UNIVERSITY OF BEIRA INTERIOR

Faculty de Engineering
Departament of Informatics

Support Tools for 3D Game
Creation

Pedro Nuno Matos Pereira

Dissertation submitted in candidature for the
Degree of Master of Science in Informatics Engineering

(2" cycle degree)

Supervised: Prof. Doutor Frutuoso Silva

Department of Informatics
University of Beira Interior
Covilha, Portugal
http://www.di.ubi.pt

Acknowledgements

First of all, | would like to thank to Professor Frutuoso Silva for all the
support, for the constant words of encouragement and for supervising my
Master’s Thesis. | also would like to thank for the opportunity to belong to
his research group: Reality, Games and Graphics Group (ReGain).

Additionally, I’d like to thank to all members of Clean World
development team, André Barbosa, David Casteleira and Jodo Dias for all
the support and help.

Last but not least, | also like to all my friends, particularly to Carolina
Belino, David Massano, Eduardo Fonseca, Laurie Geerlings, Luis Rodrigues,
Marco Antunes, Nélia Fonseca and Sofia Colmier for all the support, help
and good times we had in the last years. In one-way or another, all of you

have contributed to the accomplishment oh this dissertation.

Resumo Alargado

Atualmente, as ferramentas para o desenvolvimento de jogos sao uma
parte bastante importante de todo o processo de desenvolvimento. Estas
ferramentas servem para assistir os criadores de jogos nas tarefas que
realizam, permitindo-lhes a criacao de jogos funcionais escrevendo poucas
linhas de codigo. Desenvolver um videojogo sem a utilizacao de
ferramentas especializadas € um processo complexo e que consome
bastante tempo, dai a existéncia de ferramentas que permitem ao
utilizador importar os conteludos para o jogo, definir a logica de jogo,
produzir o codigo fonte e compila-lo. Este tipo de software é normalmente
utilizado por quem se dedica a criacdao de jogos como hobby, ou por
profissionais que procuram otimizar o processo de desenvolvimento de
jogos.

Existem varias componentes ao nivel do desenvolvimento de videojogos
que se tornam pouco produtivas, se nao forem automatizados e/ou
otimizadas. Por exemplo, a programacao de eventos ou de dialogos pode
ser uma tarefa que consome demasiado tempo no ciclo de
desenvolvimento, para além de ser uma tarefa entediante e repetitiva no
ponto de vista do programador. Por este motivo, a utilizacao de
ferramentas pode ser muito importante no que diz respeito ao aumento da
produtividade e manutencao dos varios processos que envolvem o
desenvolvimento de videojogos. Nesta dissertacao pretendemos demonstrar
as vantagens da utilizacao dessas mesmas ferramentas durante o

desenvolvimento de videojogos, através da apresentacao de um caso de

iii

estudo que envolve o desenvolvimento de um Serious Game intitulado
Clean World.

Em Clean World, foram identificadas determinadas tarefas que se
mostraram demasiado repetitivas e entediantes quando programadas por
inteiro, como € o caso da adicao, modificacao ou remocao de componentes
como dialogos, quest ou items. Tendo em conta este problema concreto,
foram criadas algumas ferramentas de forma a aumentar a produtividade
no desenvolvimento do jogo, tornando tarefas repetitivas e entediantes em
processos simples e intuitivos. O conjunto de ferramentas € constituido

por: Item Manager, Quest Manager, Dialog Manager e Terrain Creator.

iv

Abstract

Nowadays, tools for developing videogames are a very important part
of the development process in the game industry. Such tools are used to
assist game developers in their tasks, allowing them to create functional
games while writing a few lines of code. For example, these tools allow the
users to import the content for the game, set the game logic, or produce
the source code and compile it.

There are several tasks and components regarding the development of
videogames that may become unproductive, therefore, it’s necessary to
automate and/or optimize such tasks. For example, the programming of
events or dialogs can be a task that consumes too much time in the
development cycle, and a tedious and repetitive task for the programmer.
For this reason, the use of tools to support these tasks can be very
important to increase productivity and help on the maintenance of the
various processes that involve the development of videogames. This
dissertation aims to demonstrate the advantages of the use of these kind of
tools during the development of videogames, presenting a case study

involving the development of a Serious Game entitled Clean World.

Keywords

Game Development Support Applications, XNA, 3D Games, Serious

Games.

Vii

Contents

Acknowledgements i
Resumo Alargado iii
Abstract \%
Keywords vii
Contents ix
List of Figures xi
List of Tables XV
Acronyms xvii
1. Introduction 1
1.1 FOCUS ottt s s bses s s £ E R R Rt 1
1.2. ObjectiVes...eeernmeeseeenens 2
1.3. Main Results......cmeneeseeenens 2
1.4. Dissertation Structure .3
2. Related Work 4
2.1. Introductionccoeereeereerseeens
2.2.Video Game Development 6
2.3. Game Engines and FrameWOTKSoiinisisesssessesss 9
2.4. Game Development Tools 12
241 . GAIME MAKET ..oeeeeeeeeeceeeseerseessnsesessssess s ssesssse s s ss s ss s s e s s e s e asesssenns 13
2.4.2. The 3D Gamemaker 15
2.4.3. COPPETCUDE ..ot ss s 16
2.4.4. 3D Rad..coeenreeerrreeene 18
2.4.5. RPG MaKer....ccomeunmeeerrmeeensnaees 19
2.4.6. NeoAxis Game Engine 23
2.4.7. Unity 3D .o 28
2.4.8. UDK.omrorrerrrererrrerene 35

ix

2.5. SUMMATY .coverreenreeenrerserenens 49

3. Clean World - The 3D Game 50
3.1. Introduction.......cooeveeereerreeens 50
3.2, GAME STOTYIINE ittt s s bbb 52
3.3. Modeling and Animation of the Characters 54
3.3.1. BOTiS correreeereerreeeneeenens 54
3.3.2. Kate 67
3.3.3. Dr. JacoDb..ercnseriesienns 69
3.3.4. Tom A. TO€..comerereerreerrrerrees 72
3.4. Terrain Models and LeVel ASSELS ... sesssssssessessssssssesssssssssssssssssesssessssssssssssessans 74
3.4.1. Terrain MOELS ..coeeeeeeeeeeereersees e ss s ss e s s ss s s e s s ssenssenns 74
3.4.2. Decorative 3D Assets 76
3.4.3. Interactive and Collectable 3D Assets 83
3.5. Level Design....ccccneereeenreenseeens 87
3.6. 2D ASSets...mrirnsernienienes 91
3.7.Summary ... 97
4. Developed Support Applications 99
4.1. Introductionceeereeenreeneeens 99
4.2. Item Manager 100
4.3, QUEST MANAZET ...cureueererseessersesssesssssssssessssssessse bbb sss s s s s s bbb bR 106
4.4, DIAlOZ MANAZET ..eureurrerseerseesseesseesssessseesssessssesssessssessssesssessssssssessssesssessssessssesssessssessssesssessssessssesssesssssssseees 111
4.5, TEITAIN CTEATOT «.eureeuressersseesseeesseesssessseesssessssessseesssessssesssesssessssessssass s sssessssesssessssessssesssessssessssesssesssssssseees 116
4.6. Connection with Clean World 120
4.7. Summary ... 121
5. Conclusions and Future Work 122
5.1. Conclusionsceeneeereeemseeseeens 122
5.2. Future Work.....ccccoomeeeneenneeenneens 123
References 125

List of Figures

Fig 2. 1 - A: 1952, 0X0/Noughts and Crosses (Tic-Tac-Toe); B: 1958: Tennis for TWO......c.ccocrrercrenene. 5
Fig 2. 2 - Screenshot from the game BIOSROCK..........ocroneorenserissessssssessesissessssssssssssssssssassessssssssssassesssssassesans 7
Fig 2. 3 - Screenshot from the interface of Game Maker.c.cccuwrenrcren. 14
Fig 2. 4 - Screenshot from the interface of The 3D Gamemaker .. 16
Fig 2. 5 - Screenshot from the interface of CopperCube

Fig 2. 6 - Screenshot from the interface Of 3D RA.coeoreroreeorernscrsserinsessssesssesinsessessassesnssssessassesssssassssnse 18
Fig 2. 7 - Screenshot from the interface of RPG MAKEr 2000.ccoweroreevmremeerineersesesseronesssessnsesssssnsessnss 20
Fig 2. 8 - A: Screenshot from the battle system of RPG Maker 2003; B: Screenshot from the battle
system of RPG Maker VX. 20
Fig 2. 9 - Screenshot from the script editor 0f RPG MAKET XP.c.ocromeerommeeronsironsirisssirissserismsesisssesisssssnses 21
Fig 2. 10 - Screenshot from the interface of RPG MAKET VX.ocmeronersnsesserinsessesesseronssssessssesssssnsessnss 22
Fig 2. 11 - Game class hierarchy used by NeOAXIS ENGINE.ccoccorermrersrerineersmsersserinsessessamsesnssssessnsessmssansessnss 24
Fig 2. 12 - A screenshot from the NeoAxis Engine map editOor t0O0Leroeeoveeonscroneeseernsersnernsesinse 25
Fig 2. 13 - A screenshot from the NeoAxis Game ODbJect EAItOTc.occeoneeeonserisnsirisnserismsersssersssesinses 26
Fig 2. 14 - A screenshot from Unity light MAPPiNG @dItOr.crmeersreerssierssieionsirisssisssserissesisssessssssnses 29
Fig 2. 15 - A screenshot from Unity Editor interface. 32
Fig 2. 16 — A screenshot from Unity editor grid fEAEUTE.mrmeronersnsesserinsessesssseronssssessnsessnssansssinss 33
Fig 2. 17 — A SCTEENSNOL fIOM SHUTTKEI. c.oeeorrereereeersrereerineessessassersesisesssssesssssissesssssssesasssssessassessssssssssassesssssassssanss 34
FiG 2. 18 — UDK SEIUCEUT . .c.corricvsrissirisssisssissisisssississssissisissessssssssisissssssssassesssssasssssssssssssasssssssssssisssssssssasssasssasssanss 36
Fig 2. 19 - Screenshot from the UDK editor INEETfUCE.ccomweomerseerssserssserssssisssirisssesisssesisssesisssesasssesiness 37
Fig 2. 20 - Screenshot from the UDK Matinee editor iNETfaCE.coumwmeeomeeronsersnserissserismserissserisssesnses 38
Fig 2. 21 - Screenshot from the UDK KiSMEt INEEIfACE.ovcrrerrerrrerserineersssessserssessessassesnsssssssassesssssassssnse 39
Fig 2. 22 - Screenshot from the UDK Material editor interface. ..

Fig 2. 23 - Screenshot from the UDK Sound editor INEEIfUCE.cmerveroreersnsernserinsessissssernssssessssessnssansessnss
Fig 2. 24 - Screenshot from the UDK Cascade editor iNEETfACE.cuwmeeomeeronsersnserssserismserissserisssesnses 42
Fig 2. 25 - Screenshot from the UDK Lightmass editor iNtErfaCe.eromerionscrismserismserisssernsserinses 43
Fig 2. 26 - Screenshot from the UDK Terrain toolS iNtEIfUCE.werovmeeroseeronsersnserissserismserissserinssssnses 44

Fig 2. 27 - Screenshot from the UDK Cinematic tools interface. ..
Fig 2. 28 - Screenshot from the UDK Fracture Meshes editor interface.

Fig 2. 29 - Screenshot from the UDK SpeedTree editor INtETfaCE.owevmmerineesesensernerisessanserssssaneesinss

Fig 2. 30 - Screenshot from the UDK FaceFX editor iNEerface.eomcrionserissserisnserismserssserisssssnses 47
Fig 2. 31 - Screenshot from the Microsoft Visual Studio editing UnrealScript........cccronnces 48
Fig 3. 1 - Screenshot from the game Clean World.ccccoueeenucrune.. . .51
Fig 3. 2 - Boris, the hero from the gAMe.coeeosceserssersssesserssessessassesanens . 55
Fig 3. 3 — Model sheet 0f BOTiS il FODOt MOGE.oceroeeeronssvirissssiirisssseisisssssssisssssssisssssssisssssssisssssssisssssssisoses 55
Fig 3. 4 - Model of Boris in robot mode in Autodesk 3Ds MAX 201 2.cccomeeercsnseerrcsnsseirissssessisssees 56

Xi

Fig 3. 5 - UVW map of the model of Boris in robot mode...........c.cccuueenserunc. 57

Fig 3. 6 - UVW map of the model of Boris in robot mode with textures. 57
Fig 3. 7 - A: Model of Boris without textures; B: Model of BOTiS With teXtUIeS......ccoucrmerermerenserssernsernnns 58
Fig 3. 8 - Model of BOTiS With DIPEd INSETLEA.c..overuvererererireserseersseesisssesisssessssssssssssssessssesssssesssssesasssesansssssness 58
Fig 3. 9 - Adjusting the bones envelopes to the 3D MOdel Of BOTIS.......cccouweomerimmeerismserismserismsersssesnssesness 59
Fig 3. 10 - Model of Boris in sphere mode in Autodesk 3Ds Max 2012. 61
Fig 3. 11 - A: UVW map of the model of Boris in sphere mode; B: UVW map of the model of Boris in
SDNCTE INOAE WILR EOXEUIS.veorverereereseerassessesissess s sassesisssssessassesssssssssssssssssessssesssssassssassssssssassesssesssssssssssssesasssssssansess 62
Fig 3. 12 - A: Model of Boris without textures; B: Model of BOTiS With teXtUTeS.cowerorrerormserineerenees 62
Fig 3. 13 - Model of Boris in sphere with bone inSerted. ...

Fig 3. 14 - Model of Boris in solar mode in Autodesk 3DS MaX 2012.ceoeecomeerorserirmserismsernssernssesiness 64
Fig 3. 15 - A: UVW map of the model of Boris in solar mode; B: UVW map of the model of Boris in
SOIAT MOAE WItR EEXTUTES. cvvorerirscriiserissserisssirisssisisssssisssssassssssssssssssesasssssssssssassssssssssssssssssssssssssesssssesssssesssssessssssassssanses 64
Fig 3. 16 - A: Model of Boris without textures; B: Model of BOriS With teXtUIES.c.ccueerererrerssernsernnns 65
Fig 3. 17 - Model of Boris in solar mode With Diped INSETted.roemrermserorsessesemseroneessessmsesssesnsessnss 65
Fig 3. 18 - A: Normal map of Boris in robot mode; B: Normal map of Boris in sphere mode; C:
Normal MAp Of BOTIS 1N SOLAY MNOTE.coceererrerreerisersseriseessesessessssssesssssesssssissessssesssssasssssessassesssssssessassesssssassssanss 66
Fig 3. 19 - Concept of Kate given by the concept artist. 67
Fig 3. 20 - Model sheet 0f the CAAIACEET KALO.........cccrovrerinsirssirsssisisssisisssesssssssssssssisssssesssssesssssesssssessssssanses 67
Fig 3. 21 - A: Model of Kate without textures; B: Model of Kate With teXtUIes. ... 68
Fig 3. 22 - A: Model of Kate with biped inserted; B: Adjusting the envelopes of Kate model................ 68
Fig 3. 23 - Concept of Dr. Jacob given DY the CONCEPL AITISL.wrrveroverreersiserseernsessessassersssssessansessnssansessnss 69
Fig 3. 24 - Model sheet of the cChAraCter DT. JACOD.ceeoreerreeriersserserssessssesssesnsessessassessssssessassesssssassssnss 70
Fig 3. 25 - A: Model of Dr. Jacob without textures; B: Model of Dr. Jacob with textures. ... 70

Fig 3. 26 - A: Model of Dr. Jacob with biped inserted; B: Adjusting the envelopes of Dr. Jacob model.

Fig 3. 27 - Concept of Tom A. Toe given by the concept artist.......

Fig 3. 28 — Model sheet of the character TOM A. TOC. ... eocroveeorernsersserssessssesssesssessessassessssssessassesssssansssinss 72
Fig 3. 29 - A: Model of Tom A. Toe without textures; B: Model of Tom A. Toe with textures................ 73
Fig 3. 30 - A: Model of Tom with biped inserted; B: Adjusting the envelopes of Tom model................ 73
Fig 3. 31 - Complete model of the Cypricene Island. .75
Fig 3. 32 - A: Terrain of level one; B: TErrain Of IOVEl tRT€e.cevveeverreerssresseriseessissnsernssssessssesssssansessnss 75
Fig 3. 33 = A: TEITAIN Of IOVEl EWO.coorerereserseriseersserseriseesssssassesasssssesssssesssssasssssssssssssasssssessassesssssssssassesssssansssanss 76

Fig 3. 34 - kate’s house model. 77

Fig 3. 35 - Lamp ring model. 77
Fig 3. 36 — Rails model.ccoorvrenncn, 77
Fig 3. 37 - Medical center model. et 78
Fig 3. 38 - Wood recycling MACRINE MOUELceoveeeerreeeeereerrerseersserserissesssesssesansessessassessssssssssassesssssansesnss 78
Fig 3. 39 — TOXIC WASEE ClEANCYT MOUELeooeveererreeerireetiseseersenisessissessssissesssssssesassesessassesssssssssassesssssassssanss 78
Fig 3. 40 = Wind EOWET MOTEL.cooeerereerirereserseriseenssesssesiseessssssssesasssssssssssesssssassssssssssssasssssessansessnssssessansesssssasessnss 79
Fig 3. 41 = LIGREROUSE TOMEL c.....coooeeoevtrieirisirissserissserissserisssesisssssssssssssssssssssassssssssssssssssssssssssssesasssessssesasssssansss 79
FiG 3. 42 = WALl NOACL. .coueereorrtersetrtseerseirisseesisseesisssessssssssssssssesssssesss s ssesisssesisssesasssssasssssaness 79
Fig 3. 43 = PlALfOITN MNOAELoeoeererrrrserseris et easesisesas s sassesasssisssssssesssssasssss s sssesassssssssassessssssssssassesssesasesanss 80
Fig 3. 44 - Part of the bridge MOdeL.eeoverreeesreseerreesesrsserseriseenas 80
Fig 3. 45 - Island harbor MOdeL.........ceomveeeerreeeresesserserisesrinsernens .80
Fig 3. 46 = ENEIGY POIE MOUCL.couoeerevirisstirisssiirissssirisssssisissssisisssssssisssssssisssssssisssssssisssssssisssssssisssssssisssssssissoses 81
Fig 3. 47 — Watermill LOWET MOUEL........covoeveriossseerisssiirisssssirisssssisisssssisisssssssisssssssisssssssisssssssisssssssisssssssisssssssissssss 81
Fig 3. 48 — TUNNEI SECEION IMOUEL......covvoverievirisssiirisssiirisssssirisssssisisssssssisssssssisssssssisssssssisssssssisssssssisssssssisssssssissssss 81
Fig 3. 49 - Mining walker MOdeL...........eoeroveeorerosserserseeressersseriseenns 82

Xii

Fig 3. 50 = WAEEIMIII INOTEL.c...ouceerreerrertrsersirs i seasesise st es s esssesisssssssesssssisssssssssssesassssssssassessssssssssassesssssansesssss 82

FiG 3. 51 = WWTP IO c.cooeerrersevstrs i easesisssasessass s s ssssssesss s ssas s sassessssssssssassssssssansesnnss 82
Fig 3. 52 = Tom’s house MOdel.eroreerrrsrercnerrrresserssiriseeisessanse .83
Fig 3. 53 = QUESEION MATK MNOAELcooeeereresererseersserseriseesssessserisesssesssssessssissesssesssssassessssssssesasssssssansesssssassssanse 83
Fig 3. 54 — ReCyCliNg MACAING MOUELo.ceoeereerereersrereeriseersssessersesssessissessssissessssesssssissessessassesssssssessansessssssssssanse 84
Fig 3. 55 - Yellow recycling CONEAINET MOAELcoerreeerreseerserrssrssirssasiseesssssissesassssssssassessssssssssassesssssassessnss 84
Fig 3. 56 = ArrOW MOdEL.oueeeeeerrrreeeesessirserisessinseranens 84
Fig 3. 57 - Recycling platform model...........eoeonrereserreeressesserineesseseane 85

Fig 3. 58 - Solar platform model.
Fig 3. 59 - Recharger model.
Fig 3. 60 - Console terminal model.

