control conditions or as 

percentages of the total number of cells, and are presented as mean ± S.E.M. of at least 

three independent experiments, performed in triplicate. Statistical analysis was performed 

using one-way ANOVA followed by the Dunnett’s test. Values of P<0.05 were considered 

significant. All statistical procedures were performed using GraphPad Prism 5 Demo 

(GraphPad Sotware Inc., San Diego, CA).  
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Chapter 4 

RESULTS 

 

4.1 Characterization of primary microglia cell cultures 

derived from the SN.  

The cell culture methodology for purification of microglia from the SN was an indirect 

method starting from a mixed primary co-culture of astrocytes and microglial cells which 

grow for 21 days. The microglia cells were then purified by the removal of astrocytes using a 

mild trypsinization protocol (see section 3.1.2). To assess the purity of these primary 

microglia cell cultures, we performed an immunocytochemical staining for the alpha chain of 

αMβ2-integrin, CD11b, a well known surface marker for microglia, whose over-expression is 

associated to microglial activation (Fig. 5). We found that about 95% of cells were CD11b 

positive microglial cells (n=3 independent cell cultures). However some residual astrocytic 

cells could be also found on our culture, especially at the border of the glass slides (Fig. 5B).                     

                               

                     

 

Figure 5: Immunocytochemical stainings of a primary microglia cell culture derived from SN of the 

Wistar neonatal rats. Representative photomicrographs taken at the center of slide (A) and in periphery 

(B). The microglia cells were stained with an anti-CD11b antibody (green) and for nuclear labeling, cell 

preparations were counterstained with Hoechst 3342 (blue). White arrows depict some cells that do not 

stain for CD11b.  

 

 

A) B) 

Hoescht 
CD11b 

10 µm 
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4.2 Expression of histamine H4 receptor in microglial cells 

derived from SN.  

  

Recently, it was reported by Ferreira and collaborators (Ferreira et al. 2012) that 

both the N9 microglia cell line as well as primary microglia cells isolated from the cortex of 

rats express the H4R. In this project, we analyzed the expression of this receptor in primary 

microglia cell cultures derived from SN, a region with a density of microglia 4-5 times higher 

than in other brain regions. The results show that SN-derived microglial cells indeed express 

H4R, as detected by immunocytochemistry (Fig. 6A) and western blot (Fig. 6B). Furthermore, 

to determine whether differences regarding the pattern of receptor expression existed in an 

inflammatory context, we stimulated the microglial cells with LPS (100 ng/ml) for 24h and 

then immunocytochemistry against H4R was also performed. As shown in Fig.6A, no 

differences in H4R protein expression were found between the control and the LPS-treated 

cells. Negative controls were performed to confirm the specificity of the primary antibody 

used for the detection of H4 receptors. 

 

   A) 

 

 

 

 

 

 

    B) 

                                                                                                                                                                                 

Figure 6: Microglia cells from SN express the histamine H4 receptor. A) Immunocytochemical analysis 

of histamine H4 receptor expression on untreated microglial cells (CTR) and treated with 100 ng/mL LPS 

for 24h. Photomicrographs depict staining for nuclei (Hoechst, blue), microglial cells (CD11b, green) and 

histamine H4 receptor (H4R, red). B) Histamine receptor expression analysis by western blot showed 

that microglial cells express the histamine H4 receptor (H4R: 44 KDa; Tubulin: 55 KDa). 
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4.3 Effect of histamine on the production of NO.  

