

UNIVERSITY OF BEIRA INTERIOR
Faculty de Engineering
Departament of Informatics

Support Tools for 3D Game

Creation

Pedro Nuno Matos Pereira

Dissertation submitted in candidature for the

Degree of Master of Science in Informatics Engineering

(2nd cycle degree)

Supervised: Prof. Doutor Frutuoso Silva

Department of Informatics

University of Beira Interior

Covilhã, Portugal

http://www.di.ubi.pt

 i

Acknowledgements

First of all, I would like to thank to Professor Frutuoso Silva for all the

support, for the constant words of encouragement and for supervising my

Master’s Thesis. I also would like to thank for the opportunity to belong to

his research group: Reality, Games and Graphics Group (ReGain).

Additionally, I’d like to thank to all members of Clean World

development team, André Barbosa, David Casteleira and João Dias for all

the support and help.

Last but not least, I also like to all my friends, particularly to Carolina

Belino, David Massano, Eduardo Fonseca, Laurie Geerlings, Luis Rodrigues,

Marco Antunes, Nélia Fonseca and Sofia Colmier for all the support, help

and good times we had in the last years. In one-way or another, all of you

have contributed to the accomplishment oh this dissertation.

 iii

Resumo Alargado

Atualmente, as ferramentas para o desenvolvimento de jogos são uma

parte bastante importante de todo o processo de desenvolvimento. Estas

ferramentas servem para assistir os criadores de jogos nas tarefas que

realizam, permitindo-lhes a criação de jogos funcionais escrevendo poucas

linhas de código. Desenvolver um videojogo sem a utilização de

ferramentas especializadas é um processo complexo e que consome

bastante tempo, daí a existência de ferramentas que permitem ao

utilizador importar os conteúdos para o jogo, definir a lógica de jogo,

produzir o código fonte e compilá-lo. Este tipo de software é normalmente

utilizado por quem se dedica à criação de jogos como hobby, ou por

profissionais que procuram otimizar o processo de desenvolvimento de

jogos.

Existem várias componentes ao nível do desenvolvimento de videojogos

que se tornam pouco produtivas, se não forem automatizados e/ou

otimizadas. Por exemplo, a programação de eventos ou de diálogos pode

ser uma tarefa que consome demasiado tempo no ciclo de

desenvolvimento, para além de ser uma tarefa entediante e repetitiva no

ponto de vista do programador. Por este motivo, a utilização de

ferramentas pode ser muito importante no que diz respeito ao aumento da

produtividade e manutenção dos vários processos que envolvem o

desenvolvimento de videojogos. Nesta dissertação pretendemos demonstrar

as vantagens da utilização dessas mesmas ferramentas durante o

desenvolvimento de videojogos, através da apresentação de um caso de

iv

estudo que envolve o desenvolvimento de um Serious Game intitulado

Clean World.

Em Clean World, foram identificadas determinadas tarefas que se

mostraram demasiado repetitivas e entediantes quando programadas por

inteiro, como é o caso da adição, modificação ou remoção de componentes

como diálogos, quest ou items. Tendo em conta este problema concreto,

foram criadas algumas ferramentas de forma a aumentar a produtividade

no desenvolvimento do jogo, tornando tarefas repetitivas e entediantes em

processos simples e intuitivos. O conjunto de ferramentas é constituído

por: Item Manager, Quest Manager, Dialog Manager e Terrain Creator.

 v

Abstract

Nowadays, tools for developing videogames are a very important part

of the development process in the game industry. Such tools are used to

assist game developers in their tasks, allowing them to create functional

games while writing a few lines of code. For example, these tools allow the

users to import the content for the game, set the game logic, or produce

the source code and compile it.

There are several tasks and components regarding the development of

videogames that may become unproductive, therefore, it’s necessary to

automate and/or optimize such tasks. For example, the programming of

events or dialogs can be a task that consumes too much time in the

development cycle, and a tedious and repetitive task for the programmer.

For this reason, the use of tools to support these tasks can be very

important to increase productivity and help on the maintenance of the

various processes that involve the development of videogames. This

dissertation aims to demonstrate the advantages of the use of these kind of

tools during the development of videogames, presenting a case study

involving the development of a Serious Game entitled Clean World.

 vii

Keywords

Game Development Support Applications, XNA, 3D Games, Serious

Games.

 ix

Contents

Acknowledgements .. i

Resumo Alargado ... iii

Abstract .. v

Keywords .. vii

Contents ... ix

List of Figures ... xi

List of Tables ... xv

Acronyms .. xvii

1. Introduction ..1

1.1. Focus ... 1

1.2. Objectives .. 2

1.3. Main Results ... 2

1.4. Dissertation Structure ... 3

2. Related Work ..4

2.1. Introduction ... 4

2.2. Video Game Development ... 6

2.3. Game Engines and Frameworks ... 9

2.4. Game Development Tools ... 12

2.4.1 . Game Maker ... 13

2.4.2. The 3D Gamemaker .. 15

2.4.3. CopperCube .. 16

2.4.4. 3D Rad ... 18

2.4.5. RPG Maker ... 19

2.4.6. NeoAxis Game Engine .. 23

2.4.7. Unity 3D ... 28

2.4.8. UDK .. 35

x

2.5. Summary .. 49

3. Clean World – The 3D Game ... 50

3.1. Introduction .. 50

3.2. Game Storyline ... 52

3.3. Modeling and Animation of the Characters .. 54

3.3.1. Boris .. 54

3.3.2. Kate 67

3.3.3. Dr. Jacob ... 69

3.3.4. Tom A. Toe .. 72

3.4. Terrain Models and Level Assets ... 74

3.4.1. Terrain Models ... 74

3.4.2. Decorative 3D Assets ... 76

3.4.3. Interactive and Collectable 3D Assets .. 83

3.5. Level Design .. 87

3.6. 2D Assets .. 91

3.7. Summary .. 97

4. Developed Support Applications ... 99

4.1. Introduction .. 99

4.2. Item Manager .. 100

4.3. Quest Manager .. 106

4.4. Dialog Manager ... 111

4.5. Terrain Creator ... 116

4.6. Connection with Clean World .. 120

4.7. Summary ... 121

5. Conclusions and Future Work .. 122

5.1. Conclusions .. 122

5.2. Future Work ... 123

References ... 125

 xi

List of Figures

Fig 2. 1 - A: 1952, OXO/Noughts and Crosses (Tic-Tac-Toe); B: 1958: Tennis for Two. 5
Fig 2. 2 – Screenshot from the game BioShock.. 7
Fig 2. 3 – Screenshot from the interface of Game Maker. .. 14
Fig 2. 4 – Screenshot from the interface of The 3D Gamemaker ... 16
Fig 2. 5 – Screenshot from the interface of CopperCube. .. 17
Fig 2. 6 – Screenshot from the interface of 3D Rad. ... 18
Fig 2. 7 – Screenshot from the interface of RPG Maker 2000. .. 20
Fig 2. 8 – A: Screenshot from the battle system of RPG Maker 2003; B: Screenshot from the battle

system of RPG Maker VX. ... 20
Fig 2. 9 – Screenshot from the script editor of RPG Maker XP. .. 21
Fig 2. 10 – Screenshot from the interface of RPG Maker VX. .. 22
Fig 2. 11 – Game class hierarchy used by NeoAxis Engine. .. 24
Fig 2. 12 – A screenshot from the NeoAxis Engine map editor tool. .. 25
Fig 2. 13 – A screenshot from the NeoAxis Game Object Editor. .. 26
Fig 2. 14 – A screenshot from Unity light mapping editor. .. 29
Fig 2. 15 – A screenshot from Unity Editor interface. .. 32
Fig 2. 16 – A screenshot from Unity editor grid feature. .. 33
Fig 2. 17 – A screenshot from Shuriken. .. 34
Fig 2. 18 – UDK structure. ... 36
Fig 2. 19 – Screenshot from the UDK editor interface. .. 37
Fig 2. 20 – Screenshot from the UDK Matinee editor interface. .. 38
Fig 2. 21 – Screenshot from the UDK Kismet interface. .. 39
Fig 2. 22 – Screenshot from the UDK Material editor interface. ... 40
Fig 2. 23 – Screenshot from the UDK Sound editor interface. .. 41
Fig 2. 24 – Screenshot from the UDK Cascade editor interface. .. 42
Fig 2. 25 – Screenshot from the UDK Lightmass editor interface. .. 43
Fig 2. 26 – Screenshot from the UDK Terrain tools interface. .. 44
Fig 2. 27 – Screenshot from the UDK Cinematic tools interface. ... 44
Fig 2. 28 – Screenshot from the UDK Fracture Meshes editor interface. ... 45
Fig 2. 29 – Screenshot from the UDK SpeedTree editor interface. .. 46
Fig 2. 30 – Screenshot from the UDK FaceFX editor interface. .. 47
Fig 2. 31 – Screenshot from the Microsoft Visual Studio editing UnrealScript. ... 48

Fig 3. 1 - Screenshot from the game Clean World. .. 51
Fig 3. 2 – Boris, the hero from the game. .. 55
Fig 3. 3 – Model sheet of Boris in robot mode. .. 55
Fig 3. 4 – Model of Boris in robot mode in Autodesk 3Ds Max 2012. ... 56

xii

Fig 3. 5 – UVW map of the model of Boris in robot mode... 57
Fig 3. 6 - UVW map of the model of Boris in robot mode with textures.. 57
Fig 3. 7 - A: Model of Boris without textures; B: Model of Boris with textures. .. 58
Fig 3. 8 - Model of Boris with biped inserted. .. 58
Fig 3. 9 – Adjusting the bones envelopes to the 3D model of Boris. .. 59
Fig 3. 10 - Model of Boris in sphere mode in Autodesk 3Ds Max 2012. ... 61
Fig 3. 11 - A: UVW map of the model of Boris in sphere mode; B: UVW map of the model of Boris in

sphere mode with textures. .. 62
Fig 3. 12 - A: Model of Boris without textures; B: Model of Boris with textures. 62
Fig 3. 13 - Model of Boris in sphere with bone inserted. ... 63
Fig 3. 14 - Model of Boris in solar mode in Autodesk 3Ds Max 2012. .. 64
Fig 3. 15 - A: UVW map of the model of Boris in solar mode; B: UVW map of the model of Boris in

solar mode with textures. ... 64
Fig 3. 16 - A: Model of Boris without textures; B: Model of Boris with textures. 65
Fig 3. 17 - Model of Boris in solar mode with biped inserted. ... 65
Fig 3. 18 - A: Normal map of Boris in robot mode; B: Normal map of Boris in sphere mode; C:

Normal map of Boris in solar mode. ... 66
Fig 3. 19 – Concept of Kate given by the concept artist. ... 67
Fig 3. 20 – Model sheet of the character Kate... 67
Fig 3. 21 - A: Model of Kate without textures; B: Model of Kate with textures. ... 68
Fig 3. 22 - A: Model of Kate with biped inserted; B: Adjusting the envelopes of Kate model................ 68
Fig 3. 23 – Concept of Dr. Jacob given by the concept artist. .. 69
Fig 3. 24 – Model sheet of the character Dr. Jacob. ... 70
Fig 3. 25 - A: Model of Dr. Jacob without textures; B: Model of Dr. Jacob with textures. 70
Fig 3. 26 - A: Model of Dr. Jacob with biped inserted; B: Adjusting the envelopes of Dr. Jacob model.

 ... 71
Fig 3. 27 – Concept of Tom A. Toe given by the concept artist. .. 72
Fig 3. 28 – Model sheet of the character Tom A. Toe. .. 72
Fig 3. 29 - A: Model of Tom A. Toe without textures; B: Model of Tom A. Toe with textures. 73
Fig 3. 30 - A: Model of Tom with biped inserted; B: Adjusting the envelopes of Tom model. 73
Fig 3. 31 – Complete model of the Cypricene Island. .. 75
Fig 3. 32 – A: Terrain of level one; B: Terrain of level three. ... 75
Fig 3. 33 – A: Terrain of level two. ... 76
Fig 3. 34 – kate’s house model... 77
Fig 3. 35 – Lamp ring model. ... 77
Fig 3. 36 – Rails model. .. 77
Fig 3. 37 – Medical center model. .. 78
Fig 3. 38 – Wood recycling machine model. .. 78
Fig 3. 39 – Toxic waste cleaner model. .. 78
Fig 3. 40 – Wind tower model. .. 79
Fig 3. 41 – Lighthouse model. .. 79
Fig 3. 42 – Wall model. ... 79
Fig 3. 43 – Platform model. .. 80
Fig 3. 44 – Part of the bridge model. .. 80
Fig 3. 45 – Island harbor model.. 80
Fig 3. 46 – Energy pole model. .. 81
Fig 3. 47 – Watermill tower model.. 81
Fig 3. 48 – Tunnel section model. ... 81
Fig 3. 49 – Mining walker model. ... 82

 xiii

Fig 3. 50 – Watermill model. .. 82
Fig 3. 51 – WWTP model. .. 82
Fig 3. 52 – Tom’s house model. ... 83
Fig 3. 53 – Question mark model. .. 83
Fig 3. 54 – Recycling machine model. .. 84
Fig 3. 55 – Yellow recycling container model. .. 84
Fig 3. 56 – Arrow model. ... 84
Fig 3. 57 – Recycling platform model. .. 85
Fig 3. 58 – Solar platform model. .. 85
Fig 3. 59 – Recharger model. ... 85
Fig 3. 60 – Console terminal model. .. 86
Fig 3. 61 – The syringe collectable item model. ... 87
Fig 3. 62 – Positioning a 3D model on SunBurn editor. .. 88
Fig 3. 63 – Changing the color of the ambient light. .. 89
Fig 3. 64 – Changing the color of a directional light. ... 89
Fig 3. 65 – Changing the settings of a point ligth. ... 90
Fig 3. 66 – A: Normal map used on metallic surfaces; B: Kate’s house without normal map; C: Kate’s

house with normal map. .. 91
Fig 3. 67 – A: Main menu background; B: Game over menu background. ... 92
Fig 3. 68 – Example of a loading screen used in the game... 92
Fig 3. 69 – Health and energy bars sprite... 93
Fig 3. 70 – Boris power mode indicator on its several forms. ... 93
Fig 3. 71 – Mini map used on level one. ... 93
Fig 3. 72 – Example of the communicator used in the game. ... 94
Fig 3. 73 – Example of a dialog sprite used in the game. .. 94
Fig 3. 74 – A: Background of the items tab; B: Background of the load tab. .. 95
Fig 3. 75 – Example of a quest sprite used in the game. ... 95
Fig 3. 76 – Background of one of the developed mini games. ... 96
Fig 3. 77 – Tutorial screen of the first bonus level. ... 96

Fig 4. 1 – Screenshot of the Item Manager tool. ... 100
Fig 4. 2 – Creating a new item on Item Manager tool. .. 101
Fig 4. 3 – A: Item information on Item Manager; B: Item information loaded into the game. 102
Fig 4. 4 – Screenshot of the error message showing-up. ... 102
Fig 4. 5 - Screenshot of a new inserted item. ... 103
Fig 4. 6 – A: Selecting an item from the list; B: Modifying the item data. .. 103
Fig 4. 7 – Opening a saved file with the application. .. 104
Fig 4. 8 – Screenshot of the Quest Manager tool.. 106
Fig 4. 9 – Creating a new quest on Quest Manager tool. .. 107
Fig 4. 10 – A: Quest information on Quest Manager; B: Quest information loaded into the game. . 108
Fig 4. 11 - Screenshot of the error message showing-up. ... 108
Fig 4. 12 - Screenshot of a new inserted quest. ... 109
Fig 4. 13 – A: Selecting a quest from the list; B: Modifying the quest data. .. 109
Fig 4. 14 – Opening a saved file with the application. ... 110
Fig 4. 15 – Screenshot of the Dialog Manager tool. .. 111
Fig 4. 16 – Creating a new dialog on Dialog Manager tool. .. 112
Fig 4. 17 – A: Dialog information on Dialog Manager; B: Dialog information loaded into the game.