Fig 3. 61 - The syringe collectable item model.cccoceruneen..

Fig 3. 62 - Positioning a 3D model on SunBurn editor. ..., 88
Fig 3. 63 - Changing the color of the ambient light.cccccvuvereneene. 89
Fig 3. 64 - Changing the color of @ dir€CtiONAl LIGAL.........everveerierrscrserseersssersserssessesssssernssssessssesssssasessinss 89

Fig 3. 65 - Changing the settings of a point ligth
Fig 3. 66 — A: Normal map used on metallic surfaces; B: Kate’s house without normal map; C: Kate’s

house with normal map. 91
Fig 3. 67 - A: Main menu background; B: Game over menu background. 92
Fig 3. 68 - Example of a loading screen used in the GAME..............erosseeossseonserisnsirissserismsesisssesnssssnses 92
Fig 3. 69 — Health Gnd eNErgy DAI'S SPIILe......crerrerneerreersesransersesssessssesssssissesasssssssassessessassesssssssessassessnssassessnss 93
Fig 3. 70 - Boris power mode indicator 0N itS SEVEIAL fOIMS.ormcrmeroneersmsernseronsessessamsesnssssessamsessnssansessnss 93
Fig 3. 71 — Mini Map USEA ON IEVEI ONE.ccueeeerereerrereerireersesessersesssessissessssissesasssssssassessessassessssssessassesssssansssanse 93
Fig 3. 72 - Example of the communicator used in the GAIME.eeonsieionserismsirissserismsesisssessssssnses 94
Fig 3. 73 - Example of a dialog sprite used in the game. 94
Fig 3. 74 - A: Background of the items tab; B: Background of the 10ad t@b.c.coecroveeoreronecrseerineernnns 95
Fig 3. 75 - Example of a quest Sprite USed IN the GAIME.ccoeronrcroserreersnsersserssessesssssessssssessssessnssassssnss 95
Fig 3. 76 - Background of one of the developed MiNT GAIMES.cwcveroreersmsenseronsessissmserinssssessnsesssssansessess 96
Fig 3. 77 — Tutorial screen of the firSt DONUS [@VeL.cveroveeeroseirrseersssersssersssssssesisssesisssesisssesisssesasssesinsss 96
Fig 4. 1 - Screenshot of the Item MaNAGET OOL.........cronierorseerseersseirsssersssesssesisssesisssesisssesisssesisssesssssssans 100
Fig 4. 2 - Creating a new item on Item Manager tool. 101
Fig 4. 3 - A: Item information on Item Manager; B: Item information loaded into the game. ... 102
Fig 4. 4 - Screenshot of the error MeSSAGE SNOWING -UP......coccuwerreesmsemsernesusessmsesssssissessesesssssansessessassessnssens 102
Fig 4. 5 - Screenshot Of @ NeW INSEITEA TEEIM.c.vcrvvcrorserssserssirsseisisssesisssesssssssssssssssisssesisssesasssesssssessssssans 103
Fig 4. 6 - A: Selecting an item from the list; B: Modifying the item data. 103
Fig 4. 7 - Opening a saved file with the application. 104
Fig 4. 8 - Screenshot of the QUESt MANAGEY EOOL........cecereerrersserreerrisrssersersssssserssssissesesesssesissesessassesasssens 106
Fig 4. 9 - Creating a new quest on QUESt MANAGET EOOLcerreerrrereerrerrierssersseriseessesessserssessessassesanssens 107
Fig 4. 10 - A: Quest information on Quest Manager; B: Quest information loaded into the game..108
Fig 4. 11 - Screenshot of the error message SNOWING -UP.coucrvermserismserismserismsesismsesssssessnssens 108
Fig 4. 12 - Screenshot of @ NeW INSEIted QUEST........ccronscronnsserossssisisssssisiossssissssssissssssissssssissassssessas 109
Fig 4. 13 - A: Selecting a quest from the list; B: Modifying the quest data.ccrccssecereann. 109
Fig 4. 14 - Opening a saved file with the application.cuee.. 110
Fig 4. 15 - Screenshot of the Dialog Manager tool............ccoouururne. 111
Fig 4. 16 - Creating a new dialog on Dialog MANAGET tOOLceeoreerorerrsersserserseerssessserissessessassessnssens 112
Fig 4. 17 - A: Dialog information on Dialog Manager; B: Dialog information loaded into the game.

... 113

xiii

Fig 4. 18 - Screenshot of the error message SNOWING-UpP. ...c....cocouverreeereseens. 113

Fig 4. 19 - Screenshot of a new inserted dialog.ccccueerereene. .114
Fig 4. 20 - A: Selecting a dialog from the list; B: Modifying the dialog data.ceereereeenen. 114
Fig 4. 21 - Screenshot of the Terrain Cre@tor OO ... reesseersseesssssssssssssssesisssesisssesesssesssssssasssssans 116
Fig 4. 22 - Painting the heightmap with different pen sizes and height levels.crverereernen. 117
Fig 4. 23 - Erasing the heightmap with the eraser tool. 117
Fig 4. 24 - Loading texture files to the terrain.118
Fig 4. 25 - Terrain SUCCESSfUllY CTEALE.c.ouveuurerreerirrrrerreriresrsserssirissessessanse 119
Fig 4. 26 - Created terrain on AUtOAESK 3DS MOX.cccvwereronsernserinsessmsesmserissessmssssesssssissssssesssssinsessassassesansssns 120

Xiv

List of Tables

Table 1 - Companies that developed titles USING RPG MAKETcooccoreromreneerineersisesserisssisessssesssssissessessaneens 23
Table 2 - Companies that developed titles using NeoAxis Engine. .27
Table 3 - Companies that developed titles using Unity 3D Engine. 35
Table 4 - Companies that developed titles using Unreal Engine. .48
Table 5 - Clean World develoPMENt LEAM.oowwrvormrorsrivisssiissssssssssisssssssssssssssssssssssssssssssssassssssssssssssssssssssses 51

XV

Acronyms

Al : Artificial Intelligence
CAD : Computer-Aided Design
DLL : Dynamic Link Library
FPS : First Person Shooter
GML : Game Maker Language
GUI . Graphic User Interface
IDE : Integrated Development Environment
LOD i Level of Detail

RPG : Role Playing Game

RTS : Real-Time Strategy

TPS : Third Person Shooter

XVii

Chapter 1 - Introduction

1. Introduction

1.1. Focus

Presently, specific software tools for game creation are a very
important part of the game development process. These tools enable users
to create functional games, with little or none programming. The user
should be able to import the assets to the game, define the game logic,
and behaviors he desires to see. In the end, these software tools should be
able to produce the source code of the game, compile it, and create a full
and playable game, based on the instructions given by the user.

This kind of software has two main applications:

e usage by hobbyists with little or none knowledge in
programming;

e usage by professionals in order to increase productivity in the
game development process;

Nowadays, we have several examples of this kind of tools being used
both by professionals and hobbyists. One example of a professional tool is
the UDK [1] from the Epic Game [2]. This tool allows users to define the
game logic and rules, materials, animations, particle behaviors, among
other possibilities, without programming a single line of code. Such
powerful tools make the game development process and the deployment
easier. There are also several examples of this kind of software for
hobbyists use, like the RPG Game Maker [3], or the Game Maker [4].
However, these tools don’t have the power or complexity of the UDK, being

simpler and friendlier to the user.

Introduction - Objectives

This dissertation presents a 3D game, as well as some tools to improve
the game development process. These software tools allow the game
developers to produce content for the games, with a simple interface and

at the same time the power of a fully functional 3D game engine.

1.2. Objectives

The main objective of this dissertation is the creation of software
tools to improve the creation of 3D games. Besides, the author collaborated
in the development of a 3D game which participated in Microsoft Imagine
Cup 2012, on the game design category for Xbox360 and PC. This game was
developed in XNA and the software tools were created to improve de
development process of this game.

To accomplish this main objective, the following partial objectives
were identified and performed:

1. Creation a story of the Clean World game;

2. Creation of the 2D and 3D content of the game;

3. The development of software tools to improve some tasks of
the development process of the Clean World game;

4. Evaluation of the developed tools.

1.3. Main Results

This section is devoted to present the main results obtained in the
scope of this dissertation.

The first result was the participation in the Microsoft Imagine Cup
2012, in the Xbox/PC category, with Clean World, that was classified in 7t
place on the worldwide finals. Note that our team was the first Portuguese
team reaching the worldwide finals in game design.

The second result was the software tools developed to improve the

Chapter 1 - Dissertation Structure

process of game creation. There tools are also presented in a paper
submitted to Videogames 2012. Besides, a demo of Clean World was also
submitted to Videogames 2012.

1.4, Dissertation Structure

This dissertation is organized in 5 chapters. This chapter, the first,
presents the context of the dissertation, focusing on the topic under study,
the objectives, the contributions and presents the dissertation structure.

Chapter 2 elaborates on the related work about the topic, focusing on
the existing software tools used nowadays, both by the game industry and
by the hobbyists.

Chapter 3 presents the contribution to the creation of a fully
functional 3D game (Clean World), as well as the creation of all game
contents.

Chapter 4 focuses on the development of specific software tools to
improve the development process of Clean World, as well as the creation of
the game content using these tools.

Finally, Chapter 5 presents some conclusions, and points some

directions for future research works.

Related Work - Introduction

2. Related Work

2.1. Introduction

Games are almost as old as Man itself, the relationship between this
two started millenniums ago. The “Royal Game of Ur”, which dates from
the middle millennium B.C., is the oldest board game known until today.
Other example of how ancient is this relationship between Man and games
is the “Baoying-Xiangqi”, the oldest chess game in History [5].

Initially, the number of exiting games as very low. The development
process was very slow, since they were handcrafted, which created several
difficulties in manufacture. The few that existed, also had difficulties
spreading among societies, since the communication among people that
time was hard [6]. However, with the Industrial Revolution, this reality
changed. With the use of machines was now possible to do a large-scale
manufacturing of games. Due to this large-scale production, many game
like Monopoly (1903) and Detective (1947) were later launched, having
much success among the communities.

However, the reign of board games didn’t last forever. In 1952 and
1958, with the creation of the first computer game (OXO) and videogame
(Tennis for Two) respectively (see figure 2.1), a new era started, the era of
electronic games. During the 80s, these new forms of digital entertainment
started to took over the market, and the board games lost ground to the

digital games.

Chapter 2 - Related Work

MNOUGHTS AMD CROSSES

A 5 DOUGLAS, C.1952

LOADIMG PLEASE WAIT...

EDSAC/USER FIRST {DIAL @/1):1
DIAL MOVE:

5 R S Order Tank Long Tank 0
O Multiplier r—
O Multipli Short Tanks

A —
i, we——

Fig 2. 1 - A: 1952, OXO/Noughts and Crosses (Tic-Tac-Toe); B: 1958: Tennis for Two.

The market of digital games is a growing sector, moving a volume of
11.7 billion dollars in the year of 2008 only in the USA. The growth of this
industry surpassed the 200% in the past 10 years [7], making the game
industry an essential part of the entertainment industries.

We can tell how successful a game is by how much it enthralls his
user. Development companies struggle to produce games that capture the
players’ attention in such way, that their perception of time and sense of
self becomes distorted or forgotten [8].

In the last three decades, the consumer video game hardware has
evolved from simple 8-bit processors, some dedicated display logic and a
few kilobytes of memory to high clock rate multi-core processors coupled
with a programmable graphics unit, large memories, high definition
audio/video output, and sophisticated user input devices. This tremendous
increase in capability leaded to an increase in the sophistication of games.
Since the need to create complex projects has risen so greatly, the project
team sizes are now over hundred people, instead of a couple programmers
[9].

This evolution has drawn the game development from basements,
where it all started years ago, to multi-national companies that created a
business that rivals with Hollywood. Unfortunately today, the computer

hobbyist that started the creation of electronic games find too difficult to

Related Work - Video Game Development

create their own games, mostly because they want to create something
similar to what is done in the industry, but the task is too complex.

2.2. Video Game Development

The development of video games projects has several characteristics
that differ from typical projects of software development. For start, games
are software that has the purpose of entertaining, they have multimedia
contents that are similar to those used in movies. That’s the reason why
today game industry uses multi-disciplinary teams and has the need to
adapt itself to the constant changes in the market, having to assimilate
quickly the new tendencies and technological innovations. Besides, the
complexity and specificity of the game usually dictates the way this one is
produced [10].

Diverse assets such as 3D models, textures, animations, sound, music,
dialog, video and other resources are integrated in the game by the
development pipeline. These multimedia assets are created by specialists
that work together with the programmers in other to create the code
framework in which all assets fits.

During the development of the game, several tools can be used, such
as software engines for physics or third party software for modeling and
character animation. Sometimes it’s even needed to code some plug-ins for
this other specialized tools, in other to import the assets into the game
[11].

An example of how massive a video game project can be is BioShock
[12] (see figure 2.2). It took three years to develop, employed 93 in-house
developers, 30 contractors, and 8 on-site publisher testers. In the end, the
final result was a total of 3,775 files for the game, 758,903 line of native

C++ code, and 184,144 lines of script code.

Chapter 2 - Related Work

Fig 2. 2 - Screenshot from the game BioShock.

So, in order to consider some of the unusual factors that are not
present in traditional software development, the called multi-disciplinary
teams were created. However, the team organization varies from company
to company. These teams are usually segregated by specialty, for example,
a programming group and a design group. These groups can have sub-
groups, such as an Al team or a texture team. A common practice is to put
an experienced employee in the area in charge of one team.

Still, some companies are adopting a more agile style and have broken
down the traditional groups to create functional units. An example of this
can be a unit composed by two programmers, one texture artist and one
animator [11].

Some typical designations that are used to refer each member of a

game development team are the following [10]:

e Producer: Is the one in charge of planning the game and follow the
development process. The producer works both internally and

externally, trying to create a connection between the development

Related Work - Video Game Development

team and the clients/sponsors of the game. The producer should

have a macro vision of the project, getting involved in all its aspects.

e Artist: Is the one who creates all art material for the game. There
are several specializations, such as animator, or 2D artist. The artist
helps to define the visual identity of the game, the conception of the

characters, the textures, the 3D modeling, etc.

e Game Designer: Is the one responsible for creating the artist
conception of the game, in a similar way to what is done in a movie.
This activity requires great knowledge about games in the market.
It’s also he’s job to make sure that all pieces of the game are put
together in a coherent way, so the final product can be fun and

changeling.

e Programmer: The programmer is the one responsible for creating the
source code of the game. They can do several activities related to
game programming, like creating the code needed for render, the
physics programming, the code for the sound system, the code for
the Al, etc.

¢ Sound Engineer: Is the one that creates the audio material for the
game, both sound effects and soundtrack. He works with a team of
artists in other to create the audio-visual identity of the game, based

on the info given by the game designer.

e Quality Engineer: His job is to make sure that the final game has
enough quality for the standards of the market. He makes tests to
the source code of the game and also to the gameplay. This role has
been getting more and more significance due to the need to reduce

the number of flaws in software, in order to increase quality.

Chapter 2 - Related Work

2.3. Game Engines and Frameworks

During the game development, according to the design and
implementation, the production of the game can become highly expensive
[13]. In order to change this situation, new approaches were used in game
development, using available game engines and frameworks [14] [15].

In the past, games were developed line by line using a programing
language or a scripting language. Using this tedious process means that the
code used in games was not able to be reused [16]. The fast development
of the computer technology made this technique over past, nowadays there
is a new form to design games: the game engines.

Game engines work for games just like a car engine works for a car
[17]. Like in cars, based on the engine, we can produce different models
with different body style and colors. The same happens with game engines,
allowing us to create a variety of games with different characters, scenes
and stories.

Using game engines makes the task of design games easier, since we
no longer have to design the game from scratch. Game engines are
frameworks for games, that after inputting codes about storyline, setting
control information, the sound, the 3D assets, etc., a game can be created.
However, the choice of the engine is important in order to carry out level
design, animation design and modeling [18]. It’s also important to consider
that most engines are turned into a particular content style. For example,
if we use a game engine tuned to flight simulators, we may have poor
results using it in a game placed in tunnels and dungeons [19].

Usually, we can define a 3D game engine the following way: It’s a mix
of several engines that allow the programmer to manage the game assets,
like sound and music, but also gives power to the programmer to control
the game artificial intelligence, the game physics, or the collision detection

system. We can define its outputs as graphics, music, and sound effects,

Related Work - Game Engines and Frameworks

and the input is given by the input device, which can be a controller, a

keyboard, or even a sensor. It provides the algorithms to perform several

tasks, like making a character move, control the topography of the terrain,

manage the artificial intelligence of the game NPCs (Non Player

Characters), or even support and monitor the network [20].

A 3D game engine has several components, let’s look at the function

of each component briefly:

Rendering Engine: The rendering engine represents the object in the
screen. The two major libraries available for PC are DirectX by

Microsoft, and OpenGL by Silicon Graphics Inc.

Animation Engine: Is the engine responsible for all character
animation in the game. The majority of the engines use limp ragdolls
for animations, however, some new animation engines like Euphoria
[21], employ more complex methods to animate the entirety of

physically bound objects within the game environment.

Physics Engine: It provides an approximate simulation of certain
physical systems, for example: rigid body dynamics, including
collision detection; soft body dynamics; and fluid dynamics. We can
separate the physics engine into two categories: real-time and high-
precision. High-precision is usually used in animated movies, since it
requires more processing power. On the other hand, real-time physics
engines are used in computer games and other forms of interactive
computing since simplified calculations and decreased accuracy are
used to compute in time for the game to respond at an appropriate

rate for gameplay.

Artificial Intelligence Engine: It’s the responsible for creating the
illusion of intelligence in the game. This engine controls the NPCs
(Non Player Characters), and defines their behavior during the

gameplay. It’s also the responsible for the implantation of path

10

Chapter 2 - Related Work

finding algorithms, which consist in methods for determining how to

get an NPC from one point on a map to another.

¢ Network Engine: The network engine is the one that manages the
network in online games. Makes each user contact the server sharing
one space and interaction based on network. It usually includes a set
of algorithms for communications between players, the possibility to

create rooms and matches, and also manages the game updates.

e 3D Sound Engine: The 3D sound engine generates the game sound
data to the game progress state. This audio technology uses several
techniques to simulate depth in sounds. With stereophonic audio
systems, where sounds could only be heard from the left or right,
there’s no depth notion. The 3D sound engine focus in positing sounds

in three dimensions, making the game experience more realistic.

Some game engines possess tools for map editing and animation;
however, most of these tools are complex for newcomers to use.
Nevertheless, some game engines don’t have a graphic interface, which
means that all the work like putting a 3D model in a specific location must

be done by code.

11

Related Work - Game Development Tools

2.4. Game Development Tools

We will refer to game development tools to software build over game
engines that allow users to create their own game with little knowledge of
programming. Typically, this software present an interface based on drag
and drop operations, giving the user an intuitive and simple way for
creating games.

Some of the software even allows the more advanced users to do
some programming using simple script language. However, the
modifications that they can do to the engine are usually very limited.

There are several of these tools on the market today, some of them
quite simples to use, like the Game Maker [4] developed by Yo Yo Games
[22], The 3D Gamemaker [23], developed by The Game Creators [24],
CopperCube [25] from Ambiera [26], 3D Rad [27] a freeware development
tool, and probably the most well-known and more powerful, the RPG Maker
[3] from Enterbrain [28].

However, there are also some professional engines that use a set of
tools to help in the game creation. Most of these tools are more powerful
than the ones mentioned earlier, and come integrated with the game
engine. Each tool is responsible for a very specific task in the development
process. Some examples of engines that use these kinds of tools are
NeoAxis Engine [29], Unity 3D [30], and UDK [1].

12

Chapter 2 - Related Work

2.4.1. Game Maker

The Game Maker [4] is an IDE for Windows and Mac, created by Mark
Overmars in 1999. Was developed using the programing language Delphi
and it is currently developed and published by Yo Yo Games [22].

The Game Maker allows users to create their own computer games
without any knowledge of programming languages. However, it allows the
more advanced users to create more complex games, using a build-in
scripting language.

