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Resumo 

 

Neste estudo, o excesso de capacidade instalada de energia eólica é analisado através de 

técnicas de dados em painel para um conjunto de 19 países Europeus entre os anos 1998 e 

2009. Controlamos para o efeito das fontes convencionais de produção de energia eléctrica, 

nomeadamente o carvão e gás que são utilizados para backup na produção de electricidade 

quando o vento não é suficiente e a procura tem de ser satisfeita. Controlamos também para 

o efeito das energias renováveis. Os resultados sugerem que o crescimento de instalação de 

energia eólica e a densidade populacional contribuem para o aumento do excesso de 

capacidade de energia eólica. Por outro lado é também medido o efeito do total de políticas 

energéticas tomadas a nível europeu no âmbito de objectivos energéticos a longo prazo. 

Contribuímos para o debate sobre a intermitência das renováveis, dando luz sobre este tema 

e sugerindo possíveis soluções para lidar com o consequente problema do excesso de 

capacidade. 

 

 

Palavras-chave 

 

Energias renováveis; intermitência; excesso de capacidade; combustíveis fósseis; políticas 

energéticas  

 
 

Resumo alargado 

 

Neste estudo, o excesso de capacidade instalada de energia eólica é analisado através de 

técnicas de dados em painel para um conjunto de 19 países Europeus entre os anos 1998 e 

2009. Os países escolhidos fazem parte de um conjunto de países com objectivos energéticos 

comuns a longo-prazo, nomeadamente no aumento da quota de energias renováveis para 20% 

em 2020. Os países incluídos no estudo são os que cumprem os requisitos de disponibilidade 

dos dados para o tempo e as variáveis em questão. Aplicamos técnicas de dados em painel 

pois permitem-nos uma inferência estatística mais precisa, através do aumento do número de 

observações e de graus de liberdade. Por outro lado permite-nos controlar para a 

heterogeneidade dos indivíduos e das características não observadas dos erros que não são 

detectáveis em modelos de séries temporais. Esta abordagem com dados em painel sobre o 

excesso de capacidade no âmbito da intermitência das energias renováveis é inovadora. 

No sentido de analisar o excesso de capacidade de energia eólica, escolhemos variáveis 

de diferentes naturezas, nomeadamente: fontes convencionais de produção de energia 
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eléctrica; outras fontes renováveis; variáveis de natureza socio-económica; e políticas 

energéticas. Apesar do forte crescimento das energias renováveis nos últimos anos na Europa, 

as fontes convencionais de produção de energia eléctrica ainda representam grande parte do 

portfólio energético. As centrais termoeléctricas movidas a carvão e gás são utilizadas de 

forma comum para backup na produção de electricidade quando o vento não é suficiente e a 

procura tem de ser satisfeita, como por exemplo em horários de pico. Estas fontes tornam-se, 

assim, cruciais para ultrapassar o problema da intermitência da energia eólica. Controlamos 

também para o efeito da energia nuclear e do petróleo dado que também são muito 

importantes e utilizadas para produção diária.  

 Verifica-se também o efeito das outras fontes de energia renovável no excesso de 

capacidade, bem como o crescimento de instalação de energia eólica na contribuição para o 

aumento do excesso de capacidade. A densidade populacional e o PIB per capita são 

importantes variáveis de natureza socio-económica porque permitem-nos controlar, por um 

lado, para a dispersão das torres eólicas, dado que países com uma elevada densidade 

populacional tendem a ter áreas reduzidas para a colocação de eólicas, e por outro lado, 

controlar para o efeito do nível de vida dos países no excesso de capacidade. As políticas 

públicas têm sido em geral uma medida muito comum para promover o investimento em 

energias limpas, por isso, controlamos para o efeito do total dessas medidas nos diferentes 

sectores no excesso de capacidade. 

 Pretendemos assim responder às seguintes perguntas: qual a contribuição das fontes de 

energia convencionais para o excesso de capacidade de energia eólica na Europa? Como 

podem as políticas públicas mitigar esta ineficiência económica? A não-utilização da 

capacidade instalada provoca um fenómeno conhecido por excesso de capacidade, é 

importante conhecer e compreender formas de relativizar essa questão. Pretende-se 

contribuir para o debate da intermitência das energias renováveis, abordando a questão do 

excesso de capacidade de energia eólica, e discutindo individualmente as causas e as suas 

consequências da sua origem e por fim sugerir possíveis medidas para enfrentar este 

problema. 

 Após analisar como um todo os diferentes determinantes do excesso de capacidade de 

energia eólica, os resultados indicam-nos que os combustíveis fósseis, nomeadamente as 

centrais termoeléctricas movidas a carvão e gás são de facto utilizadas para backup na 

produção de energia, enquanto o petróleo e o nuclear parecem não contribuir de forma 

directa para esse problema. Por outro lado, é também verificado que países com uma maior 

densidade populacional têm maior excesso capacidade devido à falta de espaço terrestre para 

instalação de torres eólicas. Contrariamente, países com um nível de vida superior tem 

tendência a ter uma maior eficiência na produção de electricidade com energia eólica e 

portanto menor excesso de capacidade. 

 

 



vii 
 

 

 

 

 

 

 

 



viii 
 

Abstract 

 

In this paper, overcapacity of wind energy is analyzed using panel data techniques for a set of 

19 European countries for the span of time 1998-2009. We control for the effect of 

conventional energy sources, namely coal-based and gas-fired power plants. These energy 

sources are mainly used to backup electricity generation in windless periods and in peak-load 

times. The effect of other renewable energy sources is also assessed. Results suggest that 

wind power growth rate and population density raises overcapacity. We also test the total of 

energy measures taken in Europe under long term energy goals. We extend the debate of 

renewables intermittency, highlighting the overcapacity issue and suggesting possible 

solutions to smooth out this problem.  

 

 

Keywords 

 

Renewable energy; intermittency; overcapacity; fossil fuels; and energy policies 
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1. Introduction 

 

The continuous support in renewables, particularly in Europe has raised the debate about the 

levels of installed capacity. It is well known that all kinds of power plants, namely 

renewables, can never generate 100% of their maximum capacity due to its intermittent 

nature. For this reason, there may be too much reserve capacity to meet the variability of 

electricity demand. European institutions have been making an effort in the last two decades 

with the goal of offering a diversified energy supply, decarbonizing its production by 20% and 

increasing the share of renewables to 20% until 2020 (EU directive, 2009). The literature 

suggests that more effort is required to meet this target, although some countries expect to 

over-achieve this barrier due to large growth of renewable energy (e.g. Klessman, 2011).  