 ... 113

xiv

Fig 4. 18 - Screenshot of the error message showing-up. ... 113
Fig 4. 19 - Screenshot of a new inserted dialog. ... 114
Fig 4. 20 – A: Selecting a dialog from the list; B: Modifying the dialog data. ... 114
Fig 4. 21 – Screenshot of the Terrain Creator tool. ... 116
Fig 4. 22 – Painting the heightmap with different pen sizes and height levels. 117
Fig 4. 23 – Erasing the heightmap with the eraser tool. .. 117
Fig 4. 24 – Loading texture files to the terrain. .. 118
Fig 4. 25 – Terrain successfully created. ... 119
Fig 4. 26 – Created terrain on Autodesk 3Ds Max. .. 120

 xv

List of Tables

Table 1 - Companies that developed titles using RPG Maker. .. 23
Table 2 - Companies that developed titles using NeoAxis Engine. .. 27
Table 3 - Companies that developed titles using Unity 3D Engine. .. 35
Table 4 - Companies that developed titles using Unreal Engine. .. 48
Table 5 – Clean World development team. .. 51

 xvii

Acronyms

AI : Artificial Intelligence

CAD : Computer-Aided Design

DLL : Dynamic Link Library

FPS : First Person Shooter

GML : Game Maker Language

GUI : Graphic User Interface

IDE : Integrated Development Environment

LOD : Level of Detail

RPG : Role Playing Game

RTS : Real-Time Strategy

TPS : Third Person Shooter

Chapter 1 - Introduction

 1

1. Introduction

1.1. Focus

Presently, specific software tools for game creation are a very

important part of the game development process. These tools enable users

to create functional games, with little or none programming. The user

should be able to import the assets to the game, define the game logic,

and behaviors he desires to see. In the end, these software tools should be

able to produce the source code of the game, compile it, and create a full

and playable game, based on the instructions given by the user.

This kind of software has two main applications:

 usage by hobbyists with little or none knowledge in

programming;

 usage by professionals in order to increase productivity in the

game development process;

Nowadays, we have several examples of this kind of tools being used

both by professionals and hobbyists. One example of a professional tool is

the UDK [1] from the Epic Game [2]. This tool allows users to define the

game logic and rules, materials, animations, particle behaviors, among

other possibilities, without programming a single line of code. Such

powerful tools make the game development process and the deployment

easier. There are also several examples of this kind of software for

hobbyists use, like the RPG Game Maker [3], or the Game Maker [4].

However, these tools don’t have the power or complexity of the UDK, being

simpler and friendlier to the user.

Introduction – Objectives

2

This dissertation presents a 3D game, as well as some tools to improve

the game development process. These software tools allow the game

developers to produce content for the games, with a simple interface and

at the same time the power of a fully functional 3D game engine.

1.2. Objectives

The main objective of this dissertation is the creation of software

tools to improve the creation of 3D games. Besides, the author collaborated

in the development of a 3D game which participated in Microsoft Imagine

Cup 2012, on the game design category for Xbox360 and PC. This game was

developed in XNA and the software tools were created to improve de

development process of this game.

To accomplish this main objective, the following partial objectives

were identified and performed:

1. Creation a story of the Clean World game;

2. Creation of the 2D and 3D content of the game;

3. The development of software tools to improve some tasks of

the development process of the Clean World game;

4. Evaluation of the developed tools.

1.3. Main Results

This section is devoted to present the main results obtained in the

scope of this dissertation.

The first result was the participation in the Microsoft Imagine Cup

2012, in the Xbox/PC category, with Clean World, that was classified in 7th

place on the worldwide finals. Note that our team was the first Portuguese

team reaching the worldwide finals in game design.

The second result was the software tools developed to improve the

Chapter 1 – Dissertation Structure

 3

process of game creation. There tools are also presented in a paper

submitted to Videogames 2012. Besides, a demo of Clean World was also

submitted to Videogames 2012.

1.4. Dissertation Structure

This dissertation is organized in 5 chapters. This chapter, the first,

presents the context of the dissertation, focusing on the topic under study,

the objectives, the contributions and presents the dissertation structure.

Chapter 2 elaborates on the related work about the topic, focusing on

the existing software tools used nowadays, both by the game industry and

by the hobbyists.

Chapter 3 presents the contribution to the creation of a fully

functional 3D game (Clean World), as well as the creation of all game

contents.

Chapter 4 focuses on the development of specific software tools to

improve the development process of Clean World, as well as the creation of

the game content using these tools.

Finally, Chapter 5 presents some conclusions, and points some

directions for future research works.

Related Work – Introduction

4

2. Related Work

2.1. Introduction

Games are almost as old as Man itself, the relationship between this

two started millenniums ago. The ―Royal Game of Ur‖, which dates from

the middle millennium B.C., is the oldest board game known until today.

Other example of how ancient is this relationship between Man and games

is the ―Baoying-Xiangqi‖, the oldest chess game in History [5].

Initially, the number of exiting games as very low. The development

process was very slow, since they were handcrafted, which created several

difficulties in manufacture. The few that existed, also had difficulties

spreading among societies, since the communication among people that

time was hard [6]. However, with the Industrial Revolution, this reality

changed. With the use of machines was now possible to do a large-scale

manufacturing of games. Due to this large-scale production, many game

like Monopoly (1903) and Detective (1947) were later launched, having

much success among the communities.

However, the reign of board games didn’t last forever. In 1952 and

1958, with the creation of the first computer game (OXO) and videogame

(Tennis for Two) respectively (see figure 2.1), a new era started, the era of

electronic games. During the 80s, these new forms of digital entertainment

started to took over the market, and the board games lost ground to the

digital games.

Chapter 2 - Related Work

 5

Fig 2. 1 - A: 1952, OXO/Noughts and Crosses (Tic-Tac-Toe); B: 1958: Tennis for Two.

The market of digital games is a growing sector, moving a volume of

11.7 billion dollars in the year of 2008 only in the USA. The growth of this

industry surpassed the 200% in the past 10 years [7], making the game

industry an essential part of the entertainment industries.

We can tell how successful a game is by how much it enthralls his

user. Development companies struggle to produce games that capture the

players’ attention in such way, that their perception of time and sense of

self becomes distorted or forgotten [8].

In the last three decades, the consumer video game hardware has

evolved from simple 8-bit processors, some dedicated display logic and a

few kilobytes of memory to high clock rate multi-core processors coupled

with a programmable graphics unit, large memories, high definition

audio/video output, and sophisticated user input devices. This tremendous

increase in capability leaded to an increase in the sophistication of games.

Since the need to create complex projects has risen so greatly, the project

team sizes are now over hundred people, instead of a couple programmers

[9].

This evolution has drawn the game development from basements,

where it all started years ago, to multi-national companies that created a

business that rivals with Hollywood. Unfortunately today, the computer

hobbyist that started the creation of electronic games find too difficult to

Related Work – Video Game Development

6

create their own games, mostly because they want to create something

similar to what is done in the industry, but the task is too complex.

2.2. Video Game Development

The development of video games projects has several characteristics

that differ from typical projects of software development. For start, games

are software that has the purpose of entertaining, they have multimedia

contents that are similar to those used in movies. That’s the reason why

today game industry uses multi-disciplinary teams and has the need to

adapt itself to the constant changes in the market, having to assimilate

quickly the new tendencies and technological innovations. Besides, the

complexity and specificity of the game usually dictates the way this one is

produced [10].

Diverse assets such as 3D models, textures, animations, sound, music,

dialog, video and other resources are integrated in the game by the

development pipeline. These multimedia assets are created by specialists

that work together with the programmers in other to create the code

framework in which all assets fits.

During the development of the game, several tools can be used, such

as software engines for physics or third party software for modeling and

character animation. Sometimes it’s even needed to code some plug-ins for

this other specialized tools, in other to import the assets into the game

[11].

An example of how massive a video game project can be is BioShock

[12] (see figure 2.2). It took three years to develop, employed 93 in-house

developers, 30 contractors, and 8 on-site publisher testers. In the end, the

final result was a total of 3,775 files for the game, 758,903 line of native

C++ code, and 184,144 lines of script code.

Chapter 2 - Related Work

 7

Fig 2. 2 – Screenshot from the game BioShock.

So, in order to consider some of the unusual factors that are not

present in traditional software development, the called multi-disciplinary

teams were created. However, the team organization varies from company

to company. These teams are usually segregated by specialty, for example,

a programming group and a design group. These groups can have sub-

groups, such as an AI team or a texture team. A common practice is to put

an experienced employee in the area in charge of one team.

Still, some companies are adopting a more agile style and have broken

down the traditional groups to create functional units. An example of this

can be a unit composed by two programmers, one texture artist and one

animator [11].

Some typical designations that are used to refer each member of a

game development team are the following [10]:

 Producer: Is the one in charge of planning the game and follow the

development process. The producer works both internally and

externally, trying to create a connection between the development

Related Work – Video Game Development

8

team and the clients/sponsors of the game. The producer should

have a macro vision of the project, getting involved in all its aspects.

 Artist: Is the one who creates all art material for the game. There

are several specializations, such as animator, or 2D artist. The artist

helps to define the visual identity of the game, the conception of the

characters, the textures, the 3D modeling, etc.

 Game Designer: Is the one responsible for creating the artist

conception of the game, in a similar way to what is done in a movie.

This activity requires great knowledge about games in the market.

It’s also he’s job to make sure that all pieces of the game are put

together in a coherent way, so the final product can be fun and

changeling.

 Programmer: The programmer is the one responsible for creating the

source code of the game. They can do several activities related to

game programming, like creating the code needed for render, the

physics programming, the code for the sound system, the code for

the AI, etc.

 Sound Engineer: Is the one that creates the audio material for the

game, both sound effects and soundtrack. He works with a team of

artists in other to create the audio-visual identity of the game, based

on the info given by the game designer.

 Quality Engineer: His job is to make sure that the final game has

enough quality for the standards of the market. He makes tests to

the source code of the game and also to the gameplay. This role has

been getting more and more significance due to the need to reduce

the number of flaws in software, in order to increase quality.

Chapter 2 – Related Work

 9

2.3. Game Engines and Frameworks

During the game development, according to the design and

implementation, the production of the game can become highly expensive

[13]. In order to change this situation, new approaches were used in game

development, using available game engines and frameworks [14] [15].

In the past, games were developed line by line using a programing

language or a scripting language. Using this tedious process means that the

code used in games was not able to be reused [16]. The fast development

of the computer technology made this technique over past, nowadays there

is a new form to design games: the game engines.

Game engines work for games just like a car engine works for a car

[17]. Like in cars, based on the engine, we can produce different models

with different body style and colors. The same happens with game engines,

allowing us to create a variety of games with different characters, scenes

and stories.

Using game engines makes the task of design games easier, since we

no longer have to design the game from scratch. Game engines are

frameworks for games, that after inputting codes about storyline, setting

control information, the sound, the 3D assets, etc., a game can be created.

However, the choice of the engine is important in order to carry out level

design, animation design and modeling [18]. It’s also important to consider

that most engines are turned into a particular content style. For example,

if we use a game engine tuned to flight simulators, we may have poor

results using it in a game placed in tunnels and dungeons [19].

Usually, we can define a 3D game engine the following way: It’s a mix

of several engines that allow the programmer to manage the game assets,

like sound and music, but also gives power to the programmer to control

the game artificial intelligence, the game physics, or the collision detection

system. We can define its outputs as graphics, music, and sound effects,

Related Work – Game Engines and Frameworks

10

and the input is given by the input device, which can be a controller, a

keyboard, or even a sensor. It provides the algorithms to perform several

tasks, like making a character move, control the topography of the terrain,

manage the artificial intelligence of the game NPCs (Non Player

Characters), or even support and monitor the network [20].

A 3D game engine has several components, let’s look at the function

of each component briefly:

 Rendering Engine: The rendering engine represents the object in the

screen. The two major libraries available for PC are DirectX by

Microsoft, and OpenGL by Silicon Graphics Inc.

 Animation Engine: Is the engine responsible for all character

animation in the game. The majority of the engines use limp ragdolls

for animations, however, some new animation engines like Euphoria

[21], employ more complex methods to animate the entirety of

physically bound objects within the game environment.

 Physics Engine: It provides an approximate simulation of certain

physical systems, for example: rigid body dynamics, including

collision detection; soft body dynamics; and fluid dynamics. We can

separate the physics engine into two categories: real-time and high-

precision. High-precision is usually used in animated movies, since it

requires more processing power. On the other hand, real-time physics

engines are used in computer games and other forms of interactive

computing since simplified calculations and decreased accuracy are

used to compute in time for the game to respond at an appropriate

rate for gameplay.

 Artificial Intelligence Engine: It’s the responsible for creating the

illusion of intelligence in the game. This engine controls the NPCs

(Non Player Characters), and defines their behavior during the

gameplay. It’s also the responsible for the implantation of path

Chapter 2 – Related Work

 11

finding algorithms, which consist in methods for determining how to

get an NPC from one point on a map to another.

 Network Engine: The network engine is the one that manages the

network in online games. Makes each user contact the server sharing

one space and interaction based on network. It usually includes a set

of algorithms for communications between players, the possibility to

create rooms and matches, and also manages the game updates.

 3D Sound Engine: The 3D sound engine generates the game sound

data to the game progress state. This audio technology uses several

techniques to simulate depth in sounds. With stereophonic audio

systems, where sounds could only be heard from the left or right,

there’s no depth notion. The 3D sound engine focus in positing sounds

in three dimensions, making the game experience more realistic.

Some game engines possess tools for map editing and animation;

however, most of these tools are complex for newcomers to use.

Nevertheless, some game engines don’t have a graphic interface, which

means that all the work like putting a 3D model in a specific location must

be done by code.

Related Work – Game Development Tools

12

2.4. Game Development Tools

We will refer to game development tools to software build over game

engines that allow users to create their own game with little knowledge of

programming. Typically, this software present an interface based on drag

and drop operations, giving the user an intuitive and simple way for

creating games.

Some of the software even allows the more advanced users to do

some programming using simple script language. However, the

modifications that they can do to the engine are usually very limited.

There are several of these tools on the market today, some of them

quite simples to use, like the Game Maker [4] developed by Yo Yo Games

[22], The 3D Gamemaker [23], developed by The Game Creators [24],

CopperCube [25] from Ambiera [26], 3D Rad [27] a freeware development

tool, and probably the most well-known and more powerful, the RPG Maker

[3] from Enterbrain [28].

However, there are also some professional engines that use a set of

tools to help in the game creation. Most of these tools are more powerful

than the ones mentioned earlier, and come integrated with the game

engine. Each tool is responsible for a very specific task in the development

process. Some examples of engines that use these kinds of tools are

NeoAxis Engine [29], Unity 3D [30], and UDK [1].

Chapter 2 – Related Work

 13

2.4.1 . Game Maker

The Game Maker [4] is an IDE for Windows and Mac, created by Mark

Overmars in 1999. Was developed using the programing language Delphi

and it is currently developed and published by Yo Yo Games [22].

The Game Maker allows users to create their own computer games

without any knowledge of programming languages. However, it allows the

more advanced users to create more complex games, using a build-in

scripting language.

The first version of Game Maker was called Animo [31] and was a

software tool specialized in 2D animation. Each release of Game Maker

added new features and improved stability, making the software gain

popularity. In 2001, the version 3.0 implemented DirectX for the first time.

The Game Maker 8 was released on 22 December 2009, and added new

features such as a revamped script editor, an improved image editor, and

the ability to import and export resources from game source files.

The user interface (see figure 2.3), uses a drag-and-drop system,

allowing users unfamiliar with traditional programming to intuitively create

games visually organizing icons on the screen. These icons represent

actions that would occur in the game, such as movement, basic drawing,

and control structures.

Related Work – Game Maker

14

Fig 2. 3 – Screenshot from the interface of Game Maker.

There are two versions of Game Maker: the Lite and the Standard.

The Lite versions are free to use, while the Standard requires purchase.

The difference between these two lies on the fact that Lite locks several

advanced features and functions, such as the ability to include DLLs,

particle systems, advanced drawing functions, 3D graphics and network

multiplayer. All these features are unlocked on the Standard version.

The Game Maker was primarily developed for 2D graphics, however,

since version 6.0 (Windows), the software added Direct3D, allowing the use

of limited 3D graphics. On the Macintosh versions 7.0 and superior, is used

OpenGL. Extension packages such as OGRE [32] can be added to increase

the 3D functionality.

The Game Maker uses its own scripting language, GML. This language

allows advanced users to further enhance and control the design of the

game through convectional programming. The syntax of GML is similar to C,

C++ and Java.

Chapter 2 – Related Work

 15

2.4.2. The 3D Gamemaker

The 3D Gamemaker [23] is a software tool developed by the company

The Game Creators [24]. This piece of software allows users to create

simple shooter/adventure games for Microsoft Windows. This tool doesn’t

require any programming or art knowledge, however, the users can add

custom media to their creations using DarkBASIC [33] programing language.

Just like The 3D Gamemaker, DarkBASIC was created by the company

The Game Creators. This programming language is a structured form of

BASIC and has the purpose of game creation using Microsoft DirectX. It is

faster and easier to use when compared with other languages, but it’s also

less powerful.

The 3D Gamemaker has a built-in editor that allows users to indicate

the position of enemies, items and obstacles (see figure 2.4). Still, this

option is not available on the beginner mode or lite edition. There are also

other tools in this software, like a simple level creator.

This software is usually a bad choice for most users; since it has poor-

quality models, very limited customization options, and the games created

by the software are made from a series of pre-built parts than can be

combined later on. It is more recommend for children who want to create

simple games.

