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Abstract 

 

Many engineering projects have shown a great concern with the dynamic response of 

generalized mechanical systems where a set of rigorous demands are placed on the design of 

structures in sectors such as the aerospace or the automobile industries. Aerospace materials, 

for example, in most cases have been developed for a specific purpose, like some particular 

metal alloys and composites. It is their operation requirements that influence the 

optimization of certain intrinsic mechanical or physical properties.  

The dynamic behaviour of a structure can be refined by anticipating any performance-related 

problem during the design process, where vibration and others parameters can be measured 

and optimized for the desired applications. It is often desirable to be able to predict 

accurately the dynamic response of a structure under certain excitation conditions. Given 

that, it is necessary to understand how its mass, stiffness or damping properties could be 

modified to obtain a desired response and vibration control, taking into account structural 

margin of safety and life-time limits under service. Thus, the damping of such structures, 

which is associated to the energy dissipation capacity, is a key aspect regarding the fatigue 

endurance and noise/vibration control as it controls the amplitude of resonant vibration 

response. 

Envisaging to create a cheaper, direct and maintenance-free alternative to active damping 

systems, passive methods are a straightforward solution for certain industrial demands. In 

fact, active damping systems typically imply more structure weight, considerable energy 

consumption, reliability issues and limited strain/force response, which are undesired 

features in general technological applications, especially in the aerospace sector. To achieve 

high damping properties discarding the use of an active system, the use of some isolation 

techniques, the inclusion of high damping materials or even the need for physical structural 

modifications are often necessary in the standpoint of a new component’s development for 

passive control applications. As an example, in most recent investigations, co-

curing/embedded viscoelastic damping constituents in composites has been a successful way 

to increase the damping capacity. 

In the context of the present work, a passive damping treatment method based on cork 

utilization as viscoelastic material has been used to improve the damping properties of fiber-

reinforced composites. A numerical and experimental study was made to predict and 

understand the benefits of such method and characterize any inherent effects on modal loss 

factor and respective structural natural frequencies regarding the use of cork. The excellent 

energy absorption properties of cork under static and dynamic loading conditions, its 

lightness, near-impermeability and lower thermal conductivity, are the base of a recent and 
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crescent interest in aeronautical, railroad and automobile applications for cork based 

materials. These intrinsic characteristics are also the main reasons for considering it as 

viscoelastic layer applicable in passive damping treatments with a great potential for 

vibration control in future aerospace applications.  

As far as the numerical study concerns, a finite element model (FEM) was developed to 

analyze the main dynamic properties of the composite structure samples, for example, the 

modal frequencies and respective loss factors, and compare it with the experimental results, 

allowing to assess the accuracy of numerical data. Distinct design variables were considered 

to determine their influence in the loss factor variation, namely: damping layer thickness and 

its relative position within the laminate, number of viscoelastic layers and effect of different 

layup stacking sequences.  

Results are encouraging about the possible use of cork based composites as a viable passive 

solution to improve the damping properties of high performance composites, giving rise to an 

increase of the loss factor as well as a change of the natural frequencies of the structure 

according to the design requirements for particular applications. 
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Resumo 

 

A resposta dinâmica de sistemas mecânicos revelou ser de grande preocupação em vários 

projectos de engenharia onde existe um conjunto rigoroso de exigências ligadas ao projecto 

de estruturas, tal como acontece em particular na indústria aeroespacial e automóvel. 

Materiais aeroespaciais, por exemplo, foram em muitos dos casos desenvolvidos tendo em 

conta propósitos específicos, tais como algumas ligas metálicas e alguns compósitos. São os 

requisitos de operação que influenciaram a optimização de certas propriedades mecânicas ou 

físicas desses materiais. 

O comportamento dinâmico de uma estrutura pode ser refinado durante o processo de 

projecto antecipando qualquer problema relacionado com o respectivo desempenho, onde 

vibrações e outros parâmetros podem ser medidos e posteriormente optimizados tendo em 

conta as aplicações desejadas. É preferível ter capacidade para prever com precisão a 

resposta dinâmica de uma estrutura exposta a determinadas condições de vibração. Posto 

isto, é necessário entender como é que a respectiva massa, rigidez ou as propriedades de 

amortecimento podem ser modificadas de forma a obter um controlo desejado de 

comportamento e vibração, tendo em conta as margens de segurança e limites de vida útil 

estruturais durante a sua operação. Assim, o amortecimento de tais estruturas, que está 

associado com a capacidade de dissipação de energia, é um aspecto chave relativamente à 

resistência à fadiga e no controlo de ruido/vibração traduzindo-se na forma como é 

controlada a amplitude de resposta em vibrações de ressonância. 