 It is widely accepted that renewable energy, namely solar photovoltaic and wind energy, 

have been one of the most popular solutions in order to meet Europe goals of reducing energy 

dependence as well as climate change mitigation. However, with the wind energy growth 

arise the intermittency problem and its socio-economic impact. As a consequence, this issue 

requires detailed studies due to its quality problems, such as variations in frequency or 

voltage drops as well as balance issues (Camadan, 2011). Estimating properly the impacts and 

costs of wind in the energy system is important when planning high penetration levels of wind 

power (Holttinen et al., 2006). In a European context with large long-term energy goals, the 

analysis of renewables non-constant production issue is essential for economic players. It is 

far from new that energy storage costs are still very high, thus not allowing a profound 

upgrading in the energy grid (Beaudin et al., 2010). Often, the price volatility of raw 

materials still has strong influence in electricity generation, thus it is important that 

policymakers focus their efforts to ensure supply security (Bhattacharyya, 2009).  Therefore, 

it becomes necessary to combine other energy sources to backup electricity production from 

renewables. In order to keep constant energy supply, fossil fuels plants have advantageous 

start-up and shutdown characteristics, despite its high maintenance costs, and are an 

effective way to mitigate renewables intermittency (Luickx et al., 2008).  

 The difference between maximum capacity in full-time generation and the electricity 

actually generated in a given period of time causes idle capacity. This issue arises for both 

renewables due to their intermittency nature, as well as for other conventional sources 

because they lose importance in energy portfolio. We will focus on wind power overcapacity. 

Boccard (2009), Fiedler and Bukovsky (2011) and Yang et al. (2012) already addressed this 

issue and argued that wind energy generation in a year rarely exceeds 25% of its maximum 

capacity, and therefore we can be in the presence of wind overcapacity due to wind farms 

idleness. This ratio of the realized electricity output by the maximum capacity is the capacity 

factor (CF). The energy demand volatility throughout the day, especially the gap in off-peak 

and peak-load periods is a key factor for this issue. Idle capacity can lead to additional 

investment into two components: (i) pumped hydro during periods when there is wind 
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overproduction and low grid consumption, and (ii) thermal plants such as coal-based or gas-

fired power plants, to backup power when there is lack of wind (Luickx et al., 2008). In fact, 

these plants may be operating inefficiently, supporting wind power while consumers have to 

support the secure energy supply costs and Contract Balance Maintenance Costs (CBMC). 

Systems based on fossil fuels are subsidized for their non-use leading to rising prices to the 

final consumer.  

 Although the literature concerning renewables intermittency both from theoretical and 

case studies is vast, it has not been much focused on appraise of the wind overcapacity and, 

above all, on the empirical assessment of the overcapacity causes. As consequence, the main 

aim of this paper is to provide empirical evidence on the drivers that contribute to explain 

wind power overcapacity. Our objective is to analyze the causes of wind overcapacity. In 

particular, we will test for its interaction with other energy sources as well as socio-economic 

drivers and energy measures. This approach is useful to highlight and draw attention of policy 

makers to the possible wind overcapacity due to intermittent nature of renewables. For this, 

we address this issue in an innovative way, through an empirical study applying econometric 

techniques with a panel dataset to deal with energy and socio-economic characteristics of an 

economic bloc with environmental concerns and long-term energy targets. We follow to 

answer the question: what contribution gives conventional energy sources to the wind power 

overcapacity in Europe? How can public policies mitigate this economic inefficiency? The non-

use of installed capacity causes a phenomenon known as overcapacity. It is important to know 

how to avoid this inefficiency. We contribute on the debate of the renewables intermittency 

addressing the issue of wind overcapacity, stating its consequences and suggest possible 

measures to cope this problem.   

The remainder of this paper is organized as follows: Section 2 focuses on literature and 

the questions addressed by the research in the renewables intermittency and overcapacity 

debate. Section 3 characterizes data and methodology. Further, section 4 presents the 

results, and discussion is provided in section 5. Finally, section 6 reveals the conclusions. 
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2. Renewables intermittency and overcapacity: 

the debate 

 

The debate focusing on the renewables intermittency issue is not new actually, but the 

relevance of this problem requires much more research. Authors such as Albadi and El-

Saadany (2010), and Green and Vasilakos (2010) focused on analyzing the main reasons and 

impacts of non-constant generation of wind energy in markets with large amount of 

intermittent energy sources. The amount of wind energy generated varies with the natural 

resources available. Other authors have addressed this subject for some countries in 

particular. Gonzalez et al. (2004) look through the Ireland case while Gül and Stenzel (2005) 

discussed extensively for Scandinavia, United (UK) and United States (US).  

The approach to intermittency of renewables can be made through the analysis of their 

capacity factor which is defined as the ratio of average plant output by the maximum possible 

output over a period of time, generally one year (Denholm et al., 2005). Recently, Boccard 

(2009) argues that capacity factors depends on: (i) the wind variability; (ii) the shadowing 

phenomenon which is due to the fact that wind farms compromise the distance between them 

to save on land cost or to group too many turbines in a limited area with high population 

density; and (iii) the intensive focus in subsidies policies and too much confidence in public 

finances may have led to a fast and inefficient wind energy deployment. It can also be 

observed a seasonal influence to the capacity factor (Acker et al., 2007). This corroborate the 

assumption of Caralis et al (2008) which analyzed the capacity factors in Greece and suggest 

that spatial dispersion of wind farms benefits wind power efficiency. Therefore, they 

concluded that the accumulation of too many wind farms, even in wider regions is not always 

the best solution. Several other studies regarding capacity factors are resumed by Boccard 

(2009). Recently, Yang et al. (2011) and Zhang and Li, (2011) analyzed the huge growth of 

wind power in China that was driven by three main reasons: (i) the perception that China 

benefits from large wind resources; (ii) the adoption of energy policies that promote 

incentives and subsidies for the installation of wind power; and (iii) the reduction of wind 

capital costs. However, this requires more attention about the efficiency of wind turbines 

allocation in China. In fact, one-third of wind turbines were idle because the recent wind 

power growth has not been proportional to electricity generation, causing a capacity factor of 

16.3% between 2007 and 2010 (Yang et al., 2011).  

Hereupon, it is crucial to find means to deal with wind power output variability both in 

short-term and long-term, in order, to improve large-scale integration of wind energy in 

Europe. This can be done with additional energy sources to backup power when wind is 

insufficient or by energy storage devices (Purvins et al., 2011). Another important subject 

widely discussed in literature is the need to ensure a secure energy supply using a mix of wind 

jointly with other energy sources, including fossil fuels. Pearce (2009) argues that a solar 
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photovoltaic system with combined heat and power (CHP) overcomes intermittency issue in 

California without depending on energy storage. Moreno and Martínez-Val (2011) analyses a 

new scenario where thermal power plants have lost some importance in energy generation 

(base load) turning into backup systems to substitute renewables. These authors argued that 

backup with combined cycle gas turbine (CCGT) plants have to grow to 8-9 GW by 2020. 

Another simple and effective way to smooth wind variability is the interconnection of 

multiple wind energy sites through the electricity transmission grid. As more turbines are 

interconnected, they behave more similarly over time as a single wind farm with constant 

wind speed, thus allowing a constant supply of energy (Archer and Jacobson, 2007).  

