
 
 

 

 

 

 
 

UNIVERSIDADE DA BEIRA INTERIOR 

 
Ciências 
 
 
 
 

 
 
 

Androgens in breast cancer cells physiology 
 A connection with calcium homeostasis? 

 
 
 
 
 

Carina Sofia Gonçalves Peres 
 
 
 

Master degree thesis in 

Biochemistry 
(2nd cycle of studies) 

 
 
 
 
 
 

Supervisor: Sílvia Socorro, PhD 
Co-supervisor: Cláudio Maia, PhD  

 
 
 

Covilhã, June 2012 



   

    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
 

 
 

UNIVERSIDADE DA BEIRA INTERIOR 
Ciências 
 

 
 
 
 
 
 
 

 
 
 
 

Androgens in breast cancer cells physiology 
A connection with calcium homeostasis? 

 
 
 
 

Carina Sofia Gonçalves Peres 

 

 
 

Master degree thesis in 

Biochemistry 
(2nd cycle of studies) 

 

 

 
 

 

 

Supervisor: Sílvia Socorro, PhD 

Co-supervisor: Cláudio Maia, PhD 

 

 

 

Covilhã, Junho de 2012 



Androgens in breast cancer cells physiology: a connection with calcium homeostasis? 

ii 

 

 



Androgens in breast cancer cells physiology: a connection with calcium homeostasis? 

iii 

 

 

 

“Imagination is more important than knowledge. For while, 

knowledge defines all we currently know and understand, 

imagination points to all we might yet discover and create.” 

 

 
Albert Einstein 
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Abstract 

 

 

Several evidences suggest that androgenic actions and calcium (Ca2+) homeostasis 

alterations may contribute to the development of breast cancer. The androgen receptor is 

detected in the majority of human breast cancer cases, including those that are oestrogen 

and progesterone receptor negatives. It has also been shown that androgens play an 

important role regulating breast cells proliferation and death. On the other hand, it is known 

that intracellular Ca2+ is a ubiquitous second messenger involved in the regulation of several 

biological processes in the cell such as proliferation and apoptosis. In this way, deregulation 

of intracellular Ca2+ concentration via altered expression and/or function of Ca2+ transporters, 

Ca2+ channels and/or Ca2+ binding proteins may have implications breast pathophysiology. 

Recently, studies have demonstrated that androgens regulate the expression and/or activity 

of several Ca2+ regulator proteins, namely the Ca2+-binding protein regucalcin and voltage-

dependent L-type Ca2+ channel in distinct cell types. The present project aims to investigate 

the effect of androgen 5α-dihydrotestosterone (DHT) on the expression of regucalcin and L-

type Ca2+ channel (α1C subunit) in human breast cancer cells (MCF-7). The presence of 

regucalcin and L-type Ca2+ channel (α1C subunit) in these cells was confirmed by means of RT-

PCR and Western Blot. The effect of androgens on the mRNA expression of regucalcin and L-

type Ca2+ channel (α1C subunit) was evaluated by real-time PCR. DHT down-regulated the 

expression of regucalcin and L-type Ca2+ channel (α1C subunit) in MCF-7 cells. In both cases, 

this effect was reverted in presence of androgen inhibitor flutamide and oestrogen inhibitor 

ICI 182,780, suggesting that DHT effects regulating regucalcin and L-type Ca2+ channel (α1C 

subunit) expression are mediated by the androgen receptor, but also by the oestrogen 

receptor due to the metabolization of DHT to oestrogenic products. This study first 

demonstrated the presence of L-type Ca2+ channel (α1C subunit) in human breast cancer cells 

and showed that androgens modulate expression of Ca2+ regulator proteins in these cells. 

These findings suggest that androgenic actions regulating cell death and proliferation of 

breast cancer cells may be associated with the control of Ca2+ homeostasis. 
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Resumo 

 

 

Várias evidências sugerem que as ações androgénicas e alterações na homeostasia do 

cálcio (Ca2+) podem contribuir para o desenvolvimento do cancro de mama. O recetor de 

androgénios é detetado na maioria dos casos de cancro de mama humano, incluindo os que 

são considerados negativos para os recetores de estrogénios e de progesterona. Também se 

tem demonstrado que os androgénios desempenham um papel importante na regulação da 

proliferação e morte em células da mama. Por outro lado, sabe-se que o Ca2+ intracelular é 

um segundo mensageiro ubíquo envolvido na regulação de diversos processos biológicos da 

célula, tais como a proliferação e a apoptose. Desta forma, a desregulação da concentração 

intracelular de Ca2+, através de alterações na expressão e/ou função de transportadores de 

Ca2+, canais de Ca2+ e/ou proteínas de ligação ao Ca2+, pode ter implicações na fisiopatologia 

da mama. Recentemente, alguns estudos demonstraram que os androgénios regulam a 

expressão e/ou atividade de várias proteínas reguladoras de Ca2+, nomeadamente a proteína 

de ligação ao Ca2+ regucalcina e o canal de Ca2+ dependente de voltagem do tipo L, em tipos 

celulares distintos. Com o presente projeto pretende-se investigar o efeito do androgénio 5α-

dihidrotestosterona (DHT) na expressão da regucalcina e do canal de Ca2+ do tipo L 

(subunidade α1C) em células de cancro da mama humano (MCF-7). A presença da regucalcina e 

do canal de Ca2+ do tipo L (subunidade α1C) nestas células foi confirmada por RT-PCR e 

Western Blot. O efeito dos androgénios na expressão do mRNA da regucalcina e do canal de 

Ca2+ do tipo L (subunidade α1C) foi avaliado por PCR em tempo real. A DHT diminui a 

expressão da regucalcina e do canal de Ca2+ do tipo L (subunidade α1C) em células MCF-7. Em 

ambos os casos, este efeito foi revertido em presença do inibidor de androgénio flutamida e 

do inibidor de estrogénios ICI 182,780, sugerindo que os efeitos da DHT na regulação da 

expressão da regucalcina e do canal de Ca2+ do tipo L (subunidade α1C) são mediados pelo 

recetor de androgénios, mas também pelo recetor de estrogénios devido à metabolização da 

DHT em produtos estrogénicos. Este estudo demonstrou primeiramente a presença do canal 

de Ca2+ do tipo L (subunidade α1C) nas células de cancro da mama humano e demonstrou que 

os androgénios regulam a expressão de proteínas reguladoras de Ca2+ nestas células. Estes 

resultados sugerem que a ação reguladora dos androgénios na proliferação e morte celular 

nas células de cancro da mama pode estar associada ao controlo da homeostasia do Ca2+. 
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Resumo Alargado 

 

 

O cancro de mama é atualmente o cancro mais comum e a causa mais frequente de 

morte induzida por cancro nas mulheres nos países ocidentais. Nos Estados Unidos, uma em 

cada oito mulheres, e na Europa uma em cada dez, serão afetadas por esta doença durante a 

sua vida. Estima-se que mais de um milhão de pessoas no mundo sejam anualmente 

diagnosticadas com a doença. Apesar da recente diminuição na taxa de mortalidade por 

cancro de mama nalguns países, essencialmente devido à deteção precoce através de 

rastreios sistemáticos, vias de diagnóstico eficazes e tratamento ideal, esta doença continua 

a ser um importante problema de saúde pública. Vários fatores de risco têm sido associados 

ao cancro de mama, no entanto um deles merece especial atenção. Considerando que o 

cancro de mama surge em tecidos regulados por hormonas, vários estudos sugerem que 

alterações hormonais, nomeadamente nos androgénios, podem desempenhar um papel 

importante no surgimento e progressão do tumor. Por outro lado, várias evidências sugerem 

que, para além das ações androgénicas, também as alterações na homeostasia do cálcio (Ca2+) 

podem contribuir para o desenvolvimento do cancro de mama. 

Na mulher, os androgénios são secretados pelos ovários e pelas glândulas adrenais em 

resposta às suas hormonas trópicas, no entanto também a glândula mamária tem capacidade 

de sintetizar estas hormonas. Apesar de o seu papel ser pouco explorado nas mulheres, o 

recetor de androgénio é detetado na maioria dos casos de cancro de mama humano, incluindo 

os que são considerados negativos para os recetores de estrogénio e de progesterona, o que 

sugere um papel importante destas hormonas no carcinoma da mama. Os androgénios 

medeiam os seus efeitos biológicos através de mecanismos genómicos e não-genómicos. Os 

efeitos genómicos podem dever-se diretamente à ligação dos androgénios e consequente 

ativação do recetor de androgénio ou indiretamente, à ativação do recetor de estrogénio 

devido à conversão dos androgénios em estrogénios. Por outro lado, e embora a 5α-

dihidrotestosterona (DHT) seja não-aromatizável, este esteróide pode ser metabolizado em 

produtos com actividade estrogénica. Os efeitos não-genómicos podem resultar da ativação 

de recetores membranares acoplados à proteína G, que por sua vez ativam diversas vias de 

sinalização possivelmente envolvidas na regulação da proliferação e morte celular. 

O Ca2+ intracelular é um segundo mensageiro ubíquo envolvido na regulação de 

diversos processos biológicos essenciais na célula, tais como a proliferação e a apoptose. A 

homeostasia do Ca2+ é um estado de equilíbrio entre o influxo, efluxo e armazenamento de 

Ca2+ essencialmente regulado por transportadores de Ca2+, canais de Ca2+ e proteínas de 

ligação ao Ca2+ (incluindo tampões citosólicos de Ca2+). A desregulação da concentração 

intracelular de Ca2+, nomeadamente devido a alterações na expressão e/ou função de 

transportadores de Ca2+, canais de Ca2+ e proteínas de ligação ao Ca2+ pode também contribuir 

para o desenvolvimento do cancro de mama. Vários estudos têm demonstrado que os 
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andrógenos têm a capacidade de alterar a concentração intracelular de Ca2+, em diferentes 

sistemas celulares, podendo modificar a expressão e/ou função das várias proteínas 

reguladoras de Ca2+, como a proteína de ligação ao Ca2+ regucalcina e o canal de Ca2+ 

dependente de voltagem do tipo L, e consequentemente afetar a homeostasia do Ca2+. 

A regucalcina, também designada de proteína marcadora de senescência 30, é uma 

proteína de ligação ao Ca2+ que não contém o motivo EF-hand no domínio de ligação ao Ca2+. 

Esta proteína está envolvida em diversas funções tais como a manutenção da homeostasia 

intracelular do Ca2+, devido à ativação de diversas enzimas de bombeamento de Ca2+ na 

membrana plasmática, no retículo endoplasmático e na mitocôndria de várias células, mas 

também se encontra envolvida na regulação de diversas enzimas dependentes de Ca2+ e vias 

de sinalização, na regulação de funções nucleares, proliferação e apoptose.  

Os canais de Ca2+ do tipo L são canais dependentes de voltagem existentes em células 

excitáveis e não-excitáveis que têm como função a manutenção da homeostasia do Ca2+, 

regulando o influxo de Ca2+ do espaço extracelular para o citoplasma. 

Com o presente projecto pretendeu-se investigar o efeito da DHT na expressão da 

regucalcina e do canal de Ca2+ do tipo L (subunidade α1C) em células de cancro da mama 

humano (MCF-7). Primeiramente, demonstrou-se a presença da regucalcina e do canal de Ca2+ 

do tipo L (subunidade α1C) nestas células através de RT-PCR e Western blot, usando 

iniciadores e anticorpos específicos, respetivamente. A análise por Western blot, permitiu a 

deteção de uma proteína imunorreativa com o peso esperado de aproximadamente 33 kDa 

correspondente à regucalcina, e uma outra de aproximadamente 190 kDa, correspondente ao 

canal de Ca2+ do tipo L (subunidade α1C). Posteriormente, através de PCR em tempo real, 

demonstrou-se que os androgénios diminuem a expressão do mRNA de ambas as proteínas 

após 24h de estímulo com a DHT. De modo a determinar o mecanismo envolvido na 

diminuição de expressão da regucalcina e do canal de Ca2+ do tipo L (subunidade α1C) pelos 

androgénios, as células MCF-7 foram estimuladas com DHT na presença de inibidores do 

recetor de androgénios (flutamida) e do recetor de estrogénios (ICI 182,780). Verificou-se que 

a diminuição da expressão de mRNA da regucalcina e do canal de Ca2+ do tipo L (subunidade 

α1C) causada nas MCF-7 pelo tratamento com DHT é revertida em presença dos inibidores, 

sugerindo que os efeitos da DHT na regulação da expressão de ambas as proteínas poderão ser 

mediados pelo recetor de androgénios, mas também pelo recetor de estrogénios devido à 

metabolização da DHT em produtos com actividade estrogénica. Este estudo demonstrou 

primeiramente a presença do canal de Ca2+ do tipo L (subunidade α1C) nas células de cancro 

da mama humano e demonstrou que os androgénios regulam a expressão de proteínas 

reguladoras de Ca2+ nestas células. Estes resultados sugerem que a ação reguladora dos 

androgénios na proliferação e morte celular pode estar associada ao controlo da homeostasia 

do Ca2+. 
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I. Background and Aim  1 

I. Background and Aim  

 

 

1. Breast – Anatomy and Pathophysiology 

The breasts and the mammary glands are often mistakenly regarded as one and the 

same. Breasts are present in both sexes, and are considered as one of the secondary sexual 

characteristics (1). The mammary glands are considered as highly modified apocrine sweat 

glands and milk-producing glands, that develop within the female breast only during 

pregnancy and lactation (1, 2).  

