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Resumo Alargado 

 

A saúde e a alimentação são assuntos que suscitam grande interesse para a população em 

geral. O anti-envelhecimento e a proteção contra doenças são o objeto de inúmeras 

investigações, muitas delas envolvendo compostos naturais produzidos por plantas. As plantas 

são os mais antigos medicamentos do Homem e, atualmente, alguns dos compostos por elas 

produzidos são usados em várias indústrias, como a cosmética e a farmacêutica. Um dos 

compostos que tem suscitado bastante interesse devido às suas propriedades benéficas para a 

saúde é o resveratrol.  

O resveratrol (3, 5, 4’–trans-hidroxistilbeno) é um polifenol e uma fitoalexina (metabolito 

secundário de plantas) pertencente à família dos estilbenos. Este composto pode ser 

encontrado em forma livre ou glicosilada – e ambas existem nas formas isoméricas cis e trans. 

cis-Resveratrol tem um máximo de absorção aos 286 nm, enquanto no isómero trans o 

máximo é atingido aos 306 nm. Esta fitoalexina não-flavonóide é produzida em plantas como 

resposta ao stress biótico (infeções por fungos ou bactérias) e abiótico, como radiação UV, 

calor ou lesão. Está presente em várias famílias de plantas e em pelo menos 72 espécies, mas 

encontra-se sobretudo nas uvas e amendoins. É encontrado frequentemente nos vinhos tintos, 

que pela ação antioxidante do resveratrol, são muitas vezes reconhecidos como 

cardioprotectores. O resveratrol reduz a morte celular e a sua atividade anti-inflamatória 

leva ao decréscimo das espécies reativas de oxigénio, sendo por isso eficaz no combate ao 

stress oxidativo, protegendo os componentes celulares. Este composto polifenólico demonstra 

ainda benefícios noutras áreas, agindo como agente antimicrobiano. O resveratrol possui 

também propriedades anticarcinogénicas; porém, a sua ação mais conhecida é provavelmente 

a ação anti-envelhecimento. Ainda há poucos dados sobre o metabolismo de resveratrol nos 

humanos, mas os últimos estudos em animais indicam que o resveratrol é facilmente 

absorvido após toma oral sobretudo no intestino delgado. No entanto, ainda é necessário mais 

informação sobre as doses e correlações com os efeitos. 

Numa tentativa de criar formas alternativas à síntese química de resveratrol, alguns 

bioprocessos têm sido desenvolvidos para a sua produção em células de plantas e 

microrganismos recombinantes. Atualmente, o resveratrol pode ser produzido através de 

culturas de células vegetais, que têm a vantagem de serem totipotentes. Um dos sistemas de 

produção é a cultura de células suspensas, um sistema com boa reprodutibilidade e que não 

necessita de modificações genéticas. O máximo produzido por esta técnica foi 280 mg/L; 

porém, adicionando elicitores à cultura, pode atingir-se 5027 mg/L. Outra alternativa é a 

cultura de raízes e também a cultura de calos, ambas de rápido crescimento e 

bioquimicamente estáveis, mas com rendimentos relativamente baixos (1.5 mg/g DW e 33 

mg/g, respetivamente). Desta forma, tendo como objectivo a produção de maiores 

quantidades, recorre-se aos microrganismos recombinantes, sendo os mais estudados a 
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bactéria Escherichia coli (E. coli) e a levedura Saccharomyces cerevisiae (S. cerevisiae). 

Tendo fácil manipulação e sendo largamente estudada, a bactéria E. coli foi o microrganismo 

que até à data produziu a maior quantidade de resveratrol de forma recombinante (1380 

mg/L), enquanto a S. cerevisiae, que cresce rapidamente e é um organismo eucariota, produz 

menores quantidades de resveratrol: o seu máximo foi 391 mg/L. Desta forma, a E. coli é 

preferida como sistema recombinante para a produção de resveratrol. Embora o máximo 

produzido tenha sido atingido em culturas de células suspensas, os organismos recombinantes 

são geralmente preferidos devido à fácil manipulação e baixos custos associados. 

Os microrganismos recombinantes E. coli e S. cerevisiae são cultivados, numa fase inicial, em 

balão, sendo importante a definição das condições de cultura como a temperatura, pH e 

agitação, assim como a composição dos meio de cultura, que deve ir de encontro aos 

requisitos nutricionais dos microrganismos em questão. No entanto, para obter um maior 

rendimento e controlo, este processo pode ser efetuado em bioreator. Por vezes, numa 

tentativa de otimizar as condições de cultura, testam-se vários fatores, um a um, até definir 

quais os pontos que mais favorecem a produção. Esta abordagem pode posteriormente ser 

aproveitada para fazer um desenho experimental (como o Central Composite Rotatable 

Design), no qual se conjugam vários fatores para determinar quais são os mais relevantes e 

influentes na produção do composto de interesse. A resposta do modelo gerado é submetida a 

uma análise estatística, obtendo-se uma resposta de superfície, que quantifica a relação 

entre os fatores a testar e as respostas obtidas.  

Muitas vezes são usados métodos de monitorização paralelamente aos ensaios de produção. 

Neste caso, para avaliar a viabilidade celular e a instabilidade segregacional dos plasmídeos é 

usada a citometria de fluxo e real-time qPCR, respetivamente. Estes dois parâmetros são 

muito importantes no processo, uma vez que baixo crescimento celular ou células 

metabolicamente pouco ativas, assim como uma partição incorreta de plasmídeos para as 

células filhas podem levar a uma grande diminuição na produtividade final. A citometria de 

fluxo fornece em tempo real informação sobre a viabilidade celular, atividade enzimática ou 

conteúdo em ácidos nucleicos. É muitas vezes necessário recorrer a fluoróforos, como o BOX 

bis-(1,3-ácidodibutilbarbitúrico)trimetina oxonol, que avalia o potencial de membrana (se 

está ou não despolarizada), ou o iodeto de propídeo (PI), que avalia a permeabilidade da 

membrana. Estes dois compostos foram usados neste estudo para averiguar, através de 

citometria de fluxo, a viabilidade celular de fermentações em bioreator. Outro ponto que é 

necessário avaliar é a estabilidade segregacional dos plasmídeos, que é verificada usando 

real-time qPCR através da monitorização do número de cópias de plasmídeo (PCN). Esta 

técnica permite uma rápida quantificação de qualquer sequência alvo num curto espaço de 

tempo. Desta forma, avaliando-se parâmetros adicionais à fermentação, pretende-se 

maximizar a produção de resveratrol. 
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Devido ao elevado número de aplicações e também à elevada procura das indústrias por este 

composto, o objetivo geral deste estudo é produzir resveratrol em bioreatores usando 

microrganismos recombinantes (E. coli e S. cerevisiae), ao mesmo tempo que se monitoriza o 

processo para verificar a fisiologia celular (através de citometria de fluxo) e a instabilidade 

segregacional, medindo o número de cópias de plasmídeo através de real-time qPCR.  

Embora a levedura S. cerevisiae não tenha sofrido transformação, a bactéria E. coli BW27784 

foi transformada com os plasmídeos pAC-4CL1 e pUC-STS. Para analisar as quantidades de 

composto produzidas em fermentações, são geralmente usados métodos cromatográficos 

(cromatografia líquida ou gasosa) após as amostras terem sido submetidas a extração. De 

forma a quantificar o resveratrol nas amostras de meio de cultura, o método cromatográfico 

foi validado segundo regras internacionais. A extração de resveratrol foi efetuada usando uma 

extração líquido-líquido com acetato de etilo, sendo as amostras posteriormente injetadas 

num aparelho de cromatografia líquida de altíssima performance (HPLC) acoplado a um 

detetor de diode array (DAD). Foi usada uma coluna Zorbax C-18 a 25 ºC, tendo como fase 

móvel água, acetonitrilo e ácido acético nas proporções 66:33:0.1, a pH 3.4 e a um caudal de 

1 mL/min. A curva de calibração foi feita com 7 pontos entre a concentração de 0.1 a 10 

µg/mL, tendo-se obtido uma correlação superior a 0.99 usando uma ponderação estatística de 

 

  . A eficiência de extração foi de aproximadamente 100 % para os valores 0.1 e 10 µg/mL e o 

máximo desvio padrão obtido em todas as análises foi ± 0.41. Concluiu-se deste modo que, 

como os valores se encontravam dentro dos parâmetros definidos internacionalmente, o 

método é reprodutível, preciso e rigoroso, devido à pequena variação entre os valores 

analisados e obtidos. O método também é reprodutível devido ao baixo erro associado à 

precisão intradia (cujo valor máximo de desvio padrão foi de ± 0.22, podendo ser utilizado 

para a quantificação de resveratrol neste tipo de amostras.  

De seguida, foram efetuados ensaios de screening para avaliar qual o microrganismo 

recombinante que permitia a obtenção de maiores níveis de produção de resveratrol. Para 

estes ensaios foram usados os dois microrganismos recombinantes em estudo, tendo sido 

avaliados vários parâmetros que poderiam influenciar a produção de resveratrol: 

temperatura, composição do meio, densidade ótica (OD600) na altura da indução, 

concentração de indutor (ácido p-cumárico), agitação e, para a bactéria, foi também avaliada 

a influência do pH. No ensaio das concentrações de indutor, foram avaliadas 6 concentrações: 

0, 1 ou 2, 5, 10, 15 e 20 mM. A produção máxima de resveratrol em E. coli foi atingida com 10 

Mm de indutor, obtendo-se 105.65 µg/mL de resveratrol; enquanto 5 mM foi a concentração 

de indutor que levou a uma maior produção em S. cerevisiae; no entanto, devido ao caráter 

tóxico do solvente usado para preparar o indutor (DMSO), tanto a E. coli como a S. cerevisiae 

deixaram praticamente de crescer e produzir acima de 10 Mm. Quanto à densidade ótica na 

altura da indução, verificou-se que, em E. coli, a indução a densidades óticas inferiores a 0.2 

tinha um impacto negativo na produção. Na levedura, este ensaio não demonstrou ter 

impacto na produção, embora o melhor resultado se tenha obtido a uma densidade de 1. No 
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estudo da influência da temperatura na produção de resveratrol, foram feitos ensaios a 25 ºC, 

30 ºC, 37 ºC e 42 ºC, tendo sido verificado que a temperatura que permite a obtenção de 

concentrações mais elevadas de resveratrol é 30 ºC para ambos os microrganismos, onde se 

atingiu a produção máxima (83.10 µg/mL para a E. coli e 1.23 µg/mL para a S. cerevisiae). A 

influência da agitação na produção de resveratrol também foi avaliada (150, 200, 250 e 300 

rpm) e concluiu-se que a agitação ótima para os dois microrganismos é diferente, sendo que 

para a E. coli é 250 rpm e para a S. cerevisiae é 200 rpm. No entanto, a agitação é um fator 

sem grande impacto na produção final, pois não existe grande variação nos valores da 

produção tendo em conta a mudança na agitação. Nos ensaios com diferentes composições do 

meio de cultura, foi testada a influência do tipo de fontes de carbono e azoto, tendo-se 

verificado que ambos os microrganismos utilizaram as maiores quantidades de nutrientes em 

detrimento da produção de resveratrol, que apesar das elevadas densidades óticas atingidas, 

apenas ficou próxima aos 100 µg/mL. Como nos ensaios anteriores a S. cerevisiae produziu 

sempre menores concentrações de resveratrol que a E. coli, esta foi seleccionada para os 

ensaios subsequentes. Desta forma, os estudos sobre o pH incidiram apenas neste 

microrganismo, e no ensaio realizado para o estudo da influência do pH na produção de 

resveratrol, verificou-se que o ponto óptimo de produção foi atingido a pH 7. 

Após realização dos ensaios preliminares, os resultados foram usados para criar uma grelha de 

ensaios de design experimental (Design of Experiments, DoE). Uma vez que nem todos os 

fatores testados influenciaram de igual forma a produção de resveratrol em balão, para o 

desenho experimental foram apenas considerados os fatores temperatura, pH, concentração 

de indutor e a densidade ótica na altura da indução. Apesar de, estatisticamente, o modelo 

não ter sido validado, foi possível retirar conclusões acerca da produção de resveratrol nesta 

estirpe recombinante de E. coli. O máximo de produção obtido foi de 159.96 µg/mL, a maior 

concentração descrita até ao momento para esta estirpe. As condições para obtenção deste 

valor foram 4 mM de ácido p-cumárico adicionado à densidade ótica de 0.8, sendo o pH de 6.5 

e a temperatura de 28 ºC. Este estudo revelou também que, embora haja fatores que 

influenciam grandemente a produção de resveratrol e crescimento bacteriano (como a 

temperatura e pH), verificou-se que a influência e interação com outros fatores têm um peso 

importante no resultado final, pois obtiveram-se concentrações elevadas de resveratrol 

quando alguns dos fatores do ensaio estavam mais distantes do ideal. Quanto aos resultados 

de fisiologia celular, pode concluir-se que cerca de 26 % das células se encontravam 

despolarizadas e 4 % estavam mortas no final de 30 horas de fermentação. Os elevados 

valores de células despolarizadas podem ser devido à falta de nutrientes no meio, que levou à 

quebra das funções básicas de manutenção nas células, como a manutenção do potencial de 

membrana. No entanto, elevadas concentrações de DMSO no indutor mostraram ter um efeito 

adverso na viabilidade celular. Quanto à análise da instabilidade segregacional, pode 

concluir-se que o PCN aumenta em ambos os plasmídeos das 22 às 30 horas, como se pode 

verificar no ensaio 8, em que os valores para as 22 e 30 horas oscilaram entre os 215 e os 
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1541 para o pAC-4CL e os 72 e 89 para o pUC-STS. Esta pode ser uma explicação para a 

produção mais elevada de resveratrol obtida às 30 horas de fermentação. Concluiu-se 

também que o plasmídeo pUC-STS é mais instável, pois as temperaturas usadas não 

favoreceram a sua indução, além de que contém um gene de resistência à ampicilina que 

favorece o aumento da instabilidade segregacional. No geral, os valores de PCN são mais 

baixos relativamente a outros estudos devido à carga metabólica imposta pelos plasmídeos, o 

que resulta em menores taxas de crescimento e aumenta a instabilidade segregacional. 

Em suma, neste estudo foi possível a produção de elevadas quantidades de resveratrol em 

bioreator a partir de microrganismos recombinantes e recorrendo a ferramentas adequadas 

de monitorização. Este estudo pode ser um possível ponto de partida para a produção 

industrial deste composto e uma alternativa viável em relação à síntese química e ao 

consumo dos recursos naturais. 
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Abstract 

 

Resveratrol (3, 5, 4’–trans-hydroxystilbene) has been used since immemorial times in 

traditional medicine as an antimicrobial and antioxidant compound. Recent discoveries 

demonstrated other health benefits for this phytoalexin, such as anticancer and anti-ageing 

activities, making it desirable for the pharmaceutical, nutraceutical and cosmetic industries. 

This polyphenolic is a plant secondary metabolite mainly produced by peanuts and 

grapevines. Although plant cells were traditionally used as a biological alternative for 

resveratrol production, in recent years, recombinant microorganisms, such as yeast and 

bacteria, were proposed to improve resveratrol production. The present work describes 

resveratrol production in two recombinant microorganisms – Escherichia coli (E. coli) and 

Saccharomyces cerevisiae (S. cerevisiae) – its optimization of production in bioreactor using 

Design of Experiments (DoE) and the impact on cell physiology and plasmid stability, which 

was assessed by flow cytometry and real-time qPCR, respectively. For resveratrol 

quantification, a liquid-liquid extraction from culture media was performed using ethyl 

acetate and then a method for quantification in High Performance Liquid Chromatography – 

Diode Array Detector (HPLC-DAD) was validated. In order to assess which recombinant 

microorganism yielded higher resveratrol production, the influence of medium composition, 

pH, temperature, agitation, precursor concentration and optical density (OD600) at the 

addition of precursor were evaluated for resveratrol production in shake flask using E. coli 

and S. cerevisiae. The data obtained were used to create a DoE approach in order to optimize 

resveratrol production in bioreactor. The bioprocess was monitored using the HPLC-DAD 

method for resveratrol quantification, flow cytometry to assess cellular viability and real-

time qPCR to evaluate plasmid segregational instability. Shake flasks screening assays 

revealed a 30 times higher resveratrol yield by E. coli (about 100 µg/mL) when compared to 

S. cerevisiae (3.17 µg/mL), which led to the choice of the first microorganism for the scale-up 

optimization studies. Only the factors that had the highest impact on resveratrol production 

were considered for the DoE approach:  temperature, pH, precursor concentration and optical 

density (OD600) at the addition of precursor. A Central Composite Design, rotatable and full 

fractioned was used, which allowed the obtention of 159.96 µg/mL of resveratrol. The 

population of depolarized cells varied according to the conditions used, which sometimes 

resulted in a 10 % difference between higher and lower production assays. Plasmid 

segregational instability had also been observed and variations in the values of plasmid copy 

number (PCN) were noticed between 22 and 30 hours of fermentation, with the highest PCN 

values obtained at 30 hours, when also the highest amounts of resveratrol were obtained. It is 

possible to conclude that cellular viability and plasmid segregational instability affect 

significantly resveratrol production. In sum, this work outlines the optimization of resveratrol 

production in bioreactors using flow cytometry and real-time qPCR for bioprocess monitoring. 

It was demonstrated that using the appropriate tools to optimize and monitor resveratrol 
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production process, solutions can be found for mass production of this compound, providing 

an effective alternative to chemical synthesis and avoiding the depletion of natural sources. 
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Chapter 1 

 

1. Introduction 

In modern life, food and health are subjects of concern to society. In this perspective, the 

search for improved wellness, protection against disease and ageing are the starting point of 

several investigations and investments throughout the world. Current lifestyle leads to 

changes in nutrition, activity and obesity, which are linked with some chronic diseases [1]. 

Research has shown that a diet based on plant foods and less in dairy products and animal 

food is associated with lower rates of chronic disease and higher adult life expectancy [2]. 

Furthermore, plants are used since ancient times in a wide range of applications, from a 

healing source to a poison, from tonic to soap plants and cosmetics, dental care to fragrances 

and repellents [3].The use of plants remained over time and, nowadays, the global market for 

plant-derived products exceeds several billion dollars per year [4]. Plant compounds, such as 

polyphenols and phytoalexins, which include resveratrol, are widely investigated due to their 

broad range of biological activities, such as antimicrobial, anti-oxidant and anti-ageing [5-7]. 

1.1. Resveratrol 

Resveratrol (3, 5, 4’–trans-hydroxystilbene) is a phytoalexin [8] – a low-molecular weight 

secondary metabolite with antimicrobial activity – and a polyphenolic compound that belongs 

to the stilbene family [9]. Chemically, resveratrol (C14H12O3) is a white powder with a slight 

yellow cast, a molecular weight of 228 g/mol and a melting point of 253 - 255 ºC [10].  