 Regarding the impact of adopted energy policies in the renewables deployment, there 

are a few studies that provide empirical evidences. Carley (2009) use a variant of the fixed 

effects model, the fixed effect vector decomposition, and concludes that the total of energy 

policies in the US does not contribute significantly to the amount of electricity generated 

from renewable sources. However, for each additional year that a state maintains a policy, it 

promotes renewables energy growth. In turn, Menz and Vachon (2006) also found that there is 

a positive relationship between the expansion of wind energy and the adoption of energy 

policies that promote investment and subsidies, corroborating that this kind of measures is 

effective in wind installed capacity growth. Regarding European countries, there are also 

empirical studies that focus in this subject. Recently, Marques and Fuinhas (2012) found that 

in line with stated above, policies that subsidize the promotion on renewables are effective in 

promoting renewables. On the other hand, they found that renewables growth is partly from 

political will in order to meet the European targets in accordance with the EU directive 

2009/28/EC.  

 Wind power installation is strongly influenced by a highly subsidized model based on 

feed-in tariffs which will last for more than 25 years as stated by Moreno and Martínez-Val 

(2011). Together with other drivers that promote renewables in a large scale, this creates 

distortions and increased costs to consumers. Nevertheless, it appears that the targets 

established in the Europe Agreements will be reach in most EU Member States. However, as 

stated above, the deployment of wind energy in Europe needs extra attention due to its 

intermittent nature. It leads us to idle capacity problem. For the best of our knowledge the 

literature lacks from empirical evidence on this subject. Therefore we consider being useful 

to shed some light in this question and explain this phenomenon with an innovative approach. 
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3. Data and methodology 

 

In this section we present the methodology and data, their main characteristics and sources. 

The wind energy growth in the last decade in Europe was mainly driven by several reasons 

such as energy demand growth; the commitments made in the GHG reduction under the Kyoto 

protocol directives; improvements in renewable energy technology; and the reduction of the 

marginal cost of wind power generation over the past 15 years, approaching to the cost of 

conventional energy sources (Pechak et al., 2011). For these reasons the origin of wind power 

expansion in Europe was in the end of the 1990s, and early 2000s. As consequence, due to 

several lack of data before 1998 for almost all European countries, we work upon a panel 

data for the span of time 1998-2009, for the countries Austria, Belgium, Czech Republic, 

Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Netherlands, 

Norway, Poland, Portugal, Spain, Sweden and United Kingdom. These countries are part of a 

set that share long-term energy goals under the European directives (EU directive, 2009). 

However not all countries have the same observations due to sporadic missing values leading 

to an unbalanced panel. Luxembourg was excluded due to several missing data. The 

remaining countries of EU27 did not provide available data for wind power installed capacity.  

 Economic research using panel data techniques has some advantages over cross-sectional 

and time-series datasets (Hsiao, 2006). Panel data allows a more accurate statistical 

inference, because it gives more informative data and variability, it increases the number of 

observations and the degrees of freedom. Panel data allow for controlling for individual 

heterogeneity and unobserved characteristics of errors which are not detectable in time-

series or cross-sectional models (Baltagi, 2005). It also brings to researchers a more efficient 

and stable economic analysis than with conventional cross-sections and time-series. 

The aim of this paper is to provide empirical evidence on the drivers that contribute to 

explain wind power overcapacity and identify empirically the causes for a panel of 19 

countries. Boccard (2009) addresses the issue of wind intermittency from the perspective of 

the capacity factors. We are focused on the importance of intermittency and possible wind 

overcapacity, but in the non-used wind capacity approach. The study requires the 

construction of a variable which emulates the wind overcapacity. Given that overcapacity is a 

concept, to make it operational, we constructed the variable SWID. 

 SWID is our dependent variable and represents the ratio of the non-used installed 

capacity in a year to the hypothetical maximum energy that could be produced in a year, in a 

continuous full-power operation. This ratio was computed from raw data, and can be done in 

two different ways: (i) through idle capacity and (ii) through capacity factor. Accordingly for 

the way (i) it comes: 

 

        
          

         
, (1) 
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Where IDLECAP and TOTCAP are expressed in Megawatts (MW). TOTCAP is the total of wind 

installed capacity. IDLECAP is computed as follows: 

 

           
                                     

    
, (2) 

 

 

In expressions (1) and (2) IDLECAP denotes the non-used capacity of wind power in a year. In 

other words, IDLECAP represents the difference between wind electricity maximum possible 

output during the year (8760 hours) and the amount of electricity actually produced. 

TOTENGEN is the total electricity generated in a year, expressed in GWh. 

Regarding option (ii) SWID is also the difference between 1 and the capacity factor (CF) as 

follows: 

 

               , (3) 

 

Where capacity factor (CF) is computed as follows: 

 

      
           

              
, (4) 

 

In expressions (3) and (4) CF is the ratio of realized wind power over maximum capacity in a 

year. For example, for a country with 19 MW of wind power installed, with 57 GWh of 

electricity in a year: 

 

                   

    
             

 

Wind overcapacity ratio (SWID) is given by: 

 

       

  
               

 

This indicates that 65.75% of the wind installed capacity was not used during the year, i.e., a 

capacity factor of 34.25%. 

 Average SWID values for the span of time 1998-2009 are presented in figure 1. Wind 

overcapacity average values are in line with capacity factors showed in Boccard (2009). It 

denotes that Nordic countries (e.g. Norway, Sweden, Finland, Denmark, United Kingdom and 

Ireland) as well as southern Europe (e.g. Portugal, Spain and Greece) have lower idle capacity 

values than continental countries. It can be due mainly to higher wind speeds in these 

regions. 
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Figure 1 – Average SWID for the span of time 1998 – 2009 

 

Since the values obtained for SWID are relatively high, it is surprising that this issue has 

not been discussed with more emphasis on literature. However, they are in line with other 

authors who addressed capacity factors such as Boccard (2009) and Yang et al. (2011). For 

example, in Denmark and Portugal, the average SWID is 0.7790 and 0.7840 respectively, 

according to (4) the CF are 0.2210 and 0.2160. This is in line with the values obtained in 

Boccard (2009). 

The literature, especially the normative one, suggests several causes for wind idle 

capacity. Following closely this literature, we control for the impact of variables with 

different natures, namely: conventional energy sources; other renewable sources; socio-

economic; and energy policies as follows:  

 

• Conventional energy sources. We control for the share of fossil energy sources in total 

electricity generation across European countries, namely coal-based power plants (SCOAL), 

gas-fired (SGAS) and oil power plants (SOIL). These variables are largely addressed by 

literature (e.g. Luickx et al., 2008; Østergaard, 2008; Larraín et al., 2010; and Purvins et al., 

2011) since they represent a major source to backup wind energy supply namely coal and gas-

fired power plants. Gas turbine power plants are advantageous to backup wind power in 

windless periods because their start-up times are in the order of a few minutes while for 

other conventional power plants it may takes several hours (Kehlhofer et al., 2009). In some 

