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Resumo 

 

As nanopartículas (NPs) de dióxido de titânio (TiO2) têm uma vasta utilização, desde 

aplicações industriais a produtos para os consumidores. O uso crescente de nanomateriais 

pode levar à entrada de quantidades significativas de NPs no meio ambiente, sendo o meio 

aquático muitas vezes o seu destino final. Porém, o impacto e possíveis efeitos nocivos das 

NPs para o biota aquático ainda não estão totalmente clarificados. Neste contexto, este 

trabalho pretende avaliar a toxicidade de NPs de TiO2 em duas espécies de organismos de 

água doce (Carassius auratus e Corbicula fluminae). 

Os organismos foram expostos a suspensões de NPs de TiO2 (±21 nm) com concentrações desde 

0.01 a 800 mg TiO2/L e processados para a realização de análises enzimáticas e histológicas 

após períodos de 7, 14 e 21 dias. Foi determinada a actividade enzimática da superóxido 

dismutase, catalase e glutationa-s-tranferase e o grau de peroxidação lipídica, a fim de 

avaliar a resposta ao stress oxidativo. Os tecidos de órgãos alvo previamente seleccionados de 

acordo com a sua importância fisiológica foram observados através de microscopia óptica e 

electrónica e a presença de TiO2 foi determinada através de análise elementar de raio x.  

A exposição dos organismos a suspensões de NPs de TiO2 não foi letal para os peixes da 

espécie C. auratus, mas níveis de mortalidade significativos ocorreram nos bivalves da 

espécie C. fluminae. Os resultados demonstram que as NPs de TiO2 podem causar toxicidade 

sub-letal envolvendo stress oxidativo, aumentando a peroxidação lipídica e induzindo 

variações significativas da actividade antioxidante comparativamente aos controlos e ao longo 

dos períodos de exposição. Foram observadas alterações histológicas nas branquias, fígado e 

intestino dos peixes e na glândula digestiva dos bivalves. Verificou-se que as NPs presentes 

em suspensão foram ingeridas pelos organismos, o que resulta na acumulação de aglomerados 

de NPs dentro do lúmen intestinal dos peixes. Confirmou-se ainda a ocorrência de 

internalização celular de NPs de TiO2, especificamente nas células do tecido branquial dos 

peixes.  

Os resultados obtidos sugerem que existe um potencial risco para o biota aquático, 

relacionado com a entrada das NPs de TiO2 no ambiente aquático. O impacto ambiental das 

NPs é uma questão de enorme relevância e apesar de se observar um aumento dos estudos 

sobre os efeitos das NPs de TiO2, os mecanismos de toxicidade destas e de outras NPs 

metálicas permanecem por esclarecer. 

Palavras-chave 

Nanoparticulas de TiO2; Carassius auratus; Corbicula fluminea; stress oxidativo; actividade 

antioxidante; nanotoxicologia; ecotoxicologia  
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Abstract 

 

Titanium dioxide (TiO2) nanoparticles (NPs) have a widespread use, from industrial 

applications to consumer products. The increasing use of nanomaterials can lead to 

significant releases of NPs into environment and the aquatic system is commonly the ultimate 

recipient for NPs. However, the impact and potential detrimental effects of NPs to aquatic 

biota remains unclear. In this context, the aim of the present work is to evaluate the toxicity 

of the TiO2 NPs exposure in two freshwater species (Carassius auratus and Corbicula 

fluminae).  

Organisms were exposed to suspensions of TiO2 NPs (±21 nm) within a range of concentrations 

from 0.01 to 800 mg TiO2/L and sampled for enzymatic and histological analysis after periods 

of 7, 14 and 21 days. Lipid peroxidation, superoxide dismutase, catalase and glutathione-s-

transferase activity were determined in order to evaluate the response to oxidative stress. 

Tissues from target organs were analyzed by optical and electron microscopy and x-ray 

elemental analyses allowed detecting the presence of TiO2. 

The exposure to TiO2 NPs in aquatic suspensions was not lethal for C. auratus, but significant 

mortality rates were found for C. fluminea. Results show that TiO2 NPs causes toxicity 

involving oxidative stress, increasing lipid peroxidation and inducing significant variations of 

the antioxidant activity in the exposed organisms compared to controls and over exposure 

time. Histological pathologies were observed in C. auratus gills, liver and intestine and in C. 

fluminea digestive gland. NPs in suspension are ingested by organisms, resulting in the 

accumulation of TiO2 NPs agglomerates inside C. auratus intestinal lumen. Cellular 

internalization of TiO2 NPs was confirmed in cells from fish gills. 

The results suggest that, a potential risk to the aquatic biota exist related to the TiO2 NPs 

release to the aquatic environment. The environmental impact of the NPs is a matter of 

concern and despite an increase of studies of nanosized-TiO2 effects, the precise mechanisms 

of toxicity of this and other metal NPs remain unclear.  
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1 Introduction 

 

1.1 Background 

The concept of nanotechnology was first introduced about 50 years ago, when the Nobel 

Prize-winner Richard Feynman presented a talk called “There’s Plenty of Room at the 

Bottom”, at the annual meeting of the American Physical Society at the California Institute of 

Technology. The audience was puzzled and intrigued with Feynman’s futuristic vision of how 

it could be possible to put a huge amount of information written in an exceedingly small 

space, while he was exploring the possibility of manipulating materials at the scale of 

individual atoms and molecules (Feynman, 1960).  

Over the last 20 years, nanotechnology has emerged and is already a multidisciplinary reality, 

present in a wide range of fields including chemistry, physics, biology, medicine, engineering 

and electronics. Nowadays, nanotechnology can be defined as the research and development 

of structures, devices and systems by controlling shape and size at nanometric scale1 (RS, 

2004), to create materials with new behaviors and chemical properties.  

 

1.2 Nanomaterials 

Engineered nanomaterials such as nanoparticles (NPs) are increasingly being used for 

commercial purposes in products within medicine, electronics, sporting goods, tires, textiles 

and cosmetics. In the past decade, the Project of Emerging Nanotechnology launched a 

Nanotechnology Consumer Product Inventory, available at http://www.nanotechproject.org/. 

From an initial number of 212 products identified in the year of 2006, over 1300 

manufacturer-identified nanotechnology-enabled consumer products have entered the 

marketplace to date, according to this inventory. The nanomaterial potential applications 

seem endless, promising great benefits for society and bringing high economic expectations.  

This is considered to be one of the major technology sectors of the 21st century (Delgado, 

2010), which is reflected on an increasing global investment of multi-billion euros/dollars. 

However, the same special properties that make nanomaterials so distinctive and useful also 

may represent and be the cause of potential risks and unpredictable effects to living beings 

and environment. Unfortunately, there is a great knowledge lack between nanotechnology 

                                                 
1 In a dimensional scaling, a nanometer (nm) corresponds to one billionth of a meter (10–9 m). 
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and its potential toxicity. Although the nanotoxicology is a very young research field, there is 

an increasing of studies that demonstrate hazards associated with nanoparticles, bringing the 

awareness of their potential adverse effects.  

 

1.3 Nanoparticles 

Nanoparticles (NPs) comprise diverse types of materials from metals, polymers, ceramic to 

biomaterials and have been defined as particles with at least one dimension in the order up 

to 100 nm (RS, 2004). However, without reliable methods for characterization and 

determination of the physicochemical properties of NPs it is also difficult to assess human or 

animal exposure to NPs (FSAI, 2008). 

1.3.1 Characterization of Nanoparticles  

Although NPs characterization is usually performed by using diverse techniques for estimating 

their physicochemical properties (e.g SEM, TEM, DLS, XRD) there is an urgent need to 

establish calibration standards and procedures for the characterization of NPs since the 

reliability, precision and accuracy of these techniques on the nanoscale are however often 

questioned. In this sense, the ISO TC229 Technical Committee on Nanotechnologies was 

established in 2005 to address these issues (FSAI, 2008). Accordingly, NPs characterization is a 

major challenge since it requires considerable care and there are many difficulties and 

uncertainties, especially regarding NPs aggregation, size, purity, and batch variations. 

Additionally, characterization is further complicated by the incorporation of NPs into 

biological matrices which may change their properties and requires further characterization 

beyond that of the pristine nanoparticle (FSAI, 2008). 

Regarding NPs properties despite having the same chemical composition as bulk materials, 

they may exhibit new or enhanced size-dependent properties compared with larger particles 

of the same material (Hodes, 2007). According to Nel at al. (2006) the properties of 

nanomaterials are related to their size, structure and a large surface area-to-volume ratio 

relative to larger-sized chemicals and materials. In addition, in terms of size they are 

included in a transitional zone between individual atoms or molecules and the corresponding 

bulk material. Moreover, as the size of a particle decreases, more molecules are present at 

the surface giving rise to a larger surface area for chemical interaction. Thus, the higher 

surface area to the volume ratio plays a major role in the increasing of chemical reactivity 

and the change of the magnetic, conductive, optical and diffusion properties (Nel et al., 

2006).  Hence, materials that are inert in larger size can become reactive at the nanoscale. 

The size at which materials start changing their properties can vary from less than one 

nanometer to the micrometer range (Hodes, 2007).  
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Another important feature of NPs is their tendency to aggregate, often as a result of the 

drying stage during the synthesis process, and with considerable implications for the 

determination of the size and surface area of NPs but also for assessment of exposure to 

living organisms. The aggregation is often overlooked or even ignored when characterizing 

NPs size and surface area because they can exist both in very large and small particle size 

with a heterogeneous distribution. This is an important fact because sizes recorded are often 

only a small fraction of the sample, rather than a true representation of the sample 

composition. In this way, many studies use several techniques to disperse nanoparticles (e.g. 

ultrasound sonication, dispersing and milling). However, even following these procedures, the 

dispersions are often very polydisperse, and the surface may have changed, due to exposure 

of “fresh” surface due to the breaking up of clusters. Therefore, an important issue is to 

distinguish between the primary particle size, which is typically on the nanoscale, and the 

cluster size due to aggregation, which may be either nanoscale or micron scale (FSAI, 2008). 

In a toxicological point of view size and surface area are extremely important since the small 

size and a large surface area allows a great proportion of its atoms or molecules to be 

displayed on its surface rather than within the material´s interior. As a consequence, these 

nanomaterial´s atoms or molecules may be chemically and biological reactive and have 

potential negative effects on living organisms. Other factors such as shape, surface coating, 

aggregation potential and solubility also affects physicochemical and transport properties of 

nanomaterials but also its toxicity potential. As an example, some types of NPs are associated 

to DNA damage, production of reactive oxygen species oxidative stress and neurologic 

problems, among others effects. Moreover, the ever-increasing use of these materials, soon 

can lead to the release and accumulation of heightened levels of these materials into 

environment. Still, there’s a considerable gap in the regulation of the commercialization of 

products containing nanotechnologies (Falkner and Jaspers, 2012). 

 

1.4 Environmental and Human Risks 

1.4.1 Human and animal exposure to Nanoparticles 

Human beings always have been exposed to airborne nanosized particles. However, such 

exposure has increased dramatically over the last decades due to the development of NPs 

from anthropogenic sources (Oberdörster et al., 2005).  

The same properties that make NPs unique and so wide useful may also become a trap to our 

health. The higher toxicological potential of NPs is mostly due to their small size, wide 

surface, increase of their chemical reactivity and biological activity and the capacity to 

generate free radicals (Nel et al., 2006). NPs also can have the ability to penetrate trough the 
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biological barriers and to move easily through the biological systems (Oberdörster et al., 

2005; Nel et al., 2006). 

 

Figure 1 Potential cellular interactions of Nanoparticles. 

The diagram shows the potential effects of NP with emphasis on potential oxidative stress 

induced effects and their consequences. (A) Particle-associated characteristics induce lipid 

peroxidation, intracellular oxidative stress and increased cytosolic calcium ion concentration; 

(B) NP may be actively endocytosed. In phagocytic cells phagocytosis triggers activation of 

NADPH oxidase and generation of ROS; (C) Particles and their associated metals, as well as 

oxidative stress, can activate the EGF receptor; (D) Oxidative stress, receptor activation and 

increased calcium ions activate transcription of pro-inflammatory genes via transcription 

factors such as NF-kB; (E) NP may enter the cell by passive diffusion and remain non-

membrane bound from where they may enter mitochondria; (F) and disrupt normal electron 

transport leading to oxidative stress. (G) Free particles may also enter the nucleus via the 

nuclear pore complex and interact with the genetic material. (H) Lipid peroxide-derived 

products such as 4-hydroxynonenal form DNA adducts that may lead to genotoxicity and 

mutagenesis (in Oberdörster et al., 2005). 

Nanotoxicological research has already associated some NPs to several toxicological effects as 

damage to DNA (Donaldson et al., 1996; Dunford et al., 1997), disruption of cellular function 

(Sayes et al., 2006), production of reactive oxygen species (Long et al., 2006), asbestos-like 

pathogencity (Poland et al., 2008), neurologic problems (NIH and NCCAM, 2010), organ 
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damage including significant lesions on the liver and kidneys (Wang et al., 2007), gill damage, 

respiratory problems and oxidative stress in fish (Federici et al., 2007). 

1.4.2 Environmental Impacts of Nanoparticles 

Nanoparticles (NPs) are not only artificial, but they also always existed in environment from 

natural sources. Carbon NPs have been found in 10 000 years ice cores (Murr et al., 2004). 

Other natural NPs nanoparticles can also be found in soil, water sources, atmospheric dust or 

volcanic ash (Handy et al., 2008).  

Engineered nanomaterials can enter the environment through deliberated releases, which 

includes their use to remediate contaminated soils and groundwater, unintentional releases 

such as atmospheric emissions and also from the use of consumer’s products with NPs, as 

sunscreens and cosmetics (Klaine et al., 2008). NPs have the potential to contaminate soil, 

migrate into surface and groundwater and interact with biota (Klaine et al., 2008). Also, NPs 

in solid wastes, wastewater effluents, direct discharges, or accidental spillages can be 

transported to aquatic systems by wind or rainwater (Klaine et al., 2008). 

 

Table 1 Modeled concentrations of TiO2 nanoparticles released into environmental 

compartments in Europe and United States (adapted from Menard et al., 2011). 

Environmental Compartment Predicted environmental concentration 

Europe United States 

Water 0.012 – 0.057 µg/L 0.002 – 0.010 µg/L 

Soil 1.01 – 4.45 µg/kg 0.43 – 2.3 µg/kg 

Sludge treated soil/ Sediment 70.6 – 310 µg/kg 

273 – 1409 µg/kg 

34.5 – 170 µg/kg 

44 – 251 µg/kg 

Air 0.0005 µg/m3 0.0005 µg/m3 

Sewage treatment plant effluent 2.50 – 10.8 µg/L 1.37 – 6.70 µg/L 

Sewage treatment plant sludge 100 – 433 mg/kg 107 – 523  mg/kg 
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1.4.2.1 Nanoparticles in aquatic environments 

The aquatic environment receives daily substantial amounts of environmental pollutants that 

can be up taken by aquatic organisms from sediments, suspended particulate matter with 

toxic properties and food sources, depending on the particular dietary and ecological 

lifestyles of the organisms (Valavanidis et al., 2006). 