Pretendendo criar uma alternativa ao controlo de vibrações activo mais barata e com pouca 

necessidade de manutenção, os métodos passivos apresentam-se como uma solução directa a 

algumas necessidades da indústria. De facto, a aplicação de sistemas activos tipicamente 

implica mais peso estrutural, um considerável consumo de energia, problemas de reabilitação 

e uma resposta deformação/tensão limitada, as quais são características indesejadas para as 

aplicações tecnológicas gerais, especialmente para o sector aeroespacial. Para conseguir 

melhores propriedades de amortecimento descartando o uso de um sistema activo, o uso de 

algumas técnicas de isolamento, a inclusão de materiais de alto amortecimento e até a 

necessidade de modificações físicas e estruturais são frequentemente necessárias no ponto de 

vista de o desenvolvimento de um novo componente para aplicações de controlo passivo. 

Como exemplo, investigações recentes apresentam certos compósitos pós-curados com 

camadas viscoelásticas embebidas como uma forma bem sucedida de aumentar as 

capacidades de amortecimento. 

No contexto do trabalho presente, um método de tratamento de amortecimento passivo 

baseado na utilização da cortiça como um material viscoelástico foi utilizado para melhorar 
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as propriedades de amortecimento de compósitos com fibras de reforço. Foi então elaborado 

um estudo numérico e experimental para prever e entender os benefícios de tal método 

caracterizando qualquer efeito inerente no factor de perda e nas respectivas frequências 

naturais estruturais. As excelentes propriedades de absorção de energia por parte da cortiça 

sobre condições de carregamentos estáticos e dinâmicos, a sua baixa densidade volumétrica, 

quase impermeabilidade e baixa condutividade térmica, são a base de um recente e 

crescente interesse da sua aplicação precisamente no sector aeronáutico, ferroviário e 

automóvel.  

Em relação ao estudo numérico, um modelo de elementos fintos (MEF) foi desenvolvido em 

software         para analisar as principais propriedades dinâmicas de provetes feitos em 

compósito, como por exemplo as frequências modais e respectivo factor de perda, 

comparando-as posteriormente com os resultados experimentais permitindo então classificar 

a precisão dos dados numéricos. Distintas variáveis de projecto foram consideradas para 

determinar a sua influência na variação do factor de perda, nomeadamente: a espessura da 

camada viscoelástica e a sua posição relativa no laminado, o número de camadas 

viscoelásticas e o efeito das diferentes sequências de empilhamento.  

Os resultados são optimistas em relação à possibilidade do uso da cortiça em compósitos 

como um método passivo viável tendo em conta o aumento do factor de perda bem como na 

modificação das frequências naturais da estrutura de acordo com os requisitos de projecto de 

cada aplicação. 
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Chapter 1 

 

Introduction 

 

1.1 Motivations for studying damping in composites and 
viscoelastic materials 
 

The worldwide aeronautical industry, as many other industrial sectors, is experiencing a 

restructuring process in order to achieve the efficiency and productivity levels required to 

meet the challenges of the market demands in the first quarter of the twenty-first century. In 

the late 60's, carbon fiber became a serious material for lightweight applications. The 

specific strength and rigidity modulus of high strength fiber composites are higher than 

other comparable metallic alloys.  For the aeronautic industry it means greater weight 

savings resulting in improved aircraft’s performance, greater payloads, longer range and 

fuel savings. The first large scale usage of composites in commercial aircraft occurred in 

1985, when the Airbus A320 introduced composite horizontal and vertical stabilizers. 

Airbus has also applied composites in up to 15% of the overall airframe weight 

for their A320, A330 and A340 family  [1, 2]. More recently, the new Boeing 787 

is a revolutionary commercial airliner made mostly of carbon composites or super durable 

plastic representing over than 50 % of the empty weight. However, the use of composites 

has been more prominent in the military sector, spreading surprisingly to general aviation 

aircraft in the following decades.  

 

Figure 1 – Volume of structural composites application in military and civil aerospace 

production over the last decades. 
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The increased use of composites in aerospace, automobile and railroad sectors revealed a 

new state of problems regarding their application compatibility with others materials, 

particularly for vibro-acoustic control. For general aircraft or some spacecraft, vibrations may 

have several causes: extension and retraction of landing gear systems, deployment of 

aerodynamic brakes, engine normal operation and normal airflow over the surfaces. Most of 

these effects are mainly predominant during the take-off and landing phases.  