European countries, these energy sources are also largely used as base load energy 

production, we expect that these variables has highly significant influence on wind 

overcapacity. Conventional energy sources also include nuclear power. We control for the 

impact of nuclear capacity factor (NUCLEARCF) to wind overcapacity. Nuclear capacity factor 

was also computed according to (4). Nuclear power has great relevance in the European 

energy portfolio, although its capacity factor reduction by 7,9% between 1998 and 2009. The 

toxic residuals that comes from nuclear power and their difficult treatment as well as disaster 

risk has recently brings the debate to Germany on reducing its share of nuclear power in 

electricity generation. 
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• Other renewable energy sources. We control for the effect of capacity factor of 

hydropower (HYDROCF) in the wind idle capacity creation. Hydro capacity factor was 

computed according to (4). We use the capacity factors of nuclear and hydro power to avoid 

multicollinearity problems. As stated by Münster and Meibom (2010), to invest in industrial, 

municipal and renewables waste treatment is in line with the goal of increasing the share of 

renewables to 20%, as well with other renewables sources like solar photovoltaic. Thereby, 

we control the effect of waste (SWASTE) and solar (SSOLAR) shares in electricity generation 

to assess the influence of other renewables in wind overcapacity. We also control for the rate 

of growth of wind power installed capacity (GWWIND) to control for the new installed power 

plants effects over the years. We expect that a higher growth rate of wind installed capacity 

causes a positive effect on overcapacity. This effect is intrinsic to a greater amount of 

installed capacity of an intermittent energy source. 

 

• Socio-economic drivers. In line with Caralis et al. (2008) and Boccard (2009) Population 

density (POPDENSITY) is referred as an important driver of wind intermittency due to its 

importance in the decision making process of installing new power plants and can be used as 

a proxy to measure the spatial dispersion of wind farms. Moreover, economic development 

effect of European countries can be controlled through a common driver, the natural 

logarithm of GDP per capita (LNGDPPC), this can control for the standard living influence on 

overcapacity. We expect that more developed countries have more balanced energy 

consumption and, in consequence, less overcapacity.  

 

 • Energy efficiency measures and public policies. There have been several measures taken 

in Europe for energy efficiency and incentives to renewables. The MURE1  database provides 

the necessary information to control for the influence of energy policies in overcapacity. First 

we use the total of energy policies and measures carried out in a year (TOTPOL). We expect 

that the number of measures may have a positive impact in wind power overcapacity. 

Moreover, to assess the relationship between wind overcapacity and energy policies, we 

detached the total number of policies into specific types to control for the impact of each 

kind of energy measures. According to the MURE database, legislative/normative 

(MNORMATIVE) measures includes mandatory standards for buildings, regulation for heating 

systems and hot water systems, regulation in the field of building and mandatory standards 

for electrical appliances; legislative/informative (MINFORMATIVE) measures aim to inform 

about energy efficiency, mandatory standards in buildings and electrical appliances; 

fiscal/tariffs (MFISCAL) includes tax exemptions/reductions in retrofitting investments; 

financial measures through incentives/subsidies (MFINANCIAL) which includes feed-in tariffs, 

grants and loans. We expect a positive effect of these measures on SWID, probably due to its 

impact in renewables expansion and thus can contribute positively to wind idle capacity; 

information/education (MEDUC) which includes information campaigns by energy agencies 

                                                 
1
 Database available at http://http://www.muredatabase.org/ 



9 
 

and energy suppliers; co-operative measures (MCOOP) which includes voluntary programs and 

finally cross-cutting measures (MCROSSCUT) including Eco-tax on electricity/energy 

consumption or CO2 emissions as well as other eco-taxes. These measures are the cumulative 

amount of measures taken for household, industrial and tertiary sectors.  Table 1 shows the 

variables, their sources and descriptive statistics. 

 
Table 1 – Variables definition, sources and summary statistics 

 
Variable 

 
Definition 

 
Source 

 
Obs. 

 
Mean 

 
SD 

 
Min 

 
Max 

SWID 
Ratio of non-used output 
by the maximum possible 
output over a year 

EUROSTAT 221 0.7956 0.0543 0.5947 0.9912 

SCOAL 
Ratio of elect. Gen to 
coal (TWh)/total elect. 
Gen. (TWh) 

IEA 227 0.2940 0.2483 0 0.9636 

SGAS 
Ratio of elect. Gen to 
gas (TWh)/total elect. 
Gen. (TWh) 

IEA 227 0.2161 0.1761 0.0015 0.6339 

SOIL 
Ratio of elect. Gen to oil 
(TWh)/total elect. Gen. 
(TWh) 

IEA 227 0.0564 0.0770 0.0001 0.4243 

NUCLEARCF 

Ratio of average plant 
output by the maximum 
possible output over a 
year 

IEA 228 0.4324 0.4164 0 0.9659 

HYDROCF 

Ratio of average plant 
output by the maximum 
possible output over a 
year 

IEA 228 0.2884 0.1231 0.0948 0.6223 

SWASTE 
Ratio of elect. Gen to 
waste (TWh)/total elect. 
Gen. (TWh) 

IEA 227 0.0308 0.0348 0 0.1486 

SSOLAR 
Ratio of elect. Gen to 
solar (TWh)/total elect. 
Gen. (TWh) 

IEA 227 0.0004 0.0018 0 0.0210 

GWWIND 
Yearly growth rate of 
wind installed capacity 

EUROSTAT 223 50.5234 98.1664 -7.1429 1000 

POPDENSITY 
Population density 
(people/km2) 

World Bank, 
World 

Developem 
ent Indicators 

Database 

228 139.6083 115.6765 14.5655 489.6442 

LNGDPPC 
Logarithm of Gross 
Domestic Product Per 
Capita 

World Bank, 
World 

Development 
Indicator 
Database 

228 9.7194 0.6774 7.9737 10.6431 

TOTPOL 
Total of Accumulated 
Number of RE Policies 
and Measures 

MURE 
DATABASE 

228 29.8553 18.9586 0 82 
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MNORMATIVE 
Accumulated Number of 
RE Policies and Measures 
– Normative/Legislative 

MURE 
DATABASE 

228 6.9035 6.0468 0 36 

MFISCAL 
Accumulated Number of 
RE Policies and Measures 
– Tariff/fiscal 

MURE 
DATABASE 

221 1.0905 1.8367 0 7 

MINFORMATIVE 
Accumulated Number of 
RE Policies and Measures 
– Legislative/informative 

MURE 
DATABASE 

228 3.2807 3.2434 0 13 

MFINANCIAL 
Accumulated Number of 
RE Policies and Measures 
– Incentives/subsidies 

MURE 
DATABASE 

228 8.6754 7.0079 0 26 

MEDUC 
Accumulated Number of 
RE Policies and Measures 
– Educational 

MURE 
DATABASE 

228 5.5526 4.7159 0 22 

MCOOP 
Accumulated Number of 
RE Policies and Measures 
– Co-operative 

MURE 
DATABASE 

218 2.7456 3.0511 0 16 

MCROSSCUT 
Accumulated Number of 
RE Policies and Measures 
– Cross-cutting 

MURE 
DATABASE 

228 1.6404 3.5199 0 16 

Notes: MURE DATABASE stands for MURE (Mesures d’Utilisation Rationnelle de l’Energie) II Database; Co-
ordinated by the Institute of Studies for the Integration of Systems and the Fraunhofer Institute for 
Systems and Innovation Research ISI. IEA stands for International Energy Agency Data Services and 
EUROSTAT stands for Eurostat Statistics Database available at 
http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database with the code 
nrg_113a. 
 