Aquatic systems contain natural complex colloid
2
 materials. These include inorganic minerals, 

typically hydrous iron and manganese oxides, and as well organic matter, such as humic 

substances, proteins and peptides (Klaine et al., 2008; Lead and Wilkinson, 2006). Their small 

size and large surface area per unit mass make them important binding phases for both 

organic and inorganic contaminants. This way, NPs can be accumulated and transported by 

the colloid fraction (Lead and Wilkinson, 2006). Once within an aquatic environment, NPs can 

also enter a process of aggregation which is closely related to the deposition and 

sedimentation of particles (Wiesner et al., 2009). This process is determined by the NPs 

surface properties, which are mainly dependent on parameters such as temperature, ionic 

strength, pH, particle concentration and size, among others (Navarro et al., 2008). 

 

Figure 2 Possible routes of environmental exposure to engineered NPs after release to the 

aquatic environment and trough food chains. (in Baun et al., 2008)  

                                                 
2 In aquatic systems, colloid is the generic term applied to particles in a size range between 1 nm to 1 
µm. 
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1.4.2.2 Effects in aquatic organisms 

Although several studies and reports have been recently published there is still a lack of 

knowledge on the ecotoxicity of NPs in aquatic biota. To date most of the data available are 

on freshwater species, particularly those used as standard species in regulatory toxicology 

such as Daphnia magna or Danio rerio and using several types of NPs (e.g. TiO2, 

nanodiamonds, C60 fullereens) (Handy et al., 2008). It is also evident that more studies are 

needed on marine and terrestrial organisms and other vertebrates such as amphibians, 

reptiles and birds. 

In aquatic invertebrates, the exposition to CeO2 and SiO2 NPs caused an increase of the 

mortality of D. magna and CeO2 NPs also induced DNA damage and potential reproduction 

reduction for these organisms (Lee et al., 2009). Moreover, nanosized copper and silver had a 

48 h LC50 of less than 1 mg/L for daphnids and algae (Griffitt et al., 2008) and also ZnO NPs 

showed toxicity to these organisms (Adams et al., 2006). For fish organisms, studies showed 

that Ag NPs provoked a 48 h LC50 value of 1.03 mg/L in Japanese medaka (Oryzias latipes), 

with additional developmental, morphological and histopathological changes, including 

edema production, abnormalities in the spine, fins, heart, brain, and eyes (Wu et al., 2010).  

In zebrafish, Ag and Cu NPs had a 48 h LC50 of less than 10 mg/L (Griffitt et al., 2008). 

Aggregation of single walled carbon nanotubes has been visible on the gill mucus of trout 

(Smith et al., 2007) and also TiO2 NPs induced histological changes and oxidative stress in the 

rainbow trout (Federici et al., 2007). 

 

1.5 Titanium dioxide nanoparticles  

Conventional titanium dioxide (TiO2) is a naturally harmless occurring mineral, which has 

been used since the beginning of the 20th century for numerous industrial applications and 

consumer products, particularly for coatings and pigments (Chen et al., 2007).  

In addition, as the size of TiO2 particles decreases into the nanoscale, higher is the potential 

for photocatalytic properties and UV absorption (Shao and Schlossman, 1999).  These 

properties led TiO2 nanoparticles (NPs) to a wide range of industrial applications and 

consumer products such as water treatment agents, self-cleaning surface coatings, light-

emitting diodes, solar cells, disinfectant sprays, sporting equipment, sunscreens and other 

cosmetics (Chen et al., 2007). 

Consequently, the commercial production of nanosized TiO2 is increasing at a very high rate 

every year. For example, the estimated production between 2006 and 2010 was about 5000 

tons/year, while the predicted production for between 2011 and 2014 is about 10 000 

tons/year (UNEP, 2007). The high production of TiO2 NPs due to its widespread use, soon can 
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lead to significant release of these NPs into the environment (Hall et al., 2009). However, 

little is known about the NPs fate, behavior and toxicity once released into the environment 

and surface waters.  

1.5.1 Effects and toxicity of TiO2 NPs 

Conventional TiO2 has been considered to be biologically inert and harmless for living beings, 

and fine TiO2 particles were used as controls in toxicological studies of various particles, for 

example in numerous pulmonary toxicity studies (Sager et al., 2008). 

TiO2 reflects and scatters UVB and UVA in sunlight, thus has been applied for e.g. as a safe 

physical sunscreen. However, TiO2 absorbs about 70% of incident UV and especially in aqueous 

environments this leads to generation of hydroxyl radicals which can initiate oxidations 

(Dunford et al., 1997). Also TiO2 NPs are photo-inducible, redox active and thus generators of 

potential reactive oxygen species (ROS) at its surface (Menard et al., 2011). Dunford et al. 

(1997) showed that TiO2 present in sunscreen samples was able to catalyze oxidative damage 

to DNA both in vitro and in human cells. Moreover TiO2 in nanoparticle size showed to be able 

to produce ROS not only in the presence of UV irradiation (Armelao et al., 2007), but also in 

the absence of photoactivation (Gurr et al., 2005; Reeves et al., 2008). ROS and free radicals 

are oxidative stress inductors and may play a major role in the NPs potential toxicity to 

organisms. 

Concerning mammalians, some pro-inflammatory effects resulting from TiO2 NPs exposure 

were observed both in vitro and in vivo in pulmonary cells. Studies reported that TiO2 NPs can 

induce respiratory toxicity, epithelial inflammation and cytotoxicity within the lung of 

rodents (Ferin et al., 1991; Oberdörster et al., 1992; Bermudez et al., 2004; Warheit et al., 

2006) but also in human lung cells (e.g. Gurr et al., 2005; Lai et al., 2008).  

Exposure of rats by intracheal instillation to a suspension of TiO2 NPs caused dose-dependent 

pulmonary damage and inflammation, which persisted 42 days post-exposure (Sager et al., 

2008).  

The administration of TiO2 NPs into an air pouch in mice, provoked an acute inflammatory 

response, inducing a rapidly leukocyte infiltration with predominance of neutrophils and an 

increase expression of pro-inflammatory mediators as chemokines (Gonçalves and Girard, 

2011). 

Rabbit erythrocytes treated in vitro with TiO2 NPs underwent hemagglutination and dose 

dependent hemolysis (Li et al., 2008). Moreover intragastric administration of TiO2 NPs in 

mice provoked the damage of blood system haemostasis, reduction of the immunity in 

association with a seriously damaged liver function (Duan et al., 2010). 
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After an intraperitoneal injection in mice, TiO2 NPs were retained in multiple organs and 

tissues, mainly in spleen but also in liver, kidney and lung, inducing significant pathological 

changes and various degrees of organ lesions, severely in spleen (Chen et al., 2009). An 

accumulation of NPs in mice spleen due to a TiO2 NPs exposition by intraperitoneal injection 

for consecutive 45 days, was also reported by Li et al. (2010), leading to congestion and 

lymph nodule proliferation of spleen tissue, spleenocytes apoptosis, ROS accumulation, 

resulting in a decrease of immune capacity.   

TiO2 NPs induced formation of micronuclei and apoptosis in hamster embryo fibroblasts 

(Rahman et al., 2002). In addition, several studies showed that TiO2 NPs caused hepatocyte 

necrosis in mice livers and changes in some enzymes levels (Wang et al., 2007; Liu et al., 

2009) and hepatocytes apoptosis and inflammation related to alterations of both mRNA and 

protein expression levels of diverse inflammatory cytokines (Ma et al., 2009). Moreover, 

according to the same author the increase of lipid peroxides in brain and liver mouse tissues 

caused by TiO2 NPs was associated to an oxidative attack activated by a decrease of the 

antioxidative defense mechanisms. 

TiO2 NPs were also associated with changes in gene expression, including alterations 

concerning brain development in mouse (Shimizu et al., 2009) and expression of apoptosis-

related genes (Carinci et al., 2003).  

With respect to skin, several studies report that TiO2 NPs are able to penetrate animal and 

human skin (Wu et al., 2009, Monteiro-Riviere et al., 2011). Dermal exposure to TiO2 in vivo, 

using mice as biological model, revealed that these NPs are able to penetrate skin, reach 

different tissues and induce lesions in different organs mostly at skin and liver (Wu et al., 

2009).  Results of this study also showed that prolonged exposure to TiO2 NPs can cause 

oxidative stress by increasing lipid peroxidation products and cause collagen depletion leading 

to skin aging, concluding that TiO2 NPs may pose a risk to human health after dermal 

exposure over a relative long time period (Wu et al., 2009).  

1.5.2 Toxicity of TiO2 NPs to aquatic organisms 

Regarding the ecotoxicity of TiO2 NPs to aquatic biota, the most studied group of aquatic 

organisms are freshwater invertebrates, followed by algae and for last freshwater fish 

(Menard et al., 2011).  

Algae play an important role in the equilibrium of aquatic ecosystems, being the first level of 

the trophic chain to produce organics and oxygen (Sadiq et al., 2011). 

The exposition of TiO2 NPs to freshwater green micro algae produced a growth inhibition 

(Hartmann et al., 2010; Metzlera et al., 2011; Sadiq et al., 2011) and also a concentration 

dependent decrease in chlorophyll content (Sadiq et al., 2011). 

http://www.sciencedirect.com/science/article/pii/S0300483X05002271#ref_bib26
http://www.sciencedirect.com/science/article/pii/S0300483X05002271#ref_bib3
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Hartmann et al (2010) observed that in addition to the generation of reactive oxygen species, 

possible mechanisms of toxicity to algae included the adhesion of TiO2 to algal cells and 

physical disruption of the cell membranes. Microscopy techniques confirmed that TiO2 NPs 

have a strong affinity toward the cell surface, demonstrating probable interactions between 

the particles and the surface active sites of the cell membrane (Metzlera et al., 2011; Sadiq 

et al., 2011).  The adhesion/adsorption of NPs to the cell surface may interrupt the nutrient 

transfer; enhance the ROS reaction rates and membrane lipid peroxidation (Metzelera et al., 

2011).   

The observation of TiO2 NPs aggregates entrapping algal cells, suggested that it may play the 

major role in the toxicity of TiO2 NPs to algae species (Aruoja et al., 2009; Sharma, 2009; 

Sadiq et al., 2011). 

Cherchi et al. (2011) showed that the internalization of TiO2 NPs through multilayered 

membranes in algal cells can occur, generating observable alteration in various intracellular 

structures and inducing a series of recognized stress responses. Therefore, NPs may be 

transported along the ecological food web and ultimately impact important biogeochemical 

processes, such as the carbon and nitrogen cycle (Cherchi et al., 2011). 

Daphnia magna (a cladoceran freshwater water flea) is widely used as a biological model for 

testing ecotoxicity. D. magna is a vital connection in the aquatic food chain between the 

algae that they consume and the ecologically and economically important fish that consume 

those freshwaters crustaceans (Lovern and Klaper, 2006).  

The exposure of D. magna to TiO2 NPs induced significantly the activity of several antioxidant 

enzymes as CAT and GST, with a concentration-dependent increase (Kim et al., 2010). This 

suggested that the toxicity was mediated by ROS, generated by TiO2 NPs, via oxidative stress 

in D. magna (Kim et al., 2010). 

Filtered TiO2 NPs were reported to cause an increase of the mortality of D. magna with the 

increase of TiO2 concentration (Lovern and Klaper, 2006). In a chronic bioassay, Kim et al. 

(2010) observed an increase in mortality, probably due to the accumulation of TiO2 NPs in 

the intestine of D. magna, which might induce effects such as oxidative stress relating to the 

induction of antioxidant enzymes. 

Other studies also showed that D. magna ingest TiO2 NPs from aqueous suspension and their 

deposition is visible inside the gastrointestinal tract (Baun et al., 2008; Kim et al., 2010; Zhu 

et al., 2010a).  D. magna displayed difficulty in eliminating TiO2 NPs from their body, 

resulting in a high level of bioaccumulation, which may interfere with food intake, growth 

and reproduction (Zhu et al., 2010a and 2010b).  



 

 11 

The chronic exposure of D. magna to TiO2 NPs resulted in severe growth retardation, 

reproductive defects and increasingly mortality (Zhu et al., 2010a). The toxicity of NPs was 

shown to increase with the exposure duration, demonstrating that it may also be an 

important factor in the toxicity mediated by NPs (Zhu et al., 2010a).  

Zhu et al. (2010b) showed evidence for TiO2 transfer from D. magna to zebrafish (Danio rerio) 

through a simplified freshwater food chain.  

In larval zebrafish, TiO2 NPs affected significantly swimming parameters, as average and 

maximum velocity and activity level (Chen et al., 2011).   

In vitro studies reported intrinsic genotoxic and cytotoxic potential of TiO2 NPs on fish cell 

lines derived from rainbow trout gonadal tissue (Vevers and Jha, 2008) and from gold fish 

(Carassius auratus) skin cells (Reeves et al., 2008). Also Reeves et al. (2008) indicated that 

·OH radicals are the predominant radical species generated both in aqueous solution as in the 

fish cells, thus playing the major role in producing the genotoxic effects in terms of oxidative 

DNA damage.  

Griffitt et al. (2009) reported that TiO2 NPs exposure to zebrafish altered the expression of 

genes involved in ribosomal function, which may be related to inhibition of protein synthesis 

by cellular stress. Moreover the microinjection of TiO2 NPs in zebrafish embryos caused 

significant changes in the expression of genes related to circadian rhythm, cell kinase 

activity, intracellular trafficking and immune response, detected by microarray analysis 

(Jovanovic et al., 2011).  

In vivo studies using as a biological model different species of fish, also showed changes in 

the activity of antioxidant enzymes, in lipid peroxidation levels and histopathological 

changes, as a result to the exposition to TiO2 NPs. 

The exposure of rainbow trout (Oncorhynchus mykiss) to TiO2 NPs caused respiratory distress 

and sub-lethal toxicity involving oxidative stress, induction of antioxidant defense system, 

increase in lipid peroxidation and organ pathologies in gills, liver, intestine and brain 

(Federici et al., 2007). Also Frederici et al. (2007) suggested that the observation of a severe 

erosion of the trout gut epithelium can be a consequence of drinking contaminated water 

with NPs. 

