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Abstract: 

 

This work deals with a general gyrostat moving along a circular orbit in a central Newtonian force field. 

 

The main purpose  is  to determine all equilibria positions  for our  spacecraft  in  the  case when  internal angular 
momentum of the gyrostat satellite is collinear to its principal axis of inertia, when the gyrostatic moment vector 
lies  in  one  of  the  satellite’s  principal  central  plane  of  inertia  and  for  a  general  position where  the  gyrostatic 
moment doesn’t coincide with any of the principal axis of inertia. 
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1-BIBLIOGRAPHIC REVISION 

Over the past century, an understanding of the 
torque-free motion of gyrostats has been developed 
in cases with freely spinning rotors or with rotors 
constrained to spin at constant speed relative to the 
platform. Equilibrium motions of orbiting gyrostats, 
where the gravity gradient torque has been studied 
for circular orbits. The gravitational moment used in 
most studies is obtained by truncating the 
gravitational potential in an inconsistent manner. 
Furthermore, most results are for spacecraft with free 
or constant-speed rotors. During rotational 
maneuvers, the rotors satisfy neither of these 
conditions. Although many have studied problems of 
maneuvering gyrostats, virtually no one has used 
information about equilibria to develop reorientation 
control laws.  

The first and very important problem to be solved in 
developing Active Control Systems (ACS) consists in a 
complete analysis of all possible equilibrium 
orientations and investigation of their stability. 

Several authors have studied in the past years this 
subject, between them Sarychev(1), Mirer(2), 
Degtyarev(3) and Gutnik(4) has studied the several 
cases here presented. 

This work involves a gyrostat satellite orbiting a 
circular orbit with internal momentum wheels (“fly 
wheels”), and has main goal to find all the 
equilibrium positions for an internal moment along 
the principal axis (a), also with the vector of gyrostatic 
moment in the principal plane of inertia (b) and finally 
with a single non-zero vector of gyrostatic moment (c) 
using the equations of special motion.  

For cases (a) and (b), authors (1), (2) and (3) found 
analytically solutions that describe the equilibrium 
positions for our general gyrostat. For case (c) authors 
(1) and (4) gave a general approach, due to the 
complexity of this specific case. 

Up to know, as referred above, there are analytical 
solutions for the first two cases. Otherwise, for the last 
case there is no analytical solution, only numerical 
approaches.  

The foremost important interest in this investigation is 
to confirm and evaluate the results with the ones of 
publications [3] and [5], and try to perform some 
developments in the results of [5] and [6]. This work 
can be tagged as innovative project due to our 
investigations and precision of results in the non-zero 
vector of gyrostatic subject. 

2-EQUATIONS OF MOTION 

Consider the attitude motion of a gyrostat satellite 
with statically and dynamically balanced rotors inside 
the satellite body. The rotors angular velocities relative 

to the satellite body are constant. The gyrostat’s 
center of mass O is in a circular orbit. 
We now introduce two right Cartesian coordinate 
systems with common origin at the point O: orbital 
reference frame 321 XXOX  (the axis 3OX  is directed 
from the orbiting body center of mass to the 
gyrostat’s center of mass, the axis 

1OX  is along the 
velocity vector of the point O), and the gyrostat body 
reference frame 321 xxOx  with axes along the 
gyrostat’s principal central axes of inertia. Using 
angles γβα ,,  (Figure 1) we get the direction cosines 

( ) ( )3,2,1,,cos , == jiaXx jiji  in the form: 
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Figure 1 – Gyrostat Orbital Frame 

According to the picture above, our system is described 
by the following definitions: 
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Where equations (2) and (3) are respectively the Kinetic 
Energy and Force Function. For our problem 

.k c o n s tϕ =& , so it is more convenient to introduce: 

1 2 3
1 1 1

ˆˆ ˆ, , .
n n n

k k k k k k k k k
k k k

h J h J h Jα ϕ β ϕ γ ϕ
= = =

= = =∑ ∑ ∑& & &  (4) 

The projections of inertia in our different directions are 
described by: 
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Where ( )3,2,1=ihi  are the projections of the 
absolute angular velocity of the gyrostat and the 
projections of the vector of gyrostatic moment onto 
the  axis. A, B and C are the gyrostat principal 

moments of inertia, and 0ω  is the angular velocity. 
 