Resveratrol can be found in free (aglycone) or glycosylated form (piceid) and its oxidative 

dimerization leads to the formation of its polymer, the viniferins [10]. Both aglycone and 

piceid exists in cis- or trans- isomeric forms (figure 1) [8], because their two phenol rings 

(linked by a styrene double bond) generate the more stable form, trans-resveratrol; but, by 

UV photoisomerization, trans-resveratrol is converted to cis-resveratrol [11]. cis-Resveratrol 

has a maximum of absorbance at 286 nm, whereas the maximum absorbance for isomer trans 

is achieved at 306 nm. Resveratrol (both cis or trans isomers) are extremely light sensitive 

and when protected from light, trans-resveratrol is stable for at least 28 days in buffers with 

pH ranging from 1 to 7, while cis-resveratrol is degraded at pH 10.0 [12].  
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cis-resveratrol trans-resveratrol 

 
 

cis-piceid trans-piceid 

Figure 1. Structures of resveratrol derivatives and isomers [8]. 

 

Resveratrol-containing plants, such as Itadori plant (Polygonum cuspidatum syn. Fallopia 

japonica) were used in China and Japan for centuries as herbal folk remedies to treat various 

ailments, including bacterial, fungal and inflammatory illnesses, lipid atherosclerosis [12], 

heart disease and stroke [13]. Resveratrol was first isolated from white hellebore (Veratrum 

grandiflorum O. Loes) by M. J. Takaoka in 1940 [9], later in 1963 it was found in Itadori plant 

[10] and trans-resveratrol was discovered in Vitis vinifera (grape vine) in 1976 by P. Langcake 

and R. J. Pryce [12]. 

This non-flavonoid phytoalexin is produced by plants in response to biotic and abiotic stress. 

Biotic stress includes mainly microbial or fungal infections [14], but resveratrol also acts as a 

defense in case of nematodes or herbivores attack [6]. Abiotic stresses may result from 

mechanical injury [13], UV and far-infrared radiation [14], ultrasound, ozone and heat [10]. 

Resveratrol production by plants is also affected by their treatment with chemicals, such as 

cupric acid, salicylic acid, jasmonic acid, ethylene, aluminum chloride and aluminum sulfate 

[10]. Being a stilbene, resveratrol is a plant-specific natural compound produced by various 

plant families, including Vitaceae, Dipterocapaceae, Gnetaceae, Pinaceae, Poaceae, 

Fabaceae, Leguminoseae and Cyperaceae [6] and at least in 72 plant species [15]. Thereby, 

resveratrol can be found in grapes and grape products (particularly red wine), peanuts, 

several types of berries (cranberries, bushberries, blueberries and strawberries) [5], ferns 

[16], pines, legumes [13], white hellebore [6], pistachios [17], but also in flowers and leaves 

(such as eucalyptus, spruce, butterfly orchid and rheum) [15].  
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Resveratrol is present in higher quantities in peanuts and grapes, being commonly found in 

red wines [16], since it is a component of the grape’s skin (up to 0.1 %) [18], but is primarily 

found in the glycosylated form [8]. Moderate consumption of red wine during meals is one of 

the main rules of Mediterranean diet [2] and has been proposed as explanation of the low 

incidence of heart disease in people with a high fat content diet [19]. This was noticed long 

ago, but in 1991, a television program demonstrated this paradox in the French population, 

being known as ‘French Paradox’ [20]. Resveratrol can act as antioxidant and an inhibitor of 

platelet aggregation [19] and, since it is similar to the synthetic estrogen diethylstilbestrol – 

known by cardioprotective benefits – meaning that the intake of this compound in red wine 

can provide an explanation for the ‘French Paradox’ [19]. Beyond this cardioprotective 

effect, resveratrol is also known by its action in many other areas and by its various benefits.  

1.2. Resveratrol biological activities 

After many tests to phytoalexins, there are numerous evidences for the clinical usefulness of 

resveratrol [14] – due to its wide range of biological activities – and, therefore, various 

mechanisms of action and targets [5]. Between the broad applications of resveratrol, the 

major biological activities are antimicrobial and antioxidant activities, cardio and 

neuroprotective, cancer chemoprotective, prevention of ageing, reduction of obesity and 

inflammation, among other health beneficial effects [5] (Table 1).  

Table 1. Biological activities and health benefits of resveratrol. 

Properties Examples of benefits References 

Anti-ageing 
Activator of sirtuin activity, repairing DNA, slowing senescence 

and fat mobilization. 
[7, 14, 21] 

Anticancer 
Cytostatic or cytotoxic agent; 

Prevention of exponential growth of cancer cells; 
Inhibition of preneoplastic lesions. 

[6, 14, 22] 

Anti-inflammatory 
Reduction of inflammatory cell damage;  

Decrease of reactive oxygen species (ROS). 
[7, 22] 

Antimicrobial Inhibition of growth of human pathogenic bacteria and fungi. [5, 23] 

Antioxidant 
Free radical scavenger; 

Protection low-density lipoproteins (LDL) against peroxidation;  
Use as food preservative. 

[6, 22, 24]  

Cardioprotective 
Protection against acute ischemic stroke; 

Attenuation of oxidative stress after ischemia reperfusion. 
[25] 

Neuroprotective 
Breaks down beta-amyloid aggregates;  

Up-regulates kinases in learning and memory centers of brain. 
[26] 
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1.2.1. Antimicrobial activity 

Antibacterial therapy is a powerful tool in the current clinical practice. However, 

microorganisms can adapt their defenses against the antibiotics used, developing resistance 

to several antibiotics, thus causing a public health problem [5]. Nowadays, there is a growing 

interest on antimicrobial compounds from natural sources, as resveratrol, due to consumers 

concern about their health. In fact, it has been shown that this compound has the ability to 

inhibit the growth of some human pathogenic bacteria, such as Klebsiella pneumonia, 

Helicobacter pylori, Listeria monocytogens and Staphylococcus aureus [5]. Resveratrol also 

has antimicrobial activity against fungi, such as Candida albicans, Trichosporon beigeli [5], 

Epidermophyton floccosum [23] and Botrytis cinerea, a common grapevine pathogen, slowing 

down or inhibiting the spread of this fungal infection [24]. 

1.2.2. Antioxidant 

Several evidences showed that resveratrol acts both as a free radical scavenger and a potent 

antioxidant, owing to its ability to promote the activity of numerous antioxidative enzymes 

[6]. It is thought that resveratrol protects low-density lipoproteins (LDL) against peroxidation, 

leading to a regulated catabolism of LDL particles [22] and thus avoiding atherosclerosis [6]. 

Resveratrol also protects cellular and subcellular components, protecting cell membranes and 

preventing the effects of oxidative stress, leading to a reduction in cell death [22]. Being a 

strong antioxidant, resveratrol may be applied in the food industry as a preservative, 

preventing the oxidation of oils and margarine and suppressing food deterioration by molds 

due to its antifungal activity [24]. 

1.2.3. Anticancer properties 

Resveratrol induces a complex array of effects on cells. This molecule is considered an 

antiproliferative agent for cancer, exerting its activity as a cytostatic or cytotoxic agent in 

cancer cells [6], inducing a complex array of effects that range from the inhibition of growth 

(preventing exponential growth of cancer cells and inhibiting the development of 

preneoplastic lesions) and can even cause the activation of apoptosis [14, 22] in these cells. 

In vivo studies showed that resveratrol inhibits the development of skin cancer, reducing 

tumor diameter and its incidence [6], induces cell apoptosis in human breast carcinoma and 

in human leukemia by conversion to piceatannol, an antileuketic stilbene [6, 22].  

1.2.4. Anti-inflammatory activity 

Effective even in micromolar concentrations, resveratrol may reduce the inflammatory 

endothelial cell damage caused by environmental toxicants [22]. During inflammatory 

response, resveratrol elicits inhibitory effects in all physiopathological phases, suggesting that 

resveratrol could be effective in pharmacotherapy [7]. In combination with its antioxidant 

properties, resveratrol also intervenes on enzyme systems involved in the synthesis of pro-

inflammatory mediators, decreasing reactive oxygen species (ROS), which contributes to 

gastric ulcer healing and the reduction of colon injury [7]. 
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1.2.5. Anti-ageing 

One of the subjects which arouse greater interest nowadays is the delay of the ageing 

process. It has been described that resveratrol can interfere with specific enzymes involved in 

the mitochondrial metabolism, the sirtuins [27]. Sirtuins are a family of NAD+-dependent 

deacetylases implicated in transcriptional silencing, ageing and metabolic regulation and are 

ubiquitous throughout all kingdoms of life, having a greater presence in evolutionarily 

superior creatures [21]. Resveratrol is a strong activator of sirtuin activity and applying these 

up-regulated enzymes to differentiated fat cells, lipolysis occurs, promoting longevity [7]. In 

another hand, sirtuins also play an important role in DNA repair processes and senescence, 

modulating the ageing process, slowing senescence and increasing lifespan, also controlled by 

resveratrol [14].  

1.2.6. Other activities 

Several benefits of resveratrol are already confirmed; however, many other effects are 

known, such cardio and neuroprotective activities. The areas of action are frequently 

interconnected, linking, for example, the antioxidant and anti-inflammatory properties with 

cardioprotective activities. This stilbene has a protective action against acute ischemic 

stroke, improves the motor performance and attenuates oxidative stress after ischemia 

reperfusion [25]. In addition, resveratrol protects the neurons [25], breaking down beta-

amyloid aggregates – which are associated with Alzheimer’s disease – and also up-regulates 

kinases which are active in the learning and memory centers of the brain [26]. Several 

neurologic benefits associated with Parkinson’s disease, amyotrophic lateral sclerosis and 

brain edema were also described for this compound [6]. Furthermore, various studies 

revealed the protective effects of resveratrol against diet-induced obesity and insulin 

resistance [6].  

1.2.7. Metabolism and bioavailability of resveratrol 

The investigation of resveratrol metabolism in humans is quite recent. Some studies 

performed in rats, report that oral administration of resveratrol, formulated as solid lipid 

nanoparticles or nanostructured lipid carriers [28], for example, led to an important 

absorption [29] and was pharmacologically active both in vitro and in vivo [22].  

After oral intake, resveratrol was absorbed quite rapidly whether as aglycone or on its 

glycosidic form; however, the levels of free resveratrol in plasma and serum were very low or 

no detectable [30]. Half of the resveratrol orally administrated to rats was absorbed from the 

digestive tract, especially in small intestine [29]. Resveratrol was distributed to various 

organs, accumulating mostly in the liver [29], where it was converted to its glucoronide and 

sulfate conjugates prior to elimination, restricting the in vivo bioavailability. No phase I 

reactions, the first phase of biotransformation that increases the polarity of the compound, 

were observed in all studied systems [31]. One of the major ways for resveratrol elimination 

was renal excretion, resulting in high levels of resveratrol conjugates in urine [30], revealing 
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preferential excretion of more polar forms [29]. Due to small amount of resveratrol found in 

feces, fecal route was thought to be a minor way of elimination [29]. 

1.2.8. Resveratrol toxicity 

So far, there are no valid data on the toxicity of chronic intake of resveratrol by humans, and 

dosages in the range of hundreds of mg to several g per day have been proposed, based on 

animal pharmacological studies. To this date, the results obtained by various groups are not 

conclusive, since a clear relation between administered dose and response was not found 

[32]. 

Overall, it is known that low doses of resveratrol may have a protective effect in human 

health, while high doses of this compound may be harmful [33]. Nevertheless, data obtaining 

from animal trials are promising and indicate the need for further human clinical trials [34], 

in order to evaluate resveratrol effectiveness and toxicity towards a safe administration of 

this compound. With regard to get more data on the dosage and efficiency of resveratrol in 

human health, it is necessary to comprehend this stilbene metabolism and bioavailability. 

1.3. Resveratrol production 

Although few studies were performed in humans, the beneficial effects of resveratrol are 

already well known. Its properties are desirable for several industries and, therefore, it is 

important to study resveratrol production and develop new ways to achieve a sustainable 

production. 

Besides pharmaceutical/nutraceutical market and cosmetic industry, resveratrol is starting to 

be explored as a multifunctional compound that could be used in a ubiquitous manner; for 

example, from functional wines to supplements. Resveratrol is commonly extracted/purified 

mainly from grapevine or chemically synthesized. However, in order to meet the market 

demand, it is necessary to accomplish alternative ways and/or improving existing pathways to 

produce this stilbene. Biotechnology can offer an opportunity to get this compound by using 

plant cell cultures (cell suspension, hairy root and callus cultures) or genetically-manipulated 

microorganisms (Table 2). 

1.3.1. Resveratrol biosynthetic pathway 

Resveratrol is a plant secondary metabolite derived from shikimate-phenylpropanoid and/or 

polyketide pathway [35]. The plant shikimate pathway has two end-products that are the 

entry to the biosynthesis of phenylpropanoids: phenylalanine and tyrosine [3]. Resveratrol is 

formed on the phenylalanine/polymalonate pathway, being the last step of this biosynthesis 

pathway, and can be synthesized either from phenylalanine or tyrosine. Both phenylalanine 

and tyrosine precursors produce para-coumaric acid (p-coumaric acid, also known as para-

hydroxycinnamic acid) [6] (figure 2).  
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Figure 2. Resveratrol biosynthesis via phenylalanine/polymalonate pathway [9]. 

 

para-Coumaric acid is generated from phenylalanine through phenylalanine ammonia lyase 

(PAL) and cinnamate 4 hydroxylase (C4H), which acts in the cinnamic acid intermediate. 

Tyrosine ammonia lyase (TAL) exerts its activity directly in tyrosine [6]. Then, para-coumaric 

acid is activated by ligation to coenzyme A (CoA) by 4-coumaroyl:CoA ligase (4CL) and in the 

pathway-committing step, stilbene synthase (STS) condenses three units of malonyl-CoA (from 

fatty acids biosynthesis) with para-coumaroyl-CoA, forming a linear tetraketide molecule (not 

shown) before a cyclization reaction carried out by STS, generating resveratrol [16]. trans-

Resveratrol can be modified to trans-piceid by 3-O-glucosyltransferase (3-O-GT) [9]. However, 

resveratrol has several alternatives to chemical synthesis, mainly production by plant cell 

cultures and using recombinant microorganisms (table 2). 
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Table 2. Resveratrol production systems. 

System 
Type of 
culture 

Organism 
Production 

levels 
Advantages Disadvantages 

Plant cell 
cultures 

Cell 
suspension 
cultures 

Gossypium 
hirsutum L. 

(cotton) 

0.0072 
mg/g 

Unnecessary genetic 
modification; 

Homogeneity of cell 
population; 

Good reproducibility;  
High cell growth rate;  
No contamination by 
microbial toxins or 
animal pathogens. 

Dependence 
on plant 
species, 

elicitor and 
culture 

conditions; 
Require light; 

 Costly 
purification. 

Vitis vinifera 
(grapevine) 

5027 mg/L 

Hairy root  
Arachis 

hypogaea 
(peanut) 

1.5 mg/g 

Rapid growth; 
Production from a 

single line; 
Recover from culture 

media;  
Common and 

inexpensive medium; 
No contamination by 
microbial toxins or 
animal pathogens. 

Large 
fermentator;  
 UV radiation 

elicitor; 
Length of 

time;  
Costly 

purification. 

Callus 
cultures 

Arachis 
hypogaea 
(peanut) 

0.012 
mg/g 

Vitis vinifera 
(grapevine) 

33 mg/g 

Microorganisms 

--- 
Escherichia 

coli 
2340 mg/L 

Fast growth; 
Continuous 

fermentation;  
Low cost; 

Genetic tractability. 

Industrial 
scale 

extraction and 
purification is 
difficult and 
expensive; 

cGMP 
required. 

--- 
Saccharomyces 

cerevisiae 
391 mg/L 

Food grade status;  
Fast growth;  
Economically 
profitable; 

No endotoxins or 
oncogenes;  

Contains malonyl-CoA. 

 

1.3.2. Resveratrol production by plant cell cultures 

Plants are versatile organisms regarding to the production of various compounds. In this way, 

genetically-engineered plants could be an alternative to create functional food. Stilbene 

synthase genes were transferred to various crops, as tomato, rice, banana and lettuce [36]. 

Resveratrol engineering also led to increased resistance to the disease in transgenic plants: 

the introduction of two grapevine stilbene synthase genes in tobacco confers higher 

resistance to Botrytis cinerea infection [36]. However, genetically-engineering resveratrol to 

obtain crop defense against pathogenic microbes, improve nutritional value or to extend the 

shelf-life of the products may have a relatively huge cost. In addition, these products are 

distrusted by regulatory agencies and public; then, the commercial future of resveratrol 

engineering in plants remains to be seen [37]. Nevertheless, one commercial example was 

successfully demonstrated, by the production of red wine extracts and stilbene capsules [13].  
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Plant cells cultures have been an attractive source for the production of secondary 

metabolites and other substances of commercial interest. Because plant cells are 

biosynthetically totipotent, each cell in culture retains complete genetic information and 

hence is able to produce chemicals found in the parent plant [38]. Besides that, cultured 

plant cells proliferate in vitro indefinitely – unlike primary animal cells cultures that undergo 

only a limited number of cell divisions [39]. These systems have several other advantages, 

such as their independence of geographical and seasonal variations, performance of stereo 

and regiospecific biotransformations and an efficient downstream recovery [38]. 

The concentration of trans-resveratrol produced using plant cell cultures is, at least, equal to 

that reported as naturally occurring in the plant – which prevents intensive cutting and 

decimation of natural sources [9]. Furthermore, natural sources often contain derivatives, 

cofactors and other phytonutrients that provide added of synergistic benefits to the product 

[40]. There are two plant cell systems that are studied in particular: cell suspension cultures 

and hairy roots/callus [9]. Plant cell cultures are carried out under aseptic conditions and 

require a culture medium consisting of water, inorganic salts, sucrose, vitamins and plant 

hormones [39]. These two main plant cell systems are adaptable to scale-up for bioreactors 

[9].  

1.3.2.1. Cell suspension cultures 

Cell suspension cultures are an important tool for plant biology investigation. Due to 

homogeneity of an in vitro cell population, large availability of material, good reproducibility 

of conditions and high rate of cell growth, this technique is suitable to produce trans-

resveratrol in vitro [9]. 

For this type of culture, the main advantage is the unnecessary genetic modification of the 

plant cell, because they are able to produce trans-resveratrol constitutively or in response to 

stress [9]. This last hypothesis can be exploited for in vitro resveratrol production by 

elicitation using several elicitors, such as chitosan [41], methyljasmonate (MeJa), ethylene 

[42], cyclodextrins (CDs) [43], as RAMED (Randomly Methylated-β-cyclodextrin) or DIMED (2,6-

di-O-methyl-β-cyclodextrin) [9], sodium acetate, amino acids, sugar or UV-irradiation [9]. 

Apart from being elicitors, cyclodextrins also protects resveratrol in the medium by complex 

formation [9], leading to a significant production of resveratrol. Although MeJa affects cell 

growth and does not promote the increase of resveratrol, a combined treatment with MeJa 

and CD led to an increased accumulation of resveratrol in the medium [43], because they act 

synergistically, inducing the expression of STS and the general phenylpropanoid pathway, 

leading to a marked increase in the resveratrol amount [43]. Nevertheless, resveratrol 

production is affected by a wide range of factors, such as plant species, elicitor and culture 

conditions – resulting in fluctuating values in terms of response to elicitors [9].  