Xiong et al. (2011) exposed zebrafish to TiO2 NPs, concluding that these NPs were able to 

cause toxicity effects without entering the cells, despite the formation of aggregates in 

suspensions. They observed that extracellular hydroxyl radical (·OH) generated by TiO2 NPs 

could induce oxidative damage directly on the cell membranes of gill tissue. 

In juvenile carp (Cyprinus carpio), TiO2 NPs modified the antioxidant enzymatic activity (SOD, 

CAT, POD) and elevated the lipid peroxidation levels most evidently in liver, inducing liver 
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disorders (as necrotic and apoptosis hepatocytes) and also gills pathologies (as edema and 

thickening of gill lamellae and filaments) (Hao et al., 2009).  

The effects of dietary exposure to TiO2 NPs in rainbow trout were studied by Ramsden et al. 

(2009), showing the occurrence of Ti accumulation in gills, gut, liver, brain and spleen, with 

Ti not clearing in some organs following recovery, especially the brain. They also observed 

disturbances of Cu and Zn levels, a 50% inhibition of Na+/K+-ATPase activity in the brain and a 

50% reduction of thiobarbituric acid reactive substances in the gill and intestine during 

exposure. Comparing their results for TiO2 NPs against the know hazard from other metals, 

Ramsden et al. (2009) concluded that the dietary hazard from TiO2 NPs might be considered 

more toxic than dietary Cu and Zn, and similar to Hg at equivalent oral doses. 

Recent studies are revealing that the presence of TiO2 NPs can exacerbate the toxicity of 

other contaminants, having an indirect impact on aquatic organisms by varying the toxicity of 

coexisting pollutants. The presence of TiO2 NPs greatly enhanced the accumulation of 

cadmium (Cd) and arsenic (As) in carp (Cyprinus carpio), especially in viscera and gills (Zhang 

et al., 2007; Sun et al., 2009), acting as a carrier of these metals into fish. Hartmann et al. 

(2010) observed that the algal toxicity of Cd was enhanced in the presence of TiO2 NPs, 

indicating either a combined effect of Cd and TiO2 NPs or an increase of the bioavailability of 

Cd for the algae caused by TiO2 NPs. Also Hu et al. (2011) showed that TiO2 NPs in humic acid 

solutions can act as a carrier to facilitate the Cd bioaccumulation in zebrafish and potentially 

other heavy metals. The toxicity of tributyltin (TBT, a highly toxic marine antifouling 

compound) to abalone (Haliotis diversicolor supertexta) embryos increased with the presence 

of TiO2 NPs, as a result of the combined effects of TBT adsorption onto TiO2 NPs aggregates 

and the internalization of these aggregates by abalone embryos (Zhu et al., 20111). Thus, not 

only the direct impacts of NPs should be a matter of concern but also their interactions with 

other environmental pollutants. 

 

1.6 Biological models 

Aquatic organisms are widely chosen as test species, as they are more sensitive to exposure 

and toxicity compared to terrestrial organisms including mammals. Besides being easily to 

cage and having a filtration capacity, they can provide model systems for evaluation of 

oxidative damage concerning to chronic exposure or sublethal concentrations, mutagenicity 

and other adverse effects of pollutants (Valavanidis et al., 2006). 
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1.7 Oxidative stress enzymes 

Oxidative stress is an important subject for terrestrial and aquatic toxicology, where its 

molecular biomarkers found widespread applications in mechanisms of environmental toxicity 

in aquatic organisms exposed to different chemical pollutants (Livingstone, 2001).  

Reactive oxygen species (ROS), such as the superoxide anion radical (O2
-), hydrogen peroxide 

(H2O2) and hydroxyl radical (·OH) are continually produced in biological systems as toxic 

byproducts of normal oxidative metabolism, but can be increased by interactions with 

pollutants by various mechanisms (Livingstone, 2003). 

In living aerobic organisms, the neutralization, detoxication and removal of ROS is effected by 

intracellular antioxidant defense systems, whose roles are to intercept and inactivate 

reactive radicals (Valavanidis et al., 2006). The antioxidant defense includes specific 

antioxidant enzymes, such as superoxide dismutase (SOD; converts O2- to H2O2; EC 1.15.1.1), 

catalase (CAT; converts H2O2 to H2O and O2; EC 1.1.1.6), glutathione-s-transferase (GST; 

conjugates and detoxifies products of lipid peroxidation; EC 2.5.1.18), but also non enzymatic 

cellular defenses, such as reduced glutathione (GSH), vitamins A and E, ascorbate and urate 

(de Zwart et al., 1999; Livingstone, 2003). The between the generation and the neutralization 

of ROS by antioxidant mechanisms within an organism is called oxidative stress (Davies, 

1995). 

Antioxidant enzyme activities are found widely distributed in tissues of aquatic organisms, 

with a mostly higher activity in liver of fish and in the digestive gland or equivalent in 

invertebrate organisms (Livingstone, 2001). Assaying antioxidant enzymes can indicate the 

antioxidant status of the organisms, working as a potential biomarker for contaminant-

mediated oxidative stress (Valavanidis et al., 2006). 

Cellular antioxidant defense systems may be increased or inhibited under chemical stress, 

depending on the intensity, duration of the stress applied and on the susceptibility of the 

exposed organisms (Cossu et al., 2000). The exposure to organic pollutants and metals may 

induce significant increases in antioxidant enzymes in response to ameliorate oxidative stress, 

but these are transient and variable for different aquatic species. Studies with fish observed 

that, in response to toxicant-induced inflammation by ROS, the concentrations of certain 

antioxidant enzymes are increased, but under high levels of pollution the antioxidant 

defenses can be reduced (Valavanidisa et al., 2006). An induction of the antioxidant defense 

can be considered an adaptation of the organisms to prevent toxicity, while a decrease 

suggests a precarious state characterized by a higher susceptibility to environmental stress, 

resulting in adverse effects (Cossu et al., 2000). The knowledge of the regulation of 

antioxidant systems in aquatic organisms in relation to sources of ROS is limited (Livingstone, 

2001). The complexity of pollution in aquatic ecosystems provides a non-specific response to 

a kind of contaminants, but antioxidants constitute useful biomarkers reflecting not only an 
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exposure to pollutants but also their toxicity. A multiple marker approach can be more 

relevant than a single antioxidant parameter to the evaluation of the total antioxidant status.  

1.7.1 Superoxide Dismutase 

Superoxide dismutase (EC 1.15.1.1) is the antioxidant enzyme that catalyzes the dismutation 

of the highly reactive superoxide anion (O2
-) to O2 and to the less reactive species H2O2 

(reaction (1)), which can be further destroyed by catalase or GPX reactions. 

 

    
  -
    

 
 
     
→                 (1) 

 

Another function of superoxide dismutase is to protect dehydratases (dihydroxy acid 

dehydratase, aconitase, 6-phosphogluconate dehydratase and fumarases A and B) against 

inactivation by the free radical superoxide (Matés and Sánchez-Jiménez, 1999). Four classes 

of SOD have been identified, containing either a di-nuclear Cu, Zn or mononuclear Fe, Mn or 

Ni cofactors (Matés and Sánchez-Jiménez, 1999). 

At physiological pH, the rate of the non-enzymatic dismutation of superoxide is significant, 

but it is considerably increased in the presence of SOD. The turnover numbers of SODs are 

indeed very high over a wide range of pH.  In animal cells, the fact that intracellular SOD 

concentrations range from 10-6 to 10-5 M supports the concept that superoxide is strongly toxic 

(Chaudière and Ferrari-Iliou, 1999). 

1.7.2 Catalase 

Catalase (CAT; EC 1.11.1.6) is included in the subclass of oxidorredutases, being present in 

practically all aerobic organisms and in many anaerobic organisms. It can also be named 

hydroperoxidase as it catalyzes the conversion of hydrogen peroxide (H2O2), a powerful and 

potentially harmful oxidizing agent, to water and molecular oxygen (reaction (2)).  

 

       
     
→                  (2) 

 

Much of the H2O2 that is produced during oxidative cellular metabolism comes from the 

breakdown of one of the most damaging ROS, namely the superoxide anion radical (O2
-), by 

superoxide dismutases into hydrogen peroxide and oxygen. 
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Each catalase molecule can decompose millions of H2O2 molecules every second, thus this is 

one of the most efficient enzymes found in cells. It is so efficient that it cannot be saturated 

by H2O2 at any concentration. 

CAT also acts as peroxidase, at low hydrogen peroxide concentration, using reducing co-

substrates, as a variety of metabolites and toxins donors of hydrogen such as alcohols, formic 

acid, formaldehyde or phenols.  

Structurally, most catalases exist as tetramers, each subunit containing an active site heme 

group deep within its structure, but accessible from the surface through hydrophobic 

channels. This very rigid and stable CAT structure makes it more resistant to unfolding, to pH, 

thermal denaturation and resistant to proteolysis than most of other enzymes (Chelikani et 

al., 2004). 

 

Figure 3 Catalase Heme Group. In the middle of the heme group sits an iron atom. The 

catalase enzyme uses this iron atom to help it break the bonds in the two molecules of H2O2, 

shifting the atoms around to release two molecules of H2O and a molecule of O2. 

H2O2 is broken down by CAT within a two-stage mechanism in which H2O2 alternately oxidises 

and reduces the heme iron at the active site.  In the first step, one H2O2 molecule oxidises 

the heme to an oxyferryl species. In the second step, a second hydrogen peroxide molecule is 

used as a reductant to regenerate the resting state enzyme, producing water and oxygen 

(Chelikani et al., 2004). 

The ubiquity of the enzyme, its ease of assay, involving a cheap, readily available substrate, 

H2O2, and the outstanding display of oxygen evolution have combined to make it an attractive 

target for biochemists and molecular biologists alike. 

1.7.3 Glutathione S-Transferase 

Glutathione-S-transferases (GSTs; EC 2.5.1.18) are large family (cytosolic, mitochondrial, and 

microsomal) of phase II biotransformation enzymes, with substrates that include products of 

oxidative stress and electrophilic xenobiotics. Besides their enzymatic activity, GSTs can 
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protect cells from toxicants through chemical removal of the agents by noncatalytic binding. 

GSTs and ligandin (a protein binding to physiologic and exogenous ligands) bind toxic 

xenobiotics and their metabolites and this noncatalytic activity of GSTs can provide 

protection to the cellular environment by acting as a shield to protect DNA, proteins, and 

lipids from the deleterious effects of xenobiotics. GSTs are also involved in the biosynthesis of 

leukotrienes, prostaglandins, testosterone, progesterone, as well as in the degradation of 

tyrosine. GSTs are among the most abundant proteins in some tissues, including kidneys and 

especially in the liver, which plays a key role in detoxification.  

Oxidative stress usually leads to enhanced generation of endogenous electrophiles and 

electrophilic toxins generated from lipid peroxidation or that are converted to genotoxic 

electrophilic intermediates by the catalytic action of cytochromes P450. GSTs catalyze the 

nucleophilic attack of the sulphur atom of the reduced glutathione (GSH) on electrophilic 

groups of a range of hydrophobic substrates, thereby neutralizing their electrophilic sites and 

rendering the products more water-soluble. Glutathione conjugates are metabolized further 

by cleavage of the glutamate and glycine residues, followed by acetylation of the resultant 

free amino group of the cysteinyl residue, to produce the final product, a mercapturic acid. 

The mercapturic acids, i.e. S-alkylated derivatives of N-acetylcysteine, are then excreted. 

Most substrates are inactivated by conjugation with GSH, however some are converted to 

more reactive compounds increasing toxicity (bioactivation of a toxin). 

Although GSTs do not decompose the ROS per se, these enzymes constitute an all-important 

second line of defense and provide protection against oxidative stress by attenuating lipid 

peroxidation and by detoxifying the toxic end-products of lipid peroxidation. As antioxidant 

enzymes, GSTs complement the role of primary defense enzymes in protecting organisms 

from the deleterious effects of ROS. While superoxide anion and H2O2 are effectively disposed 

of by the cells through highly efficient enzymes (superoxide dismutase, catalase, and GPx), 

the ROS escaping this line of defense can initiate the autocatalytic chain of lipid peroxidation 

through the generation of free radicals capable of abstracting a single hydrogen atom from 

unsaturated fatty acids. GSTs prevent propagation of lipid peroxidation by reducing lipid 

hydroperoxides, and GSTs also detoxify the toxic electrophilic end-products of lipid 

peroxidation. Thus constitute the all-important second and third lines of defense against 

oxidant toxicity (Sharma et al., 2006). 
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Figure 4 Enzymatic Antioxidant defense lines against ROS oxidative damage. (in Sharma et 

al., 2006) 
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1.8 Lipid Peroxidation 

Lipid peroxidation is probably the most extensively investigated process induced by free 

radicals. Membrane phospholipids of aerobic organisms are continually exposed to oxidant 

challenges, being a target rapidly affected by free radicals. Thus, peroxidized membranes 

and lipid peroxidation products represent constant threats to aerobic cells. The group of 

polyunsaturated fatty acids is especially highly susceptible to oxidative reactions by ROS, 

because of their double bonds.  

The process of lipid peroxidation is composed of a set of radical chain reactions, initiated 

mainly by hydroxyl radicals, especially in transition metal-catalyzed reactions, resulting in 

the formation of many equivalents of lipid peroxides (LOOH).  

 

Figure 5 Lipid peroxidation chain reactions. Schematic proceed of lipid peroxidation chain 

reactions, resulting in the formation of many lipid peroxide radicals. 

 

These degenerative propagation reactions in lipid membranes are usually accompanied by the 

formation of a wide variety of products, as the resulting LOOH can easily decompose into 

several reactive species including lipid alkoxyl radicals, aldehydes, alkanes, lipid epoxides, 

and alcohols. Most of these products are toxic by themselves, especially hydroxyalkenals, and 

active mutagens, acting as second messengers for radical damage (Valavanidis et al., 2006). 

These products may form DNA adducts giving rise to mutations and altered patterns of gene 

expression and the peroxidized membranes become rigid, losing permeability and integrity. 

Thus, products resulting from lipid peroxidation may be important parameters to monitor 

radical damage and several of the most important products (de Zwart et al., 1999).  

The most widely used assay for lipid peroxidation is malondialdehyde (MDA) formation as a 

secondary lipid peroxidation product, often assayed with the thiobarbituric acid reactive 

substances (TBARS) test. MDA levels in hepatic homogenates can be used for metal-induced 

oxidative stress in fish. 
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1.9 Microscopy Techniques and histopathology  

1.9.1 Light and electron microscopy 

The alterations in cell structure resulting from chemical exposure can be evaluated by 

different types of microscopy, depending on the purpose of the study. Changes which alter 

the cells and tissues of an organism and do not result in death can be observed under the 

light microscope or electron microscope. Therefore, light microscopy is commonly used for 

examination of histopathological alterations caused by exposure to a chemically altered 

environment while electron microscopy is used for the observation of alterations in the cell 

ultra-structure and is commonly used to assess tissue and cell changes. Both the scanning 

electron microscope (SEM) and the transmission electron microscope (TEM) are useful in such 

evaluations. SEM images provides a tri-dimensional view of tissues and cell surface while TEM 

provides a bi-dimensional image of cell´s inside and allows for the observation of structural 

changes which cannot been assessed by light microscopy. 