A feature of brain inflammation is the release of inflammatory mediators, such as NO, 

by activated microglial cells (Stence et al., 2001; Gibbons and Dragunow, 2006). It is known 

that histamine can induce microglia mobility and IL-1β release (Ferreira et al., 2012) but their 

effect on NO production is unknown. To study this effect, we measured the amount of nitrite 

(a stable metabolite of NO) released by an N9 microglia cell line culture after 24h of 

treatment with different histamine concentrations (1 µM; 10 µM and 100 µM). The results 

showed that histamine stimulation significantly increased the NO release, and this increase is 

directly proportional with the histamine concentration (meanHIS1µM = 144.3±6.3; meanHIS1OµM = 

150.6±8.3; meanHIS100µM = 174.3±12.4, n=7-11) (Fig 7A). As we expected, LPS stimulation (100 

ng/ml; positive control) leads to an increase of NO production (meanLPS100ng/ml= 218.6±19.1, 

n=11) (Fig 7A). The same experimental conditions were also applied to a primary microglia 

cell culture from SN, since it mimics the physiological condition better than a N9 microglia 

cell line. Similarly to the in vitro cell line model, both the LPS and the histamine treated cells 

showed higher levels of NO release as compared to the control condition (meanHIS1µM = 

143.7±9.8; meanHIS1OµM = 125.0±9.4; meanHIS100µM = 149.0±5.6; meanLPS100ng/ml = 161.3±6.7, n=4-

9) (Fig 7B). Based on these results, we then decided to use primary microglia cell cultures to 

disclose the receptor involved in histamine-induced NO release. 
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Figure 7: Histamine-induced NO release from microglia cells. Histamine at 1 µM, 10 µM and 100 µM 

triggered an increase of NO release in (A) N9 microglia cell line culture and (B) primary microglia cell 

culture derived from the SN of neonatal rats. LPS (100 ng/ml) was used as a positive control and also 

increased significantly the production of NO in both cell cultures. Data are expressed as mean ± SEM. 

Statistical analysis was performed using one-way ANOVA with Dunnett’s correction (*P<0.05; ***P<0.001 

as compared with control). The control was set to 100%. 

 

 

4.4 H4R activation mediates the production of NO triggered by 

histamine 

 

To uncover which histamine receptor was involved in the modulation of NO production 

by microglial cells, we then pretreated primary microglia cells culture for 40 min with all 

histamine receptors antagonists individually (Ant H1R, 1 µM; Ant H2R, 2.5 µM; Ant H3R, 5 µM; 

Ant H4R, 1µM) followed by an co-incubation for 24 h with histamine (100 µM). As shown in Fig. 

8, histamine induces NO production via H4R activation, since in the presence of a H4R 

antagonist (JNJ7777120, 5 μM), the stimulatory effect on NO production is reversed to values 

near to control, and the same is not observed for all others antagonists (meanHIS100µM = 

149.0±5.6; meanHIS+H1RAnt = 149.7±11.2; meanHIS+H2RAnt = 140.0±10.4; meanHIS+H3RAnt = 139.0±16.5; 
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meanHIS+H4RAnt = 96.4±13.9, n=4) (Fig. 8). Furthermore, when microglial cells were treated with 

a H4R agonist (4-methylhistamine dihydrochloride, 20 µM) for 24h, the NO production was 

similar to the levels induced by histamine per se (meanHIS100µM = 149.0±5.6; meanH4RAg = 

134.7±5.0)(Fig. 8). These data suggest that histamine per se induced NO release by microglia 

via H4R activation. 
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Figure 8: Histamine induces NO release by microglia cells via H4 receptor activation. NO production 

by microglia cells derived from the SN was increased when cells were treated with 100 ng/mL LPS, 100 

µM histamine or 20 µM of an H4R agonist (4-methylhistamine dihydrochloride). Furthermore, histamine 

induced NO production is abolished in the presence of an H4R antagonist (JNJ7777120; 5 μM). Data are 

expressed as mean ± SEM. Statistical analysis was performed using one-way ANOVA with Dunnett’s 

correction (**P<0.01; ***P<0.001 as compared with control and $$P<0.01 as compared with histamine). 

The control was set to 100%. 