The first version of Game Maker was called Animo [31] and was a
software tool specialized in 2D animation. Each release of Game Maker
added new features and improved stability, making the software gain
popularity. In 2001, the version 3.0 implemented DirectX for the first time.
The Game Maker 8 was released on 22 December 2009, and added new
features such as a revamped script editor, an improved image editor, and
the ability to import and export resources from game source files.

The user interface (see figure 2.3), uses a drag-and-drop system,
allowing users unfamiliar with traditional programming to intuitively create
games visually organizing icons on the screen. These icons represent
actions that would occur in the game, such as movement, basic drawing,

and control structures.

13

Related Work - Game Maker

P LR AN N wedw wp
DEU P SeDFOOE 7 €
) Soubes
= omands
4] ma_eghmer
] wet_wghor
Ent b
21 et bach o
T Badgumnds
£ Pathe
& Sompts
U o)
r Ctgmnte
- e
L A
& oy sl
B bl
& iy aland)
i wmy!
s
e warry =)
e~ Al
Coronbu_ewy “‘ =
T o | B
k grym e B[Il'i'
. it e
- e E [z
g S aa;
LI @
SN0
—_— =) Ao l‘l--”--' .;
/= | Dwwe | O | K2 v o oo e o () '

Fig 2. 3 - Screenshot from the interface of Game Maker.

There are two versions of Game Maker: the Lite and the Standard.
The Lite versions are free to use, while the Standard requires purchase.
The difference between these two lies on the fact that Lite locks several
advanced features and functions, such as the ability to include DLLs,
particle systems, advanced drawing functions, 3D graphics and network
multiplayer. All these features are unlocked on the Standard version.

The Game Maker was primarily developed for 2D graphics, however,
since version 6.0 (Windows), the software added Direct3D, allowing the use
of limited 3D graphics. On the Macintosh versions 7.0 and superior, is used
OpenGL. Extension packages such as OGRE [32] can be added to increase
the 3D functionality.

The Game Maker uses its own scripting language, GML. This language
allows advanced users to further enhance and control the design of the
game through convectional programming. The syntax of GML is similar to C,

C++ and Java.

14

Chapter 2 - Related Work

2.4.2. The 3D Gamemaker

The 3D Gamemaker [23] is a software tool developed by the company
The Game Creators [24]. This piece of software allows users to create
simple shooter/adventure games for Microsoft Windows. This tool doesn’t
require any programming or art knowledge, however, the users can add
custom media to their creations using DarkBASIC [33] programing language.

Just like The 3D Gamemaker, DarkBASIC was created by the company
The Game Creators. This programming language is a structured form of
BASIC and has the purpose of game creation using Microsoft DirectX. It is
faster and easier to use when compared with other languages, but it’s also
less powerful.

The 3D Gamemaker has a built-in editor that allows users to indicate
the position of enemies, items and obstacles (see figure 2.4). Still, this
option is not available on the beginner mode or lite edition. There are also
other tools in this software, like a simple level creator.

This software is usually a bad choice for most users; since it has poor-
quality models, very limited customization options, and the games created
by the software are made from a series of pre-built parts than can be
combined later on. It is more recommend for children who want to create

simple games.

15

Related Work - CopperCube

u'; a7 Youy
4

A 8
oMLY £35)

Fig 2. 4 - Screenshot from the interface of The 3D Gamemaker
2.4.3. CopperCube

CopperCube [25] is a powerful 3D engine/editor from Ambiera [26]
(see figure 2.5), that can be used to create full functional games. This
software can deploy for Flash, WebGL/JavaScript, Windows, and Mac OS X.
This software is more focused on the creation 3D scenes, however, it gives
the possibility of creating games by allowing the use of scripting.

The software allows the users to import their 3D assets. It supports
many file formats, and since version 3.0, the editor also supports low poly
editing, this means that the users can create and edit their 3D models

without any third party software usually used for that task.

16

Chapter 2 - Related Work

@ CopperCube - CAL \irr Tech\face (P brammer.ccb | 5
File EGit View Scenes Tools Hep

A@dl 90 Scurm Edtng | Potygon Editng | U9t Macoes | Scenes | Publish

yForx Faaa Coicustet | Mode: Snadows v Textweore: SIS12 v | Ressition: 4000

SceneGraph Explorer
Free 3D Scenel
mes

x|

L b a7
m;:wv somsiedsder arcane house awd tree .-- ‘ E ”

<] c\deveiopmentyrtechflace edtomadiage feviures| ~edior_defauits\defaut ﬁbo-o!

Fig 2. 5 - Screenshot from the interface of CopperCube.

CopperCube also supports skeletal animation for 3D characters. The
meshes can have an unlimited number of joints and unlimited unmounts of
weights. The 3D characters can be animated in any animation software and
then imported to CopperCube.

The deployment on the various platforms that CopperCube supports is
also very straight forward. With just one click of the user, the 3D scene can
be deployed to any of the supported platforms. When publishing,
CopperCube uses OpenGL, DirectX, WebGL or Stage3D/Molehill to render
the scenes. There’s also a lightmapper build in the editor that enhance the
appearance of the 3D scene. This tool is very easy to use and includes
features like global illumination effects.

CopperCube supports scripting, events and actions. For example, the
software has a built-in event/action system. This allows the user to define
actions, like playing a sound when entering a certain area, without any
programming needed. If the user is publishing for Windows platform, then
it’s possible to use JavaScript. The same happens with Flash, allowing the

user to use ActionScript 3.

17

Related Work - 3D Rad

CopperCube already contains some pre-created game Al behaviors and
actions. Just with a click, the user can define the game characters and the

enemies.

2.4.4. 3DRad

3D Rad [27] it a freeware software used for the creation of 3D games.
This software was designed for non-coders, and aims to provide the
simplest development workflow possible, without sacrificing flexibility.

The 3D Rad editor is based on a collection of components, called
objects, which can be put together and configures in several ways. This
allows the creation of games without coding a single line. However, for
more advanced users, 3D Rad supports scripting via AngelScript [34], an
extremely flexible cross-platform scripting library designed to allow
applications to extend their functionality through external scripts.

The editor of 3D Rad (see figure 2.6), is almost entirely mouse-driven,

making it very simple to use.

Fig 2. 6 - Screenshot from the interface of 3D Rad.

The object types that 3D Rad uses are based on geometry, like

static/animated meshes or physics objects, can be visually combined in a

18

Chapter 2 - Related Work

preview of the scene. Plus, object types such as forces, joints, springs and
wheels can also be visually configured. Certain event-objects, like tracing
detection zones, can be edited visually.

3D Rad possesses a series of visual effects such as fire, smoke or water
that are already defined in the editor. Also, some post-processing effects
can be created by configuring the camera.

This software supports several file formats for the assets, has two
modes for games, first person and third person, and has some simple Al
already configured, for example for characters, however, for more complex

IA is recommended the use of scripting.

2.4.5. RPG Maker

RPG Maker [3] is probably the most successful piece of software used
by hobbyists in game development. It’s a series of programs for the
development of 2D RPG games, created by the Japanese group ASCII, and
then continued by Enterbrain [28].

In opposite to what happens with the software seen in the previous
sections, RPG Maker, also known in Japan by the name of RPG Tsukdru,
focus in one particular game genre, the RPG’s. This software allows its
users to create their own full RPG games.

RPG Tsukiru Dante 98, released on December 17, 1992, was the first
of the RPG Maker series. Later, it was released RPG Maker 95, which was
the first Microsoft Windows based version. Although it was early version,
RPG Maker 95 had a higher screen resolution, and higher sprite and tile
resolution than some of following versions.

RPG Maker 2000 (see figure 2.7), was the second release of the
software for Microsoft Windows, and is the most popular and used version

so far.

19

Related Work - RPG Maker

OIIET v IE]

Bopt 8w Iod Ghwe U

R I e L IE

ma EmEEE

At

Fig 2. 7 - Screenshot from the interface of RPG Maker 2000.

The next version of the software released was RPG Maker 2003, this
time developed by Enterbrain, which had previously been a part of ASCII.
This version was a largely improvement of RPG 2000, and introduced a new
battle system with side-view (see figure 2.8), similar to the one used on the

classic Final Fantasy games.

Hormal

Hormal

Hormal

Fig 2. 8 - A: Screenshot from the battle system of RPG Maker 2003; B: Screenshot from
the battle system of RPG Maker VX.

20

Chapter 2 - Related Work

However, the big breakthrough in the series was in RPG Maker XP and
its successor, RPG Maker VX. These versions allow the more advanced users
to use scripting in Ruby (see figure 2.9), making these versions very
powerful. Additionally, these versions have more control over sprite sizes,
since there is no longer a specific image size regulation for sprite sheets,
like in previous versions. Also, some other aspects of the game design

where improved.

Script Editor @g]
o a
2 # ** Game Character [part 2]

Game_Screen -~ 3
Game_Picture 4# This class deals with characters. It's used as a superclass for the

Game_Battler 1
Game_Battler 2 5 # Game_Player and Geme_Event classes.

Game_Battler 3
Game_BattleAction 7

Game_Actor 8 class Game_Character
Game_Enemy El
Game_Actors 10 # ¥ Frame Update
Game_Party an
ame_Troop
GamE_Map 1z def update
Game_CommonEvent 13 # Branch with junping, mowing, and stoppineg
Gams_Character 1 14 it Jumping?

15 update_jump
Game_Character 3 156 elaif moving?
Game_Event 17 update_move
Game_Playsr 18 clse

Sprike_Character

Sprite_Battler 58 update_stop

Sprite_Picture & end

Sprite_Timer Z1 # If animation count exceeds maximum walue
Spriteset_Map ZZ # * Maximum walue is wove speed * 1 taken from basic walue 18
Spriteset_Battle z3 if Banime_count > 18 - @uove_speed * 2
Window_Base 24 # Tf stop animation is OFF when stopping
Window_Selectable 25 if not @step_anime and @stop_count > 0
Window_Command = -

WindowiHeIp z6 # Return to original pattern
Window_Gold 27 @pattern = Boriginal_pattern
window_PlayTime z8 # If stop animation is ON when moving
Window_steps 23 else

W!ndnwaenuStatus a0 # Update pattern

mgggx:;:ﬂ" a1 @pattern = (@Bpattern + 1] % 4
Window_skilStatus &2 end

Window_Target 33 # Clear animation count

Window_EquipLeft 24 Banine_count = 0

Window_EquipRight a5 end

Window_FquipTtem 26 § If waiting

Window_Ststus 37 if fBwait_count > 0

window_SaveFile

Window_shopCommand 38 # Reduce walt count
window_shopBuy EE] Byait_count -= 1
window_ShapSell i 40 return
4l end
Mame: | Game_Character 2 42 ¢ If wove route is forced @

Fig 2. 9 - Screenshot from the script editor of RPG Maker XP.

RPG Maker series interface (see figure 2.10), is quite simple and very
straight forward, even to newcomers. It includes a tile set based map
editor, called chipsets in versions previous to RPG Maker XP, a simple
system of creating events and applying the basic logic operations, and a
battle editor. All versions include premade tilesets, characters, and events.
However, the users can upload to the date base their own titlesets and

sprites, allowing then to customize the game experience.

21

Related Work - RPG Maker

b Projectl - RPGW 2= JNX
TrAIMF) WR(E) T-F(M) BWEO) RE5-MUS) YT} A€ ATH)
| SgH| 8T D0

R EGE

¢ mBlsaae[#swuoads >

j.imjedl
o . R

- s
= = R
AR
S SeEsS
= W-JF2

Fig 2. 10 - Screenshot from the interface of RPG Maker VX.

The big success of the RPG Maker series is no doubt related to the
simplicity of the interface and the ability of completely customize the
games created by this software. If this software was originally designed for
non-coder hobbyists, since the software allowed the use of Ruby as
scripting languages, several independent game development companies
have been using RPG Maker to create commercial games, which are
distributed by Big Fish Games [35], IGN Entertainment [36] and
GamersGate [37]. In the following table we present some of the companies
that use RPG Maker and some of the games created by them.

22

Chapter 2 - Related Work

Table 1 - Companies that developed titles using RPG Maker.

Independent game development Developed game titles
companies

pitemniem 67
Aveyond Series [41]
Eternal Eden [43]
preven 9

e e

2.4.6. NeoAxis Game Engine

NeoAxis Game Engine [29] is a complete game engine with all the
feature of a modern 3D game engine. This software can be used to create
all types of games, from casual games to AAA games. This engine can be
used on Microsoft Windows together with Microsoft Visual Studio for
development, and can deploy to several platforms, like Microsoft Windows
XP/Vista/7, Apple Mac OS X, and Linux. In development are the deploy
possibilities for Apple i0S, Google Android, and Google Native Client.

NeoAxis has a unique game object system that is used to construct the
game logic as well as the behavior of the world elements and the way they
interact with the player. In NeoAxis everything is a game object whether it
is a robot, a crate or a landscape. This is done by a well-defined class
hierarchy (see figure 2.11), that allow programmers to create or modify
game components according to their needs. This edition is done via C# on
Visual Studio.

23

Related Work - NeoAxis Game Engine

Game

Character | I Turret | ‘ Gun | | MeleeWeapon

l uni | | Weapon |

‘ GameMap | | GameWorld ‘

Engine

MapObiject | ‘ Map | v
| World |

Fig 2. 11 - Game class hierarchy used by NeoAxis Engine.

Engine also has a wide range of pre-made base classes for rapid and

intuitive development of games. Some of this classes feature the following

capabilities of the engine:

o Water surfaces with physical influence and splashes;

o Cut scene manager that enables the creation of cut scenes in the
game;

e Units divided in characters and vehicles. This allows the creation of
any unit types, such as characters, tanks, turrets, etc.;

e The ability to create factions for unit groups with some generic IA
and path finding algorithms ;

o The Creation of weapons, bullets and physical explosions;

e Several types of doors, including automatic doors;

¢ A Boolean switch system;

e Start and respawn points. Different start points and helpers for
units and other objects;

e Physical streams;

e Camera management system with various pre-programed cameras;

24

Chapter 2 - Related Work

NeoAxis Engine already includes a framework of game types. This
framework allows the users to create functional prototypes quickly. Some
of the game types included in the framework are: first person shooter with
multiplayer support; real-time strategy; and third person shooter.

However, what makes NeoAxis Engine such a good engine for indie
developers is the unique set of tools that provides to assist during all the
processes of game development.

The Expandable Map Editor (see figure 2.12), is a powerful tool for
placing objects and creation of game scenes with full undo/redo support.
This editor gives to the developer control over all elements of in-game
environment from a graphical viewpoint. In this software is possible to
create, place, size, scale and rotate individual game objects, as well as
view and modify any of the properties of those objects. The user can easily
edit the parameters for static objects, terrain, characters, light sources,

water, sky, and other objects in the scene.

Fig 2. 12 - A screenshot from the NeoAxis Engine map editor tool.

Another tool that the developers will use a lot while working with this

engine is the NeoAxis Game Object Editor (see figure 2.13). This editor

25

Related Work - NeoAxis Game Engine

allows the configuration of all types of game objects, and to adjust objects
visually. It includes appearance creation, configuring physics, particle

systems, and all other attributes of game objects visually.

File Edit yiew Type Editor Tools Help
Z W [%]~© ~ word
_ax [g Objects
[FastMovelnfivencelter . | Pt SILL R N =] TigerTank (Tank)
) (23 Healthitems
£)-[2 Weaponitems
(23 Hammerltem
&=1-(23 Shotgunitem
3 Shotgunliem.ty
- (3 SubmachineGunite
@, DefaultitemTake cog

8 Automaticinfiuenc (Collection)
DieLatency
ImpulseDamaqe(0
ImpulseMinimalD 0
LifeMax
LifeMin
LifeTime
SoundCollision
SoundCollisionMi 1
Substance
TarqetPriority 1
Entity

AllowEditorCreate True

AllqumwNm False

& GunBarrel mesh
@ GunBase mesh
i Normal dds
[Seeculor.dds
R, TigerTank physics
;
@ TigerTank_Baseh
@ TigerTank_LeftTra
@ TigerTank_RightT
2 I:f:::‘i“‘ e "] Show Imisible Objects

e) Filter Objects By Alias: ((Nofte) v

Fig 2. 13 - A screenshot from the NeoAxis Game Object Editor.

These two pieces of software are definitely the main tools of the
engine; nonetheless, there are other tools available to assist the developer
in the game creation, for example:

e GUI Editor: The Graphic User Interface Editor is intended for the
creation of end-user controls, menus, dialogues, windows, HUD
screens and in-game 3D GUI.

e Expandable Material Editor: A visual tool for designing materials and
shaders.

e Physical Model Editor: Allows the developers to visually configure
physical behavior of game objects.

e Particle System Editor: A tool designed for the creation of various

particle systems.

26

Chapter 2 - Related Work

e Terrain Editor: A landscape design tool that supports geometry
editing and painting of alpha layers onto terrain to control blending,
collision data, and support of detail and normal maps.

e Static Lighting Calculation Tool: A static lighting calculation tool
with Lightmaps and Irradiance Volume support.

e NeoAxis Exporter: An exporter that can be installed on Autodesk 3Ds
Max and Autodesk Maya to convert the files to the format used by the

engine.

As it was mentioned earlier, NeoAxis Engine is most used by indie
developer companies. In the following table we present some of the

companies that used this engine and some of the games created by them.

Table 2 - Companies that developed titles using NeoAxis Engine.

Independent game development Developed game titles
companies

OHBA [48] Homura Combat [49] (Third Person
Shooter, Arcade Game)

Dream Dale [50] Elementary My Dear Majesty! [51]
(Casual Game, Hidden Object)

Makivision Games [52] Sacraboar [53] (Real-Time Strategy)

Donsoft Entertainment [54] Capoeira Legends: Path To Freedom
[55] (Action/Beat'em Up Game)

Magrathean Technologies [56] SickBrick [57] (action-oriented Sci-Fi

FPS)
Magrathean Technologies [58] Incognito [59] (Space Adventure
Game)
Clockwork Brains [60] Plyushkin Syndrome [61] (Arcade
Game)

27

Related Work - Unity 3D

2.4.7. Unity 3D

Unity 3D [30] is other game engine that is an integrated tool for the
development of 3D games. Unity's development environment runs on
Microsoft Windows and Mac OS X, and the games created by this tool can
run on Windows, Mac, Xbox 360, PlayStation 3, Wii, iPad, iPhone, Android,
and, in a near future, on Linux. This tool consists on an editor for
developing/designing content and in a game engine for executing the
game. Unity won the Wall Street Journal 2010 Technology Innovation Award
[62] in the software category, and the number of developers using this
software is estimated to be around 500,000.

There are two versions of Unity 3D, the standard version, and the Pro
version. Unity 3D Pro is more powerful and has more features than the
standard one, however, we will focus our attention on the second one,
since is free and the most used.

In terms of rendering, Unity 3D takes advantage of a new deferred
rendering pipeline, which is a three dimensional shading technique where
the result of a shading algorithm is calculated by dividing it into smaller
parts that are written to intermediate buffer storage, the G-buffer. This
information is combined later, instead of immediately writing the shader
result to the color frame buffer. The use of deferred rendering allows the
engine to support a big quantity of dynamic lighting.

The engine already has 100 build-in shaders, that ranger from Diffuse
and Glossy, to more complex ones, like Self Illuminated Bumped Specular.
Unity 3D also uses Surface Shaders, a new simplified way to use author
shaders for multiple devices and rendering paths. The engine also uses
scalability to make sure that the advanced shader effects will run well
across all target hardware.

Unity also has a large collection of full-screen image post processing
effects built in, like Sun shafts, high quality depth-of-field, lens effects,

curve-driven color correction and others.

28

Chapter 2 - Related Work

Regarding the performance of the engine on rendering, Unity 3D uses
a process called batching. Basically, the engine automatically combines
geometry into batches, which significantly minimizes driver overhead while
retaining full flexibility. It also has LOD support to manage meshes with
several levels of detail.

In terms of lighting, Unity 3D presents soft and hard real-time
shadows. These shadows can be cast from any light in the scene, and a
variety of strategies is used to make them the fastest as possible and even
work on old computers. With the linear space lighting and HDR, is possible
to create games with stunning looks since the multi-threaded renderer is
able to render the scenes with ease.