1.9.2 Histological examination 

Histology has been widely used for assessment of negative effects on living organism´s tissues 

and cells. Regarding fish, histopathological biomarkers or cellular changes in tissues such as 

gill, liver, kidney and spleen have received much attention in assessing the effects of 

exposure to pollutants and other substances. Therefore, histology can be a powerful tool, 

especially when used in conjunction with measurements of other biomarkers and other 

morphological studies. Additionally, the diagnostic power of histopathology may be further 

enhanced by employment of additional histological techniques such as immunohistochemistry. 

An added value of histopathology is in its capability to analyse the mechanistic effects of 

exogenous substances or materials and to characterize effects more specifically. For instance, 

histopathological analysis of target organs can reflect fish health more realistically than 

biochemical biomarkers. By comparing the impact of known or unknown samples on indicative 

histological parameters with that of specific reference compounds, the nature and magnitude 

of the evoked effects can be then determined (Wester et al., 2002). Thus, it can be used as a 

useful tool to assess the level of sub-lethal and chronic effects of toxicity, as indicator of the 

exposure to pollutants and may provide a better extrapolation to community and ecosystem-

level (Au, 2004; Bernet et al., 1999). 

Histopathological biomarkers are also useful as they can specify the target organs, tissues, 

cells and organelles of a single or group of toxin(s). Understanding the specificity of a 

contaminant to damage a particular organ system gives an insight into the mechanism of 

action of the toxicant which would not be available from doing classical 96h-LC50 testing. 

Chronic exposure to low levels of a toxicant can be studied at a broader scale on a light 

structure basis rather than conducting LC50 test which only study acute exposure. LC50 values 
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may be misleading because they reflect total metal concentration while particular attention 

should be given to the chemical processes that control chemical speciation. With respect to 

histopathological indicators they are beneficial since they show the net effect of biochemical 

and molecular changes in the organism resulting from exposure to a contaminant. Light 

structure of tissues and organs is altered when levels of the contaminant are still at low 

levels, therefore histopathological evaluation provide a valuable screening method of an 

ecosystem before severe ecological damage occurs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 21 

2 Objectives 

 

Within the present context, the main objective of this study is to provide a toxicological 

assessment of the TiO2 nanoparticles exposure (which is already present in consumer 

products) to two different freshwater species, goldfish (Carassius auratus) and freshwater 

clam (Corbicula fluminea). 

For this propose, the methodology included the evaluation of the activity of some antioxidant 

enzymes (SOD, CAT, GST), lipid peroxidation and histopathological observations of different 

potential target organs.  
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3 Materials and methods 

 
3.1 Nanoparticles characterization 

Commercial TiO2 nanoparticles Aeroxide TiO2 P25 (Aerosil, USA), with an average primary 

particle size of 21 nm in the powder form (Tab. 2), were used for the exposure assays.  

Table 2 TiO2 nanoparticles physico-chemical proprieties, according to the manufacturer. 

Test Method Unit AEROXIDE TiO2 P 25 

Behavior towards Water 
 

hydrophilic 

Appearance  Fluffy white powder 

Specific Surface Area (BET) m2/g 50 15 

Average Primary particle Size Nm 21 

Tapped Density (approximate value) g/L 130 

Loss on Drying (2 hours at 150°C when leaving 

plant) 
wt.% 1,5 

Loss on Ignition (2 hours at 1000°C) wt.% 2,0 

pH  3,5 - 4,5 

SiO2 wt.% 0,200 

Al2O3 wt.% 0,300 

Fe2O3 wt.% 0,010 

TiO2 wt.% 99,5 

Hcl wt.% 0,300 

Sieve Residue wt.% 0,05 

Unit Weight Kg 10 

 

 

 

Nanoparticle Tracking Analysis (NTA) (NanoSight LM10-HS, United Kingdom) was used to 

characterize the behavior of nanoparticles in liquid suspensions. NTA is a method that uses 

Brownian motion to locate and follow individual particles (10-1000 nm) in solution (Fig. 6), 

from which size-distribution profiles can be obtained (Carr, 2009). 
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Figure 6 Typical image produced by NTA showing particle tracks. Nanoscale particles can 

be directly and individually visualized and counted in liquid in real-time (in Carr, 2009). 

 

3.2 Experimental procedure 

3.2.1 Test organisms 

The biological materials used to carry out the experiments were a freshwater fish (Carassius 

auratus) and a freshwater bivalve (Corbicula fluminea). C. aurautus has been widely used as 

a model species in several ecotoxicological studies, since they are commercially available, 

easy to maintain and handle in laboratory (Ostrander, 2000). C. fluminea is also an important 

tool currently used as a biomarker for monitoring water contamination (Legeay et al., 2005). 

The fish were obtained from commercial suppliers (Koi Park, Portugal) and transported to the 

laboratory facilities for a period of acclimation before the exposure assays. 

The bivalves were collected manually on Tagus River, near the locality of Escaroupim and 

imediatley transported to laboratory for a period of acclimation before being used in 

exposure tests.  

 

 

 

 

 

Figure 7 Sampling of C. fluminea at Tagus River´s margin. 
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3.2.2 Acclimation 

Previously to the beginning of the assay, both species were acclimated for two weeks in a 

closed circuit system with filtered de-chlorinated tap water, at a pH of 7.4 ± 0.2, 

temperature of 19 ± 1ºC,  photoperiod: 12hL:12hD and with continuous aeration enough for 

keeping the dissolved oxygen always higher than 6 mg/L.  

 

 

 

 

 

Figure 8 Organisms in acclimation tanks.  C. auratus (A) acclimated in a 400 L polystyrene 

tank (B). C. fluminea in acclimation tank (C).  

3.2.3 Preparation of Test Nanoparticles  

Stock solutions of TiO2 nanoparticles were prepared using distilled water and then 

ultrasonicated (10 min, 35 KHz, 100/400W) using an ultrasound bath (Elma, Germany) for 

dissolution. Then, solutions were added to 10 L or 2 L of dechlorinated tap water in exposure 

tanks, in order to obtain nominal concentrations of 0.01, 0.1, 1, 10, 100, 400 and 800 mg 

TiO2/L. 

3.2.4 Exposure Assays 

Carassius auratus  

After the acclimation period, Carassius auratus (N=105; 5.9 ± 0.4 g; 4.4 ± 0.7 cm standard 

length), of both sexes, with less than one year of age, were randomly distributed into 15 L 

capacity polystyrene tests tanks, in groups of 15 fish  per tank (Fig. 8). Fish were exposed to 

different concentrations of TiO2 nanoparticles, from 0.01 to 800 mg TiO2/L. An additional 

tank with clean tap was used for a group of control fish. The fish were tested under a 

constant temperature of 19 ± 1ºC, pH of 7.4 ± 0.2, photoperiod: 12hL:12hD and continuous 

aeration. The experimental conditions in each tank were renewed every 48 hours and the 

assay had duration of 21 days. During the experiments fish were daily fed ad libitum with 

commercial flakes of dry food (Tetra brand). Tanks were monitored constantly for the 

counting of dead fish. 

  

A B C 
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Figure 9 C. auratus in test tanks.  

 

Corbicula fluminea  

After the acclimation period, C. fluminea (N=60; 1.5 ± 0.3 g ; 2.8 ± 0.2 cm standard length), 

were randomly distributed into 2 L capacity tests tanks, in groups of 10 individual per tank 

(Fig. 10). The individuals were exposed to the previously prepared solutions of different 

concentrations of TiO2 nanoparticles from 0.01 to 100 mg TiO2/L. An additional tank with 

clean tap was used for a group of control individuals. The bivalves were tested under a 

constant temperature of 19 ± 1ºC, pH of 7.4 ± 0.2, photoperiod: 12hL:12hD and continuous 

aeration. The experimental conditions in each tank were renewed every 48 hours and the 

assay had duration of 14 days. Tanks were monitored constantly for the counting of dead 

individuals. 

 

 

Figure 10 Tanks for C. fluminea exposure to TiO2 NPs suspensions.  
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3.3 Sampling the tested organisms  

Carassius auratus 

Fish were collected for sampling after 7, 14, and 21 days of exposure. At the beginning of the 

experiment, one additional fish group (n=5) was also collected from the acclimation tank for 

sampling. 

Fish were sacrificed by decapitation and dissected to remove the liver, intestine and gills.  

Tissue samples from liver, intestine, gills were collected and fixed in a solution of Bouin-

Hollande´s fixative for histological processing.  

For enzymatic and biochemical analyses, tissue samples from the target organs were 

homogenized on-ice in cold buffer 100 mM potassium phosphate (Sigma-Aldrich, Germany) pH 

7.0 containing 2 mM of EDTA (Riedel-Haën, Germany). Tissue homogenates were centrifuged 

at 10,000x g for 15 minutes at 4 ºC. Supernatant was removed and freeze at -80 ºC for further 

analysis. 

Corbicula fluminea 

Organisms were collected for sampling after 7 and 14 days of exposure.  

Bivalves were dissected to remove and separate the digestive glandule and gills.. Then, 

samples of the removed digestive glands were fixed in Bouin-Hollande´s fixative for 48 hours.  

For enzymatic and biochemical analyses, sub-samples of the tissues were homogenized on-ice 

in cold buffer 100 mM potassium phosphate (Sigma-Aldrich, Germany) pH 7.0 containing 2 mM 

of EDTA (Riedel-Haën, Germany). Tissue homogenates were centrifuged at 10,000x g for 15 

minutes at 4 ºC. Supernatant was removed and freeze at -80 ºC for further analysis. 

 

3.4 Histology  

3.4.1 Optical Microscopy 

Histological procedures for light microscopy followed essentially Martoja and Martoja (1967). 

Briefly, after a fixation period of 48 h in Bouin's fluid, the samples were washed in tap water 

and passed through a series of alcohols (70º, 95º and 100º) for dehydration, followed by a 

bath of xylene (Lab-Scan, Belgium) for intermediate impregnation.  
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Samples were kept overnight in liquid paraffin (Panreac, Spain) at 56 ºC within an incubator, 

for impregnation. Afterwards, samples were embedded in paraffin (Panreac, Spain) using 

Leuckart's bars as mold, in order to obtain solid blocks containing the tissue specimens.  

After solidification, tissue samples within the blocks were sliced with a microtome (Leica, 

Germany) in sections of 5-7 µm thickness. Slices were put in a container with warm water, to 

avoid a coarse surface and an albumin solution was used for the adhesion of tissues slices into 

the slides.   

Paraffin was removed from slides using xylene as solvent, followed by a treatment in a 

graduate series of alcohols (100º, 95º and 70º) and a bath with demineralized water.   

Slides were stained with hematoxyline, which dyes the cellular nucleous with a violet color, 

and eosine, which dyes the cellular cytoplasm and intercellular substances with a red-orange 

color, (H&E), followed by deshydratation steps with alcohols 95º and 100º and xylene.  

Alcian blue 8GX (BDH, Poole, UK), at pH=2.5, was carried out according to Carson´s (1990) for 

differentiating mucous in gills and intestine, using Nuclear Fast Red (SIGMA, St. Louis, MO, 

USA) as counter staining. 

The histological observations were carried out using an optical microscope (Leica-ATC 2000, 

Wetzal., Germany), with an image system from Leica Microsystems (DMLB model). 

3.4.2 Transmission Electron Microscopy (TEM) 

Fragments of tissues were fixed sequentially in 3% glutaraldehyde (in cacodylate buffer), 

osmium tetroxide (in the same buffer) and uranyl acetate (in bi-distilled water). Dehydration 

was carried out in increasing concentrations of ethanol. After passage through propylene 

oxide, the samples were embedded in Epon-Araldite.  

Thin sections were made with diamond knives and stained with 2% aqueous uranyl acetate 

and Reynold’s lead citrate. The stained sections were studied and photographed in a JEOL 

100-SX electron microscope. 

3.4.3 Scanning Electron Microscopy (SEM) 

Sample preparation for SEM followed essentially Glauert (1975). Sections of 5 to 7 μ thickness 

of tissues fixed in Bouin-Hollande (48h) were cut from paraffin blocks with a microtome 

(Leica) and mounted on a carbon slide. Then paraffin was removed from sections with xylene, 

treated with graded series of ethanol and allowed to dry. Although the carbon tape tended to 

curl during sample treatment it was possible to analyze samples efficiently. The carbon tape 

with samples was mounted on aluminum paint, coated with a 3 nm palladium-gold film in a 

Quorum Q150T ES sputtering system. The surface of the samples was observed in a scanning 
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electron microscope (SEM) Carl Zeiss AURIGA (Germany) at 1-2 KeV, with an aperture size of 

30 microns.  

The elemental analysis of the samples was carried out with an Energy Dispersive X-ray 

spectroscopy (EDS) detector installed in the SEM, with beam energy of 10 keV and aperture 

size of 120 microns. 

 

3.5 Determination of Total Protein   

The determination of total protein concentration was based on the method described by 

Bradford (1976). This method relies on the binding of the acidic dye Coomassie Blue G-250 to 

protein, turning the dye into an anionic blue form, which absorbs at 595 nm and thus allows 

estimating spectrophotometricaly the protein concentration.  

Comassie Blue G-250 (50mg) (BioRad, USA) was dissolved in 50 mL methanol and added to 100 

mL of 85% H3PO4 (Riedel-Haën, Germany). The solution was diluted with distilled H2O to the 

final volume of 1 L, then filtered to remove precipitates and stored at 4 ºC.  

Bovine Serum Albumine (BSA) was used to prepare the standard curve. A stock BSA (Sigma-

Aldrich, Germany) solution was prepared, using distilled water, to a concentration of 

1mg/mL. BSA protein standards solutions within a range from 0.0 to 1.0 mg/mL were 

prepared from the stock solution, by successive dilutions.  

The assay was performed using a 96 well microplate (Nunc-Roskilde, Denmark), where 10 µL 

of BSA standard or sample were added to 190 µL of Bradford reagent in each well. The 

absorbance at 595 nm was measured using a plate reader (BioRad Benchmark, USA). The 

protein concentration of samples was calculated using the software program Microplate 

Manager 4.0, using a BSA standard curve previously prepared, and the results were expressed 

in mg total protein/mL.   