Several plants have been used for resveratrol in vitro production. The most common for this 

purpose are Vitis vinifera (grapevine) and Gossypium hirsutum L. (cotton) [9]. In cotton, 
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where resveratrol is produced in low quantities (0.0072 mg/g) [9], synthesis may depend on 

cultivar, due to its appearance only in certain varieties [44]. On the other hand, some Vitis 

vinifera cell suspension cultures are particularly suitable for resveratrol production, due to 

the ability to produce piceid and several trans-resveratrol glucoside derivatives, which are 

easily hydrolysed by glucosidases [9]. However, this cultivation method for Vitis vinifera may 

require light, which becomes a limitation due to the isomerization of trans-resveratrol [9]. 

Grapevine cell suspension cultures are the main targets for the use of elicitors. Vitis vinifera 

cells under the influence of chitosan change their protein expression profile and stilbene 

distribution, leading to endogeneous accumulation of trans-resveratrol [41]. Without any 

elicitors, cell suspension cultures of Vitis vinifera produced 280 mg/L. However, when RAMED 

was added, the amount of resveratrol increased to 5027 mg/L [9]. Although this is the highest 

concentration of resveratrol obtained by any type of culture, it has been only carried out in a 

small laboratory scale [9].   

Although they are a commonly used method for resveratrol cultivation, these systems may 

present some issues, as loss of secondary metabolite production after elicitation or 

genetically instability [40].  

1.3.2.2. Hairy root and callus cultures 

Callus cultures and especially hairy root cultures offer a novel and consistent system for the 

synthesis of bioactive secondary molecules [40]. 

Root development is performed using the bacterial plasmid Ri T-DNA or rol genes from 

Agrobacterium rhizogenes [9] and Agrobacterium tumefaciens [40]. Plant tissues are 

transformed by transferring the plasmids mentioned above, which causes a genetic 

modification in the plant material leading to the development of roots, able to grow in liquid 

media and to produce secondary metabolites [9]. However, the various strains used are not 

equally effective in genetic transformation (bacterial infection frequency) and subsequent 

root growth, as well as in stilbene production [9], and thus, Agrobacterium rhizogenes is 

largely selected to this technique [40].  

Hairy root cultures are an alternative way to produce secondary metabolites owing to some 

inherent characteristics, such as rapid growth, genetic and biochemical stability and the 

ability to synthesize natural compounds as in vitro plants [45]. These tissue-based systems 

have the potential of producing various combinations of valued products from a single 

production line and also reflect accurately the performance and metabolic phenotype of the 

host plant, comparing to plant cell cultures [40]. In addition, resveratrol can be readily 

recovered from culture media and evidences suggest that hairy root cultures may be feasible 

in industrial processes [40].  

In fact, resveratrol was successfully produced using hairy root cultures from Arachis hypogaea 

(peanut), resulting on a reliable, well-defined and easy method [45]. However, the yield of 
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resveratrol production by hairy roots is low: 1.5 mg/g [9]. The peanut plant, as well as 

grapevine, can also be used in callus cultures [45, 46]. Calli are coalescences of 

dedifferentiated cells that grow on a solid culture medium [9] and this is the starting point 

for the development of plant cell suspension cultures. Vitis vinifera was already used to 

produce resveratrol through callus cultures, where the largest amount achieved was 33 mg/g 

[9]. The basic requirements for this technique are a large fermentator, which may be a 

disadvantage, and a common and inexpensive medium at room temperature. Sometimes it is 

necessary to elicit the fermentation with UV radiation, which can be a disadvantage when 

producing resveratrol [46], because it may transform the isomer trans in cis, less important to 

human health, and the length of time needed for culturing cannot be economically profitable 

[9]. 

As seen before, plants are possible systems to produce resveratrol. Being a possible source of 

cheap recombinant compounds, an important advantage is that products from recombinant 

plants or plant systems are unlikely to be contaminated by microbial toxins, oncogenic 

sequences or animal pathogens [47]. Nevertheless, purifying transgenic compounds may be 

costly. An alternative to plant cell systems and an approach still under development is 

resveratrol production using microorganisms. 

1.3.3. Resveratrol production by microorganisms 

Several drug precursors and drugs are found naturally in organisms, but are difficult to 

synthesize chemically and to extract in large quantities. In this manner, metabolic 

engineering, which considers metabolic and cellular system as an entirety, is of utmost 

importance in the production of these compounds. Metabolic engineering allows performing 

changes at the whole cell level, enabling optimal design of a microorganism for the efficient 

production of compounds and biomolecules [48]. Metabolic pathway optimization has some 

key issues to be considered. One of the most important issues is the choice of the host strain 

and its capability to perform the desired metabolic conversions for product formation [48]. 

The host strain should be the most adapted to perform the desired metabolic conversions, 

considering that different organisms possess different metabolic capabilities [48]. The genetic 

and physiological backgrounds of the host are also causes of concern due to the importance of 

the appropriate intracellular environment and if it produces sufficient amount of precursors 

or redox compounds required for coordinate the genes [48]. The quality and quantity of the 

compound of interest also depends upon the expression system, as well as the bio-

characteristics and purposes of the expressed products [49]. Furthermore, the convenience of 

an optimal expression system, availability and the overall cost should be taken in 

consideration when selecting a host system [49]. Once microorganisms are widely used to 

produce molecules, engineering bacteria or yeasts to produce resveratrol is a valuable mean 

for its production in large quantities [9]. Neither yeast nor bacteria should be tailored, 

because none of them possess the genes that encode for resveratrol pathway [9]. Thereby, 

there are two strategies for this purpose: introduce the entire pathway using as substrates L-
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phenylalanine or L-tyrosine or introduce specific genes and use p-coumaric acid as a precursor 

[6, 9]. However, both in Saccharomyces cerevisiae and Escherichia coli, resveratrol 

accumulate naturally in the medium rather than in the cells, which is particularly 

advantageous considering commercial production system and its viability [18]. Despite these 

advantages, resveratrol extraction and purification in an industrial scale remain difficult and 

expensive due to the process compliance with cGMP (current Good Manufacturing Practices) 

requirements [9]. 

1.3.3.1. Resveratrol production by Escherichia coli 

Escherichia coli is one of the most used host systems in biotechnology. This bacterium is 

frequently preferred for pharmaceutical production due to its fast growth, ability for 

continuous fermentation, relatively low cost [49] and well known genome, resulting in a vast 

array of genetic engineering tools available [48]. However, E. coli have been studied for 

resveratrol production (Table 3) because of its well characterized fermentation properties 

and genetic tractability [8]. 

Most bacterial genes are transcribed into messenger RNA (mRNA), which in turn is translated 

into protein. The structural gene encodes the gene product and its expression is controlled by 

sequences in the upstream region. Some proteins and RNA molecules are needed in the cell at 

about the same level under all growth conditions – the constitutive expression [50]. The 

expression is regulated and is a major process in all cells, helping to conserve energy and 

resources [50]. However, some enzymes are synthesized only when the substrate is present – 

inductive expression [50]. Constitutive gene expression allows to RNA polymerase to continue 

transcription [50] without any inhibition.  

Resveratrol production from E. coli expression systems introducing the entire pathway using 

amino acids as substrates was already performed by genetic engineering of E. coli BL21 (DE3) 

strain, introducing PAL and TAL enzymes. However, TAL was only expressed when 20 mg/L of 

p-coumaric acid was added. This need for p-coumaric acid has a detrimental effect on 

enzymatic activity, leading to a low resveratrol production. Since introducing de novo the 

entire pathway has proved to be a very difficult procedure, an alternative route for 

resveratrol production in E. coli has been described, consisting in the transformation of E. 

coli with 4CL and STS genes with the use of 4-coumaric acid as precursor for resveratrol 

production [9]. 

E. coli BL21 (DE3), with STS and 4CL genes, was able to produce 3.6 mg/L of resveratrol [9]. 

E. coli BL21 engineered with 4CL gene from tobacco and STS gene from grapevine produced 

16 mg/L [9] and in another study it yielded up to 20 mg/L of resveratrol [18]. The BW22784 

strain transformed with 4CL gene from Arabidopsis thaliana and STS gene from Arachis 

hypogaea was able to convert 4-coumaric acid into resveratrol at the maximum of 104.5 mg/L 

[51]. The STS gene used in the previous strains was constitutively expressed from the lac 

promoter [51]. The genes used in the previous strain were transformed in E. coli JM109, 
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which led to a production amount higher than 100 mg/L [9]. When the JM109 strain was 

transformed with 4CL gene from Lithospermum erythrorhizon and STS gene from Arachis 

hypogaea, coumaroyl-CoA was used as substrate and the production reached 171 mg/L [8]. 

Alternative gene expression was already tested to E. coli DHIOB. Having tyrosine as precursor, 

three genes were added: PAL from Rhodotorula rubra, 4CL from Streptomyces coelicolor and 

STS from Arachis hipagaea. This strain was able to produce 40 mg/L of resveratrol [8]. 

Another study [16] explored multiple constructs for resveratrol production by varying the 

‘construct environment’. Using 4CL gene from Arabidopsis thaliana and STS gene from Arachis 

hypogaea in E.coli BW27784 and an operon produced 404 mg/L. The same strain, with the 

same 4CL gene and a STS gene from Vitis vinifera produced 1380 mg/L. The values depend 

not only on production strategies but also from resveratrol supplements, which may be added 

to the medium and improve resveratrol production, as cerulenin, which was added to the 

same strain and genes from the last example. The result was a production of 2340 mg/L [16].  

1.3.3.2. Resveratrol production by Saccharomyces cerevisiae 

Saccharomyces cerevisiae is a unicellular organism that satisfies the biosafety regulations and 

the economic efficiency, reasons that explain why Saccharomyces has been engineered over 

time [49]. Being eukaryotic, yeasts share biochemical, molecular and genetic features with 

higher eukaryotes, which make it desirable for large-scale industry fermentation and with 

commercial potential, once it can perform the correct protein folding with all the post-

transcriptional modifications [49]. Like E. coli, this yeast also grows rapidly (sometimes into 

high densities) and in simple media, which lowers the production cost [49]. In addition, this is 

a safe system, not containing endotoxins or oncogenes, and it is relatively easy to manipulate 

[49]. 

Beyond this, S. cerevisiae is a favored organism to produce resveratrol – because one of the 

precursors, malonyl-CoA, is already found in yeast [8]. The other resveratrol substrate is p-

coumaroyl-CoA, resulting from p-coumaric acid, that has been shown to be accumulated by 

yeast [52]. Engineering the entire pathway for resveratrol production in yeast was not 

successful. Although the strain CEN.PK113-5D was modified in this way, resveratrol synthesis 

did not occurred [9]. Nevertheless, several studies about resveratrol production were 

performed using S. cerevisiae, and the results are condensed in table 3. A FY23 strain was 

modified with 4CL216 gene from a hybrid poplar and STS gene from grapevine produced about 

1.5x10-3 mg/L of resveratrol [52]. The same strain was transformed with 4CL (Populus 

trichocarpa x Populus deltoids) and STS (Vitis vinifera) genes and was used p-coumaric acid. 

This work obtained a final amount of 1.45 mg/L of resveratrol [6]. The strain WAT11 was 

transformed with TAL (Rhodobacter sphaeroides), 4CL (Arabidopsis thaliana) and STS (Vitis 

vinifera) genes and produced 0.65 mg/L of resveratrol [6]. In another study, the previous 

strain was able to produce 1 mg/L of resveratrol [9]. Another strain – W303-1A – was 

transformed with 4CL1 gene from Arabidopsis thaliana and STS gene from Arachis hypagaea, 

a combination that has given positive results in E. coli [15]. In this case, resveratrol 
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production was about 3.1 mg/L [15]. In another study, 4CL2 gene from tobacco and STS gene 

from grapevine were transformed into CEN.PK113-3b strain which yielded 5.8 mg/L of 

resveratrol [8]. Another study [6] refers that an industrial yeast S. cerevisiae CEN.PK2-1 

transformed with 4CL1 gene from Arabidopsis thaliana and STS gene from Vitis vinifera 

produced 391 mg/L of resveratrol, the highest amount produced for this yeast.  

In an alternative approach, gene expression was used in S. cerevisiae RESV11, where 

phenylalanine was the substrate and five genes were transformed into this strain: PAL and 

CPR from poplar hybrid (Populus trichocarpato x P. deltoids), C4H and 4CL from Glycine max 

and STS from Vitis vinifera. This experiment resulted in a resveratrol production of 3.1x10-1 

mg/L [8]. The results presented depend not only on the origin of the transferred genes, 

precursors and growth factors added [8], but also on the spatial localization of the enzymes 

and the provenance of the species and strains [6]. Although expression system selection is a 

crucial step when designing a production process, one should also consider the effects of 

external conditions such as growth medium and conditions, since they can have a great 

impact on overall production.  

Table 3. Examples of recombinant expression systems used for resveratrol production. 

Microorganism Strain Introduced genes Production levels References 

Escherichia 
coli 

BL21 (DE3) 
4CL (S. coelicor), STS (Vitis 

sp) 
3.6 mg/L [9] 

BL21 
4CL (N. tabacum), STS (Vitis 

vinifera) 
20 mg/L [18] 

BW22784 
4CL (A. thaliana), STS (Vitis 

vinifera) 
2340 mg/L [16] 

DHIOB 
PAL (R. rubra), 4CL (S. 

coelicor), STS (A. Hypogaea)  
40 mg/L [8] 

JM109 
4CL (L. erythrorhizon), STS 

(A. hypogaea) 
171 mg/L [8] 

Saccharomyces 
cerevisiae 

CEN.PK113-3b 
4CL2 (N. tabacum), STS (Vitis 

vinifera) 
5.8 mg/L [18] 

CEN.PK2-1 
4CL1 (Arabidopsis thaliana) 

STS (Vitis vinifera) 
391 mg/L [6] 

FY23 

4CL216 (Populus trichocarpa x 
Populus deltoids), STS (Vitis 

vinifera) 
1.5x10-3 mg/L [52] 

4CL (Populus trichocarpa x 
Populus deltoids), STS (Vitis 

vinifera) 
1.45 mg/L [6] 

RESV11 

PAL, CPR (Populus 
trichocarpato x P. deltoids), 
C4H, 4CL (Glycine max) STS 

(Vitis vinifera) 

3.1x10-1 mg/L [8] 

WAT11 

TAL (Rhodobacter 
sphaeroides), 4CL 

(Arabidopsis thaliana), STS 
(Vitis vinifera) 

1 mg/L [9] 

W303-1A 
 4CL1 (Arabidopsis thaliana), 

STS (Arachis hypagaea) 
3.1 mg/L [15] 
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1.3.4. Cultivation of microorganisms 

Different organisms have different nutritional necessities. Macronutrients, such as carbon, 

hydrogen, oxygen, nitrogen, phosphorus and sulfur, are essential and required in large 

amounts as they constitute proteins, nucleic acids, lipids and polysaccharides [50].  

Micronutrients, such as iron, manganese and other trace metals, as well as growth factors and 

vitamins, are required in very small amounts, which function as coenzymes [50].  

With respect to its composition, culture media can be classified in defined, semi-defined and 

complex. In a defined medium, all components composition and concentration is known 

whereas in complex media, the composition of some components is variable and unknown. 

This last type of media usually contains digests of microbial, plant or animal products and 

other highly nutritious yet impure substances, commercially available in dehydrated form but 

the exact nutritional composition is unknown [50]. The intracellular environment is a reflex of 

the extracellular media, and, in this way, the culture medium needs to be optimized, 

because it is highly associated with cell growth and, consequently, with the cost-

competitiveness in the bioprocess [48, 49]. 

Once a culture medium is made and sterilized, it can be inoculated with a pure culture and 

then incubated in favorable growth conditions, which without outside interferences, is a 

batch growth [50]. Batch growth is constituted by four phases: lag, exponential, stationary 

and cell death phases. Lag phase, the first, occurs after the transference of inoculum from 

another culture to a new one and for this reason, cell require time to biosynthesize essential 

constituents [50]. The next phase is the exponential phase, where cells are healthy and 

exponential growth occurs, followed by the stationary phase. This phase happens before an 

essential nutrient is used up and/or a waste product accumulates in the medium, which 

inhibits cell growth. The last phase is bacterial death, sometimes accompanied with cell lysis 

[50].  

Nonetheless, in order to perform fermentation studies, shake-flask cultures are widely used 

[53]. Utilized for more than two centuries, shake flasks cultures are employed to select 

suitable strains for production scale. Shake-flask cultures are small-scale cultures performed 

using liquid medium and incubated under conditions that favor growth. In this manner, it has 

become increasingly important to study the cultivation parameters to optimize growth 

conditions [53]. The optimum conditions for cell physiology and metabolism are regulated by 

various chemical and physical factors. Temperature is one of the most important physical 

factors to microorganisms. Temperature affects microorganisms in two opposing ways and 

three temperatures, called cardinal temperatures, are characteristic for any microorganism 

and encompass minimum, maximum and optimum points [50]. At minimum temperature, 

transport processes are very slow and growth cannot occur; besides, membrane gelling 

occurs. As the temperature rises, optimum point is achieved and enzymatic reactions occur at 

maximal possible rate. Optimal point is near to maximum temperature, were protein 



Resveratrol production in bioreactors: assessment of cell physiological states and plasmid segregational instability 

 

41 
 

denatures, the cytoplasmic membrane collapse and thermal lysis occurs. In the extreme 

points, growth is unviable [50]. Resveratrol is affected by temperature, as showed in a study 

[54], which underwent resveratrol by heat treatment, resulting in a decreased content of 

resveratrol under temperature stress (35 ºC). pH is another important element in 

microorganisms growth. The most natural environments have a pH between 4 and 9, and 

organisms with optimal pH in this range are most commonly encountered [50]. Resveratrol is 

also affected by different pH, as demonstrated in a study performed by [55], where 

resveratrol is stable until an approximately pH of 9, and then starts to deprotonate.  

Oxygen can be a requirement for microorganisms, but is not so essential as an adequate 

temperature and pH [50]. Many organisms can live in the total absence of oxygen; however, 

E. coli and S. cerevisiae are aerobes. Resveratrol can be affect by oxygen dissolution over a 

long period of time, and a study about resveratrol stability in wine storage revealed that over 

time, the amount of resveratrol decreased significantly [56]. These growth conditions can be 

controlled when the fermentation is performed in a bioreactor, enabling a higher production 

of the compound of interest [57]. 

The most widely used bioreactor is stirred tank bioreactor. This bioreactor has an easy scale-

up, good oxygen transfer ability as well as good fluid mixing. It also has alternative impellers 

and easy compliance with cGMP [57]. However, it has some disadvantages, as high power 

consumption and high shear [57]. 

An effective bioreactor should provide a high volumetric productivity [57]. The yield depends 

not only on the bioreactor but also the bioreactor operation. The batch culture is one of the 

most known. In this type of operation, an organism grows in an enclosed vessel but the 

imposed conditions remain constant only in the early stages of exponential growth, because 

there are no toxic metabolites in media or depletion of nutrients [50]. Nonetheless, in the 

later stages, the number of cells increases and, consequently, the physical and chemical 

composition of the medium changes and thereby affects both growth rate and growth yield 

[50]. In this manner, although batch cultivations are known by constantly changing its 

environmental conditions, this method is capable of produce metabolites associated with any 

kinetic pattern [58]. 