We analyzed the panel dataset structure, which generally has complex nature of terms errors 

composition. Several methods have been applied: (i) a visual analysis of data; (ii) test for 

first-order autocorrelation in panel data; (iii) test for the presence of groupwise 

heteroskedasticity; and (iv) contemporaneous correlation. We carry out econometric analysis 

using the Stata v11.2 software.  

 The correlation matrix (table A.1 in appendix) values suggest that correlation 

coefficients are low and do not suggest the existence of collinearity among the variables. 

Notwithstanding, we performed the Variance Inflation Factor (VIF) test for multicollinearity 

among variables. Individual values are below 5 for all individual tests and 2.36 for mean VIF 

(table A.1 in appendix), which reinforces that multicollinearity among variables is not a 

problem.  

 As part of empirical research using panel dataset techniques, it reveals accurate to 

perform tests in order to define which estimators are more suitable to the analysis. In 

accordance, several tests were conducted to detect common panel phenomena in errors 

structure. We implement the Wooldridge test with a normal distribution N(0,1) in Ordinary 

Least Squares (OLS) estimator to detect serial correlation in the idiosyncratic errors of panel-

data, with the null hypothesis of no first-order autocorrelation (Wooldridge, 2002). To test 

the presence of groupwise heteroskedaticity modified Wald statistic was applied in the 

residuals of a fixed effect (FE) regression model, which assumes homoskedaticity across cross-

sections. The modified Wald Test has    distribution and tests the null hypothesis of:   
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for         where   is the variance of   country, following Greene (2000). Moreover, as 

stated by Marques and Fuinhas (2012) if we consider that Europe countries are guided by 

common energy guidelines, there may be signs of contemporaneous correlation in our panel. 

To detect presence of contemporaneous correlation, i.e., test for cross-section 

independence, we apply Pesaran (2004), Frees (1995 and 2004) and Friedman (1937) 

statistics. Pesaran, Frees and Friedman statistics test the null hypothesis of cross-section 

independence; Pesaran test for cross-sectional dependence and follows a standard normal 

distribution; Frees statistic test uses Frees Q-distribution; Friedman uses Friedman’s chi-

square distributed statistic. Frees and Friedman uses only observations available for all cross-

sectional units. Hausman’s statistics test the null hypothesis of difference of coefficients 

between fixed-effects and random-effects to be not systematic. 

The generic model to estimate is: 

 

              ∑  

 

   

                

 

(5) 

This model assumes that the error term is              with    uncorrelated with the 

regressors and     homoskedastic with no serial correlation.    is the dummy for time. 

Ordinary least squares estimator (OLS) reveals to be consistent when there is no presence of 

multicollinearity among the explanatory variables and when the regressors are exogenous. It 

is optimal when there is no serial auto-correlation following        
       and when the 

error are homoscedastic following      . Therefore, in our case it may be useful to 

benchmark results of our panel estimation. Moreover, we apply the panel fixed-effects (FE) 

and random-effects estimators (RE). Using the FE estimator appears to be appropriate in 

studying the impact of variables that vary over time. It explores the different variables within 

groups that have its own characteristics, in our case European countries. FE estimator 

assumes that something time-invariant within groups can affect the dependent variable and 

cannot be correlated with other groups. In turn, RE assumes that variation across groups is 

random and not correlated to the dependent and independent variables.  

 Specification tests reveal that according to the Wooldridge test value (3.48), we do not 

reject the null hypothesis of no first-order autocorrelation; therefore it is not appropriate to 

apply autoregressive (AR1) estimator. Modified Wald test value (749.41) suggests rejection of 

the null hypothesis of errors homoscedasticity within cross-sections; therefore we are in the 

presence of errors heteroskedasticity. What concerns to the presence of contemporaneous 

correlation, with exception to the Pesaran’s test for random-effects, generally the null 

hypothesis of no contemporaneous correlation was not rejected, suggesting that there is no 

presence of cross-sectional dependence across European countries. This is not surprising given 

the technical nature of our research through wind overcapacity analysis and its interaction 

with other energy sources instead of common policy guidelines. 
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4. Results 

 

To test if the RE estimator is more suitable than OLS estimator, we provide the Breusch-Pagan 

Lagrange multiplier (LM) test. The results from the LM test value reveals that we reject the 

null hypothesis of variances across groups is equal to zero, so there is a significant difference 

across groups, accordingly the RE estimator is more suitable than Pooled OLS. Moreover, to 

choose the most appropriate estimator between FE and RE, we apply the Hausman test where 

the null hypothesis assumes that difference in coefficients is not systematic, thus accepting 

RE over FE estimator (Greene, 2008). The Hausman’s test value indicates that the null 

hypothesis is not rejected, thus the errors    uncorrelated with the regressors. Therefore, it 

seems that differences across countries have influence on SWID, and then the panel RE 

estimator is more appropriate than FE to our analysis. 

 Our estimations from pooled OLS (I and II), panel FE (III and IV) and panel RE effects (V 

and VI) are presented in table 2. All models are presented with conventional standard errors 

(CSE) and Robust Standard errors (RSE) to deal with the presence of heteroskedasticity. As 

further evidence of results robustness, it reveals also suitable to apply the robust regression 

(RREG – model XX in the appendix A.2) estimator to cope with possible outliers from our 

dataset (Huber, 1973).  In models IV and VI the error term of the equation is            . It 

is assumed that the regressors are not correlated with    and therefore our reference model 

to results discussion is RE estimator (model - VI). 

 
Table 2 – Regression results - Dependent Variable SWIDi,t 

  
OLS  

  
FE  

  
RE  

 

Ind. Variables  
CSE(I) 

 
RSE(II) 

 
CSE(III) 

 
RSE(IV) 

 
CSE(V) 

 
RSE(VI) 

SCOALi,t 
-0.0402** 
(0.0161) 

-0.0402** 
(0.0182) 

-0.0696 
(0.1264) 

-0.0696 
(0.0651) 

-0.0381** 
(0.0177) 

-0.0381** 
(0.0192) 

SGASi,t 
-0.0768*** 
(0.0234) 

-0.0768*** 
(0.0255) 

-0.1174 
(0.1330) 

-0.1174 
(0.0660) 

-0.0692*** 
(0.0253) 

-0.0692*** 
(0.0253) 

SOILi,t 
-0.0442 
(0.0479) 

-0.0442 
(0.0739) 

-0.2819** 
(0.1382) 

-0.2819*** 
(0.0673) 

-0.0646 
(0.0508) 

-0.0646 
(0.0731) 

NUCLEARCFi,t 
-0.0086 
(0.0101) 

-0.0086 
(0.0137) 

0.0893 
(0.0785) 

0.0893 
(0.0619) 

-0.0070 
(0.0110) 

-0.0070 
(0.0142) 