 

1.1. Overview of anatomical and physiological features 

The breasts are positioned between the second and sixth ribs and overlies the 

pectoral muscles, and portions of the serratus anterior and external abdominal oblique 

muscles (Figure 1). The axillary process of the breast extends upwards and laterally towards 

the axilla, where it comes into close relationship with the axillary vessels. This region of the 

breast is clinically significant because of the high incidence of breast cancer cells within the 

lymphatic drainage of the axillary process (3).  

 

 

 
 

 
 

 
 

 

 
 

 
 
 

Figure 1. Human breast anatomy. (A) An anterolateral view partially sectioned. (B) A sagittal section 
(Adapted from (4)).    

 

Each mammary gland is composed of 15 to 20 lobes (5) (Figure 1), which lobes are 

separated by dense connective tissue and by varying amounts of adipose tissue which 

determines the size and shape of the breast. In turn, the lobes are subdivided into a variable 

number of lobules that contain the mammary glandular alveoli, the structures that produce 

milk in a lactating female (3, 6). The lobes are arranged radially at different depths around 

A B 
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the nipple with a single large duct, the lactiferous duct, draining each lobe via a separate 

opening on the surface of the nipple. (3).  

Each lobe is a system of ever-branching ducts which penetrate deep into the 

fibroadipose tissue of the breast. This extensive branching duct system is surrounded by 

relatively dense fibrous interlobular tissue, at the periphery of which there is adipose tissue. 

Each duct is lined by two columnar or cuboidal epithelium, with a continuous surface layer of 

epithelial cells with oval nuclei and an outer discontinuous layer of myoepithelial cells which 

have clear cytoplasm (Figure 2). The ducts are surrounded by loose fibrocallegenous support 

tissue containing a rich capillary network. Elastic fibbers are present within this fibrous 

sheath in all but the smallest, most peripheral branches (2, 7). 

 
Figure 2. Histology of the human mammary gland. (A) Hematoxylin and eosin staining x30. (B) 
Hematoxylin and eosin staining x60. (C, D) Hematoxylin and eosin staining x400. E-epithelium, M-
myoepithelium (Adapted from (2)). 

 

1.2. Development and hormonal regulation 

The breasts of both sexes follow a similar course of development until puberty, after 

which the female breasts develop under the influence of growth factors and pituitary, ovarian 

and other hormones (2). The majority of breast development occurs during puberty and 

pregnancy. Puberty is controlled by hormonal signals elicited by the hypothalamic-ovarian-

pituitary axis. The first release of gonadotropin releasing hormone (GnRH) from the 

hypothalamus signals the onset of puberty. GnRH stimulates the release of luteinising 

hormone (LH) and follicle stimulating hormone (FSH) from the pituitary, which in its turn act 

upon the ovaries to promote the maturation of the ovarian follicles, and subsequent release 

of oestrogen and progesterone (8). Oestrogens, progesterone and prolactin predominantly 

control the developmental changes of mammary gland. In particular, oestrogen induces 

ductal growth, progesterone trigger alveolar lobules secretory activity and prolactin induces 

the alveoli to produce milk (9). After menopause, the breasts, like the other female 

reproductive tissues, undergo progressive atrophy and involution (2). 
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1.3. Carcinogenesis 

Carcinogenesis is a very rare process in which a normal cell is converted to a cancer 

cell. These cells differ from normal ones in many important characteristics, including loss of 

differentiation, uncontrolled growth, immortalization, loss of contact inhibition, increased 

invasive capacity, evading the host immune surveillance processes and the apoptotic signal 

restraints, and induction of neo-angiogenesis (10, 11). Carcinogenesis is considered as a 

multistep process, in which a normal epithelial cell develops into a premalignant cell, which 

after clonal expansion becomes a premalignant lesion, a carcinoma in situ. After some time, 

such lesion may become invasive, then disseminates and, after evading the immune system, 

forms metastases. At each step, an important genetic event is assumed to occur that gives 

the cell new properties with a resulting clonal selective advantage for that cell (12-14) 

(Figure 3).  

The genetic alterations associated with cancer development include inherited 

mutations or polymorphisms of cancer susceptibility genes, environmental agents that 

influence the acquisition of somatic genetic changes, and other systemic and local factors 

including lifestyle, diet, hormones and growth factors (10, 14). These genetic events range 

from small point mutations, via chromosomal deletions, translocations and amplifications to 

large-scale changes as whole chromosome losses or duplications. The result of these 

alterations could be the modification of gene expression or functional alteration of gene 

products that regulate the physiological balance between proliferation, apoptosis and 

differentiation, or the expression of hormones receptors, cell adhesion molecules and 

angiogenic factors, and of various other proteins important for invasion and the establishment 

of metastases (15). Mutational activation of oncogenes coupled with inactivation of tumour 

suppressor genes are probably early events in this multi-step process. Subsequently, more 

independent mutations occur in at least four or five other genes, the chronological order of 

these events possibly being less important (16). 

Breast cancer is currently the most frequent cancer and the most frequent cause of 

cancer-induced deaths in women in Western countries. In the United States, one woman in 

eight women, and in Europe one in ten, will be affected by this disease during her lifetime 

(17, 18). It is estimated than over 1 million people are newly diagnosed with the disease in 

the world, annually (18). Men are also susceptible to breast cancer. It is 100 times less 

frequent than in women, but it is usually fatal (3). Although there have been recent declines 

in breast cancer mortality rates in some countries essentially due to systematic early 

detection through screening, effective diagnostic pathways and optimal treatment, this 

disease remains an important public health problem (19, 20).  
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Figure 3. Model of the multistep carcinogenesis in breast cancer. A normal epithelial cell develops into 

a premalignant cell, which after clonal expansion becomes a premalignant lesion, a carcinoma in situ. 

After some time, such lesion may become invasive, then disseminates and, after evading the immune 

system, forms metastases. At each step, an important genetic event is assumed to occur that gives the 

cell new properties with a resulting clonal selective advantage for that cell (Adapted from (14)). 

 

Most of breast tumours arise in the terminal duct lobular unit and, according to 

presentation, morphology and molecular profiling, they may be classified in ductal or lobular 

carcinoma in situ (DCIS or LCIS) and in infiltrating ductal or lobular carcinoma (IDC or IDL). 

DCIS and LCIS are non-invasive tumours, whereas IDC and IDL break through the wall of the 

duct and invade the fatty tissue of the breast, which can spread to other parts of the body 

(14, 21).  
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Breast cancer progression involves a sequential progression through clinical and 

pathologic stages, starting with hyperplasia, progressing into in situ and invasive carcinomas, 

and culminating in metastatic disease (22). Hyperplasia, characterized by proliferation of 

unevenly distributed epithelial cells is often a first sign of pathology, although the cells are 

benign. The next step is the development of carcinoma in situ, either ductal or lobular, which 

is defined as a proliferation of cells with cytological characteristics of malignancy, but 

without stromal invasion across the basement membrane. As cells detach from the basement 

membrane and invade the stroma, the tumour becomes invasive. Through dissemination via 

blood and lymph vessels, invasive cells can give rise to metastases, either to locoregional 

lymph nodes or to distant organs (16, 22). 

Several factors are known to affect the risk of breast cancer however three of them 

deserve special attention. First, it is possible that this tumour may be influenced by a number 

of lifestyle and environmental factors, including dietary factors, whose importance in the 

development of human cancer is gaining increasing support (23). Second, and considering that 

breast carcinoma arises in an hormone regulated tissue, it is conceivable that common 

hormone alterations, namely androgens, could play a role on the onset and progression of this 

tumour (24). Third, it seems clear that, in addition to being hormone related, breast cancer 

may also share some genetic abnormalities that could contribute to the acquisition of the 

malignant phenotype (25). 

 

2. Role of androgens in breast cancer 

Until recently, androgen biology has largely focused on male reproduction whereas 

the role of these steroid hormones in the female reproductive tract has been largely 

unexplored, perhaps with the exception of androgens as precursors of oestrogen biosynthesis 

in the ovary (26). This is rather surprising as the androgen receptor (AR) is found in virtually 

every tissue in women (as well as men), including breast, which indicate that androgens and 

their metabolites play an important role in normal tissue homeostasis and possibly in 

pathologies like breast cancer (27). 

 

2.1. Androgen biosynthesis in women 

In women, androgens are secreted by the ovaries and adrenal glands in response to 

their respective tropic hormones. Like other steroid hormones, these C19-steroids are derived 

from cholesterol (28). The principal circulating androgens in women are dehydroepian-

drosterone sulphate (DHEAS), dehydroepiandrosterone (DHEA), androstenedione, testosterone 

and dihydrotestosterone (DHT) (29). DHEAS is produced exclusively by the adrenal gland, 

whereas DHEA is produced in the adrenal gland, the ovary and elsewhere through peripheral 

conversion of DHEAS by steroid sulfatase, namely in skin, adipose tissue and liver (30, 31). 

Androstenedione is produced by the ovary and the adrenal gland (32). Testosterone is derived 

from the peripheral conversion of androstenedione and from the synthesis by the adrenal 
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gland and the ovary. DHT, the potent metabolite of testosterone, derives from the peripheral 

conversion of testosterone by the enzyme 5α-reductase (Figure 4) (31). Only testosterone and 

dihydrotestosterone are considered as “true” androgens with the ability to bind and activate 

the AR, while the remaining three act as prohormones (33). Testosterone is unique in its 

ability to act as both a prohormone for both DHT and oestradiol and directly as a hormone 

(34).  

Female androgen levels exhibit cyclical changes: they circulate in a concentration 

similar to estradiol during the preovulatory peak and in a higher concentration during the rest 

of the menstrual cycle. After menopause the secretion of progesterone and oestrogens falls 

dramatically, but androgens continue being secreted in an even higher proportion than during 

the fertile period of life (35).  

The mammary gland is also capable of synthesizing testosterone. All the steroidogenic 

enzymes necessary for the formation of androgens from steroid precursors have been 

reported in normal mammary tissues, breast cancer specimens and cell lines (36) (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Scheme representing in situ production of androgens in breast carcinoma tissue. Biologically 
active DHT is locally produced from circulating androstenedione by 17β-hydroxysteroid dehydrogenase 
type 5 (17β-HSD5) and 5α-reductase (5α-Red) and acts on the breast carcinoma cells through androgen 
receptor (AR). In contrast, estradiol is synthesized by aromatase, steroid sulfatase (STS), and 17β-HSD1, 
then acts on the breast carcinoma cells through oestrogen receptor (ER) (37). 

 

2.2. Androgens and breast carcinogenesis 

Sex hormones play a critical role in breast cancer development and have been 

associated with an increased epithelial cell proliferation and in turn facilitating malignant 

transformation. In particular, two sex hormones have been very well characterized triggering 

these processes both in vitro and in vivo: oestrogen and progesterone. Studies have shown 

that the direct action of these steroid hormones on different breast tissues is dependent upon 
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their specific receptors (38). The proposed mechanism of hormonal carcinogenesis drives cell 

proliferation, and thus, increases the opportunity for genetic mutations to accumulate (39).  