Related Work – CopperCube

16

Fig 2. 4 – Screenshot from the interface of The 3D Gamemaker

2.4.3. CopperCube

CopperCube [25] is a powerful 3D engine/editor from Ambiera [26]

(see figure 2.5), that can be used to create full functional games. This

software can deploy for Flash, WebGL/JavaScript, Windows, and Mac OS X.

This software is more focused on the creation 3D scenes, however, it gives

the possibility of creating games by allowing the use of scripting.

The software allows the users to import their 3D assets. It supports

many file formats, and since version 3.0, the editor also supports low poly

editing, this means that the users can create and edit their 3D models

without any third party software usually used for that task.

Chapter 2 – Related Work

 17

Fig 2. 5 – Screenshot from the interface of CopperCube.

CopperCube also supports skeletal animation for 3D characters. The

meshes can have an unlimited number of joints and unlimited unmounts of

weights. The 3D characters can be animated in any animation software and

then imported to CopperCube.

The deployment on the various platforms that CopperCube supports is

also very straight forward. With just one click of the user, the 3D scene can

be deployed to any of the supported platforms. When publishing,

CopperCube uses OpenGL, DirectX, WebGL or Stage3D/Molehill to render

the scenes. There’s also a lightmapper build in the editor that enhance the

appearance of the 3D scene. This tool is very easy to use and includes

features like global illumination effects.

CopperCube supports scripting, events and actions. For example, the

software has a built-in event/action system. This allows the user to define

actions, like playing a sound when entering a certain area, without any

programming needed. If the user is publishing for Windows platform, then

it’s possible to use JavaScript. The same happens with Flash, allowing the

user to use ActionScript 3.

Related Work – 3D Rad

18

CopperCube already contains some pre-created game AI behaviors and

actions. Just with a click, the user can define the game characters and the

enemies.

2.4.4. 3D Rad

3D Rad [27] it a freeware software used for the creation of 3D games.

This software was designed for non-coders, and aims to provide the

simplest development workflow possible, without sacrificing flexibility.

The 3D Rad editor is based on a collection of components, called

objects, which can be put together and configures in several ways. This

allows the creation of games without coding a single line. However, for

more advanced users, 3D Rad supports scripting via AngelScript [34], an

extremely flexible cross-platform scripting library designed to allow

applications to extend their functionality through external scripts.

The editor of 3D Rad (see figure 2.6), is almost entirely mouse-driven,

making it very simple to use.

Fig 2. 6 – Screenshot from the interface of 3D Rad.

The object types that 3D Rad uses are based on geometry, like

static/animated meshes or physics objects, can be visually combined in a

Chapter 2 – Related Work

 19

preview of the scene. Plus, object types such as forces, joints, springs and

wheels can also be visually configured. Certain event-objects, like tracing

detection zones, can be edited visually.

3D Rad possesses a series of visual effects such as fire, smoke or water

that are already defined in the editor. Also, some post-processing effects

can be created by configuring the camera.

This software supports several file formats for the assets, has two

modes for games, first person and third person, and has some simple AI

already configured, for example for characters, however, for more complex

IA is recommended the use of scripting.

2.4.5. RPG Maker

RPG Maker [3] is probably the most successful piece of software used

by hobbyists in game development. It’s a series of programs for the

development of 2D RPG games, created by the Japanese group ASCII, and

then continued by Enterbrain [28].

In opposite to what happens with the software seen in the previous

sections, RPG Maker, also known in Japan by the name of RPG Tsukūru,

focus in one particular game genre, the RPG’s. This software allows its

users to create their own full RPG games.

RPG Tsukūru Dante 98, released on December 17, 1992, was the first

of the RPG Maker series. Later, it was released RPG Maker 95, which was

the first Microsoft Windows based version. Although it was early version,

RPG Maker 95 had a higher screen resolution, and higher sprite and tile

resolution than some of following versions.

RPG Maker 2000 (see figure 2.7), was the second release of the

software for Microsoft Windows, and is the most popular and used version

so far.

Related Work – RPG Maker

20

Fig 2. 7 – Screenshot from the interface of RPG Maker 2000.

The next version of the software released was RPG Maker 2003, this

time developed by Enterbrain, which had previously been a part of ASCII.

This version was a largely improvement of RPG 2000, and introduced a new

battle system with side-view (see figure 2.8), similar to the one used on the

classic Final Fantasy games.

Fig 2. 8 – A: Screenshot from the battle system of RPG Maker 2003; B: Screenshot from

the battle system of RPG Maker VX.

Chapter 2 – Related Work

 21

However, the big breakthrough in the series was in RPG Maker XP and

its successor, RPG Maker VX. These versions allow the more advanced users

to use scripting in Ruby (see figure 2.9), making these versions very

powerful. Additionally, these versions have more control over sprite sizes,

since there is no longer a specific image size regulation for sprite sheets,

like in previous versions. Also, some other aspects of the game design

where improved.

Fig 2. 9 – Screenshot from the script editor of RPG Maker XP.

RPG Maker series interface (see figure 2.10), is quite simple and very

straight forward, even to newcomers. It includes a tile set based map

editor, called chipsets in versions previous to RPG Maker XP, a simple

system of creating events and applying the basic logic operations, and a

battle editor. All versions include premade tilesets, characters, and events.

However, the users can upload to the date base their own titlesets and

sprites, allowing then to customize the game experience.

Related Work – RPG Maker

22

Fig 2. 10 – Screenshot from the interface of RPG Maker VX.

The big success of the RPG Maker series is no doubt related to the

simplicity of the interface and the ability of completely customize the

games created by this software. If this software was originally designed for

non-coder hobbyists, since the software allowed the use of Ruby as

scripting languages, several independent game development companies

have been using RPG Maker to create commercial games, which are

distributed by Big Fish Games [35], IGN Entertainment [36] and

GamersGate [37]. In the following table we present some of the companies

that use RPG Maker and some of the games created by them.

Chapter 2 – Related Work

 23

Table 1 - Companies that developed titles using RPG Maker.

Independent game development

companies

Developed game titles

Aldorlea Games [38] Millennium [39]

Amaranth Games [40] Aveyond Series [41]

Blossomsoft [42] Eternal Eden [43]

Over Cloud 9 [44] Arevan [45]

Sherman3D [46] Alpha Kimori [47]

2.4.6. NeoAxis Game Engine

NeoAxis Game Engine [29] is a complete game engine with all the

feature of a modern 3D game engine. This software can be used to create

all types of games, from casual games to AAA games. This engine can be

used on Microsoft Windows together with Microsoft Visual Studio for

development, and can deploy to several platforms, like Microsoft Windows

XP/Vista/7, Apple Mac OS X, and Linux. In development are the deploy

possibilities for Apple iOS, Google Android, and Google Native Client.

NeoAxis has a unique game object system that is used to construct the

game logic as well as the behavior of the world elements and the way they

interact with the player. In NeoAxis everything is a game object whether it

is a robot, a crate or a landscape. This is done by a well-defined class

hierarchy (see figure 2.11), that allow programmers to create or modify

game components according to their needs. This edition is done via C# on

Visual Studio.

Related Work – NeoAxis Game Engine

24

Fig 2. 11 – Game class hierarchy used by NeoAxis Engine.

Engine also has a wide range of pre-made base classes for rapid and

intuitive development of games. Some of this classes feature the following

capabilities of the engine:

 Water surfaces with physical influence and splashes;

 Cut scene manager that enables the creation of cut scenes in the

game;

 Units divided in characters and vehicles. This allows the creation of

any unit types, such as characters, tanks, turrets, etc.;

 The ability to create factions for unit groups with some generic IA

and path finding algorithms ;

 The Creation of weapons, bullets and physical explosions;

 Several types of doors, including automatic doors;

 A Boolean switch system;

 Start and respawn points. Different start points and helpers for

units and other objects;

 Physical streams;

 Camera management system with various pre-programed cameras;

Chapter 2 – Related Work

 25

NeoAxis Engine already includes a framework of game types. This

framework allows the users to create functional prototypes quickly. Some

of the game types included in the framework are: first person shooter with

multiplayer support; real-time strategy; and third person shooter.

However, what makes NeoAxis Engine such a good engine for indie

developers is the unique set of tools that provides to assist during all the

processes of game development.

The Expandable Map Editor (see figure 2.12), is a powerful tool for

placing objects and creation of game scenes with full undo/redo support.

This editor gives to the developer control over all elements of in-game

environment from a graphical viewpoint. In this software is possible to

create, place, size, scale and rotate individual game objects, as well as

view and modify any of the properties of those objects. The user can easily

edit the parameters for static objects, terrain, characters, light sources,

water, sky, and other objects in the scene.

Fig 2. 12 – A screenshot from the NeoAxis Engine map editor tool.

Another tool that the developers will use a lot while working with this

engine is the NeoAxis Game Object Editor (see figure 2.13). This editor

Related Work – NeoAxis Game Engine

26

allows the configuration of all types of game objects, and to adjust objects

visually. It includes appearance creation, configuring physics, particle

systems, and all other attributes of game objects visually.

Fig 2. 13 – A screenshot from the NeoAxis Game Object Editor.

These two pieces of software are definitely the main tools of the

engine; nonetheless, there are other tools available to assist the developer

in the game creation, for example:

 GUI Editor: The Graphic User Interface Editor is intended for the

creation of end-user controls, menus, dialogues, windows, HUD

screens and in-game 3D GUI.

 Expandable Material Editor: A visual tool for designing materials and

shaders.

 Physical Model Editor: Allows the developers to visually configure

physical behavior of game objects.

 Particle System Editor: A tool designed for the creation of various

particle systems.

Chapter 2 – Related Work

 27

 Terrain Editor: A landscape design tool that supports geometry

editing and painting of alpha layers onto terrain to control blending,

collision data, and support of detail and normal maps.

 Static Lighting Calculation Tool: A static lighting calculation tool

with Lightmaps and Irradiance Volume support.

 NeoAxis Exporter: An exporter that can be installed on Autodesk 3Ds

Max and Autodesk Maya to convert the files to the format used by the

engine.

As it was mentioned earlier, NeoAxis Engine is most used by indie

developer companies. In the following table we present some of the

companies that used this engine and some of the games created by them.

Table 2 - Companies that developed titles using NeoAxis Engine.

Independent game development

companies

Developed game titles

OHBA [48] Homura Combat [49] (Third Person

Shooter, Arcade Game)

Dream Dale [50] Elementary My Dear Majesty! [51]

(Casual Game, Hidden Object)

Makivision Games [52] Sacraboar [53] (Real-Time Strategy)

Donsoft Entertainment [54] Capoeira Legends: Path To Freedom

[55] (Action/Beat'em Up Game)

Magrathean Technologies [56] SickBrick [57] (action-oriented Sci-Fi

FPS)

Magrathean Technologies [58] Incognito [59] (Space Adventure

Game)

Clockwork Brains [60] Plyushkin Syndrome [61] (Arcade

Game)

Related Work – Unity 3D

28

2.4.7. Unity 3D

Unity 3D [30] is other game engine that is an integrated tool for the

development of 3D games. Unity's development environment runs on

Microsoft Windows and Mac OS X, and the games created by this tool can

run on Windows, Mac, Xbox 360, PlayStation 3, Wii, iPad, iPhone, Android,

and, in a near future, on Linux. This tool consists on an editor for

developing/designing content and in a game engine for executing the

game. Unity won the Wall Street Journal 2010 Technology Innovation Award

[62] in the software category, and the number of developers using this

software is estimated to be around 500,000.

There are two versions of Unity 3D, the standard version, and the Pro

version. Unity 3D Pro is more powerful and has more features than the

standard one, however, we will focus our attention on the second one,

since is free and the most used.

In terms of rendering, Unity 3D takes advantage of a new deferred

rendering pipeline, which is a three dimensional shading technique where

the result of a shading algorithm is calculated by dividing it into smaller

parts that are written to intermediate buffer storage, the G-buffer. This

information is combined later, instead of immediately writing the shader

result to the color frame buffer. The use of deferred rendering allows the

engine to support a big quantity of dynamic lighting.

The engine already has 100 build-in shaders, that ranger from Diffuse

and Glossy, to more complex ones, like Self Illuminated Bumped Specular.

Unity 3D also uses Surface Shaders, a new simplified way to use author

shaders for multiple devices and rendering paths. The engine also uses

scalability to make sure that the advanced shader effects will run well

across all target hardware.

Unity also has a large collection of full-screen image post processing

effects built in, like Sun shafts, high quality depth-of-field, lens effects,

curve-driven color correction and others.

Chapter 2 – Related Work

 29

Regarding the performance of the engine on rendering, Unity 3D uses

a process called batching. Basically, the engine automatically combines

geometry into batches, which significantly minimizes driver overhead while

retaining full flexibility. It also has LOD support to manage meshes with

several levels of detail.

In terms of lighting, Unity 3D presents soft and hard real-time

shadows. These shadows can be cast from any light in the scene, and a

variety of strategies is used to make them the fastest as possible and even

work on old computers. With the linear space lighting and HDR, is possible

to create games with stunning looks since the multi-threaded renderer is

able to render the scenes with ease.

However, probably one of the best features of this engine is the light

mapping (see figure 2.14). This features gives to the developer total

control over the game ambience.

Fig 2. 14 – A screenshot from Unity light mapping editor.

Unity light system also supports light probes, in order to give life and

realism to light mapped scenes without the high cost of typical dynamic

Related Work – Unity 3D

30

lights. Dual light mapping is also supported. One light map is used for

faraway stuff, while another contains only bounce light. This allows models

to integrate nicely with created light maps. Unity 3D is also capable of

creating the UV maps on its own, this means that the developer doesn’t

need to unwrap unless he wants to.

In terms of terrain creation, Unity 3D also provides a set of tools to

make this task easier. The unity in-editor tool allows the user to carve,

raise, and lower sweeping and mountainous terrains. The engine supports

tiled textures, which can be blended and combined with a collection of

accurate tools. This allows a handful of low-resolution textures to make

diverse types of terrains. The light map features seen previously can also

be used in terrains.

Unity's terrain engine is extremely easy to use and allows the user do

specific task like painting trees, ground debris, and blades of grass. All of

this with configurable distances for foliage rendering transitions to

billboards in order to obtain the maximum performance.

The terrain creator works together with the tree generator. This tool

allows the developer to use a mix of procedural generation and hand

placement freely across different parts of the generated trees. The user

can add branches twigs and leaves in real-time, rearranging the tree

hierarchies with simple drag and drop operations. Assigning textures to the

trees is also an easy task. The user just needs to assign the leaf and branch

and twig materials to the tree. Unity engine will automatically atlas all

textures together and bake the maps. It also calculates the ambient

occlusion and wind factors for the tree. The engine also optimizes the leaf

quads from the texture automatically, giving 20% to 30% of fill rate

optimization.

Unity 3D uses the powerful physics engine NVIDIA® PhysX® [63].

Basically, we can divide the physic in Unity in five groups:

 Cloth: Inside the cloths, we can have two types of simulation,

Interactive Cloth that interacts fully with the rest of the

Chapter 2 – Related Work

 31

environment; or Skinned Cloth, which is an optimized solution for

garments on animated characters.

 Soft Bodies: creates soft bodies from objects, for example, semi-

deflated objects that interact realistically with the environment.

 Rigid Bodies: enable the game objects act under the control of

physics. The rigid body can receive forces to make your objects move

in a realistic way with no scripting required.

 Ragdolls: with the ragdoll wizard it’s possible to set up a full ragdoll

from animated character in seconds. The user can tweak the ragdoll

as needed in order to get unique behaviors.

 Joints: Unity processes several types of joints, like hinges, springs,

ball-sockets, character limbs, and fully-customizable configurable

joint.

 Cars: Unity uses a dedicated wheel collider to accurately simulate

the traction model of real car tires.

Unity 3D also has some build path finding algorithms to turn the

developed games more realistic. The user just needs to define the

boundaries of any navigable space, and the engine will do the rest.

The audio on Unity 3D is managed by the FMOD [64] audio engine,

using its tool to do the necessary editing and treatment of the audio files.

In terms of scripting, Unity 3D supports three scripting languages:

JavaScript, C#, and Boo (a dialect of Python). All three are equally fast and

can interoperate, making use of .NET libraries that support databases,

regular expressions, XML, networking and so on. The engine game logic runs

on Mono [65], an open source .NET platform.

Like it was mentioned before, Unity 3D is an integrated tool, this

means that the Unity editor (see figure 2.15), works together with Unity

game engine, allowing the editor to do everything a published game can

do. The user can instantly run the game inside the editor and preview how

it behaves on the several platforms. It’s also possible to alter values,

assets, and scripts on real time, this give to the developer a change to test

Related Work – Unity 3D

32

a different gameplay mechanic or just to see how another material might

look like in scene.