 

 

4.5 Effect of Histamine on NO production in an inflammatory 

context induced by LPS 

 

Since histamine per se can induce NO release by microglial cells (Fig. 7), next we 

evaluated the role of histamine in an inflammatory context induced by LPS. For this, we 

treated N9 microglia cell line cultures with histamine (100 µM), concentration at which there 

was a higher increase of NO production (Fig. 7) together with LPS (100 ng/ml) for 24h.  

Surprisingly, upon LPS and histamine co-administration, NO release induced by LPS alone was 

significantly inhibited to levels similar to control cultures (meanLPS100ng/ml = 218.6±19.1; 
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meanHIS+LPS = 129.8±11.6, n=7-11) (Fig. 9A). We later explored the role of histamine upon an 

inflammatory challenge triggered by LPS (100 ng/mL) in a more complex biological model by 

using a primary microglia cell culture derived from the SN of neonatal rats. Similarly to the in 

vitro cell line model, we observed that the co-administration of LPS and histamine prevented 

NO release triggered by LPS per se (meanLPS100ng/ml = 161.3±6.7; meanHIS+LPS = 105.7±9.9, n=7-8) 

(Fig. 9B).  
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Figure 9: LPS-induced NO release is inhibited by Histamine. LPS and histamine individually increased 

NO release while co-administration abolished this effect, both in a (A) N9 microglia cell line culture and 

in (B) primary microglia cell cultures derived from the SN. Data are expressed as mean ± SEM. Statistical 

analysis was performed using one-way ANOVA with Dunnett’s correction (***P<0.001 as compared with 

control; ++P<0.01 and +++P<0.001 as compared with LPS). 
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4.6 Effect of Histamine on cellular viability 

 

Above, we showed that histamine reduces NO production in an LPS-induced 

inflammatory context (Fig. 9). Nevertheless, in order to confirm that this decrease in NO 

production is not due to cell death, we then evaluated whether histamine and/or LPS could 

modulate microglia viability. To address this issue, primary microglia cells were exposed to 

histamine (100 µM) and/or LPS (100 ng/ml), for 24h, and cell necrosis or apoptosis were 

evaluated by propidium iodide uptake and the terminal deoxynucleotidyl transterase-

mediated dUTP nick end labeling (TUNEL) assay, respectively. No significant effects on cell 

death by necrosis or apoptosis were observed after cell exposure to histamine alone or in co-

administration with LPS (Fig. 10). Based on these results, we may suggest that 100 µM 

histamine in presence or absence of LPS is not toxic to microglia cells, and the reduction of 

the NO production shown in Fig. 9 is due in fact to a dual role of histamine in NO production. 
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Figure 10: Microglia cell viability after histamine and/or LPS exposure. Percentage of PI-positive and 

TUNEL-positive cells in control cultures and in cultures exposed to 100µM histamine and/or 100 ng/mL 

LPS for 24h. Data are expressed as mean ± SEM of three independent experiments performed in 

duplicate.  
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4.7 Histamine H4 and H1 receptors activation modulates LPS-

induced NO production  

 

As show in Fig. 9B, co-administration of histamine together with LPS inhibits 

significantly the NO production induced by LPS per se. In order to investigate which histamine 

receptor is involved in this inhibitory effect, primary microglial cells were pre-treated with 

all histamine receptors antagonists individually (Ant H1R, 1 µM; Ant H2R, 2.5 µM; Ant H3R, 5 

µM; Ant H4R, 1 µM) for 40 min, followed by a co-incubation for further for 24h with 100 ng/ml 