Also androgens play an important role in the normal development and function of 

many organs, as well as in the pathogenesis of endocrine-related cancers, namely breast 

cancer (39). Several studies have reported that AR is found in the majority of breast cancers  

and its expression is significantly higher among breast cancer samples than among normal 

breast (35). This high incidence suggests a potential role of AR in breast cancer development 

(40, 41). Moreover, some of breast cancer cases negative for oestrogen receptor (ER) and 

progesterone receptor (PR) still are positive for AR (42). However, the etiological role of 

androgens in breast cancer has been unclear (43). 

Androgens mediate their biological effects, namely proliferation, differentiation, and 

homeostasis, through genomic and non-genomic mechanisms (44). The nature of the steroid-

induced signal (i.e. genomic versus non-genomic) depend on the type of target cell, the 

receptor location within cells, as well as the ligand itself (45). 

The genomic model for androgens action have been hypothesized to increase breast 

cancer risk either directly, by their binding and activation of AR, or indirectly, by their 

conversion to oestrogen and subsequent binding and activation of ER (46). Oestrogens may 

result from the conversion of testosterone by the enzyme aromatase (37). On the other hand, 

although DHT is a non-aromatizable androgen, it may be converted into 5α-androstane-3β-

17β-diol (3β-diol), a metabolite with intrinsic oestrogen-like effects (47). It is assumed that 

androgens and oestrogens freely cross the plasma membrane, enter the cytoplasm, and bind 

to and activate the intracellular receptor. The ligand-bound receptor acts as a transcription 

factor binding as heterodimer to specific deoxyribonucleic acid (DNA) response elements in 

target gene promoters, causing activation or repression of transcription and subsequently 

protein synthesis (48-50) (Figure 5A).  

Studies in a variety of in vitro and in vivo models have shown that androgens and 

oestrogens can affect cellular processes in a non-genomic fashion. For instance, hormone 

bound/activated nuclear receptors are able to interact with other transcription factors on 

target gene promoters without direct binding to DNA (51). Rapid effects of androgens have 

been described in various tissues such as brain, blood, heart, bone, ovary, prostate and testis 

(52).  

AR has been shown to activate second messenger pathways independent of their 

classical transcriptional activity (Figure 5B,C). Consistent with this mode of action, AR has 

been found to interact with and activate the tyrosine kinase c-Src. The activation of the c-Src 

mediates the activation of mitogen-activated protein kinase (MAPK), which is involved in 

multiple cellular processes, including migration, proliferation, and differentiation (53). 

Androgens can also induce cyclic adenosine-3-5-monophosphate (cAMP) production and, 

consequently, activation of protein kinase A (PKA) through the sex hormone-binding globulin 

(SHBG) receptor. SHBG is a liver derived glycoprotein that binds to sex hormones, specifically 
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testosterone, DHT, and oestradiol (54). A cell surface receptor for SHBG has been identified 

in a number of tissues namely in prostate and breast (55, 56). 

 
Figure 5. Androgen actions via intracellular androgen receptor-mediated pathways. Testosterone (T) 
can be converted to dihydrotestosterone (DHT) by the 5α-reductase enzyme. (A) In the classical 
pathway, androgen freely passes through the membrane bi-layer and binds cytoplasmic androgen 
receptor (AR). Bound AR translocates to the nucleus, binds to a DNA response element on a promoter of 
an androgen responsive gene and stimulates transcription. (B) Bound AR interacts with the tyrosine 
kinase c-Src to activate the MAPK pathway. (C) Androgen bound to steroid hormone-binding globulin 
(SHBG) can activate SHBG receptor (SHBGR) and lead to an increase in PKA activity (Adapted from (44)). 

 

2.3. Androgens as calcium homeostasis regulators 

Intracellular calcium (Ca2+) is a second messenger involved in the regulation of many 

essential biological processes in the cell such as fertilization, proliferation, differentiation, 

secretion, contraction, transcription, phosphorylation and apoptosis (57). Ca2+ homeostasis is 

a steady state between Ca2+ influx, efflux, and storage, which is essentially regulated by the 

activity of Ca2+ transporters, Ca2+ channels and Ca2+ binding proteins (included cytosolic Ca2+ 

buffers) (58) (Figure 6). Under normal conditions, the intracellular calcium concentration 

[Ca2+]i is kept very low at approximately 100 nM, whereas extracellular Ca2+ concentration is 

up to 10,000-fold higher at around 1–2 mM (59). A Ca2+ signal is induced when [Ca2+]i is 

elevated beyond its resting concentration. Mechanisms for increasing [Ca2+]i include the entry 

of extracellular Ca2+ via Ca2+ channels in the plasma membrane (voltage-operated channels, 

receptor-operated channels and members of the transient receptor potential ion channel 

family) or the release of stored Ca2+ from intracellular organelles via Ca2+ channels in internal 

membranes. Elevated [Ca2+]i generates an intracellular Ca2+ signal that is modified and 

decoded by Ca2+ binding proteins to regulate cellular processes. Once Ca2+ has served its 
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signaling function, [Ca2+]i is lowered to resting levels to maintain intracellular Ca2+ 

homeostasis. Ca2+ is either sequestered into intracellular organelles by pumps such as the 

sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) or is extruded to the extracellular 

environment by transporters such as the Na+/Ca2+-exchanger (NCX) or the plasma membrane 

Ca2+-ATPase (PMCA) (57). Mitochondria are important organelles for the sequestration of 

intracellular Ca2+ via the mitochondrial Ca2+-uniporter that is located in the inner 

mitochondrial membrane and is driven by the negative electrical potential across this 

membrane (60). When signaling has ceased, Ca2+ can then be released back slowly from 

mitochondria to the cytosol via the mitochondrial NCX, for uptake by the endoplasmic 

reticulum or removal from the cell (57, 60). Another important organelle vital for cellular 

Ca2+ homeostasis is the Golgi apparatus, which sequesters intracellular Ca2+ and modulates 

Ca2+ signals via action of secretory pathway Ca2+-ATPases (SPCAs) (61) . 

Figure 6. Calcium (Ca2+) regulation in cells. The Ca2+ transporters, channels and binding proteins, which 
are likely to contribute to Ca2+ homeostasis and signaling in cells of the mammary gland (Adapted from 
(62)). 

 

Several studies have demonstrated that androgens are able to modulate the [Ca2+]i in 

different cell systems, including cardiomyocytes, macrophages, osteoblasts, neuroblastomas 

cells, and Sertoli cells (63-72). Androgens have been shown to have profound effects on the 

cells of the cardiovascular system where they can induce relaxation of the aorta and coronary 

arteries (64), but they can also facilitate vasoconstriction (65, 68). In cardiomyocytes, 

androgens have been found to induce a rapid [Ca2+]i increase due to release of Ca2+ from 

internal stores through the activation of a plasma membrane AR associated with the G-
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protein, and consequent activation of phospholipase C (PLC)/inositol-1,4,5-triphosphate (IP3) 

signaling pathway (67) (Figure 7B). Moreover, the activation of AR associated with the G-

protein can also activate voltage-gated Ca2+ channels (e.g. L-type Ca2+ channels), and then 

contribute to the [Ca2+]i increase (63) (Figure 7A). In macrophages, treatment with androgens 

induced an increase in [Ca2+]i through the activation of AR associated with the G-protein, and 

subsequent activation of PLC/IP3 pathway signaling and non-voltage-gated (71). A rapid AR-

independent effects of testosterone on intracellular [Ca2+]i has also been shown in 

neuroblastomas cells. The initial transient rise in [Ca2+]i was dependent upon production of 

IP3, but propagation of the Ca2+ rise required both Ca2+ influx from extracellular sources as 

well as Ca2+ release from intracellular stores (70). A similar response is found in rat 

osteoblasts, where androgens induced both the influx of extracellular Ca2+ via Ca2+-channels 

and Ca2+ release from internal stores through G-protein coupled receptors activating PLC (69). 

The ability of androgens to induce a rapid influx of Ca2+ has also been reported in primary 

cultures of rat Sertoli cells. The [Ca2+]i increases in Sertoli cells can be inhibited by the AR 

antagonist flutamide, which suggest that androgens bind to a classical-AR and activate a 

transmembrane influx of extracellular Ca2+ (66).  

Androgens also modulate the [Ca2+]i in pathophysiolocal states, namely in prostate 

cancer. In fact, they have been also shown to increase [Ca2+]i in human prostate cancer cells 

LNCaP and PC3. Such as in cardiomyocytes, the androgens induce a [Ca2+]i increase due to 

release of Ca2+ from internal stores through the activation of a plasma membrane AR 

associated with the G-protein, and subsequent activation of PLC/IP3 signaling pathway and 

voltage-gated Ca2+-channels (72, 73). Such as described above, activation of Ca2+-channels 

and PLC/IP3 signaling pathway contribute to an [Ca2+]i increase. This increase can lead, on 

the one hand, to the activation of protein kinase C (PKC), and via calmodulin activate PKA 

and MAPK pathways (Figure 7A), and  to the other hand, to the activation of the 

RAS/MEK/ERK pathway (Figure 7B), which may influence gene transcription (44). As well as 

possibly regulating lactation in the breast, intracellular Ca2+ signaling may have physiological 

roles in controlling normal mammary gland epithelial cell proliferation, differentiation and 

apoptosis. To keep Ca2+ homeostasis, the mammary gland co-ordinately express and regulate 

Ca2+-transporters, Ca2+-channels and Ca2+-binding proteins. Deregulation of [Ca2+]i via altered 

Ca2+-transporters, Ca2+-channels and Ca2+-binding proteins expression and/or function may 

have implications for mammary gland pathophysiology (58). Several studies have reported 

that androgens may induce alterations in these proteins expression. Concerning Ca2+-

channels, androgens have been shown to increase L-type Ca2+-channel expression in coronary 

smooth muscle cells and myocardium (74). They also control the transient receptor potential 

cation channel subfamily M member 8 (TRPM8) in prostate cells (75). Concerning Ca2+-binding 

proteins, androgens have been shown to decrease the regucalcin expression in several cell 

types and tissues (76-78). 
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Figure 7. Non-genomic androgen actions via changes in intracellular ion concentrations and membrane 
fluidity. (1) Androgen interacts with a membrane associated androgen receptor (mAR) leading to the 
activation of L-type Ca2+ channels through an inhibitory G-protein (GP). This increase in intracellular 
Ca2+ can lead to activation of PKC, and via calmodulin (CAM) activate PKA and MAPK pathways, 
ultimately influencing gene transcription through phosphorylation. (2) Androgen interacts with a mAR 
leading to modulation of G-protein activity and subsequent activation of phospholipase C (PLC). 
Resulting increases in IP3 lead to the release of intracellular Ca2+ stores from the sarcoplasmic reticulum 
(SR), and consequently the activation of the RAS/MEK/ERK pathway (Adapted from (44)).  

 

3. Regucalcin: structural and functional characterization 

Regucalcin was discovered in 1978 as a Ca2+-binding protein differing from other Ca2+-

related proteins, by the fact that  it does not contain the EF-hand motif as Ca2+-binding 

domain (79-82). The name regucalcin was proposed due to its capacity to regulate the 

activity of several Ca2+-dependent enzymes in various cell types (83-87). It is also known as 

senescence marker protein-30 (SMP30), since the protein with a molecular mass of 30 kDa 

shows a significantly decreased expression in aged rats (88-90).  

 

3.1. Physicochemical properties, cell localization and tissue 

distribution 

Regucalcin protein is encoded by a gene linked to the X-chromosome. The human 

regucalcin gene is localized on the Xp 11.3 – Xp 11.23 regions (91), while the rat regucalcin 

gene has been assigned to the proximal end of the chromosome, region Xq 11.1-12 (92). The 

rat regucalcin gene seems to be about 18 kb long and consists of seven exons, six introns and 

several consensus regulatory elements upstream of the 5’-flanking region (93). The rat 

regucalcin complementary deoxyribonucleic acid (cDNA) segment, 1,600 base pairs (bp) in 

length, has an open reading frame of 897 bp, which encodes a protein with 299 amino acids 

(aa), an estimated molecular weight of 33,388 Da and a pI of 5.101 (89). Primer extension 

analysis revealed two major transcription initiation sites located 101 and 102 bp upstream 
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from the ATG translation initiation codon. In the proximal promoter region, a TATA-like 

sequence, a CAAT box and specificity protein 1 (Sp1) sites seems to be located at nucleotide 

(nt) 229, 272, and 2169, respectively. In addition to these conventional transcription factor 

binding sites, there were found two clustered Sp1 boxes with activator protein-2 (AP-2) at nt 

2900 and 21376 in the distal promoter region (94) (Figure 8). 