Fig 2. 15 – A screenshot from Unity Editor interface.

To simplify the frequent use of complex objects, Unity 3D allows the

use of Prefabs, which are similar to macros. This feature can then be easily

placed throughout the game or instantiated at runtime. Any changes done

to the original prefab are propagated to all dependents; this means that

major and minor adjustments can be made very quickly on a large number

of instances.

Unity asset manager helps the developers to organize the assets while

working on large projects. The project browser shows everything with

interactive previews, tagging and searching.

Unity editor allows the developer to design worlds due to its building

tools. These set of tools help the users to assemble assets and set up the

Chapter 2 – Related Work

 33

game environments. With operations of drag and drop, it’s possible to bring

meshes into Unity, and then, with other drag and drop operation, to the 3D

world. To preview the game world created, the developer just needs to

press the play button. It’s also possible to easily add primitive meshes, like

spheres, boxes, and capsules to define trigger zones in the game world.

Unity helps the developer to visualize these meshes, position, scale and

rotate them as he wishes.

The editor is extremely flexible; it enables the user to set-up layouts

simply by dragging tabs to the desired position, and a full range of features

such as grid (see figure 2.16), and surface snapping allows the user to

quickly and accurately position the objects. With the vertex snapping tool

objects can be positioned exactly where the developer needs them to be.

Fig 2. 16 – A screenshot from Unity editor grid feature.

Related Work – Unity 3D

34

Unity's Asset Pipeline supports all major formats used by CAD

applications. All assets in a Unity Project are automatically and

immediately imported upon save, whether they are 3D models, animations,

textures, scripts, or sounds. The assets can be updated at any moment,

even while playing the game inside the editor.

Unity 3D includes a curve and gradient-driven modular particle system

tool editor called Shuriken (see figure 2.17). With this editor, the

developer can easily adjust individual parameters of each particle system

via Shuriken. It’s possible to playback a selected particle system, pause it

at any point in time to adjust any parameters, and then play it again to

instantly see the modifications. It’s possible to group individual particle

systems into Particle Effects in order to synchronize the systems. Unity also

provides a Particle Editor to manage potentially complex Particle Effects.

This is accessible via the Inspector View, and allows the user to toggle

curves on and off.

Fig 2. 17 – A screenshot from Shuriken.

Chapter 2 – Related Work

 35

A vast list of games has been created using Unity 3D, both for mobile

platforms such as iPhone or Android, for portable consoles like PlayStation

Vita, and for platforms where we are costumed to see AAA games like Xbox

360, PlayStation 3 or desktop computer. In the following table we present

a small list of game companies that used this engine and some of the games

they produces using the tools given by Unity 3D.

Table 3 - Companies that developed titles using Unity 3D Engine.

Independent game development

companies

Developed game titles

GameArt Studio GmbH [66] A.I. Invasion [67] (MMO)

Crescent Moon Games [68] Aralon: Sword and Shadow [69]

(RPG)

Bigpoint [70] Battlestar Galactica Online [71]

(Adventure)

NPlay [72] BeGone [73] (Shooter)

SilverTree Media [74] Cordy [75] (Adventure)

Limbic Entertainment [76] Dungeon Empires [77] (RPG)

Fun Bits [78] Escape Plan [79] (Adventure)

2.4.8. UDK

UDK [1] stands for Unreal Development kit, and just like Unity, it’s a

game-making software, resulting of a collection of development tools, such

as editors, scripting systems and compilers. Every game created by this

software is powered by Unreal Engine [80], a game engine developed by

Epic Games [2]. UDK consist on two fundamental pieces: the Unreal Engine

and the development tools (see figure 2.18).

Related Work – UDK

36

Fig 2. 18 – UDK structure.

The first version of UDK was released in 2009 and marked an

important milestone in game development history [81]. For the first time a

AAA standard game engine was made available both for hobbyists and

independent game developers.

Nowadays exit two different releases of Unreal Engine and its

development tools. One is used by engine licensees, given access to the

development tools and the engine C++ source code. The second version is

UDK, which contains the features of the Unreal Engine and its tools, but no

access to the source code. Although UDK does not allow developers to

access the engine source code, the engine can be customized through

UnrealScript.

UDK differs from Unity in several aspects, but mainly on its

workflow. Unlike what happens in Unity, where there is an integrated

environment, UDK is composed by several applications that work

separately.

UDK Editor (see figure 2.19), is the main editing tool in UDK. It’s

here that developers spend most of its time. It offers a powerful and

flexible GUI that can be controlled by mouse and keyboard. UDK Editor is

composed by several sub-editors. Let’s take a look at each one of these

parts more closely.

Chapter 2 – Related Work

 37

Fig 2. 19 – Screenshot from the UDK editor interface.

The focus of the UDK Editor is the Level Editor. This tool allows the

developers to build the game world by drag and drop operations of 3D

assets into the 3D environment. Each new element added to the game

world is called actor. After importing a new actor to the 3D environment,

the developer can select it, position it, orientate it and scale it. The Level

Editor also offer a set of tools including the typical Copy, Paste and Delete,

as well as organizational tools for naming and fiddling actors, or even

grouping actors. The Level Editor also offers real-time previewing of the

game levels.

The Matinee Editor (see figure 2.20), is the tool responsible for all

animation on the game levels, being the interface of the Unreal Animation

System. Here, the developer can create and edit key-frame animations for

the actors in the game world. With this tool is possible to create any

number of key-frame animations for any number of actors on the level. The

Related Work – UDK

38

Matinee Editor has several helpful tools for adding, removing, editing and

defining key frames, as well as tolls for the adjustment of the interpolation

curves generated between the frames.

Fig 2. 20 – Screenshot from the UDK Matinee editor interface.

Defining all game logic on the game level can be an arduous task,

usually done by programmers. However, UDK Editor has the Kismet Editor

(see figure 2.21), in order to simplify this task. Basically, the Kismet is a

visual scripting system that uses graphs to define the level logic and flow.

The developer uses the mouse to create graph nodes linked by wires which

define a certain action of behavior. With Kismet is possible to trigger

animations or behaviors, reset levels, play sounds and music, keep track of

scores and statistics, and change the lighting, among others…

The Kismet Editor works as a GUI for the UnrealScript language, this

means that Kismet automatically generates the code of the defined graphs

Chapter 2 – Related Work

 39

for the level. It’s also possible to customize Kismet using UnrealScript, this

way the developers can extend the behaviors already defined in the editor

adding their own custom behaviors as visual nodes.

Fig 2. 21 – Screenshot from the UDK Kismet interface.

 The UDK Material Editor (see figure 2.22), allows developers a way

to import, create and edit materials that are applied to the actors in the

level, and all this done by mouse-drive operation. This editor not only lets

the user choose which image should be applied on an actor, but also the

surface type of the 3D models, offering a vast list of options like shiny,

reflective, chrome-like, rough, smooth, or soft, among others…

Related Work – UDK

40

Fig 2. 22 – Screenshot from the UDK Material editor interface.

The Sound Editor (see figure 2.23), as a GUI that allow the users to

import WAV files into the engine and lets them apply effects and processes

over the imported files, for example echo effects, mixing effects, loop

instructions or positional effects. The result of the effects and processes is

the one that is going to be added on the level editor as an actor.

UDK offers for sounds the same type of operations that it offers to

other actors, like scaling, positioning and rotating. This is very important

since the way the sound is heard by the gamer is influenced by its position

on the level. Also, the falloff of any sound can be controlled by the

developers; this is done by surrounding every sound in the game by an

invisible sphere, the size of the sphere defines the sound volume, from full

sound to mute, where the full sound id the center of the sphere.

Chapter 2 – Related Work

 41

Fig 2. 23 – Screenshot from the UDK Sound editor interface.

The Cascade Editor (see figure 2.24), is the one responsible for

managing the particle systems in UDK. Basically, it offers a visual paradigm

to the construction of particle systems, allowing the user to test the

created systems in real time. The created systems are divided into two

pieces: the emitter, and the particle. The emitter is one responsible for

spawning or emitting the new particles into the game level, therefore, it

has a specific location on the level and associated logic to define how it

will behave. The particle is a descriptive object that the emitter uses as a

template to produce new particles.

Related Work – UDK

42

Fig 2. 24 – Screenshot from the UDK Cascade editor interface.

 Besides the UDK Editor that we have been seeing until now, there

are other tools on UDK very helpful for the developer and with very specific

purpose.

Lightmass (see figure 2.25), is the lighting system supported by UDK.

This tool allows developers to use a range of lighting source types that vary

in the way they cast light, for example, point lights, directional lights and

spotlights. The lights can then be placed on the level using the Level

Editor, creating actor from the lights. This means, that just like any other

actor, their properties can be altered, allowing the developers to define

how the lights is casted and how it behaves.

Chapter 2 – Related Work

 43

Fig 2. 25 – Screenshot from the UDK Lightmass editor interface.

The UDK Terrain tools (see figure 2.26), allow the developers to

construct a rough landscape that will work as the base that defines the

general extend and contours of the level. Using this tool the developer can

create mountains, rivers, forests, and so on. After the terrain is created,

the user can then add more detail by adding meshes to the level. When the

developer starts to build a new level, he begins with flat plain of geometry,

that he will then edit using a set of terrain brush tools to sculpt the level.

The available brushed of terrain edition are similar in most ways to those

existing in photo-editing software, enabling the user to control the shape,

size, softness or hardness of the brush. This tool also allows the developer

to import heightmaps that can be turn into meshes.

Related Work – UDK

44

Fig 2. 26 – Screenshot from the UDK Terrain tools interface.

Sometimes it’s necessary to adjust the camera during the game play,

more precisely during the cut scenes that may take place on the game. For

this task, UDK has a set of Cinematic tools (see figure 2.27) that allow the

developers to animate almost all the properties of a camera, including

position, orientation, focal length, zoom, depth of field, an others.

Fig 2. 27 – Screenshot from the UDK Cinematic tools interface.

Chapter 2 – Related Work

 45

The Fracture Meshes editor (see figure 2.28), is other tool that helps

the developers to make their games more interactive. To understand how

this tool works, lets first define what fracture meshes are. Fracture meshes

are a standard meshes to which was applied a mathematical formula. This

information describes all the pieces of the mesh that should be broken or

sliced upon certain interactions, for example, struck by ammunitions, force

or explosions. In short, fracture meshes are what enable developers to

create destructible scenery in the game, which heightens the interactivity

of the game.

Fig 2. 28 – Screenshot from the UDK Fracture Meshes editor interface.

Other UDK features is the application called SpeedTree (see figure

2.29). This application allows the user to create trees and foliage for UDK

games based on parametric values. Basically, the application automaticity

calculates and generates a unique-looking tree or plant based on several

values, such as the number of branches, the number of leaves, the radius

of trunk and others. The models generated are mapped and optimized for

games, and can be imported to UDK as standard mesh actors.

Related Work – UDK

46

Fig 2. 29 – Screenshot from the UDK SpeedTree editor interface.

FaceFX (see figure 2.30), is a tool in UDK designed to give the

developers control over lip-sync and expression control on game

characters. One can define lip-sync as the synchronization and animation of

the character lips with the vocal track is played for his or her voice when is

talking. We define expression control as the ability to manipulate the

expressions on character’s face to convey emotion, for example, raising the

eyebrows, smiling, blinking, laughing, and crying, among others. FaceFX

offers several features that help the user to control the animation of

character faces.

Chapter 2 – Related Work

 47

Fig 2. 30 – Screenshot from the UDK FaceFX editor interface.

As it was previously seen on this section, the programmers can use

the Kismet to define logic and behaviors for the game; nonetheless, Kismet

has its own limits, and sometimes the programmer must use scripting

language to define one particular behavior. UnrealScript is the scripting

language used by Unreal Engine, and it’s based on languages such as C++

and Java, being class-based and object-oriented.

UDK does not provide a native editor for scripting, instead, the

programmers can use standard text files, or use Microsoft Visual Studio in

combination with the nFringe plug-in for both IntelliSence and code-

completion features (see figure 2.31).

Related Work – UDK

48

Fig 2. 31 – Screenshot from the Microsoft Visual Studio editing UnrealScript.

On the following table we present some games that have been

produced with UDK and Unreal Engine.

Table 4 - Companies that developed titles using Unreal Engine.

Independent game development

companies

Developed game titles

High Moon Studios [82] Transformers: Fall of Cybertron [83]

(shooter)

Rocksteady Studios [84] Batman: Arkham City [85]

(Adventure)

BioWare [86] Mass Effect 3 [87] (RPG)

Epic Games [2] Gears of War Series [88] (Shooter)

Grasshopper Manufacture [89] Shadows of the Damned [90]

(Adventure)

inXile Entertainment [91] Hunted: The Demon's Forge [92]

(RPG)

2K Games [93] BioShock 2 [94] (Adventure)

Chapter 2 – Related Work

 49

2.5. Summary

This chapter reviewed the state of the art concerning game

development and game makers and presented them in general taking into

account its most relevant aspects.

After a brief introduction, Section 2.1 described a summarized history

of games, from the first games to the digital era. In Section 2.2 were

presented the most relevant aspects concerning game development in the

industry nowadays. The Section 2.3 revealed importance of game engines

and frameworks, and how they help in the development process of a game.

Finally, Section 2.4 overviewed the most relevant game engines use

nowadays, and its features.

Clean World – The 3D Game - Introduction

50

3. Clean World – The 3D

Game

3.1. Introduction

Clean World is a serious game that approaches the importance of

recycling and renewable energies for the preservation of planet Earth. For

the development of this game, it was used XNA 4.0 with the SunBurn [95]

render engine, and DigitalRune [96] physics engine. The choice to use XNA

was done because the developed game was used to participate in Imagine

Cup 2012, in the Xbox360 game design category, in which ended up

classified on 7th place on the worldwide finals. According to the rules of

Imagine Cup 2012, all games presented on the completion had to be built

on this Microsoft technology.

Initially, it was started the development of a tool for the creation of

terrains, however, due to the time constraints imposed by the competition,

the work focuses primarily on the development of the game, leaving the

creation tools to a second phase, where the tools would be created with

the purpose of optimizing the creation of content for the game.

For the creation of this game, it was formed a team composed by four

elements in which I took part. The following table presents the members of

the team and the developed work by each one.

Chapter 3 – Clean World – The 3D Game

 51

Table 5 – Clean World development team.

Team Member Developed Work

David Casteleira 2D concept art

Pedro Pereira Screenwriting

3D modeling and animation

Level design

2D GUI of the game

André Barbosa Game core programmer

João Dias Mini games programmer

Clean World (see figure 3.1), is a 3D game created with the purpose of

producing awareness about environmental problems that we face today,

and tries to show what we can do to protect nature and keep our planet

clean from pollution. The game combines classical platform and RPG

elements, such as quests. The player will receive several quests related

with environmental problems that he has to complete, in order to progress

in the game and storyline. These quests may range from picking up a

specific item, completing a puzzle or completing a mini-game based on the

theme of the game.

Fig 3. 1 - Screenshot from the game Clean World.

Clean World – The 3D Game - Introduction

52

During the game, the player will then travel through the Cypricene

Island, to clean the landscape, recycle objects and convert factories and

machines to use clean energy. All this work will be done by a small robot

controlled by the player, which has to use several skills that will be

acquired during the game. These skills include transforming into a sphere

to roll, absorbing solar energy to recharge, collecting garbage to recycle,

among others that will be obtained as the player progresses in the game.

Throughout the game, the player’s actions of creating awareness to

environmental problems are reflected in the game’s characters that soon

realize that something has to be done to protect our sacred environment.

And so, by progressing within the game, factories will start using

environment-friendly energy forms, such as solar panels and wind energy,

which results in a cleaner environment and also contributes to Kate’s

healing process and preservation of the planet Earth.

To make the game more engaging and fun to the player, several mini-

games and puzzles will be spread along the island. These mini-games and

puzzles are all aimed to create awareness and teach some basic

educational content about the environment and how to protect it, such as

garbage separation. But they also introduce new gameplay concepts, in

order to provide a diverse experience. This way, we hope that the game

can teach important concepts about the protection of the environment,

through a fun and engaging experience.

In the following sections of this chapter, is going to be presented the

developed work done by me to the final version of the developed game.

3.2. Game Storyline

The game takes place on the Anglas islands, in the year of 2022. Due

to the greed of big corporations, planet Earth is now completely polluted.

People can’t walk on the streets without breathing masks due to the

Chapter 3 – Clean World – The 3D Game

 53

polluted air, and the big cities became giant industrial complexes that try

to explore to the maximum the last resources of a dying planet.

In one of the Anglas islands, the remote island of Cypricene, Kate a

16-year-old girl struggles against a disease that now affects almost the

entire human population. Kate is alone on the island and she’s too weak to

get out, so she uses technology to find help. She builds Boris, a small robot

with unique abilities, which she sends in search of help.