LPS  and/or 100 µM histamine. As shown in the Fig. 11, both the histamine H1R receptor as 

well as the H4R receptor are involved in the inhibitory  effect driven histamine on NO 

production induced by  LPS alone. In fact, in the presence of the antagonists of these two 

receptors, the inhibitory effect of histamine upon LPS was prevented (meanHIS+LPS = 105.7±9.9; 

meanHIS+LPS+H1RAnt = 163.3±5.3; meanHIS+LPS+H4RAnt = 147.4 7±7.5, n=4-7) (Fig. 11). Moreover, to 

confirm that histamine H4R receptor is involved in this modulatory effect, we treated 

microglial cells with LPS together a histamine H4R receptor agonist. As show in Fig. 11 this 

receptor is in fact involved in this effect, since this agonist in presence of LPS can also inhibit 

the effect induced by LPS (meanLPS100ng/ml = 161.3±6.7; meanLPS+H4RAg = 105,7±10.8, n=4). Future 

experiments using the H1R agonist will be also performed. 
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Figure 11: LPS-induced NO release is inhibited by histamine, via H1 and H4 receptors activation. 

LPS and histamine individually increased NO release while co-administration abolished this effect. 

Likewise, in the presence of an H4R agonist, LPS-induced NO release was also decrease. Application of 

the H1R and H4R antagonists restored LPS-induced NO release in the presence of histamine while H2R 

and H3R antagonists have no effect. Data are expressed as mean ± SEM. Statistical analysis was 
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performed using one-way ANOVA with Dunnett’s correction (*P<0.05; **P<0.01; ***P<0.001 as compared 

with control; +++P<0.001 as compared with LPS and $$$P<0.001 as compared with histamine). 

 

 

4.8 Effect of conditioned medium derived from microglial cells 

treated with LPS and/or Histamine in the viability of 

dopaminergic neurons 

 

To evaluate the effects of the soluble factors released by microglia upon histamine 

and/or LPS stimulation on viability of dopaminergic neurons, we then treated primary 

microglia cells with histamine 100 µM and/or LPS 100 ng/ml for 24h, the conditioned media 

was retrieved and used to treat neuron-astrocyte midbrain co-cultures. In the control 

condition we used the conditioned medium derived from untreated microglia cells. 

Dopaminergic neuronal viability on neuron-astrocyte midbrain co-cultures was assessed by 

counting TH-positive cells as a percentage of total cells (Fig. 12A).  As shown in figure 12B, 

the media derived from histamine or LPS-treated microglia induced a reduction concerning 

30% in the number of TH positive cells (meanHIS = 69.2±4.3; meanLPS = 68.5±1.5, n=4) . 

However, MCM derived from histamine and LPS treated cultures restored dopaminergic 

neuronal survival to levels similar to control (meanHIS+LPS = 100.1± 2.1, n=4). Finally, since the 

MCM was applied to neuron-astrocyte midbrain co-cultures in a proportion of 1:1 (MCM: 

Neurobasal Medium), we then evaluated whether the Dulbecco’s modified Eagle’s medium 

(DMEM) per se could also modulated dopaminergic neuronal survival. Therefore, neuron-

astrocyte midbrain co-cultures were treated with DMEM plus Neurobasal Medium (NBM), but 

no differences were seen in the percentage TH-positive neurons as compared with the control 

(meanDMEM+NBM = 97.2±2.5, n=4) (Fig. 12B). 
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Figure 12: Microglia protects dopaminergic neurons from LPS injury when co-stimulated with 

histamine. The conditioned medium derived from microglial cells treated with 100 ng/mL LPS or 100 µM 

histamine, individually, decreased TH-positive neurons while co-administration abolished this effect. 

Results are expressed as the mean value of TH positive cells in relation to all nuclei stained with 

Hoescht ± SEM. Statistical analysis was performed using one-way ANOVA with Dunnett’s correction 

(***P<0.001 as compared with control and #P<0.05 as compared with DMEM plus NBM).  
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4.9 Effect of histamine and/or LPS per se on cellular viability of 

dopaminergic neurons 

 

Since cellular viability of dopaminergic neurons was affected when incubated with 

MCM derived from microglia treated with histamine (100 µM) or LPS (100 ng/mL), but not 

when treated with these stimuli together, we decided to study the effects of histamine 

and/or LPS per se on cellular viability of dopaminergic neurons.  For this, neuron-astrocyte 

midbrain co-cultures were treated with 100 µM histamine and/or 100 ng/ml LPS for 24h. 