HYDROCFi,t 
0.0118 
(0.0362) 

0.0118 
(0.0402) 

-0.1466 
(0.0825) 

-0.1466** 
(0.0621) 

0.0049 
(0.0386) 

0.0049 
(0.0415) 

SWASTEi,t 
0.2878*** 
(0.1084) 

0.2878*** 
(0.0836) 

-0.1588 
(0.3438) 

-0.1588 
(0.3102) 

0.2666** 
(0.1174) 

0.2666** 
(0.0849) 

GWWINDi,t 
0.0002*** 
(0.0000) 

0.0002*** 
(0.0001) 

0.0002*** 
(0.0000) 

0.0002*** 
(0.0001) 

0.0002*** 
(0.0000) 

0.0002*** 
(0.0000) 
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SSOLARi,t 
1.2293 
(1.8236) 

1.2293 
(1.0963) 

1.5059 
(2.0191) 

1.5059 
(0.8716) 

1.1403 
(1.8146) 

1.1403 
(0.9527) 

POPDENSITYi,t 
0.0002*** 
(0.0000) 

0.0002*** 
(0.0000) 

0.0021 
(0.0014) 

0.0021 
(0.0011) 

0.0001*** 
(0.0000) 

0.0001*** 
(0.0000) 

LNGDPPCi,t 
-0.0300*** 
(0.0063) 

-0.0300*** 
(0.0076) 

0.0878 
(0.0563) 

0.0878 
(0.0511) 

-0.0290*** 
(0.0068) 

-0.0290*** 
(0.0081) 

TOTPOLi,t 
0.0008*** 
(0.0002) 

0.0008*** 
(0.0003) 

0.0009** 
(0.0004) 

0.0009*** 
(0.0003) 

0.0008*** 
(0.0002) 

0.0008*** 
(0.0002) 

CONSTANT 
1.0650*** 
(0.0617) 

1.0650*** 
(0.0746) 

-0.2911 
(0.6436) 

-0.2911 
(0.6077) 

1.0593*** 
(0.0666) 

1.0593*** 
(0.0805) 

 
N 

 
218 

 
218 

 
218 

 
218 

 
218 

 
218 

 
R2 

 
0.4316 

 
0.4316 

 
0.3623 

 
0.3623 

  

 

Wald test (  ) 
    

 
136.63*** 

 

 
F (N(0,1)) 

 
7.09*** 

 
 

4.82*** 
   

 

LM (  ) 
    

 
11.76*** 

 

 
Hausman test 

(  ) 
  

 
30.93 

   

Notes: OLS - Ordinary Least Squares. RE – Random Effects. FE – Fixed Effects. CSE – Conventional 
standard errors. RSE – Robust standard errors. Models in shading highlight RSE. The F-test has normal 
distribution N(0,1) and tests the null hypothesis of non-significance of all estimated parameters. The 

Wald test has   distribution and tests the null hypothesis of non-significance of all coefficients of 

independent variables. LM test has    distribution and tests the null hypothesis of non-relevance of 

individual effects in RE model. Hausman test has   distribution and test the null hypothesis of 
difference in coefficients to be not systematic between two selected estimators. Standard errors are 
reported in brackets. All estimates were controlled to include the time effects, but they are not 
reported for simplicity. ***, **, denote significance at 1 and 5% significance levels respectively for both 
coefficient estimators and test statistics. 
 

Given the LM and Hausman test results, the most consistent and appropriate estimator is 

the random-effects with robust standard errors (model VI). Results from table 2 reveal 

consistency among coefficients signs, although some differences between significance levels. 

The effect of SCOAL and SGAS are negative and highly statistically significant. In contrast, the 

effect of SOIL does not appear to be significant. These results may reveal that overcapacity 

arises from intermittency, which in turn must be overcome by other electricity sources such 

as coal and gas to backup wind power, but oil is not usually used for this purpose, and 

therefore, this difference in significance of the coefficients may be a sign of our model 

robustness. 

 NUCLEARCF, HYDROCF and SSOLAR coefficients verify that there is no statistical 

relationship between the use of nuclear, hydro and solar energy with overcapacity of wind 

power. The effects of variables GWWIND, POPDENSITY, LNGDPPC and TOTPOL are positive and 

statistically significant and thus leading us to conclude that they are important drivers 

explaining wind overcapacity. Other energy policies have not been omitted. But none of them 

have shown a direct effect on idle capacity excepting MNORMATIVE and MFISCAL. It is 
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important to note that we chose to not consider the legislative/informative policies because 

they are closely related to normative policies but in the informative side, and could create 

collinearity problems due to their identical nature. It is relevant to note that grants/subsidies 

class of policies, including feed-in tariffs for investment in renewable energy, combined heat 

and power plants and investment in energy efficient in build renovation have no influence in 

explaining idle capacity.  

 We provide exclusion tests for explanatory variables in which the estimators do not 

reveals a statistical significance and thus do not influence SWID. The results are shown in 

Appendix A.2. Indeed the models keep robustness among the estimators for all coefficients 

with or without disaggregated energy policies. These set of variables has no influence both on 

the ratio of non-used wind capacity (SWID) as in the remaining model. Therefore we opted to 

present these results in appendix due to space constraints. 
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5. Discussion 

 

Renewable energy sources, namely wind and solar, are linked to the intermittency 

phenomenon. To deal with it, we must deeply analyze the causes and consequences of wind 

overcapacity. We consider that the factors may be conventional energy sources, other 

renewables, socio-economic and energy policies. The results allow us to explore and discuss 

them individually to clarify this issue and propose some policy suggestions.   

 For fossil fuels, two effects could be noted about their relation to wind overcapacity. It 

would be accurate to accept coal, gas and oil to have a positive or negative effect in wind 

overcapacity. It is important to note that SOIL can reflect the robustness of our model, 

because, generally, oil is not the main backup source for renewables. Therefore, we consider 

that the oil power plants are mainly used in base load electricity generation and have no 

relation with wind overcapacity. An increase in share of energy production using fossil fuels 

would cause a substitution effect in the electricity generation process due to less use of wind 

energy, in consequence idle capacity will be greater and lead to a positive effect in wind 

overcapacity. But in the European context, the literature (Snyder and Kaiser, 2009; and 

Michakal, 2011) shows us a significant wind power growth in last years.  

 The results show a negative effect of coal and gas shares in overcapacity, i.e., there is a 

decrease in wind power overcapacity as coal and gas are most frequently used. This effect 

may arise due to four main reasons. First, a greater use of fossil fuels as base load power 

generation may involve less use of wind energy and, in consequence, there may be a 

reduction of wind idle capacity. Second, in line with wind energy intermittency issue there is 

the need to ensure a stable energy supply. Therefore, when considering a higher economy 

dependence on fossil fuels, we assume that coal and gas power plants are mainly used to 

support backup of renewable energy in peak-load periods. In these periods energy production 

is simultaneously based on renewables and fossil fuels to supplant electricity demand, leading 

to wind overcapacity reduction. Note that fossil fuels power plants are capable to rapidly 

start-up to ensure electricity supply with high demand variations (Isla, 1999 and Luickx et al., 

2008). Third, some regions still have low shares of wind power. In these regions, fossil fuels 

are largely used as base load production. Usually, the first sites for wind energy allocation are 

the most efficient ones, as they have higher wind speeds. Thus, there is greater capacity 

factor and in consequence an overcapacity reduction. Four, the coefficient signs sustain a 

lobbying effect in electricity production industry, in line with the literature (e.g. Marques et 

al., 2010). In fact, the lobbying effect leads to more stringent energy policies, intensifying 

the energy market on fossil fuels (Fredriksson et al., 2004). This effect restricts renewables 

growth; therefore, wind overcapacity tends to be lower, since wind power is installed in 

optimum sites.  