However, probably one of the best features of this engine is the light
mapping (see figure 2.14). This features gives to the developer total

control over the game ambience.

Fig 2. 14 - A screenshot from Unity light mapping editor.

Unity light system also supports light probes, in order to give life and

realism to light mapped scenes without the high cost of typical dynamic

29

Related Work - Unity 3D

lights. Dual light mapping is also supported. One light map is used for
faraway stuff, while another contains only bounce light. This allows models
to integrate nicely with created light maps. Unity 3D is also capable of
creating the UV maps on its own, this means that the developer doesn’t
need to unwrap unless he wants to.

In terms of terrain creation, Unity 3D also provides a set of tools to
make this task easier. The unity in-editor tool allows the user to carve,
raise, and lower sweeping and mountainous terrains. The engine supports
tiled textures, which can be blended and combined with a collection of
accurate tools. This allows a handful of low-resolution textures to make
diverse types of terrains. The light map features seen previously can also
be used in terrains.

Unity's terrain engine is extremely easy to use and allows the user do
specific task like painting trees, ground debris, and blades of grass. All of
this with configurable distances for foliage rendering transitions to
billboards in order to obtain the maximum performance.

The terrain creator works together with the tree generator. This tool
allows the developer to use a mix of procedural generation and hand
placement freely across different parts of the generated trees. The user
can add branches twigs and leaves in real-time, rearranging the tree
hierarchies with simple drag and drop operations. Assigning textures to the
trees is also an easy task. The user just needs to assign the leaf and branch
and twig materials to the tree. Unity engine will automatically atlas all
textures together and bake the maps. It also calculates the ambient
occlusion and wind factors for the tree. The engine also optimizes the leaf
quads from the texture automatically, giving 20% to 30% of fill rate
optimization.

Unity 3D uses the powerful physics engine NVIDIA® PhysX® [63].
Basically, we can divide the physic in Unity in five groups:

e Cloth: Inside the cloths, we can have two types of simulation,

Interactive Cloth that interacts fully with the rest of the

30

Chapter 2 - Related Work

environment; or Skinned Cloth, which is an optimized solution for
garments on animated characters.

e Soft Bodies: creates soft bodies from objects, for example, semi-
deflated objects that interact realistically with the environment.

e Rigid Bodies: enable the game objects act under the control of
physics. The rigid body can receive forces to make your objects move
in a realistic way with no scripting required.

e Ragdolls: with the ragdoll wizard it’s possible to set up a full ragdoll
from animated character in seconds. The user can tweak the ragdoll
as needed in order to get unique behaviors.

e Joints: Unity processes several types of joints, like hinges, springs,
ball-sockets, character limbs, and fully-customizable configurable
joint.

e Cars: Unity uses a dedicated wheel collider to accurately simulate

the traction model of real car tires.

Unity 3D also has some build path finding algorithms to turn the
developed games more realistic. The user just needs to define the
boundaries of any navigable space, and the engine will do the rest.

The audio on Unity 3D is managed by the FMOD [64] audio engine,
using its tool to do the necessary editing and treatment of the audio files.

In terms of scripting, Unity 3D supports three scripting languages:
JavaScript, C#, and Boo (a dialect of Python). All three are equally fast and
can interoperate, making use of .NET libraries that support databases,
regular expressions, XML, networking and so on. The engine game logic runs
on Mono [65], an open source .NET platform.

Like it was mentioned before, Unity 3D is an integrated tool, this
means that the Unity editor (see figure 2.15), works together with Unity
game engine, allowing the editor to do everything a published game can
do. The user can instantly run the game inside the editor and preview how
it behaves on the several platforms. It’s also possible to alter values,

assets, and scripts on real time, this give to the developer a change to test

31

Related Work - Unity 3D

a different gameplay mechanic or just to see how another material might

look like in scene.

B |
LEX X

. v'-fg'f'.&__’.ﬂ‘iﬁif

I

|
L
¥

[\ Cerram Terren €. *|
ABidimaghio

Fig 2. 15 - A screenshot from Unity Editor interface.

To simplify the frequent use of complex objects, Unity 3D allows the
use of Prefabs, which are similar to macros. This feature can then be easily
placed throughout the game or instantiated at runtime. Any changes done
to the original prefab are propagated to all dependents; this means that
major and minor adjustments can be made very quickly on a large number
of instances.

Unity asset manager helps the developers to organize the assets while
working on large projects. The project browser shows everything with
interactive previews, tagging and searching.

Unity editor allows the developer to design worlds due to its building

tools. These set of tools help the users to assemble assets and set up the

32

Chapter 2 - Related Work

game environments. With operations of drag and drop, it’s possible to bring
meshes into Unity, and then, with other drag and drop operation, to the 3D
world. To preview the game world created, the developer just needs to
press the play button. It’s also possible to easily add primitive meshes, like
spheres, boxes, and capsules to define trigger zones in the game world.
Unity helps the developer to visualize these meshes, position, scale and
rotate them as he wishes.

The editor is extremely flexible; it enables the user to set-up layouts
simply by dragging tabs to the desired position, and a full range of features
such as grid (see figure 2.16), and surface snapping allows the user to
quickly and accurately position the objects. With the vertex snapping tool

objects can be positioned exactly where the developer needs them to be.

Scene -

RGB s | e | o | <) || Gizmes | (Gr Al b

Textured

L]

Fig 2. 16 - A screenshot from Unity editor grid feature.

33

Related Work - Unity 3D

Unity's Asset Pipeline supports all major formats used by CAD
applications. All assets in a Unity Project are automatically and
immediately imported upon save, whether they are 3D models, animations,
textures, scripts, or sounds. The assets can be updated at any moment,
even while playing the game inside the editor.

Unity 3D includes a curve and gradient-driven modular particle system
tool editor called Shuriken (see figure 2.17). With this editor, the
developer can easily adjust individual parameters of each particle system
via Shuriken. It’s possible to playback a selected particle system, pause it
at any point in time to adjust any parameters, and then play it again to
instantly see the modifications. It’s possible to group individual particle
systems into Particle Effects in order to synchronize the systems. Unity also
provides a Particle Editor to manage potentially complex Particle Effects.
This is accessible via the Inspector View, and allows the user to toggle

curves on and off.

Fig 2. 17 - A screenshot from Shuriken.

34

Chapter 2 - Related Work

A vast list of games has been created using Unity 3D, both for mobile
platforms such as iPhone or Android, for portable consoles like PlayStation
Vita, and for platforms where we are costumed to see AAA games like Xbox
360, PlayStation 3 or desktop computer. In the following table we present
a small list of game companies that used this engine and some of the games

they produces using the tools given by Unity 3D.

Table 3 - Companies that developed titles using Unity 3D Engine.

Independent game development Developed game titles
companies

GameArt Studio GmbH [66] A.l. Invasion [67] (MMO)

Crescent Moon Games [68] Aralon: Sword and Shadow [69]
(RPG)
Bigpoint [70] Battlestar Galactica Online [71]
(Adventure)
NPlay [72] BeGone [73] (Shooter)
SilverTree Media [74] Cordy [75] (Adventure)
Limbic Entertainment [76] Dungeon Empires [77] (RPG)
Fun Bits [78] Escape Plan [79] (Adventure)

2.4.8. UDK

UDK [1] stands for Unreal Development kit, and just like Unity, it’s a
game-making software, resulting of a collection of development tools, such
as editors, scripting systems and compilers. Every game created by this
software is powered by Unreal Engine [80], a game engine developed by
Epic Games [2]. UDK consist on two fundamental pieces: the Unreal Engine

and the development tools (see figure 2.18).

35

Related Work - UDK

Fig 2. 18 - UDK structure.

The first version of UDK was released in 2009 and marked an
important milestone in game development history [81]. For the first time a
AAA standard game engine was made available both for hobbyists and
independent game developers.

Nowadays exit two different releases of Unreal Engine and its
development tools. One is used by engine licensees, given access to the
development tools and the engine C++ source code. The second version is
UDK, which contains the features of the Unreal Engine and its tools, but no
access to the source code. Although UDK does not allow developers to
access the engine source code, the engine can be customized through
UnrealScript.

UDK differs from Unity in several aspects, but mainly on its
workflow. Unlike what happens in Unity, where there is an integrated
environment, UDK is composed by several applications that work
separately.

UDK Editor (see figure 2.19), is the main editing tool in UDK. It’s
here that developers spend most of its time. It offers a powerful and
flexible GUI that can be controlled by mouse and keyboard. UDK Editor is
composed by several sub-editors. Let’s take a look at each one of these

parts more closely.

36

Chapter 2 - Related Work

File Edt View Srush Build Tools Help
oo | REEO O v -0 K]
PRODOINOPOE 6 S 4AAds 1 ~

>y APRVO0UILPIE 6 Ae A

Fig 2. 19 - Screenshot from the UDK editor interface.

The focus of the UDK Editor is the Level Editor. This tool allows the
developers to build the game world by drag and drop operations of 3D
assets into the 3D environment. Each new element added to the game
world is called actor. After importing a new actor to the 3D environment,
the developer can select it, position it, orientate it and scale it. The Level
Editor also offer a set of tools including the typical Copy, Paste and Delete,
as well as organizational tools for naming and fiddling actors, or even
grouping actors. The Level Editor also offers real-time previewing of the
game levels.

The Matinee Editor (see figure 2.20), is the tool responsible for all
animation on the game levels, being the interface of the Unreal Animation
System. Here, the developer can create and edit key-frame animations for
the actors in the game world. With this tool is possible to create any

number of key-frame animations for any number of actors on the level. The

37

Related Work - UDK

Matinee Editor has several helpful tools for adding, removing, editing and
defining key frames, as well as tolls for the adjustment of the interpolation

curves generated between the frames.

File Edit View Window

(G uorcered - b & B 4 |Is« ST Y| EX e — T

UrveaMaheeCtmEciw

5030 l16.66° 500 & '36.00 35-80-

Active Condition IErAC_AIways
Ang Curve Tension 0.000000
Disable Movement O

Hide 3DTrack O

Fig 2. 20 - Screenshot from the UDK Matinee editor interface.

Defining all game logic on the game level can be an arduous task,
usually done by programmers. However, UDK Editor has the Kismet Editor
(see figure 2.21), in order to simplify this task. Basically, the Kismet is a
visual scripting system that uses graphs to define the level logic and flow.
The developer uses the mouse to create graph nodes linked by wires which
define a certain action of behavior. With Kismet is possible to trigger
animations or behaviors, reset levels, play sounds and music, keep track of
scores and statistics, and change the lighting, among others...

The Kismet Editor works as a GUI for the UnrealScript language, this

means that Kismet automatically generates the code of the defined graphs

38

Chapter 2 - Related Work

for the level. It’s also possible to customize Kismet using UnrealScript, this
way the developers can extend the behaviors already defined in the editor

adding their own custom behaviors as visual nodes.

o
Window

FR®TF[E Vv 2v K

I

©

©<

%
(5

« l

L]

5]

Fig 2. 21 - Screenshot from the UDK Kismet interface.

The UDK Material Editor (see figure 2.22), allows developers a way
to import, create and edit materials that are applied to the actors in the
level, and all this done by mouse-drive operation. This editor not only lets
the user choose which image should be applied on an actor, but also the
surface type of the 3D models, offering a vast list of options like shiny,

reflective, chrome-like, rough, smooth, or soft, among others...

39

Related Work - UDK

' Unreal Material Editor: ParaDimeChess.mat tree._cube_material P — = o= [EHEsE]

VOOEQ@e|TEIEEe| v P|R|FIE & (O)m @)
X & rsiintians.

aDimeChess.mat_tree_cube_material

Fig 2. 22 - Screenshot from the UDK Material editor interface.

The Sound Editor (see figure 2.23), as a GUI that allow the users to
import WAV files into the engine and lets them apply effects and processes
over the imported files, for example echo effects, mixing effects, loop
instructions or positional effects. The result of the effects and processes is
the one that is going to be added on the level editor as an actor.

UDK offers for sounds the same type of operations that it offers to
other actors, like scaling, positioning and rotating. This is very important
since the way the sound is heard by the gamer is influenced by its position
on the level. Also, the falloff of any sound can be controlled by the
developers; this is done by surrounding every sound in the game by an
invisible sphere, the size of the sphere defines the sound volume, from full

sound to mute, where the full sound id the center of the sphere.

40

Chapter 2 - Related Work

Il Soundinterior - Unreal Development Kit (32-bit)
File Edit | @7 Content Browser = 1 Unreal SoundCue Editor: TestSounds.22Mono_TestDialogFemale_Cue
=8l - 8 lected) [8 [

A Search | name, path, tags, type |~ | match all ¥ [12

»

@
i
L3

ald il
18|

J

Ele/8/eQ)
©0]|@e

»

|
N

»

|
L

»

Mo
9|9

|

10000 L0000 10000 10000 k16 WV A~ FE 5% FE B g ,
—

Fig 2. 23 - Screenshot from the UDK Sound editor interface.

The Cascade Editor (see figure 2.24), is the one responsible for
managing the particle systems in UDK. Basically, it offers a visual paradigm
to the construction of particle systems, allowing the user to test the
created systems in real time. The created systems are divided into two
pieces: the emitter, and the particle. The emitter is one responsible for
spawning or emitting the new particles into the game level, therefore, it
has a specific location on the level and associated logic to define how it
will behave. The particle is a descriptive object that the emitter uses as a

template to produce new particles.

41

Related Work - UDK

]
L]

i}

Properves: P_Power_Lb X Unves Curve Ediwr | P_Power 0
I G R Y A A A S -

om !l | \
|
=

Oelay 2.000000
Oeloy Low 2.0000%0
Use Delay Range 0

LOOOwance Check Time 9. 250000 -
» LOODBtasces (1)

LODMeshod PARTICLESFSTEM COMETHOD, Actoman: -
> LODSettings ~ (1)]

rixcdeSystem

Fig 2. 24 - Screenshot from the UDK Cascade editor interface.

Besides the UDK Editor that we have been seeing until now, there
are other tools on UDK very helpful for the developer and with very specific
purpose.

Lightmass (see figure 2.25), is the lighting system supported by UDK.
This tool allows developers to use a range of lighting source types that vary
in the way they cast light, for example, point lights, directional lights and
spotlights. The lights can then be placed on the level using the Level
Editor, creating actor from the lights. This means, that just like any other
actor, their properties can be altered, allowing the developers to define

how the lights is casted and how it behaves.

42

Chapter 2 - Related Work

Fig 2. 25 - Screenshot from the UDK Lightmass editor interface.

The UDK Terrain tools (see figure 2.26), allow the developers to
construct a rough landscape that will work as the base that defines the
general extend and contours of the level. Using this tool the developer can
create mountains, rivers, forests, and so on. After the terrain is created,
the user can then add more detail by adding meshes to the level. When the
developer starts to build a new level, he begins with flat plain of geometry,
that he will then edit using a set of terrain brush tools to sculpt the level.
The available brushed of terrain edition are similar in most ways to those
existing in photo-editing software, enabling the user to control the shape,
size, softness or hardness of the brush. This tool also allows the developer

to import heightmaps that can be turn into meshes.

43

Related Work - UDK

e Terarézn

ChEvaiEe -4 0@ KA
wPBTFs A= 8 dlls O

R S O] ~

—

e £L34 e] | B

“14’ EE @

2 S
. 1 = ;

Fig 2. 26 - Screenshot from the UDK Terrain tools interface.

Sometimes it’s necessary to adjust the camera during the game play,
more precisely during the cut scenes that may take place on the game. For
this task, UDK has a set of Cinematic tools (see figure 2.27) that allow the
developers to animate almost all the properties of a camera, including

position, orientation, focal length, zoom, depth of field, an others.

Fig 2. 27 - Screenshot from the UDK Cinematic tools interface.

44

Chapter 2 - Related Work

The Fracture Meshes editor (see figure 2.28), is other tool that helps
the developers to make their games more interactive. To understand how
this tool works, lets first define what fracture meshes are. Fracture meshes
are a standard meshes to which was applied a mathematical formula. This
information describes all the pieces of the mesh that should be broken or
sliced upon certain interactions, for example, struck by ammunitions, force
or explosions. In short, fracture meshes are what enable developers to
create destructible scenery in the game, which heightens the interactivity

of the game.

1 i | -

Gererk | Actor Gasons | Grongs | Level | Beforanced Aosnts | Prowtie St | Oy Shadow Stats | Scane Manwge | 103 |

Q el =] ren]

Fig 2. 28 - Screenshot from the UDK Fracture Meshes editor interface.

Other UDK features is the application called SpeedTree (see figure
2.29). This application allows the user to create trees and foliage for UDK
games based on parametric values. Basically, the application automaticity
calculates and generates a unique-looking tree or plant based on several
values, such as the number of branches, the number of leaves, the radius
of trunk and others. The models generated are mapped and optimized for

games, and can be imported to UDK as standard mesh actors.

45

Related Work - UDK

* Eile Edit View Window Tools Help
Object Properties - Level 2 a x n..,w.eel 4 b x| Assets

9. B 2k 0 K[PIE & +[B[F] p59oe [F]N 0| x |[coocses] Vot [sshes [placanens|
T B&" T——e y Material trunk - 28

Color set Branches

o Compler usage Default ®
User data

r\Samples|Textures BrosdeafBark Nomal.tga .. | &)

Generation

QVRAQHE =/ d% X

I —
| basetexcoords =|
2

1
0
1
1
0
]

o

% Generation |] Output

Fig 2. 29 - Screenshot from the UDK SpeedTree editor interface.

FaceFX (see figure 2.30), is a tool in UDK designed to give the
developers control over lip-sync and expression control on game
characters. One can define lip-sync as the synchronization and animation of
the character lips with the vocal track is played for his or her voice when is
talking. We define expression control as the ability to manipulate the
expressions on character’s face to convey emotion, for example, raising the
eyebrows, smiling, blinking, laughing, and crying, among others. FaceFX
offers several features that help the user to control the animation of

character faces.

46

Chapter 2 - Related Work

Fig 2. 30 - Screenshot from the UDK FaceFX editor interface.

As it was previously seen on this section, the programmers can use
the Kismet to define logic and behaviors for the game; nonetheless, Kismet
has its own limits, and sometimes the programmer must use scripting
language to define one particular behavior. UnrealScript is the scripting
language used by Unreal Engine, and it’s based on languages such as C++
and Java, being class-based and object-oriented.

UDK does not provide a native editor for scripting, instead, the
programmers can use standard text files, or use Microsoft Visual Studio in
combination with the nFringe plug-in for both IntelliSence and code-

completion features (see figure 2.31).

47

Related Work - UDK

Fig 2. 31 - Screenshot from the Microsoft Visual Studio editing UnrealScript.

On the following table we present some games that have been
produced with UDK and Unreal Engine.

Table 4 - Companies that developed titles using Unreal Engine.

Independent game development Developed game titles
companies

High Moon Studios [82] Transformers: Fall of Cybertron [83]

(shooter)
Rocksteady Studios [84] Batman: Arkham City [85]
(Adventure)
BioWare [86] Mass Effect 3 [87] (RPG)
Epic Games [2] Gears of War Series [88] (Shooter)
Grasshopper Manufacture [89] Shadows of the Damned [90]
(Adventure)
inXile Entertainment [91] Hunted: The Demon's Forge [92]
(RPG)
2K Games [93] BioShock 2 [94] (Adventure)

48

Chapter 2 - Related Work

2.5. Summary

This chapter reviewed the state of the art concerning game
development and game makers and presented them in general taking into
account its most relevant aspects.

After a brief introduction, Section 2.1 described a summarized history
of games, from the first games to the digital era. In Section 2.2 were
presented the most relevant aspects concerning game development in the
industry nowadays. The Section 2.3 revealed importance of game engines
and frameworks, and how they help in the development process of a game.

Finally, Section 2.4 overviewed the most relevant game engines use

nowadays, and its features.