Accordingly, a slight reduction of the percentage of TH-positive neurons was observed when 

neuron-astrocyte midbrain co-cultures were treated with histamine or LPS individually, while 

when co-treated with histamine and LPS no differences were seen (meanHIS = 69.2±2.6; 

meanLPS = 77.3±13.1; meanHIS+LPS = 101.0±13.5, n=3) (Figure 13). However, these differences 

were not statistically significant using one-way ANOVA test with Dunnett’s correction. 

Additional experiments will be performed in order to disclose whether histamine or LPS may 

have a detrimental effect of dopaminergic neuronal survival. 
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Figure 13: Effects of Histamine and/or LPS per se on dopaminergic neuronal survival. LPS and 

histamine individually decreased the percentage of TH-positive neurons while co-administration 

abolished this effect. Results are expressed as the mean value of TH-positive cells in relation to all 

nucleus stained with Hoechst ± SEM (n=3). These results were not statistically significant. 
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Chapter 5 

DISCUSSION 

 

Accumulating evidences indicate that inflammatory responses, involving the 

activation of microglia and astrocytes, can be a risk factor for the onset and progression of 

neurodegenerative diseases (Christopher et al., 2010; Rappold and Tieu, 2010). A major 

unsolved question is whether the inhibition of these responses will be a safe and effective 

means of reversing or slowing the course of disease. In accordance, several studies showed 

that a variety of compounds such as resveratrol, catechol compounds and aspirin to name a 

few, present a therapeutic potential for the treatment of neurodegenerative diseases, such 

as Parkinson’s disease (Elisabetta et al., 2001; Long et al., 2008; Wang et al., 2012). 

In response to an injury or infection, microglia cells, the immune resident cells in the 

brain, became activated and release a cocktail of inflammatory molecules, migrate to the 

injury site and became phagocytic. Histamine, an amine released by microglia recently gained 

attention due to its role in the modulation of microglia migration and cytokines release. In 

fact, Ferreira and collaborators showed that histamine can trigger microglia motility per se, 

whereas, in a presence of an inflammatory stimulus mimicked by LPS, histamine H4 receptor 

agonists were able to counteract LPS mediated inflammatory actions, namely migration and 

IL-1β release (Ferreira et al., 2012). Based on this data, wherein we investigated the 

modulatory effects of histamine and its receptors on NO release by microglia cells. First, we 

showed for the first time the expression of the histamine H4 receptor on microglia derived 

from SN, a region with an density of microglia 4-5 times higher than in other regions and with 

a particularly high number of activated microglia in the brain of post-mortem PD patients 

(Lawson et al., 1999; Long-Smith et al., 2009). Moreover, we found that the expression of this 

receptor was not altered when microglial cells were stimulated with LPS. These results are in 

accordance with the ones reported by Ferreira et al., 2012, in which they showed that the 

H4R is expressed in both N9 microglia cell lines and in primary microglial cultures derived 

from cortex and its expression does not change upon LPS stimulation. 

Then, to evaluate the effects of histamine on the release of NO, a molecule highly 

involved in several neuroinflammatory processes, we adopted two experimental models, with 

different degrees of complexity: N9 microglia cell line culture and primary microglia cell 

culture derived from the SN. We first observed that histamine per se stimulated NO 

production in both these two experimental models. This effect was mediated through H4R 

activation. This suggests that histamine alone acts similarly to LPS with pro-inflammatory 

properties, and like LPS, histamine could be one of NO-regulating factors, by inducing iNOS 

expression. In fact, Tanimoto and colleagues found that histamine upregulated the iNOS 
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expression through activation of H1R in intimal smooth muscle cells (Tanimoto et al., 2007). 