Notwithstanding their inevitability, these vibrations must be minimized by appropriate design 

features through active and/or passive damping treatments in order to improve aircraft 

performance and reliability levels of structures and systems. 

Passive damping treatments in composites as a result of the application of embedded 

viscoelastic materials (which possess an intrinsic capacity of dissipating mechanical energy) 

revels to have greater advantages in terms of energy efficiency and reliability of 

machines/structures compared to active systems. Presently, there are a considerable number 

of research works concerning noise and vibration control related to aircraft. For example, by 

improving interior sound quality, aircraft engineers can increase the passengers comfort. 

Additionally, other problems regarding air traffic increase in urban areas can be minimized by 

reducing the engines’ exterior noise. For such concerns, materials with damping capabilities 

used for structural applications, such as the ones with viscoelastic properties, may present a 

dynamic behaviour that needs a profound knowledge aiming at a better understanding of the 

their performance under different loading conditions.  

In the particular case of passive damping applications in composites via the inclusion of 

viscoelastic material, studies have been made regarding their use as noise control treatment 

to reduce noise transmission through automobiles, trains and aircraft fuselage skin panels. 

 This type of damping is also used to decrease the vibro-acoustic response of avionics 

equipment in typical satellite systems and to maximize the damping capacity of composites 

used in deployable space structures, such as solar sails, inflatable antennas, inflatable solar 

arrays, etc. [3, 4].  

In the case of this work, a cork agglomerate layer was considered for damping purposes. The 

reason for considering cork as the viscoelastic material comes from the excellent energy 

absorption properties of this natural material, which were confirmed in previous works 

regarding the characterization of cork based composites under static and dynamic loading 

conditions [5-7]. For engineering purposes, an analysis or design involving cork agglomerates 

with CFRP must incorporate their viscoelastic behaviour, temperature and frequency 

dependence as well as the dynamic response, which in general is based on experimental and 

numerical measurements.  
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1.2 Objectives 

 

The present thesis characterizes the application of a constrained viscoelastic layer in CFRP 

specimens as a passive damping treatment. Such damping solution may be applied into 

structures or mechanical systems that are subjected to loads or cycle excitations which may 

endanger its strength or cause displacements beyond the design point. The damping of such 

structures is also important in aspects regarding fatigue endurance, noise and vibration 

control. 

In order to predict the best solution for operational purposes, various laminates with different 

stacking sequences, number of carbon-fiber layers and viscoelastic layer thickness were 

characterized via FEM analysis (Finite element method) corroborated with experimental 

results. As referred before, the viscoelastic material was composed by a cork agglomerate, 

being necessary to model such material in         6.10-1 software for a numerical analysis. 

The FEM analysis was developed in the same software to obtain the main dynamic properties 

of the structure, such as the natural frequencies and loss factor, as this latter parameter is 

commonly used as an effective damping evaluator. Experimental testing provided loss factor 

results for comparison purposes with the numerical data. Results provide useful information 

about the possible use of cork based composites as a viable passive solution to improve the 

damping properties of high performance composites, allowing the loss factor evaluation for 

different laminate’s configuration types.  

 

 

1.3 Thesis structure 

This thesis is structured in five chapters. The present one is an introduction to the core 

theme of this work and respective objectives are presented. 

The second chapter summarizes all the essential thesis bibliographic review based on the 

state-of-the-art performed in the research phase of the work. The main subjects addressed 

are composite vibration control methods, general theory of structural vibration, composite 

sandwich structures, structural damping models, viscoelastic models and some information 

about the half-power bandwidth method used to estimate the experimental loss factor 

results. 

The numerical model developed in this work is described in the third chapter. There is a 

description of some fundamental concepts regarding the development of the numerical model 

based on the finite element method (FEM). The main configurations and geometric dimensions 

of the plate samples are also described in this chapter, as well as the numerical model mesh 



 

 4 

convergence study and the necessary model validation through the comparison between 

numerical end experimental results.  

The fourth chapter presents all numerical results obtained in the course of this work followed 

by a final parametric optimization of the loss factor based in the design parameters effects 

on damping. The natural frequencies regarding the first bending modes of each beam were 

also determined through a modal analysis. Moreover, FEM analysis provides important 

information about the natural mode shapes and frequencies of the different CFRP laminates. 