1.4. Statistical design of experiments 

Since many factors can play an important role in a fermentation process, several approaches 

have been described in order to optimize this process towards a more successful production. 

Sometimes, these experiments can be a discussed in a one-factor-at-a-time approach. But 

this methodology is time consuming, does not consider any possible interaction between 

factors and does not consider the failure of one factor to produce the same effect on the 

response at different levels of another factor [59]. As a response for these cases, 

experimental design has emerged. 
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The one-factor-at-a-time approach is a strategy of experimentation that is used extensively in 

practice. After selecting a starting point (or a baseline set of levels, for each factor), each 

factor is then successively varyied over its range with the other factors held constant at the 

baseline level [59]. After carry out all the tests, several graphics are constructed, showing 

how the response variable is affected by varying each factor with the others constant, which 

are used to select the optimal combination [59]. Because this approach does not take into 

account the possibility of interaction between factors, which can lead to incorrect 

conclusions, a more accurate approach is to conduct a factorial experiment, where factors 

vary together instead of one at a time [59].   

Design of Experiments (DoE) is an approach to study several factors from a particular process. 

Experiment could be defined as series of tests where changes are performed to the input 

variables and then output response is observed and reasons of changes are identified [59]. 

This methodology is an important tool for improving the performance of a manufacturing 

process, or in the development of new processes. Experimental design could lead to improved 

process yields, reduced overall costs, development time and variability [59]. However, 

factorial designs have further advantages: are more efficient than one-factor-at-a-time 

experiments, the presence of interactions avoid misleading conclusions and this type of 

approach allow the effects of a factor to be estimated at several levels of the other factors, 

yielding conclusions that are valid over a range of experimental conditions [59]. 

The design of experiments could follow seven steps. The first step is the recognition and 

statement of the problem, the next step is choosing the factors, levels and ranges, also 

selecting the response variable. Once these steps are done, the next is choosing the 

experimental design. Then, is necessary to perform the runs and hereafter analyze 

statistically the data obtained, resulting in valid and objective conclusions and remarks [59]. 

The choice of a particular design involves the consideration of the number of replicates and a 

suitable run order. At the end, once the data was analyzed, follow-up runs and confirmation 

testing should be performed to validate the conclusions from the experiment [59]. 

There are three basic principles on design of experiments. Replication is one of them. This 

term is related to repetition of the basic experiment, allowing the achievement of an 

estimate of the experimental error [60]. It is also used to determine whether observed 

differences in data are statistically different and to estimate the effect of a factor in the 

experiment. Replication reflects variability between runs and within runs [59]. Another basic 

principle is randomization. It is related to the order in which the individual runs or trials of 

the experiment are performed, randomly determined. This randomization is necessary as a 

requirement of statistical methods and the effects of extraneous factors may be noted [59]. 

Blocking is the last basic principle. This principle is a design technique to improve precision 

and reduce or eliminate the variability from nuisance factors (which may influence the 

experimental response but is not the focus of interest). In order to optimize processes with 
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combination of several independent variables and correspondent interactions, an effective 

tool is Response Surface Methodology (RSM) [61]. 

1.4.1. Response Surface Methodology (RSM) 

Response Surface Methodology quantifies the relationship between controllable input 

parameters and obtained response surface [60]. The main objective is to optimize the 

response surface that is influenced by various process parameters.  

The design procedure to perform RSM starts with the design of a series of experiments for 

adequate and reliable measurement of the response of interest. Then, it is necessary to 

develop a mathematical model and determine the optimal set of experimental parameters. 

Finally, the direct and interactive effects of process are represented in two and/or three 

dimensional plots [60]. 

 

The response surface can be resumed in an equation if all variables are measurable [60]: 

                   (1) 

 

Where   is the response of the system and    the variables of action called factors. The main 

goal of this methodology is to optimize  . 

In order to optimize  , three types of experimental design techniques are usually used for 

process analysis and modeling: full factorial, partial factorial and central composite rotatable 

[60]. The first type requires at least three levels per variable to estimate the coefficients of 

the quadratic terms in the response model. The second type is particularly useful if certain 

variables are already known and requires fewer tests than full factorial [60]. The third type is 

able to give large amounts of information but with a relative reduced number of experiences.  

1.4.2. Central Composite Rotatable Design (CCRD) 

This methodology was developed by Box and Wilson and afterwards improved by Box and 

Hunter. This method gives almost as much information as a three-level factorial, but is 

sufficient to describe the majority of process responses and requires fewer tests than full 

factorial design [60]. 

As seen before, a factor could have levels and ranges. When there are   factors, each at two 

levels, factorial design would require    runs [59]. This kind of design includes    factorial 

with its origin at the center,    points fixed axially at a distance ( ) from the center to 

generate the quadratic terms and replicate tests at the center [60]. The axial points are 

important because they allow rotatability, ensuring that the variance of the model prediction 

is constant at all equidistant from the center points [60]. A representative scheme of central 
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composite rotatable design is presented in figure 3. The number of tests recommended for 

four variables at the center is six [62]. 

 

 

 

 

 24 factorial points 

axial points 

 center point 

 

Figure 3. A CCRD scheme for four factors          and    (Adapted from [63]). 

 

When the desired ranges of values from the variables are chosen, points are coded as 

functions of the range of interest. So, factorial points are coded as ±1, central points as 0 and 

axial points are ±  [62] (table 4). 

Table 4. Relation between coded and actual value of variables [62]. 

Coded points 

Code Actual value of variable 
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When data is obtained, a regression analysis is carried out to determine the coefficients of 

the response model, significance and standard errors. In this manner, response model 

incorporates constant (  ), error ( ), linear terms of each variable (          ), squared 

terms of each variable (  
    

 , …,   
 ) and first order interaction terms for each paired 

combination (                  ). So, the general final equation of response model is [60]:  
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Also, ANOVA (analysis of variance) is performed to obtain a detailed statistical significance of 

the linear, square and interaction components of the model above. The value of the model 

allows the prediction of the performance by interpolation, identifies statistically different 

significant factors and facilitates the construction of response surface graphics [63].  

After optimal production in bioreactor or shake-flasks, it is necessary to recover and quantify 

the resveratrol produced through a chromatographic method. 

1.5. Resveratrol recovery and quantification 

Although some samples can be analyzed by direct injection, generally a sample preparation is 

made prior to injection, as a pre-concentrate and cleaning stage [64]. For the recovery of 

resveratrol from culture media, several extraction processes (Table 5) have been described 

such as liquid-liquid extraction (LLE), solid phase extraction (SPE) and solid phase 

microextraction (SPME) [17]. Nevertheless, LLE is the most widely used method for 

resveratrol recovery, because it is simple, robust, can use a wide range of organic solvents 

and extractants, efficient and widely accepted in many standard methods [65]. After the 

extraction, the samples are concentrated by evaporation to dryness and re-dissolved in 

chromatographic solvent, followed by chromatographic injection [66].  

Table 5. Extraction techniques for resveratrol extraction from complex matrices. 

Type of Extraction Description Advantages Disadvantages References 
     

Liquid-Liquid 
(LLE) 

Separates 
components 

dissolved in a 
solution by contact 
with a second liquid 

phase. 

High selectivity; 
Versatile;  

Cost-effective; Low 
energy consumption.  

Use high purified 
solvents;  

Time-consuming.  
[65, 67, 68] 

Solid Phase 
(SPE) 

Uses a solid phase 
and a sample matrix 
to isolate an analyte 

from a solution. 

High selectivity;  
Easy automation;  

Low cost;  
High recovery and 

purity; Reduction of 
organic solvent. 

Formation of 
carbon dioxide 

(CO2) could disturb 
the efficiency; 

Efficient than LLE. 

[64, 69, 70] 

Solid Phase 
Microextraction 

(SPME) 

With the same base 
than SPE. The 

analyte is desorbed 
at high 

temperature.  

Decrease the use of 
organic solvents; 

Simple; 
Low sample volume; 

Higher detection 
limits than SPE. 

Narrow application; 
Efficient than LLE.  

[67] 

 

For resveratrol quantification in various types of samples, several methods have been 

developed (Table 6), and the most are of a chromatographic nature. The majority of the 
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techniques used are liquid chromatography coupled to various types of detectors, such as UV, 

fluorescence or electrochemical detectors and even to a mass spectrometer [17]. Gas 

chromatography is also widely used, generally coupled to a mass spectrometer [64]. Non-

chromatographic methods are used, but in a smaller amount of analysis, being capillary 

electrophoresis the most known method [17]. The remaining techniques (differential pulse 

voltammetry [71], laser desorption coupled resonant ionization spectrometry [72] and UV 

spectrophotometric detection [73]) are slightly used and they are still in an initial stage. The 

methods used are described in Table 6. 

Table 6. Analytical procedures for resveratrol quantification. 

Chromatographic Techniques Detector References 

Chromatographic 
Techniques 

Liquid  

High-Performance Thin-Layer 
Liquid Chromatography (HPTLC) 

UV, electrochemical, 
fluorescence (FLD), 
chemiluminescent, 
Mass Spectrometry 

(LC-MS) [17, 64, 72]  
(Ultra) High-Performance Liquid 

Chromatography ((U)HPLC) 

Gas  Gas Chromatography (GC) 
Mass Spectrometry 

(GC-MS) 

Non-
Chromatographic 

Techniques 

Capillary Electrophoresis (CE); Differential Pulse Voltammetry; Laser 
desorption coupled resonant ionization spectrometry; 

UV spectrophotometric detection. 
[17, 71-73] 

 

Understanding the bioprocess is important to optimize and achieve maximal exploitation of 

the microorganism. Several techniques can be used to analyze the critical variables of the 

process and they should be constantly monitored. In this way, flow cytometry can be used to 

assess the physiological states of the cell, one of the most important issues in terms of any 

production process [74], since viability is compromised, cells are no longer able to grow and 

provide energy for product formation, resulting in a decrease in product yields. 

1.6.  Cellular viability 

Rapid detection of microorganisms and the assessment of their viability can be an important 

tool to control bioprocesses [75]. This data is also relevant to design an effective production 

process, once a presence of an elevated number of dormant or dead cells may decrease 

product synthesis [74]. Flow cytometry allows the characterization of intracellular content in 

individual cells and cellular functions, where are included the assessment of membrane 

permeability and membrane potential, cell size, enzyme activity and total DNA and RNA 

contents [74]. The analysis of the physiological states of a cell population is of utmost 

importance to assess the impact of the culture conditions and length of fermentation, growth 

development and resveratrol production of a cell population. The rapid analysis of single cells 

in a mixture, versatility and automated sample handling for an increased sample throughput 
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make flow cytometry (FC) a desirable technique that has impacted biotechnology [75]. Flow 

cytometry is a quantitative technique that analyzes cell populations at single cell level. A 

single stream of particles formed by the hydrodynamic focusing passes through laser beam, 

measuring a large number of particles while simultaneously measure several parameters on 

each cell, separating them into populations, detecting minority or rare cells [75]. This 

technique can be performed using only scattering signals. In this way, cell size and 

complexity are evaluated through forward (FSC) and side (SSC) scatter light measurements 

[74]. While FSC assesses the size of the cell, SSC evaluates the complexity. However, in order 

to analyze the physiological state and viability, several fluorescent stains were developed 

and, nowadays, several multi-staining procedures can be performed. To assess membrane 

permeability, the most commonly used fluorescent stain is propidium iodide (PI). This 

fluorescent dye assesses bacterial membrane integrity; since, when the membrane is injured, 

PI is able to enter the cell and bind to nucleic acids, increasing the red fluorescence of cells 

[76, 77]. In order to evaluate bacterial membrane potential, bis-(1,3-dibutylbarbituric 

acid)trimethine oxonol (BOX) is commonly used. BOX has high voltage sensitivity and is an 

anionic and lipophilic molecule, capable of entering the cells but is readily excluded when 

cells are polarized. However, if cells enter a depolarization state, BOX can enter and 

accumulate inside the cells. Membrane depolarization is transitory and reversible in bacterial 

cells as, under appropriate conditions, depolarized cells can regrow and return to their 

polarized state [77]. This technique informs about heterogeneity, a characteristic present in 

all living organisms populations [74]. Flow cytometry arises as a tool that provides an insight 

into bioprocesses by evaluating several parameters.  

1.7. Plasmid stability 

Plasmid stability is also a key issue in recombinant microbial fermentations, because it may 

be present some plasmid-free segregants, even when pressure is exerted [78], which 

contributes to a diminished final plasmid DNA yields and consequently leading to lower 

resveratrol production [74].  

Generally, plasmids are used as vehicles to carry foreign genes into a host cell, being a widely 

used system to produce many compounds of interest, carrying also some metabolic burden 

[74]. During fermentation process, and even under selective pressure, some plasmid-free 

segregants may arise, as a result of the leakage of the selective gene product into the media 

[74]. Segregational plasmid instability could be described as the loss of plasmids due to 

irregular distribution of plasmids during cell division [74]. Plasmid stability is determined by 

plasmid load, replication patterns, plasmid copy number, level of expression, substrate type 

and media composition and culture conditions [74]. Plasmids stability can be caused by the 

accumulation of plasmid multimers, leading to a decrease in the number of cellular units 

[74]. Although instability could impact downstream processes [74], this also impacts the 
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upstream process, since plasmid instability demonstrates a considerable decrease in plasmid 

productivity [74], which affects compound production.  

However, there is another type of plasmid instability: the plasmid structural instability, which 

may arise from delections, insertions, duplications, inversions and translocations [74]. There 

are other factors that affect plasmid structural stability, as plasmid size, but also 

environmental stresses, as antibiotic concentration, medium composition, temperature shifts 

and oxygen fluctuations, elevating the rate of spontaneous point mutations [74]. Structural 

instability in plasmid could also be a result of the increased metabolic burden [74]. 

The stability of plasmid can be evaluated quantitatively, demonstrating that the plasmid copy 

number (PCN) of the recombinant plasmid is stable within the host cells [79]. PCN can be 

defined as the ratio between numbers of plasmid and chromosome amplicons at the moment 

of sampling [80] and may be quantified in an absolute or relative way [79]. PCN can be 

assessed by indirect and direct methods [74]. Indirect methods determined PCN by measuring 

the activity of the reported protein coded by the plasmid and normalized to the number of 

bacteria [80]. Direct quantification methods include cesium chloride (CsCl) centrifugation, 

southern blot hybridization, HPLC, capillary electrophoresis and agarose gel electrophoresis 

[80]. This direct quantification is based in the quantification of chromosomal and plasmid DNA 

followed by the calculation of the ratio between them [74]. 

Determine PCN during fermentation is a method to monitor plasmid segregational stability 

[74]. The results obtained by relative and absolute quantification are nearly equal; 

consequently, both methods can be applied to assess PCN in fermentations [74]. Because 

direct quantification methods require a DNA extraction procedure, which may lead to an 

inaccurate PCN determination, another method was develop to asses PCN by using whole 

bacterial cells [74]. This method provides a feasible approach for the time-course monitoring 

of PCN, once it only requires sampling and, dilution to maintain cell density at a constant 

value [74]. 

Real-time quantitative PCR (qPCR) offers a reliable, sensitive, precise and fast method for 

plasmids quantification in a sample [79]. Real-time qPCR is widely used to assess plasmid 

stability in bioprocesses. Sometimes, this technique is coupled to flow cytometry in order to 

determine cell physiological states and both are used to monitor fermentations. An example 

of the combined use of these techniques is performed by [81], were several plasmid DNA 

induction strategies were described and real-time qPCR and flow cytometry were used to 

determine pDNA segregational stability and cell physiological states during plasmid induction. 

This study concludes that DNA replication and cell filamentation occurs, two conclusions only 

possible through the use of real-time qPCR and flow cytometry [81]. 

 

The tools described here could be used to monitor and optimize the bioprocess and enable a 

better exploitation of fermentations and microorganisms. These tools should be used to 
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optimize the bioprocess and enable a better exploitation of fermentations and 

microorganisms. 

1.8. Objectives 

Resveratrol has a wide range of applications in several areas. The interest in resveratrol is 

increasing and it is necessary to accomplish the growing demand of industries for great 

amounts of this phytoalexin with economic value. The general goal of this study was the 

production of resveratrol in recombinant microorganisms using bioreactors, while monitoring 

cell physiology and plasmid segregational stability towards the improvement of bioprocess 

performance. The specific aims were: 

 To validate a HPLC-DAD method for resveratrol quantification in culture media 

samples. 

 To assess the influence of culture conditions and medium composition on resveratrol 

production in shake flasks using two recombinant microorganisms: Escherichia coli 

and Saccharomyces cerevisiae. 

 To optimize resveratrol production through Design of Experiments (DoE) in 

bioreactors, evaluating cell physiology and plasmid stability. 
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Chapter 2 

 

2. Materials & Methods 

2.1. Transformation 

2.1.1. Strains and plasmid 

pAC-4CL1 plasmid (Addgene, USA) is a plasmid which encodes for 4-coumaroyl CoA ligase 1 

from Arabidopsis thaliana and confers bacterial resistance to chloramphenicol. pUC-STS 

plasmid (Addgene, USA) is a high copy plasmid that encodes for stilbene synthase from 

Arachis hypogaea and confers bacterial resistance to ampicillin. Escherichia coli BW27784 (E. 

coli Genetic Stock Center, USA) was the selected host strain for the transformation with these 

two plasmids (pAC-4CL1 and pUC-STS). Saccharomyces cerevisiae FY23 was already 

transformed with vst1 and 4CL216 genes (FY23vst14CL216) and was kindly donated by 

Professor Maret du Toit from Stellenbosch University, South Africa. 

In order to obtain pure plasmid for subsequent transformation, lysis and plasmid recovery was 

performed using a NZY Miniprep Kit (NZY Tech, Portugal) according to the manufacturer’s 

instructions. An electrophoresis was performed as explained in section 3.1.2. Pure plasmids 

were stored at – 80 ºC. 

2.1.2. Escherichia coli transformation 

Escherichia coli was genetically manipulated using transformation by heat shock protocol.  

Chemically, competent cells were generated using a method based in magnesium and calcium 

chloride addition. Exponentially-growing E. coli cells were obtained from a liquid culture in 

LB (Appendix 1) medium until the optical density at 600 nm (OD600) reached 0.9. Then, a 

dilution was performed to a final OD600 of 0.05 in fresh LB medium and cultivated at 37 ºC, 

250 rpm, to a final OD600 of 0.8. After, the culture was centrifuged at 5000 rpm for 10 

minutes at 4 ºC. Cell pellet was resuspended in 12.5 mL of MgCl2 100 mM. The mixture was 

centrifuged at 4000 rpm for 10 minutes at 4 ºC and the resulting pellet was resuspended by 

inversion in 25 mL of CaCl2.H2O (Panreac, Spain) 100 mM. This cellular suspension was 

incubated on ice for approximately 25 minutes and then centrifuged at 4000 rpm for 10 

minutes at 4 ºC. Supernatant was carefully removed and the pellet was resuspended in 1 mL 

of CaCl2.H2O 85 mM with glycerol 15 % (v/v) (HiMedia, India). This competent cell suspension 

was aliquoted and froze immediately in liquid nitrogen and stored at – 80 ºC. The 

transformation protocol is described below. After gentle thawing of the competent cells at 

room temperature, 1 µL of each plasmid (pAC-4CL1 and pUC-STS) was added to the cell 

suspension and incubated on ice for 30 minutes. Then, this mixture was heated at 42 ºC for 30 

seconds and quickly transferred to ice. Afterwards, 200 µL of SOC (Appendix 1) medium was 
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added to the previous suspension and incubated at 37 ºC, 250 rpm for 2 hours. For selection 

of transformants, this suspension was spread in LB plates containing 50 µg/mL 

chloramphenicol (Fluka, USA) and 100 µg/mL ampicillin (Sigma-Aldrich, USA). As a control of 

the competent cell suspension, LB plates with antibiotics (ampicillin and chloramphenicol) 

were inoculated with an aliquot of the thawed competent cell suspension. 