 

3.6 Determination of Enzymatic Activity 

3.6.1 Catalase (CAT) 

CAT activity was estimated based on the spectrophotometric method described by Aebi 

(1984), which follows the decrease in absorbance at 240 nm by H2O2 consumption.  
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A substrate solution of 0.036% (w/w) H2O2 was prepared in buffer 50 mM KH2PO4 (Sigma-

Aldrich, Germany) pH 7.0 containing 1 mM EDTA (Riedel-Haën, Germany), at 25 ºC using 30% 

(w/w) H2O2 (Sigma-Aldrich, Germany).  

Bovine liver catalase (Sigma-Aldrich, Germany) was used as standard and positive control.  

To perform the assay, 0.1 mL of CAT standard or sample were added to 2.9 mL of the 

substrate solution in individual quartz cuvettes and absorbance at 240 nm was recorded every 

15 seconds for 2 minutes (at 25 ºC, pH 7.0 and path length 10 mm), using a 

spectrophotometer (Unicam Helios, Portugal). 

The change in absorbance per minute (ΔA240) was estimated and the reaction rate at 240 nm 

was determinate using H2O2 extinction coefficient of 40 M-1cm-1. The results are expressed in 

relation to the total protein concentration of the sample (nmol min-1mg-1 total protein).  

3.6.2 Glutathione-S-Transferase (GST) 

GST activity was determinate based on the procedure described by Habig et al. (1974), in 

which the enzyme activity is determined spectrophotometrically at 340 nm by measuring the 

formation of the conjugate of glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB).  

A substrate solution was prepared using Dulbecco’s Phosphate Buffered Saline (Sigma-Aldrich, 

Germany) with 200 mM L-glutathione reduced (Sigma-Aldrich, Germany) and 100 mM CDNB 

(Sigma-Aldrich, Germany). 

Equine liver GST (Sigma-Aldrich, Germany) was used as standard and positive control.  

To perform the assay, 180 µL of substrate solution were added to 20 µL of GST standard or 

sample in each well of a 96-well microplate (Nunc-Roskilde, Denmark) and the absorbance at 

340 nm was recorded every minute for 6 minutes, using a plate reader (BioRad Benchmark, 

USA). 

The change in absorbance per minute (ΔA340) was estimated and the reaction rate at 340 nm 

was determined using CDNB extinction coefficient of 0.0096 µM-1cm-1. The results are 

expressed in relation to total protein concentration of the sample (nmol min-1mg-1 total 

protein).  

3.6.3 Superoxide Dismutase (SOD) 

The procedure for SOD activity determination followed the nitroblue tetrazolium (NBT) 

method, adapted from Sun et al (1988). In this method, superoxide radical (∙O2
-) are 

generated by the reaction of xanthine with xanthine-oxidase (XOD), and reduce NBT to 

formazan, which can be assessed spectrophotometrically at 560 nm. SOD competes with NBT 
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for the dismutation of ∙O2
- inhibiting its reduction. The inhibiton level is used as a measure of 

SOD activity.  

SOD from bovine erythrocytes (Sigma-Aldrich, Germany) was used as standard and positive 

control.  

The assay was performed using a 96-well microplate (Nunc-Roskilde, Denmark), adding to 

each well 200 µL of 50 mM phosphate buffer (pH 8.0) (Sigma-Aldrich, Germany), 10 µL of 3 

mM EDTA (Riedel-Haën, Germany), 10 µL of 3 mM xanthine (Sigma-Aldrich, Germany), 10 µL 

of 0.75 mM NBT (Sigma-Aldrich, Germany)  and 10 µL of SOD standard or sample. The reaction 

was started with the addition of 100 mU XOD (Sigma-Aldrich, Germany) and the absorbance at 

560 nm was recorded every minute for 5 minutes, using a plate reader (BioRad Benchmark, 

USA). Negative control included all components except SOD or sample, producing a maximal 

increase in absorbance at 560 nm, which allowed determining the inhibition percentage per 

minute, caused by SOD activity.   

The total SOD activity is expressed in units/mg of protein, where one unit is equivalent to the 

SOD activity that causes 50% inhibition of the reaction rate without SOD. 

 

3.7 Lipid Peroxidation   

Lipid peroxidation was determined based on Thiobarbituric Acid Reactive Species (TBARS) 

method, following the procedure described by Ohkawa et al. (1979). TBARS method is based 

on the reaction of malondialdeide (MDA, a compound that results from lipid peroxidation) 

with thiobarbituric acid (TBA), which produces a compound that absorbs at 532 nm.  

Trimethylolpropane (TMP) is an acetal of MDA, which is converted into MDA during an acid 

incubation, thus TMP (Merck, Germany) was used for the construction of a TBARS standard 

curve. Standards solutions within a range from 0.0 to 0.3 µM were prepared from a TMP stock 

solution prepared with distilled water. 

The reaction was performed using individual Eppendorf tubes for each standard or sample, 

where was added 5 µL of standard or sample, 45 µL of buffer 100 mM KH2PO4 (Sigma-Aldrich, 

Germany) pH 7.0 containing 2 mM EDTA (Riedel-Haën, Germany), 12.5 µL of 8.1 % Sodium 

Dodecyl Dulfate (SDS) (Merck, Germany), 93.5 of 20% Trichloroacetic acid (TCA) (Merck, 

Germany) pH 3.5, 93.5 µL of 1% TBA (Merck, Germany) and 50.5 µL of distilled water. The 

reaction tubes were put on a boiling water bath for 10 minutes and then were cooled on ice, 

to stop the reaction. Afterwards, 62.5 µL of distilled water and 312.5 µL of n-butanol:pyridine 

(15:1 v/v) (Merck, Germany) were added to the tubes and the mixture was then well mixed 
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and centrifuged. 150 µL of the supernatant were removed and added to the wells of a 96-well 

plate. The absorbance at 532 nm was measured using a plate reader (BioRad, USA). 

The MDA concentration of samples was calculated with the computer program Microplate 

Manager 4.0, using the TMP standard curve previously prepared. The results were expressed 

in relation to total protein concentration of the sample (nmol mg-1mL-1). 

 

3.8 Statistical analysis 

Statistical analysis of the results was carried out by one-way ANOVA, after the data had been 

checked for assumptions of normality and homogeneity (Leven’s test) and, if necessary, 

appropriately transformed.  

The post-hoc Tukey test was used to compare pairs of means and detect significant 

differences (P<0.05). The statistical analysis was performed at the significance level of 5%, 

using the software Statistica 8.0 (StatSoft Inc., Tulsa, OK, USA, 2007). 
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4 Results 

 

4.1 Nanoparticles characterization in aquatic suspensions  

After the addition of TiO2 NPs stock solutions to the exposure tanks, a rapid sedimentation of 

NPs was observed at higher exposure concentrations (≥ 10 mg TiO2/ L). Despite having a 

primary size of 21 nm in powder form, once in suspension it was observed the formation of 

macroscopic aggregates over time. These aggregates deposit at tanks bottoms, covering the 

organisms (Fig. 11, C). In order to avoid the excessive deposition of NPs, the exposure 

solutions were renewed every 48 hours. The continuous aeration of the tanks and the fish 

swimming movements also aided to re-suspend NPs in water.   

 

 

Figure 11 Tanks for the C. fluminea exposure to TiO2 NPs. 100, 10 and 1 mg/L exposure 

tanks, in the beginning of the experiment (A); 100 mg/L exposure solution, after its 

preparation (B); 100 mg /L exposure solution, after 48 hours (C). NPs are visible at tanks 

bottom and covering the organisms (C). 

 

 

Figure 12 Scanning Electron Microscopy of TiO2 NPs. SEM picture from an aquatic 

suspension of TiO2 NPs, collected from the exposure tanks.  

100 nm 
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Nanoparticle Tracking Analysis, allowed the visualization of TiO2 NPs and its movements in 

real-time and the determination of the particles size/concentration in suspension. For a 

measurement time of 60 seconds and a concentration of 2.76 x108 particles/mL, it was 

detected the presence of a wide range of different particles sizes, from 10 to 210 nm, with a 

higher concentration of 86 nm NPs (Fig. 13).      

 

 

 

Figure 13 Nanoparticle Tracking Analysis. Sample report and images acquired from 

NanoSight’s NTA software. Particle size/concentration shows a distribution within 10 – 210 

nm, with peaks at 50, 66 and 86 nm.  
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4.2 Mortality and macroscopic observations  

4.2.1 C. auratus characterization and macroscopic observations  

For the different assay periods no significant mortality (<10 %) was observed in all 

treatments, even at higher concentrations of TiO2 NPs (Tab. 3, annex I). 

During the assay, fish exposed to higher concentrations of TiO2 NPs (≥ 10 mg/L) seemed to 

have lower food intake, with a visible reduction or even absence of excretion products. At 

these concentrations it was also observed a progressive loss of scales. A few fish presented a 

progressive development of fungal infections, at low exposure (Fig. 14). 

 

Figure 14 C. auratus macroscopic observations. Fish exposed to 0.1 mg/L after 14 days, 

presenting fungal infection (indicated by arrows).   

 

 

Figure 15 Macroscopic observations of NPs presence in C. auratus. Presence of visible 

aggregates from TiO2 NPs (indicated by arrows) in exposed fish. NPs visible at urogenital 

orifice of an 800 mg TiO2/L exposed fish, after 7 days (A); NPs in the gills surface after 14 

days, 400 mg TiO2/L exposure (B); NPs filling all intestine after 21 days, 10 mg TiO2/L 

exposure (C).   

 

A C B 
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After a 7 days exposure, some individual fish exposed to concentrations above 100 mg/L 

presented visible NPs aggregates within digestive system (Fig. 15 A). After 14 days NPs were 

also visible on gills surface (≥ 400 mg/L, Fig. 15 B) and inside the intestine of 10 mg/L 

exposed fish. After 21 days NPs filled almost all intestines of organisms exposed to 

concentrations of TiO2 NPs above 10 mg/L (Fig. 15 C) and were also visible on its gills surface. 

 

 

4.2.2 C. fluminea characterization and macroscopic observations  

It was observed an increase of the mortality in organisms exposed to TiO2 NPs, with a 

significant mortality rate (≥ 10 %) for 0.1, 10 and 100 mg/L concentrations, during the assay 

periods (Tab. 4, annex II; Fig. 16). After 7 days of 100 mg/L exposure to TiO2, only one 

individual has survived to this concentration. Thus, new organisms were exposed to 100 mg/L 

for another 7 days period in order to obtain a significant number of organisms to sample.  

 

 

 
 

Figure 16 C. fluminea cumulative mortality rate.  
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A1 A2 

B1 B3 

A3 

B2 

 
At concentrations above 1 mg/L, TiO2 NPs formed visible macromolecular aggregates that 

deposit at the tanks bottom and cover the organisms’ shell (Fig. 17). The NPs affinity to 

adsorb to the shell surface seems to provoke its degradation over time.     

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Macroscopic observation of C. fluminea shell. Control organism (A1, A2 and A3); 

organism exposed to 10 mg TiO2/L, after 14 days (B1, B2 and B3) with visible adsorption of 

NPs to the shell surface (arrowhead).  
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4.3 Histological observations  

4.3.1 C. auratus histopathological analysis  

4.3.1.1 Liver 

Histological observation of livers from control fish show a normal tissue structure, constituted 

by a homogeneous hepatic parenchyma. The system of hepatocytes presents a polygonal 

shape well defined and sustained by a sinusoidal net. The hepatocytes have a large cytoplasm 

volume with central and spherical nucleus (Fig. 18 A).  

   

   

Figure 18 Observation of C. auratus liver sections by optical microscopy. Control fish (A); 

Fish exposed to different concentrations of TiO2 nanoparticles (B, 0.1 mg/L for 21d; C, 10 

mg/L for 21d; D, 100 mg/L for 21d; E, 400 mg/L for 7d; F, 800 mg/L for 14d). Legend: hp, 

hepatocytes; la, loss of cellular adhesion; bi, binucleated nuclei (arrowhead); er, 

erythrocytes. Staining: H&E. 
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Histopathological analysis revealed severe structural changes in the hepatic tissue from fish 

exposed to the different concentrations of TiO2 NPs (Fig. 18 B - F), comparatively with control 

organisms. Exposed organisms suffer a progressive degeneration and loss of integrity of the 

hepatic tissue, with severity levels increasing with concentration and over the time. 

Hepatocytes present a reduction of cytoplasmic volume, with loss of their typical cellular 

polygonal shape. It is visible a disorganization of the cellular tissue, with cytoplasmic 

membrane disintegration and loss of adhesion between hepatic cells (Fig. 18 B – F). Some 

cells also present binucleated nuclei (Fig. 18 F).  

 

 

  

 

Figure 19 Electron microscopy observations of C. auratus liver tissue after exposure to 

TiO2 NPs. SEM image of hepatic tissue from control fish (A), and from fish exposed to TiO2 NPs 

(B); TEM image of a hepatocyte from fish exposed to TiO2 NPs (C), showing no visible TiO2 NPs 

inside the cell. 

 

The observation of liver sections from individuals exposed to TiO2 NPs trough scanning 

electron microscopy showed severe alterations in the hepatic tissue structure (Fig. 19 B), 

comparatively to control organisms (Fig. 19 A). EDS elemental analysis did not detected TiO2 

in hepatic tissue of tested fish. Transmission electron microscopy showed no presence of TiO2 

NPs inside hepatocytes of exposed livers (Fig. 19 C).  
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4.3.1.2 Gills 

Gills from control fish show normal histology (Fig. 20 A). Gill filaments present a regular 

structure with evident lamellae spacing. The lamellae are well differentiated and arranged in 

both sides of branchial filament.  

 

   

 

 
 

 

 

 

 

 

 
 

 

Figure 20 Observation of C. auratus gill sections by optical microscopy. Control fish (A); 

Fish exposed to different concentrations of TiO2 NPs (B, 0.01 mg/L for 7 days; C, 0.1 mg/L for 

7 days; D, 10 mg/L for 14 days; E, 100 mg/L for 14 days; F, 100 mg/L for 14 days; G, 400 

mg/L for 14 days; H, 800 mg/L for 21 days; I, 800 mg/L for 21 days). Legend: f, filament; l, 

lamellae; h, hyperplasia; a, lamellar aneurysms; fc, complete fusion of lamellae; fi, 

incomplete fusion of lamellae; (*) presence of mucous; (arrowhead) possible presence of TiO2 

NPs agglomerates in the tissue. Staining: H&E and Alcian Blue. 