Furthermore, dithiaden (an antagonist of H1R) can inhibit NO production by a murine 

macrophage cell line RAW 264.7, an effect caused by a decrease in iNOS expression (Králová 

et al., 2008). In our work, we showed that histamine leads to NO release by microglial cells, 

an effect mediated through H4R activation, which is mimicked by a H4R agonist (4-

methylhistamine dihydrochloride). The mechanism that leads to NO production is unknown, 

but the involvement of iNOS enzyme is a possibility. The evaluation of iNOS protein 

expression and iNOS mRNA levels can be helpful to uncover its involvement. 

Curiously, given an inflammatory context mimicked by LPS, histamine inhibited NO 

production. Furthermore, by using all four antagonists of histamine receptors, we showed 

that this anti-inflammatory effect occured not only by H4R, but also, possibly through H1R 

activation. Moreover, when microglial cells were incubated with histamine H4R agonist plus 

LPS, the NO production induced by LPS was also inhibited. This is in agreement with the 

results obtained when microglia were incubated with histamine and LPS, which suggests the 

involvement of H4R in this dual effect triggered by histamine on NO production. Regarding the 

involvement of H1R, future experiments are needed and the use of an agonist of this receptor 

can be helpful for decipher if the H1R is in fact involved in this anti-inflammatory effect. 

Again, these results are in agreement with the ones reported by Ferreira and collaborators, in 

which they showed that in the presence of an inflammatory agent (LPS), histamine inhibited 

IL-1β production and microglia migration however, histamine alone induces microglia 

migration but not IL-1β production (Ferreira et al., 2012). There are also some studies 

showing the anti-inflammatory properties of H4R. Two H4R agonists (6,7-dichloro-3-(4-

methylpiperazin-1-yl)quinoxalin-2(1H)-one and 2-benzyl-3-(4-methyl-piperazin-1-

yl)quinoxaline) shown in vivo to have an anti-inflammatory effect in a carrageenan-induced 

paw edema model (Hague and Jones, 2008). However, the molecular mechanisms involved on 

the modulatory effect of histamine on NO production are unknown. Nevertheless, is known 

that activation of ERK, JNK and p38 MAPK leads to activation of transcription factors, such as, 

nuclear factor (NF)-kB and activator protein 1 (AP-1), that are involved in expression of iNOS 

gene, which is followed by the sustained production of NO by active microglia (Kim and Kim, 

2005). Since LPS-induced NO production by microglia involves these intracellular signalling 

pathways, we hypothesize that the activation of H4R and/or H1R can modulate these 

pathways. The use of selective inhibitors of these pathways as well as the evaluation of their 

expression and activation may be helpful to disclose the downstream signalling pathways 

involved in NO-mediated histamine effects. 

Even though microglia have often been indicated as dangerous effector cells on 

neuronal survival, this perspective was opposed by beneficial microglial features such as 

neuroprotection mediated by a plethora of neurotrophic  factors (NTF) such nerve growth 

factor (NGF), brain-derived neurotrophic factor (BDNF) and glial cell line-derived 

neurotrophic factor (GDNF) (Harada et al., 2002; Mizuno et al., 2004). Furthermore, 

glutamate receptors and transporters in microglia are involved in induction of NTF expression, 
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which suggest that microglia play a neuroprotective role during the excitotoxic state in 

neurodegenerative diseases (Schwab and Schluesener, 2004). In fact, when dopaminergic 

neurons are exposed to MCM, this can promote their survival and development, an effect that 

may be due to a NTF released from microglia (Engele et al., 1991; Nagata et al., 1993; Engele 

et al., 1996). 