So, the equations of motion of the satellite-gyrostat 
with respect to its center of mass are written in the 
form: 

 

 (6) 

 

 

Now from systems (5) and (6) we can compute the 
generalized integral of energy: 
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As we can see, the energy remains constant during 
the entire path. 

3- Equilibrium Orientations 

Starting from the following system of equations: 
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Considering now our satellite in a circular orbit and 
neglecting the atmospheric rotation, and assuming 
that 0αα = , 

0ββ =  and 
0γγ = , are constants and 

making 
i

i h
h

=
0ω

 having into account systems (6) and 

(7), we get the following set of equations: 
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Developing set of equation (8) we get: 
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We also know that our linear combination is: 
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And knowing also the following conditions of 
orthogonality for the direction cosines: 
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Now, from equation 2 on (8), equation 1 on (11) and 
equation 2 on (12), we have the following system of 
equations: 
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Where 333322311 ahahahF ++= and 2
33

2
32

2
313 CaBaAaI ++=  

The solutions from the system above are solvable only 
when CBA ≠≠ . Let us notice also that the solutions of 
system (14) exist only when 31a , 32a  and 33a  none two of 
them could vanish simultaneously, otherwise we get 
some special cases. Now, substituting equations (13) 
and (14) in the first and third equations of (8) and adding 
the third equation of (11) we finally get these three 
equations: 

(5) 
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To determine the direction cosines 31a , 32a  and 33a , if 
system (15) is solved, then relations (13) and (14) 
allow us to find the other six director cosines. 

 

3.1- Equilibrium Orientations. Special Case 
(h1=h3=0, h2≠0) 

This case )0,0( 231 ≠== hhh means that the attitude of 
the gyrostat is turned around the local tangent 

though a roll angle with value 0γ )0( 1 =h and also 
turned around the local vertical through a yaw angle 
with value

0β )0( 3 =h . This case can be physically 
interpretated as: 

 

Figure 2 – Physical Interpretation of our case 3.1 
 

Taking into account our system (15), and making 

031 ==hh and 02 ≠h , our system is transformed 

into: 
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By the analysis of the 2nd equation from system (16) 
we reach the following conclusions: 

Or ( )( )CBABh −−= 42
2   (17)   or  0333231 =aaa    (18) 

So, let’s suppose that ( )( )CBABh −−= 42
2

 and 

0333231 ≠aaa . 

From our system of equations (16) let’s equalize the 1st 
and 2nd equations to get: 
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When 
4

1≠ν  then our equation (19) determines a 

hyperbola branch lying in the first quadrant. Using the 
first and second relations of (20) and the third equation 
from our system (15), we can obtain the expressions for 
every point ( )yx, of that curve, as shown below.  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

++
=

++
=

++
=

1
1

1

1

2
33

2
32

2
31

yx
a

yx
ya

yx
xa

 

The expressions (21) imply that the considered problem 
has eight one-parameter families of solutions. 

Now let’s consider that ( )( )CBABh −−≠ 42
2 . 

Then the second equation from system (16) takes the 
form of equation (18). Specific examination from 031 =a , 

032 =a  and 033 =a  results in the following groups of 
isolated solutions: 

To simplify our calculations let’s introduce the following 
terms: 
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CASE 1 - 0,0,0 333231 ≠≠= aaa  
 

From the first equation of (16) we have: 

( ) x
CB

ha ±=
−

±=
4

2
33

 

This represents physically: 

 

 

 

 
 

(15)

(16)

(21)

Figure 3 – Physical Interpretation of our case 1 
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And from (13) and (14) and the third equation of (11) 
we get: 
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Note that every group involves four solutions, 
because they correspond to definite choice of signs. 

CASE 2 - 0,0,0 333231 =≠≠ aaa  
 

Again from the first equation of (16) we have: 
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And from (13) and (14) and the third equation of (11) 
we get: 

 

 

 

 

 

Following the same procedure as for cases 1 and 2, 
we get: 

 

CASE 3 - 0,0,0 333231 ≠== aaa : 

 

 

CASE 4 - 0,0,0 333231 ==≠ aaa : 
 

 

CASE 5 - 0,0,0 333231 ==≠ aaa : 
 

         
 

CASE 6 - 0,0,0 333231 ≠== aaa : 
 

         

Note that every group of the above results involves four 
solutions, this is because they correspond to definite 
choice of signs. For example in the case 5 the solutions 
correspond to definite choice of signs that determines 
the following set of solutions: 

  