 

Organisms exposed to the different concentrations of TiO2 NPs present histopathological 

alterations in gill tissue (Fig. 20 B – I), visible soon after 7 days of exposure. The most 

common alteration detected is hyperplasia, with a progressive proliferation of epithelial cells 

occurring between the inter-lamellar spaces. This disorder is visible in organisms from every 
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exposure concentration, with different degrees of severity. The generality of the individuals 

exposed from 0.01 to 10 mg/L show an incomplete fusion of several lamellae (Fig. 20 B – D). A 

higher degree of hyperplasia is present in organisms exposed to concentrations above 100 

mg/L, with individuals suffering a complete fusion of lamellae (Fig. 20 E – I). Tissue 

alterations also include hypertrophy and displacement of the branchial epithelial cells, 

cellular and blood vessels alterations. Alcian Blue staining revealed a proliferation of mucous 

cells in the gill inter-lamellar space of exposed organisms (Fig. 20 B – I), increasing the 

mucous secretion. Control organisms show an apparent low intensity or absence of mucous 

production (Fig. 20 A).  

 

 

 

 

 

 

 

 

 

 

Figure 21 Electron microscopy observation and elemental analysis of C. auratus gill tissue 

after exposure to TiO2 NPs. SEM image (A1) of a gill filament with lamellae fusion and 

respective EDS spectrum (A2), with no detection of TiO2 in the selected section. TEM image 

(B) showing visible TiO2 NPs (arrowhead) inside gill cell. Legend: l, lamellae; (*) vacuoles in 

mucous secretory cells.  

 

The observation of sections from gill filaments through scanning electron microscopy 

combined with elemental analysis by an EDS analyzer, showed no apparent detection of TiO2 

in cellular tissues of individuals exposed to TiO2 NPs (Fig. 21 A1, A2). However, transmission 

electron microscopy was able to provide a clear image of the presence of TiO2 NPs inside gill 

cells from organisms exposed to TiO2 NPs (Fig. 21 B).  
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4.3.1.3 Intestine 

Histological analysis of the intestine from control fish showed the usual tissue structure for 

this organ, with presence of normal food residues within intestine lumen (Fig 22 A, B). The 

intestinal epithelium has numerous villi, well separated, lined by a simple epithelium of 

columnar cells, and an apical striated border (microvilli) interspersed with goblet (mucus-

secreting) cells.  

 

 

   

   

   

 

 

Figure 22 Observation of C. auratus intestine sections by optical microscopy. Control fish 

(A and B); Accumulation of nanoparticles inside intestine lumen of fish exposed to different 

concentrations of TiO2 NPs (C and D, 10 mg/L for 21d; E, 100 mg/L for 21d; F, 400 mg/L for 

21d; G, 400 mg/L for 21d; H and I, 800 mg/L for 21d). Legend: f, tip fusion; In, Intestine 

epithelium; NPs, nanoparticles aggregates; lu, intestine lumen; black arrowheads, epithelium 

erosion; blue arrowheads, mucous barrier; V, villi. Staining: H&E and Alcian Blue.  

 

 

 

A 

I H G 

F E D 

C B 

100 µm 

100 µm 

100 µm 

100 µm 30 µm 

30 µm 30 µm 

30 µm 30 µm 

V V 

V 

V 

V 

V 

V 

V 

V 

NPs 

NPs 

NPs 

NPs 

NPs 

NPs 

NPs 

lu 

lu 

lu lu 

lu 

lu 

lu 

lu 

lu 

f 

f 

f 



 

 42 

 

Concerning to exposed fish (Fig. 22 C - I), it was observed the presence of huge compact 

clusters of nanoparticles accumulated inside intestine lumen, for exposures above 10 mg 

TiO2/L. Histological examination indicates that intestine aggregates of NPs increase in 

accordance with exposure time and tested treatments. Trough light microscopy, NPs were 

observed not only in the intestinal contents, but also in contact and apparently within the 

intestine epithelium (Fig. 22 D). The microscopic analysis showed significant changes in 

intestinal tissues in fish exposed above to 10 mg TiO2/L. Comparatively to control organisms, 

exposed organisms showed tissue alterations with loss of the regular cellular structure, 

including the erosion of the intestinal epithelium, fusion of some villi and presence of a 

mucus “barrier” between NPs accumulated inside intestine lumen and epithelium cells.  

 

 

 

 

 

 

 

Figure 23 Electron microscopy observation and elemental analysis of C. auratus intestinal 

tissues after exposure to TiO2 NPs. SEM from nanoparticles aggregates (*) inside intestine 

lumen (A1), respective EDS spectrum (A2) revealing the presence of Ti (arrowhead) among 

other elements, and Ti distribution within intestine. TEM image of intestine from fish exposed 

to 100 mg TiO2/L (21days). Legend: In (intestine epithelium cells); lu (intestine lumen); M 

(mucous layer); NPs (nanoparticles aggregates).  

 

The EDS analysis performed on tissue sections (Fig. 23 A1, A2 and A3) confirmed that the 

aggregates observed by light microscopy in the intestine lumen are composed by titanium as 

shown by the respective EDS spectrum (Fig. 23 A2). With respect to the intestine epithelium 

no evidence of NPs internalization by cells was found by EDS neither by SEM observation. 
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4.3.2 C. fluminea histopathological analysis  

Control organisms (Fig. 24 A) present the typical cellular structure for this species. Cells from 

the digestive gland have the normal membrane thickness, there is no cellular atrophy and the 

digestive lumen is nearly occluded. 

 

   

   

Figure 24 Observation of C. fluminea digestive gland sections trough optical microscopy. 

Digestive gland cells of a control organism (A) and of organisms exposed 14 days to different 

concentrations of TiO2 NPs (B, 0.1 mg/L; C and D, 10 mg/L; E and F, 100 mg/L). Legend: DG, 

digestive gland; arrowheads, nanoparticle; *, cell atrophy. Staining: H&E.  

 

The histological observations showed that exposed organisms suffer a progressive alteration 

and degeneration of the tissue structure, mainly on the digestive gland cells (Fig 24 B – F), 

even at the lowest concentration of TiO2 NPs. The cellular membrane loss its normal thickness 

and the great majority of cells are atrophied. It seems that there is a bioaccumulation of TiO2 

NPs in the tissue, with adhesion of NPs to the digestive cells wall (Fig. 24 F), especially to 

those exposed to 100 mg/L.  
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The presence of TiO2 NPs in exposed organism was confirmed by x-ray elemental analyze and 

it showed that these NPs have a major affinity to adsorb to the shell (Fig. 25). 

 

 

 

 

 

 

 

 

 

Figure 25 Electron microscopy observation and elemental analysis of C. fluminea after 

exposure to TiO2 NPs. SEM of the C. fluminea shell surface (A) and respective EDS spectrum 

(B), showing the presence of TiO2 (arrowhead).  
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4.4 Antioxidant activity and Lipid Peroxidation analysis 

4.4.1 SOD activity in C. auratus  

 

 

 

Figure 26 SOD activity in C. auratus.  SOD activity (mean±SD) in livers of C. auratus exposed 

to different concentrations of TiO2 NPs, for 7, 14 and 21 days. Statistically significant 

differences comparatively to controls if * (p<0.05). Letters indicate significant differences 

between exposure periods (p<0.05), comparatively to 7 days (a), 14 days (b) and 21 days (c).  

 

The activity of SOD was measured in livers from C. auratus, and presented in terms of 

percentage in Figure 26.  Statistical analysis showed no significant difference (p>0.05) in SOD 

activity before the beginning of test (16.95±1.09 %) and activity measured in controls at 7, 14 

and 21 days. Results show an increase of enzymatic activity in exposed organisms, 

proportional to the tested concentrations.  After 7 days a significant increase of SOD activity 

(p<0.05) was found for fish exposed from 0.1 to 800 mg/L, after 14 and 21 days the 

differences were significant (p<0.05)  for every exposure concentration, in comparison to 

controls. The highest SOD activity (87.78 %) was measured in the livers of fish exposed to 800 

mg TiO2/L during 14 days. Significant increases (p<0.05) were found in concentrations of 0.01 

mg/L from 7 to 21 days, 10 mg/L and of 400 mg/L from 7 to 14 days. There was a general 

decrease of SOD activity from 14 to 21 days, at concentrations above 10 mg/L, with a 

significant difference (p<0.05) for the concentration of 10 mg TiO2/L. 
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4.4.2 CAT activity in C. auratus 

 

 

 

Figure 27 CAT activity in C. auratus.  CAT total activity (mean±SD), measured  in liver (A), 

gills (B) and intestine (C)  of C. auratus, after 7, 14 and 21 days of exposure to TiO2 NPs. 

Significant differences (p<0.05) comparatively to controls if *. Significant differences between 

exposure periods (p<0.05), comparatively to 7 days (a), 14 days (b) and 21 days (c). 
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CAT activity was measured in livers, gills and intestines from C. auratus and the activity 

concentrations are presented in Figure 27. For each organ there was no statistically 

significant difference (p>0.05) in measured activity before the beginning of test (135.65±5.63 

nmol/min/mg total protein in livers; 4.09±0.82 nmol/min/mg total protein in gills; 6.03±0.72 

nmol/min/mg total protein in intestines) and activity in controls at 7, 14 and 21 days.  The 

measured CAT activity was higher in livers than in gills and intestines.  

In livers, CAT activity increased after 14 days for the majority of test concentrations. 

Significant increases of CAT activity (p<0.05) were found in exposed fish comparatively to 

controls, after 7 days for fish exposed from 100 to 800 mg/L, after 14 days for exposure 

concentrations between 0.01 and 400 mg/L and after 21 days for concentrations of 0.01, 0.1, 

100 and 400 mg TiO2 /L, in comparatively to controls. The highest CAT activity (372.96 

nmol/min/mg total protein) was measured after 14 days exposure to 10 mg TiO2/L. From 7 to 

21 days it was observed a significant increase (p<0.05) inside the concentrations of 0.01 and 

0.1 mg/L and from 7 to 14 days for an exposure of 10 mg TiO2/L. A significant activity 

decrease (p<0.05) occurred from 14 to 21 days in the concentrations of 10 and 100 mg TiO2/L. 

Concerning to gills and comparatively to controls, significant increases of CAT activity 

(p<0.05) were found in concentrations above 100 mg/L for a 7 days exposure and in 

concentrations of 0.01, 0.1, 10, 100 and 800 mg/L for a 14 days exposure and concentrations. 

At the end of 21 days no significant differences (p<0.05) were found between treatments and 

controls. The highest CAT activity (26.55 nmol/min/mg total protein) was measured at 7 days 

exposure to 800 mg TiO2/L.  Significant activity increases (p<0.05) from 7 to 14 days were 

found inside exposure concentrations of 0.01 and 10 mg/L. From 7 to 21 days occurred 

significant decreases (p<0.05) of CAT activity inside concentrations of 400 and 800 mg TiO2/L.  

In respect to intestine, there was a general increase of CAT activity in exposed fish 

comparatively to controls, statistically significant (p<0.05) for exposure concentrations above 

0.1 mg TiO2/L after 7 and 21 days, and for every concentration after 14 days of exposure. The 

highest CAT activity (32.96 nmol/min/mg total protein) was measured at the concentration of 

400 mg TiO2/L, after 14 days of exposure. There was a significant increase of activity (p<0.05) 

for the concentration of 10 mg/L from 7 to 21 days of exposure. Significant decreases of 

activity (p<0.05) were found between 14 and 21 days for exposure to concentrations of 400 

and 800 mg TiO2/L. 
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4.4.3 GST activity in C. auratus 

 

 

 

 

Figure 28 GST activity in C. auratus. GST total activity (mean±SD), measured  in liver (A), 

gills (B) and intestine (C)  of C. auratus, after 7, 14 and 21 days of exposure to TiO2 NPs. 

Significant differences (p < 0.05) comparatively to controls (*). 
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Average concentration of the cytosolic GST total activity was measured in livers, gills and 

intestines of C. auratus and results are showed in Figure 28. For every organ, statistical 

analysis showed no significant difference (p>0.05) between the measured GST activity in the 

beginning of test (87.18±6.72 nmol/min/mg total protein in livers; 20.43±3.25 nmol/min/mg 

total protein in gills; 16.73±4.00 nmol/min/mg total protein in intestines) and activity in 

controls after 7, 14 and 21 days.  GST presented a higher total activity in livers than in gills 

and intestines. 

GST activity in livers increased significantly (p<0.05) in fish exposed to every tested 

concentration after 7 days and in fish exposed from 0.1 to 100 mg TiO2/L after 14 and 21 

days, comparatively to controls. A significant decrease of activity (p<0.05) occurred after 14 

days for the exposure to 800 mg TiO2/L and after 21 days for 400 mg TiO2/L, comparatively to 

controls. The highest concentrations of GST activity (242.31 nmol/min/mg total protein) were 

measured in livers of fish exposed to 100 mg TiO2/mL after 14 days, whereas the lowest 

concentrations (48.36 nmol/min/mg total protein) were found in the concentration of 400 mg 

TiO2/L after 21 days.  It was observed a significant increase of activity (p<0.05) from 7 to 14 

days in fish exposed to 10 mg TiO2/L and from 7 to 21 days in exposure to 0.1 mg TiO2/L. 

Significant activity decreases (p<0.05) occurred from 14 to 21 days in the exposure 

concentrations of 10 and 100 mg TiO2/L and from 7 to 21 days for concentrations of 400 and 

800 mg TiO2/L.  

In gills, significant increases of GST activity (p<0.05) comparatively to controls were observed 

in concentrations of 10 and 100 mg TiO2/L after every exposure period, and in concentrations 

of 400 and 800 mg/L after 14 days of exposure. GST presented a higher activity (50.20 

nmol/min/mg total protein) at 7 days exposure to 100 mg TiO2/L.  No significant alterations 

(p>0.05) of GST activity in gills were found between exposure periods in every treatment.  

Concerning to intestine, it was observed a general increase of the GST activity after 7 and 14 

days of exposure, between exposed organisms and controls. Comparatively to controls, the 

activity increase was statistically significant (p<0.05), in concentrations from 0.1 to 100 mg 

TiO2/L after 7 days and in concentrations from 0.01 to 400 mg TiO2/L after 14 days. No 

statistical differences (p<0.05) were found between controls and treatments after 21 days of 

exposure. Fish exposed to 100 mg TiO2/L for 14 days presented the highest GST activity 

(43.62 nmol/min/mg total protein). From 7 to 14 days a significant activity increase (p<0.05), 

was found at 400 mg TiO2/L exposure. At the end of the experiment was observed a general 

decrease of GST activity in exposed organisms, statistically significant (p<0.05) for the TiO2 

concentrations of 0.1, 100 and 800 mg/L. 
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4.4.4 Lipid peroxidation in C. auratus 

 

 

 

 

Figure 29 LPO in C. auratus. LPO (mean±SD), measured  in liver (A), gills (B) and intestine 

(C)  of C. auratus, after 7, 14 and 21 days of exposure to TiO2 NPs. Significant differences 

(p<0.05) comparatively to controls (*). 
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The level of lipid peroxidation (LPO) was measured in livers, gills and intestines of C. auratus 

and results are represented in Figure 29. All organs showed no significant differences (p>0.05) 

between the measured LPO concentration level in the beginning of experiment (6.65±1.10 

nmol/mg total protein in livers; 5.75±2.78 nmol/mg total protein in gills; 9.48±2.93 nmol/mg 

total protein in intestines) and activity in controls after 7, 14 and 21 days.  Higher levels of 

LPO were found in gills and intestines. No significant alterations (p>0.05) of LPO levels in 

every organ were found between exposure periods. 