Boris leaves in search of the medical center on the island. Once he

reaches his destiny, he meets Dr. Jacob, brilliant scientist and doctor. The

doctor explains to Boris that Kate is sick because she was infected with the

Stigma, a new disease that has been affecting the human population almost

for a decade.

Dr. Jacob explains that the Stigma has no known cure, however, he

was been studying the disease for years, and he believes that the illness is

connected to the pollution in the world. He describes to Boris his theory,

telling to the robot that if the world gets cleaner and free form pollution,

the disease will probably disappear.

With the medicine on its hand, Boris goes back home to give Kate her

medication. Feeling a lot better, Kate is willing to test Dr. Jacob theory

with Boris help. Together, they start to clean the island from pollution by

collecting garbage and stopping machines.

Later on, Boris meets Tom A. Toe, the engineer responsible for the

Wastewater treatment plant of the island. With the help of Tom, Boris

starts to convert the plant and the machines to use clean energy sources,

like the sun or the wind.

Once Boris finishes his job on the island, recovering the environment,

he and the other characters leave on a ship to the other islands to help

people with Stigma and to clean the rest of the world.

Clean World – The 3D Game – Modeling and Animation of the Characters

54

3.3. Modeling and Animation of the Characters

In this section are presented the developed characters for the game,

from their background, to the modeling, texturing and animation. During

the process of modeling the characters, it was necessary to work together

with a concept artist that had the job of created the model sheets. We will

start by presenting the main character of the game, which the player

controls, and then the other characters that the player will find during his

adventure. All game characters and animations were created using

Autodesk 3Ds Max 2012 [97] and Adobe Photoshop CS5 [98].

3.3.1. Boris

Boris (see figure 3.2), is a small droid built by Kate. This loyal droid

has the mission of finding help to save Kate, who is very sick and weak.

Boris is equipped with unique abilities that allow him to overcome the most

difficult challenges.

Boris as several abilities that the player can use during the game,

most of these powers are based on upgrades that the droid unlocks. Each

new upgrade to the droid implies a new model, with new animations. Let’s

take a quick look at Boris models and animations.

Chapter 3 – Clean World – The 3D Game

 55

Fig 3. 2 – Boris, the hero from the game.

The first model created was Boris on is robot form. In order to model

the character, the concept artist of the team created the respective model

sheet (see figure 3.3).

Fig 3. 3 – Model sheet of Boris in robot mode.

Based on this model sheet, was created the main character of the

game (see figure 3.4). With the 3D mesh created, it’s now necessary to

create the textures for the model in order to have the desired look on the

game. To create the textures, was used the technique called UVW unwrap.

Basically, this technique consists on creating a plant of the 3D model into a

2D image, which will be later used as a map to create the textures.

Clean World – The 3D Game – Boris

56

Fig 3. 4 – Model of Boris in robot mode in Autodesk 3Ds Max 2012.

3Ds Max already contains a build—in modifier to perform UVW unwrap,

which allows to save the UVW map into uvw files, where it keeps the

coordinates of the pieces that compound the model, and also enables the

user to render a 2D image (see figure 3.5) to create the textures on 3rd

party software.

Chapter 3 – Clean World – The 3D Game

 57

Fig 3. 5 – UVW map of the model of Boris in robot mode.

With the UVW unwrap image is now possible to create the textures

using Photoshop CS5. According with the indications on the sheet, the

textures were painted over the 2D image (see figure 3.6).

Fig 3. 6 - UVW map of the model of Boris in robot mode with textures.

Clean World – The 3D Game – Boris

58

Once the UVW map was finish, the image file was load to 3Ds Max,

and applied to the 3D model as a texture (see figure 3.7).

Fig 3. 7 - A: Model of Boris without textures; B: Model of Boris with textures.

With the model created and texturized, the next task is to create the

animations that are going to play inside the game. To make the 3D mesh

move, it’s necessary to create a bone structure attached to it. To do this,

it was used the 3Ds max biped, which is a complete body skeleton that can

be customized to fit in any 3D model. Once the biped was inserted on the

3D scene, is necessary to make it fit into the 3D Character (see figure 3.8).

Fig 3. 8 - Model of Boris with biped inserted.

Chapter 3 – Clean World – The 3D Game

 59

 With the biped in place, was used the Skin modifier to attach the

bones to the 3D mesh. Now, every time we move a bone of the biped, the

mesh moves too. However, these moves are not perfect leaving some 3D

mesh behind or deforming the 3D mesh in strange ways. This means that is

necessary to adjust the envelopes of the bones (i.e., attach the correct

vertexes of the mesh to the desired bone). The envelopes work as a border

to define area of influence of each bone (see figure 3.9). If those areas are

not well defined, the mesh will behave in strange ways when moving.

Fig 3. 9 – Adjusting the bones envelopes to the 3D model of Boris.

Once the envelopes are in place, it’s time to start creating the

animations for the character. Since Boris is controlled by the player, that

means that is necessary to animate every action that the player can do

while playing. 3Ds Max uses key-frame animations, this means that the user

arranges the position, orientation and scale of objects in two time frames,

and then 3Ds Max automatically generates the frames in between.

Clean World – The 3D Game – Boris

60

For this model of Boris in were created the following animations:

 Idle;

 Run;

 Run backwards;

 Jump;

 Push;

 Grab on edges;

 Move on edges to the right;

 Move on edges to the left;

 Lift objects;

 Grab a ladder;

 Climb ladders (up);

 Climb ladders (down);

 Transform into sphere;

 Transform into robot;

With the animations done, it’s now time to export the 3D model to

FBX, and then to X. This must be done because XNA only supports models in

FBX or X. The conversion from FBX to X is not necessary if we are talking

about static meshes, however, since we are working on a character, this

must be done for two reasons: first, XNA does not support biped correctly,

which means that the animations will not play the desired way on the

game. In order to solve this issue, one must export the model as FBX and

imported to Max once again, so 3Ds Max can convert the biped to a regular

bone structure; secondly, although this may solve the problem of playing

the animations correctly, Max FBX exporter does not allow the user to

define animations by frames. For example, if the user wants to name the

animation ―walk‖ from frame 0 to frame 60 and animation ―jump‖ from

frame 60 to frame 100, it’s not possible. The FBX exporter combines all

animations into a single animation, and that means that the programmer

can’t choose an animation by its name to play in game. To solve this, the

FBX models were exported with Panda DirectX Exporter [99] plugin for 3Ds

Chapter 3 – Clean World – The 3D Game

 61

Max, which allows the creation of borders on the animation timeline,

allowing the user to define several animations with different names.

Once the first mode of Boris is finish and running on the game, it’s

time to create the other modes of Boris. After unlocking the first upgrade

in the game, the player can turn Boris into a sphere, which means that is

necessary to create another model of Boris, this time in sphere mode.

Since the robot mode was already created, we used it as base for the

creation of the sphere mode, erasing the arms and legs (see figure 3.10).

Fig 3. 10 - Model of Boris in sphere mode in Autodesk 3Ds Max 2012.

Just like with the robot mode, it’s now necessary to create the

textures for the sphere mode model. To do that, we used UVW unwrap

once more, and created a map of the faces of the model on a 2D image

(see figure 3.11). With the image created, the textures are produced on

Photoshop.

Clean World – The 3D Game – Boris

62

Fig 3. 11 - A: UVW map of the model of Boris in sphere mode; B: UVW map of the model

of Boris in sphere mode with textures.

With the UVW map was finish, the image file was load to 3Ds Max, and

applied to the 3D model as a texture (as shown in figure 3.12).

Fig 3. 12 - A: Model of Boris without textures; B: Model of Boris with textures.

Since Boris in sphere mode has no limbs, there is no justification for

the use of such complex bone system as the biped. However, since we are

going to use the model on the game and use animations, we still need to

have one bone attached to the mesh. The model is quite simple in terms of

animation, the only thing it does is spin, so a single bone will fix take care

of that situation (see figure 3.13).

Chapter 3 – Clean World – The 3D Game

 63

Fig 3. 13 - Model of Boris in sphere with bone inserted.

Just like before, is applied the skin modifier to connect the bone to

the mesh. Adjusting the envelope in this situation is quite easy, since the

envelope must include all vertex of the mesh. After this, the model is

exported to FBX and then to X, by the same reasons mentioned before.

Boris still has a third mode, where he has attached to his back a set of

solar panels that he can use to recharge his batteries. Once again, to model

this version of Boris, the robot mode was used as base, and then added the

panels on its back (see figure 3.14).

Clean World – The 3D Game – Boris

64

Fig 3. 14 - Model of Boris in solar mode in Autodesk 3Ds Max 2012.

The body of the character already has textures, since the original

model of Boris was used with no modifications. However, the solar panels

on its back needs to be unwrap (see figure 3.15).

Fig 3. 15 - A: UVW map of the model of Boris in solar mode; B: UVW map of the model of

Boris in solar mode with textures.

Chapter 3 – Clean World – The 3D Game

 65

Once the textures were finish, they were applied to the model, giving

us the final version of the character (see figure 3.16).

Fig 3. 16 - A: Model of Boris without textures; B: Model of Boris with textures.

Since we had new parts to Boris, it was necessary to add new bones to

the created biped in order to have envelopes over the vertex on the solar

panels (see figure 3.17). Once the bones and envelopes were in place, it

was possible to create the animations for solar mode.

Fig 3. 17 - Model of Boris in solar mode with biped inserted.

Clean World – The 3D Game – Boris

66

During solar mode, Boris mobility will be reduced, this means that the

3D model will only have the following animations:

 Run;

 Run backwards;

 Idle;

 Recharge;

In order to give a more realistic look to the character in all its forms,

various normal maps were created based on its texture files (see figure

3.18). To generate the normal images of the textures, it was used NVIDIA

Texture Tools for Adobe Photoshop [100].

Fig 3. 18 - A: Normal map of Boris in robot mode; B: Normal map of Boris in sphere

mode; C: Normal map of Boris in solar mode.

Chapter 3 – Clean World – The 3D Game

 67

3.3.2. Kate

Now that the main character of the game is ready, is now time to take

care of the other characters, and the first one we are going to see is Kate

(see figure 3.19).

Fig 3. 19 – Concept of Kate given by the concept artist.

Kate is a 16 year-old girl that lives in Cypricene Island. She is very sick

and is too weak to go to the medical center. Since she is alone, she decides

to build Boris, a small droid that she sends in search of help.

This is one of the characters that the player will find during the game

and which who he will have to interact in order to receive new quests,

upgrades or information’s.

Just like Boris, the model of Kate was modeled on 3Ds Max using a

model sheet given by the concept artist (see figure 3.20).

Fig 3. 20 – Model sheet of the character Kate.

Clean World – The 3D Game – Kate

68

Using the model sheet was created the 3D model of Kate (see figure

3.21 A). To create the texture to the model was used the UVW unwrap. The

created textures were then applied to the 3D mesh (see figure 3.21 B).

Fig 3. 21 - A: Model of Kate without textures; B: Model of Kate with textures.

With Kate mesh finished, is now time to insert the biped on the mesh

and use the skin modifier to connect both (see figure 3.22 A). Once that

task is over, it’s time to adjust the envelopes of Kate’s bones before we

can start animating the model (see figure 3.22 B).

Fig 3. 22 - A: Model of Kate with biped inserted; B: Adjusting the envelopes of Kate

model.

Chapter 3 – Clean World – The 3D Game

 69

Since Kate is a non-playable character, it won’t need so many

animations as Boris model had. Basically, this model only needs two

animations, since it will only have two behaviors inside the game:

 Idle;

 Talk;

Once again we use key-frame animations to animate the mesh. After

that, the only work remaining is to export the model to FBX and the

generated FBX to X. The mesh and the textures can now be importer into

XNA.

3.3.3. Dr. Jacob

 Other character in the game is Dr. Jacob (see figure 3.23).

Fig 3. 23 – Concept of Dr. Jacob given by the concept artist.

Dr. Jacob is the one in charge of the medical center of Cypricene

Island. He has spent the last decade studying the Stigma, a new disease

that has been affecting mankind. Dr. Jacob struggles every day to find a

cure to this new plague.

Clean World – The 3D Game – Dr. Jacob

70

This is one of the characters that the player will find during the game

and which who he will have to interact in order to receive new quests,

upgrades or information’s.

Just like the previous models, the model of Dr. Jacob was modeled on

3Ds Max using a model sheet given by the concept artist (see figure 3.24).

Fig 3. 24 – Model sheet of the character Dr. Jacob.

Using the model sheet was created the 3D model of Dr. Jacob (see

figure 3.25 A). To create the texture to the model was used the UVW

unwrap. The created textures were then applied to the 3D mesh (see figure

3.25 B).

Fig 3. 25 - A: Model of Dr. Jacob without textures; B: Model of Dr. Jacob with textures.

Chapter 3 – Clean World – The 3D Game

 71

With the mesh created, is now time to insert the biped on the mesh

and use the skin modifier to connect both (see figure 3.26 A). Once that

task is over, it’s time to adjust the envelopes of Dr. Jacob’s bones before

we can start animating the model (see figure 3.26 B).

Fig 3. 26 - A: Model of Dr. Jacob with biped inserted; B: Adjusting the envelopes of Dr.

Jacob model.

Since Dr. Jacob is a non-playable character, it just needs the same

type of animations as Kate did. Basically, this model only needs two

animations, since it will only have two behaviors inside the game:

 Idle;

 Talk;

Clean World – The 3D Game – Tom A. Toe

72

3.3.4. Tom A. Toe

Tom A. Toe is another character in the game (see figure 3.27).

Fig 3. 27 – Concept of Tom A. Toe given by the concept artist.

Tom A. Toe is the engineer responsible for the wastewater treatment

plant of the island. He may be a little grumpy, but he is an expert on

renewable and clean energies.

The player will find Tom on the third level, and he is will have to

interact with him order to receive new quests, upgrades or information’s.

The development process of this character was identical to the other

characters. 3Ds Max was used for the modeling using a sheet given by the

concept artist (see figure 3.28).

Fig 3. 28 – Model sheet of the character Tom A. Toe.

Chapter 3 – Clean World – The 3D Game

 73

Using the model sheet was created the 3D model of Tom (see figure

3.29 A). Like on the previous characters, was used UVW unwrap for

texturing (see figure 3.29 B).

Fig 3. 29 - A: Model of Tom A. Toe without textures; B: Model of Tom A. Toe with

textures.

The skinning of the character followed the same steps as the other

game characters (see figure 3.30).

Fig 3. 30 - A: Model of Tom with biped inserted; B: Adjusting the envelopes of Tom

model.

Clean World – The 3D Game – Terrain Models and Level Assets

74

Tom has the same type of animations as Kate and Jacob did:

 Idle;

 Talk;

3.4. Terrain Models and Level Assets

In this section we will present the terrains developed for the three

levels of the game, and the level assets created for each level, like

buildings, trees and collectable items. We will start by presenting the

terrains used on the game levels, which are the base of every level in the

game. All game levels and assets were created using Autodesk 3Ds Max

2012 [97] and Adobe Photoshop CS5 [98].

3.4.1. Terrain Models

Clean World is composed by three levels: two levels on the outside

world, and one level inside a cave. Three terrains were created in order to

make the game more attractive to the player.

Level one and three are located in the outside world and represent an

island. In order to create a more realistic illusion to the player, giving him

the idea of being on an island, both terrains were modeled together in a

single model (see figure 3.31).

Chapter 3 – Clean World – The 3D Game

 75

Fig 3. 31 – Complete model of the Cypricene Island.

However, to make the game run faster, the whole island was

separated in two different models. Since the player can’t access the third

level without going through the cave (the second level), doesn’t make any

sense to load all the geometry on one level if it’s not used. The model of

the island was then divided into two different models (see figure 3.32), one

for each level.

Fig 3. 32 – A: Terrain of level one; B: Terrain of level three.

Clean World – The 3D Game – Decorative 3D Assets

76

The second level of the game is played inside a cave, which means

that a new terrain had to be created for this level. The cave wall were

modeled through the use of several extrudes from a tube primitive on 3Ds

Max. Once the wall were created, it was modeled the floor of the cave,

which was later combined with the walls. Some machinery was also

modeled inside the cave. Once everything was modeled, all 3D meshes

were texturized with uvw unwrap, giving us the final look of the level (see

figure 3.33).

Fig 3. 33 – A: Terrain of level two.

3.4.2. Decorative 3D Assets

Levels are not just terrains. In other to create the desired

environment for the level and give a unique identity to it, it’s necessary to

populate the scenario with all kind of decorative assets. We call decorative

assets to all 3D assets that are in the game level but are static (i.e., do not

interact with the player except for collision detection). Following are

presented several images of the static assets created.

Chapter 3 – Clean World – The 3D Game

 77

Kate’s House

Fig 3. 34 – kate’s house model.

Description: This is the model used

as Kate’s house.