 

 
Figure 8. Alignment of the exons for the rat regucalcin gene with the cDNA. (A) Genomic organization of 
rat regucalcin gene. The positions of exons, which are shown as boxes (I–VII), are indicated in the 
agreement with the protein coding regions. Intones are depicted by connecting lines. (B) Diagram of the 
regucalcin cDNA from rat liver. (C) Organization of amino acids residues of regucalcin (78). 

 

At messenger ribonucleic acid (mRNA) level, recently was shown that regucalcin gene 

can be transcribed three generating different transcripts: the full-length regucalcin transcript 

(wild-type, wt) and two transcript variants, regucalcin exon 4-deleted (Δ4) and regucalcin 

exon 4- and exon 5-deleted variant (Δ4,5) (Figure 9). The Δ4 and Δ4,5 transcripts which could 

be detected in neoplastic and non-neoplastic tissues (Figure 9A), are likely generated by 

alternative splicing events and if translated may encode proteins with 227 and 183 aa, 

respectively (77). 
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Figure 9. Regucalcin mRNA transcripts in human breast and prostate tissue and cell lines. (A) RT-PCR 
analysis using specific primers spanning the entire coding region of regucalcin. Lane M: DNA Molecular 
Weight Marker; Lane 1: Non-neoplasic breast tissue; Lane 2: MCF-7 cells; Lane 3: Non-neoplasic prostate 
tissue; Lane 4: LNCaP cells; Lane 5: Negative control with total RNA not reverse transcribed. (B) 
Diagram of the organization of human regucalcin gene and mRNA variants amplified in RT-PCR reactions. 
Gray and black boxes indicate coding and non-coding exons, respectively. Dotted lines correspond to 
introns. Exons are marked with roman numerals. Arabic numerals indicate the number of base pairs per 
exon or intron, or the number of aa encoded by each exon (77). 

 

Regucalcin and its gene are identified over 15 species, including  human, rat, and 

mouse (82, 86, 89, 90, 95-97) and  sequences comparison between different vertebrate 

species have shown that the coding regions of the regucalcin gene have a high degree of 

similarity (96).  

At the protein level, alignment of the amino acid sequence of human regucalcin 

shows 98% of similarity with primates, 93-96% with other mammalian species and 79-85% with 

non-mammalian vertebrates (98). These findings demonstrate the strong evolutionary 

conservation of regucalcin in higher animals suggesting  that it may play a fundamentally 

important biological role in vertebrates (82, 99). 
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The crystal structure of the human regucalcin has been determined by X-ray 

diffraction and shows that regucalcin has a six-bladed β-propeller fold and a single metal 

binding site (Figure 10). This is interesting when compared to the structural homologues 

described previously, which have at least two metal ions per molecule: one catalytic and the 

other structural. Moreover, it was demonstrated that zinc ion (Zn2+) and Ca2+ bind to this same 

metal-binding site, in an identical manner (100). This is also interesting, as normally the 

coordination of Zn2+ is quite distinct from that of Ca2+ in enzymes. The binding of Ca2+ to 

regucalcin induces conformational changes in this Ca2+-binding protein. In fact, this result has 

been demonstrated by means of the UV absorption spectrum, circular dichroism spectrum and 

fluorescence spectroscopy, suggesting that Ca2+-binding loosens the conformation of 

regucalcin (79, 90).  

Figure 10. Crystal structure of human regucalcin with Ca2+ bound. (A) The ribbon structure of regucalcin 
displays the six-bladed β-propeller fold with each blade displayed in a rainbow colour. The active site 
Ca2+ is shown in the middle of the β-propeller as a purple sphere. (B) A 90° x-axis rotation of the view in 
panel A (100). 

 

Nothern blot and immunohistochemical analysis showed that regucalcin is greatly 

expressed in the nuclei and cytoplasm of liver and kidney cortex in rat tissues, more precisely 

in centrilobular to midlobular areas of hepatocytes and in renal proximal tubular epithelia 

(88, 101, 102). The immunoreactivity for regucalcin is also detected in other tissues, 

including, brain, heart, bone, lung, epidermis, stomach, duodenum, adrenal gland, ovary, 

testis, mammary gland and prostate, although only slightly (77, 91, 103-106). In human 

tissues, regucalcin is widely distributed but is also strongly reactive in the liver (91). In 

addition to the expression in the liver and kidney, regucalcin is moderately expressed in the 

pancreas, heart and in the citosol and nuclei of breast and prostate epithelial cells (77, 89, 

99). More recently regucalcin was identified in tissues of male reproductive tract, namely, 

epidydimis, seminal vesicles and testis (76). 
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3.2. Regulation of gene expression  

The tissue-specific gene expression may be regulated at the process of transcription 

that is mediated through the interaction of trans-acting factors with cis-acting DNA sequences 

(107-110). This interaction is important for the tissue-specific expression of regucalcin mRNA 

(111).  

There are many trans-acting regulatory factors in the 5’-flanking region of regucalcin 

gene, namely, activator protein-1 (AP-1), nuclear factor 1-A1 (NF1-A1), regucalcin gene 

promoter region-related protein 117 (RGPR-p117), β-catenin, nuclear factor-κB (NF-κB) and 

ER (78, 111-120) (Figure 11). The transcription factors Ap-1, NF1-A1 and RGPR-p117 are 

translocated from the cytoplasm to the nucleus in a process that is mediated through PKC, 

Ca2+/calmodulin-dependent protein (CaM) kinase, MAPK kinase, and phosphatidylinositol 3-

kinase (PI3K) (115, 117), and, such as the others factors previously described, these are 

related to enhance the promoter activity of the regucalcin gene (114).  

Regucalcin mRNA expression is also regulated by several factors, namely, Ca2+ (101, 

111, 121), calcitonin (122), insulin (121), and oestrogen (106, 120, 123) suggesting that the 

expression of regucalcin mRNA is enhanced through various hormonal stimuli. In addition to 

these hormones, regucalcin is also regulated by androgens in prostate cancer (77). In a recent 

report, it was shown that androgens also regulate regucalcin expression in testicular tissue 

cultured in vitro, which seems to be associated with cell survival (76). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 11. Regulation of regucalcin gene transcription activity. The transcription activity of regucalcin 
activity is regulated through various cell signaling factors. These transcription factors enhance the 
promoter activity of regucalcin gene in the nucleus (78). 
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3.3. Cellular functions 

Regucalcin has a multifunctional role in maintaining intracellular Ca2+ homeostasis by 

activating Ca2+ pump enzymes; suppressing Ca2+ signaling from the cytoplasm to the nucleus in 

the proliferative cells; inhibiting protein kinases, protein phosphatases, protein synthesis, 

DNA and ribonucleic acid (RNA) synthesis in the cytoplasm and nucleus of cells; and 

suppressing cell proliferation and apoptotic cell death induced by various signaling factors 

(124-129). From these findings, regucalcin has been proposed to play a pivotal role in 

maintaining cell homeostasis and function as the regulatory protein of intracellular signaling 

system (129). 

 

3.3.1. Intracellular calcium homeostasis 

Regucalcin plays a  role as a regulatory protein  involved in the maintenance of 

intracellular Ca2+ homeostasis by enhancing Ca2+-pumping activity in the plasma membrane, 

endoplasmic reticulum, mitochondria and nuclei of many cell types, namely, liver, renal 

cortex cells, heart, and brain (104, 130-132) (Figure 12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Regulatory role of regucalcin in Ca2+ homeostasis of liver cells. Regucalcin has a pivotal role 
in keeping intracellular Ca2+ homeostasis that is attenuated with various stimulating in cells. In fact, 
regucalcin increases plasma membrane (Ca2+–Mg2+)-ATPase, mitochondrial Ca2+-ATPase and microsomal 
Ca2+- ATPase activities in cells. Regucalcin also stimulates Ca2+ release from the microsomes. Regucalcin 
has an inhibitory effect on nuclear Ca2+-ATPase and a stimulatory effect on Ca2+ release from the 
nucleus. Through this mechanism, regucalcin keeps the rise of cytosolic Ca2+ concentration and nuclear 
matrix Ca2+ levels in cells (133). 

 

The high-affinity (Ca2+–Mg2+)-ATPase is located on the plasma membranes of liver, 

kidney cortex and neuronal cells (134-137). This enzyme acts as a Ca2+-pump to exclude the 
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metal ion from the cytoplasm of these cells, due its capacity to directly activates (Ca2+–Mg2+)-

ATPase independently of Ca2+-stimulated phosphorylation of the enzyme (138-140), and to 

stimulate adenosine triphosphate (ATP)-dependent Ca2+ transport across the plasma 

membrane vesicles (141). Regucalcin has been shown to bind the lipid components of plasma 

membrane, and it acts on the sulfhydryl (SH) groups that are an active site of (Ca2+–Mg2+)-

ATPase (140). These results suggest an involvement of endogenous regucalcin in the 

regulation of Ca2+ pump activity, binding Ca2+ in the cytoplasm of the cells previously cited, 

and transporting subsequently the metal ion into the organelle dependent on ATP (139).  

Regucalcin can also stimulate the uptake of Ca2+ by mitochondria in rat liver, heart 

and brain. Studies involving regucalcin transgenic (TG) rats demonstrated an increase of 

regucalcin expression in the mitochondria and an increase of Ca2+-ATPase activity as 

compared with normal rats (132, 142-144).  

Regucalcin has been also demonstrated to activate Ca2+-pump enzymes (Ca2+-ATPase) 

and to stimulate ATP-dependent Ca2+ uptake by microsomes in rat liver, kidney cortex, heart 

and brain (105, 131, 145-147). Also, this protein regulates Ca2+ storage in the endoplasmic 

reticulum of these cells, stimulating Ca2+ release from the microsomes to restore the 

microsomal Ca2+ accumulation to regulate Ca2+-related microsomal functions (146). Such as in 

(Ca2+–Mg2+)-ATPase, it is suggested that regucalcin binds to the lipids at the close site of Ca2+-

ATPase in microsomes, and that it acts on the SH group which may be an active site of the 

enzyme and stimulates Ca2+-dependent phosphorylation of Ca2+-ATPase (105, 146).  

Regucalcin has also a role in the regulation of Ca2+ concentration in liver and kidney 

nuclei. The existence of an ATPase, which is stimulated by Ca2+ in the presence of magnesium 

ion (Mg2+), is found in liver nuclei, and it generates a net increase in nuclear matrix free Ca2+ 

concentration. This system may play an important role in the regulation of intranuclear Ca2+-

dependent processes (148). Presumably, regucalcin has a role in the regulation of liver 

nuclear function through the effect on Ca2+ transporting system in the nuclei (130, 149).  

Moreover, overexpression of regucalcin causes a remarkable decrease on the gene 

expression of L-type Ca2+ channel and calcium-sensing receptor (CaR), which regulates 

intracellular Ca2+ signaling in the cloned normal rat kidney proximal tubular epithelial cells, 

suggesting that regucalcin regulates Ca2+-channel expression (150). 

 

3.3.2. Calcium-dependent enzymes and signaling pathways regulation  

Protein phosphorylation–dephosphorylation is a universal mechanism by which 

numerous cellular events are regulated (151). The phosphorylation is catalyzed by protein 

kinases and consists of the attachment of phosphoryl groups to specific amino acid residues of 

a protein. The dephosphorylation consists of the removal of phosphoryl groups, catalyzed by 

protein phosphatases (152). 

There are many protein kinases, namely, the multifunctional CaM kinases, which play 

an important role in the response of the cells to a Ca2+ signal (153, 154). Regucalcin has an 

inhibitory effect on enzyme activation by Ca2+/calmodulin in liver, kidney and brain cells 
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(155-158). In fact, it can inhibit the activation of several enzymes, namely, pyruvate kinase 

(85); 5’-nucleotidase (86); ATPase (159); cyclic adenosine monophosphate (AMP) 

phosphodiesterase (160, 161); nitric oxide (NO) synthase (162-164) and PKC (157, 158, 165, 

166) . The mechanism of the reversible effect on the activation and inhibition of regucalcin 

on various enzymes, which are regulated through Ca2+, has not been well known. However, 

the mechanism of action of regucalcin may be partly based on its binding to Ca2+ and/or 

calmodulin. Moreover, it is possible that regucalcin may directly bind to enzymes and thus, 

inhibits their functions (125). In addition to the inhibitory effect on protein kinases, 

regucalcin has been shown to inhibit nuclear protein phosphatase activity (167). Presumably, 

regucalcin may be a unique protein, which has inhibitory effects on protein tyrosine 

phosphatase and protein serine/threonine phosphatase (168-170).  