Livers presented increased LPO values at higher exposure concentrations, significantly 

different from controls (p<0.05) at concentrations of 100 to 800 mg TiO2/L after 7 days 

exposure, 100 mg TiO2/L after 14 days and 100 mg TiO2/L after 21 days. The highest 

concentration level of LPO (23.09 nmol/min/mg total protein) was measured in livers of fish 

exposed to 400 mg TiO2/mL after 21 days.  

LPO levels measured in gills showed significant increases (p<0.05) at every exposure 

concentration, comparatively to controls. Statistical differences from control (p<0.05) were 

observed in every exposure concentration after 7 days, in concentrations of 0.01, 10 and 100 

mg/L after 14 days of exposure and from 0.01 to 400 mg/L after 21 days. Higher levels of LPO 

(74.62 nmol/min/mg total protein) were observed at 14 days exposure to 10 mg TiO2/L.   

Concerning to intestine, it was observed an increase of the LPO levels after 14 and 21 days of 

exposure, for concentrations above 10 mg TiO2/L. At 7 days, no significant differences 

(p<0.05) were found between exposed fish and controls. Significant increases (p<0.05) were 

observed after 14 days in fish exposed to 100 and 400 mg/L and after 21 days from 100 to 800 

mg/L, comparatively to controls. The higher concentration value of LPO (45.53 nmol/min/mg 

total protein) was found in fish exposed to 400 mg TiO2/L at the end of the experiment. It 

was also observed a significant increase (p<0.05) of LPO from 7 to 21 days at the 

concentration of 400 mg TiO2/L.  
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4.4.5 C. fluminea antioxidant activity and lipo peroxidation analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 Activity of antioxidant enzymes and Lipid peroxidation level in C. fluminea. 

Specific activity of antioxidant enzymes SOD (A), CAT (B) and GST (C) and LPO level (D), 

measured  in digestive tissue homogenate of C. fluminea, after 7 and 14 days of exposure to 

TiO2 NPs. Data are reported as means ± SD. Significant differences (p<0.05) comparatively to 

controls (*). No significant differences were found between the different exposure periods 

(7and 14 days) for each exposure concentration. 

* 
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Enzymatic activity (SOD, CAT and GST) and LPO levels were measured in the digestive system 

of C. fluminea, and results are shown in Figure 30. For each different analysis, no statistically 

differences (p>0.05) were found in controls between the exposure periods (enzymatic 

activities for controls: 51% for SOD; 21.11 nmol/min/mL for CAT; 308.12 nmol/min/mL for 

GST). The activity of each antioxidant enzyme analyzed in exposed organisms showed a 

general increase comparatively to controls.  

After 7 and 14 days exposure periods, SOD activity increased significantly (p<0.05) at 0.01 and 

1 mg TiO2/L, in contrast with controls. The higher activity of SOD (88.30%) occurred in 

organisms exposed to 1 mg TiO2/L, after 7 days. Both CAT and GST activity had a significant 

increase (p<0.05) in every tested concentration. CAT showed a higher value of activity (83.33 

nmol/min/mL) in 100 mg TiO2/L, after a 7 day exposure. High activity of GST (481.13 

nmol/min/mL) was found in organisms exposed to 1 mg/L, after 7 days.  

Organisms suffered a significant increase (p<0.05) of LPO levels, from concentrations above 

0.1 after 7 and 14 exposure days, comparatively to controls. The most accentuated LPO value 

(38.5 mg/min/mL) was observed in the concentration of 1 mg TiO2/L, after 14 days of 

exposure.  
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5 Discussion 

 

There are many studies regarding nanoparticles toxicity in vertebrates, both in vitro and in 

vivo, which have raised concerns about the deleterious effects in living organisms with 

particular emphasis in humans (Dunford et al., 1997; Gurr et al., 2005; Lai et al., 2008; 

Elsaesser and Howard, 2012). However, ecotoxicological studies regarding TiO2 NPs are much 

more limited. For instance, most of the toxicity studies using freshwater invertebrates and 

exposure to TiO2 NPs focused mainly in freshwater invertebrates (e.g. Daphnia magna and 

Ceriodaphnia dubia), followed by a few reports on freshwater fish.   

Characterization of nanomaterials is particularly important to a full understanding of toxicity 

mechanisms and effects in a biological system. Proprieties such as size, chemical 

composition, surface area, shape, solubility and aggregation contribute for NPs toxicity. Still, 

nanomaterials characterization is a complex issue, particularly for studies carried out in 

aquatic environments. For example, particle size can have a dramatic effect in the response 

of organisms upon exposure: (a) Size can govern where and how the body reacts to the 

particulates (exposure); (b) Size is a factor in the ability of the body to clear foreign 

particles; (c) Size can be a factor in the ultimate fate of particles that are not cleared 

(translocation, accumulation); (d) Particle size can potentially influence direct mechanisms 

and extent of toxicity (cytotoxicity, necrosis and mutagenicity); and (e) Size directly affects 

the surface to mass ratio (specific surface area) and can have dramatic effects on surface 

reactivity and solubility of particulate systems (Powers et al., 2007).  

With respect to TiO2 NPs, although the physicochemical properties tested as powder form are 

well described by the manufacturer, once in suspension it behaves in a different mode by 

aggregating, forming clusters and sedimentating. Samples of TiO2 in aqueous suspensions 

were observed by electron microscopy and Nanoparticle Tracking Analysis. Despite a primary 

size of 21 nm, results showed the presence of a wide range of different TiO2 particles sizes in 

suspension, with a heterogeneous size distribution from nanoscale to microscale.  

The presence of a variety of nanoscale structures following the behavior of test materials in 

biological environments makes difficult the attempts to characterize nanoparticles as 

administered and as they interact with biological systems. Consequently, it is complicated to 

conduct reproducible and reliable toxicological studies concerning nanomaterials.  

Throughout the period of exposure to TiO2 NPs (21 days) it was found that tested 

concentrations were not lethal for tested fish. This can be partially explained by the known 

resistance of C. auratus to environmental perturbations and to man-made pollutants, such as 

heavy metals or organochlorine insecticides (Balon, 2004). 
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Though, the apparently low acute toxicity in found in goldfish does not mean there are no 

toxicity effects. In fact, as our results report, the organism´s organs show several histological 

and biochemical changes. Similar results were obtained by Frederici et al (2007) for rainbow 

trout upon 14 days of exposure to TiO2 NPs. However, there are evidences that exposure to 

NPs can have long term effects. For instance, Wiesner et al. (2009)   suggested that exposure 

to NPs may have long-term, evolutionary influences on organisms affecting their physiology 

and potentially their ability to reproduce. Additionally, TiO2 NPs have been already associated 

with changes in gene expression concerning fish species (Griffitt et al., 2009; Jovanic et al., 

2011). 

On the other hand, significant mortality rates were found in exposed bivalve’s species C. 

fluminea. Bivalve mollusks are widely used in biomonitoring programs and environmental 

perturbations, as they can provide accurate and integrated information about chemicals 

impact and bioavailability (Bilos et al., 1998). This is due to the great ability to filter large 

volumes of water, processing microalgae, bacteria, sediments, particulates, and natural 

nanoparticles, potentially accumulating different chemicals in their tissues and therefore 

being used as environmental indicators (Canesi et al., 2012). 

After entering aquatic ecosystems TiO2 NPs behavior affects organisms through different 

toxicity mechanisms. For instance, the deposition and accumulation of TiO2 NPs aggregates in 

sediment may present a higher risk of exposure and acute toxicity to filter feeders and 

sediment-dwelling organisms of aquatic ecosystems. A very interesting finding from the 

present study is the NPs adhesion to the skin and consequent loss of fish scales, while in 

bivalves NPs showed a high affinity to adsorb to the shell surface as shown by microscopy 

analysis. NPs may be able to enter through some fish organs, such as gills or intestine, which 

are in direct contact with water contaminated with NPs as confirmed by our results. With 

respect to other organisms, TiO2 NPs have been already reported as able to penetrate 

mammalian skin, reaching different tissues and induce lesions in different organs (Wu et al., 

2009). 

Histological analysis revealed moderate to severe structural alterations in liver, gills and 

intestinal tissue from C. auratus and in the digestive gland tissue from C. fluminea, according 

to the different concentrations of TiO2 NPs. 

Livers from C. auratus exposed to TiO2 NPs, showed loss of adhesion between hepatocytes 

and disorganization of the cellular structure, revealed by cellular membrane disruption. 

Presence of bi-nucleated nuclei, necrotic cells, some apoptotic bodies, few foci of lipidosis 

and macrophages presence were also observed in livers from fish exposed to higher 

concentrations (100 to 800 mg TiO2/L). TEM analysis revealed also severe changes in liver 

cells compatible with oxidative stress, but no proof of NPs internalization was found inside 

cells. Hepatocytes of exposed fish showed glycogen depletion, swollen mitochondria and 
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increased lysosomes, compared to controls. Overall, the results suggest a severe degeneration 

of hepatic tissues as a result of exposure to sub-lethal concentrations of TiO2 NPs that 

eventually ends in focal or total loss of tissue integrity. Similar observations have also been 

reported by Hao et al. (2009) in juvenile carps following exposure to concentrations of TiO2 

NPs within a range from 10 to 200 mg/L.  

Gills from exposed fish presented several changes, including different degrees of hyperplasia 

(from low to complete fusion of lamellae) and an increase of mucous secretion. Since gills are 

in direct contact with the exposure medium, increase of mucous detected in branchial tissues 

may work as a barrier and defense mechanism against external aggression, also indicating the 

NPs toxicity to this organ. Indeed mucus secretion by the gills is a common response to 

aqueous pollutants (Mallat, 1985), in order to prevent direct exposure of the sensitive gill 

epithelium (Smith et al., 2007). However, histological analysis showed that even at low 

exposure concentrations this defense was not sufficient to protect the gill from cellular 

pathologies as  also reported by other studies reporting similar findings, in mammals (Warheit 

et al., 2005, 2006) and in fish (Federici et al., 2007; Hao et al., 2009). In addition, TEM 

analysis revealed that TiO2 NPs were internalized by gills epithelial cells and accumulating in 

cell vacuoles.  

It was observed that NPs are ingested by fish from the aqueous suspensions and accumulated 

in fish intestine as clusters or aggregates over the exposure period. The histological 

observations suggest that NPs aggregates increase according to the different exposure 

treatments, showing higher NPs concentrations in fish exposed to concentrations above 10 mg 

TiO2/mL. Electron microscopy analysis was not able to detect NPs inside the intestine cells, 

possibly because the mucous produced by intestine cells worked as a barrier. Nevertheless, 

the presence of TiO2 NPs in the intestine may interfere with food intake and potentially 

obstruct the absorption of nutrients. It was also noticed that the great amounts of TiO2 

accumulated in intestine lumen   were difficult to be excreted normally by fish. Other studies 

showed similar accumulation of TiO2 NPs inside gastrointestinal tract of different organisms, 

such as D. magna, and the difficulty in eliminating these NPs from their body (Baun et al., 

2008; Kim et al., 2010; Zhu et al., 2010). The NPs ability to penetrate trough the biological 

barriers makes it easily for NPs to move through the biological systems and get into organs 

that are not directly exposed (Oberdörster et al, 2005; Nel et al, 2006). A study concerning 

effects of TiO2 NPs in juvenile rainbow trout following dietary exposure, showed the 

occurrence of Ti accumulation in gills, gut, liver, brain and spleen, with Ti not clearing in 

some organs following recovery in clean water, especially the brain (Ramsden et al., 2009).  

Histological analysis also revealed alterations of the gastric mucosa. NPs were observed in the 

intestinal lumen but also in direct contact with the intestine epithelium. Histological analysis 

showed significant changes in intestinal tissues in fish exposed above to 10 mg TiO2/L, such as 

the erosion of the intestinal epithelium, fusion of some villi and an apparent presence of a 
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mucus “barrier” between NPs accumulated inside intestine lumen and epithelium cells as 

previously referred.  Our results are in agreement with studies from Frederici et al. (2007) 

which suggested that the observation of a severe erosion of the trout gut epithelium can be a 

consequence of drinking contaminated water with NPs. 

Concerning C. fluminea digestive gland presented a progressive alteration and degeneration 

of the tissue structure, including normal thickness loss of cellular membrane and a general 

atrophy of cells. Apparently, there is accumulation of TiO2 NPs in the tissue, with adhesion of 

NPs to the surface of the digestive cells, especially visible to individuals exposed to 100 

mg/L. As suspension-feeders, bivalves have highly developed processes for cellular 

internalization of particles from nano to microscale particles (endo- and phagocytosis), 

essential to key physiological functions such as intra-cellular digestion and cellular immunity 

(Canesi et al., 2012). This may represent a higher susceptibility for these organisms to suffer 

toxicological effects from nanomaterials exposure and a cause for the acute toxicity observed 

in this study.  

Other studies using microscopy techniques also confirmed that TiO2 NPs have a strong affinity 

toward the cell surface, demonstrating probable interactions between the particles and the 

surface active sites of the cell membrane (Metzlera et al., 2011; Sadiq et al., 2011). Thus, 

NPs TiO2 toxicity to cells may result not only from the cellular internalization of NPs, but also 

from the adhesion/adsorptions of NPs to cell surface. 

Strong evidences to explain TiO2 NPs toxicity comes from the ability to generate free radicals 

which cause oxidative stress and cell damage in organisms. It is known that TiO2 NPs are able 

to produce reactive oxygen species (ROS) in the presence of UV irradiation but also in the 

absence of photoactivation (Armelao et al., 2007; Gurr et al., 2005; Reeves et al., 2008). The 

generation of ROS may induce direct oxidative stress in organisms, playing a major role in the 

TiO2 NPs potential toxicity. Studies reported that the formation of hydroxyl (OH) radical is a 

predominant source of biological damage (Reeves et al., 2008). Indeed, OH radical is the 

primary damaging species produced upon irradiation of TiO2 NPs (Dodd and Jha, 2009). It was 

also observed the additional formation of secondary products, as carboxyl radical anions 

(CO2
−) and superoxide radical anions (O2

−). A proposed pathway for damage, involves primary 

generation of OH radicals in the cytoplasm, which react to give CO2
− radicals, that can react 

with cellular oxygen to form O2
− and genotoxic hydrogen peroxide (H2O2) (Dodd and Jha, 

2009). Free radicals and consequent oxidative stress may cause peroxidation of the lipid 

membranes and direct damage to proteins, affecting cellular enzymatic defense activities 

(Reeves et al., 2008; Dodd and Jha, 2009). 