2.1.3. Cell lysis and electrophoresis 

In order to verify if the E. coli strain was successfully transformed with both plasmids, 

plasmid DNA was extracted from liquid cultures in LB medium supplemented with ampicillin 

and chloramphenicol grown overnight at 37 ºC and 250 rpm. Cell lysis and plasmid recovery 

was performed using a NZY Miniprep Kit according to the manufacturer’s instructions. A 

digestion was performed using Hind III Kit (NZY Tech, Portugal), according to the kit 

instructions. Agarose gel electrophoresis was performed using a 1 % agarose gel with Green 

Safe (0.2 µL/mL). Electrophoresis was carried out in Tris-Acetate-Ethylene Diamine (TAE) at 

110 V for 45 minutes. The agarose gel was revealed under UV light and using ‘UVITEC’ 

software, UK. 

2.1.4. Cell banking 

Cell banks were made from E. coli and S. cerevisiae transformed cells. After overnight growth 

on LB plates, a single E. coli colony was placed into 25 mL LB medium, supplemented with 

chloramphenicol and ampicillin, and placed to grow at 37 ºC, 250 rpm until and OD600 of 0.6. 

In the case of S. cerevisiae, the media used was SC (Appendix 1) and yeast grew up until OD600 

of 0.6 at 30 ºC, 250 rpm. Cells were cryopreserved in 30 % glycerol and stored at – 80 ºC. 

2.2. Resveratrol quantification 

2.2.1. Standards 

Stock solutions (1 mg/mL) of carbamazepine (internal standard - IS) and trans-resveratrol (all 

purchased from Sigma-Aldrich, USA) were prepared by dissolving each pure substance in 

methanol HPLC-grade (VWR, USA). Carbamazepine was selected as internal standard because 

we could use the same extraction, chromatographic conditions and detection wavelength as 

used to resveratrol [17]. Working solutions of carbamazepine and resveratrol (1, 10 and 100 

µg/mL) were made by proper dilutions in mobile phase. The solutions were stored at 4 ºC 

avoiding exposure to direct light. 

2.2.2. Extraction procedure 

Either in bacteria or in yeast, resveratrol is mostly accumulated in extracellular environment, 

which facilitates the recovery process [18]. After an optimization of the extraction 

procedure, the final conditions were as follows. 1 mL of culture media was centrifuged for at 

13000 rpm for 5 minutes at 4 ºC. Supernatant was withdrawn to an extraction tube and the 

sample was acidified through the addition of 50 µL of HCl (VWR, USA) 1M, and the mixture 

was spiked with 50 µL of IS solution (100 µg/mL). This acidified sample was incubated in a 
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roller mixer at room temperature and low speed for 15 minutes, followed by the addition of 1 

mL of ethyl acetate (Fisher Scientific, USA). The sample was incubated once again in a roller 

mixer at room temperature and low speed for 5 minutes. The organic phase was removed and 

afterward dried at 30 ºC under nitrogen stream. The dry extract was dissolved in 100 µL of 

mobile phase and subsequently filtered with a 0.22 µm pore size filter (Millipore, USA). About 

50 µL were injected into Ultra-High Performance Liquid Chromatography system (UPLC), an 

Agilent 1200 series from Agilent Technologies, USA. The whole procedure was carried out in 

subdued light in order to avoid trans-resveratrol isomerization to cis-resveratrol during 

sample handling.  

2.2.3. Chromatographic and detection conditions 

The mobile phase was mixture of ultrapure water (Milli-Q system, Millipore, USA), acetonitrile 

(VWR, USA) and acetic acid (Fluka, USA), in a proportion of 66/33.9/0.1 (v/v/v) and pH 3.4 

[17]. The solution was filtered through a 0.22 µm pore size membrane, degassed 

ultrasonically and pumped in isocratic mode through chromatographic system at 1 mL/min, 

with a column temperature of 25 ºC. Chromatographic separation was attained using a 5 µm 

Zorbax 300SB-C18 reverse-phase analytical column (4.6 mm ID x 150 mm) from Agilent 

Technologies, USA. The eluate was monitored at three different wavelengths using a Diode 

Array Detector (DAD) coupled to UPLC system: 211 nm for carbamazepine, 284 nm for cis-

resveratrol and 306 nm for trans-resveratrol. Using these chromatographic conditions, the 

retention for trans-resveratrol and carbamazepine were 2.7 (figure 4) and 3.9 minutes, 

respectively.  

 

Figure 4. HPLC-DAD chromatogram of a 1 µg/mL resveratrol sample at 306 nm. 

 

This method was validated according to the Food and Drug Administration (FDA) [82] and 

International Conference on Harmonisation (ICH) guidelines for validation of bioanalytical 

methods [83]. In this way, the method has been tested in terms of linearity, accuracy and 

precision. The liquid-liquid extraction procedure efficiency was also evaluated. 
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2.2.3.1. Method validation 

Calibration Curve 

The calibration curve had seven points equally distributed points ranging from 0.1 to 10 

µg/mL. M9 media (Appendix 1) was used as blank sample in validation. M9 medium acidified 

with 50 µL of HCl 1M was spiked with trans-resveratrol to achieve the following final 

concentrations: 0.1, 0.25, 0.5, 2.5, 5, 7.5 and 10 µg/mL. This mixture was further spiked with 

50 µL of carbamazepine (100 µg/mL). The extraction procedure was the same as described 

above and was performed for each sample. 

Intermediate Precision 

In intermediate precision, three points of different concentrations (2, 4 and 8 µg/mL) were 

tested in triplicate for five consecutive days. The procedure was similar to described below. 

Intraday Precision 

Intraday precision was measured with four distinct concentrations, encompassing the highest 

and the lowest concentrations, as well as two intermediate ones: 0.1, 0.5, 5 and 10 µg/mL. 

These extractions were performed in quintuplicate in only one day. The protocol was the 

same as already described. 

Extraction Efficiency 

Extraction efficiency was measured by the following equation: 

                       
                                     

                                             
      (3) 

 

Thus, two variations of the same protocol are used. In one of them, where resveratrol was 

added at the beginning, the extraction was carried out with resveratrol – real concentration. 

In the other, resveratrol was added only to the organic phase before drying, so, extraction 

was performed without resveratrol - theoretical concentration. The internal standard was 

added to both before dryness. The remainder protocol is the same described. 

2.3. Screening assays 

In order to assess resveratrol production in the two recombinant microorganisms and conclude 

which factors have more influence on production, shake flask assays were performed for the 

evaluation of six factors: p-coumaric acid concentration, optical density (OD600) at precursor 

addition (induction experiments), growth temperature, agitation, medium composition and 

pH (only for E. coli) (Table 7). Each of these factors had several levels which were assessed to 

obtain a greater understanding about culture conditions of E. coli and S. cerevisiae. 
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Fermentations and pre-fermentations were carried out in 250 mL shake flasks with 62.5 mL of 

medium. Pre-fermentations grown up to a final OD600 of 2.6 and a dilution was performed to 

an initial OD600 of 0.05 in fermentations. 

The background conditions were maintained, unless a particular factor was being tested. 

Thus, for E. coli, fermentations were carried out on M9 media and resveratrol production was 

induced at an OD600 of 0.1 with 1 mM of p-coumaric acid (Sigma-Aldrich, USA) dissolved in 

dimethyl sulfoxide (DMSO, purchased from VWR, USA). The fermentations were grown at 30 

ºC, 250 rpm for 48 hours. Glycerol was used in M9 medium, since previous studies showed that 

glucose reduces STS expression and consequently resveratrol production [51]. In case of S. 

cerevisiae, fermentations were performed using SC media supplemented with tryptophan 

(Fluka, USA), for selection purposes, and it should be induced at same conditions than 

bacteria. The fermentations were grown at 30 ºC, 250 rpm for 100 hours and the screening 

assays are presented in table 9. Every four hours, samples were taken from each fermentation 

to evaluate resveratrol production by HPLC-DAD. 

Table 7. Culture factors and ranges tested in Escherichia coli screening assays. 

Factors Range 

p-coumaric acid  
concentrations (mM) 

0; 1; 5; 10; 15 and 20 

Optical density (OD600) at time of 
induction 

0.1; 0.2; 0.5; 1 

Growth temperature (ºC) 25; 30; 37; 42 

Agitation (rpm) 150; 200; 250; 300 

Medium composition Table 8 

pH 5; 6; 7; 8; 9 

 

Table 8. Medium composition tested for E. coli screening assays. In ‘M9 base’ and ‘Glycerol assays’, the 

concentrations of the presented compounds were modified in M9 base recipe, maintaining the remaining 

nutrients. 

M9 base M9 without yeast extract Glycerol assays 

NH4Cl, 5 g/L 
Yeast extract, 5 g/L 

NH4Cl, 5 g/L 
NH4Cl, 5 g/L 

Triptona, 2.5 g/L 
Triptona, 5 g/L  

Glycerol, 20 g/L 
Glycerol, 2.5 g/L 
Glycerol, 2 g/L 
Glycerol 1.5 g/L 
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Table 9. Ranges and culture factors tested in Saccharomyces cerevisiae screening assays. 

Factors Variables 

p-coumaric acid  
concentrations (mM) 

0; 2; 5; 10; 15 and 20 

Optical density (OD600) at time of 
induction 

0.1; 0.2; 0.5; 1 

Growth temperature (ºC) 25; 30; 37; 42 

Agitation (rpm) 150; 200; 250; 300 

Medium composition Tryptone, 5 g/L; yeast extract, 5 g/L; peptone, 5 g/L  

 

All the media and solutions were sterilized (Uniclave 88, AJC, Portugal) and techniques were 

performed in aseptic conditions. Once the screening assays were performed, the data 

obtained regarding the most relevant factors and their ranges were used to optimize 

resveratrol production using Design of Experiments. 

2.4. Design of Experiments 

In order to generate data for bioreactor assays, Design Expert® Version 7.0.0 (from Stat-Ease 

Inc., USA) was used. The initial design chosen was Central Composite Rotatable Design 

(CCRD), with no blocks. Once we have 4 factors ( ) and taking into account what was 

described in section 1.4.1, the total number of runs are 30             . In order to 

obtain the data for bioreactor operation, the range of values of each of four variables was 

defined as follows, based on data obtained in screening assays: 

 Precursor concentration: 0 – 16 mM 

 Optical Density (OD600) at time of induction: 0.125 – 1.025 

 pH: 6 – 8 

 Temperature (ºC): 25 – 37 

These values were chosen taking into account the maximum value of the production at each 

factor tested as well as neighboring values, in order to cover a greater range of values which 

contains all the probable values for an optimal resveratrol production. Applying to coded 

levels as presented in table 4, the values of the codes were calculated as shown in table 

below (table 10): 
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Table 10. Independent variables and CCRD levels used to determine the variables levels of 30 assays. 

Variable 
Coded variable level 

Lowest 

   

Low 

   

Center 

  

High 

   

Highest 

   
Precursor 

Concentration (mM) 
0 4 8 12 16 

OD600 induction 0.125 0.35 0.575 0.8 1.025 

pH 6 6.5 7 7.5 8 

Temperature (ºC) 25 28 31 34 37 

The test table generated was as follows (table 11): 

Table 11. Matrix generated with the assays, the four factors and several levels studied. The factors are 

precursor concentration (mM), optical density at precursor addition, pH and temperature (ºC). 

Run 
Precursor 

concentration 
(mM) 

OD600 at  
precursor 
addition 

pH 
Temperature 

(ºC) 

1 0 0.575 7 31 

2 4 0.8 7.5 28 

3 12 0.8 6.5 28 

4 12 0.35 6.5 34 

5 12 0.35 7.5 28 

6 8 0.575 7 31 

7 8 0.575 6 31 

8 4 0.8 6.5 28 

9 4 0.35 6.5 28 

10 4 0.8 7.5 34 

11 8 0.575 8 31 

12 12 0.8 7.5 34 

13 8 0.575 7 31 

14 4 0.8 6.5 34 

15 4 0.35 7.5 28 

16 4 0.35 6.5 34 

17 8 0.575 7 31 

18 12 0.35 7.5 34 

19 12 0.8 6.5 34 

20 8 0.575 7 31 

21 8 0.575 7 31 

22 16 0.575 7 31 

23 8 1.025 7 31 

24 8 0.575 7 25 

25 8 0.575 7 37 

26 8 0.125 7 31 

27 4 0.35 7.5 34 

28 8 0.575 7 31 

29 12 0.8 7.5 28 

30 12 0.35 6.5 28 
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The answer of the model ( ) was termed ‘resveratrol concentration’ and it was a response 

surface study type. A detailed analysis of variance (ANOVA) was performed using the software 

indicated above. 

After obtaining the grid trials, the scale-up was performed in bioreactors. 

2.5. Bioreactor operation 

Four 0.5 L working volume parallel bioreactor (Infors HT, Switzerland) with a double blade 

impeller were used to culture E. coli in 250 mL of M9 medium. Solutions and antibiotics were 

added using sterile syringes and needles through the inoculation port. Shake flask cultures 

were combined to inoculate the bioreactor at an initial OD600 of 0.05. 

Bioreactor conditions were maintained at 250 rpm and 30 % of dissolved oxygen 

concentration, with variable temperature and pH. The dissolved oxygen level was controlled 

by manipulating the oxygen concentration in the gas stream. All the parameters were 

monitored continuously using IRIS software (Infors HT, Switzerland) and the cultures grew 

under subdued light in order to avoid trans-resveratrol isomerization. The pH was maintained 

through the automatic addition of 1 M NaOH (Fisher Scientific, USA) and 1 M H2SO4 (Panreac, 

Spain).  

Fermentations were carried out for 30 hours and samples were taken aseptically at 22 and 30 

hours of growth. These samples were used for resveratrol quantification, flow cytometry and 

real-time qPCR using an appropriate dilution. 

2.6. Flow cytometry 

BOX BOX (Invitrogen, USA) solution at 1 mg/mL was prepared in DMSO and stored at – 20 ºC. 

PI solution at 1 mg/mL in water (Sigma-Aldrich, USA) was stored at 4 ºC. Both were kept 

protected from light. Samples were analyzed on CyAn ADP (Beckman Coulter, USA) and 

acquisition was performed with software Summit 4.3 (Beckman Coulter, USA). Fluorescence 

and light-scatter signals resulted from a 20 mW semiconductor laser at 488 nm. Fluorescence 

signals were acquired logarithmically as well as light-scatter signals. FSC, SSC and 

fluorescence where accumulated and the fluorescence signal was screened by FL1 and FL3 

bandpass filters. To reduce electronic and small particle noise threshold levels were set on 

SSC and data acquisition for a single sample took about 3 minutes and 5000 events were 

gathered. 

The samples taken from fermentation were used for flow cytometric analysis using a PI/BOX 

dual staining. The samples were diluted in phosphate-buffered saline (PBS) buffer (pH 7.4) 

supplemented with 4 mM of Ethylenediamintetraacetic acid (EDTA), pH 7.4 to reach a final 

cell concentration of 1.0x106 cells/mL. These cells were incubated with 1 µg/mL PI and 2.5 

µg/mL BOX for 15 minutes in the dark, at room temperature. Afterwards, labeled cells were 

centrifuged at 5000 rpm for 5 minutes at room temperature, washed with PBS (pH 7.4) and 
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acquired in the flow cytometer. The fluorescence signals were collected by FL1 (BOX) and FL3 

(PI) bandpass filters. 

2.7. Real-time qPCR 

2.7.1. Sample preparation 

Samples were prepared collecting 1 mL of cell culture containing 1.0 108 cells that were 

heated in a 1.5 mL eppendorf for 10 minutes at 95 ºC, followed by an immediate storage at -

20 ºC. One unit of OD600 correspond to 3.97 108 CFU/mL, and this correlation was used 

throughout this work to determine cell concentration in each sample. 

2.7.2. Real-time qPCR 

Quantitative real-time PCR was used for the absolute determination of PCN in E. coli cells. 

Specific primers (Stab Vida, Portugal) for chloramphenicol resistance gene (forward: 5’-

ACCGTAACACGCCACATCTT-3’; reverse: 5’-TTCTTGCCCGCCTGATGAAT-3’) and ampicillin 

resistance gene (forward: 5’-TCCTTGAGAGTTTTCGCCCC-3’; reverse: 5’-

TTCATTCAGCTCCGGTTCCC-3’) were used to amplify fragments in each of the two plasmids 

used. Real-time PCR efficiency was determined for primer set using standard solutions of 

known plasmid copy number (1:1, 1:10, 1:100; 1:1000; 1:10000). Real-time PCR (IQ5 Biorad, 

USA) reactions were performed using 3 µL of sample for a 20 µL reaction containing 10 µL of 

MaximaTM SYBR Green qPCR Master Mix (Fermentas, Canada), 400 mM of pAC-4CL1 primer 

(forward and reverse) or 200 mM of pUC-STS primer (forward and reverse). For pUC-STS, 

reactions were incubated at 95 ºC for 3 minutes, followed by 30 cycles of 10 seconds at 95 ºC 

and 30 seconds at 58 ºC, resulting in a 102 % amplification efficiency. For pAC-4CL1, reactions 

were incubated at 95 ºC for 3 minutes, followed by 30 cycles of 10 seconds at 95 ºC and 30 

seconds at 60 ºC, where the efficiency obtained was 109.5 %. Bacterial cell concentration was 

kept constant at 3 104 cells/reaction. PCN standards for calibration curve were made spiking 

purified plasmid DNA with non-transformed E. coli cells, according to a previously described 

method [81]. In this way, each reaction contains different amounts of plasmid DNA and 3 104 

cells/reaction. PCN calculation is based on plasmid base pair number (3622 bp for pUC-STS 

and 6171 bp for pAC-4CL1). An average of three assays composes each point of the calibration 

curve. Acquisition and analysis were performed in BioRad IQ 5 Software. 
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Chapter 3 

 

3. Results and Discussion 

3.1. Transformation of Escherichia coli with pAC-4CL1 and 

pUC-STS 

Escherichia coli transformation by thermal shock with the two plasmids was successfully 

achieved. After transformation, cells were spread in LB plates with ampicillin and 

chloramphenicol and after overnight growth several and separated young colonies had grown. 