From these findings, regucalcin has been proposed to play a pivotal role in regulating 

the process of signal transduction from the cytoplasm to the nucleus, and regulating nuclear 

functions (133). 

 

3.3.2.1. Regulation of protein synthesis and degradation 

Regucalcin has been shown to have a regulatory effect on protein synthesis and 

protein degradation, suggesting that it plays a role in the regulation of protein turnover in 

cells (133). 

Protein synthesis is depressed in a variety of eukaryotic cell types exposed to 

conditions depleting Ca2+ (171). It has been proposed that hormones, which are known to 

mobilize sequestered Ca2+ within liver cells, inhibit amino acid incorporation by influencing a 

Ca2+ requirement associated with protein synthesis (172). In addition to its capacity of binding 

Ca2+, regucalcin has been also shown to inhibit hepatic aminoacyl-tRNA synthase activity 

(173). Thus, the inhibitory effect of regucalcin on hepatic protein synthesis may be partly 

based on its capacity of binding Ca2+ and on a remarkable decrease of aminoacyl-tRNA 

synthetase activity caused by regucalcin (133).  

This protein can activate neutral cysteinyl-protease including Ca2+-activated neutral 

protease (calpain) in liver and kidney cells, in a mechanism independent of Ca2+ (174-176). 

The ability of calpain to alter the limited proteolysis, the activity or function of numerous 

cytoskeletal proteins, protein kinases, receptors, and transcription factors suggests an 

involvement of the protease in various Ca2+-regulated cellular functions (177, 178). Such as 

regucalcin activates cysteinyl proteases including calpain, it may be implicated in many 

cellular functions which are regulated by cysteinyl proteases in liver and renal cortex cells, 

namely in protein degradation  (125). 

 

3.3.3. Regulation of nuclear functions 

Exogenous regucalcin has been shown to be transported into the nucleus isolated from 

normal rat liver and kidney (179, 180). It seems that the nuclear translocation of regucalcin is 

independently of Ca2+ and is not related to nuclear localization signal that is responsible for 
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selection for intranuclear active transport (133). Presumably, regucalcin is passively 

transported to the nucleus through nuclear pore in liver cells, since a molecular weight of 

regucalcin is about 33 kDa (90).  

Regucalcin has been shown to bind proteins and DNA in liver nucleus (181), thus it 

may have a regulatory effect on signaling pathways that modulate transcriptional activity in 

liver cells (133). In fact, regucalcin has an inhibitory effect on DNA fragmentation that may 

be partly based on binding of Ca2+ since DNA endonuclease activity is Ca2+-dependent (182, 

183). This protein can also inhibit GTPase activity on liver nuclear extracts. This inhibitory 

effect is revealed independent of Ca2+, since it seems to be due to the binding of regucalcin 

to the enzyme, inhibiting directly GTPase activity in liver nucleus (184).  

In addition to these enzymes and such as described above, regucalcin can inhibit 

various protein kinases and protein phosphatases, in nucleus of rat liver (167, 185). It has 

been also shown to have an inhibitory effect on DNA synthesis activity in the nuclei of normal 

rat liver in a mechanism independent of Ca2+ (186-188).  

Moreover, regucalcin has been shown to have an inhibitory effect on RNA synthesis in 

the nuclei isolated from control rat liver and regenerating rat liver. This suppressive effect of 

regucalcin in nuclear RNA synthesis activity is partly resulted from its inhibitory action on RNA 

polymerase II and III (189, 190). Inactivation of RNA polymerase III transcription has been 

shown to be Ca2+ dependent; changes in Ca2+ concentration possibly mediated through Ca2+-

dependent protein kinase, activation of calpains, and consequent proteolytic degradation of 

RNA of transcription factors has been suggested to be involved in the regulation of RNA 

polymerase III transcription in the presence of Ca2+ (191). Such as described above, regucalcin 

may be involved in the inhibition of Ca2+-dependent protein kinase and calpains activity, 

which can influence RNA synthesis (133). 

 

3.3.4. Cell proliferation and apoptosis 

Regucalcin has been shown to have a suppressive effect on cell proliferation (Figure 

13). In fact, the nuclear translocation of regucalcin is increased in regenerating rat liver and 

its mRNA expression is enhanced in the proliferative cells after partial hepatectomy in rats 

(192). Moreover, cell proliferation is suppressed in rat hepatoma and rat kidney proximal 

tubular epithelial cells overexpressing regucalcin, suggesting that regucalcin plays a role in 

the proliferation of cells (150, 193). 

Regucalcin may play an important role as a suppressor for the enhancement of cell 

proliferation due to inhibiting various nuclear protein kinases, namely MAPK kinase, CaM 

kinase, protein tyrosine kinase and PI3-kinase, and protein phosphatases activities, namely 

protein tyrosine kinase, which are involved in signal transduction to the nucleus, and it causes 

an inhibition in nuclear DNA synthesis in proliferative liver cells (194-196). Moreover, 

regucalcin has a suppressive effect on cytosolic protein synthesis (197, 198) and nuclear RNA 

synthesis (189, 190) in rat liver, suggesting that the effect of regucalcin in suppressing cell 

proliferation is also partly mediated through its suppressive effect on protein and RNA 
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synthesis in the cells. On the other hand, regucalcin enhances p21 mRNA expression, which 

participates in cell cycle arrest, and suppresses IGF-I mRNA expression, a growth factor in cell 

proliferation, in the hepatoma cells (129, 199). In addition, regucalcin is found to bind 

nuclear proteins or DNA, modulating nuclear transcriptional activity (181). Its overexpression 

suppresses the expression of oncogenes c-myc, Ha-ras, or c-src and enhances the expression 

of tumour suppressor genes p53, which stimulates p21 mRNA expression, and retinoblastoma 

protein (pRb) in the cloned hepatoma cells (200, 201).  

Figure 13. Suppressive role of regucalcin on the enhancement of cell proliferation. Regucalcin mRNA 
expression is stimulated through the pathway of signaling mechanism concerning CaMK, PKC, PKA, and 
thyrosine kinase due to normal stimulation. Regucalcin inhibits the activities of various protein kinases 
and protein phosphatases in the cytoplasm and nucleus of cells, and it also can inhibit Ca2+/calmodulin-
dependent enzyme activity. Cytoplasmic regucalcin translocates into nucleus. Regucalcin inhibits 
nuclear DNA and RNA synthesis. Regucalcin has an inhibitory effect on the expression of c-myc, Ha-ras, 
and c-src mRNAs, which are tumour stimulator genes. Regucalcin also stimulates the expression of p53 
and Rb mRNAs that are tumour suppressor genes. Moreover, regucalcin can inhibit protein synthesis and 
it can stimulate protein degradation. Regucalcin induces G1 and G2/M phase cell cycle arrest in cells. 
The suppressive effect of regucalcin on cell proliferation is mediated through regulating many signaling 
systems (133). 

 

Contrastingly, there are also reports describing regucalcin roles suppressing cell death 

and apoptosis (Figure 14). Regucalcin has been shown to inhibit inducible and endothelial 

Ca2+/calmodulin-dependent NO synthase (163). This enzyme produces NO, an important 

signaling factor in many cells which plays an important role in apoptosis of hepatoma cells 

(202, 203). When present at high concentrations, NO has been shown to inhibit cell 

proliferation and to induce cell apoptosis (203). Presumably, regucalcin has an inhibitory 

effect on NO synthase activity due to binding to calmodulin and/or the enzyme independently 

of Ca2+ in proliferative cells, suggesting that regucalcin has a suppressive role in apoptosis 

(163).  
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Regucalcin has also a suppressive effect on cell death, due to inhibition of tumour 

necrosis factor α (TNF-α) and lipopolysaccharide (LPS) in rat liver and kidney cells (204-206). 

TNF-α induces apoptosis in mammary adenocarcinoma cells by an increase in intracellular 

free Ca2+ concentration and DNA fragmentation whereas LPS acts to modulate the expression 

of a large number of genes that favour apoptosis of fibroblastic cells that are dependent upon 

activation of caspase-8 (206, 207). 

As previously described, regucalcin has been shown to have a suppressive effect on 

Ca2+-activated DNA fragmentation in isolated rat liver nucleus, suggesting that the protein has 

an inhibitory effect on apoptosis in liver cells (183). In addition, regucalcin also inhibits 

apoptosis due to its ability to keep intracellular Ca2+ homeostasis. In fact, Ca2+ is an apoptosis 

inducing factor since its entry into cells is known to induce cell death (208, 209). Such as 

previously described, regucalcin may have a suppressive effect on Ca2+ entry due to activating 

Ca2+ pump enzymes in the plasma membranes, mitochondria, endoplasmic reticulum and 

nucleus of rat liver cells, since it could rescue cells from an apoptotic death induced by a 

high intracellular Ca2+ level (125, 133).  

On the other hand, regucalcin overexpression has an inhibitory effect on other 

apoptotic inducing factors such as insulin, insulin-like growth factor-1 (IGF-1) and 

sulforaphane, inhibiting signaling pathways which involves NO synthase, caspase-3, and Ca2+-

dependent endonuclease and activating Bcl-2 in cells (133, 210, 211). 

Figure 14. Suppressive role of regucalcin in cell death and apoptosis induced by various factors. 
Regucalcin suppresses cell death induced by various factors. The suppressive effect of regucalcin on cell 
death and apoptosis is mediated due to inhibiting the activities of NO synthase, caspase-3, and Ca2+-
dependent endonuclease and activating Bcl-2 in the cells (133).  
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3.4. Regucalcin in breast pathophysiology 

Considering the information provided in previous sections it is quite clear that 

regucalcin play a multifunctional role in cell physiology, being highly predictable that 

deregulation of its functions would be associated with pathological conditions. In fact, several 

studies have been linking regucalcin with several diseases, namely osteoporosis (103), 

diabetes (212), muscular dystrophy (213), Alzheimer disease (214), liver injury (215), male 

infertility (98) and different types of cancer (77, 106, 216). 

Studies in hepatoma cell lines showed that regucalcin suppresses cell proliferation 

(129, 205), inhibits expression of oncogenes c-myc, H-ras, and c-src, and increases the 

expression of tumour suppressor genes p53 and pRb (181, 201),  suggesting that regucalcin 

may have a protective role against carcinogenesis and, consequently, loss of regucalcin 

expression may contribute to tumour development (77). Recently, it was demonstrated that 

regucalcin mRNA and protein expression are diminished in samples of human breast cancer 

cases (77). Moreover, regucalcin immunoreactivity was associated with the tumour 

differentiation grade (77). 

 

4. L-type calcium channels 

Voltage-dependent L-type Ca2+ channels mediate Ca2+ influx into both excitable and 

non-excitable cells, including cardiac and skeletal myocytes, vascular smooth cells, neurons, 

endocrine cells, osteoblasts and osteoclasts (217-219). They acutely contribute to 

neurotransmitter and hormone release from neurons and endocrine cells, contraction of 

cardiac, smooth, and skeletal muscle, and Ca2+-dependent signal transduction. The roles of 

voltage-dependent Ca2+ channels have been extensively studied in these excitable cells, but 

their roles in the non-excitable cells have not been studied as much (220). 

 

4.1. Structural features 

L-type Ca2+ channels are heteromultimeric complexes consisting of a pore-forming α1 

subunit and auxiliary α2, β, δ, and γ subunits (221) (Figure 15).  

The α1 subunit (170-240 kDa) serves as the main functional component of the channel 

complex, containing the channel pore, voltage sensors, the gating machinery and the 

receptors for various classes of drugs and toxins. They consist of four homologous domains (I-

IV), each composed of six transmembrane segments (S1-S6). To date, ten different α1 subunit 

genes have been identified and separated into four classes: Cav1.1 (α1S), Cav1.2 (α1C), Cav1.3 

(α1D), and Cav1.4 (α1F), which provide unique functional properties to Ca2+ channels present in 

different cell types (222).  