In this work, using neuron-astrocyte midbrain co-cultures, we showed that the 

exposure with conditioned media derived from microglia previously challenged with histamine 

and/or LPS had different effects on dopaminergic neuronal viability. A decrease in the 

percentage of tyrosine hydroxylase-immunoreactive (TH-IR) neurons was observed when 

neuron-astrocyte midbrain co-cultures were exposed to MCM derived from microglia 

challenged with histamine. On the other hand, a similar percentage of TH-IR neurons was 

found between neuron-astrocyte midbrain co-culture exposed with MCM derived from control 

microglia cultures (untreated) or cultures exposed with histamine plus LPS. These results 

suggest that histamine per se may trigger the release of several pro-inflammatory molecules 

by microglia cells, including NO, that may lead to dopaminergic neuronal death. However, 

conditioned media derived from microglia previously co-treated with histamine and LPS had 

no effect on dopaminergic neuron survival. Regarding these results, raises a question if this 

neuroprotective effect of histamine on the inflammatory context mediated by LPS, is due 

through release of anti-inflammatory factors by microglia or by inhibiting the intracellular 

mechanism activated by LPS, for instance the release of NO and IL-1β (Ferreira et al., 2012). 

Future experiments will be done to answer this question.     

Concerning the effect of histamine and/or LPS per se on cellular viability of 

dopaminergic neurons in neuron-astrocyte midbrain co-cultures, we found that LPS had a 

slight but not significant toxicity effect. This effect was likely mediated through the 

activation of astrocytes. In fact, both astrocytes and microglial cells have been shown to 

respond to LPS in the induction of iNOS as well as other inflammatory factors such as IL-1β 

and TNF-α (Wilms et al., 2010; Sheng et al., 2011; Harms et al., 2011). These cytokines, as 

well as, up-regulation of iNOS, may be involved in the LPS-induced degeneration of 

dopaminergic neurons (Li et al., 2006; Long-Smith et al., 2010). Like LPS, stimulation of 

neuron-astrocyte midbrain co-cultures with histamine had a slight but not significant toxicity 

effect on viability of dopaminergic neurons. In accordance, Vizuete and colleagues (2000) 

showed that histamine infusion in SN induces a selective dopaminergic neuronal death, with 

an increase of astrocyte and microglia activity. Once our neuron-astrocyte midbrain co-

cultures have no microglial cells, this effect can be due to the presence of astrocytes that 

response to histamine with increases in intracellular free Ca2+ concentration that can trigger 

glutamate release which possibly leads to excitotoxicity (Shelton and McCarthy 2000; 

Nakamura et al., 2003). Moreover, histamine can enhance glutamate receptor activation, 

suggesting that histamine may contribute significantly to NMDA-mediated excitotoxic 

neuronal death (Langlais et al., 1994; Doble, 1999). Nevertheless, treatment of neuron-

astrocyte midbrain co-cultures with histamine in an inflammatory context induced by LPS, do 
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not affect the viability of dopaminergic neurons. However, how histamine has this dual effect 

on viability of dopaminergic neurons is unknown, and more studies are necessary to clarify 

this issue. 

Altogether, our results suggest that histamine per se may have a pro-inflammatory 

effect either by triggering NO release and promoting dopaminergic neuronal death (both by 

the direct incubation or the collection of the conditioned medium released by microglia). 

While, in an inflammatory context mimicked by LPS, histamine has a putative anti-

inflammatory profile that can protect dopaminergic neurons from an inflammatory stimulus.  
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Chapter 6 

CONCLUSIONS  

 

Apart from the neurotransmitter function, histamine is also involved in inflammatory 

processes in CNS. With this work, we showed that histamine per se can trigger NO release 

from microglial cells, an effect mediated by H4R activation. However and most importantly, 

we showed that in an inflammatory context, histamine acting via H4R and possibly through 

H1R, plays an inhibitory action on NO release. Moreover, this dual effect on microglia-induced 

NO release, seems to be linked to dopaminergic neuronal survival.  

Since, to the best of our knowledge, there are no reports showing an involvement of 

histamine on NO release by microglial cells and the subsequent dopaminergic neuronal 

survival, with this work we open a new perspective for the therapeutic use of histamine and 

histamine receptor agonists to treat or ameliorate inflammation-associated processes, like 

those seen in pathogenesis of PD. 
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