( ) ( ) ( ) ( ) ( )1,1,1,1,1,1,1,1,1,1,1,1,, 232211 −−−−−−=aaa  
 

Conclusions 
 

Now let’s prove the domains for our mathematical 
model. Let’s take for example our case 5. 
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Doing the same for our case 6 we have: 
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Getting now into our case 1, we have 2
32 1 xa −±= , 

developing it we get that .12 >x  

Doing again the same for our case 2 we have: 
2

32 1 ya −±= , developing it again we get that 

.12 >y  

So we can conclude that nine domains exists in the 
plane ( )yx, , and the fixed number of solutions is 
possible in every of these domains. For example, if 

16
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16
12 <y  all the 24 solutions exists, while for 

12 >x  and 12 >y  only 8 solutions exist. 

If ( )002 === yxh , from case 1 to 6 coincide with the 
well-known equilibria positions of a rigid body in the 
orbital reference frame. 
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Figure 4 – Physical Interpretation of our case 2 
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3.2- Equilibrium Orientations. Special Case 

(h1≠0,h2=0,h3≠0) 

 

 

 

 
 

      Figure 5 – Physical Interpretation of our case 3.2 
 

This case means that the axis of rotor rotation is not 
directed along the gyrostat axis of 2Ox . 

For this specific situation, and after introducing 
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system (15) is now transformed into: 
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With a quick look to our system (22), for investigating 
these equations we need to consider two cases: 

032 ≠a and 032 =a . 

For 032 ≠a , the second equation of (22) takes this 
shape: 
 

( )[ ]( ) 01)1(4 3333113133313331 =+−+++ aHaHaHaHaa νννν  (23) 
 

To fulfill (23) we can easily find that only at 031 =a , 

and then at 033 =a  satisfy our conditions. The 

existence of a solution for which 03331 == aa  
requires an investigation analyzing the original 
equations (9), (11) and (12). 
 

 

 

After making 231 ax = , and solving (9), (11) and (12) 
we get the following set of equilibrium conditions 
which we will refer as Group of Solutions I: 
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Again manipulating equations (9), (11) and (12) we get 
a fourth order equation presented below: 
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We can easily find that the equation (24) can have 
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the surface determined by the following conditions: 
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equilibrium orientations for the case where we have  the 

03331 == aa ,  i.e. the number of solutions for this case, 
can be either 8 or 4,  depending on the relation 
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Solving equation (25) we can find that: 
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Then, going back to system (22), and catching the 
respective first and third equations, and having into 
consideration that 33231 axa = , 031 ≠a , 032 ≠a and 

033 ≠a we get: 
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In order to found the solution that will correspond to 
the equilibrium position of the gyrostat satellite, the 
conditions 0≥Δ , 02

32 ≥a  and 02
33 ≥a  must be 

(22)

(28)
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met. Let’s first analyse the determinant sign. It’s pretty 
clear that 0≥Δ  if ( ) 01 ≥+νν , i.e., either at 

1−≤ν  or at 0≥ν . 

After fullfilling our calculations we can finnaly get our 
equilibrium conditions, refered as Solutions II, that 
does not exceed eight: 

( )

( )

( )
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

+
++

−=

+
++

=

+
+−

=

+
−

=

+
−

=

+
+

=

333311

2
32

2
31

3323

333311

2
33

2
31

3222

333311

2
33

2
32

3121

333311

3231
13

333311

3331
12

333311

3332
11

1
4

1
4

4

4

4

14

aHaH
aa

aa

aHaH
aa

aa

aHaH
aa

aa

aHaH
aa

a

aHaH
aa

a

aHaH
aa

a

ν

νν

ν

ν

ν

 

 

 

For our last case 0,0,0 333231 ≠=≠ aaa , with 

the help of (22), and making 
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ax = , we can find 

the borders for our solutions are described as 
following:  

( ) 02162 2
331

2
3

2
1

23
31

42
1 =++−+++ HxHHHHxxHHxH  

And the equilibria solutions for this last case are 
(Solutions III): 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

+
−±

+
−

+

12
3

331

331

12
331

3

331

4
00

4
01

44
0

a
x

HxH

HxH

a
HxH

x
HxH

 

The geometrical meaning of the found equilibrium 
positions of groups I and III means for group I that the 

axes 3OX  and 2Ox are collinear, the angle 

between axes 2OX  and 1Ox  are determined from 

the relation 
13

11cos
xH

xH
+

±=δ , while position of the 

gyrostatic moment vector in the plane 31 xOx  is 
determined by angle ε  for which 