49

Clean World - The 3D Game - Introduction

3. Clean World - The 3D

Game

3.1. Introduction

Clean World is a serious game that approaches the importance of
recycling and renewable energies for the preservation of planet Earth. For
the development of this game, it was used XNA 4.0 with the SunBurn [95]
render engine, and DigitalRune [96] physics engine. The choice to use XNA
was done because the developed game was used to participate in Imagine
Cup 2012, in the Xbox360 game design category, in which ended up
classified on 7™ place on the worldwide finals. According to the rules of
Imagine Cup 2012, all games presented on the completion had to be built
on this Microsoft technology.

Initially, it was started the development of a tool for the creation of
terrains, however, due to the time constraints imposed by the competition,
the work focuses primarily on the development of the game, leaving the
creation tools to a second phase, where the tools would be created with
the purpose of optimizing the creation of content for the game.

For the creation of this game, it was formed a team composed by four
elements in which | took part. The following table presents the members of

the team and the developed work by each one.

50

Chapter 3 - Clean World - The 3D Game

Table 5 - Clean World development team.

Team Member Developed Work
David Casteleira 2D concept art

Pedro Pereira Screenwriting

3D modeling and animation
Level design
2D GUI of the game

André Barbosa Game core programmer

Joao Dias Mini games programmer

Clean World (see figure 3.1), is a 3D game created with the purpose of
producing awareness about environmental problems that we face today,
and tries to show what we can do to protect nature and keep our planet
clean from pollution. The game combines classical platform and RPG
elements, such as quests. The player will receive several quests related
with environmental problems that he has to complete, in order to progress
in the game and storyline. These quests may range from picking up a
specific item, completing a puzzle or completing a mini-game based on the

theme of the game.

Fig 3. 1 - Screenshot from the game Clean World.

51

Clean World - The 3D Game - Introduction

During the game, the player will then travel through the Cypricene
Island, to clean the landscape, recycle objects and convert factories and
machines to use clean energy. All this work will be done by a small robot
controlled by the player, which has to use several skills that will be
acquired during the game. These skills include transforming into a sphere
to roll, absorbing solar energy to recharge, collecting garbage to recycle,
among others that will be obtained as the player progresses in the game.

Throughout the game, the player’s actions of creating awareness to
environmental problems are reflected in the game’s characters that soon
realize that something has to be done to protect our sacred environment.
And so, by progressing within the game, factories will start using
environment-friendly energy forms, such as solar panels and wind energy,
which results in a cleaner environment and also contributes to Kate’s
healing process and preservation of the planet Earth.

To make the game more engaging and fun to the player, several mini-
games and puzzles will be spread along the island. These mini-games and
puzzles are all aimed to create awareness and teach some basic
educational content about the environment and how to protect it, such as
garbage separation. But they also introduce new gameplay concepts, in
order to provide a diverse experience. This way, we hope that the game
can teach important concepts about the protection of the environment,
through a fun and engaging experience.

In the following sections of this chapter, is going to be presented the

developed work done by me to the final version of the developed game.

3.2. Game Storyline

The game takes place on the Anglas islands, in the year of 2022. Due
to the greed of big corporations, planet Earth is now completely polluted.

People can’t walk on the streets without breathing masks due to the

52

Chapter 3 - Clean World - The 3D Game

polluted air, and the big cities became giant industrial complexes that try
to explore to the maximum the last resources of a dying planet.

In one of the Anglas islands, the remote island of Cypricene, Kate a
16-year-old girl struggles against a disease that now affects almost the
entire human population. Kate is alone on the island and she’s too weak to
get out, so she uses technology to find help. She builds Boris, a small robot
with unique abilities, which she sends in search of help.

Boris leaves in search of the medical center on the island. Once he
reaches his destiny, he meets Dr. Jacob, brilliant scientist and doctor. The
doctor explains to Boris that Kate is sick because she was infected with the
Stigma, a new disease that has been affecting the human population almost
for a decade.

Dr. Jacob explains that the Stigma has no known cure, however, he
was been studying the disease for years, and he believes that the illness is
connected to the pollution in the world. He describes to Boris his theory,
telling to the robot that if the world gets cleaner and free form pollution,
the disease will probably disappear.

With the medicine on its hand, Boris goes back home to give Kate her
medication. Feeling a lot better, Kate is willing to test Dr. Jacob theory
with Boris help. Together, they start to clean the island from pollution by
collecting garbage and stopping machines.

Later on, Boris meets Tom A. Toe, the engineer responsible for the
Wastewater treatment plant of the island. With the help of Tom, Boris
starts to convert the plant and the machines to use clean energy sources,
like the sun or the wind.

Once Boris finishes his job on the island, recovering the environment,
he and the other characters leave on a ship to the other islands to help

people with Stigma and to clean the rest of the world.

53

Clean World - The 3D Game - Modeling and Animation of the Characters

3.3. Modeling and Animation of the Characters

In this section are presented the developed characters for the game,
from their background, to the modeling, texturing and animation. During
the process of modeling the characters, it was necessary to work together
with a concept artist that had the job of created the model sheets. We will
start by presenting the main character of the game, which the player
controls, and then the other characters that the player will find during his
adventure. All game characters and animations were created using
Autodesk 3Ds Max 2012 [97] and Adobe Photoshop CS5 [98].

3.3.1. Boris

Boris (see figure 3.2), is a small droid built by Kate. This loyal droid
has the mission of finding help to save Kate, who is very sick and weak.
Boris is equipped with unique abilities that allow him to overcome the most
difficult challenges.

Boris as several abilities that the player can use during the game,
most of these powers are based on upgrades that the droid unlocks. Each
new upgrade to the droid implies a new model, with new animations. Let’s

take a quick look at Boris models and animations.

54

Chapter 3 - Clean World - The 3D Game

Fig 3. 2 - Boris, the hero from the game.

The first model created was Boris on is robot form. In order to model

the character, the concept artist of the team created the respective model

sheet (see figure 3.3).

Fig 3. 3 - Model sheet of Boris in robot mode.

Based on this model sheet, was created the main character of the
game (see figure 3.4). With the 3D mesh created, it’s now necessary to
create the textures for the model in order to have the desired look on the
game. To create the textures, was used the technique called UVW unwrap.
Basically, this technique consists on creating a plant of the 3D model into a

2D image, which will be later used as a map to create the textures.

55

Clean World - The 3D Game - Boris

180 190

i a0

KeyFiters... MB{ D : B

Fig 3. 4 - Model of Boris in robot mode in Autodesk 3Ds Max 2012.

3Ds Max already contains a build—in modifier to perform UVW unwrap,
which allows to save the UVW map into uvw files, where it keeps the
coordinates of the pieces that compound the model, and also enables the

user to render a 2D image (see figure 3.5) to create the textures on 3™
party software.

56

Chapter 3 - Clean World - The 3D Game

Fig 3. 5 - UYW map of the model of Boris in robot mode.

With the UVW unwrap image is now possible to create the textures
using Photoshop CS5. According with the indications on the sheet, the

textures were painted over the 2D image (see figure 3.6).

Fig 3. 6 - UYW map of the model of Boris in robot mode with textures.

57

Clean World - The 3D Game - Boris

Once the UVW map was finish, the image file was load to 3Ds Max,

and applied to the 3D model as a texture (see figure 3.7).

Fig 3. 7 - A: Model of Boris without textures; B: Model of Boris with textures.

With the model created and texturized, the next task is to create the
animations that are going to play inside the game. To make the 3D mesh
move, it’s necessary to create a bone structure attached to it. To do this,
it was used the 3Ds max biped, which is a complete body skeleton that can
be customized to fit in any 3D model. Once the biped was inserted on the

3D scene, is necessary to make it fit into the 3D Character (see figure 3.8).

Fig 3. 8 - Model of Boris with biped inserted.

58

Chapter 3 - Clean World - The 3D Game

With the biped in place, was used the Skin modifier to attach the
bones to the 3D mesh. Now, every time we move a bone of the biped, the
mesh moves too. However, these moves are not perfect leaving some 3D
mesh behind or deforming the 3D mesh in strange ways. This means that is
necessary to adjust the envelopes of the bones (i.e., attach the correct
vertexes of the mesh to the desired bone). The envelopes work as a border
to define area of influence of each bone (see figure 3.9). If those areas are

not well defined, the mesh will behave in strange ways when moving.

o | 6 |

Fig 3. 9 - Adjusting the bones envelopes to the 3D model of Boris.

Once the envelopes are in place, it’s time to start creating the
animations for the character. Since Boris is controlled by the player, that
means that is necessary to animate every action that the player can do
while playing. 3Ds Max uses key-frame animations, this means that the user
arranges the position, orientation and scale of objects in two time frames,

and then 3Ds Max automatically generates the frames in between.

59

Clean World - The 3D Game - Boris

For this model of Boris in were created the following animations:
e Idle;
e Run;
e Run backwards;
e Jump;
e Push;
o Grab on edges;
e Move on edges to the right;
e Move on edges to the left;
e Lift objects;
e Grab a ladder;
e Climb ladders (up);
e Climb ladders (down);
¢ Transform into sphere;

e Transform into robot;

With the animations done, it’s now time to export the 3D model to
FBX, and then to X. This must be done because XNA only supports models in
FBX or X. The conversion from FBX to X is not necessary if we are talking
about static meshes, however, since we are working on a character, this
must be done for two reasons: first, XNA does not support biped correctly,
which means that the animations will not play the desired way on the
game. In order to solve this issue, one must export the model as FBX and
imported to Max once again, so 3Ds Max can convert the biped to a regular
bone structure; secondly, although this may solve the problem of playing
the animations correctly, Max FBX exporter does not allow the user to
define animations by frames. For example, if the user wants to name the
animation “walk” from frame 0 to frame 60 and animation “jump” from
frame 60 to frame 100, it’s not possible. The FBX exporter combines all
animations into a single animation, and that means that the programmer
can’t choose an animation by its name to play in game. To solve this, the

FBX models were exported with Panda DirectX Exporter [99] plugin for 3Ds

60

Chapter 3 - Clean World - The 3D Game

Max, which allows the creation of borders on the animation timeline,
allowing the user to define several animations with different names.

Once the first mode of Boris is finish and running on the game, it’s
time to create the other modes of Boris. After unlocking the first upgrade
in the game, the player can turn Boris into a sphere, which means that is
necessary to create another model of Boris, this time in sphere mode.

Since the robot mode was already created, we used it as base for the

creation of the sphere mode, erasing the arms and legs (see figure 3.10).

MAXScript | Help

PO ENME & REE S 58w

Fig 3. 10 - Model of Boris in sphere mode in Autodesk 3Ds Max 2012.

Just like with the robot mode, it’s now necessary to create the
textures for the sphere mode model. To do that, we used UVW unwrap
once more, and created a map of the faces of the model on a 2D image
(see figure 3.11). With the image created, the textures are produced on

Photoshop.

61

Clean World - The 3D Game - Boris

Fig 3. 11 - A: UVW map of the model of Boris in sphere mode; B: UVW map of the model

of Boris in sphere mode with textures.

With the UVW map was finish, the image file was load to 3Ds Max, and

applied to the 3D model as a texture (as shown in figure 3.12).

Fig 3. 12 - A: Model of Boris without textures; B: Model of Boris with textures.

Since Boris in sphere mode has no limbs, there is no justification for
the use of such complex bone system as the biped. However, since we are
going to use the model on the game and use animations, we still need to
have one bone attached to the mesh. The model is quite simple in terms of
animation, the only thing it does is spin, so a single bone will fix take care

of that situation (see figure 3.13).

62

Chapter 3 - Clean World - The 3D Game

M a an B, =]
sl 0 s B

Fig 3. 13 - Model of Boris in sphere with bone inserted.

Just like before, is applied the skin modifier to connect the bone to
the mesh. Adjusting the envelope in this situation is quite easy, since the
envelope must include all vertex of the mesh. After this, the model is
exported to FBX and then to X, by the same reasons mentioned before.

Boris still has a third mode, where he has attached to his back a set of
solar panels that he can use to recharge his batteries. Once again, to model
this version of Boris, the robot mode was used as base, and then added the

panels on its back (see figure 3.14).

63

Clean World - The 3D Game - Boris

BN & RES & 58

sAled/,p

Fig 3. 14 - Model of Boris in solar mode in Autodesk 3Ds Max 2012.

The body of the character already has textures, since the original
model of Boris was used with no modifications. However, the solar panels

on its back needs to be unwrap (see figure 3.15).

Fig 3. 15 - A: UVW map of the model of Boris in solar mode; B: UVW map of the model of

Boris in solar mode with textures.

64

Chapter 3 - Clean World - The 3D Game

Once the textures were finish, they were applied to the model, giving

us the final version of the character (see figure 3.16).

Fig 3. 16 - A: Model of Boris without textures; B: Model of Boris with textures.

Since we had new parts to Boris, it was necessary to add new bones to
the created biped in order to have envelopes over the vertex on the solar
panels (see figure 3.17). Once the bones and envelopes were in place, it

was possible to create the animations for solar mode.

R % WEE & 98w

tiofhemdy

Fig 3. 17 - Model of Boris in solar mode with biped inserted.

65

Clean World - The 3D Game - Boris

During solar mode, Boris mobility will be reduced, this means that the
3D model will only have the following animations:
e Run;
¢ Run backwards;
e lIdle;

e Recharge;

In order to give a more realistic look to the character in all its forms,
various normal maps were created based on its texture files (see figure
3.18). To generate the normal images of the textures, it was used NVIDIA
Texture Tools for Adobe Photoshop [100].

Fig 3. 18 - A: Normal map of Boris in robot mode; B: Normal map of Boris in sphere

mode; C: Normal map of Boris in solar mode.

66

Chapter 3 - Clean World - The 3D Game

3.3.2. Kate

Now that the main character of the game is ready, is now time to take

care of the other characters, and the first one we are going to see is Kate
(see figure 3.19).

FERY

Fig 3. 19 - Concept of Kate given by the concept artist.

Kate is a 16 year-old girl that lives in Cypricene Island. She is very sick
and is too weak to go to the medical center. Since she is alone, she decides
to build Boris, a small droid that she sends in search of help.

This is one of the characters that the player will find during the game
and which who he will have to interact in order to receive new quests,
upgrades or information’s.

Just like Boris, the model of Kate was modeled on 3Ds Max using a

model sheet given by the concept artist (see figure 3.20).

/’N 2z “,'"‘Jff? /,, :'\
174 \ N (/ N
(& e /,‘ VJ(‘JJ\‘ I/ \ 1‘ \
\ J -\\VJ Zivdl] \

\ 4 [)

I w:**‘"d'_ e /‘ - - A“;, I
- = — 2 ! S e o
T — ‘ |
P | J\g l
P~ == g_:’z,_
e = [

e ,;_) -L:_;,/ ‘-‘\:7,_;(\

v/ v T W W
I 11 180 Jef
9 J i o) L)
HE T o
| |] |

= | \
_/XZJ Q rj‘il < B

Fig 3. 20 - Model sheet of the character Kate.

67

Clean World - The 3D Game - Kate

Using the model sheet was created the 3D model of Kate (see figure
3.21 A). To create the texture to the model was used the UVW unwrap. The

created textures were then applied to the 3D mesh (see figure 3.21 B).

Fig 3. 21 - A: Model of Kate without textures; B: Model of Kate with textures.

With Kate mesh finished, is now time to insert the biped on the mesh
and use the skin modifier to connect both (see figure 3.22 A). Once that
task is over, it’s time to adjust the envelopes of Kate’s bones before we

can start animating the model (see figure 3.22 B).

Fig 3. 22 - A: Model of Kate with biped inserted; B: Adjusting the envelopes of Kate

model.

68

Chapter 3 - Clean World - The 3D Game

Since Kate is a non-playable character, it won’t need so many
animations as Boris model had. Basically, this model only needs two
animations, since it will only have two behaviors inside the game:

e Idle;
e Talk;

Once again we use key-frame animations to animate the mesh. After
that, the only work remaining is to export the model to FBX and the
generated FBX to X. The mesh and the textures can now be importer into

XNA.

3.3.3. Dr. Jacob

Other character in the game is Dr. Jacob (see figure 3.23).

Fig 3. 23 - Concept of Dr. Jacob given by the concept artist.

Dr. Jacob is the one in charge of the medical center of Cypricene
Island. He has spent the last decade studying the Stigma, a new disease
that has been affecting mankind. Dr. Jacob struggles every day to find a

cure to this new plague.

69

Clean World - The 3D Game - Dr. Jacob

This is one of the characters that the player will find during the game
and which who he will have to interact in order to receive new quests,
upgrades or information’s.

Just like the previous models, the model of Dr. Jacob was modeled on
3Ds Max using a model sheet given by the concept artist (see figure 3.24).

Fig 3. 24 - Model sheet of the character Dr. Jacob.

Using the model sheet was created the 3D model of Dr. Jacob (see
figure 3.25 A). To create the texture to the model was used the UVW
unwrap. The created textures were then applied to the 3D mesh (see figure
3.25 B).

Fig 3. 25 - A: Model of Dr. Jacob without textures; B: Model of Dr. Jacob with textures.

70

Chapter 3 - Clean World - The 3D Game

With the mesh created, is now time to insert the biped on the mesh
and use the skin modifier to connect both (see figure 3.26 A). Once that
task is over, it’s time to adjust the envelopes of Dr. Jacob’s bones before

we can start animating the model (see figure 3.26 B).

Fig 3. 26 - A: Model of Dr. Jacob with biped inserted; B: Adjusting the envelopes of Dr.

Jacob model.

Since Dr. Jacob is a non-playable character, it just needs the same
type of animations as Kate did. Basically, this model only needs two
animations, since it will only have two behaviors inside the game:

e |dle;
e Talk;

71

Clean World - The 3D Game - Tom A. Toe

3.3.4. Tom A. Toe

Tom A. Toe is another character in the game (see figure 3.27).

Fig 3. 27 - Concept of Tom A. Toe given by the concept artist.

Tom A. Toe is the engineer responsible for the wastewater treatment
plant of the island. He may be a little grumpy, but he is an expert on
renewable and clean energies.

The player will find Tom on the third level, and he is will have to
interact with him order to receive new quests, upgrades or information’s.

The development process of this character was identical to the other
characters. 3Ds Max was used for the modeling using a sheet given by the

concept artist (see figure 3.28).

Fig 3. 28 - Model sheet of the character Tom A. Toe.

72

Chapter 3 - Clean World - The 3D Game

Using the model sheet was created the 3D model of Tom (see figure
3.29 A). Like on the previous characters, was used UVW unwrap for

texturing (see figure 3.29 B).

Fig 3. 29 - A: Model of Tom A. Toe without textures; B: Model of Tom A. Toe with

textures.

The skinning of the character followed the same steps as the other

game characters (see figure 3.30).

Fig 3. 30 - A: Model of Tom with biped inserted; B: Adjusting the envelopes of Tom

model.

73

Clean World - The 3D Game - Terrain Models and Level Assets

Tom has the same type of animations as Kate and Jacob did:
e Idle;
e Talk;

3.4. Terrain Models and Level Assets

In this section we will present the terrains developed for the three
levels of the game, and the level assets created for each level, like
buildings, trees and collectable items. We will start by presenting the
terrains used on the game levels, which are the base of every level in the
game. All game levels and assets were created using Autodesk 3Ds Max
2012 [97] and Adobe Photoshop CS5 [98].

3.4.1. Terrain Models

Clean World is composed by three levels: two levels on the outside
world, and one level inside a cave. Three terrains were created in order to
make the game more attractive to the player.

Level one and three are located in the outside world and represent an
island. In order to create a more realistic illusion to the player, giving him
the idea of being on an island, both terrains were modeled together in a

single model (see figure 3.31).

74

Chapter 3 - Clean World - The 3D Game

Fig 3. 31 - Complete model of the Cypricene Island.

However, to make the game run faster, the whole island was
separated in two different models. Since the player can’t access the third
level without going through the cave (the second level), doesn’t make any
sense to load all the geometry on one level if it’s not used. The model of
the island was then divided into two different models (see figure 3.32), one

for each level.

Fig 3. 32 - A: Terrain of level one; B: Terrain of level three.

75

Clean World - The 3D Game - Decorative 3D Assets

The second level of the game is played inside a cave, which means
that a new terrain had to be created for this level. The cave wall were
modeled through the use of several extrudes from a tube primitive on 3Ds
Max. Once the wall were created, it was modeled the floor of the cave,
which was later combined with the walls. Some machinery was also
modeled inside the cave. Once everything was modeled, all 3D meshes
were texturized with uvw unwrap, giving us the final look of the level (see
figure 3.33).