The selective medium inhibited growth of any other species, once colonies were 

morphologically similar (round and light yellow). The presence of colonies meant that 

bacteria had plasmids pAC-4CL1 and pUC-STS inside, which was further confirmed after 

plasmid extraction using a digestion procedure with Hind III and subsequent agarose gel 

electrophoresis (Figure 5). Here, the first band corresponds to plasmid pAC-4CL1 which has 

6171 bp, and the second band corresponds to pUC-STS, which have 3622 bp. 

 

 

Figure 5. Agarose gel electrophoresis of digested plasmid DNA obtained from transformed E. coli with 
two plasmids (lane 2) and molecular weight marker (lane 1).  

3.2. Method validation 

3.2.1. Optimization of extraction procedure 

Culture media samples contained resveratrol along with several other compounds, making it a 

complex matrix which led to the development of an extraction procedure to guarantee 

adequate sample purification and consequently enhance the chromatographic column lifetime 

and performance [17]. 

 1    2      

6000 bp 

3000 bp 
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This extraction procedure was optimized and chosen between three procedures tested. The 

first protocol (hereinafter as ‘procedure 1’) was not very different from the used protocol. 

‘Procedure 2’ and ‘procedure 3’ were studied in previous works (not published) and tested in 

this work in order to choose the best extraction method. The next figure (figure 6) is a 

scheme of the procedures used in this study. 

 

Figure 6. Schematic representation of the three different procedures tested. 

Medium samples spiked with resveratrol were used in all these procedures. Extractions in 

blank samples and resveratrol samples were performed according to the three protocols 

tested. These assays were carried out using YPD and M9 media (Appendix 1). After extraction 

with all three protocols, In YPD medium, an interferent peak was observed on the blank 

sample with approximately the same retention time as resveratrol. In this way, we have 

chosen to perform S. cerevisiae cultures in SC media in every stages of the work involving 

yeast since, for this medium, no interfering substance could be seen at resveratrol retention 

time. In order to assess which method was the best, a sample injection of 10 µg/mL was 

performed after an extraction according to procedure 1, already referenced [51]. It was 

obtained a peak of 36.6 mAU x min and was taken as reference. Injections with the same 

concentration of resveratrol were made according to the three procedures and the results 

were compared to the previous peak (table 12). 
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Table 12. Results obtained from the three different procedures. 

Area 
(mAU x min)  

Procedure 1 Procedure 2 Procedure 3 

Resveratrol 32.3  24.1  19.8  

Carbamazepine 
(100 µg/mL) 

2814.4 2891.4 2799.5 

 

After analyzing the results (table 12), it can be concluded that the nearest value (comparing 

to the obtained previously) was 32.3 and was achieved using procedure 1. For this reason, 

procedure 1 was chosen and used as extraction protocol for samples from E. coli and S. 

cerevisiae fermentations. However, this procedure was changed and simplified. This protocol 

was performed with only one recovery of organic phase, carried out after the first 5 minutes 

of incubation and then the sample was injected, obtaining an area of 37.4 mAU x min. 

Comparing with the value obtained with two extractions (36.6 mAU x min), the difference 

was not significant and, hereinafter, this procedure was performed with only one ethyl 

acetate recovery. SC and M9 media proved to be suitable for both cultivation and resveratrol 

quantification, since they do not present any important interfering substance in the 

chromatograms. In other studies for resveratrol production [17]. 

3.2.2. Calibration curve and precision 

In order to determine the linearity of the method, a calibration curve was performed at 

concentrations ranging from 0.1 to 10 µg/mL. Seven calibrators were prepared in simulated 

samples and analyzed using the procedure described. The calibration curves were obtained by 

plotting the area ratio between resveratrol and IS versus resveratrol concentration and the 

results were submitted to a linear regression (table 13). Accuracy (mean relative error – bias – 

between measured and spiked concentrations) was far below ±15% for all concentration levels 

[82, 83]. The middle values on calibration curves may be problematic, and sometimes the 

calibration range has to be divided in two calibration curves in order to maintain the linearity 

[17]. In this case, it was not necessary to split in half the calibration curve and linearity was 

achieved with acceptable values [82, 83], which constitutes and advantage of the developed 

method. However, this values were achieved after submit the ratio between resveratrol and 

IS to a ponderation, and the factor used was the inverse square of the ratio, as presented in 

table 13. 

Table 13. Linearity parameters (n=5). When applicable, values are presented as mean values ± standard 

deviation. 

Ponderation Linearity (ug/mL) Slope ± SD Intercept ± SD R2 ± SD 

 

   0.1 – 10 0.17±0.01 -0.01 ± 0.00 1.00 ± 0.00 
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Intraday precision measures the method repeatability and is performed a set of assays always 

under the exact same conditions in a short interval of time, generally one day [84]. Four 

concentrations were tested and they ranged from 0.1 to 10 µg/mL, as can be seen in table 

14.  

Table 14. Intraday precision data table (n=5). When applicable, values are presented as mean values ± 

standard deviation. 

Resveratrol 
Spiked (µg/mL) 

Mean ± SD CV (%)1 RE (%)2 

0.1 0.10 ± 0.00 2.13 -4.95 

0.5 0.47 ± 0.01 1.79 -7.40 

5 5.35 ± 0.13 2.46 6.55 

10 10.93 ± 0.22 2.05 8.51 

 

The closeness of mean test results obtained by the method to the true concentration of the 

analyte is the accuracy of an analytical method.  In relation to the closeness of individual 

measure of an analyte when the procedure is applied to multiple aliquots of a single 

homogeneous volume of biological matrix, it is precision [82, 83]. Accuracy and precision 

were evaluated by interday precision. Accuracy is the difference between the concentration 

of the analyte, which is known, and the concentration obtained by the method. In this 

parameter were evaluated the same 7 points of the calibration curve (table 15).  

Table 15. Interday precision results (n=5). When applicable, values are presented as mean values ± 

standard deviation. 

Resveratrol 
Spiked (µg/mL) 

Mean ± SD CV (%) RE (%) 

0.1 0.10 ± 0.00 1.58 3.59 

0.25 0.23 ± 0.01 2.65 -5.94 

0.5 0.47 ± 0.03 6.43 -7.67 

2.5 2.50 ± 0.10 4.02 -2.58 

5 4.98 ± 0.18 3.56 -2.92 

7.5 7.83 ± 0.31 4.00 4.85 

10 10.37 ± 0.26 2.54 4.77 

 

The last parameter evaluated was intermediate precision, which testes the method 

reproducibility, analyzing different concentrations in an extended time and in slightly 

                                                           
1 CV (%) = Coefficient of Variation 
2 RE (%) = Relative Error (measured concentration-spiked concentration/spiked concentration) x 100 
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different conditions. Intermediate precision was evaluated in three concentrations as shown 

in table 16.  

Table 16. Intermediate precision results (n=15). When applicable, values are presented as mean values ± 

standard deviation. 

Resveratrol 
Spiked (µg/mL) 

Mean ± SD CV (%) RE (%) 

2 2.00 ± 0.17 8.71 -1.13 

4 4.00 ± 0.25 6.15 0.97 

8 8.26 ± 0.41 5.00 2.89 

 

After analyzing the data obtained, it can be concluded that all these values are accepted 

within the guidelines for bioanalytical method validation [82, 83]. This method is 

reproducible, precise and accurate, because there is a small variation between the values 

analyzed and the values obtained, which is expressed by standard deviation (SD). 

Nevertheless, this method is also repeatable, because the associated error in intraday 

precision is small. Furthermore, this method is reliable to low concentrations, since the 

standard deviation associated is always very low. This is important in the sample 

quantification from S. cerevisiae fermentations, once the microorganism produces low levels 

of resveratrol. 

3.2.3. Extraction efficiency 

Extraction efficiency is the measurement of analyte recovery in given assay [82], being 

calculated as already described in equation (3), section 3.2.3.1. It was evaluated at three 

concentration levels corresponding to low (0.1 µg/mL), medium (2.5 µg/mL) and high (10 

µg/mL) resveratrol levels with three replicates being performed for each concentration. 

Similar extraction efficiencies were found in other studies [17], both near to 100 % to 

maximal and minimal points. Although LLE is more cost-effective and versatile technique, a 

discrepancy in the values comparing between these two studies lies on 2.5 µg/mL 

concentration, where the valued obtained in our work were slightly lower. This calibration 

curve covers the range of concentration used and, in the majority of cases, the values 

achieved were closer to the maximum and minimum values of the curve. For this reason, 

extraction efficiencies obtained were acceptable and closer to the obtained in other studies 

[17]. The extraction efficiencies are exposed in table 17. 
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Table 17. Extraction efficiency results. When applicable, values are presented as mean values ± 

standard deviation. 

Resveratrol Spiked 
(µg/mL) 

Mean ± SD CV (%) RE (%) 

0.1 102.00 ± 6.63 6.63 6.50 

2.5 72.40 ± 8.87 8.87 12.26 

10 93.18 ± 8.60 8.60 9.23 

 

3.3. Screening assays 

After a successful validation of the analytical method, several tests were performed in order 

to determine which culture conditions yielded the highest resveratrol concentrations and also 

which were the most relevant parameters to take into account when developing an 

experimental design approach. The strategy used in screening assays was a one-factor-at-a-

time approach. This methodology consists in selecting a baseline set of levels, for each 

factor, and then, successively vary each factor over its range keeping the other factors 

constant [59]. So, five factors were tested for S. cerevisiae and E. coli: temperature, medium 

composition, agitation, optical density (OD600) at time of precursor addition and precursor 

concentration. Since E. coli proved to be the most suitable recombinant microorganism for 

resveratrol production, in a later stage, the influence of the pH on resveratrol production was 

also evaluated but only in E. coli. These two microorganisms were cultivated in similar growth 

conditions in order to compare resveratrol production. Samples were taken every four hours 

until 48 hours for E. coli and 100 hours to S. cerevisiae to assess resveratrol production in 

culture media yields. Two figures (7 and 8) represent a typical chromatogram from sample 

fermentation and the carbamazepine peak at 211 nm, respectively.  

 

Figure 7. Typical HPLC-DAD chromatogram obtained from fermentation samples at 306 nm. The 
retention times for p-coumaric acid, resveratrol and carbamazepine were 2.01, 2.70 and 3.90 min, 
respectively. 
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Figure 8. Typical HPLC-DAD chromatogram for carbamazepine (3.9 min) obtained at 211 nm. 

 

Although some studies were already performed in order to evaluate the influence of the 

concentration of the precursor added [51] in resveratrol production by this recombinant 

microorganism, this study evaluates the influence of additional factors as temperature and 

pH, in order to allow a more comprehensive study about the influence of culture conditions in 

resveratrol production by this E coli strain. 

3.3.1. Precursor concentration 

p-Coumaric acid concentration was tested for six concentrations: 0, 1 or 2, 5, 10, 15 and 20 

mM. This concentration range was chosen based on previous experiments [51]. The goal of 

this assay was the evaluation of the best precursor concentration to produce resveratrol.  

In table 18, at 0 mM, a very small peak was detected in both microorganisms, which is 

considered as null. It was expected that, at 0 mM, resveratrol production results were zero, 

as the precursor was not added. Regarding E. coli, the best p-coumaric acid concentrations 

were 1, 5 and 10 mM, the latter being the one that yielded the higher resveratrol production 

(table 18). The results obtained in this work for E. coli are in agreement with previous studies 

that reported a resveratrol yield of about 104.5 ± 4.4 µg/mL, but in our case, a markedly 

higher concentration of precursor was added [51].  

Above a precursor concentration of 15 mM, production starts to decrease, as well as OD600 

(table 18). Decreasing growth may be associated with higher presence of DMSO in cellular 

culture, once p-coumaric acid is dissolved in DMSO and DMSO has a toxic effect to cells [85]. 

If the concentration of precursor increases, also increases DMSO concentration. In this way, 

cells do not grow as usually and resveratrol is not produced (table 18).  
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Table 18. Influence of precursor concentration on resveratrol production by E. coli and S. cerevisiae. 

Precursor 
concentration (mM) 

Escherichia coli Saccharomyces cerevisiae 

Max production (µg/mL) OD600 Max production (µg/mL) OD600 

0 1.05 0.74 0.52 4.52 

1 
(bacteria) 

2 
(yeast) 

100.24 4.47 2.55 5,16 

5 91.03 4.24 2.96 2.26 

10 105.65 3.10 --- --- 

15 72.15 2.03 --- --- 

20 53.15 2.60 --- --- 

 

It was observed in all experiments that resveratrol production has its maximum at the 

stationary phase (figure 9).  

 

 

 

 

Figure 9. Variations on resveratrol production and optical density at 600 nm during shake flask 
fermentations with (A) 25 ºC and (B) pH 7. 

 

As seen in figure 9, the maximum of resveratrol production is achieved at the beginning of 

stationary phase (figure 9A, assay 25 ºC, 26 hours) or even in the middle of stationary phase 

(figure 9B, assay pH of 7, 28 hours). Another study [51] presents a similar growth and 

production as achieved in figure 9A; however, in our case, generally the maximum of 

production was achieved later, as in figure 9B. That is the reason of starting sampling only 
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after 20 hours of fermentation and to stop fermentation 28 hours later.  Based on comparison 

assay described on section 3.3 (and present in this set), at 1 mM of precursor, the OD600 is 

always higher than 3.5 (table 18).  

Similarly, in S. cerevisiae, although growth was always present, even at higher concentrations 

(not shown) resveratrol was not produced at concentrations above 5 mM, where the maximum 

of production was attained. The motive for no accumulation of resveratrol at high p-coumaric 

concentrations is not known and the reasons could be similar to those presented for E. coli, 

because S. cerevisiae is also susceptible to high concentrations of DMSO. However, it might 

be ascribed to the fact that phenolic acids such as ferulic acid, levulinic acid and p-coumaric 

acid are able to interrupt central metabolism in the yeast cell [15], leading to a diminished 

cell growth as was seen by the decreasing OD600 while precursor concentration increases.  

3.3.2. Optical density (OD600) at time of precursor addition 

Optical density (OD600) at the time of precursor addition was another tested parameter and 

results are shown in table 19. This assay involves four levels as described below. In these 

tests, the aim was verify if optical density interferes with the final resveratrol production and 

assess which stage of growth was more advantageous for the addition of p-coumaric acid. 

In relation to E. coli, optical densities above 0.2 seemed to influence the final amount of 

resveratrol. The assay performed at an OD600 of 0.1 (comparison assay) had a lower 

concentration than expected, which may demonstrate that other optical densities may be 

more effective. In this way, the highest resveratrol concentration (104.68 μg/mL) was 

obtained at OD600 of 1, which means that the addition of precursor in the early stages of 

growth affects E. coli growth as p-coumaric acid increases the lag phase due to damage 

caused to cells [86] and consequently affects resveratrol production. 

Nevertheless, growth was slightly affected as the optical density at time of induction 

increased. However, this event does not have effect on resveratrol production, which could 

result in higher specific yields. On the contrary, optical density in S. cerevisiae assays 

remained relatively constant. The production corresponding to an OD600 of 0.1 was the 

maximum obtained, which do not corresponds to maximum OD600 achieved (5.42, table 19). 

Therefore, it may be concluded that the optical density at the time of addition of precursor 

does not have a great effect in resveratrol production by S. cerevisiae. However, it may be 

probable that low optical densities favor resveratrol production in this yeast.  
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Table 19. Influence of optical density (OD600) at time of addition of precursor on resveratrol production 

and microbial growth for both microorganisms. 

Optical density 
(OD600) 

Escherichia coli Saccharomyces cerevisiae 

Max production (µg/mL) OD600 Max production (µg/mL) OD600 

0.1 91.76 6.19 3.17 4.86 

0.2 101.73 6.14 0.65 4.47 

0.5 102.74 4.59 1.18 4.76 

1 104.58 3.98 1.33 5.42 

 

3.3.3. Temperature (ºC) 

Temperature is one of the key factors that control the growth of all microorganisms – and 

probably is the most important, at either too cold or too hot a temperature, microorganisms 

will not be able to grow and may even die [50]. The minimum and maximum temperatures for 

growth vary greatly among different microorganisms and in extreme temperatures, 

microorganisms will not be able to grow [50]. In this way, temperature assays were performed 

in four levels, (25, 30, 37 and 42 ºC). Both microorganisms are mesophiles (with midrange 

temperature optima, from 25 to 40 ºC) [50]. 

Observing the results presented in table 20, it can be concluded that yeasts grow better at 

lower temperatures while bacteria grow better at higher temperatures, which is in 

accordance with literature generally suggests 30 ºC [18] as optimal growth temperature to S. 

cerevisiae and 37 ºC for E. coli [50]. As the temperature rised, E. coli achieved higher optical 

densities at the beginning of stationary phase. However, these optical densities might not 

correspond to a real growth, but to cell filamentation, because high-copy number plasmid (as 

pUC-STS contained in E. coli) maintenance and replication imposes a metabolic burden on the 

cell, resulting in downregulation of cell wall biosynthetic genes [87], leading to increased cell 

size. This hypothesis in emphasized by the fact that at 37 and 42 ºC resveratrol production 

was low (table 20). The decrease in production can also be explained by possible resveratrol 

degradation at temperatures above 30 ºC, as demonstrated in a study [54] which submitted 

resveratrol under heat treatment, resulting in a decreased content of resveratrol under 

temperature stress (35 ºC). 

In E. coli, 30 ºC was the temperature which yielded the higher resveratrol amounts. For S. 

cerevisiae, 42 ºC is a not recommended temperature, neither for growth nor resveratrol 

production, since a very slightly growth was detected (data not shown) and resveratrol was 

not quantified in any samples at any hour. Observing the optical density, S. cerevisiae is 

apparently more sensitive to temperature than E. coli (table 20). This affirmation is justified 

by the fact that there is a noticeable difference between production at 25 ºC and at 30 ºC. 

However, between 30 and 37 ºC there is not a perceptible difference (table 20). 
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Nevertheless, the best temperature for resveratrol production in S. cerevisiae was 30 ºC, the 

optimal temperature for fermentation for this yeast and also protects resveratrol from 

degradation (the literature about resveratrol production by S. cerevisiae describes 30 ºC as 

the best temperature). 

Although the optimal growth temperature for E. coli is about 37 ºC, as seen in some 

preinoculums [16], growth temperatures during production of resveratrol were 30 ºC [51] or 

lower (28 ºC, [18]). Bacteria in preinoculum can growth at its optimal temperature, because 

it will be diluted before start fermentation. During fermentation, E. coli still can grow at 37 

ºC; however, when precursor or expression inducer is added (as IPTG), the fermentation is 

placed immediately at 30 ºC [16], to protect resveratrol and the compound added. Other 

studies [18], [51], performed fermentations always at same temperature, probably to protect 

resveratrol and cells from a heat shock.  

Table 20. Effect of temperature (ºC) on resveratrol production and optical density in E. coli and S. 

cerevisiae fermentations. 