Therefore, the requested numerical output is always analysed in a comparative basis on the 

dynamic behaviour between specimens with or without viscoelastic layer.  

Finally, chapter 5 summarizes the major conclusions and suggests possible paths for further 

developments in the context of this research line. 
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Chapter 2 

 

Bibliographical review   

 

 

2.1 Vibration control in composites 

Vibrations can be defined as mechanical oscillations of a system which is displaced from its 

position of equilibrium. Every object has a different response to excitations depending on 

material properties, geometry, and boundary conditions. For any material, it is convenient to 

describe the vibrational response by considering three main parameters: amplitude, vibration 

mode shape and frequency.  

Active and passive damping methods provide fundamental capability to control displacements 

in dynamic load conditions and to prevent undesired vibrations. Nowadays, transport 

industries (such as aeronautics, railroad and automobile) use many forms of these two 

methods for vibration and noise suppression purposes, staring the future in a continuous 

searching for new solutions regarding important design parameters, like structural weight, 

material and damping systems costs and others aspects dependent on the type of application. 

The use of composites increased during the last decade due to some important properties, 

namely their high strength-to-weight ratios (as a result of the superior strength and stiffness 

of the reinforcing fibers), great corrosion resistance, improved fatigue life and greater design 

flexibility for optimum mechanical performance. However, the high stiffness of such 

materials entails a low damping loss factor, which is a measure of energy dissipation capacity. 

To achieve high damping properties without the use of an active system (which typically 

implies more structural weight, considerable energy consumption and limited strain/force 

response) it is necessary to adopt passive approaches, e.g., physical structural modifications, 

isolation techniques or the use of high damping materials.  

From recent investigations, co-curing/embedded viscoelastic damping materials in composites 

has been a successful way to increase the damping capacity of composites, compromising 

however the stiffness and strength of the structure (generally affected with little reductions) 

[8]. The principle is similar to the conventional constrained layer treatment, where the most 

part of the damping effect comes from the shear loading induced between the damping layer 

and the constraining layers. Early studies have concluded that the lay-up sequence and the 

mode of vibration affect the system loss factor, which have significant dependence when 

combined with others parameters [9-11]. It is the layer deformation in shear mode that leads 

to energy dissipation in a more efficient way. In addition, sandwich beams with a viscoelastic 

core are very effective in reducing and controlling vibration response of lightweight and 
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flexible structures, because in these cases the viscoelastic material is strongly deformed in 

shear due to the adjacent stiff layers [2]. In flexural vibrations, for a general case of 

constrained viscoelastic core layer, the dissipation of energy happens due to shear strain in 

the core, reducing the overall structure vibration. In the unconstrained layers, like the 

adjacent layers bonded to the core, the dissipation of energy is by means of extension and 

compression of viscoelastic layer [3, 13].  

Attempting to model such behaviour, the utilization of advanced optimization procedures 

based in the development of computational models reveals to be an efficient procedure to 

determine structural damping parameters, such as loss factor or damping ratio. For 

composites with a constrained viscoelastic layer applied through a co-curing process, the 

anisotropy of fiber-reinforced constrained layers promotes the damping mechanisms due to 

the higher capacity of energy dissipation of composites when compared with metallic layers, 

which are an example of conventional isotropic materials [5, 12]. In general, composite 

materials, especially carbon fiber reinforced polymers (CFRP), have not a high damping 

capacity and need some improvements using vibration control methods to optimize the 

damping properties without neglecting the overall component/system weight. The damping of 

composites depends on the contribution of several micromechanical, laminate and structural 

parameters, fiber and matrix ratios, ply angles, ply thicknesses, stacking sequence, curing 

process, temperature and existing damage or structural defects. Moreover, composite 

damping is anisotropic, where the maximum energy dissipation is verified in the transverse 

direction and in shear motion whereas the minimum occurs in the direction of the fibers [13]. 

Aiming at obtaining significant structural advantages of damping in composite materials, it is 

very important to use adequate analysis tools, where the variables are the parameters of the 

laminate for damping optimization purposes. Passive damping has been demonstrated as an 

essential dynamic and viable method for composite vibration suppression as well as in noise 

control, fatigue endurance and impact resistance [14, 15], which motivated the adoption of 

this strategy in the present work. 