Number of vertex: 2150

Number of faces: 2121

Level: Level 1

Lamp Ring

Fig 3. 35 – Lamp ring model.

Description: Lamp ring used on

bonus level 2.

Number of vertex: 200

Number of faces: 200

Level: Bonus level 2

Rails

Fig 3. 36 – Rails model.

Description: Rails used on bonus

level 2.

Number of vertex: 8880

Number of faces: 16192

Level: Bonus level 2

Clean World – The 3D Game – Decorative 3D Assets

78

Medical Center

Fig 3. 37 – Medical center model.

Description: Medical center of the

Cypricene Island.

Number of vertex: 956

Number of faces: 1908

Level: Level 1

Wood Recycling Machine

Fig 3. 38 – Wood recycling machine model.

Description: Machine used to

recycle wood.

Number of vertex: 766

Number of faces: 738

Level: Level 2

Toxic Waste Cleaner

Fig 3. 39 – Toxic waste cleaner model.

Description: Machine used to clean

toxic waste.

Number of vertex: 766

Number of faces: 738

Level: Level 1

Chapter 3 – Clean World – The 3D Game

 79

Wind Tower

Fig 3. 40 – Wind tower model.

Description: Wind tower user to

produce energy.

Number of vertex: 576

Number of faces: 624

Level: Level 3

Lighthouse

Fig 3. 41 – Lighthouse model.

Description: The island lighthouse.

Number of vertex: 878

Number of faces: 834

Level: Level 3

Wall

Fig 3. 42 – Wall model.

Description: Wall barrier.

Number of vertex: 424

Number of faces: 385

Level: Level 1 and 3

Clean World – The 3D Game – Decorative 3D Assets

80

Platforms for Watermill Mini-game

Fig 3. 43 – Platform model.

Description: 6 Platforms for the

watermill mini-game

Number of vertex: 329 - 387

Number of faces: 658 - 778

Level: Level 3

Bridge Part

Fig 3. 44 – Part of the bridge model.

Description: Part of the bridge of

bonus level 2.

Number of vertex: 88

Number of faces: 75

Level: Bonus level 2

Harbor

Fig 3. 45 – Island harbor model.

Description: The island harbor.

Number of vertex: 2038

Number of faces: 2000

Level: Level 3

Chapter 3 – Clean World – The 3D Game

 81

Energy Pole

Fig 3. 46 – Energy pole model.

Description: An energy pole.

Number of vertex: 2828

Number of faces: 3616

Level: Level 3

Watermill tower

Fig 3. 47 – Watermill tower model.

Description: The tower of the

watermill.

Number of vertex: 2996

Number of faces: 5526

Level: Level 3

Tunnel Section

Fig 3. 48 – Tunnel section model.

Description: A tunnel section.

Number of vertex: 405 - 438

Number of faces: 671 - 772

Level: Bonus level 1

Clean World – The 3D Game – Decorative 3D Assets

82

Mining Walker

Fig 3. 49 – Mining walker model.

Description: A mining walker.

Number of vertex: 1314

Number of faces: 1374

Level: Level 2

Watermill

Fig 3. 50 – Watermill model.

Description: The watermill.

Number of vertex: 1008

Number of faces: 976

Level: Level 3

Wastewater Treatment Plant

Fig 3. 51 – WWTP model.

Description: The wastewater

treatment plant.

Number of vertex: 1795

Number of faces: 1730

Level: Level 3

Chapter 3 – Clean World – The 3D Game

 83

Tom A. Toe House

Fig 3. 52 – Tom’s house model.

Description: Tom’s house.

Number of vertex: 868

Number of faces: 854

Level: Level 3

3.4.3. Interactive and Collectable 3D Assets

Spread across the levels, there are several 3D objects that the player

can interact with and/or collect. Following we will present these objects,

which can be items or even control consoles for manipulating the game

scenario.

Question Mark

Fig 3. 53 – Question mark model.

Description: Every time the player

catches a question mark on the

tutorial, a tip is given.

Number of vertex: 736

Number of faces: 1464

Level: Level 1

Clean World – The 3D Game – Interactive and Collectable 3D Assets

84

Recycling Machine

Fig 3. 54 – Recycling machine model.

Description: Machine used to

recycle garbage.

Number of vertex: 1586

Number of faces: 3144

Level: Level 1 and 2

Recycling Container

Fig 3. 55 – Yellow recycling container model.

Description: There are several of

these containers, one for each type

of garbage, each one with different

colors. In total, there are 8

different colors of containers.

Number of vertex: 272

Number of faces: 270

Level: Level 1 and 2

Arrow

Fig 3. 56 – Arrow model.

Description: Indicates the path to

the player during the game

Number of vertex: 20

Number of faces: 18

Level: Level 1, 2 and 3

Chapter 3 – Clean World – The 3D Game

 85

Recycling Platform

Fig 3. 57 – Recycling platform model.

Description: There are several of

these platforms, one for each type

of garbage, each one with different

colors. In total, there are 8

different colors of platforms.

Number of vertex: 108

Number of faces: 92

Level: Level 1 and 2

Solar Platform

Fig 3. 58 – Solar platform model.

Description: There platforms are

used to activate machines using the

solar panels of Boris.

Number of vertex: 108

Number of faces: 92

Level: Level 1 and 3

Recharger

Fig 3. 59 – Recharger model.

Description: These machines are

sued to recharge Boris batteries

inside the cave.

Number of vertex: 404

Number of faces: 392

Level: Level 2

Clean World – The 3D Game – Interactive and Collectable 3D Assets

86

Console Terminal

Fig 3. 60 – Console terminal model.

Description: These terminals are

used to activate door or machines.

Number of vertex: 82

Number of faces: 114

Level: Level 1, 2 and 3

There are also several collectable items (for example, figure 3.61

shows a syringe model) that were modeled and that the player can catch in

all the levels. The following list presents the items created for the game:

 Paper box 1;

 Paper box 2;

 Glass bottle;

 Glass cup;

 Plastic bottle;

 Milk package;

 Can;

 Battery;

 Newspaper;

 Plastic taparuere;

 Syringe;

 Rotten apple;

 Package with toxic waste;

 Wood pallet

 Wind tower engine;

 Wind tower pole;

 Wind tower helix;

 Wind tower base;

Chapter 3 – Clean World – The 3D Game

 87

Fig 3. 61 – The syringe collectable item model.

3.5. Level Design

To create the levels of the game, it was used the SunBurn [101] level

editor, this was the only development tool used to create the game. In this

section will be described the process of creating the final visual look of the

levels and models in the game.

Using SunBurn, it was created a 3D scene in other to create the level.

Once the engine creates the 3D scene for the level, it’s time to import all

assets of that level to SunBurn. This is done by indicating the location of

the files in the directory of the XNA game project. The engine will then

load the 3D meshes and the textures in order to prepare then to the scene.

With all the content loaded, it’s now time to start building the levels

of the game. The first asset to be added is the terrain, however, since we

are using DigitalRune engine for physics, and the terrain model is a triangle

mesh, this means that the collision with terrain and the other 3D assets will

be done by calculating collisions with the faces of the terrain mesh. Thus

Clean World – The 3D Game – Level Design

88

the terrain must be added by code. This happens because DigitalRune and

Sunburn are two separated engines with no connection.

With the terrain placed in the 3D scene, we can now add the static

meshes that belong to the level. This process is done visually using the

SunBurn level editor, by dragging the desired 3D model to the correct place

and dropping it into the scene (see figure 3.62). The static meshes can then

be moved, rotated or scaled.

Fig 3. 62 – Positioning a 3D model on SunBurn editor.

All assets of the level must be placed, scaled, and rotated one by one

through this process. To give a general idea of the work involved in building

the levels, beside the buildings and other visual marks that excel from the

landscape, a total of 55 trees and 59 rocks were hand placed only on level

one.

With all static models placed, we can advance to illuminating the

scene. SunBurn included four different types of light that can be used:

ambient, directional, point and spot. Two lights were used to illuminate

the scene, one ambient and one directional. The ambient light (see figure

3.63), which is default to every scene created with SunBurn, was

configured with the intensity of 0.3 (i.e., a little dark) and with the RGB

color: 147, 145, 139. By using this configuration it was possible to create

Chapter 3 – Clean World – The 3D Game

 89

the idea of a foggy and polluted look that we wanted for the game world in

the first level.

Fig 3. 63 – Changing the color of the ambient light.

The directional light simulates the sun (see figure 3.64). This light has

a direction, and it was set to cast shadow over all objects on the 3D scene.

The intensity of the light was defined with the value of 1.6, and with the

RGB values (91, 91, 86) respectively. Other properties of the directional

light, such as shadow quality, primary bias and secondary bias were left on

their default values. The options single pass rendering, receive updates and

light mapped were left disabled.

Fig 3. 64 – Changing the color of a directional light.

Clean World – The 3D Game – Level Design

90

These two lights are the main lights of the level; however, some other

lights were added in certain points to create an environment with realistic

look and beauty. On example of such lights is the one placed on the red

cross on the top of the medical center (see figure 3.65). This light is a

point light RBG (255, 5, 5), with the intensity value of 1, cast distance of 5,

and casting shadows over all objects. All other options of the light were

left on by default.

Fig 3. 65 – Changing the settings of a point ligth.

After placing all light and defined theirs setting, it’s time to enhance

the look of the level by working on the materials of the 3D objects. When

3D models are loaded to the engine, their material just contains the

information about their defuse map. However, SunBurn allows the users to

add normal maps to the materials, as well as change the settings of the

diffuse color, emissive color, spectacular power, and spectacular amount

and transparency. For example, for metal materials, was applied a normal

map (see figure 3.66A), and changed the default settings of the spectacular

power and amount to 32 and 1 respectively (see changes can be seen on

figure 3.66B and 3.66C).

Chapter 3 – Clean World – The 3D Game

 91

Fig 3. 66 – A: Normal map used on metallic surfaces; B: Kate’s house without normal

map; C: Kate’s house with normal map.

The final adjustment to the level was the inclusion of a fog with RGB

(158, 161, 160) respectively. The properties fog start distance, fog end

distance and viewable distance were defined with the values of 20, 55, and

55 respectively. These settings allow the creation of a dense fog over the

first level, giving to the player the sensation that the world is covered by a

veil of smoke, as it would be expected on a polluted world.

As soon as the scene was finished, the programmers added by code

the NPCs and animated meshes and created the game logic for the level.

This process was repeated to all three levels, only changing the values

of the materials, lights and fog according to the needs of the desired

environment.

3.6. 2D Assets

Beside the 3D assets of the game, it’s necessary to create 2D assets

for the GUI, like the menus, the mode indicator or the health bar. For the

creation of the 2D assets it was used Adobe Photoshop CS5.

Two of the created assets were the background for the main menu

and for the game over menu (see figure 3.67).

Clean World – The 3D Game – 2D Assets

92

Fig 3. 67 – A: Main menu background; B: Game over menu background.

Eight loading screens were also created. During the game, while the

engine loads the content of the level, these loading screens popup, giving

some environmental tips and facts to the player. Besides aech text with

environmental information, one of the NPCs is associated (see figure 3.68).

Fig 3. 68 – Example of a loading screen used in the game.

For the GUI of the game had to be developed several sprites, one for

the health and energy bars, other for the power mode in use, other for the

mini-map, and finally, one for the communicator.

The health and energy bars (see figure 3.69), indicate the levels of

health and energy of Boris. The robot spends energy in all his actions,

which means that the player needs to recharge his batteries from time to

time; otherwise Boris will start to lose health and if the health bar falls to

0, the player will lose the game.

Chapter 3 – Clean World – The 3D Game

 93

Fig 3. 69 – Health and energy bars sprite.

The power mode indicator (see figure 3.70), lets the player know

which mode of Boris is currently active. The player can change trough the

several power modes during the game.

Fig 3. 70 – Boris power mode indicator on its several forms.

The mini-map (see figure 3.71), indicates the player position on the

scene, as well as the positions of the active quests. There is a different

mini-map for each level.

Fig 3. 71 – Mini map used on level one.

The communicator (see figure 3.72), shows up when the player

receives a message from a NPC. There is a different communicator for each

Clean World – The 3D Game – 2D Assets

94

character. For Kate, since the player actions reflect directly on her health,

there are 3 sprites of the communicator, each one with a different stage of

her health (see figure 3.72).

Fig 3. 72 – Example of the communicator used in the game.

Every time a character interacts with the player, beside the

communicator sprite, it’s showed a dialog sprite (see figure 3.73). Every

single line of dialog in the game had its own sprite, which meant a total of

183 sprites just for dialogs.

Fig 3. 73 – Example of a dialog sprite used in the game.

Background sprites for the menu system of the game had to be

created. The game menu is composed by tabs, meaning that for each tab of

the menu, was created a different sprite (see figure 3.74).

Chapter 3 – Clean World – The 3D Game

 95

Fig 3. 74 – A: Background of the items tab; B: Background of the load tab.

One of the tabs of the menu is the quest tab. Here, the player can

check its active and completed quests. Just like the dialogs, to each

description of the quest we have different images (see figure 3.75), which

meant a total of 32 sprites.

Fig 3. 75 – Example of a quest sprite used in the game.

Beside the sprites for the main game seen before, more than 37

sprites were created for mini-games (see figure 3.76), and 20 sprites for

tutorial screens, giving instructions to the player about the main game and

mini-games (see figure 3.77).

Clean World – The 3D Game – 2D Assets

96

Fig 3. 76 – Background of one of the developed mini games.

Fig 3. 77 – Tutorial screen of the first bonus level.

Several minor sprites were also produced for feedback messages, or

achievement messages spread across the game.

Chapter 3 – Clean World – The 3D Game

 97

3.7. Summary

In this chapter, Clean World – The 3D Game, we presented the

developed work for a serious game with the purpose of helping children to

learn important concepts about environmental problems. This game was

used as an object of study of the development of games without the use of

any major development tools. Section 3.1 described a summarized concept

of the game and its development. In Section 3.2 was presented a brief

summary of the storyline of the game. Section 3.3 presented the process of

developing the game characters, from the concept to the modeling,

texturing, and animation. Section 3.4 presented the developed 3D assets

used in the creation of the levels of the game. The process of the level

design was described on Section 3.5, were the levels were created with the

use of SunBurn engine editor. Finally, on Section 3.6 we saw the developed

2D assets for the game, from backgrounds of menus to the creation of

sprites to mini-games.

Chapter 4 – Developed Support Applications

 99

4. Developed Support

Applications

4.1. Introduction

Creating a game with no specialized tools support it’s a hard and

tedious task. During the creation of Clean World, the game described in

Chapter 3, several tasks were identified as ideal for the use of specialized

tools, in particular the ones related with the storyline or repetitive tasks.

This chapter focuses on the four developed applications created to

increase the productivity of the developers of Clean World. The objective

of these applications it’s to turn repetitive and time consuming task into

simple and intuitive processes.

The developed applications are the following:

 Item Manager;

 Quest Manager;

 Dialog Manager;

 Terrain Creator;

In the following sections we are going to present each one of the

applications, how they work, how they are connected to the game, and the

changes that were done in order to integrate them with Clean World.

Developed Support Applications – Item Manager

100

4.2. Item Manager

The purpose of this application is to manage all collectable items of

the game without being necessary to input item information, for example

name or description, on the source code of the game. This tool will let the

user create new items, filling all the information needed without a single

line of code. The items are saved upon a XML file that can later be loaded

to the game.

The Item Manager interface (see figure 4.1), is very simple and

intuitive. This tool allows the following operations:

 Create a new item;

 Modify an existing item;

 Delete an existing item;

 Load item file;

 Save item file;

Fig 4. 1 – Screenshot of the Item Manager tool.

Chapter 4 – Developed Support Applications

 101

On the interface of the tool, there are five buttons, each one relative

to one operation. There is also a list, initially in blank, where all created

items are showed.

To create a new item, the user simply has to click on the ―New Item‖

button, and a new window will pop-up (see figure 4.2). On this new

window, the user has to fill all the data necessary to the creation of a

Clean World item.

Fig 4. 2 – Creating a new item on Item Manager tool.

All items need the following information to be used in the game:

 Name: the name of the item in the game;

 Description: a brief description of the item that will be showed on

the player’s inventory;

 Symbol Path: the path indicating the 2D sprite of the item on the

game content (note that the 2D sprites had to be previously created

and added to the game content);

 Color: this field is used for the recycling mini-games, each color is

associated to a specific type of garbage;

Developed Support Applications – Item Manager

102

Fig 4. 3 – A: Item information on Item Manager; B: Item information loaded into the

game.

If for some reason the user fails to fill all fields, an error message

show-up asking the user to fill all information (see figure 4.4).

Fig 4. 4 – Screenshot of the error message showing-up.

If all information was inserted, the item is created and the list of

items is updated (see figure 4.5).