1

3tan
H
H

=ε . For 

group III the axes 
1OX and 2Ox are collinear, and the  

angle between axes 
3OX  and 1Ox  is determined from 

the relation ( )
4

cos 331 HxH +
= mδ , and the position 

of the gyrostatic moment vector is determined in the 
same way as for group I. Thus, for all solutions of group I 
the angular momentum vector is turned around the 
radius vector (in yaw angle), and for solutions of group III 
it is turned relative to the transversal (in roll). In both 
cases at the equilibrium position the gyroscopic moment 
caused by misalignment of the angular momentum 
vector and the normal to the orbit plane is balanced by 
the gravitational moment acting upon the satellite 
deflected from the orbital trihedral. In both cases, 
gyroscopic torque due to the no-coincidence of 
angular momentum and being normalto the orbital 
plane, the gyrostat is balanced by the gravity-gradient 
torque. For solutions of group III none of the axes of the 
body reference frame coincide with any of the axes of 
the orbital reference frame, position of the gyrostatic 

moment vector in the plane 31xOx , as for two other 

groups, is determined from the relation 
1

3tan
H
H

=ε . The 

illustrated meaning for this explanation is shown bellow. 

 

Figure 6 - Geometric interpretation of the equilibrium of 
groups I and III 

 

The Figure 7 bellow shows the final partitioning of the 
plane ( )13 , HH  by the border of curves (24), (30) 

and 032 =a , 033 =a  into sub-regions, in each of 

which there are a certain number of equilibrium 

positions. Notice that curves 32a  and 33a  are 

symmetrical about the coordinate axes, which 
follows immediately from (26) and (28). 
 

(29) 

(30)
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Figure 7 - The regions of existence of the fixed number of 
equilibrium orientations 

 

3.3- Equilibrium Orientations. Special Case 
(h1≠0,h2≠0,h3≠0) 

Let’s start this part of the problem making: 
3 1 3 2

3 3 3 3

, , , , ( 1, 2 , 3 )i
i

a a hB Ax y H i
a a B C B C

ν −
= = = = =

− −
 

So, after applying the above simplifications, our 
system (15) becomes: 

( )[ ] ( ) ( )

( ) ( )[ ]( )

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

++
=

=++−−++−

++++=+−+

1
1

0114

1116

22
2
33

321321

222
321

222222

yx
a

HyHxHxyHxHyHxy

yxHyHxHyxxy

νννν

νν

 

Now let’s divide our system (31) into two equations, 
according to the ones below:  

2
0 1 2

4 3 2
0 1 2 3 4

0 ,

0

a y a y a

b y b y b y b y b

+ + =

+ + + + =
 

 

 

 

 

 

 

 

 

And applying the following resultant: 

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2 3 4

0 1 2 3 4

0 0 0
0 0 0
0 0 0

( )
0 0 0

0
0

a a a
a a a

a a a
R x

a a a
b b b b b

b b b b b

=
 

The result for the determinant (33) is represented as 
shown below: 

 
 

 

Being impossible to perform analytically calculations 
due to the complexity and size of the resultant equations 
we need to run some numerical simulations. 

We need to find the zeros from equation (34). The zeros 
will correspond to the equilibrium conditions from our 
gyrostat in this general case. 

The number of its real roots in (34) is even and does not 
exceed 12. Substituting the value of a real root of the 
algebraic equation (34) into the first two equations of 
system (31) we can find coinciding root 1y  of these 

equations. For each solution 11 , yx one can determine 

from the last equation of system (31) two values of 33a , 

and then the values of 31a  and 32a  corresponding to 
them. Thus, each real root of the algebraic equation 
corresponds to two sets of values of 31a , 32a , and 33a  
which, by virtue of (13) and (14), uniquely determines the 
remaining direction cosines 11a , 12a , 13a , 21a , 22a , and 

23a . It follows from these considerations that the 
satellite-gyrostat in a circular orbit may have no more 
than 24 orientations in the orbital reference frame. 

 

 

 

 

 

 

 

 

 

(31)

(32)

=0  (33) 

(34)

Figure 8 – Equilibrium Regions for H3=0.25 and ν=0.2
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The above picture reflects for this special case when 

25.03 =H  and 2.0=ν  the equilibrium regions for 

this general case. 