Temperature 
(ºC) 

Escherichia coli Saccharomyces cerevisiae 

Max production (µg/mL) OD600 Max production (µg/mL) OD600 

25 66.53 3.94 0.60 1.69 

30 83.10 4.48 1.23 5.02 

37 19.95 5.24 1.21 4.18 

42 12.74 5.69 --- --- 

 

3.3.4. Agitation  

Agitation is a growth condition discussed in several production studies [58]. It is commonly 

associated with aeration but also with the production of foam, a potential toxic 

environmental condition which interferes with oxygen transfer rates due to a large contact 

surface [88, 89], thus influencing cell growth and ultimately, process productivity. To solve 

this problem, several anti-foam molecules, mostly organic molecules, were developed and are 

sometimes added to fermentations in order to control or stop foam production. However, 

these compounds can also be toxic to cells and decrease oxygen concentration. In this assay, 

several agitations were tested in order to determine the best for resveratrol production in E. 

coli and S. cerevisiae. 

In E.coli, apart from 150 rpm, there was no great difference in agitation speeds ranging from 

200 to 300 rpm as can be seen in table 21. In this microorganism, although the optical density 

was higher at 300 rpm, resveratrol production was not. The best agitation speed for 

resveratrol production was 250 rpm, in the case of E. coli (105.25 μg/mL, table 21). Besides 

this detrimental effect in production, at 300 rpm, an increased production of foam was also 

observed and, therefore, one can conclude that this speed was not suitable for this 
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production process. For S. cerevisiae, 200 rpm is the best option (table 21), due to the fact 

that the maximum production was achieved at this stirring speed.  

At 300 rpm, this agitation speed may cause cellular disruption and decreasing of optical 

density, due to greater mechanical forces and shear stress [57]. Higher agitation rates may 

also vary the efficiency of growth and the rate of formation of the desired product can be 

seriously affected [89]. In addition, this was not an important factor in final production, as 

there were no differences in the range of speeds tested. 

Table 21. Impact of agitation (rpm) on biomass and resveratrol production by E. coli and S. cerevisiae. 

Agitation 
(rpm) 

Escherichia coli Saccharomyces cerevisiae 

Max production (µg/mL) OD600 Max production (µg/mL) OD600 

150 51.36 2.99 0.55 4.31 

200 92.20 3.89 1.02 4.16 

250 105.25 3.53 0.84 7.04 

300 87.57 4.66 0.43 4.20 

 

3.3.5. Medium composition 

For a successful culture of any microorganism, growth conditions and medium should be 

suitable. In order to determine which medium composition would be the best to produce 

resveratrol, several assays were performed in E. coli and S. cerevisiae. 

4.3.5.1.  Medium composition assay for Escherichia coli 

In this set of assays, media with different compositions were tested. Two nitrogen sources 

(NH4Cl, yeast extract) were tested alone and combined at different concentrations and 

several concentrations of the carbon (glycerol) source were also evaluated.  

As seen by the results in table 22, changing the composition of M9 media does not lead to an 

improved production, once all the results remain below 100 µg/mL [51]. NH4Cl was increased 

five times relative to original M9 recipe (Appendix 1), yeast extract increased four times, as 

well as glycerol. However, a higher nutrient concentration in medium only seems to favor cell 

growth (in the case of yeast extract). The original recipe of this medium do not contains great 

amounts of carbon and/or nitrogen sources, which explains the low optical densities. Even if 

some of these sources are increased, is not sufficient to favor growth or resveratrol 

production. 
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Table 22. Influence of medium composition on biomass and resveratrol production by Escherichia coli. 

Medium composition Max production (µg/mL) OD600 

M9 base + NH4Cl (5 g/L) 93.46 3.82 

M9 base + yeast extract (5 g/L) 76.81 7.67 

M9 base + glycerol (20 g/L) 98.77 3.99 

M9 base + NH4Cl (2.5 g/l) – yeast 
extract 

2.76 0.2 

M9 base + NH4Cl (5 g/L) – yeast 
extract 

3.03 0.18 

M9 base + tryptone (2.5 g/L) – yeast 
extract 

40.88 4.58 

M9 base + tryptone (5 g/L) – yeast 
extract 

63.17 5.73 

Glycerol (2.5 g/L) 70.35 4.32 

Glycerol (2 g/L) 31.03 3.35 

Glycerol (1.5 g/L) 28.43 3.67 

 

4.3.5.2.  Medium composition assay for Saccharomyces cerevisiae 

These tests were performed by adding nitrogen sources (tryptone, yeast extract and peptone) 

to SC media, which contained glucose (20 g/L) as carbon source. 

Similarly to E. coli, S. cerevisiae also used yeast extract to improve its growth (table 23). This 

increase was noticed in tryptone and peptone tests, but to a lower extent. Despite the 

increased cell growth, resveratrol production remained low. From all the tests presented 

here, yeast extract was the one which favor resveratrol production (table 23). 

Table 23. Effects of medium composition on biomass and resveratrol production in Saccharomyces 

cerevisiae.  

Medium composition Max production (µg/mL) OD600 

SC base + tryptone (5 g/L) 0.32 5.7 

SC base + yeast extract (5 g/L) 1.76 13.44 

SC base + peptone (5 g/L) 0.38 6.65 

 

After performing all these tests, it was concluded that S. cerevisiae produces about 30 times 

less resveratrol than E. coli. The major advantage of S. cerevisiae over E. coli is its food-

grade status, which may facilitate resveratrol production for applications in human nutrition, 

if incorporated in functional food or nutraceuticals [18]. However, in most trials performed in 

this study, yeast produced more resveratrol than in previous works [6, 15, 52], using similar 

growth conditions. Another work [18] has reported the use of 2 % galactose to induce gene 

expression, resulting in the highest resveratrol yields described for S. cerevisiae in the 
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literature. Nevertheless, the main goal of this study is produce resveratrol in higher amounts 

and, therefore, E. coli was chosen over S. cerevisiae for posterior resveratrol production 

optimization. 

3.3.6. pH 

pH is another key factor that influences microbial growth. E. coli is a neutrophile, because it 

grows optimally at a pH value in the range between 5.5 and 7.9 [50]. In this set of assays, pH 

was tested for five different values, and the pH at the end of fermentation was also measured 

to ensure that the pH variation obtained during cultivation did not influence resveratrol 

production and also to verify if the medium used could effectively maintain the desired pH. 

Analyzing the data presented in table 24, the value of 7.0 allowed the obtention of the 

highest resveratrol yield (115.73 μg/mL). Apparently, pH does not affect cellular growth as 

the optical density remains around 4. The final pH was measured, and pH dropped about 0.49 

to 1.85 from the starter values. This decrease of pH values may be explained by the normal 

metabolism of the cells. During fermentation, cells produce metabolites as acetic acid [78] 

which is released to culture medium, dropping its pH. 

Although resveratrol is stable in a wide pH range [12] at pH values of 5 and 6, E. coli may 

have its growth affected at low pH, because an acidic medium may affect the expression of 

compounds, repressing or inducing the compounds and leading to acid tolerance, which 

influences growth and consequently, production [90]. Although resveratrol is stable, the acid 

tolerance of E. coli appears to be strong dependent on growth phase – stationary-phase or 

starved cultures show high levels of acid tolerance [90]. In the other hand, resveratrol is also 

affected by high pH values, as shown in a study [55], which describes the deprotonating of 

resveratrol at pH of 9. It can be concluded that the stability of resveratrol also depends on a 

matrix. It can be concluded that, being an important factor in cellular growth, pH also has 

repercussion in resveratrol production.   

Table 24. pH influence in E. coli production of resveratrol. 

pH Max production (µg/mL) OD600 Final pH 

5 67.54 3.49 4.5 

6 60.31 4.06 4.93 

7 115.73 3.87 6.51 

8 77.65 4.32 7.06 

9 83.13 4.19 7.15 

 

The results obtained in these screening assays were already described to this strain of E. coli 

using lower concentrations of p-coumaric acid [51]. In literature, some articles describe 

greater amounts of resveratrol produced by E. coli, as 171 mg/L [9], but is more common to 
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find lower amounts [9, 18], as 3.6 mg/L. Another study describes great amounts of 

resveratrol, but after use inductors and specific expression constructs [16]. There is no report 

in literature of a detailed study about screening conditions of E. coli to produce resveratrol. 

However, a study was performed in similar conditions, using M9 medium with glycerol at 30 ºC 

for 48 h [51]. In this case, 104.5 µg/mL of resveratrol were achieved after about 20 hours of 

fermentation, at the beginning of stationary phase. As described in this study, resveratrol also 

appeared quickly after the addition of p-coumaric acid as in our case, but E. coli led about 22 

- 24 h to achieve its maximal production. However, the same quantity was achieved, and 

even exceeded, in almost all screening assays. p-Coumaric acid interfered in cellular growth 

in similar ways in both studies. Also, in both cases, at high concentrations of precursor 

(mainly 20 mM), p-coumaric acid was not completely consumed and precipitated in the 

culture. However, this situation was noticed more often in Saccharomyces cerevisiae. 

After performing these screening assays, the data recovered was used to optimize resveratrol 

production using a DoE approach. Later, a set of 30 assays was generated, and then carried 

out on bioreactor. 

3.4. Design of Experiments 

A four factor and five-coded level CCRD was used to determine the optimal resveratrol 

concentration. The four factors used were pH, temperature, precursor concentration and 

optical density at time of induction as the screening results suggested that these parameters 

had the greater influence on final resveratrol production. Six tests at center point were 

performed and a total of 30 experiments were required for this study. Considering the effects 

of main factors and the interactions between two-factor, as seen on table 4 and equation (1), 

where    is precursor concentration (mM),    is optical density (OD600) at addition of 

precursor,    is pH and    is temperature (ºC), the equation of the model is [62]: 

 

The main effect (  ) and two-factor interactions (   ) were estimated from the experimental 

data obtained in Design-Expert® Version 7.0.0.  

After HPLC quantification at conditions described, the results were submitted in the referred 

software. Each point is the average of three injections. In the tables below (tables 25 - 28) 

are the data obtained after quantification in HPLC, the statistical parameters and equations 

obtained in Design Expert® Software. The model of analysis presented for resveratrol 

production was Polynomial Quadratic using a significance level of 0.05 % for the analysis. 

 

                               
       

       
       

         

                                         
(4) 
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Table 25. Statistical parameters obtained in Design Expert® (7.0.0) after an ANOVA analysis.  

Parameters 22 hours 30 hours 

F value 2.59 2.07 

Prob > F (p-value) 0.0390  0.0879  

Lack of fit F value 4.76  5.97 

Lack of fit Prob > F (p-value) 0.0494 0.0311 

R2 0.7072 0.6584 

 

Table 26. Statistical analysis ANOVA for the factors and interactions analyzed at 22 hours of 

fermentation. Legend: A = Precursor concentration (mM); B = OD600 at time of induction; C = pH; D = 

Temperature (ºC). 

Source 
Sum of 
Squares 

df 
Mean 

Square 
F 

Value 
p-value 
Prob > F 

Model 12091.96 14.00 863.71 2.59 0.04 

A 336.83 1.00 336.83 1.01 0.33 

B 4.55 1.00 4.55 0.01 0.91 

C 954.39 1.00 954.39 2.86 0.11 

D 3533.97 1.00 3533.97 10.59 0.01 

AB 27.25 1.00 27.25 0.08 0.78 

AC 1440.04 1.00 1440.04 4.32 0.06 

AD 149.29 1.00 149.29 0.45 0.51 

BC 155.01 1.00 155.01 0.46 0.51 

BD 86.87 1.00 86.87 0.26 0.62 

CD 51.17 1.00 51.17 0.15 0.70 

A2 2424.68 1.00 2424.68 7.27 0.02 

B2 1021.54 1.00 1021.54 3.06 0.10 

C2 2615.27 1.00 2615.27 7.84 0.01 

D2 1415.05 1.00 1415.05 4.24 0.06 

Residual 5005.50 15.00 333.70 
  

Total 17097.46 29.00 
   

 

Observing the data correspondent to 22 hours samples (table 26), the F-value presented 

makes the model significant because Prob > F value is lower than 0.050 (0.04). This implies 

that only 3.9 % chance (table 25) that F-value occurs due to noise. R-squared (or R2) indicates 

how well the model fits the data in a line or curve. The R2 (table 25) obtained for 22 hours 

was 0.7072, which means that 70.72 % of the response variability can be explained by this 

statistical model. p-value should be lower than 0.05 % to indicate that the model terms are 

significant. In the case of the factors studied at 22 h (table 26), only temperature was 

significant. The final equation in (terms of coded levels) estimated to resveratrol 

concentration response was: 
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(5) 

 

Table 27. Statistical analysis ANOVA for the factors and interactions analyzed at 30 hours of 

fermentation. Legend: A = Precursor concentration (mM); B = OD600 at time of induction; C = pH; D = 

Temperature (ºC). 

Source 
Sum of 
Squares 

df 
Mean 

Square 
F 

Value 
p-value 
Prob > F 

Model 34605.71 14.00 2471.84 2.07 0.09 

A 451.65 1.00 451.65 0.38 0.55 

B 214.71 1.00 214.71 0.18 0.68 

C 1602.11 1.00 1602.11 1.34 0.27 

D 14605.28 1.00 14605.28 12.20 0.00 

AB 295.65 1.00 295.65 0.25 0.63 

AC 3158.52 1.00 3158.52 2.64 0.13 

AD 1511.80 1.00 1511.80 1.26 0.28 

BC 176.17 1.00 176.17 0.15 0.71 

BD 0.06 1.00 0.06 0.00 0.99 

CD 391.07 1.00 391.07 0.33 0.58 

A2 3075.51 1.00 3075.51 2.57 0.13 

B2 1038.51 1.00 1038.51 0.87 0.37 

C2 8191.20 1.00 8191.20 6.84 0.02 

D2 3967.36 1.00 3967.36 3.31 0.09 

Residual 17952.44 15.00 1196.83 
  Total 52558.15 29.00 

    

 

Regarding the data correspondent to 30 hours samples (table 27), the F-value presented 

makes the model not significant, when considering a significance level of 0.05 %. There is an 

8.79 % probability (table 25) that a model F-value (2.07) could occur due to noise. The R2 

(table 25) obtained for 30 hours was 0.6584, which means that 65.84 % of the response 

variability can be explained by this statistical model. If the fit of the method is not the best, 

the R2 values will be affected. In this case, the p-value (table 27) of the factors studied which 

was lower than 0.05 % was temperature, as verified for the model concerning the 22h of 

fermentation. The final equation in (terms of coded levels) estimated to resveratrol 

concentration response was: 

                                                                          

                           
        

         
         

  

(6) 

 

Both equations can be used to predict the response of the model when the containing factors 

vary. Another statistical and important term is lack of fit, which represents how suitable is 
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the model and this parameter should be not significant. The model of the samples from 22 

and 30 hours have lack of fit of F-value significant (0.0494 and 0.0311, respectively).  

After analyze the statistical parameters, it can be concluded that the model cannot be 

validated. However, some conclusions about optimization of resveratrol production were 

achieved.  

Table 28. Results from CCRD performed in bioreactor. Legend: A (  ) = precursor concentration (mM); B 

(  ) = optical density (OD600) at time of induction; C (  ) = pH; D (  ) = temperature (ºC); Mean Prod = 

mean of production; SD = standard deviation; CV = coefficient of variation. Samples were taken at 22 

and 30 hours of fermentation. 

Run 

Variables 
 

22 hours  30 hours 

A B C D 
 Resveratrol 

concentration 
(µg/mL) 

 
Resveratrol 

concentration 
(µg/mL) 

1 0 0.575 7 31  1.53 
 

3.11  

2 4 0.8 7.5 28  41.71 
 

97.56  

3 12 0.8 6.5 28  39.38 
 

64.72  

4 12 0.35 6.5 34  9.32 
 

13.41  

5 12 0.35 7.5 28  40.00 
 

79.32  

6 8 0.575 7 31  65.17  
 

83.49  

7 8 0.575 6 31  28.66  
 

32.53  

8 4 0.8 6.5 28  86.30  
 

159.96  

9 4 0.35 6.5 28  84.10  
 

153.73  

10 4 0.8 7.5 34  21.17  
 

20.18  

11 8 0.575 8 31  22.21  
 

26.32  

12 12 0.8 7.5 34  16.13  
 

15.77 

13 8 0.575 7 31  61.52  
 

124.56  

14 4 0.8 6.5 34  58.52  
 

61.99  

15 4 0.35 7.5 28  39.48  
 

65.54  

16 4 0.35 6.5 34  32.37  
 

35.06  

17 8 0.575 7 31  65.09  
 

90.20  

18 12 0.35 7.5 34  11.69  
 

14.90  

19 12 0.8 6.5 34  17.51  
 

15.90 

20 8 0.575 7 31  80.67  
 

119.47  

21 8 0.575 7 31  74.34  
 

100.59  

22 16 0.575 7 31  52.24  
 

109.28  

23 8 1.025 7 31  23.71  
 

78.01  

24 8 0.575 7 25  57.94   69.17  

25 8 0.575 7 37  13.59   31.72  

26 8 0.125 7 31  56.45   69.87  

27 4 0.35 7.5 34  13.81   23.22  

28 8 0.575 7 31  52.90   92.50  

29 12 0.8 7.5 28  28.57   50.68  

30 12 0.35 6.5 28  23.51   46.07  
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As expected, if precursor concentration is 0mM, resveratrol production is null, since the 

values detected were lower than the limit of quantification for this method (0.1 µg/mL).  

The highest amounts of resveratrol were usually obtained after 30 hours of fermentation 

(table 28). When 4 mM of precursor were added to the medium at pH of 6.5, 28 ºC and in an 

OD600 of 0.8, was obtained the highest production of resveratrol throughout the entire set of 

assays: 159.96 µg/mL (assay 8). It was also observed that low concentrations of resveratrol 

are generally associated with higher concentrations of p-coumaric acid. This relation can be 

seen in assays 8 and 3 (table 28), where 4mM of p-coumaric acid was added to assay 8 and 12 

mM was added to  assay 3. Both assays were performed only varying the precursor 

concentration and close to the conditions where the highest amount of resveratrol was 

achieved (28 ºC, at pH 6.5 and the precursor was added at an OD600 of 0.8), and, while assay 8 

yielded 159.96 μg/mL of resveratrol, assay 3 allowed the achievement of almost half that 

value (64.72 μg/mL), with the increase of p-coumaric acid. Observing the response surface 

(figure 10) where the (B) optical density at time of precursor addition and (C) pH, it can be 

concluded that higher amounts of resveratrol are obtained if temperature and precursor 

concentration are minimal (28 ºC and 4 mM, respectively) when the optical density at time of 

precursor addition is at 0.80 and pH is at 6.5. 

 

Figure 10. Response surface varying the (B) OD600 at the time of addition of precursor and (C) pH, at 30 
h. The concentration of the precursor added and temperature were kept constant. ‘Resv conc’ is the 
response of the model (resveratrol concentration). 

Analyzing the optical density at time of precursor addition, apparently the factorial points did 

not bring great variability to the final response. However, observing the assays 26 and 23, 

where were tested the axial points for this factor (OD600 of 0.125 and 1.025), it was not 

observed a great influence of this variation, resulting in an increase from 70 to 78 μg/mL of 

resveratrol with the raise of OD600 at time of precursor addition. Nevertheless, in the average 

of the six central points, 101.80 μg/mL were achieved. This highlights that at early stages of 

growth, cells are affected by the addition of p-coumaric acid, which could lead to an increase 

lag phase and cause a decrease in maximal growth rate [86], and consequently leading to a 
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decrease in resveratrol production. Furthermore, p-coumaric acid was dissolved in DMSO, a 

compound that can damage the cells due to its capacity to affect membrane permeability 

[77]. In the lag phase, the cells are biosynthesizing essential constituents [50], and the 

addition of p-coumaric acid and DMSO can interfere with growth rate and consequently, 

resveratrol production. In the exponential phase (OD600 of 1.025), growth also depends on 

culture conditions [50], and the addition of DMSO can cause a similar damage in the cells, 

slowing growth and resveratrol production.  