Chapter 4 – Developed Support Applications

 103

Fig 4. 5 - Screenshot of a new inserted item.

To modify an existing item, the user just needs to select the desired

item from the list (see figure 4.6A), and click on the ―Modify‖ button. After

that, a window pops-up with all item information (see figure 4.6B).

Fig 4. 6 – A: Selecting an item from the list; B: Modifying the item data.

To load an existing file, the user just needs to click on the ―Load

Items‖ button, and indicate the location of the file (see figure 4.7).

Developed Support Applications – Item Manager

104

Fig 4. 7 – Opening a saved file with the application.

When the user clicks on the ―Save Items‖ button, all information of

the list is saved into an XML file that stores all data. The same XML file is

later loaded to the game before the level starts, allowing the engine to

load all items on run-time.

The XML file format used for the items is the following:

<Items>

<Item>

<ID> id </ID>

<Name> name </Name>

<Description> description </Description>

<Symbol> sprite path </Symbol>

<Color> color </Color>

<Quantity> quantity </Quantity>

</Item>

</Items>

Note that the quantity field it’s not used by the Item Manager

Chapter 4 – Developed Support Applications

 105

application. Its default value is always 1, and can only be changed inside

the game when the player collects more items of the same type. The

inclusion of this field on the XML file is only for formal purposes.

Once the file is created, the game developer just needs to save the

file into the XMLDATA folder of the game content.

Developed Support Applications – Quest Manager

106

4.3. Quest Manager

The purpose of this application is to manage all game quests without

being necessary to create a new sprite to every new quest. This tool will

let the user create new quests, filling all the information needed without a

single line of code. The quests are saved upon a XML file that can later be

loaded to the game.

The Quest Manager interface (see figure 4.8), is very simple and

intuitive. This tool allows the following operations:

 Create a new quest;

 Modify an existing quest;

 Delete an existing quest;

 Load quest file;

 Save quest file;

Fig 4. 8 – Screenshot of the Quest Manager tool.

On the interface of the tool, there are five buttons, each one relative

to one operation. There is also a list, initially in blank, where all created

quests are showed.

Chapter 4 – Developed Support Applications

 107

To create a new quest, the user simply has to click on the ―New

Quest‖ button, and a new window will pop-up (see figure 4.9). On this new

window, the user has to fill all the data necessary to the creation of a

Clean World quest.

Fig 4. 9 – Creating a new quest on Quest Manager tool.

All quests need the following information to be used in the game:

 Name: the name of the quest in the game;

 Description: a brief description of the quest that will be showed on

the player’s quest log;

 Characters per line: it indicates the number of characters per line

that should be displayed in the description on the game. The default

value is 33;

Developed Support Applications – Quest Manager

108

Fig 4. 10 – A: Quest information on Quest Manager; B: Quest information loaded into the

game.

If for some reason the user fails to fill all fields, an error message

show-up asking the user to fill all information (see figure 4.11).

Fig 4. 11 - Screenshot of the error message showing-up.

If all information was inserted, the quest is created and the list of

quests is updated (see figure 4.12).

Chapter 4 – Developed Support Applications

 109

Fig 4. 12 - Screenshot of a new inserted quest.

To modify an existing quest, the user just needs to select the desired

quest from the list (see figure 4.13A), and click on the ―Modify‖ button.

After that, a window pops-up with all the quest information (see figure

4.13B).

Fig 4. 13 – A: Selecting a quest from the list; B: Modifying the quest data.

To load an existing file, the user just needs to click on the ―Load

Quests‖ button, and indicate the location of the file (see figure 4.14).

Developed Support Applications – Quest Manager

110

Fig 4. 14 – Opening a saved file with the application.

When the user clicks on the ―Save Quests‖ button, all information of

the list is saved into an XML file that stores all data. The same XML file is

later loaded to the game before the level starts, allowing the engine to

load all quests on run-time.

The XML file format used for the items is the following:

<Quests>

<Quest>

<Name> name </Name>

<Description> description </Description>

</Quest>

</Quests>

Note that the character per line information is only used when saving

the description information, meaning that the character separation is done

every time an quest is created or modified. Therefore, when the

description is saved on the XML file, the character separation is already

done.

Once the file is created, the game developer just needs to save the

file into the XMLDATA folder of the game content.

Chapter 4 – Developed Support Applications

 111

4.4. Dialog Manager

The purpose of this application is to manage all game dialogs without

being necessary to create a new sprite to every new dialog. This tool will

let the user create new dialogs, filling all the information needed without a

single line of code. The dialogs are saved upon a XML file that can later be

loaded to the game.

The Dialog Manager interface (see figure 4.15), is very simple and

intuitive. This tool allows the following operations:

 Create a new dialog;

 Modify an existing dialog;

 Delete an existing dialog;

 Load dialog file;

 Save dialog file;

Fig 4. 15 – Screenshot of the Dialog Manager tool.

On the interface of the tool, there are five buttons, each one relative

to one operation. There is also a list, initially in blank, where all created

dialogs are showed.

Developed Support Applications – Dialog Manager

112

To create a new dialog, the user simply has to click on the ―New

Dialog‖ button, and a new window will pop-up (see figure 4.16). On this

new window, the user has to fill all the data necessary to the creation of a

Clean World dialog.

Fig 4. 16 – Creating a new dialog on Dialog Manager tool.

All dialogs need the following information to be used in the game:

 Character: the name of the character that says the dialog in the

game;

 Image: the name of the character sprite;

 Level: in which level the dialog is said;

 Message: the text of the dialog;

 Characters per line: it indicates the number of characters per line

that should be displayed in the dialog on the game. The default value

is 32;

Chapter 4 – Developed Support Applications

 113

Fig 4. 17 – A: Dialog information on Dialog Manager; B: Dialog information loaded into the

game.

If for some reason the user fails to fill all fields, an error message

show-up asking the user to fill all information (see figure 4.18).

Fig 4. 18 - Screenshot of the error message showing-up.

If all information was inserted, the dialog is created and the list of

dialogs is updated (see figure 4.19).

Developed Support Applications – Dialog Manager

114

Fig 4. 19 - Screenshot of a new inserted dialog.

To modify an existing dialog, the user just needs to select the desired

quest from the list (see figure 4.20A), and click on the ―Modify‖ button.

After that, a window pops-up with all the dialog information (see figure

4.20B).

Fig 4. 20 – A: Selecting a dialog from the list; B: Modifying the dialog data.

Chapter 4 – Developed Support Applications

 115

To load an existing file, the user just needs to click on the ―Load

Dialogs‖ button, and indicate the location of the file.

When the user clicks on the ―Save Dialogs‖ button, all information of

the list is saved into an XML file that stores all data. The same XML file is

later loaded to the game before the level starts, allowing the engine to

load all quests on run-time.

The XML file format used for the items is the following:

<Dialogs>

<Dialog>

 <ID> id </ID>

<Character> character name </Character>

<Image> character sprite </Image>

<Level> game level </Level>

<Message> dialog message </Message>

</Dialog>

</Dialogs>

Note that the character per line information is only used when saving

the dialog text information, meaning that the character separation is done

every time a dialog is created or modified. Therefore, when the description

is saved on the XML file, the character separation is already done.

Once the file is created, the game developer just needs to save the

file into the XMLDATA folder of the game content.

Developed Support Applications – Terrain Creator

116

4.5. Terrain Creator

This tool differs from the others since it produces 3D assets to be used

on the game, namely the terrain for the levels.

Just like the previous tools, the interface of the application (see

figure 4.22), is quite simple. It’s composed by an area where user can draw

the heightmap, and a second area where he can control features like the

pen size, the height level, or the textures to be applied on the 3D mesh.

Fig 4. 21 – Screenshot of the Terrain Creator tool.

The Terrain Creator works in a very simple way. The user draws the

height areas on the application in levels of grey, these levels go from 0,

which is represented by the color black (the lowest of the terrain), to 255

that is the color white (the highest level of the terrain). The user can

select the size of the brush by selecting its value from the pen combo box.

When painting the heightmap, the user can change the grey levels in

order to create different heights on the terrain. To do that, the user can

move the slide bar of the height level, or, if he wants a more controlled

change in the height, he can insert the grey value (from 0 to 255) on the

height text box (see figure 4.23).

Chapter 4 – Developed Support Applications

 117

Note that the heights of the generated model will always correspond

to the receptive values on the heigthmap, meaning that an area with the

height value of 30 will have the value 30 on the Z axis.

Fig 4. 22 – Painting the heightmap with different pen sizes and height levels.

The user can also erase painted areas by activating the eraser (see

figure 4.24). The size of the eraser can also be changed by the pen size

combo box.

Fig 4. 23 – Erasing the heightmap with the eraser tool.

The textures that will be applied on 3D model representing the terrain

can be defined inside the Terrain Creator (see figure 4.25). The application

Developed Support Applications – Terrain Creator

118

allows a total of four different textures to be used. The usage of the

textures is defined by the height level of the model faces. Four height

values are defined in the application for the textures:

 Height between 0 – 63: texture one;

 Height between 64 – 128: texture two;

 Height between 129 – 193: texture three;

 Height between 194 – 255: texture four;

For example, if the vertexes of a face are located on the height level

35, the texture to be applied is the one defined for the interval 0 to 63;

this means that the face will have the first texture. In cases where the

vertexes are on different levels of height, for example two on level 70 and

the other two on level 30, the applied texture is the one of the vertex in

the lowest height (i.e., texture of the interval 0 – 63).

Fig 4. 24 – Loading texture files to the terrain.

Once the map is drawn and the textures selected, the user just needs

to press the ―Create Terrain‖ button. The application will then generate an

.obj file and an .mtl file with all the information. This model is saved on

the Terrain Creator directory with the default name of ―terrain‖. If the 3D

model is correctly generated, a message is showed to the user (see figure

4.26).

Chapter 4 – Developed Support Applications

 119

Fig 4. 25 – Terrain successfully created.

The algorithm used for the generation of the 3D model of the terrain

is the following:

1. We divide the height and width of the bitmap by 8 in order to

simplify the final mesh;

2. We will then visit the pixels of the bitmap, jumping in intervals of 8,

saving the x and y coordinates and getting the grey value of the

pixel;

3. We create a vertex with the x and y values and the grey level, where

x is the value of the x axis, y the value of the y axis, and the grey

value the value on the z axis;

4. With the vertex list created, we will then create the faces of the

model, by connecting every vertex to their adjacent vertexes;

5. The collected information is then saved into an .obj file;

The created terrain can later be imported to CAD software like 3Ds

Max for editing or format conversion (see figure 4.24).

Developed Support Applications – Connection with Clean World

120

Fig 4. 26 – Created terrain on Autodesk 3Ds Max.

4.6. Connection with Clean World

Three of the applications presented on this Chapter needed some

game source code changes in order to work properly; we are talking about

the tools that generate XML files to load in the game: Item Manager, Quest

Manager, and Dialog Manager.

On the first version of Clean World, all game information regarding

items, quests and dialogs was added by code or by sprites, meaning that

was static content. Just for dialogs, were loaded into the game 183

different sprites. With the use of the XML files, those sprites are no longer

needed, meaning that we can replace the 183 sprites for 1 sprite that will

be the text background. The same thing happens with the 32 quests sprites.

The code modifications needed to work with the XML files were quite

simple. Once the XML files were on the game content, several

modifications had to be done on the level classes. The first thing to do was

to create three different lists to store all level information regarding items,

quests and dialogs and the respective classes. Once the lists were created,

Chapter 4 – Developed Support Applications

 121

before any game content like the dialogs was created, all XML information

was loaded to the lists where it was stored.

In the case of the dialogs, the only information on XML file that was

going to be loaded to the level was the one marked with the current level

label. This was done by checking the value of the Level tag on the XML file.

With the XML information loaded into our lists, we proceeded to

create the respective items, quests and dialogs for the level we were

working on. Several changes had to be done in order to adapt the exiting

classes, namely the creation of a new constructor that allows the

information to be loaded through the lists when creating the asset. Based

on the used constructor, the classes can now create the assets based on a

sprite (previous method), or through the information given in the list, using

a single sprite for background and the text from the give XML data.

Once these modifications were implemented, the game loaded the

content and played smoothly, giving no perception to the player of the

modifications done in the source code.

4.7. Summary

On this Chapter were presented the developed tools created with the

purpose of optimizing the development process of Clean World game. In

Section 4.1 was presented a brief introduction to the developed

applications. In Section 4.2 was presented the Item Manager, a tool that

allows the user to control all items that can be used in the game. Section

4.3 presented the Quest manager, a tool for the creation and edition of

Clean World quests. The Dialog Manager was presented on Section 4.4. This

tool allows the creation of the dialogs that are showed during the game. On

section 4.5 was presented the Terrain Creator, a tool for the creation of

terrains for the game. Finally, on section 4.6 were briefly described the

modifications needed do to on Clean World in order to work with the

developed applications.

Conclusions and Future Work – Conclusions

122

5. Conclusions and Future

Work

5.1. Conclusions

Throughout this dissertation we have seen the state-of-the-art of

game development tools, the developed game Clean World, and the set of

tools created to improve the game development process. This chapter

presents the results obtained by the tools optimizations, and points to

several directions for future work.

Although XNA is a great tool for beginners on game development, it

lacks the tools provided by other engines and frameworks. This flaw makes

the game development on this technology harder and slower, since

everything must be done by code.

Using the developed tools, creating the game content is now an easier

process. The procedure of creating dialogs and quests can now be done

through the developed applications, avoiding the creation of unnecessary

sprites. The management of the items was also simplified, since the

developers can create new items for the game without programming. The

use of these applications, not only eliminated around 20 MB of unnecessary

sprites, but also the time spent creating the content and introducing it in

the game was reduced to half. Furthermore, the developed applications

allow the modification of existing content, which means that in case of

necessary adjustments, for example a correction on a dialog, the user can

alter directly the information without the need to create an entirely new

Chapter 5 – Conclusions and Future Work

 123

dialog. This means that all partial objectives presented in Chapter 1 were

successfully completed, resulting in the presented dissertation.

5.2. Future Work

To conclude this dissertation, it remains to suggest future research

directions that result from this research work:

 The development of a logic editor for the creation of AI for the

game characters. Right now, there are no enemies in the created

demo of Clean World, however, it would be a feature that we

would like to include on a final version of the game. In order to

create the enemies, some AI has to be created in order to define

the enemies’ behaviors. It would be interesting to develop a tool

where these behaviors can be created without the need to directly

program each enemy. The application could consist on a set of

predefined behaviors that could be altered through several

parameters, or combined with other existing predefined behaviors.

 The development of an event editor in order to define specific

events on the game, for example interacting with a machine or

changing levels. On Clean World, every interaction the player does

with characters or machines was programmed directly by the

programmers, which took a lot of time on the development

process. It would be interesting to have an application with a set

of predefined interactions; these interactions could be altered

through several parameters and called on the game. Thought this

system a lot of time would be saved during the level programming.

 The creation of a visual editor for the creation of particle systems

to be used in the game. There were no particle systems

Conclusions and Future Work – Future Work

124

implemented on Clean World. It would be a major improvement

for the game the existence of tool to create special effects based

on particle systems, for example to simulate smoke, water, fire,

etc. In order to use particle systems, a particle engine would be

added to the physics and render engines. To turn the creation of

the particles more intuitive and efficient, could be created a tool

for the edition of particle systems, where the user could arrange a

set of parameters (for example particle life spawn) in other to

obtain the desired result for the specified particle systems. The

information regarding the particles could be saved in a XML file

that would be loaded into the game. With the information on the

XML, the game would be able to recreate the particle system

created on the application.

References

 125

References

[1] "UDK," [Online]. Available: http://www.unrealengine.com/udk [Accessed: August

2012].

[2] "Epic Games," [Online]. Available: http://epicgames.com/ [Accessed: August

2012].

[3] "RPG Maker," [Online]. Available: http://www.rpgmakerweb.com/ [Accessed:

November 2011].

[4] "Game Maker," [Online]. Available:

http://www.yoyogames.com/gamemaker/windows/ [Accessed: August 2012].

[5] P. Banaschak, "Early East Asian Chest Pieces: An overview," Issue August 1999.

[6] B. Neto, L. Fernandes, C. Werner, and J. Moreira de Souza, "Reuse in Digital Game

Development," in Proceedings of the 4th International Conference on Ubiquitous

Information Technologies & Applications, 2009. ICUT '09. , 20-22 Dec. 2009, 2009,

pp. 1-6.

[7] E. S. Association, "Essential facts about the computer and video game industry,"

Entertainment Software Association, Issue 2009.

[8] D. Callele, E. Neufeld, and K. Schneider, "Requirements engineering and the

creative process in the video game industry," in 13th IEEE International Conference

on Requirements Engineering, 2005. Proceedings., 29 Aug.-2 Sept. 2005, 2005, pp.