 

2.1.1 Active control vs passive control 

Active control  

Active control is applied, in general, with attached mechanisms and devices, needing an 

external energy supply enabling the integration of some system sensors to control the 

structure’s damping response. In some cases, an external real-time data acquisition is 

required for providing a more efficient and accurate active response of the attached 

mechanism, presenting itself as a solution that entails more costs and maintenance work. 

Furthermore, all this equipment means additional mechanical organs and with it, more weight 
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and complexity to the system. Although it is the best and only damping solution for some 

specific cases, many sectors are searching for alternatives capable to maintain the same 

safety factors and load requirements. Therefore, there are plenty of situations where passive 

control is the most effective and efficient way to reduce weight, costs, maintenance works 

and, furthermore, less probably of system’s failure. However, passive damping is not capable 

of instant feedback capability in response to a specific stimulus, which implies an automatic 

adjustment to the required level. Thereby, active control systems remains the best solution 

to measure specific external inputs and provides an instant feedback response, allowing a 

continuous desired level of damping, as exemplified in Figure 2.  

 

Figure 2 – Example flowchart of an active damping system. 

 

Passive control 

It is clear that there are added costs and complexity with active systems compared to passive 

control solutions. Passive control refers to energy dissipation based on the use of passive 

technologies (such as structural joints, supports and isolators) or by integrating a damping 

material (such a viscoelastic layer) in a host structure, providing internal damping. Passive 

damping treatments are less expensive to produce than other methods, but their successful 

application requires a complete understanding of the vibration problem and the properties of 

the damping candidate materials. Viscous dampers, dynamic absorbers, shunted 

piezoceramics dampers, and magnetic dampers are other mechanisms of passive vibration 

control. This type of control is used to eliminate unwanted dynamics in the structure and to 

achieve a reduction of system disturbance excitation with specific and precise control of 

some parameters, increasing the overall structural stability. Table 1 presents a short 

compilation of some damping category materials performance and their pros and cons in 

passive or active control.  
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Table 1 –Active vs passive damping: advantages and disadvantages. 

Damping material Advantages Disadvantages 

 

 

Passive 

damping 

 

Viscoelastic 

 High Damping 

 Low weight penalty 

 No external energy needed 

 Low costs in production or 

operation 

 Unsuitable for very low and 

high temperatures and at low 

frequencies 

 No controllability 

Hard damping 

alloys 

 High temperature, high 

frequency operating range 

 No external effort needed 

 Relatively low damping 

 High weight penalty 

 High strain dependency 

 No controllability 

 

 

Active 

damping 

Piezoelectric, 

magnetostrictive 

alloys or 

composites 

 Controlled blocking force 

generation 

 High or Moderate temperature, 

high frequency operating range 

 Low inherent damping in 

most operating ranges 

 External energy supply 

 Instability issues in control 

Shape Memory 

alloys 
 Large strain applications 

 Lower controllability 

 Low frequency bandwidth 

 Needs either stress or 

temperature induced phase 

transformation 

 

 

 

2.2 Introduction to viscoelastic materials  

2.2.1 Basic concepts  

As referred before, a viscoelastic material is an efficient solution for passive damping 

treatments. Such materials exhibit both viscous and elastic behaviour, and their properties 

are influenced by different parameters, namely load, time, temperature and frequency. This 

type of materials dissipate vibrational energy in the form of heat that is generated when the 

material is stressed by deformation, mostly in shear motion. In general, these materials have 

low shear modulus values but high loss factors, being the damping characterized by the 

complex modulus translated into a complex stiffness matrix.  

Based in this concept, the application of these materials as a straightforward solution for 

vibration suppression is presented with a myriad of possible configurations and modifications 

that can be explored in order to develop new damping solutions for diverse industrial 

applications. Table 2 illustrates some of the most used viscoelastic materials in engineering 
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applications, which can be divided in polymers, rubbers, pressure sensitive adhesives, 

urethanes, epoxies and enamels.  

 

Table 2 – Most common viscoelastic materials used for damping purposes. [16] 

 

 

2.2.2 Viscoelastic materials behaviour 

Viscoelastic materials have the particularity of possessing both viscous and elastic behaviour. 