In aquatic organisms the efficiency of the antioxidant ability to control ROS production is 

marked by an array of antioxidant enzymes pool which leads to ROS detoxification (Abele and 

Pantarulo, 2004). This important and potent group of antioxidant enzymes include superoxide 
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dismutase (SOD), which converts O2- in H2O2; catalase (CAT) and glutathione peroxidase 

(GPx), which remove H2O2 avoiding its accumulation in cells and tissues; glutathione-S-

transferase (GST), and reduced glutathione (GSH), that transform xenobiotics into other 

conjugates; and glutathione reductase (GR), which delivers GSH to cells (Lesser, 2006). 

Therefore, in the present work it was used a multiple biomarker approach to evaluate 

oxidative stress. Levels of antioxidant enzymes (SOD, CAT and GST) and lipid peroxidation 

measured in target organs of C. auratus and C. fluminea showingsignificant differences 

between exposed organisms and controls overtime. In general results suggest that exposure to 

TiO2 NPs caused oxidative stress in both organisms. 

With respect to SOD, innumerous studies revealed an increase of SOD activity as a first line of 

defense mechanism against oxidative stress in different aquatic organisms such as mollusks, 

crustaceans, polychatea and fish (Abele-Oeschger and Oeschger, 1995; Abele et al., 1998; 

Cooper et al., 2002; Oliveira et al., 2005; Romero et al., 2007; Tremblay et al., 2011). 

Additionally, since SOD is the first enzyme to act with oxyradicals it can be used as oxidative 

stress signal for the early warning of environmental pollution. Thus, the depletion of SOD 

activity is used as an indication of free radical scavenging ability, showing that the 

antioxidant defense system is overwhelmed by ROS (Vander et al., 2003). Results showed a 

trend to increase of SOD enzymatic activity in livers of C. auratus according to tested 

concentrations after 7 days of exposure to TiO2 NPs. After 14 days a significant increase of 

SOD activity (p<0.05) was found for every tested concentrations, in comparison to controls, 

which might be due to the synthesis of new enzymes or the enhancement of pre-existing 

enzyme levels under lower concentrations. From 14 to 21 days, SOD activity continued to 

increase in individuals exposed to lower TiO2 NPs concentrations (0.01 and 0.1 mg/L), while a 

trend to decrease was found in organisms exposed to concentrations above 10 mg TiO2/L. This 

trend for the depletion of SOD activity indicates that the antioxidant defense systems are 

under exhaustion and losing efficiency. 

GST is an intracellular enzyme of the phase II of xenobiotic metabolism involved in 

detoxification by catalyzing the conjugation of a wide variety of electrophilic exogenous 

substances, and plays a role in preventing from oxidative damage by conjugating the 

breakdown products of lipid peroxides to reduced glutathione (GSH). Thus GST plays an 

important role by protecting cells and tissues from oxidative stress induced damages (Siddiqui 

et al., 1993; Slatinska et al., 2008), while CAT is involved in stress oxidative response 

catalysing the decomposition of H2O2. Usually, a reduction in CAT concentrations is associated 

to accumulation of hydrogen peroxide and other oxyradicals contributing to oxidative 

damage. In the present study, CAT and GST in C. auratus tissues (liver, gill and intestine) 

followed a similar pattern to SOD with a remarkable enzymatic activity increase at lower 

concentrations of TiO2 NPs and a significant reduction at higher concentrations. Major 

decreases were found in CAT and GST activities in fish liver, generally after 14 days of 
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exposure to TiO2 NPs concentrations above 10 mg/L. The results suggest that after an initial 

increase of antioxidant activity, the defense capability decreases overtime due to over-

produced ROS and oxidative stress occurred. In C. fluminea digestive gland, SOD activity 

presented significant differences at exposure concentrations of 0.1 and 10 mg TiO2/L, 

showing a trend to increase followed by a trend to decrease at 14 days. While for CAT and 

GST activities a significant increase was found in every treatment, for exposure periods of 7 

and 14 days.  

Similar fluctuations of SOD and CAT activity over concentration and exposure time were found 

in Juvenile Carp (Cyprinus carpio) upon TiO2 NPs exposure (Hao et al., 2009). The authors 

suggest that as the antioxidant enzymes are inhibited, ROS scavenging is weakened and they 

may be accumulated gradually in the major tissues of fish. Moreover, according to some 

authors, the GSH and enzymes such as GST, catalase and superoxide dismutase may increase 

caused by a compensatory mechanism to slight oxidative stress through an increase in its 

synthesis but severe oxidative stress may suppress their activities due to a loss in adaptive 

response mechanisms to induced stress (Zhang et al., 2005, Yi et al., 2007). A study from 

Zhang et al. (2005) which exposed goldfish to a chemical (2,4- dichlorophenol) for 40 days 

showed a similar response pattern reporting a liver GST activity increase until day 10 and 

then returned to the control level in the final days. Considering the GST activity results and 

that no significant mortality was observed in the present study this may indicate that for wild 

fish, potentially exposed to low concentrations, no adverse effects are expected. 

Studies reported that in response to toxicity induced by ROS, the concentrations of certain 

antioxidant enzymes are increased, but under high levels of pollution the antioxidant 

defenses can be reduced (Valavanidis et al., 2006). Significant increases in antioxidant 

enzymes can be a response to ameliorate oxidative stress, while the decrease of enzymatic 

activity may be a consequence of an exhaustion of the detoxification mechanisms (Jacobson 

& Reimschuessel, 1998), suggesting a precarious state characterized by a higher susceptibility 

to environmental stress and potential adverse effects (Cossu et al., 2000). This can explain 

the variations of antioxidant activity, from increase to depletion, over TiO2 NPs exposure 

periods in the present work. Thus, these results reflect not only the exposure to ROS, but also 

its toxicity.  

IT is well known that, lipid peroxidation (LPO) is commonly used as an indicator of oxidative 

stress of cells and tissues (Botsoglou et al., 1994). In fact, ROS can also react with organism’s 

lipids especially membrane-associated ones, a process designated by “peroxidation”, which is 

considered one of the most frequent cellular injury mechanisms (Lesser, 2011). The lipid 

peroxidation process is usually determined by the quantification of malondialdehyde (MDA) 

levels, one of the terminal products of the peroxidative breakdown of lipids (Uchiyama and 

Mihara, 1978). 
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The LPO results in C. auratus, suggest that gills are the most affected organ presenting 

highest levels of LPO, with significant increases at every TiO2 NPs exposure concentration, 

comparatively to controls. Thus, cellular defenses as mucous secretion and antioxidant 

enzymes were not enough to prevent oxidative damage, even at low exposure concentrations 

(0.01 and 0.1 mg TiO2/L) and LPO may be related to the cellular damage observed in gill 

tissue. In intestine increased LPO levels were observed after 14 days of exposure to TiO2 NPs 

concentrations above 10 mg/L, where NPs are visible inside intestine lumen. Both gills and 

intestine are in direct contact with TiO2 NPs, the first one through direct contact with aquatic 

medium and the second one through NPs ingestion. These observations suggest that direct 

contact with NPs may enhance LPO in tissues. Nevertheless, elevation of LPO was also found 

in livers, with significant increases comparatively to controls. Frederici et al (2007) also 

observed elevation of LPO in internal organs, as fish brain, that had no direct access to the 

aquatic media. This suggests some indirect mediation of oxidative stress to the internal 

organs, such as diffusion of the highly mobile hydroxyl radical from sites of direct contact and 

initial injury (as gills or skin), occurring a rapidly distribution of ROS around the body. Clearly, 

nanoparticles do not have to be internalized to generate systemic oxidative stress.  

Results from C. fluminea digestive gland showed increased levels of LPO in TiO2 NPs tested 

concentrations following exposure in comparison to controls. As observed through microscopy, 

TiO2 NPs are accumulated inside organisms in close contact with tissues and cells. The LPO 

results suggest that for this bivalve species TiO2 cause severe toxicity and damage to cells. 

However, since no similar studies using freshwater bivalves were found in current scientific 

literature it is difficult to compare the present results. The bivalve responses to TiO2 NPs 

exposure are possibly associated to the sedimentation (increasing bioavailability) of NPs and 

organism´s biology as described before. As a final remark the present study indicates that 

further studies with different bivalve species should be performed to increase knowledge on 

toxicity responses and to allow comparisons with other species. 

These results are generally in accordance with GST and CAT results. It was shown that LPO 

cause various negative effects in terms of cellular integrity namely at the level of membranes of 

the cells - they may lose permeability and function - among other changes as the production of 

pro-inflammatory agents and potentially toxic substances
 
(Greenberg et al., 2008).  
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6 Conclusions 

 

In this study, the exposure to TiO2 NPs in aquatic suspensions was not lethal for C. auratus, 

but significant mortality rates were found for C. fluminea.  

The exposure of C. auratus and C. fluminea to TiO2 NPs caused toxicity involving oxidative 

stress, induction of antioxidant activity, increase in lipid peroxidation and organ pathologies 

in fish gills, liver and intestine and in bivalves’ digestive gland. 

It was observed that NPs in suspension are ingested by fish, resulting in the accumulation of 

TiO2 NPs agglomerates inside intestine lumen. Besides, apparently a bioaccumulation of TiO2 

NPs occurs in bivalves, exposing inner tissues (as digestive gland) directly to NPs and making 

cells easily susceptible to suffer adverse effects.  

Using electron microscopy, cellular internalization of TiO2 NPs was confirmed in cells from 

fish gills. Though, it is still necessary to clarify the presence/absence of NPs inside cells from 

other important organs.  

The results suggest that releases of TiO2 NPs into aquatic ecosystems may pose a potential 

risk to organisms’ health and may cause deleterious effects in aquatic organisms. As 

nanomaterials (NMs) are increasingly entering in the world’s daily life, it is evident that 

effects of NMs, particularly TiO2 NPs, on environment are a matter of great concern and the 

precise mechanisms of toxicity of this and other types of NPs must be clarified. Moreover, the 

release of NPs into freshwater ecosystems may also pose a risk of human exposure via 

drinking water and food chains.  

Despite an increase of studies revealing toxicity of TiO2 NPs to aquatic organisms, there is an 

absence of studies focusing on the aquatic sediment-dwelling organisms. This should be a 

matter of great concern since findings from the present study suggest that these organisms 

may have a higher risk of exposure to NPs, caused by deposition and accumulation of NPs in 

the sediment.  

Finally, there is an urgent need of regulation concerning NMs. Thus, nanotoxicology data are 

required to evaluate the exposures and risks associated to NMs in order to protect human 

health and the environment. 

The specific properties and characteristics of nanomaterials need to be considered for any 

potential health risks, taking into account hazard assessment of nanotechnology products 

along the entire food chain (food, novel foods, food additives, food contact materials, feed, 
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pesticides). It is claimed that nanotechnology products could have a substantial impact on the 

food and feed sector in the future, offering benefits for industry and for the consumer.  

Companies and institutes worldwide are currently researching and developing applications in 

fields such as the treatment of the mechanical and sensorial properties of food – where for 

example taste or texture can be changed – and improvements in nutritional value.  

Recent EU legislation on novel foods will make it obligatory for producers to label products 

containing ingredients in the form of nanomaterials. 
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Annex I 

 

Table 3 Mortality rate, length and weight (mean ± SD), after 7, 14 and 21 days of TiO2 NPs 

exposure for C. auratus. 

[Nano-TiO2] mg/L Control 0.01 0.1 10 100 400 800 

Initial (n) 15 15 15 15 15 15 15 

7d Mortality % 0.95 0 0.95 0.95 0 0 1.9 

Sacrificed (n) 5 5 5 5 5 5 4 

Length (cm) 5.5±0.7 5.2±0.6 6±0.3 6.1±0.8 5.1±0.7 5.7±1.1 5.5±0.9 

Weight (g) 8.1±1.2 4.4±1.6 5.7±2.3 4.7±1.9 2.9±1.3 4.7±1.2 3.8±1.2 

14d Mortality % 0.95 0.95 0.95 0 0 1.9 0.95 

Sacrificed (n) 4 4 4 4 5 4 3 

Length (cm) 6.4±1.2 6.1±0.6 6.3±0.3 6.0±0.4 5.6±0.7 5.8±0.8 5.6±0.7 

Weight (g) 5.6±3.4 3.8±1.1 5.3±1.1 3.9±0.9 3.4±1.3 4.3±1.0 4.8±0.2 

21d Mortality % 0 0.95 0 0 0.95 0.95 0 

Sacrificed (n) 4 4 4 5 4 3 4 

Length (cm) 6.3±1.0 5.4±1.3 6.5±0.7 5.5±0.7 6.4±1.0 6.0±1.3 6.1±0.6 

Weight (g) 4.9±0.7 3.3±1.7 5.5±1.6 2.9±1.1 4.5±1.5 4.1±2.1 5.2±2.3 

Cumulative 

Mortality rate % 
1.9 1.9 1.9 0.95 0.95 2.85 2.85 
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Annex II 

 

Table 4 Mortality rate, length and weight (mean ± SD), after 7, 14 and 21 days of TiO2 NPs 

exposure for C. fluminea. 

[Nano-TiO2] mg/L Control 0.01 0.1 1 10 100 

Initial (n) 10 10 10 10 10 10 ; 5 

7d Mortality % 1.67 1.67 10 5 6.67 15 ; 5 

Sacrificed (n) 4 4 2 3 3 1 ; 2 

Length (cm) 3.1±0.4 2.9±0.3 3.1±0.1 2.7±0.2 2.7±0.1 2.6±0.1 

Weight (g) 2.1±0.2 1.7±0.3 1.9±0.5 1.4±0.3 1.5±0.13 1.1±0.3 

14d Mortality % 1.67 3.3 0 3.3 3.3 - 

Sacrificed (n) 4 3 2 2 1 - 

Length (cm) 3.0±0.3 2.8±0.1 2.8±0.4 2.6±0.1 2.7±0.0 - 

Weight (g) 1.4±0.3 1.3±0.08 1.3±0.13 1.2±0.2 1.06±0.0 - 

Cumulative 

Mortality rate % 
3.3 4.8 10 8.3 10 20 

 

 

 

 

 