And we can easily see that only for relative small 

values of 1H and 2H  exists a 24-equilibrium region. 

With a more general approach and a more intensive 
then in our particular case above studied, we can 
also conclude that besides only for relative small 

values of 1H and 2H , its necessary that exists also a 
relative small number of ν  for the 24 equilibrium 
regions be present. 
 

 

    4- Sufficient Conditions of Stability of Equilibria  

(S-Conditions) 

In this subject is convenient to use the Liapunov 
integral of energy to find our conditions of stability 
more easily. 

 

 

 

 

 

The Liapunov theorem tells us that there is stability in 
case of Liapunov matrix is positively defined, i.e., the 
entire square triangular from our matrix must be 
positive, and so we need to fulfill the following 
conditions: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>−−−+

>−

>

02

0

0

222

2

αβγγαγβββγαααγβγαβγγββαα

αβαβαα

αα

AAAAAAAAAAAA

AAA

A
 

 

Let’s now perform some small variations in the vicinity 

of ,α  β  e γ , where: 

ααα += 0 , βββ += 0  and γγγ += 0 .  

And expand our direction cosines according the 
Taylor Series below described: 

 

 

 
 

To apply the above Taylor series we need to use the 

equations (1) in the vicinity of ,α  β  e γ . 

 

4.1- S-Conditions for Special Case (h1=h3=0,h2≠0) 
 

Applying (37) on equations (1) and substituting in our 
Integral of Energy, and applying in each one of our 
previous studied cases (Case 1 to 6), we reach the 
following sufficient conditions for each one of our cases: 

Case 1 

0)(16
)(

2
2 >−−
−

AB
CB

h  

0)(16
)(

2
2 >−−
−

CB
CB

h  

0
)(

)(4)(
2

2 >⎥
⎦

⎤
⎢
⎣

⎡

−
−−−

CB
hABCA  

Case 2 

0)(16
)(

2
2 >−−
−

CB
AB

h  

0)(16
)(

2
2 >−−
−

AB
AB

h  

0)(4
)(

)(
2

2 >⎥
⎦

⎤
⎢
⎣

⎡
−−

−
− CB

AB
h

CA  

Case 3 
 

( ) 0>− CA  

0)( 222 >+− ahAB  

0)(4 222 >+− haCB  

γγβγα

βγββα

αγαβαα

γ
β

AAA
AAA
AAA

(35) 

(36)

(37)
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0
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Case 4 
 

0)( >−− CA  

0)(4 222 >+− ahAB  

0)( 222 >+− ahCB  

Case 5 

0
)(

)(
2

2 >
−

−−
CB

hAB  

0)(
)(

2
2 >−−
−

CB
CB

h  

0)(4
)(

)(
2

2 >⎥
⎦

⎤
⎢
⎣

⎡
−−

−
− AB

CB
hCA  

Case 6 

0
)(

)(
2

2 >
−

−−
AB

h
CB  

0)(
)(

2
2 >−−
−

AB
AB

h  

0
)(

)(4)(
2

2 >⎥
⎦

⎤
⎢
⎣

⎡

−
−−−

AB
h

CBCA  

 

Conclusions 
 

Now it is more convenient and simpler to analyze the 
inequalities from our cases 1 to 6 separately, for the 
case when we have gyrostats with different 
correlations between their moments of inertia. 

So there are six specific correlations: 

1) CBA >>  

2) BCA >>  

3) CAB >>      

4) ACB >>  

5) BAC >>  

6) ABC >>  

For example, if CAB >> , then the sufficient 
conditions for stability in our Case 1, Case 4 and Case 5 
are not fulfilled.  

Again, for example our Case 3 is stable if: 

0)( 222 >+− ahAB    

0)(4 222 >+− haCB  

Our Case 2 is stable if ( )( )CBABh −−> 162
2  

   

And case 6 is stable if: 

 ( ) ( )( )CBABhAB −−<<− 2
2

2  

However, it is seen from our Case 2 and Case 6 that 
these solutions exist only if 12 ≤y and 

16
12 ≤y  

respectively. Therefore, the obtained conditions from our 
Case 2 and Case 6 also will not be fulfilled. So, only the 
sufficient conditions for stability from our Case 3 and 
Case 4 for can be fulfilled in this case. 