L-type Ca2+ channel α1C subunit is encoded by the Cav1.2 gene that is located on 

chromosome 6 in mouse and 12 in human. Human Cav1.2 contains seven predicted alternative 

promoters with variations in the mRNA including 5′ and 3′ truncations (223). L-type Ca2+ 

channel α1C subunit expression is regulated by α- and β-adrenergic stimulation (224), 
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androgens (225), and Ca2+ entry through the channel (226). Binding sites for transcription 

factors such as NKX2.5, myocyte-specific enhancer factor 2C (Mef2c), a cAMP response 

element, and hormone binding sites were identified, along with a minimal promoter sequence 

(227). 

Ca2+ channel auxiliary subunits further add to the functional diversity of these 

channels. The β subunits (55-60 kDa) are encoded by four separate genes and are intracellular 

auxiliary subunits co-expressed with α1 subunit, which promote trafficking of the channel 

complex to the plasma membrane and modulate gating properties of the channel (228, 229). 

The α2 subunits are closely associated with the α1 subunit by surface interaction and are 

intracellularly linked through a disulfide bridge to a small protein, the δ subunit (175 kDa). 

The α2 subunit is entirely extracellular and the δ subunit has a single transmembrane region 

with a very short intracellular part. The α2 and δ subunits are encoded by the same gene, 

which is separated by proteolytic cleavage (230). They have been shown to modify both 

channel gating properties and surface membrane expression of the L-type Ca2+ channel 

complex (228). To date, 8 genes encoding a variety of γ subunit (25-38 kDa) isoforms have 

been identified. The γ subunits are only expressed in some tissues, and unlike the other 

auxiliary subunits (β and α2δ), they do not have a significant role in the membrane trafficking 

of the Ca2+ channel (231). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. A proposed schematic structure of voltage-activated Ca2+ channel. The principal α1 subunit is 
a transmembrane protein containing a conducting pore, through which Ca2+ ions can pass upon opening. 
α1 subunit is further regulated by auxiliary subunits: intracellular β subunit, transmembrane γ subunit 
and a complex of extracellular α2 subunit and transmembrane δ subunit, connected by a disulphide 
bridge (217). 

 
 

In non-excitable cells, L-type Ca2+ channels are regulated by PKA- and PKC-mediated 

signalling pathways. Binding of several agonists and activation of their specific receptors may 

result in the phosphorylation of the L-type Ca2+ channels and consequent opening and entry of 

Ca2+ from the extracellular space (232, 233).  
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Multiple G protein–coupled receptors, including β-adrenergic receptors (βAR), act 

through cAMP/PKA pathways to regulate many cellular proteins, including the L-type Ca2+ 

channel (Figure 16). These receptors are coupled to heterotrimeric G proteins, which either 

stimulate (Gs) or inhibit (Gi) adenylyl cyclase (AC). An increase in AC activity leads to 

increased cellular cAMP, which binds to the regulatory subunits of PKA, liberating the 

catalytic subunits to phosphorylate their substrates on L-type Ca2+ channel specific serine and 

threonine residues. Phosphorylation of L-type Ca2+ channel induces its opening and 

consequent entry of Ca2+ from the extracellular space. Muscarinic M2 receptors can oppose 

the βAR up-regulation by acting through Gi to inhibit AC (232). 

 
 

Figure 16. Schematic of the cAMP/PKA cascade regulating L-type channels. Stimulation of the β-
adrenergic receptors (βAR) 1 and 2, leads to Gs-mediated activation of AC and increased production of 
cAMP, which stimulates PKA. PKA can then phosphorylate the channel at multiple potential sites 
indicated schematically by the single P in the diagram. Whereas β1AR regulation causes more global 
increases in cAMP, β2AR stimulation can result in highly localized cAMP level changes and regulation. 
Muscarinic M2 receptors can oppose the βAR up-regulation by acting through Gi to inhibit AC (Adapted 
from (232). 

 

Multiple Gq protein–coupled receptors, including endothelin (ET), α1-adrenergic, and 

angiotensin II receptors, trigger the signaling cascade leading to activation of PKC (Figure 17). 

Binding of an agonist to a Gq protein-coupled receptor activates PLC, which breaks down 

phosphoinositides in the plasma membrane to form IP3 and diacylglycerol (DAG). The IP3 

triggers Ca2+ release from intracellular stores through IP3 receptor channels, producing the 

initial transient peak increase in [Ca2+]i. Then, DAG, phosphatidylserine, and in some cases 

Ca2+ collectively activate PKC, which in turn, phosphorylate L-type Ca2+ channel on specific 

serine and threonine residues. This phosphorylation of L-type Ca2+ channel induces its opening 

and consequent entry of Ca2+ from the extracellular space (232). 



Androgens in breast cancer cells physiology: a connection with calcium homeostasis? 

 

I. Background and Aim  25 

Figure 17. PLC/PKC signaling cascade regulating L-type Ca2+ channels. Activation of a1-adrenergic, ET, 
or AT1 receptors stimulates Gq with resulting activation of PLC, which leads to the production of 
diacylglycerol and activation of PKC. PKC is proposed to target to the membrane by binding a RACK 
protein in the vicinity of the L-type Ca2+ channel, which it then phosphorylates. A Ser/Thr phosphatase 
counterbalances this phosphorylation. IP3 indicates inositol trisphosphate; PIP2, phosphatidylinositol 
4,5 bisphosphate (Adapted from (232). 

 

4.2. Regulation of L-type calcium channels by androgens 

L-type Ca2+ channels are regulated by a variety of neurotransmitters, cytokines and 

hormones, including the androgens (232). Studies have demonstrated that androgens 

modulate L-type Ca2+ channel expression in several cells, such as coronary smooth muscle 

cells, myocardium, human prostate cancer cells, and Sertoli cells. In all these cells, 

androgens have been shown to increase L-type Ca2+ channel expression (74, 234-237). In 

addition, androgens can also modulate L-type Ca2+ channel activity. In fact, androgens have 

been shown to inhibit L-type Ca2+ channel activity in rat aorta vascular smooth muscle cells 

(238, 239). L-type Ca2+ channel expression may be regulated through classic genomic 

mechanism, but also by a non-genomic androgen action associated with a G-protein (232, 

233). L-type Ca2+ channel activity may also be regulated through non-genomic signaling 

pathways. Binding of androgens to its membrane associated receptor can lead to 

phosphorylation of L-type Ca2+ channel and consequent entry of Ca2+ from extracellular space 

(232) (Figure 7). 

 

4.3. L-type calcium channels in breast pathophysiology 

Such as previously described, Ca2+ is a key regulator of many essential biological 

processes, including cell proliferation (57). Deregulation of [Ca2+]i via altered Ca2+-

transporters, Ca2+-channels and Ca2+-binding proteins expression and/or function may 

contribute to cancer development (58). Studies have demonstrated that voltage-sensitive ion 

channels play a role in the onset, proliferation and malignant progression of various types of 

cancer, such as prostate, breast, lung, thyroid, colon, and glioma. This has initially been 
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demonstrated for K+ channels and is meanwhile also suggested for other Ca2+, sodium ion 

(Na+) and chloride ion (Cl-) channels (240). 

 Alterations in several ion channels have been associated to breast cancer. In fact, a 

significant increase in K+ channel (Kv1.3, Kv10.1-2 and K2p9.1), transient receptor potential 

cation channel subfamily V member 6 (TRPV6), transient receptor potential cation channel 

subfamily P member 6 (TRPP6), TRPM8 and Cl- channels expression have been shown in breast 

cancer cell compared to normal cells (241-244). 

To date, alterations in L-type Ca2+ channel expression or functions have been 

implicated only in colonic cancer (245). Wang et al. have demonstrated that mRNA and 

protein L-type Ca2+ channel (α1c subunit) expression is increased in colonic carcinoma cells 

compared to normal cells (245). However, although function of L-type Ca2+ channel has been 

demonstrated in distinct types of non-excitable epithelial cells, including Sertoli cells and 

other endocrine cells (218, 237), their involvement in breast cells physiology remains to be 

deciphered. 

 

5. Aim of the thesis 

The role of androgens in the female reproductive tract has been largely unexplored. 

However, AR is found in virtually every tissue in women, including breast, indicating that 

androgens and their metabolites play an important role in normal tissue homeostasis. In 

human breast cancer, AR expression is significantly increased and the majority of cases, 

including those negative for ER and PR, still are positive for AR, highlighting the role of 

androgens in breast cancer. Moreover, it has been also established that deregulation of Ca2+ 

homeostasis is associated with mammary gland pathophysiology, and that androgens play a 

role in Ca2+ homeostasis in other cells types. Therefore we hypothesised that androgens may 

regulate the expression of Ca2+-binding proteins and Ca2+ channels in human breast cancer 

cells. In this way, the present study aims to: 

 

 Analyse the expression of Ca2+-binding protein regucalcin and L-type Ca2+ channel (α1C 

subunit) in human breast cancer cells (MCF-7); 

 

 Study the effect of androgens on the expression of Ca2+-binding protein regucalcin and 

L-type Ca2+ channel (α1C subunit) in  human breast cancer cells (MCF-7); 

 

 Disclose the mechanisms underlying the androgenic effects on the regulation of 

regucalcin and L-type Ca2+ channel (α1C subunit) expression. 
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II. Materials and Methods 

 

 

1. Cell lines  

The human breast cancer epithelial cell line (MCF-7) was purchased from the European 

Collection of Cell Cultures (ECACC, Salisbury, UK). MCF-7, is the acronym of Michigan Cancer 

Foundation-7, and these cells are the most commonly used breast cancer cell model  for 

studies of tumor biology and hormone mechanism of action, due to the expression of 

oestrogen, progesterone, androgen and glucocorticoid receptors (246, 247). 

 

2. Cell culture and treatment 

Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) high glucose 

(Gibco, Paisley, UK) supplemented with 10% fetal bovine serum (FBS; Biochrom, Berlin, 

Germany) and 1% penicillin/streptomycin (Invitrogen, Karlsruhe, Germany) at pH of 7.4, in an 

incubator at 37°C equilibrated with 5% CO2. For this assay, cells were seeded in 12-well and 

6-well plates for further RNA and protein extraction, respectively. When growth confluence of 

60% was achieved, cells were grown in phenol red-free DMEM supplemented (Gibco) with 5% 

charcoal-stripped FBS (Gibco) for 24h. Then, cells were exposed to four different 

concentrations of DHT (0, 1, 10 and 100 nM) (Sigma, Saint Louis, USA)) during different 

periods (0, 6, 12, and 24h). Control treatments with flutamide (1µM; Sigma), cyclohexamide 

(1µg/mL; Sigma), and ICI 182,780 (100nM; Tocris Cooksob, Bristol, UK) were carried out with 

1nM of DHT for 24h. Inhibitors were added to cell cultures 30min before hormone stimulation. 

All assays were carried out in hexaplicate. 

 

3. Total RNA extraction  

Total RNA was extracted from MCF-7 cells using TRIzol reagent (Ambion, USA) 

according to the manufacturer’s instructions. An appropriate volume of TRIzol was added to 

cells and incubated for 5min at room temperature (RT) to dissociate nucleoprotein 

complexes. 200 μL of chloroform (Sigma) per mL of TRIzol reagent was added, and the sample 

was homogenized vigorously for 15s and incubated for 2-3min at RT. After the incubation 

period, samples were centrifuged (12000g for 15min at 4ºC) and the mixture was separated 

into three distinct phases: a lower red phenol-chloroform phase, an interphase, and a 

colourless upper aqueous phase. RNA remains exclusively in the aqueous phase, since upper 

aqueous phase was transferred to a new tube and 500μL of 100% isopropanol per mL of TRIzol 

reagent was added. Samples were incubated for 10min at RT and then centrifuged at 12000g 

for 10min at 4ºC. The supernatant was removed and the RNA pellet washed with 1mL of 75% 

ethanol in diethylpyrocarbonate (DEPC)-treated water (Sigma) at 20°C, per mL of TRIzol 

reagent. After centrifugation at 7500g for 5min at 4ºC, the supernatant was removed and the 
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wash step was repeated. Finally, the resultant RNA pellet was air dried for 5-10min and 

resuspended in an appropriate volume of DEPC-treated water.  