240-250.

[9] A. Brownsword, "Reflecting on development processes in the video game industry,"

in ICSE-Companion 2009. 31st International Conference on Software Engineering -

Companion Volume, 2009., 16-24 May 2009, 2009, pp. 182-182.

[10] R. L. B. de Barros, C. F. Alves, and G. L. Ramalho, "Investigating the

Communication Process in Multidisciplinary Game Development Teams," in 2009

Simposio Brasileiro de Sistemas Colaborativos (SBSC), 5-7 Oct. 2009, 2009, pp. 61-

69.

[11] C. M. Kanode and H. M. Haddad, "Software Engineering Challenges in Game

Development," in Sixth International Conference on Information Technology: New

Generations, 2009. ITNG '09, 27-29 April 2009, 2009, pp. 260-265.

[12] C. Keith, "Get in the Game: What others can learn from game developers," Better

Software Magazine, Issue November 2006.

[13] V. T. S. A. L. Apolinário, "A Feature Model Proposal for Computer Games Design,"

Proceedings of the VII Brazilian Symposium on Computer Games and Digital

Entertainment, Issue pp. 54-63, 2008.

[14] A. Furtado and A. Santos, "Applying Domain-Specific Modeling to Game

Development with the Microsoft DSL Tools," in Brazilian Symposium on Computer

Games and Digital Entertainment, 2006.

[15] V. T. Sarinho, Apolina, x, and A. L. rio, "A Generative Programming Approach for

Game Development," in 2009 VIII Brazilian Symposium on Games and Digital

Entertainment (SBGAMES), 8-10 Oct. 2009, 2009, pp. 83-92.

http://www.unrealengine.com/udk
http://epicgames.com/
http://www.rpgmakerweb.com/
http://www.yoyogames.com/gamemaker/windows/

References

126

[16] M. Chen, Y. Zhang, J. Ouyang, and G.-t. Hu, "Game Design and Development

Based on Logical Animation Platform," in 2010 International Conference on

Computational and Information Sciences (ICCIS), 17-19 Dec. 2010, 2010, pp. 573-

576.

[17] W. C. W. Chen, "Game engine applied in education," Computer and Digital

Engineering, Issue 2008.

[18] H. T. Y. Song, "Analysis of game engine technology," Fujian PC, Issue 2007.

[19] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M. Shantz, "Designing a PC game

engine," IEEE Computer Graphics and Applications, vol. 18, Issue 1, pp. 46-53,

1998.

[20] N. Seung Seok, H. Sung Dea, and P. Jin Wan, "Using a Game Engine Technique to

Produce 3D Entertainment Contents," in 16th International Conference on Artificial

Reality and Telexistence--Workshops, 2006. ICAT '06, Nov. 2006, 2006, pp. 246-

251.

[21] "Euphoria," [Online]. Available:

http://wwwtemp.naturalmotion.com/products/euphoria/ [Accessed: August 2012].

[22] "Yo Yo Games," [Online]. Available: http://www.yoyogames.com/ [Accessed:

November 2011].

[23] "The 3D Gamemaker," [Online]. Available:

http://www.thegamecreators.com/?m=view_product&id=2126 [Accessed:

November 2011].

[24] "The Game Creators," [Online]. Available: http://www.thegamecreators.com/

[Accessed: November 2011].

[25] "CopperCube," [Online]. Available: http://www.ambiera.com/coppercube/

[Accessed: November 2011].

[26] "Ambiera," [Online]. Available: http://www.ambiera.com/ [Accessed: November

2011].

[27] "3D Rad," [Online]. Available: http://www.3drad.com/ [Accessed: November

2011].

[28] "Enterbrain," [Online]. Available: http://www.enterbrain.co.jp/ [Accessed:

November 2011].

[29] "NeoAxis Engine," [Online]. Available: http://www.neoaxis.com/ [Accessed:

August 2012].

[30] "Unity 3D," [Online]. Available: http://unity3d.com/ [Accessed: August 2012].

[31] "Game Maker History," [Online]. Available:

http://wiki.yoyogames.com/index.php/Game_Maker_History [Accessed: November

2011].

[32] "OGRE 3D," [Online]. Available: http://www.ogre3d.org/ [Accessed: November

2011].

[33] "DarkBASIC," [Online]. Available:

http://www.thegamecreators.com/?m=view_product&id=2030 [Accessed:

November 2011].

[34] "AngelScript," [Online]. Available: http://www.angelcode.com/angelscript/

[Accessed: November 2011].

[35] "Big Fish Games," [Online]. Available: http://www.bigfishgames.com/ [Accessed:

November 2011].

[36] "IGN Entertainment," [Online]. Available: http://uk.ign.com/ [Accessed: November

2011].

[37] "GamersGate," [Online]. Available: http://www.gamersgate.com/ [Accessed:

November 2011].

[38] "Aldorlea Games," [Online]. Available: http://aldorlea.org/ [Accessed: August

2012].

http://wwwtemp.naturalmotion.com/products/euphoria/
http://www.yoyogames.com/
http://www.thegamecreators.com/?m=view_product&id=2126
http://www.thegamecreators.com/
http://www.ambiera.com/coppercube/
http://www.ambiera.com/
http://www.3drad.com/
http://www.enterbrain.co.jp/
http://www.neoaxis.com/
http://unity3d.com/
http://wiki.yoyogames.com/index.php/Game_Maker_History
http://www.ogre3d.org/
http://www.thegamecreators.com/?m=view_product&id=2030
http://www.angelcode.com/angelscript/
http://www.bigfishgames.com/
http://uk.ign.com/
http://www.gamersgate.com/
http://aldorlea.org/

References

 127

[39] "Millennium: A New Hope," [Online]. Available: http://aldorlea.org/millennium.php

[Accessed: August 2012].

[40] "Amaranth Games," [Online]. Available: http://www.amaranthia.com/ [Accessed:

August 2012].

[41] "Aveyond Series," [Online]. Available:

http://www.amaranthia.com/modules/oledrion/product.php?product_id=58

[Accessed: August 2012].

[42] "Blossomsoft," [Online]. Available: http://www.blossomsoft.com/ [Accessed:

August 2012].

[43] "Eternal Eden," [Online]. Available: http://www.blossomsoft.com/?p=182

[Accessed: August 2012].

[44] "Over Cloud 9," [Online]. Available: http://www.overcloud9.com/ [Accessed:

August 2012].

[45] "Arevan," [Online]. Available: http://www.overcloud9.com/games/our-

games/arevan/ [Accessed: August 2012].

[46] "Sherman3D," [Online]. Available: http://www.sherman3d.com/ [Accessed: August

2012].

[47] "Alpha Kimori," [Online]. Available: http://www.alphakimori.com/ [Accessed:

August 2012].

[48] "OHBA," [Online]. Available: http://ohbado.sakura.ne.jp/ [Accessed: August 2012].

[49] "Homura Combat," [Online]. Available: http://ohbado.sakura.ne.jp/homcombat/

[Accessed: August 2012].

[50] "Dream Dale," [Online]. Available: http://www.dreamdale.com/about.html

[Accessed: August 2012].

[51] "Elementary My Dear Majesty! ," [Online]. Available:

http://www.alawar.com/game/elementary-my-dear-majesty/ [Accessed: August

2012].

[52] "Makivision Games," [Online]. Available: http://www.makivision.com/ [Accessed:

August 2012].

[53] "Sacraboar," [Online]. Available: http://www.sacraboar.com/ [Accessed: August

2012].

[54] "Donsoft Entertainment," [Online]. Available: http://www.donsoft.com.br/

[Accessed: August 2012].

[55] "Capoeira Legends: Path To Freedom," [Online]. Available:

http://www.capoeiralegends.com [Accessed: August 2012].

[56] "MisfitVillager," [Online]. Available: http://www.indiedb.com/members/sickbrick

[Accessed: August 2012].

[57] "SickBrick," [Online]. Available: http://magrathean.ca/sickbrick/ [Accessed: August

2012].

[58] "Magrathean Technologies," [Online]. Available: http://magrathean.ca/ [Accessed:

August 2012].

[59] "Incognito Episode 3," [Online]. Available: http://magrathean.ca/incognito-episode-

3/ [Accessed: August 2012].

[60] "Clockwork Brains," [Online]. Available: http://clockwork-brains.blogspot.pt/

[Accessed: August 2012].

[61] "Plyushkin Syndrome," [Online]. Available: http://clockwork-

brains.blogspot.pt/search/label/Plyushkin%20Syndrome [Accessed: August 2012].

[62] "The Wall Street Journal," [Online]. Available:

http://online.wsj.com/article/SB10001424052748703904304575497473735761294.h

tml [Accessed: August 2012].

[63] "NVIDIA® PhysX® " [Online]. Available:

http://www.geforce.co.uk/hardware/technology/physx [Accessed: August 2012].

[64] "FMOD," [Online]. Available: http://www.fmod.org/ [Accessed: August 2012].

http://aldorlea.org/millennium.php
http://www.amaranthia.com/
http://www.amaranthia.com/modules/oledrion/product.php?product_id=58
http://www.blossomsoft.com/
http://www.blossomsoft.com/?p=182
http://www.overcloud9.com/
http://www.overcloud9.com/games/our-games/arevan/
http://www.overcloud9.com/games/our-games/arevan/
http://www.sherman3d.com/
http://www.alphakimori.com/
http://ohbado.sakura.ne.jp/
http://ohbado.sakura.ne.jp/homcombat/
http://www.dreamdale.com/about.html
http://www.alawar.com/game/elementary-my-dear-majesty/
http://www.makivision.com/
http://www.sacraboar.com/
http://www.donsoft.com.br/
http://www.capoeiralegends.com/
http://www.indiedb.com/members/sickbrick
http://magrathean.ca/sickbrick/
http://magrathean.ca/
http://magrathean.ca/incognito-episode-3/
http://magrathean.ca/incognito-episode-3/
http://clockwork-brains.blogspot.pt/
http://clockwork-brains.blogspot.pt/search/label/Plyushkin%20Syndrome
http://clockwork-brains.blogspot.pt/search/label/Plyushkin%20Syndrome
http://online.wsj.com/article/SB10001424052748703904304575497473735761294.html
http://online.wsj.com/article/SB10001424052748703904304575497473735761294.html
http://www.geforce.co.uk/hardware/technology/physx
http://www.fmod.org/

References

128

[65] "Mono," [Online]. Available: http://mono-project.com/Main_Page [Accessed:

August 2012].

[66] "GameArt Studio GmbH," [Online]. Available: http://www.gameartstudio.de/

[Accessed: August 2012].

[67] "A.I. Invasion," [Online]. Available: http://www.ai-invasion.de/ [Accessed: August

2012].

[68] "Crescent Moon Games," [Online]. Available: http://crescentmoongames.com/

[Accessed: August 2012].

[69] "Aralon: Sword and Shadow," [Online]. Available: http://www.worldofaralon.com/

[Accessed: August 2012].

[70] "Bigpoint," [Online]. Available: http://pt.bigpoint.com/ [Accessed: August 2012].

[71] "Battlestar Galactica Online," [Online]. Available: http://pt.battlestar-

galactica.bigpoint.com/ [Accessed: August 2012].

[72] "NPlay," [Online]. Available: http://www.nplay.com/ [Accessed: August 2012].

[73] "BeGone," [Online]. Available: http://www.nplay.com/BeGone/ [Accessed: August

2012].

[74] "SilverTree Media," [Online]. Available: http://silvertreemedia.com/animation

[Accessed: August 2012].

[75] "Cody," [Online]. Available: http://silvertreemedia.com/products/cordy [Accessed:

August 2012].

[76] "Limbic Entertainment," [Online]. Available: http://www.limbic-entertainment.de/

[Accessed: August 2012].

[77] "Dungeon Empires," [Online]. Available:

http://play.dungeonempires.de/index.php?page=play&lang=2 [Accessed: August

2012].

[78] "Fun Bits," [Online]. Available: http://www.funbits.com/ [Accessed: August 2012].

[79] "Escape Plan," [Online]. Available: http://uk.playstation.com/escapeplan/

[Accessed: August 2012].

[80] "Unreal Engine," [Online]. Available: http://www.unrealengine.com/ [Accessed:

November 2011].

[81] A. Thorn, UDK Game Development, 1 ed. vol. 1: Course Technology PTR, 2011.

[82] "High Moon Studios," [Online]. Available:

http://www.highmoonstudios.com/community/hms [Accessed: August 2012].

[83] "Transformers: Fall of Cybertron," [Online]. Available:

http://www.transformersgame.com/ [Accessed: August 2012].

[84] "Rocksteady Studios," [Online]. Available: http://www.rocksteadyltd.com/

[Accessed: August 2012].

[85] "Batman: Arkham City," [Online]. Available:

http://community.batmanarkhamcity.com/ [Accessed: August 2012].

[86] "BioWare," [Online]. Available: http://www.bioware.com/ [Accessed: August

2012].

[87] "Mass Effect 3," [Online]. Available:

http://masseffect.bioware.com/agegate/?url=%2F [Accessed: August 2012].

[88] "Gears of War," [Online]. Available: http://gearsofwar.xbox.com/en-

US/AgeGate?source=%252f [Accessed: August 2012].

[89] "Grasshopper Manufacture," [Online]. Available:

http://www.grasshoppermanufacture.com/en/index.html [Accessed: August 2012].

[90] "Shadows of the Damned," [Online]. Available: http://www.ea.com/shadows-of-the-

damned [Accessed: August 2012].

[91] "inXile Entertainment," [Online]. Available: http://www.inxile-entertainment.com/

[Accessed: August 2012].

http://mono-project.com/Main_Page
http://www.gameartstudio.de/
http://www.ai-invasion.de/
http://crescentmoongames.com/
http://www.worldofaralon.com/
http://pt.bigpoint.com/
http://pt.battlestar-galactica.bigpoint.com/
http://pt.battlestar-galactica.bigpoint.com/
http://www.nplay.com/
http://www.nplay.com/BeGone/
http://silvertreemedia.com/animation
http://silvertreemedia.com/products/cordy
http://www.limbic-entertainment.de/
http://play.dungeonempires.de/index.php?page=play&lang=2
http://www.funbits.com/
http://uk.playstation.com/escapeplan/
http://www.unrealengine.com/
http://www.highmoonstudios.com/community/hms
http://www.transformersgame.com/
http://www.rocksteadyltd.com/
http://community.batmanarkhamcity.com/
http://www.bioware.com/
http://masseffect.bioware.com/agegate/?url=%2F
http://gearsofwar.xbox.com/en-US/AgeGate?source=%252f
http://gearsofwar.xbox.com/en-US/AgeGate?source=%252f
http://www.grasshoppermanufacture.com/en/index.html
http://www.ea.com/shadows-of-the-damned
http://www.ea.com/shadows-of-the-damned
http://www.inxile-entertainment.com/

References

 129

[92] "Hunted: The Demon's Forge," [Online]. Available:

http://www.huntedthegame.com/index.php/en/index/agegate [Accessed: August

2012].

[93] "2K Games," [Online]. Available: http://www.2kgames.com/#/ [Accessed: August

2012].

[94] "BioShock 2," [Online]. Available: http://www.bioshock2game.com/ [Accessed:

August 2012].

[95] "SunBurn Engine," [Online]. Available:

http://www.synapsegaming.com/products/sunburn/engine/ [Accessed: August 2012].

[96] "DigitalRune Engine," [Online]. Available: http://www.digitalrune.com/ [Accessed:

August 2012].

[97] "Autodesk 3Ds Max," [Online]. Available: http://usa.autodesk.com/3ds-max/

[Accessed: August 2012].

[98] "Adobe Photoshop," [Online]. Available:

http://www.adobe.com/products/photoshopfamily.html?promoid=JOLIW [Accessed:

August 2012].

[99] " Panda DirectX Exporter," [Online]. Available:

http://www.andytather.co.uk/panda/directxmax.aspx [Accessed: August 2012].

[100] "NVIDIA Texture Tools for Adobe Photoshop," [Online]. Available:

http://developer.nvidia.com/content/nvidia-texture-tools-adobe-photoshop

[Accessed: August 2012].

[101] "SunBurn Game Engine," [Online]. Available:

http://www.synapsegaming.com/products/sunburn/engine/ [Accessed: August 2012].

http://www.huntedthegame.com/index.php/en/index/agegate
http://www.2kgames.com/#/
http://www.bioshock2game.com/
http://www.synapsegaming.com/products/sunburn/engine/
http://www.digitalrune.com/
http://usa.autodesk.com/3ds-max/
http://www.adobe.com/products/photoshopfamily.html?promoid=JOLIW
http://www.andytather.co.uk/panda/directxmax.aspx
http://developer.nvidia.com/content/nvidia-texture-tools-adobe-photoshop
http://www.synapsegaming.com/products/sunburn/engine/