 

4.2- S-Conditions for Special Case (h1≠0,h2=0,h3≠0) 
 

Applying (37) on equations (1) and substituting in our 
Integral of Energy, and applying in each one of our 
previous studied cases (Case 1 to 6) we reach the 
following sufficient conditions for each one of our cases: 

Case 1 
 

( ) ( ) 02
1 >−+− BCxCA  

( )( ) ( ) 012 13
31

1
2
12

1 >+
+−

+−− xh
hxAC

xhxAC  

( ) ( )[ ]( )( )[ ] ( )
( )[ ]

0
3

3 2
31

2
1

2
1

2

13
2
1

2
1 >

+−

−
−++−−+−

hxAC
xhBC

xhxBCBCxCA  

Case 2 
 

Investigation of the stability of the steady-state solutions 
on this case 2 turns out to be a much more difficult 
problem. In this case, one should use relations (26), (27) 

and (28) in order to determine 33,3231 , aaa  and after 

that the rest of the elements from the direction cosines 
matrix.  
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After that, we can use mathematic software in order 
to find the steady-state direction cosines resulting 
from the Liapunov theorem. In this particular case, 
those solutions are huge. The analysis for this case 
should be done numerically due to the size of the 
direction cosines. 

Case 3 
 

( ) ( ) 0
1 2

3

2
3 >−+

+
−

CB
x

xAC  

( )( )
( )( ) 0

1 331
2
3

3
313 >

++
−−

hxhx
xhhAC  

( ) ( ) ( )( ) ( )( )( )
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( )( )
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1

48
1

4
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3
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2
3
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3
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−
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−

−
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−
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x
xxCBCA

hxh
xhCBCA
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Conclusions 
 

In this particular case, three groups of steady-state 
solutions are determined each of which describes up 
to eight equilibrium orientations of the gyrostat. 

Group I Group II Group III 

Root  

eq. 24 
Sign 
a32 

Root  

eq. 25 
Sign 
a32 

Sign 
a33 

Root  

eq. 30 
Sign 
a32 

1 

- 

1 

- - 
1 

- 

+ - + + 

2 

- + - 
2 

- 

+ + + + 

3 

- 

2 

- - 
3 

- 

+ - + + 

4 

- + - 
4 

- 

+ + + + 

 

To determine exactly these regions we need to solve 
the equations from our Case 1 to 3 analytically and 
numerically to be more precise in the limits of those 
regions. 

5 – Main Conclusions 
 

For the case when internal angular momentum of a 
gyrostat is collinear to one of its principal axes of inertia, 
the present work found all equilibria positions of a 
gyrostat in a circular orbit. The sufficient conditions for 
stability of these equilibria positions were also derived. 
The proposed method can be successfully applied to 
solve another problems (equilibria of a satellite under 
the action of gravitational and aerodynamic torques or 
equilibria of a system satellite–pendulum). 

All the obtained results coincide with the results found in 
[3]. 

In this part of the work, the motion of a gyrostat satellite 
relative to its center of mass has been investigated, the 
satellite being in a circular orbit under the action of a 
gravitational moment. In the particular case when 

0,0,0 321 ≠=≠ hhh , three groups of steady-state 

solutions are determined each of which describes up to 
eight equilibrium orientations of the gyrostat.  

Expressions for direction cosines are presented in the 

explicit form as functions of parameters 1H , 3H  and ν  

for all equilibriums positions. The conditions of existence 
are obtained for these equilibrium positions as functions 
of dimensionless parameters of the problem. 

It seems for the general case of our problem, a gyrostat 
where 0,0,0 321 ≠≠≠ hhh , we get a 12th order 

equation that describes all the equilibrium positions. 
Solving this equation precisely takes a lot of resources 
because requires a great precision.  

For the case performed in this paper ( 25.03 =H  and 

2.0=ν ), we can easily see that only for relative small 

values of 1H and 2H  exists a 24-equilibrium region. 

With a more general approach we can also conclude 

that besides only for relative small values of 1H and 2H , 

its necessary that exists also a relative small number of ν  
for the 24 equilibrium regions be present. 

6 – Future Work 
 

Future work that might be done in this field can pass to 
increase the precision on our numerical simulations, with 
this we can plot more precise regions of stability for our 
system, as well to plot other regions then the ones from 
Figure 8, in order to get a more general visualization how  
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the equilibrium regions change with different values 
of 

3H  and ν . 

Also for the future, is important to consider a situation 
in an elliptic orbit and also add damping to our 
gyrostat system. 
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