Regarding to temperature, axial points as 25 ºC and 37 ºC, corresponding to assays 24 and 25 

respectively, it was not yielded high resveratrol production, indicating that temperature also 

influenced the final production in bioreactor. The best results were obtained at 28 and 31 ºC, 

near to optimal temperature (30 ºC) obtained in screening assays. However, at low 

temperatures as 25 ºC (assay 24, table 28), E. coli did not produced high amounts of 

resveratrol, because 25 ºC is not the best optimal  temperature for E. coli to growth, which 

leads to slower transport processes and growth [50], and consequently lower resveratrol 

production. Although 37 ºC is a temperature closer to the optimum growth temperature for E. 

coli [50], this temperature may led to resveratrol degradation [54], which resulted in lower 

production levels.  

The influence of pH is slightly visible at axial point values (pH 6 and 8, assays 7 and 11, 

respectively. In assay 7 was obtained a yield of 32.53 μg/mL at pH 6, instead of 26.32 μg/mL 

at pH 8, in assay 11. This could indicate that lower pH values favored resveratrol production 

and also indicates that lower pH values favor the stability of resveratrol. Observing figure 11, 

maintaining constant optical density at time of precursor addition and temperature (0.575 

and 34 ºC, respectively) it can be concluded that the lower amounts of resveratrol are 

obtained at higher values of pH. 

 

Figure 11. Response surface varying the (A) precursor concentration and (C) pH in relation to resveratrol 
concentration, at 30 h. ‘Resv conc’ is the response of the model (resveratrol concentration). 

One of these assays performed in bioreactor allowed to achieve the highest amount of 

resveratrol for this strain of E. coli. This highlights the relevance of design of experiments, 
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because the conditions where the highest amount of resveratrol was obtained in screening 

assays, (addition of 10 mM of precursor at an OD600 of 1 to a culture grown at 30 ºC and pH 7) 

were different to those obtained after the optimization in bioreactor. The results 

demonstrated that addressing several factors at a time instead of a one-factor-at-a-time 

approach can provide better results due to the assessment of the simultaneous influence of 

various factors on overall production. It can be seen that the best resveratrol production 

yields were obtained at 28 ºC, pH 7, with a precursor concentration of 4 mM added at an 

OD600 of 0.8. However, one of the assays with the most similar conditions to those achieved in 

the screening assays (assay 21) still exhibited a value close to that obtained in the screening 

assays and in other study (100.59 μg/mL) [51], indicating that these assays were very 

reproducible. 

So far, resveratrol production in bioreactor was performed only with plant cell systems [9], 

while resveratrol production using recombinant microorganisms has been carried out in a 

small scale shake-flasks [16]. As process productivity can be affected by plasmid segregational 

instability by the physiological states of cells [74], due to decrease plasmid and/or protein 

levels and cellular growth, these two parameters were monitored for each of these runs. 

3.5. Cell physiology 

In order to assess cell physiology, a dual-staining was performed using BOX and PI. BOX was 

used to evaluate the membrane potential, since only enters in depolarized cells and PI was 

used to verify the membrane integrity, as it only enters in the cell if it is injured. Following is 

presented a table (table 29) with the flow cytometry results obtained from 30 assays at two 

different hours. 
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Table 29. Effect of culture conditions on cellular viability evaluated by flow cytometry. 

Run 
PI (%)  BOX (%) 

22h 30h  22h 30h 

1 3.12 2.40  21.30 27.34 

2 2.08 3.70  16.08 14.08 

3 1.18 3.78  18.84 20.38 

4 3.14 4.32  10.02 16.78 

5 3.12 3.70  9.90 13.94 

6 2.18 6.66  10.86 36.62 

7 5.62 5.10  19.86 16.14 

8 4.30 7.06  21.66 18.08 

9 5.56 7.0  21.32 15.02 

10 2.78 4.48  18.34 13.32 

11 3.76 6.13  19.82 30.87 

12 4.30 5.72  27.40 21.76 

13 1.64 4.18  16.62 22.98 

14 4.58 8.28  23.98 32.90 

15 1.88 3.10  18.58 20.50 

16 3.90 5.90  22.80 43.20 

17 2.32 3.30  25 26.56 

18 5.10 3.50  38.58 50.16 

19 1.94 4.07  21.19 39.07 

20 1.48 2.28  26.76 17.42 

21 2.30 2.42  24.42 18.80 

22 1.87 2.94  24.90 31.11 

23 1.24 2.83  27.63 33.04 

24 1.48 1.43  23.31 29.70 

25 2.42 4.60  11.51 21.78 

26 1.37 2.13  23.42 27.08 

27 2.93 5.88  8.82 18.8 

28 0.98 2.34  30.77 39.15 

29 1.17 1.26  30.95 26.70 

30 0.28 1.48  30.23 27.68 
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And here is presented a figure (figure 12) concerning the assays which yielded the highest and 

the lowest resveratrol production values. 

(a) 

22h 

 

(b) 

22h 

 

(c) 

30h 

 

(d) 

30h 

 

Figure 12. Fluorescence dot plots of cells (BOX:  -axis; PI:  -axis) taken during fermentation. The left 
column represents assay 4 (minimum of produced except assay 1) and the right column represents assay 
8 (maximum of resveratrol produced). 

 
In the figure 12 is possible to distinguish three populations. In quadrant R5 (lower left) are 

healthy cells, cells without PI or BOX. In R4 (upper right) are BOX/PI double positive cells, 

which have a depolarized and permeabilized membrane. In quadrant R6 (lower right) are 

depolarized cells labelled only with BOX, in other words, cells with its membrane 

depolarized. At first sample (with 22 hours of fermentation), the percentage of healthy cells 

was around 76 % and 8 hours later was 70 %. This can be explained mainly by the increase of 

depolarized cells (from 21 % to 26 %), once dead cells (PI positive) had a poor contribution to 

the final value (from 3.4 % to 4 %).  

Although the vast majority of the cells were in a healthy state, this percentage is smaller 

when compared to the values obtained in other bioprocess monitoring studies [81]. The higher 

values of depolarized cells may be due to the fact that M9 medium is a minimal medium [91] 

(with only inorganic salts and a source of carbon), which limits nutrient availability, causing 

an increase in cell depolarization due to nutrient starvation [74], as cells at 22 and 30 h of 

fermentation were in the stationary phase. When the cells were more depolarized (> 30 %), it 

generally corresponded to lower resveratrol production, as seen in assays 18 and 19 (table 

29). At 30 h of fermentation, 39.07 % of cells were depolarized in assay 19, where 15.90 

μg/mL of resveratrol was obtained. The same relation is markedly noted in assay 18, where 

21,66% 

4,30% 

7,06% 

18,08% 

16,78% 

4,32% 

10,02% 

3,14% 
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14.90 μg/mL of resveratrol was achieved at 30 h when depolarization was 50.16 %. However, 

resveratrol production also depends on the growth conditions, since they could cause this 

molecule degradation in the culture medium. This can be seen in assay 22, which exhibited 

high depolarization but not a great decrease in resveratrol production, as 109.28 μg/mL of 

resveratrol were achieved although 31.11 % of cells were depolarized.  

Generally, when the percentage of depolarized cells is above 30 %, it corresponds to assays 

where culture conditions did not favor resveratrol production. Temperature, as one of the 

most important factors in cell growth, also influenced cellular viability, as half of the assays 

with more than 30 % of depolarized cells were performed at 34 ºC (assays 14, 16, 18, 19, 

table 29) and 25 ºC (assay 24). Apparently, the precursor concentration seemed to affect 

cellular viability, as can be seen in assay 22, where the addition of 16 mM of p-coumaric acid 

provoked an increase in the percentage of depolarized cells. This decreased cellular viability 

can be due to the higher amount of DMSO added to the culture medium to attain a final 

precursor concentration of 16 mM, which may cause a destabilization of the cell membrane, 

leading to a reduction in the percentage of healthy cells [77]. Precursor addition at later 

stages of cell growth can also influence the physiological states, as seen in assay 23 (table 

29), where p-coumaric acid was added at an OD600 of 1.025, when cells were in exponential 

phase, which led to an increase in the percentage of depolarized cells to 33.04 %. In the 

exponential phase, cellular growth is very fast [50] and the high concentration of DMSO added 

could damage the cellular membrane [77], which could break the transport balance [50]and 

lead to a lower concentration of resveratrol.  

In conclusion, culture conditions affected cellular viability. High percentages of depolarized 

cells could not be sufficient to diminish resveratrol concentration, as seen in assay 22, where 

31.11% of the cells at 30 hours of fermentation were depolarized but the amount of 

resveratrol produced was 109.28 μg/mL. This demonstrates that the culture conditions tested 

also lead to resveratrol degradation in culture medium, concealing the effect of cell viability 

on resveratrol production. 

3.6. Plasmid segregational stability 

The assessment of plasmid segregational stability provides new insights and allows a more 

comprehensive approach of the fermentation bioprocesses and the results obtained for PCN 

quantification are presented in table 30. In these tests, real-time qPCR was used to 

determine PCN at 22 and 30 hours of fermentation, an important factor to determine the 

viability of the cells and consequent productivity.  
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Table 30. Effect of growth conditions on plasmid copy number at 22 and 30 h of fermentation. 

Run 
pAC-4CL1 

 
pUC-STS 

22h 30h 
 

22h 30h 

1 117 53   31 62 

2 30 47   23 14 

3 29 77   22 35 

4 84 44   40 21 

5 51 62   15 14 

6 204 85   65 16 

7 218 394   91 64 

8 215 1541   72 89 

9 115 130   20 26 

10 53 31   33 14 

11 81 113   44 69 

12 42 55   32 25 

13 58 55   15 17 

14 55 96   28 33 

15 28 40   4 4 

16 64 94   69 59 

17 38 37   48 37 

18 75 107   71 88 

19 48 36   10 5 

20 64 77   22 33 

21 34 44   78 160 

22 48 67   103 135 

23 64 81   177 239 

24 26 28   25 30 

25 3 2   14 40 

26 51 82   128 206 

27 17 14   48 39 

28 2 3   2 3 

29 33 36   45 62 

30 47 77   95 86 
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In a production bioprocess, plasmid amplification leads to increase plasmid DNA yields, which 

can result in higher plasmid segregational stability [87] and consequently increase product 

yield [78]. In this way, measuring plasmid segregational stability through PCN variation 

throughout the fermentation provides new insights and allows a more comprehensive 

approach of the fermentation bioprocesses, helping to define the best conditions to obtain 

the highest yield. 

In the majority of these assays, PCN increases both in pAC-4CL1 and pUC-STS from 22 to 30 h 

(table 30), which could partially explain the higher resveratrol production yields also obtained 

in the samples taken after 30h of fermentation. The plasmids used have two different origins 

of replication: plasmid pAC-4CL1 has a p15A origin, while plasmid pUC-STS has a pBR322 

origin of replication. Both these plasmids origins of replication are inducible at temperatures 

ranging from 37 to 42 ºC, but not 30 – 32 ºC [92, 93]. In this study, when resveratrol 

production is low, the temperature is almost always 34 ºC, which is not an inductive 

temperature for these origins of replication, leading to lower plasmid amplification, as seen 

in previous studies [87]. Absolute values of PCN from pUC-STS are also lower in comparison 

with pAC-4CL1 values. These are expected values for this temperature-sensitive plasmid pUC-

STS, because the tested temperatures did not favored their induction, which together with 

the genes for ampicillin resistance [74] increased the segregational instability [81].  

In general, these PCN values are low if compared with other studies [78, 81], and an  

explanation could be related with the metabolic burden imposed to the E. coli cell by the  

maintenance and replication of two plasmids which resulted in lower cell growth and PCN 

values, indicating a possible increase in plasmid segregational instability [74]. 
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Chapter 4 

 

4.  Conclusions 

Resveratrol, a secondary metabolite, is present in several plants and due to its importance, 

was used as herbal folk remedy for centuries.  Several health benefits have currently been 

attributed to resveratrol, as cardioprotective benefits (French Paradox), neuroprotetive, 

cancer chemoprotective, antimicrobial among others. Being a compound of interest for the 

pharmaceutical and cosmetic industries, it is important to develop processes to keep up with 

the demand for this compound.  

In this study, resveratrol was produced using two recombinant microorganisms 

(Saccharomyces cerevisiae and Escherichia coli) in bioreactors, after a set of screening 

assays, while cell physiology and plasmid segregational stability were monitored through flow 

cytometry and real-time qPCR, respectively, towards the improvement of bioprocess 

performance. 

Resveratrol was quantified by an HPLC-DAD validated method, after an extraction with ethyl 

acetate. The method validation for resveratrol quantification was performed according to 

international guidelines and the results obtained were similar to other studies.  

After a successful transformation of cells, several fermentations for screening out the best 

conditions for resveratrol production using E. coli and S. cerevisiae were carried out in shake-

flasks. This was an innovator aspect of this work, because there is no literature with 

descriptions of extended assays to assess resveratrol culture conditions. In these studies, we 

can conclude that E.coli produce about 30 times more resveratrol than S. cerevisiae. It was 

also assessed that for E.coli the best precursor concentrations were 1, 5 and 10 mM. 

Concerning optical density (OD600) at precursor addition, only densities above 0.2, had a final 

impact on resveratrol production. Resveratrol achieves its maximum production at pH 7 and 

optimal temperature is around 30 ºC for both microorganisms. In S. cerevisiae, the maximum 

production was achieved at 5 mM of precursor and it seems that neither the optical density at 

time of induction nor the changes in medium increase resveratrol production. It was also seen 

that the agitation speed and medium composition did not have a significant influence on the 

overall resveratrol yield for both microorganisms. At the end, E. coli produced as much 

resveratrol as already described for this strain (159.96 µg/mL) and S. cerevisiae, in some 

assays, produced more resveratrol than described in some studies (3.17 µg/mL). 

In bioreactor, although the experimental design validation was not achieved, a maximum of 

159.96 µg/mL resveratrol was obtained which corresponds to the highest resveratrol yield to 

date for this recombinant strain. The optimal conditions that allowed this resveratrol yield 
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were 28 ºC, pH 6.5 at OD600 0.8 and 4 mM of p-coumaric acid. The media used was M9, an 

economically viable media. These assays highlighted that an factorial approach, through the 

addressing of several factors at a time is more useful than one-factor-at-a-time approach, 

because it can provide better results due to the assessment of the simultaneous influence of 

various factors on overall production. 

The assessment of physiological state of the cells is important to monitor the bioprocess. 

Flow cytometry is a fast analysis technique and an adequate method to achieve a huge 

amount of multiparametric information. At the end of fermentation, the percentage of viable 

cells was about 70 %, due to the presence of a high percentage of depolarized cells because 

cellular viability is known to decrease toward the end of fermentation, due to the depletion 

of nutrients, leading to a lower cellular activity and metabolic energy (to maintain cellular 

functions) and consequently to cell depolarization. Nevertheless, one of the plasmids in the 

studied E. coli  was high copy plasmid, which is related to a induced metabolic burden and 

probably promoted cellular depolarization. Temperature is slightly prejudicial to cells and the 

culture conditions tested also lead to resveratrol degradation in culture medium, concealing 

the effect of cell viability on resveratrol production.   

Another simple technique to assess segregational instability and monitor the production 

process was the evaluation of plasmid copy number by real-time qPCR. In these assays, PCN 

increases both in pAC-4CL1 and pUC-STS from 22 to 30 hours. However, both plasmids are 

induced by temperature in values that were not tested in these assays, which led to plasmid 

segregational instability. Furthermore, pUC-STS, contains an ampicillin resistance gene and is 

more prone to segregational instability. However, the amounts of PCN obtained were lower 

than the ones obtained by other studies. Analyzing this data along the data obtained by flow 

cytometry, the viability of the cells is similar to other studies and due to stress, cellular 

viability is reduced and slightly influences plasmid segregational stability.  

In sum, resveratrol production in bioreactor was carried out successfully. Adequate tools were 

used to monitor the overall process which produced a large quantity of this stilbene in an 

economically viable way. This study can be a contribution to a possible starting point of 

industrial resveratrol production and an effective alternative to chemical synthesis and also 

to avoid the depletion of the natural sources of this compound. 
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Chapter 5 

 

5. Future perspectives 

Resveratrol is one of the best know plant secondary metabolites. Due to its benefits to human 

health, it is one of the most promising plant-derived molecules. Despite the study performed, 

further research is needed in order to improve the whole bioprocess. As future prospects, the 

work may include the following topics: 

 To develop a model for the bioprocess, including the interaction between culture 

conditions, cell physiology and plasmid stability; 

 To create a new expression system with genes used to improve resveratrol production 

in Escherichia coli and Saccharomyces cerevisiae; 

 To exploit various production strategies, for both microorganisms, as adding precursor 

several times in the same fermentation, fed-batch resveratrol production process or 

to test variations of physical factors, as temperature and pH, during fermentations; 

 To develop sustainable downstream processes, in order to expand the existing 

industrial production. 
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Appendix 1 

 

Media Recipes 

All the media presented here were sterilized (Uniclave 88, AJC, Portugal) and all the 

techniques were carried out in aseptic conditions. 

 

LB  

Per L of water: tryptone (Biokar Diagnostics, France), 10 g; yeast extract (Merck, USA), 5 g; 

NaCl (Panreac, Spain), 10 g. Adjust pH to 7.   

 

SOC 

Per L of water: tryptone, 20 g; yeast extract, 5 g; NaCl (VWR, USA), 10 g; KCl (Panreac, 

Spain) 250 mM, 10 mL. Adjust pH to 7. After autoclaving, add 5 mL of MgCl2 2M and 20 mL of 

glucose 20 mM (Sigma-Aldrich, USA). 

 

SC 

Per L of water: glucose (Sigma-Aldrich, USA), 20 g; yeast nitrogen base (Pronadisa, 

Switzerland), 6,7 g; tryptophan (Fluka, USA), 39,8 mg. Tryptophan should be dissolved in HCl 

(VWR, USA) 0,5M and added after autoclaving because it is thermosensitive. 

 

M9 

Per L of water: Na2HPO4 (Panreac, Spain), 6,779 g; KH2PO4 (Merck, USA), 3 g; NaCl, 0,5 g; 

NH4Cl (Sigma-Aldrich, USA), 1 g; yeast extract, 1,25 g; glycerol (HiMedia, India), 5g. Adjust pH 

to 7. After autoclaving, add 2 mL of Mg2SO4.7H2O (Sigma-Aldrich, USA) 1M and 0,1 mL of 

CaCl2.2H2O (Panreac, Spain) 1M. 

 

YPD 

Per L of water: yeast extract, 12 g; peptone (Biokar Diagnostics, France), 25g; glucose, 12 g. 

Adjust pH to 6,5. 