Fig 3. 33 - A: Terrain of level two.

3.4.2. Decorative 3D Assets

Levels are not just terrains. In other to create the desired
environment for the level and give a unique identity to it, it’s necessary to
populate the scenario with all kind of decorative assets. We call decorative
assets to all 3D assets that are in the game level but are static (i.e., do not
interact with the player except for collision detection). Following are

presented several images of the static assets created.

76

Chapter 3 - Clean World - The 3D Game

Description: This is the model used

as Kate’s house.
Number of vertex: 2150
Number of faces: 2121

Level: Level 1

Fig 3. 34 - kate’s house model.

Lamp Ring

Description: Lamp ring used on

bonus level 2.
Number of vertex: 200
Number of faces: 200

Level: Bonus level 2

Fig 3. 35 - Lamp ring model.

Description: Rails used on bonus
level 2.

Number of vertex: 8880

Number of faces: 16192

Level: Bonus level 2

Fig 3. 36 - Rails model.

77

Clean World - The 3D Game - Decorative 3D Assets

Medical Center

7 A 3N Description: Medical center of the

Cypricene Island.
Number of vertex: 956
Number of faces: 1908

Level: Level 1

/l\vl I ~ £
.

Fig 3. 37 - Medical center model.

Wood Recycling Machine

Description: Machine used to

recycle wood.
Number of vertex: 766
Number of faces: 738

Level: Level 2

Fig 3. 38 - Wood recycling machine model.

Toxic Waste Cleaner

Description: Machine used to clean

toxic waste.
Number of vertex: 766
Number of faces: 738

Level: Level 1

Fig 3. 39 - Toxic waste cleaner model.

78

Chapter 3 - Clean World - The 3D Game

Description: Wind tower user to

produce energy.
Number of vertex: 576
Number of faces: 624

Level: Level 3

Fig 3. 40 - Wind tower model.

Lighthouse

Description: The island lighthouse.

Number of vertex: 878
Number of faces: 834

Level: Level 3

Fig 3. 41 - Lighthouse model.

Description: Wall barrier.
Number of vertex: 424
Number of faces: 385

Level: Level 1 and 3

Fig 3. 42 - Wall model.

79

Clean World - The 3D Game - Decorative 3D Assets

Platforms for Watermill Mini-game

Description: 6 Platforms for the

watermill mini-game
Number of vertex: 329 - 387
Number of faces: 658 - 778

Level: Level 3

Fig 3. 43 - Platform model.

Bridge Part

Description: Part of the bridge of

bonus level 2.
Number of vertex: 88
Number of faces: 75

Level: Bonus level 2

Fig 3. 44 - Part of the bridge model.

Description: The island harbor.
Number of vertex: 2038
Number of faces: 2000

Level: Level 3

Fig 3. 45 - Island harbor model.

80

Chapter 3 - Clean World - The 3D Game

Energy Pole

Description: An energy pole.

Number of vertex: 2828
Number of faces: 3616

Level: Level 3

Fig 3. 46 - Energy pole model.

Watermill tower

Description: The tower of the

watermill.
Number of vertex: 2996
Number of faces: 5526

Level: Level 3

Fig 3. 47 - Watermill tower model.

Tunnel Section

Description: A tunnel section.
Number of vertex: 405 - 438
Number of faces: 671 - 772

Level: Bonus level 1

Fig 3. 48 - Tunnel section model.

81

Clean World - The 3D Game - Decorative 3D Assets

Mining Walker

Description: A mining walker.

Number of vertex: 1314
Number of faces: 1374

Level: Level 2

Fig 3. 49 - Mining walker model.

Watermill

Description: The watermill.
Number of vertex: 1008
Number of faces: 976

Level: Level 3

Description: The wastewater
treatment plant.

Number of vertex: 1795

Number of faces: 1730

Level: Level 3

Fig 3. 51 - WWTP model.

82

Chapter 3 - Clean World - The 3D Game

Tom A. Toe House

Description: Tom’s house.
Number of vertex: 868
Number of faces: 854

Level: Level 3

Fig 3. 52 - Tom’s house model.

3.4.3. Interactive and Collectable 3D Assets

Spread across the levels, there are several 3D objects that the player
can interact with and/or collect. Following we will present these objects,
which can be items or even control consoles for manipulating the game

scenario.

Question Mark

Description: Every time the player
catches a question mark on the
tutorial, a tip is given.

Number of vertex: 736

Number of faces: 1464

Level: Level 1

Fig 3. 53 - Question mark model.

83

Clean World - The 3D Game - Interactive and Collectable 3D Assets

Recycling Machine

Description: Machine used to

recycle garbage.
Number of vertex: 1586
Number of faces: 3144

Level: Level 1 and 2

Description: There are several of
these containers, one for each type
of garbage, each one with different
colors. In total, there are 8
different colors of containers.
Number of vertex: 272

AT GRS ERIEEENEEEE ‘Number of faces: 270

Level: Level 1 and 2

Description: Indicates the path to
the player during the game

Number of vertex: 20

Number of faces: 18

Level: Level 1, 2 and 3

Fig 3. 56 - Arrow model.

84

Chapter 3 - Clean World - The 3D Game

Recycling Platform

Description: There are several of

these platforms, one for each type
of garbage, each one with different
colors. In total, there are 8
different colors of platforms.
Number of vertex: 108

Fig 3. 57 - Recycling platform model. Number of faces: 92

Level: Level 1 and 2

Solar Platform

Description: There platforms are
used to activate machines using the
solar panels of Boris.

Number of vertex: 108

Number of faces: 92

Level: Level 1 and 3

Fig 3. 58 - Solar platform model.

Description: These machines are

sued to recharge Boris batteries
inside the cave.

Number of vertex: 404

Number of faces: 392

Level: Level 2

Fig 3. 59 - Recharger model.

85

Clean World - The 3D Game - Interactive and Collectable 3D Assets

Console Terminal

Description: These terminals are

used to activate door or machines.
Number of vertex: 82
‘ Number of faces: 114

Level: Level 1, 2 and 3

Fig 3. 60 - Console terminal model.

There are also several collectable items (for example, figure 3.61
shows a syringe model) that were modeled and that the player can catch in
all the levels. The following list presents the items created for the game:

e Paper box 1;

e Paper box 2;

e Glass bottle;

e Glass cup;

e Plastic bottle;

¢ Milk package;

e Can;

e Battery;

o Newspaper;

e Plastic taparuere;
e Syringe;

e Rotten apple;

o Package with toxic waste;
o Wood pallet

¢ Wind tower engine;
e Wind tower pole;

e Wind tower helix;

¢ Wind tower base;

86

Chapter 3 - Clean World - The 3D Game

Fig 3. 61 - The syringe collectable item model.

3.5. Level Design

To create the levels of the game, it was used the SunBurn [101] level
editor, this was the only development tool used to create the game. In this
section will be described the process of creating the final visual look of the
levels and models in the game.

Using SunBurn, it was created a 3D scene in other to create the level.
Once the engine creates the 3D scene for the level, it’s time to import all
assets of that level to SunBurn. This is done by indicating the location of
the files in the directory of the XNA game project. The engine will then
load the 3D meshes and the textures in order to prepare then to the scene.

With all the content loaded, it’s now time to start building the levels
of the game. The first asset to be added is the terrain, however, since we
are using DigitalRune engine for physics, and the terrain model is a triangle
mesh, this means that the collision with terrain and the other 3D assets will

be done by calculating collisions with the faces of the terrain mesh. Thus

87

Clean World - The 3D Game - Level Design

the terrain must be added by code. This happens because DigitalRune and
Sunburn are two separated engines with no connection.

With the terrain placed in the 3D scene, we can now add the static
meshes that belong to the level. This process is done visually using the
SunBurn level editor, by dragging the desired 3D model to the correct place
and dropping it into the scene (see figure 3.62). The static meshes can then

be moved, rotated or scaled.

Fig 3. 62 - Positioning a 3D model on SunBurn editor.

All assets of the level must be placed, scaled, and rotated one by one
through this process. To give a general idea of the work involved in building
the levels, beside the buildings and other visual marks that excel from the
landscape, a total of 55 trees and 59 rocks were hand placed only on level
one.

With all static models placed, we can advance to illuminating the
scene. SunBurn included four different types of light that can be used:
ambient, directional, point and spot. Two lights were used to illuminate
the scene, one ambient and one directional. The ambient light (see figure
3.63), which is default to every scene created with SunBurn, was
configured with the intensity of 0.3 (i.e., a little dark) and with the RGB

color: 147, 145, 139. By using this configuration it was possible to create

88

Chapter 3 - Clean World - The 3D Game

the idea of a foggy and polluted look that we wanted for the game world in

the first level.

Fig 3. 63 - Changing the color of the ambient light.

The directional light simulates the sun (see figure 3.64). This light has
a direction, and it was set to cast shadow over all objects on the 3D scene.
The intensity of the light was defined with the value of 1.6, and with the
RGB values (91, 91, 86) respectively. Other properties of the directional
light, such as shadow quality, primary bias and secondary bias were left on
their default values. The options single pass rendering, receive updates and

light mapped were left disabled.

Fig 3. 64 - Changing the color of a directional light.

89

Clean World - The 3D Game - Level Design

These two lights are the main lights of the level; however, some other
lights were added in certain points to create an environment with realistic
look and beauty. On example of such lights is the one placed on the red
cross on the top of the medical center (see figure 3.65). This light is a
point light RBG (255, 5, 5), with the intensity value of 1, cast distance of 5,
and casting shadows over all objects. All other options of the light were
left on by default.

Fig 3. 65 - Changing the settings of a point ligth.

After placing all light and defined theirs setting, it’s time to enhance
the look of the level by working on the materials of the 3D objects. When
3D models are loaded to the engine, their material just contains the
information about their defuse map. However, SunBurn allows the users to
add normal maps to the materials, as well as change the settings of the
diffuse color, emissive color, spectacular power, and spectacular amount
and transparency. For example, for metal materials, was applied a normal
map (see figure 3.66A), and changed the default settings of the spectacular
power and amount to 32 and 1 respectively (see changes can be seen on
figure 3.66B and 3.66C).

90

Chapter 3 - Clean World - The 3D Game

Fig 3. 66 - A: Normal map used on metallic surfaces; B: Kate’s house without normal

map; C: Kate’s house with normal map.

The final adjustment to the level was the inclusion of a fog with RGB
(158, 161, 160) respectively. The properties fog start distance, fog end
distance and viewable distance were defined with the values of 20, 55, and
55 respectively. These settings allow the creation of a dense fog over the
first level, giving to the player the sensation that the world is covered by a
veil of smoke, as it would be expected on a polluted world.

As soon as the scene was finished, the programmers added by code
the NPCs and animated meshes and created the game logic for the level.

This process was repeated to all three levels, only changing the values
of the materials, lights and fog according to the needs of the desired

environment.

3.6. 2D Assets

Beside the 3D assets of the game, it’s necessary to create 2D assets
for the GUI, like the menus, the mode indicator or the health bar. For the
creation of the 2D assets it was used Adobe Photoshop CS5.

Two of the created assets were the background for the main menu

and for the game over menu (see figure 3.67).

91

Clean World - The 3D Game - 2D Assets

N

©2012 Red Phoenix Studios L 190) G l \ M E O V E I {
Imagi 1]

jne Cup 2012

Fig 3. 67 - A: Main menu background; B: Game over menu background.

Eight loading screens were also created. During the game, while the
engine loads the content of the level, these loading screens popup, giving
some environmental tips and facts to the player. Besides aech text with

environmental information, one of the NPCs is associated (see figure 3.68).

Only about 7.5% of the United States
energy came from renewable power
sourcesin 1998, although 250 times

for renew@ble power was available
over their consumption.

£2LoroiNG

Fig 3. 68 - Example of a loading screen used in the game.

For the GUI of the game had to be developed several sprites, one for
the health and energy bars, other for the power mode in use, other for the
mini-map, and finally, one for the communicator.

The health and energy bars (see figure 3.69), indicate the levels of
health and energy of Boris. The robot spends energy in all his actions,
which means that the player needs to recharge his batteries from time to
time; otherwise Boris will start to lose health and if the health bar falls to

0, the player will lose the game.

92

Chapter 3 - Clean World - The 3D Game

Fig 3. 69 - Health and energy bars sprite.

The power mode indicator (see figure 3.70), lets the player know
which mode of Boris is currently active. The player can change trough the

several power modes during the game.

Fig 3. 70 - Boris power mode indicator on its several forms.

The mini-map (see figure 3.71), indicates the player position on the
scene, as well as the positions of the active quests. There is a different

mini-map for each level.

Fig 3. 71 - Mini map used on level one.

The communicator (see figure 3.72), shows up when the player

receives a message from a NPC. There is a different communicator for each

93

Clean World - The 3D Game - 2D Assets

character. For Kate, since the player actions reflect directly on her health,
there are 3 sprites of the communicator, each one with a different stage of

her health (see figure 3.72).

Fig 3. 72 - Example of the communicator used in the game.

Every time a character interacts with the player, beside the
communicator sprite, it’s showed a dialog sprite (see figure 3.73). Every
single line of dialog in the game had its own sprite, which meant a total of

183 sprites just for dialogs.

Trees will grow again and people
and animals will be able to drink it.

Fig 3. 73 - Example of a dialog sprite used in the game.

Background sprites for the menu system of the game had to be
created. The game menu is composed by tabs, meaning that for each tab of

the menu, was created a different sprite (see figure 3.74).

94

Chapter 3 - Clean World - The 3D Game

Fig 3. 74 - A: Background of the items tab; B: Background of the load tab.

One of the tabs of the menu is the quest tab. Here, the player can
check its active and completed quests. Just like the dialogs, to each
description of the quest we have different images (see figure 3.75), which

meant a total of 32 sprites.

Toxic Waste is one of the most
dangerous residues. Unfortunately a
freighter stranded on the island, and

spread some barrels full of toxic
waste. Your job is to collect and treat
all of them.

Fig 3. 75 - Example of a quest sprite used in the game.

Beside the sprites for the main game seen before, more than 37
sprites were created for mini-games (see figure 3.76), and 20 sprites for
tutorial screens, giving instructions to the player about the main game and

mini-games (see figure 3.77).

95

Clean World - The 3D Game - 2D Assets

Fig 3. 76 - Background of one of the developed mini games.

to continue

Fig 3. 77 - Tutorial screen of the first bonus level.

Several minor sprites were also produced for feedback messages, or

achievement messages spread across the game.

96

Chapter 3 - Clean World - The 3D Game

3.7. Summary

In this chapter, Clean World - The 3D Game, we presented the
developed work for a serious game with the purpose of helping children to
learn important concepts about environmental problems. This game was
used as an object of study of the development of games without the use of
any major development tools. Section 3.1 described a summarized concept
of the game and its development. In Section 3.2 was presented a brief
summary of the storyline of the game. Section 3.3 presented the process of
developing the game characters, from the concept to the modeling,
texturing, and animation. Section 3.4 presented the developed 3D assets
used in the creation of the levels of the game. The process of the level
design was described on Section 3.5, were the levels were created with the
use of SunBurn engine editor. Finally, on Section 3.6 we saw the developed
2D assets for the game, from backgrounds of menus to the creation of

sprites to mini-games.

97

Chapter 4 - Developed Support Applications

4. Developed Support
Applications

4.1. Introduction

Creating a game with no specialized tools support it’s a hard and
tedious task. During the creation of Clean World, the game described in
Chapter 3, several tasks were identified as ideal for the use of specialized
tools, in particular the ones related with the storyline or repetitive tasks.

This chapter focuses on the four developed applications created to
increase the productivity of the developers of Clean World. The objective
of these applications it’s to turn repetitive and time consuming task into
simple and intuitive processes.

The developed applications are the following:

e Item Manager;
e Quest Manager;
¢ Dialog Manager;

e Terrain Creator;

In the following sections we are going to present each one of the
applications, how they work, how they are connected to the game, and the

changes that were done in order to integrate them with Clean World.

99

Developed Support Applications - Item Manager

4.2. Item Manager

The purpose of this application is to manage all collectable items of
the game without being necessary to input item information, for example
name or description, on the source code of the game. This tool will let the
user create new items, filling all the information needed without a single
line of code. The items are saved upon a XML file that can later be loaded
to the game.

The Item Manager interface (see figure 4.1), is very simple and
intuitive. This tool allows the following operations:

e C(reate a new item;

¢ Modify an existing item;
o Delete an existing item;
e Load item file;

¢ Save item file;

ID: 1| Name: Paper Box
Description: Takes 2 months to decompaose

New Item

Symbol: Inventory/Ttems/il | Color: blue
Madify Item ID: 2 | Name: Glass Bottle

Description: Takes 4000 years to decompaose
Delete [tem Symbal: Inventory/Ttems/i2 | Color: green
ID: 3 | Name: Glass Jar
Description: Takes 4000 years to decompase
Symbal: Inventory/Ttems/i3 | Color: green
ID: 4 | Mame: Plastic Bottle
Description: Takes 100 years ta decompose
Symbal: Inventory/Ttems/id | Color: red
ID: 5 | Name: Journal
Description: Takes 6 months to decompose
Symbol: Inventory/Ttems/i5 | Color: blue
ID: & | Name: Canister
Description: Takes 100 years to decompose
Symbol: Inventory/Ttems/i6 | Color: yellow
ID: 7 | Name: Milk Package
Description: Takes 3 weeks to decompose
Symbol: Inventory/Ttems/i7 | Color: red
ID: 8 | Name: Battery
Description: Takes 100/500 years to decompose
Symbol: Inventory/Ttems/i8 | Colar: yellow
ID: 9 | Name: Tupperware

Save Items Description: Takes 100 years to decompose

Load ltems

Fig 4. 1 - Screenshot of the Item Manager tool.

100

Chapter 4 - Developed Support Applications

On the interface of the tool, there are five buttons, each one relative
to one operation. There is also a list, initially in blank, where all created
items are showed.

To create a new item, the user simply has to click on the “New Item”
button, and a new window will pop-up (see figure 4.2). On this new
window, the user has to fill all the data necessary to the creation of a

Clean World item.

S N T s T

New Item

Modify Item

Delete Item

New Item

Name:

Description:

Symbol Path:

Color:

Save Items

Fig 4. 2 - Creating a new item on Item Manager tool.

All items need the following information to be used in the game:

¢ Name: the name of the item in the game;

o Description: a brief description of the item that will be showed on
the player’s inventory;

e Symbol Path: the path indicating the 2D sprite of the item on the
game content (note that the 2D sprites had to be previously created
and added to the game content);

e Color: this field is used for the recycling mini-games, each color is

associated to a specific type of garbage;

101

Developed Support Applications - Item Manager

\ ltem Manager

SNER S QUESTS IS UPGRADES Ji8 SAVE _i§ LoD) \

Load Items

Press '@ to quit game

Press * to resume game
Save ltems n: Takes 100 yeay

Fig 4. 3 - A: Item information on Item Manager; B: Item information loaded into the

game.

If for some reason the user fails to fill all fields, an error message

show-up asking the user to fill all information (see figure 4.4).

A:‘\ Ttem M;nager

e N e SO

New Item

Modify Item

. New Item ‘._48 |
Delete Item

Save ltems

Fig 4. 4 - Screenshot of the error message showing-up.

If all information was inserted, the item is created and the list of
items is updated (see figure 4.5).

102

Chapter 4 - Developed Support Applications

ID: 1 | Name: New Item
Description: This item is a test!
Symbol: Ch\Users\Pedro'\Picturesiunreal-development-kit-udk.png | Color: Red

New Item

Modify Ttem

Delete Item

Fig 4. 5 - Screenshot of a new inserted item.

To modify an existing item, the user just needs to select the desired
item from the list (see figure 4.6A), and click on the “Modify” button. After

that, a window pops-up with all item information (see figure 4.6B).