 Nuclear power represents a large share of electricity generation in some European 

countries. It allows the production of a large amount of energy in a single plant as well as 
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cheaper than many other fossil fuels such as oil. Moreover, nuclear power cannot generate 

electricity according to demand needing, but rather in full-power operation (Dittmar, 2011). 

This supports its use in base load power generation and its widespread use in Europe. 

However, nuclear power cannot backup renewable energy intermittency due to limitations of 

the electricity generation start-up times in the short run. For these reasons, nuclear energy 

appears to be not statistically significant in explaining wind power overcapacity.  

Regarding hydropower, as in the case of nuclear energy, there is not direct link between 

hydro power and wind overcapacity given the stable and mature characteristics of hydro 

which is primary used for base load energy production. In Europe, in 2000, the share of hydro 

accounted for about 23% of total energy produced, and decreased to 17% in 2009. Hydropower 

is a well-developed renewable energy source, with extensive use in Europe for electricity 

production (Balat, 2006). The technology is well developed and stable. Hydropower can be 

used in conjunction with wind power. In fact, wind power with pumped hydro power stations 

hybrid systems can be useful to meet electricity demand in peak-load periods. In low demand 

periods, excess electrical capacity of wind farms is used to pump water to an elevated 

reservoir to later be re-used and produce electricity (Dursun and Alboyaci, 2010). This could 

help to mitigate overcapacity effects, but the results also revealed no influence on 

overcapacity. As pumped-hydro system is not a common energy production source, moreover, 

it is not always combined with wind, thus it is acceptable that there is no direct effect of 

hydropower in wind overcapacity. Moreover, this energy source mainly reflects the output of 

large dams and small hydro that are more recently been used to backup renewables. 

Solar energy deserves our attention since it is a widely used renewable energy source in 

Europe; however, the results show that solar energy does not reveal to be statistically 

significant in explaining wind overcapacity. The use of solar and wind energy simultaneously 

through hybrid systems of energy is an increasingly popular and advantageous solution 

because their integration makes them more efficient and can be integrated with conventional 

sources (Nema et al., 2009). Promoting such systems more especially in remote areas may be 

a solution in reducing idle capacity. A successful case is the recent investment in southern 

Spain in solar thermal plants with a capacity of 300MW at its completion in 2013. These plants 

use different available technologies as power towers, parabolic trough with heat storage, 

sterling dish and concentrated and non-concentrated solar power. With this, the power plants 

can operate without sunlight and with a total capacity of 7.5 hours. This may be a solution to 

be followed by European partners namely in regions where land space and natural resources 

allows this investment.  

 With the fast growth of wind energy installed capacity in Europe, renewables have 

sizeable share in the energy networks, changing the European energy paradigm (Michalak, 

2011). The effect of growth rate of wind installed capacity is positive and highly significant, 

as expected because with the strong wind power expansion, also rises idle capacity. The 

share of waste is also statistically significant. In fact, with the growth of waste processing for 
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energy production, there appears to be a substitution of wind energy. Investment in waste 

processing to produce electricity seams to overlap wind energy.  

 The efficient allocation of wind parks should be widely discussed. Accordingly, diversify 

wind turbines allocation can be a solution because it smooth out wind idle capacity, thus the 

players involved should give a special attention to this subject since the results are consistent 

with this assumption; there is more wind idle capacity as countries have higher population 

density. The installation of offshore wind farms can be a solution to deal with the constraints 

caused by regions with high population density. Offshore wind farms have a steadier and 

efficient energy production due to higher wind speeds in sea. Generally, population is more 

concentrated in continental areas with low wind speeds. Therefore, the offshore 

characteristics can help to overcome the population density effect in the overcapacity 

creation. 

 The relationship between economic development and renewables growth is also an 

important driver in the idle capacity analysis. In general, it is suggested that economic 

growth is a driver toward renewable energy expansion. However, Chang et al. (2009) 

concludes with a panel data analysis across all OECD countries that there is no direct 

relationship between economic growth and renewables development. Notwithstanding, 

countries with high economic growth rates in the previous year can support prices of investing 

in renewables. Therefore developed countries tend to invest more in renewables even 

though, as consequence, it increases electricity prices in the final consumer. In literature 

there is no consensus of the GDP impact on the renewables deployment. Furthermore, 

Marques et al. (2010) concluded that the effect of GDP in renewables may vary depending on 

the level of existing share of renewables. In this paper, we focus only in wind power 

overcapacity. Economic growth rate and GDP assumptions revealed to be not significant. 

Thus, the logarithm of GDP per capita shows a negative effect in wind overcapacity. 

Eventually, it proves that countries’ population with highest standard living, benefits for 

more efficient and advanced wind power plants.  

 Energy measures are considered an effective method that EU Member States should 

implemented to increase the share of energy from renewable sources (EU directive, 2009). 

The literature (Gan et al., 2007; and Johnstone et al., 2010) suggests that investment 

incentives, incentive taxes, feed-in tariffs, voluntary programs as well as R&D policy support 

are the main measures that support renewables deployment. Our results show that the total 

of energy policies contributes to the overcapacity increase. It can be explained by the impact 

of these policies in renewables deployment which sometimes is disproportionate and 

inefficient, taking into account only the players political will and not the promotion of an 

efficient energy grid. In table A.2 of the appendix the results from disaggregated policies such 

as legislative/normative, more specifically, regulatory and efficiency policies in household, 

industry and tertiary sectors create overcapacity of wind power. Further, these policies are 

really effective and are linked to more efficiency and consumption savings in these sectors. In 

a context of wind energy growth, reducing energy consumption in buildings logically implies 
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more idle capacity. Moreover, fiscal and tariff policies which included the value added tax 

reduction in retrofitting investments have the opposite effect due to improved and more 

efficient power plants. Retrofit investments help to upgrade the electricity system, replacing 

old power plants to reduce system’s energy use and improve efficiency in energy production.   

 This work contributes to the analysis of intermittency issue on another aspect, the 

overcapacity of renewables. Wind energy has been very important in order to meet the 

Energy 2020 goals and therefore deserves a review of the implicit economic consequences. 