In order to assess the quantity and quality of total RNA, its optical density was 

determined by spectrophotometry (NanoPhotometer, Implen, Munich, Germany) measuring 

absorbance at 260 nm and 280 nm. RNA extracts were also inspected by agarose gel 

electrophoresis using GreenSafe (NZYtech, Lisbon, Portugal) as staining method.  

 

4. cDNA synthesis 

Firstly, 1µg of total RNA was denatured at 70°C for 5min in a reaction containing 

5µg/µL random hexamer primers (Invitrogen) and DEPC-treated water up to 10µL and chilled 

in ice before added to a 10µL reverse-transcription solution containing 5X Reaction Buffer 

(provided with M-MLV Reverse Transcriptase) (Promega, Madison, USA), 0,8µL M-MLV Reverse 

Transcriptase (Promega), 1µL deoxynucleotide triphosphates mix (dNTPs; Amersham, GE 

Healthcare, Uppsala, Sweden), and DEPC-treated water up to 10µL. The cDNA synthesis 

reaction was carried out at 37°C for 1h and was stopped at 70°C for 15min. Synthesized cDNA 

was stored at -20°C until further use.  

 

5. RT-PCR 

Reverse transcription polymerase chain reaction (RT-PCR) was performed to analyze 

the regucalcin and L-type Ca2+ channel (α1C subunit) expression in human breast cancer cell 

line MCF-7. Reactions were carried out using 1μL of cDNA synthesized from human breast 

cancer cell line MCF-7 in a 25μL reaction containing 1X Taq DNA polymerase buffer (provided 

with Platinum Taq DNA polymerase) (Promega), 500μM dNTPs (Amersham), 3.0mM of MgCl2 

(Promega), 300nM of each primer pair specific to the target regucalcin and L-type Ca2+ 

channel genes, 1µL of Platinum Taq DNA polymerase (Promega) and sterile water. Prior 

amplification of regucalcin and L-type Ca2+ channel (α1C subunit), the integrity of cDNA 

samples was assessed by amplification of the 18S housekeeping gene. Cycling conditions, 

primer sequences and corresponding amplicon sizes are indicated in Table 1. 
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Table 1. Primer sequences, amplicons size and cycling conditions used in RT-PCR amplification of human 
regucalcin, L-type Ca2+ channel (α1C subunit) and 18S. 

 

     

Gene and Accession 

numbers 

Sequence 

(5’ – 3’) 

Amplicon  

size (bp) 

Cycling 

conditions 

Human Regucalcin 

NM_004683.4 

S: GCA AGT ACA GCG AGT GAC 

AS: TTC CCA TCA TTG AAG CGA TTG 
177 

 
 

95°C – 5min 

95°C – 30s 

60°C – 30s 

72°C – 1min 

72°C – 5min 

Human L-type 

calcium channel  

(α1C subunit) 

NG_008801 

S: AAT GCC TAC CTC CGC AAC GGC TG 

AS: TGA TGC CGT GCT TGG GAC CAT CC 
469 

  

95°C – 5min 

95°C – 30s 

62°C – 30s 

72°C – 1min 

72°C – 5min 

Human 18S 

NR_003286.2 

S:AAG ACG AAC CAG AGC GAA AG 

AS: GGC GGG TCA TGG GAA TAA 
152 

  

95°C – 5min 

95°C – 30s 

58°C – 30s 

72°C – 1min 

72°C – 5min 

 

6. Real-time PCR 

Real-time PCR was performed to compare the mRNA levels of regucalcin and L-type 

Ca2+ channel (α1C subunit) in MCF-7 cells subjected to DHT treatments. Specific primers to 

regucalcin (human regucalcin) and L-type α1C (human L-type Ca2+ channel (α1C subunit)), 

located in different exons, were the same used in RT-PCR (Table 1). To normalize the 

expression of regucalcin and L-type α1C, human GAPDH expression was used as internal 

control (Sense primer: CGC CAG CCG AGC CAC ATC; Anti-sense primer: CGC CCA ATA CGA CCA 

AAT CCG). The efficiency of real-time PCR was determined for all designated primers 

performing serial dilutions (1, 1:5, 1:25 and 1:125) of the cDNA from MCF-7 cells. Real-time 

PCR reactions were carried out using 1μL of cDNA synthesized in a 20μL reaction containing 

10μL of MaximaTM SYBR Green/Fluorescein qPCR Master Mix (Fermentas) and 300nM of primers 

for each gene. Reaction conditions comprised 5min of denaturation at 95ºC, followed by 40 

cycles at 95ºC for 10 seconds, 60ºC to regucalcin and 62°C to L-type Ca2+ channel (α1C subunit) 

for 30 seconds, and 72ºC for 10 seconds. Samples were run in triplicate in each PCR assay. 

Normalized expression values were calculated following the mathematical model proposed by 

Pfaffl using the formula: 2-ΔΔCt (248).     

 

40x 

40x 

25x 

http://www.orpha.net/consor/cgi-bin/Disease_Genes.php?lng=PT&data_id=15392&MISSING%20CONTENT=Calcium-channel--voltage-dependent--L-type--alpha-1C-subunit&search=Disease_Genes_Simple&title=Calcium-channel--voltage-dependent--L-type--alpha-1C-subunit
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7. Western blot  

Total protein was extracted from MCF-7 cells using an appropriate volume of 

radioimmunoprecipitation assay buffer (RIPA) (150mM NaCl, 1% Nonidet-P40 substitute, 0,5% 

Na-deoxycholate, 0,1% SDS, 50mM Tris, 1mM EDTA), 10% PMSF and 1% Protease cocktail. The 

mixture was incubated for 20 min in ice and then, centrifuged at 14000g for 20min at 4°C. 

The supernatant was recovered to new tubes and stored at -80°C. Finally, quantification of 

total protein extracts was assessed using the Bradford method (Bio-Rad, Hercules, USA) (249). 

40μg, 50μg or 60 μg of total proteins were resolved in a 12% SDS-PAGE gel and 

electrotransferred to a PVDF membrane (Amersham), previously activated in methanol, water 

and electrotransferation solution (10mM CAPS in 10% methanol, pH=11), at 750mA and 4°C. 

Then, membranes were blocked in Tris-buffered saline (TBS-T) with Tween 20 (TBS-T; 

Applichem, Darmstadt, Germany) containing 5% milk (Regilait, France) for 1h30. The 

membrane was then incubated overnight at 4ºC with a primary antibody (Table 2). After 

washing in TBS-T, the membrane was incubated for 1h30 with a secondary antibody. Finally, 

the membrane was again washed in TBS-T and incubated with ECF substrate (Amersham) for 

3min and visualized on the Molecular Imager FX Pro plus MultImager (Bio-Rad). Incubation 

periods, and specific primary and secondary antibodies used for regucalcin and L-type Ca2+ 

channel (α1C subunit) staining are indicated in Table 2. 

 
Table 2. Electrotransfer details and specific primary and secondary antibodies used in Western blot 
analysis for regucalcin and L-type Ca2+ subunit (α1C subunit) staining. 

 

 Electrotransferation Primary Antibody Secondary Antibody 

Regucalcin 1h30 

 

Mouse monoclonal anti-
human regucalcin 

 
1:1000 

 
Abcam (ab67336, 
Cambridge, UK) 

 

 
Goat polyclonal antibody 

against mouse IgG  
 

1:20000 
 

Abcam (ab7069) 

L-type α1c 2h30 

 
Rabbit anti-human calcium 

channel α1C (L-type of 

voltage-Gated Ca2+ 

Channel) 

 

 
Goat anti-rabbit IgG 
alkaline phosphatase 

linked antibody 

1:200 

 

1:10000 

Sigma (C 1603) Amersham (RPN5783) 
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8. Statistical analysis 

The statistical significance of differences in regucalcin and L-type Ca2+ channel (α1C 

subunit) mRNA and protein expression among experimental groups was assessed by Student's 

paired t-test using GraphPad Prism software (version 5.0 for Windows). Significant differences 

were considered when p<0.05. All experimental data are shown as mean ± SEM. 
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III. Results  

 

 

1. Expression of calcium-binding protein regucalcin and L-type 

Ca2+ channel (α1C subunit) in MCF-7 cells 

In order to analyze the expression of regucalcin and L-type Ca2+ channel (α1C subunit) 

in human breast cancer MCF-7 cells, RT-PCR and Western blot were carried out using specific 

primers and antibodies, respectively. 

RT-PCR results using specific primers to human regucalcin, allowed confirming its 

expression in human breast cancer cell line MCF-7 (Figure 18A). Western blot analysis also 

confirmed regucalcin expression in MCF-7 cells enabling the detection of an immunoreactive 

protein of the expected size with approximately 33 kDa (Figure 18B). In addition, it is shown 

that intensity of immunoreactive band is enhanced following increasing loads of MCF-7 

protein extracts. 

 

 
 
 
 
 
 
 
Figure 18. Expression of regucalcin in human breast cancer MCF-7 cells. (A) RT-PCR. 1: Regucalcin; 2: 
18S used as positive control of cDNA synthesis; 3: Negative control, no cDNA added. Amplicons sizes are 
indicated on the left side. (B) Western blot analysis using a mouse anti-human regucalcin monoclonal 
antibody (1:1000). Different loads of MCF-7 total protein extracts were used. 1: 40µg; 2: 50µg ; 3: 60µg. 
Molecular weight is indicated on the left side. 

 

RT-PCR results also allowed confirming L-type Ca2+ channel expression in MCF-7 cells 

using specific primers to the L-type Ca2+ channel (α1C subunit) (Figure 19A). Western blot 

analysis enabled the detection of an immunoreactive protein of the expected size with 

approximately 190 kDa (Figure 19C). In addition, it is shown that intensity of immunoreactive 

band is enhanced following increasing loads of MCF-7 protein extracts. Total RNA and protein 

extracts of human and rat Sertoli cells (Figure 19B,D) were used as positive control, since L-

type Ca2+ channel expression was already demonstrated in these cells (237). 
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Figure 19. Expression of L-type Ca2+ channel (α1C subunit) in human breast cancer MCF-7 cells . Sertoli 
cells were used in RT-PCR and WB as as a positive control for detection. (A) RT-PCR analysis in MCF7 
cells. 1: L-type Ca2+ channel (α1C subunit); 2: 18S used as positive control of cDNA synthesis; 3: Negative 
control, no cDNA added. (B) RT-PCR analysis in Sertoli cells: 1: L-type Ca2+ channel (α1C subunit) in 
human cells; 2. L-type Ca2+ channel (α1C subunit) in rat cells; 3: Negative control, no cDNA added. 
Amplicons sizes are indicated on the left side. (C) Western blot analysis using a rabbit anti-human L-
type Ca2+ channel (α1C subunit) antibody (1:200) in MCF-7 cells. Different loads of MCF-7 total protein 
extracts were used. 1: 40µg; 2: 50µg; 3: 60µg. Molecular weight is indicated on the left side. (D) 
Western blot analysis using a rabbit anti-human L-type Ca2+-channel (α1C subunit) antibody (1:200) in rat 
Sertoli cells. Different loads of rat Sertoli cells total protein extracts were used. 1: 20µg, 2:30µg. 

 

2. DHT down-regulates expression of calcium-binding protein 

regucalcin in MCF-7 cells 

The analysis of the effect of androgens on the expression of regucalcin in MCF-7 cells 

was performed by means of real-time PCR. For this purpose, a time-course experiment at 0, 

6, 12 and 24h was carried out using 1nM of DHT. Real-time PCR analysis demonstrated that 

DHT induces a significant down-regulation of regucalcin mRNA expression (approximately two-

fold) in MCF-7 cells in comparison to control group (Figure 20). A significant down-regulation 

was also observed with 10nM and 100nM of DHT (data not shown). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20. Effect of DHT on regucalcin mRNA expression in MCF-7 cells determined by real-time PCR. 
MCF-7 cells were either exposed to vehicle (0nM DHT –control group) or to 1nM of DHT for 0, 6, 12 and 
24h. Regucalcin expression was normalized with that of GAPDH housekeeping gene. Results are 
indicated as mean ± SEM (n=6 in each experimental condition) **p<0.01 compared to control values. 
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3. DHT down-regulates expression of L-type Ca2+ channel (α1C 

subunit) in MCF-7 cells. 