ID: 1| Name: Paper Box B 1D: 1| Name: Paper Box
Description: Takes 2 months to decompose Description: Tekes 2 months to decompose

Symbol: Inventory/ltems/il | Color: blue | Color: blue
Modify Item ID: 2| Name: Glass Bottle 3 Bott

Description: Takes 4000 years to decompose
Deleteltem || Symbol: Inventory/items/i2 | Color: green
ID: 3| Neme: Glass Jar

Deseription: Takes 4000 years to decompase

Description: Takes 6 months to decompose
Symbol: Inventory/ltems/i5 | Color: blue
ID: 6| Name: Canister

Description: Takes 100 years to decompose
Symbol: Inventory/ltems/i6 | Color: yellow
ID: 7| Neme: Milk Package

Deseription; Takes 3 weeks to decompose

Symbol: Inventory/ltems/i7 | Color: red
ID: 8| Name: Battery

Loaditems | Description: Takes 100/500 years to decompose 3)0/500 years to
Symbol: Inventory/ltems/i3 | Color: yellow entory/ltems/ig | Color: yellow

I0: & Tupperware 1D: 9 | Name: Tupperware
n: Takes 100 years to decompose . Description: Takes 100 years to decompose

Fig 4. 6 - A: Selecting an item from the list; B: Modifying the item data.

To load an existing file, the user just needs to click on the “Load

Iltems” button, and indicate the location of the file (see figure 4.7).

103

Developed Support Applications - Item Manager

., Item Manager = | (= 20 ‘

I
m < CleanWorldContent » XMLDATA - Search XMLDATA

Organize New folder =~ O '@

=
Drophox i MName Date modified
12| Recent Places

2] dialogs 06-08-2012 14:51
& SkyDrive

& items 25-07-201212:11

i i 2] quests 06-08-2012 15:55
=l Libraries =

3 Documents
JV. Music

[e=| Pictures

E Podcasts

B8 videos

- | 4]

File name: L4 [XML Files

Com) |

Fig 4. 7 - Opening a saved file with the application.

When the user clicks on the “Save Items” button, all information of
the list is saved into an XML file that stores all data. The same XML file is
later loaded to the game before the level starts, allowing the engine to
load all items on run-time.

The XML file format used for the items is the following:

<Items>
<Item>
<ID> id </ID>
<Name> name </Name>
<Description> description </Description>
<Symbol> sprite path </Symbol>
<Color> color </Color>
<Quantity> quantity </Quantity>
</Item>

</Items>

Note that the quantity field it’s not used by the Item Manager

104

Chapter 4 - Developed Support Applications

application. Its default value is always 1, and can only be changed inside
the game when the player collects more items of the same type. The
inclusion of this field on the XML file is only for formal purposes.

Once the file is created, the game developer just needs to save the

file into the XMLDATA folder of the game content.

105

Developed Support Applications - Quest Manager

4.3. Quest Manager

The purpose of this application is to manage all game quests without

being necessary to create a new sprite to every new quest. This tool will

let the user create new quests, filling all the information needed without a

single line of code. The quests are saved upon a XML file that can later be

loaded to the game.

The Quest Manager interface (see figure 4.8), is

intuitive. This tool allows the following operations:

Create a new quest;
Modify an existing quest;

Delete an existing quest;

e Load quest file;

e Save quest file;

Modify Quest

Delete Quest

Fig 4. 8 - Screenshot of the Quest Manager tool.

Description: Meving in this warld is notan

casy task. In the tuterial

you'll learn how to interpret

the information displayed on

the screen, and how you can

mave. Complete the tutorial and

get ready for amazing

adventures.

Quest Name: Meet Dr. Jacob

cription: Dr. Jacob s the first human

st Boris has to find,
to help Kate, Search
the island and meet him.

Collecting Garbage
cription: A polluted world will not
improve Kate's health. When you
find garbage, collected it, and
recycling center.

bage helps to

environment, which

y help Kate to

very simple and

On the interface of the tool, there are five buttons, each one relative

to one operation. There is also a list, initially in blank, where all created

quests are showed.

106

Chapter 4 - Developed Support Applications

To create a new quest, the user simply has to click on the “New
Quest” button, and a new window will pop-up (see figure 4.9). On this new
window, the user has to fill all the data necessary to the creation of a

Clean World quest.

Fig 4. 9 - Creating a new quest on Quest Manager tool.

All quests need the following information to be used in the game:
¢ Name: the name of the quest in the game;
e Description: a brief description of the quest that will be showed on
the player’s quest log;
e Characters per line: it indicates the number of characters per line
that should be displayed in the description on the game. The default

value is 33;

107

Developed Support Applications - Quest Manager

4 Quest Manager

Quest | Quest Name: Complete the Tutorial] UEC SN S UPGRADES 8 SAVE 8 LOAD PN
Description: Moving in this £

I

g i this world is not an
easy task In the tutorial
Quest ul learn how o interpret

ot an Complete
Del A
| peeteuest 5 n the Tutorial

Il toad Quests

Recycling garbage helps to Press " @ 'to quit game Press * to resume game
whi

w
Save Quests fl will definitively help Kate to

Fig 4. 10 - A: Quest information on Quest Manager; B: Quest information loaded into the

game.

If for some reason the user fails to fill all fields, an error message

show-up asking the user to fill all information (see figure 4.11).

W QuestManager gt i o S e a2 C i)

[

Save Quests

Fig 4. 11 - Screenshot of the error message showing-up.

If all information was inserted, the quest is created and the list of

quests is updated (see figure 4.12).

108

Chapter 4 - Developed Support Applications

Quest Name: Test
Description: This quest is a test!

Load Quests

Save Quests

Fig 4. 12 - Screenshot of a new inserted quest.

To modify an existing quest, the user just needs to select the desired
quest from the list (see figure 4.13A), and click on the “Modify” button.
After that, a window pops-up with all the quest information (see figure
4.13B).

= e R T &

New Quest | Quest Name: Camplete the Tutorial - New Quest | Quest Name: Camplete the Tutarial
Description: Moving in this world is not an E Description: Moving in this world is not an E I
easy task.In th
Modify Quest | you'll learn Modify Quest [you'll learn
-+ Q 5|
Delete Quest Delete Quest od
me: Meet Dr. Jacob
ing tha [ESEEL Or. Jacob is the first human
in order to help Kate. Se: being that Boris has t find, I
[around the island and m in order to help Kate, Search
Load Quests | 92 10 the recyeling center. Lood Quests |9
== Recycling garbage helps to == Recycling garbage helps to
improve the - which improve the - which
Save Quests [wil definitively help Kate to . Save Quests [will definitively help Kate to

Fig 4. 13 - A: Selecting a quest from the list; B: Modifying the quest data.

To load an existing file, the user just needs to click on the “Load

Quests” button, and indicate the location of the file (see figure 4.14).

109

Developed Support Applications - Quest Manager

\ Quest Manager ===

MNew Quest

Modify Quest
<« CleanWorldContent » XMLDATA v |43 [l Search XMLDATA

Delete Quest
QOrganize » New folder

3 Decuments o MName
& Music
=] Pictures

9 Podcasts I
- 2] quests 06-08-2012 15:55
H videos

2] dialogs

|#] items

N& Homegroup

1% Computer
&L, Local Disk (C3)
a LG External HDD

Load Quests 3 CD Drive (E) B
ol v

File name: ~ | XML Files -

Fig 4. 14 - Opening a saved file with the application.

When the user clicks on the “Save Quests” button, all information of
the list is saved into an XML file that stores all data. The same XML file is
later loaded to the game before the level starts, allowing the engine to
load all quests on run-time.

The XML file format used for the items is the following:

<Quests>
<Quest>
<Name> name </Name>
<Description> description </Description>
</Quest>

</Quests>

Note that the character per line information is only used when saving
the description information, meaning that the character separation is done
every time an quest is created or modified. Therefore, when the
description is saved on the XML file, the character separation is already
done.

Once the file is created, the game developer just needs to save the
file into the XMLDATA folder of the game content.

110

Chapter 4 - Developed Support Applications

4.4, Dialog Manager

The purpose of this application is to manage all game dialogs without
being necessary to create a new sprite to every new dialog. This tool will
let the user create new dialogs, filling all the information needed without a
single line of code. The dialogs are saved upon a XML file that can later be
loaded to the game.

The Dialog Manager interface (see figure 4.15), is very simple and
intuitive. This tool allows the following operations:

o Create a new dialog;

¢ Modify an existing dialog;
o Delete an existing dialog;
e Load dialog file;

e Save dialog file;

[Dialog Manager =)

New Dialog 1D: 1 | Character: Kate | Image: katel | Level: levell
Message: I'm feeling really sick Boris,
so I can't go to Doctor Jacob

Modify Dizlog § i, the medical center.

Delete Dialog ID: 2 | Character: Kate | Image: katel | Level: levell
Message: | need you to go to the

medical center to get some

help.

1D: 3 | Character: Kate | Image: katel | Level: levell
Message: But before that, you need to

leamn how to explore the

Cypricene island.

ID: 4 | Character: Kate | Image: katel | Level: levell
Message: Now, there is some basic stuff

you should know before we

start..

1D: 5 | Character: Kate | Image: katel | Level: levell
Message: You are ready now, [will open

the gate.
Load Dialegs

ID: 6 | Character: Kate | Image: katel | Level: levell
Save Dialogs Message: Please, find Doctor Jacob,

Fig 4. 15 - Screenshot of the Dialog Manager tool.

On the interface of the tool, there are five buttons, each one relative
to one operation. There is also a list, initially in blank, where all created

dialogs are showed.

111

Developed Support Applications - Dialog Manager

To create a new dialog, the user simply has to click on the “New
Dialog” button, and a new window will pop-up (see figure 4.16). On this
new window, the user has to fill all the data necessary to the creation of a
Clean World dialog.

Character:

Image:

Level:

Message:

Characters for
line:

Fig 4. 16 - Creating a new dialog on Dialog Manager tool.

All dialogs need the following information to be used in the game:

o Character: the name of the character that says the dialog in the
game;

¢ Image: the name of the character sprite;

e Level: in which level the dialog is said;

e Message: the text of the dialog;

e Characters per line: it indicates the number of characters per line
that should be displayed in the dialog on the game. The default value
is 32;

112

Chapter 4 - Developed Support Applications

Save Dialogs

Fig 4. 17 - A: Dialog information on Dialog Manager; B: Dialog information loaded into the

game.

If for some reason the user fails to fill all fields, an error message

show-up asking the user to fill all information (see figure 4.18).

New Dialog

Delete Dialog Characte:

., Message =
Image: [— ______
Level: 7 4
Messag 4('

| Py ®

or! All fields must be filled!

Charact
line:

|

Save Dialogs

L
Load Dialogs

Fig 4. 18 - Screenshot of the error message showing-up.

If all information was inserted, the dialog is created and the list of

dialogs is updated (see figure 4.19).

13

Developed Support Applications - Dialog Manager

New Dialog ID: 1 | Character: Test_character | Image: sprite | Level: levell
Message: This is a dialog test!

Moedify Dialog

Delete Dialog

Fig 4. 19 - Screenshot of a new inserted dialog.

To modify an existing dialog, the user just needs to select the desired
quest from the list (see figure 4.20A), and click on the “Modify” button.
After that, a window pops-up with all the dialog information (see figure
4.20B).

I8 . Dialog Manager

1D: 1| Character: Kate | Image: katel | Level: level1 New Dislog |10 L | Character: Kate | Image: katel | Level: levell
Message: I'm feeling really sick Boris, Message: I'm fesling really sick Baris,

sol can't go to Doctor Jacob
Modity Dialog 1 the medical canter, Modify Diclog

New Dizlog

Delete Dialog [|10: 2 | Character: Kate | Image: katel | Levek levell Delete Dialog
Message: [need you to go to the
medical center to get some

help.

ID: 3 | Character: Kate | Image: katel | Level: levell
Message: But before that, you need to But before that, you need to
leam how to explore the lear how to explore the
Cypricene island. Cypricene island.

10: 4 | Character: Kate | Image: katel | Level: levell
Message: Now, there is some basic stuff

you should know before we

start...

10: 5 | Character: Kate | Image: katel | Level: levell
Message: You are ready now, I will open

the gate.
Load Dialogs Load Diclogs
10: 6 | Character: Kate | Image: katel | Level: levell ID: 6| Character: Kate | Image: katel | Level: levell

Save Diglogs [| Mess ind Doctor Jacob, I . Save Dialogs || Message: Please, find Doctor Jacob, 1

Fig 4. 20 - A: Selecting a dialog from the list; B: Modifying the dialog data.

114

Chapter 4 - Developed Support Applications

To load an existing file, the user just needs to click on the “Load
Dialogs” button, and indicate the location of the file.

When the user clicks on the “Save Dialogs” button, all information of
the list is saved into an XML file that stores all data. The same XML file is
later loaded to the game before the level starts, allowing the engine to
load all quests on run-time.

The XML file format used for the items is the following:

<Dialogs>
<Dialog>
<ID> id </ID>
<Character> character name </Character>
<Image> character sprite </Image>
<Level> game level </Level>
<Message> dialog message </Message>
</Dialog>
</Dialogs>

Note that the character per line information is only used when saving
the dialog text information, meaning that the character separation is done
every time a dialog is created or modified. Therefore, when the description
is saved on the XML file, the character separation is already done.

Once the file is created, the game developer just needs to save the
file into the XMLDATA folder of the game content.

115

Developed Support Applications - Terrain Creator

4.5. Terrain Creator

This tool differs from the others since it produces 3D assets to be used
on the game, namely the terrain for the levels.

Just like the previous tools, the interface of the application (see
figure 4.22), is quite simple. It’s composed by an area where user can draw
the heightmap, and a second area where he can control features like the

pen size, the height level, or the textures to be applied on the 3D mesh.

129-193 Heigth Texture:

194-255 Heigth Texture;

Fig 4. 21 - Screenshot of the Terrain Creator tool.

The Terrain Creator works in a very simple way. The user draws the
height areas on the application in levels of grey, these levels go from O,
which is represented by the color black (the lowest of the terrain), to 255
that is the color white (the highest level of the terrain). The user can
select the size of the brush by selecting its value from the pen combo box.

When painting the heightmap, the user can change the grey levels in
order to create different heights on the terrain. To do that, the user can
move the slide bar of the height level, or, if he wants a more controlled
change in the height, he can insert the grey value (from 0 to 255) on the

height text box (see figure 4.23).

116

Chapter 4 - Developed Support Applications

Note that the heights of the generated model will always correspond
to the receptive values on the heigthmap, meaning that an area with the

height value of 30 will have the value 30 on the Z axis.

0-63 Heigth Texture:

64-128 Heigth Texture:

129-193 Heigth Texture:

194-255 Heigth Texture:

Fig 4. 22 - Painting the heightmap with different pen sizes and height levels.

The user can also erase painted areas by activating the eraser (see
figure 4.24). The size of the eraser can also be changed by the pen size

combo box.

/ Eraser

0-63 Heigth Texture:
64-128 Heigth Texture:
129-193 Heigth Texture:

(]

194255 Heigth Texture:

Fig 4. 23 - Erasing the heightmap with the eraser tool.

The textures that will be applied on 3D model representing the terrain

can be defined inside the Terrain Creator (see figure 4.25). The application

117

Developed Support Applications - Terrain Creator

allows a total of four different textures to be used. The usage of the
textures is defined by the height level of the model faces. Four height
values are defined in the application for the textures:

e Height between 0 - 63: texture one;

e Height between 64 - 128: texture two;

e Height between 129 - 193: texture three;

o Height between 194 - 255: texture four;

For example, if the vertexes of a face are located on the height level
35, the texture to be applied is the one defined for the interval 0 to 63;
this means that the face will have the first texture. In cases where the
vertexes are on different levels of height, for example two on level 70 and
the other two on level 30, the applied texture is the one of the vertex in

the lowest height (i.e., texture of the interval 0 - 63).

Fig 4. 24 - Loading texture files to the terrain.

Once the map is drawn and the textures selected, the user just needs
to press the “Create Terrain” button. The application will then generate an
.0bj file and an .mtl file with all the information. This model is saved on
the Terrain Creator directory with the default name of “terrain”. If the 3D
model is correctly generated, a message is showed to the user (see figure
4.26).

118

Chapter 4 - Developed Support Applications

<% | Terrain Creator = =] | 2|

(73D Model e =)

del Generated!
3D model generated!

Success!

F

| E\NeoAxis\NeoAxis ;J ’

64-128 Heigth Texture:

E\NeoAxis\NeoAxis al \

129-193 Heigth Texture:

E:\N.QOA).(is\NeoAxis _:J ;

194-255 Heigth Texture:

E:\N.eo&‘(is\NeoAxis g ’

Create Terrain ‘

Fig 4. 25 - Terrain successfully created.

The algorithm used for the generation of the 3D model of the terrain

is the following:

1.

We divide the height and width of the bitmap by 8 in order to

simplify the final mesh;

. We will then visit the pixels of the bitmap, jumping in intervals of 8,

saving the x and y coordinates and getting the grey value of the

pixel;

. We create a vertex with the x and y values and the grey level, where

x is the value of the x axis, y the value of the y axis, and the grey
value the value on the z axis;
With the vertex list created, we will then create the faces of the

model, by connecting every vertex to their adjacent vertexes;

. The collected information is then saved into an .obj file;

The created terrain can later be imported to CAD software like 3Ds

Max for editing or format conversion (see figure 4.24).

119

Developed Support Applications - Connection with Clean World

B & SED 8 SE.

Fig 4. 26 - Created terrain on Autodesk 3Ds Max.

4.6. Connection with Clean World

Three of the applications presented on this Chapter needed some
game source code changes in order to work properly; we are talking about
the tools that generate XML files to load in the game: Item Manager, Quest
Manager, and Dialog Manager.

On the first version of Clean World, all game information regarding
items, quests and dialogs was added by code or by sprites, meaning that
was static content. Just for dialogs, were loaded into the game 183
different sprites. With the use of the XML files, those sprites are no longer
needed, meaning that we can replace the 183 sprites for 1 sprite that will
be the text background. The same thing happens with the 32 quests sprites.

The code modifications needed to work with the XML files were quite
simple. Once the XML files were on the game content, several
modifications had to be done on the level classes. The first thing to do was
to create three different lists to store all level information regarding items,

quests and dialogs and the respective classes. Once the lists were created,

120

Chapter 4 - Developed Support Applications

before any game content like the dialogs was created, all XML information
was loaded to the lists where it was stored.

In the case of the dialogs, the only information on XML file that was
going to be loaded to the level was the one marked with the current level
label. This was done by checking the value of the Level tag on the XML file.

With the XML information loaded into our lists, we proceeded to
create the respective items, quests and dialogs for the level we were
working on. Several changes had to be done in order to adapt the exiting
classes, namely the creation of a new constructor that allows the
information to be loaded through the lists when creating the asset. Based
on the used constructor, the classes can now create the assets based on a
sprite (previous method), or through the information given in the list, using
a single sprite for background and the text from the give XML data.

Once these modifications were implemented, the game loaded the
content and played smoothly, giving no perception to the player of the

modifications done in the source code.

4.7. Summary

On this Chapter were presented the developed tools created with the
purpose of optimizing the development process of Clean World game. In
Section 4.1 was presented a brief introduction to the developed
applications. In Section 4.2 was presented the Item Manager, a tool that
allows the user to control all items that can be used in the game. Section
4.3 presented the Quest manager, a tool for the creation and edition of
Clean World quests. The Dialog Manager was presented on Section 4.4. This
tool allows the creation of the dialogs that are showed during the game. On
section 4.5 was presented the Terrain Creator, a tool for the creation of
terrains for the game. Finally, on section 4.6 were briefly described the
modifications needed do to on Clean World in order to work with the

developed applications.

121

Conclusions and Future Work - Conclusions

5. Conclusions and Future
Work

5.1. Conclusions

Throughout this dissertation we have seen the state-of-the-art of
game development tools, the developed game Clean World, and the set of
tools created to improve the game development process. This chapter
presents the results obtained by the tools optimizations, and points to
several directions for future work.

Although XNA is a great tool for beginners on game development, it
lacks the tools provided by other engines and frameworks. This flaw makes
the game development on this technology harder and slower, since
everything must be done by code.