Policy makers should pay more attention to advantages and consequences to avoid an 

immoderate and blindly decision making process. It is evident that advancement of wind 

power overcapacity in Europe has consequences for the energy system as a whole and creates 

economy distortions. Thus it is important to analyze energy networks and consumption 

patterns in Europe in order to place side by side GHG emissions reduction with an efficient 

electricity supply. The energy portfolio diversification is a key issue to establish equilibrium 

between fossil and renewables for electricity generation, but it can be very complex and 

requires political and scientific intervention in several areas. In Europe, the main sources of 

electricity generation are not completely homogenous but there is a pattern regarding main 

use of fossil fuels, combined with nuclear and hydropower as well as the recent commitment 

to renewables (Bhattacharyya, 2009). Our results suggest that regulation in buildings reduce 

energy consumption and therefore creates overcapacity. Policy makers must be aware that 

renewables growth has to be proportional to electricity consumption patterns. To mitigate 

this problem, micro-production incentives seem to be a solution to balance domestic 

consumption with network energy supply. Furthermore, installed players must not resist to 

retrofitting investment, promoting more efficient technologies to maximize wind farms 

capacity factors. Off-shore sites are a good alternative because they have a much higher 

capacity factor than on-shore wind farms.  

 The importance given to other installed fonts is affected and redirects them to other 

functions. Once, hydropower had a great share in energy grid, although not cease to have, it 

is declining in most countries. It appears that fossil fuels power plants namely as coal-based 

and gas-fired may be used to backup electric power generation from wind to ensure a secure 

energy supply. However, this implies higher costs for systems based on fossil fuels for their 

non-use leading to rising prices to consumers. In Europe, traditionally systems are still largely 

based on these sources. Therefore, policy makers and authorities should be aware and 

combine these systems to mitigate renewables intermittency. Depending on the installation 

area, the natural resources available and the demand characteristics, hybrid systems can be 

developed and optimized to respond to the needs of the area (Erdinc and Uzunoglu, 2012). 

The optimal design of hybrid systems based on renewable energy can improve economically 

the energy supply and reduce overcapacity of renewables. Energy policies should take into 

account subsidies promoting more combined cycle gas turbine power plants (CCGT) to mix 

several energy sources in areas with low wind capacity factors. With a more open market to 

private investment and the recent energy network unbundling process, energy market 
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regulation is an essential implement in controlling inefficient investments. Thus, we can 

reach European goals in line with a more efficient energy supply as well as a cost reduction to 

final consumers. 
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6. Conclusions 

 

This paper is focused on a panel of 19 European countries for the span of time 1998-2009, to 

address the issue of intermittency of renewables, specifically wind energy. It is important to 

understand the causes of overcapacity that may arise from non-constant electricity 

generation. To the best of our knowledge, the analysis of wind overcapacity was never been 

made with panel data techniques. This paper sought to contribute on the debate of wind 

energy intermittency and its relationship with other conventional energy sources, 

renewables, socio-economic drivers and energy policies in the context of an economic bloc 

with common long-term energy guidelines. 

 Our results showed that fossil fuels, namely coal-based and gas-fired power plants are 

actually used to backup electricity generation, while oil and nuclear does not appear to 

contribute statistically to the wind overcapacity. These results may indicate the robustness of 

our model, as oil and nuclear power are generally used for base load energy generation and 

therefore has no direct relationship with wind overcapacity.  

 Other renewables like hydropower and solar photovoltaic seem to have no relationship to 

wind overcapacity, as opposed to industrial, municipal and renewables waste which are 

increasingly used in Europe. The results evidence that there may be a substitution effect of 

wind, and thus increases the overcapacity. Moreover, it seems that population density is a 

factor toward greater wind overcapacity. In fact, countries with higher population density 

tend to have less land area available to install properly wind farms with optimal distance 

between them. On the contrary, countries with a higher living standard tend to be more 

efficient in generating electricity with wind power and therefore cause less overcapacity. 

Regarding, public policies and energy measures, the results indicate that may have a positive 

effect in increasing overcapacity due to an inefficient deployment of wind power.  

 Despite all the advantages of renewables, particularly in the context of Kyoto protocol to 

reduce GHG emissions, the renewables intermittency is still a barrier to make an energy 

portfolio exclusively based on renewables. Globally our model suggests that there are many 

factors pro-overcapacity. We must reverse this trend and adopt measures that could lead to 

that way. As showed in this paper, wind energy fast growth also increases the need for a 

more intensive use of fossil fuels in European countries, where coal and gas are widely used 

as backup sources to electric power generation. With the intensive advance of new wind 

farms in optimal sites, reaching the share of renewables could become a problem and 

compromise energy efficiency due to optimal sites exhaustion. Accordingly, it is crucial to pay 

attention and focus on new ways of wind power installation, to minimize the intermittency 

effects. Policy makers have a central role in this issue and should promote the 

implementation of energy policies which favor the support retrofitting investment, regulating 

energy consumption patterns and encouraging regular hours of consumption. 
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Appendix A.1 – Correlation Matrix and variance Inflation Factor (VIF) 
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Appendix A.2 – Regression results with disaggregated variables - Dependent variable SWIDi,t 
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(0.6406) 

-0.2684 
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-0.0636 
(0.6284) 
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(0.0580) 

1.0251*** 
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(0.0525) 
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(0.0692) 

1.0238*** 
(0.0399) 

1.0377*** 
(0.0457) 
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218 

 
R2 

 
0.4772 

 
0.4809 

 
0.4772 

 
0.4809 

 
0.3554 

 
0.3750 

 
0.3554 

 
0.3750 

    
 
0.6920 

 
0.7093 

 
Wald test (  ) 

        
 
171.31*** 

 
176.91*** 

    

 
F (N(0,1)) 

 
8.09*** 

 
6.80*** 

  
 
4.44*** 

 
3.99*** 

      
 
19.92*** 

 
17.93*** 

 
Exclusion tests to MFINANCIAL, MEDUC, MCOOP and MCROSSCUT 
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JST 

 
 
0.34 

 
 
0.76 

 
 
1.36 

 
 
10.63*** 

 
 
1.34 

 
 
3.02 

 
 
0.86 

 
LRT 

 
 
0.66 

 
 
0.85 

 
 
2.08** 

 
 
3.78*** 

 
 
0.66 

 
 
0.85 

 
 
1.30 

Notes: OLS - Ordinary Least Squares. RE – Random Effects. FE – Fixed Effects. RREG – Robust Regression. CSE – Conventional standard errors. RSE – Robust standard errors. 
Models in shading highlight RSE. The F-test has normal distribution N(0,1) and tests the null hypothesis of non-significance of all estimated parameters. The Wald test has 

   distribution and tests the null hypothesis of non-significance of all coefficients of independent variables. JST - Joint Significance Test. JST is a Wald (  ) test with the 
null hypothesis of                  , with             representing the coefficient of MFINANCIAL, MEDUC, MCOOP and MCROSSCUT, respectively. LRT - Linear 
Restriction Test has the null hypothesis of:                  . Standard errors are reported in brackets. All estimates were controlled to include the time effects, but 
they are not reported for simplicity. ***, **, denote significance at 1 and 5% significance levels respectively. 
 

 

 

 

 

 

 

 

 