Following the same strategy applied for regucalcin, the effect of androgens on the 

expression of L-type Ca2+ (α1C subunit) in MCF-7 cells was also investigated. Real-time PCR 

analysis demonstrated that the mRNA expression of L-type Ca2+ channel (α1C subunit) is down-

regulated by DHT (approximately two-fold) in MCF-7 cells in comparison to controls (Figure 

21). A significant down-regulation was also observed with 10nM and 100nM of DHT (data not 

shown). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 
Figure 21. Effect of DHT on L-type Ca2+ channel (α1C subunit) mRNA expression in MCF-7 cells by real-
time PCR. MCF-7 cells were either exposed to vehicle (0nM DHT – control group) or to 1nM of DHT for 0, 
6, 12 and 24h. L-type Ca2+ channel (α1C subunit) expression was normalized with GAPDH housekeeping 
genes. Results are indicated as mean ± SEM (n=6 in each experimental condition) **p<0.01 compared to 
control values. 

 
 

4. DHT effects regulating calcium-binding protein regucalcin and 

L-type calcium channel (α1C subunit) mRNA expression are 

reverted by androgen and oestrogen inhibitors  

To explore the mechanism underlying the androgenic down-regulation of regucalcin 

and L-type Ca2+ channel (α1C subunit) expression, MCF-7 cells were exposed to 1nM of DHT 

alone or in presence of AR inhibitor flutamide (Flut, 1µM), protein synthesis inhibitor 

cyclohexamide (Chx, 1 µg/mL) or ER inhibitor ICI 182,780 (ICI, 100nM) during 24h. This group 

was included since DHT has been shown to be converted to 3 -diol which is able to activate 

ERs (47). 
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These experiments further confirmed the down-regulation of regucalcin (Figure 22) 

and L-type Ca2+ channel (α1C subunit) (Figure 23) in MCF-7 cells in response to DHT treatment. 

Moreover, the androgenic effect down-regulating regucalcin and L-type Ca2+ channel is 

reverted by both, androgen (Flut) and oestrogen receptor (ICI) inhibitors (Figures 22 and 23). 

It is also noteworthy that Chx did not reverse the down-regulation of regucalcin 

expression induced by DHT. Moreover, MCF-7 cells stimulated with Chx alone display a down-

regulated regucalcin mRNA expression (approximately two-fold), when compared to controls. 

No significant differences were observed using Flut or ICI alone (Figure 22). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. Effect of flutamide (Flut), cyclohexamide (Chx) and ICI 182,780 (ICI) on DHT regulation of 
regucalcin expression in MCF-7 cells. MCF-7 cells were exposed for 24h to DHT (1nM), DHT plus 
flutamide (1µM), DHT plus cyclohexamide (1µg/mL), DHT plus ICI 182,780 (100nm), flutamide, 
cyclohexamide, and ICI 182,780. Results are indicated as mean ± SEM (n=6 in each experimental 
condition) **p<0.01, compared to control values). 

 

Considering L-type Ca2+ channel (α1C subunit), in addition to Flu and ICI, also Chx 

reverted the DHT effect. Moreover MCF-7 cells stimulated with Flut, Chx or ICI alone display 

an up-regulated regucalcin mRNA expression (approximately two-fold by Flut and Chx, and 

three-fold by ICI), when compared to controls (Figure 23). 
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Figure 23. Effect of flutamide (Flut), cyclohexamide (Chx) and ICI 182,780 (ICI) on DHT regulation of L-
type Ca2+ channel (α1C subunit) expression in MCF-7 cells.  MCF-7 cells were exposed for 24h to DHT 
(1nM), DHT plus flutamide (1µM), DHT plus cyclohexamide (1µg/mL), DHT plus ICI 182,780 (100nm), 
flutamide, cyclohexamide, and ICI 182,780. Results are indicated as mean ± SEM (n=6 in each 
experimental condition) *p<0.05, **p<0.01, ***p<0,001 compared to control value). 
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IV. Discussion  
 

 

Ca2+ homeostasis is essential for several biological processes in the cell such as 

proliferation, differentiation and apoptosis. It is a steady state between Ca2+ influx, efflux, 

and storage, which is essentially regulated by the activity of Ca2+ transporters, Ca2+ channels 

and Ca2+ binding proteins. In this way, deregulation of [Ca2+]i via altered expression and/or 

function of these proteins may have implications in mammary gland pathophysiology. Previous 

studies have demonstrated that androgens regulate the expression and/or activity of several 

Ca2+ regulator proteins, namely the Ca2+-binding protein regucalcin and voltage-dependent L-

type Ca2+ channel in distinct cell types. This raised the question whether androgens play the 

same role on these Ca2+ regulator proteins in human breast cancer cells. 

In the present thesis, we further confirmed previous results of our research group 

demonstrating the presence of regucalcin mRNA and protein in human breast cancer MCF-7 

cells cultured in vitro (77, 106). We also demonstrated the presence of mRNA and protein of 

L-type Ca2+ channel (α1C subunit) in human breast cancer cells MCF-7. RT-PCR analysis allowed 

to detect a band of approximately 469 bp , which corresponds to the amplicon predicted size 

for the specific primer pair for L-type Ca2+ channel (α1C subunit) (Figure 19A). An equivalent 

band was  amplified in human and rat Sertoli cells using the same primer pair (Figure 19B), 

Western blot analysis showed an immunoreactive protein of approximately 190 kDa in MCF-7 

cells (Figure 19C), which corresponds to the L-type Ca2+ channel (α1C subunit) predicted size 

previously reported by Silva et al. (237). An equivalent immunoreactive protein was detected 

using the same antibody in human and rat Sertoli cells protein extracts (Figure 19D). The 

presence of L-type Ca2+ channel (α1C subunit) has already been described in Sertoli cells (237), 

and their inclusion here as positive control reinforce the demonstration of L-type Ca2+  

channel expression in human breast cancer MCF-7 cells. Others ion channels have been 

identified in MCF-7 cells, such as K+ channel (Kv1.3, Kv10.1-2 and K2p9.1), transient receptor 

potential cation channel subfamily V member 6 (TRPV6), transient receptor potential cation 

channel subfamily P member 8 (TRPP8), TRPM8 and Cl- channels (241-244). However, and at 

least for our knowledge, this is the first report demonstrating the expression of L-type Ca2+ 

channel (α1C subunit) in MCF-7 cells, which indicates that this channel may play an important 

role in Ca2+ homeostasis in human breast cancer cells. Regucalcin mRNA expression is 

regulated by several factors, namely, Ca2+ (101, 111, 121), calcitonin (122), insulin (121), and 

oestrogen (106, 120, 123) suggesting that the expression of regucalcin mRNA is enhanced 

through various hormonal stimuli. In addition, regucalcin is also regulated by androgens in 

prostate cancer cells and testicular tissue (76, 77). Several evidences also suggest that 

androgenic actions and calcium (Ca2+) homeostasis alterations may contribute to the 

development of breast cancer. Moreover, androgens have been identified as Ca2+ regulators in 

many cell types (63-72). Altogether, this leads us to investigate the effect of the androgen 
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DHT on the regulation of regucalcin and L-type Ca2+ channel (α1C subunit) expression in MCF-7 

cells.  

For this purpose, MCF-7 cells were exposed to DHT (1nM) for different periods of 

time, either alone or in presence of inhibitors. Real-time PCR analysis demonstrated that DHT 

significantly down-regulated (approximately two-fold) both regucalcin and L-type Ca2+ 

channel (α1C subunit) mRNA expression at 24h of treatment in comparison  with control group; 

at all other experimental times expression levels remained similar to those of the control  

(Figure 20, 21). A down-regulation of regucalcin mRNA expression induced by androgens was 

also demonstrated by our research group in prostate cancer LNCaP cells, treated with 10nM of 

DHT (77), which further supports the effects observed herein. Androgens modulate L-type 

Ca2+ channel expression in several cells, such as coronary smooth muscle cells, myocardium, 

human prostate cancer cells, and Sertoli cells (74, 234-237). However, in all these cells, 

androgens have been shown to increase L-type Ca2+ channel expression (74, 234-237), which 

highlight for the specificity of breast cancer cells in androgenic response. 

It is assumed that androgens and oestrogens freely cross the plasma membrane, enter 

the cytoplasm, and bind to and activate the intracellular receptor. The ligand-bound receptor 

acts as a transcription factor binding as heterodimer to specific DNA response elements in 

target gene promoters, causing activation or repression of transcription and subsequently 

protein synthesis (48-50). DHT is a non-aromatizable androgen, however, it was recently 

shown that its metabolite 3β-diol, is able to bind ER having oestrogenic effects (47). Thus, 

DHT effects may be directly mediated by its binding and consequent activation of AR or 

indirectly by the binding of its metabolite 3β-diol through consequent activation of ER (46).  

In order to explore the mechanisms underlying the androgenic down-regulation of 

regucalcin and L-type Ca2+ channel (α1C subunit) expression, MCF-7 cells were exposed to 1nM 

of DHT during 24h, alone or in presence of androgen receptor antagonist Flut, inhibitor of 

protein synthesis Chx or ER antagonist ICI. Real-time PCR analysis further confirmed the 

down-regulation of regucalcin (Figure 22) and L-type Ca2+ channel (α1C subunit) (Figure 23) 

mRNA expression in MCF-7 cells in response to DHT treatment. This effect was reverted in 

presence of Flut, suggesting that DHT effect is directly mediated through AR. In addition, and 

at least for L-type Ca2+ channel expression, AR mediated effects seem to require de novo 

protein synthesis since Chx reverted the down-regulation effect induced by DHT. But, more 

than reverting the effect of DHT, Flut increased significantly L-type Ca2+ channel (α1C subunit) 

expression relatively to control (Figure 23). Flut was developed to competitively bind to AR 

and interfere with androgen-AR association and action, however, emerging data indicate that 

this anti-androgen may not function as pure AR antagonist. In fact, Flut have been shown to 

display agonist activities at the level of neuroprotection (250, 251). This suggests that the 

increasing L-type Ca2+ channel (α1C subunit) expression obtained in MCF-7 cells may also due 

to the agonist effect of Flut. 

DHT down-regulation of regucalcin and L-type Ca2+ channel (α1C subunit) mRNA 

expression was also reverted by incubation with ICI, an ER inhibitor (Figure 22, 23). This 
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suggests the existence of DHT effects which could likely be indirectly mediated through ER by 

binding of its oestrogenic metabolite, 3 -diol. It is also noteworthy that in addition to revert 

the DHT effect, ICI also increase significantly regucalcin and L-type Ca2+ channel (α1C subunit) 

expression in MCF-7 cells. ICI binds to both ER subtypes with a comparable affinity to 

oestradiol and is considered as an efficacious antagonist of the ER-dependent proliferative 

actions of oestrogen in reproductive organs such as the breast and uterus (252). However, 

several studies have demonstrated that also this antagonist may have agonist effects, namely 

in specific cells of such as the sheep uterus and in hippocampal neurons (253, 254). These 

findings support and may explain the significant increase of regucalcin and L-type Ca2+ 

channel (α1C subunit) expression in MCF-7 cells in response to ICI alone or even in combination 

with DHT.  
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V. Conclusions and Future Perspectives 

 

 

In this thesis we firstly demonstrated the expression L-type Ca2+ channel (α1C subunit) 

in human breast cancer cells MCF-7. We also determined the down-regulatory effect of 

androgens on the expression of Ca2+-binding protein regucalcin and L-type Ca2+ channel (α1C 

subunit) in MCF-7 cells, an effect that seems to be mediated by the AR, but also by likely by 

the ER. With the present work it was highlighted the importance of androgens modulating 

expression of Ca2+ regulator proteins in human breast cancer cells. Also, the molecular 

mechanisms underlying androgenic actions in human breast cancer cells started to be 

deciphered. Moreover, obtained data suggest that androgenic actions controlling breast cell 

death and proliferation may be associated with the control of Ca2+ homeostasis. 

Additional studies should be realised in order to reinforce this conclusion. First, the 

DHT effect on regucalcin and L-type Ca2+ channel (α1C subunit) expression should be studied 

at protein level, to confirm (or not) the data obtained at mRNA level. Second, it will be 

extremely useful to determine whether androgens may also regulate L-type Ca2+ channel 

activity by means of electrophysiological studies. Finally, it should also be of interest to use 

the same experimental approach to analyse the DHT on the expression of Ca2+ regulatory 

proteins. 
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