Using the developed tools, creating the game content is now an easier
process. The procedure of creating dialogs and quests can now be done
through the developed applications, avoiding the creation of unnecessary
sprites. The management of the items was also simplified, since the
developers can create new items for the game without programming. The
use of these applications, not only eliminated around 20 MB of unnecessary
sprites, but also the time spent creating the content and introducing it in
the game was reduced to half. Furthermore, the developed applications
allow the modification of existing content, which means that in case of
necessary adjustments, for example a correction on a dialog, the user can

alter directly the information without the need to create an entirely new

122

Chapter 5 - Conclusions and Future Work

dialog. This means that all partial objectives presented in Chapter 1 were

successfully completed, resulting in the presented dissertation.

5.2. Future Work

To conclude this dissertation, it remains to suggest future research

directions that result from this research work:

The development of a logic editor for the creation of Al for the
game characters. Right now, there are no enemies in the created
demo of Clean World, however, it would be a feature that we
would like to include on a final version of the game. In order to
create the enemies, some Al has to be created in order to define
the enemies’ behaviors. It would be interesting to develop a tool
where these behaviors can be created without the need to directly
program each enemy. The application could consist on a set of
predefined behaviors that could be altered through several

parameters, or combined with other existing predefined behaviors.

The development of an event editor in order to define specific
events on the game, for example interacting with a machine or
changing levels. On Clean World, every interaction the player does
with characters or machines was programmed directly by the
programmers, which took a lot of time on the development
process. It would be interesting to have an application with a set
of predefined interactions; these interactions could be altered
through several parameters and called on the game. Thought this

system a lot of time would be saved during the level programming.

The creation of a visual editor for the creation of particle systems

to be used in the game. There were no particle systems

123

Conclusions and Future Work - Future Work

implemented on Clean World. It would be a major improvement
for the game the existence of tool to create special effects based
on particle systems, for example to simulate smoke, water, fire,
etc. In order to use particle systems, a particle engine would be
added to the physics and render engines. To turn the creation of
the particles more intuitive and efficient, could be created a tool
for the edition of particle systems, where the user could arrange a
set of parameters (for example particle life spawn) in other to
obtain the desired result for the specified particle systems. The
information regarding the particles could be saved in a XML file
that would be loaded into the game. With the information on the
XML, the game would be able to recreate the particle system

created on the application.

124

References

[1]
(2]
3]
[4]

[5]
(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

References

"UDK," [Online]. Available: http://www.unrealengine.com/udk [Accessed: August
2012].

"Epic Games,"” [Online]. Available: http://epicgames.com/ [Accessed: August
2012].

"RPG Maker," [Online]. Available: http://www.rpgmakerweb.com/ [Accessed:
November 2011].

"Game Maker," [Online]. Available:
http://www.yoyogames.com/gamemaker/windows/ [Accessed: August 2012].

P. Banaschak, "Early East Asian Chest Pieces: An overview," Issue August 1999.

B. Neto, L. Fernandes, C. Werner, and J. Moreira de Souza, "Reuse in Digital Game
Development,” in Proceedings of the 4th International Conference on Ubiquitous
Information Technologies & Applications, 2009. ICUT '09. , 20-22 Dec. 2009, 2009,
pp. 1-6.

E. S. Association, "Essential facts about the computer and video game industry,"
Entertainment Software Association, Issue 2009.

D. Callele, E. Neufeld, and K. Schneider, "Requirements engineering and the
creative process in the video game industry," in 13th IEEE International Conference
on Requirements Engineering, 2005. Proceedings., 29 Aug.-2 Sept. 2005, 2005, pp.
240-250.

A. Brownsword, "Reflecting on development processes in the video game industry,"
in ICSE-Companion 2009. 31st International Conference on Software Engineering -
Companion Volume, 2009., 16-24 May 2009, 2009, pp. 182-182.

R. L. B. de Barros, C. F. Alves, and G. L. Ramalho, "Investigating the
Communication Process in Multidisciplinary Game Development Teams," in 2009
Simposio Brasileiro de Sistemas Colaborativos (SBSC), 5-7 Oct. 2009, 2009, pp. 61-
69.

C. M. Kanode and H. M. Haddad, "Software Engineering Challenges in Game
Development,” in Sixth International Conference on Information Technology: New
Generations, 2009. ITNG '09, 27-29 April 2009, 2009, pp. 260-265.

C. Keith, "Get in the Game: What others can learn from game developers,” Better
Software Magazine, Issue November 2006.

V. T.S. A L. Apolinario, "A Feature Model Proposal for Computer Games Design,"
Proceedings of the VII Brazilian Symposium on Computer Games and Digital
Entertainment, Issue pp. 54-63, 2008.

A. Furtado and A. Santos, "Applying Domain-Specific Modeling to Game
Development with the Microsoft DSL Tools," in Brazilian Symposium on Computer
Games and Digital Entertainment, 2006.

V. T. Sarinho, Apolina, x, and A. L. rio, "A Generative Programming Approach for
Game Development,” in 2009 VIII Brazilian Symposium on Games and Digital
Entertainment (SBGAMES), 8-10 Oct. 2009, 2009, pp. 83-92.

125

http://www.unrealengine.com/udk
http://epicgames.com/
http://www.rpgmakerweb.com/
http://www.yoyogames.com/gamemaker/windows/

References

[16]

[17]
[18]
[19]

[20]

[21]
[22]

[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]

[34]
[35]
[36]
[37]

[38]

M. Chen, Y. Zhang, J. Ouyang, and G.-t. Hu, "Game Design and Development
Based on Logical Animation Platform,” in 2010 International Conference on
Computational and Information Sciences (ICCIS), 17-19 Dec. 2010, 2010, pp. 573-
576.

W. C. W. Chen, "Game engine applied in education," Computer and Digital
Engineering, Issue 2008.

H. T. Y. Song, "Analysis of game engine technology," Fujian PC, Issue 2007.

L. Bishop, D. Eberly, T. Whitted, M. Finch, and M. Shantz, "Designing a PC game
engine," IEEE Computer Graphics and Applications, vol. 18, Issue 1, pp. 46-53,
1998.

N. Seung Seok, H. Sung Dea, and P. Jin Wan, "Using a Game Engine Technique to
Produce 3D Entertainment Contents," in 16th International Conference on Artificial
Reality and Telexistence--Workshops, 2006. ICAT '06, Nov. 2006, 2006, pp. 246-
251.

"Euphoria," [Online]. Available:
http://wwwtemp.naturalmotion.com/products/euphoria/ [Accessed: August 2012].
"Yo Yo Games,” [Online]. Available: http://www.yoyogames.com/ [Accessed:

November 2011].
"The 3D Gamemaker," [Online]. Available:
http://www.thegamecreators.com/?m=view_product&id=2126 [Accessed:
November 2011].

"The Game Creators,” [Online]. Available: http://www.thegamecreators.com/
[Accessed: November 2011].

"CopperCube," [Online]. Available: http://www.ambiera.com/coppercube/
[Accessed: November 2011].

"Ambiera," [Online]. Available: http://www.ambiera.com/ [Accessed: November
2011].

"3D Rad,” [Online]. Available: http://www.3drad.com/ [Accessed: November
2011].

"Enterbrain," [Online]. Available: http://www.enterbrain.co.jp/ [Accessed:
November 2011].

"NeoAxis Engine,” [Online]. Available: http://www.neoaxis.com/ [Accessed:
August 2012].

"Unity 3D," [Online]. Available: http://unity3d.com/ [Accessed: August 2012].
"Game Maker History," [Online]. Available:
http://wiki.yoyogames.com/index.php/Game Maker History [Accessed: November
2011].

"OGRE 3D," [Online]. Available: http://www.ogre3d.org/ [Accessed: November
2011].

"DarkBASIC," [Online]. Available:
http://www.thegamecreators.com/?m=view_product&id=2030 [Accessed:
November 2011].

"AngelScript," [Online]. Available: http://www.angelcode.com/angelscript/

[Accessed: November 2011].

"Big Fish Games," [Online]. Available: http://www.bigfishgames.com/ [Accessed:
November 2011].

"IGN Entertainment,” [Online]. Available: http://uk.ign.com/ [Accessed: November
2011].

"GamersGate,” [Online]. Awvailable: http://www.gamersgate.com/ [Accessed:
November 2011].

"Aldorlea Games,” [Online]. Available: http://aldorlea.org/ [Accessed: August
2012].

126

http://wwwtemp.naturalmotion.com/products/euphoria/
http://www.yoyogames.com/
http://www.thegamecreators.com/?m=view_product&id=2126
http://www.thegamecreators.com/
http://www.ambiera.com/coppercube/
http://www.ambiera.com/
http://www.3drad.com/
http://www.enterbrain.co.jp/
http://www.neoaxis.com/
http://unity3d.com/
http://wiki.yoyogames.com/index.php/Game_Maker_History
http://www.ogre3d.org/
http://www.thegamecreators.com/?m=view_product&id=2030
http://www.angelcode.com/angelscript/
http://www.bigfishgames.com/
http://uk.ign.com/
http://www.gamersgate.com/
http://aldorlea.org/

References

[39]
[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]

[48]
[49]

[50]

[51]

[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]

[62]

[63]

[64]

"Millennium: A New Hope," [Online]. Available: http://aldorlea.org/millennium.php
[Accessed: August 2012].

"Amaranth Games," [Online]. Available: http://www.amaranthia.com/ [Accessed:
August 2012].

"Aveyond Series," [Online]. Available:
http://www.amaranthia.com/modules/oledrion/product.php?product_id=58
[Accessed: August 2012].

"Blossomsoft,” [Online]. Awvailable: http://www.blossomsoft.com/ [Accessed:
August 2012].
"Eternal Eden,"” [Online]. Awvailable: http://www.blossomsoft.com/?p=182

[Accessed: August 2012].

"Over Cloud 9, [Online]. Awvailable: http://www.overcloud9.com/ [Accessed:
August 2012].

"Arevan,"” [Online]. Awvailable: http://www.overcloud9.com/games/our-
games/arevan/ [Accessed: August 2012].

"Sherman3D," [Online]. Available: http://www.sherman3d.com/ [Accessed: August
2012].

"Alpha Kimori,” [Online]. Available: http://www.alphakimori.com/ [Accessed:
August 2012].

"OHBA," [Online]. Available: http://ohbado.sakura.ne.jp/ [Accessed: August 2012].
"Homura Combat,” [Online]. Available: http://ohbado.sakura.ne.jp/homcombat/
[Accessed: August 2012].

"Dream Dale," [Online]. Awvailable: http://www.dreamdale.com/about.html
[Accessed: August 2012].

"Elementary My Dear Majesty! [Online]. Available:
http://www.alawar.com/game/elementary-my-dear-majesty/ [Accessed: August
2012].

"Makivision Games," [Online]. Available: http://www.makivision.com/ [Accessed:
August 2012].

"Sacraboar,” [Online]. Available: http://www.sacraboar.com/ [Accessed: August

2012].

"Donsoft Entertainment," [Online]. Available: http://www.donsoft.com.br/
[Accessed: August 2012].

"Capoeira Legends: Path To Freedom,” [Online]. Auvailable:

http://www.capoeiralegends.com [Accessed: August 2012].

"MisfitVillager,” [Online]. Available: http://www.indiedb.com/members/sickbrick
[Accessed: August 2012].

"SickBrick," [Online]. Available: http://magrathean.ca/sickbrick/ [Accessed: August
2012].

"Magrathean Technologies," [Online]. Available: http://magrathean.ca/ [Accessed:
August 2012].

"Incognito Episode 3," [Online]. Available: http://magrathean.ca/incognito-episode-
3/ [Accessed: August 2012].

"Clockwork Brains,” [Online]. Awvailable: http://clockwork-brains.blogspot.pt/
[Accessed: August 2012].

"Plyushkin Syndrome,” [Online]. Available: http://clockwork-
brains.blogspot.pt/search/label/Plyushkin%20Syndrome [Accessed: August 2012].
"The Wall Street Journal,” [Online]. Available:

http://online.wsj.com/article/SB10001424052748703904304575497473735761294.h
tml [Accessed: August 2012].

"NVIDIA® PhysX® " [Online]. Available:
http://www.geforce.co.uk/hardware/technology/physx [Accessed: August 2012].
"FMOD," [Online]. Available: http://www.fmod.org/ [Accessed: August 2012].

127

http://aldorlea.org/millennium.php
http://www.amaranthia.com/
http://www.amaranthia.com/modules/oledrion/product.php?product_id=58
http://www.blossomsoft.com/
http://www.blossomsoft.com/?p=182
http://www.overcloud9.com/
http://www.overcloud9.com/games/our-games/arevan/
http://www.overcloud9.com/games/our-games/arevan/
http://www.sherman3d.com/
http://www.alphakimori.com/
http://ohbado.sakura.ne.jp/
http://ohbado.sakura.ne.jp/homcombat/
http://www.dreamdale.com/about.html
http://www.alawar.com/game/elementary-my-dear-majesty/
http://www.makivision.com/
http://www.sacraboar.com/
http://www.donsoft.com.br/
http://www.capoeiralegends.com/
http://www.indiedb.com/members/sickbrick
http://magrathean.ca/sickbrick/
http://magrathean.ca/
http://magrathean.ca/incognito-episode-3/
http://magrathean.ca/incognito-episode-3/
http://clockwork-brains.blogspot.pt/
http://clockwork-brains.blogspot.pt/search/label/Plyushkin%20Syndrome
http://clockwork-brains.blogspot.pt/search/label/Plyushkin%20Syndrome
http://online.wsj.com/article/SB10001424052748703904304575497473735761294.html
http://online.wsj.com/article/SB10001424052748703904304575497473735761294.html
http://www.geforce.co.uk/hardware/technology/physx
http://www.fmod.org/

References

[65]
[66]
[67]
[68]
[69]

[70]
[71]

[72]
[73]

[74]
[78]
[76]
[77]
[78]
[79]
(80]

[81]
(82]

(83]
(84]
(85]
(86]
(87]
(88]
(89]
[90]

[91]

"Mono,” [Online]. Available: http://mono-project.com/Main_Page [Accessed:
August 2012].

"GameArt Studio GmbH," [Online]. Available: http://www.gameartstudio.de/
[Accessed: August 2012].

"A.l. Invasion,"” [Online]. Available: http://www.ai-invasion.de/ [Accessed: August
2012].

"Crescent Moon Games,” [Online]. Awvailable: http://crescentmoongames.com/
[Accessed: August 2012].

"Aralon: Sword and Shadow," [Online]. Available: http://www.worldofaralon.com/
[Accessed: August 2012].

"Bigpoint,” [Online]. Available: http://pt.bigpoint.com/ [Accessed: August 2012].
"Battlestar Galactica Online," [Online]. Awvailable: http://pt.battlestar-
galactica.bigpoint.com/ [Accessed: August 2012].

"NPlay," [Online]. Available: http://www.nplay.com/ [Accessed: August 2012].
"BeGone," [Online]. Available: http://www.nplay.com/BeGone/ [Accessed: August
2012].

"SilverTree Media,” [Online]. Available: http://silvertreemedia.com/animation
[Accessed: August 2012].

"Cody," [Online]. Available: http://silvertreemedia.com/products/cordy [Accessed:
August 2012].

"Limbic Entertainment,” [Online]. Available: http://www.limbic-entertainment.de/
[Accessed: August 2012].

"Dungeon Empires," [Online]. Available:
http://play.dungeonempires.de/index.php?page=play&lang=2 [Accessed: August
2012].

"Fun Bits," [Online]. Available: http://www.funbits.com/ [Accessed: August 2012].
"Escape Plan," [Online]. Awvailable: http://uk.playstation.com/escapeplan/
[Accessed: August 2012].

"Unreal Engine,” [Online]. Available: http://www.unrealengine.com/ [Accessed:

November 2011].

A. Thorn, UDK Game Development, 1 ed. vol. 1. Course Technology PTR, 2011.
"High Moon Studios," [Online]. Available:
http://www.highmoonstudios.com/community/hms [Accessed: August 2012].
"Transformers: Fall of Cybertron,” [Online]. Available:
http://www.transformersgame.com/ [Accessed: August 2012].

"Rocksteady Studios," [Online]. Awvailable: http://www.rocksteadyltd.com/
[Accessed: August 2012].

"Batman: Arkham City," [Online]. Available:

http://community.batmanarkhamcity.com/ [Accessed: August 2012].
"BioWare,"” [Online]. Awvailable: http://www.bioware.com/ [Accessed: August

2012].

"Mass Effect 3" [Online]. Available:
http://masseffect.bioware.com/agegate/?url=%2F [Accessed: August 2012].

"Gears of War" [Online]. Awvailable: http://gearsofwar.xbox.com/en-
US/AgeGate?source=%252f [Accessed: August 2012].

"Grasshopper Manufacture," [Online]. Available:

http://www.grasshoppermanufacture.com/en/index.html [Accessed: August 2012].
"Shadows of the Damned," [Online]. Available: http://www.ea.com/shadows-of-the-
damned [Accessed: August 2012].

"inXile Entertainment,” [Online]. Available: http://www.inxile-entertainment.com/
[Accessed: August 2012].

128

http://mono-project.com/Main_Page
http://www.gameartstudio.de/
http://www.ai-invasion.de/
http://crescentmoongames.com/
http://www.worldofaralon.com/
http://pt.bigpoint.com/
http://pt.battlestar-galactica.bigpoint.com/
http://pt.battlestar-galactica.bigpoint.com/
http://www.nplay.com/
http://www.nplay.com/BeGone/
http://silvertreemedia.com/animation
http://silvertreemedia.com/products/cordy
http://www.limbic-entertainment.de/
http://play.dungeonempires.de/index.php?page=play&lang=2
http://www.funbits.com/
http://uk.playstation.com/escapeplan/
http://www.unrealengine.com/
http://www.highmoonstudios.com/community/hms
http://www.transformersgame.com/
http://www.rocksteadyltd.com/
http://community.batmanarkhamcity.com/
http://www.bioware.com/
http://masseffect.bioware.com/agegate/?url=%2F
http://gearsofwar.xbox.com/en-US/AgeGate?source=%252f
http://gearsofwar.xbox.com/en-US/AgeGate?source=%252f
http://www.grasshoppermanufacture.com/en/index.html
http://www.ea.com/shadows-of-the-damned
http://www.ea.com/shadows-of-the-damned
http://www.inxile-entertainment.com/

References

[92]

(93]
[94]
[99]
[96]
[97]

(98]

[99]

[100]

[101]

"Hunted: The Demon's Forge," [Online]. Available:
http://www.huntedthegame.com/index.php/en/index/agegate ~ [Accessed: August
2012].

"2K Games," [Online]. Available: http://www.2kgames.com/#/ [Accessed: August
2012].

"BioShock 2," [Online]. Available: http://www.bioshock2game.com/ [Accessed:
August 2012].

"SunBurn Engine," [Online]. Available:
http://www.synapsegaming.com/products/sunburn/engine/ [Accessed: August 2012].
"DigitalRune Engine,” [Online]. Available: http://www.digitalrune.com/ [Accessed:
August 2012].

"Autodesk 3Ds Max," [Online]. Available: http://usa.autodesk.com/3ds-max/
[Accessed: August 2012].

"Adobe Photoshop," [Online]. Available:
http://www.adobe.com/products/photoshopfamily.html?promoid=JOLIW [Accessed:
August 2012].

" Panda DirectX Exporter," [Online]. Available:
http://www.andytather.co.uk/panda/directxmax.aspx [Accessed: August 2012].
"NVIDIA Texture Tools for Adobe Photoshop," [Online]. Available:
http://developer.nvidia.com/content/nvidia-texture-tools-adobe-photoshop
[Accessed: August 2012].

"SunBurn Game Engine," [Online]. Available:
http://www.synapsegaming.com/products/sunburn/engine/ [Accessed: August 2012].

129

http://www.huntedthegame.com/index.php/en/index/agegate
http://www.2kgames.com/#/
http://www.bioshock2game.com/
http://www.synapsegaming.com/products/sunburn/engine/
http://www.digitalrune.com/
http://usa.autodesk.com/3ds-max/
http://www.adobe.com/products/photoshopfamily.html?promoid=JOLIW
http://www.andytather.co.uk/panda/directxmax.aspx
http://developer.nvidia.com/content/nvidia-texture-tools-adobe-photoshop
http://www.synapsegaming.com/products/sunburn/engine/