Hooke’s law applies to elastic materials, where the stress is proportional to the strain and the 

Young’s modulus is defined as the stress to strain ratio. Figure 3 shows the distinct behaviour 

of viscoelastic and elastic stress-strain curves in time domain, where   is the applied stress,   

the respective strain and ω the loading frequency (which is out-of-phase with strain by some 

angle   . In fact,   could be a measure of the materials damping capability. Considering an 

elastic material, the curves illustrate that all the energy stored during loading is returned 

when the load is removed, resulting in an in-phase stress-strain behaviour. Viscoelastic 

materials, on the other hand, exhibit a time dependent relationship between stress and 

strain, which means that the slope of the stress-strain plot depends on strain rate. For a 

viscoelastic material, the modulus is represented by a complex quantity with real and 

imaginary parts. For small stress excitation the viscoelastic materials reaction can be 

described by a linear viscoelastic behaviour, and due to the correspondence principle, the 

Young’s modulus and shear modulus can be treated as complex quantities, where the real 

part is known by Storage modulus and the imaginary part by Loss modulus, this latter defining 

the energy dissipative ability of the material [4].  
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Figure 3 – Elastic versus Viscoelastic material strain behaviour in time domain during cyclic 

stress loading: a) For an elastic material; b) For a viscoelastic material. 

 

More precisely, the viscoelastic time dependency contrasts with common elastic materials, 

whose behaviour is not time dependent. The stiffness and strength of materials is frequently 

illustrated by a stress–strain curve as exemplify in Figure 4 for both viscoelastic and elastic-

plastic materials. When the material is linearly elastic, its behaviour is typically a straight 

line with a slope proportional to the Young’s modulus. For a sufficiently large stress, the 

elastic material exhibits a threshold stress, the yield stress    . However, in the viscoelastic 

curve both time and strain increase together. Thus, viscoelastic materials strain-stress 

analysis reveal the typical behaviour shown with more detail in Figure 5. For such type of 

materials, energy is stored during the loading cycle, whereas during the unloading phase the 

energy recovery follows the pattern shown in Figure 5, where the shaded region is a measure 

of the energy lost due to heat transfer mechanisms during deformation. Moreover, it is well 

known that the area beneath a stress-strain curve is the energy per unit volume. Therefore, 

when the load is removed, viscoelastic materials exhibit a time delay in returning the 

material to its original shape, which comes from the energy loss mechanisms.  
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Figure 4 - Stress–strain plots comparison for viscoelastic and elastic-plastic materials under 

constant strain rate [20]. 

 

When this type of material is submitted to a load condition, part of the deformation induced 

by shear stressing has an elastic nature and will return to zero when the force is removed. 

The other part of deformation will not return to zero when the force is removed because the 

elastic displacement remains constant, whereas the sliding displacement continues, with 

tendency to increase. This is the description for viscoelastic capacity to both store and 

dissipate mechanical energy [17, 18]. Furthermore, the viscoelastic response depends on all 

past states of stress and strain, which confers a “memory” capacity according to all previous 

stress conditions applied to the material [19].  

 

 

Figure 5 – Typical stress-strain behaviour in viscoelastic materials. 

 

Commonly, a creep recovery test is used to characterize such memory capacity from the 

dynamic response. Figure 6 illustrates a typical viscoelastic curve response resulting from a 

creep-recovery test. The dynamic response is said to exhibit both an instantaneous elasticity 

effect and creep characteristics; therefore, as it can be seen, this behaviour is not fully 

described by either considering the elasticity or viscosity theory sole effect, but from the 

combination of features from each of these theories. 
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Figure 6 - Typical viscoelastic curve response resulting from a creep-recovery test [20]. 

 

Analytically, the relationship between shear stress, elastic stress and viscous stress can be 

described in terms of a complex number “ i ” (i=   ) . Thereby, the real part of a complex 

modulus represents the elastic portion and the imaginary part represents the viscous portion 

of the material response. The elasticity and viscosity components of viscoelastic materials are 

often described by a relation using Young’s modulus E and Poisson’s ratio   of the material. 

These relations count both longitudinal and transverse response so that E and   could be 

calculated as described in equations (2.1) and (2.2) [20, 21]: 

 
   

   

    
 

(2.1) 

 
   

     

     
 

(2.2) 

 

Where G is the shear modulus and K is the bulk modulus. However, for a complete 

characterization of the viscoelastic behaviour it is more convenient to use the complex shear 

modulus    and complex bulk modulus    rather than E and  , which in turn can be obtained 

by using relations valid for homogeneous, isotropic and linear solid viscoelastic materials. 

Thus, a complete description of the viscoelastic behaviour can be obtained from equations 

(2.3) and (2.4). Similarly, Poisson's ratio and Young’s modulus are complex parameters given 

by equations (2.5) and (2.6). Thus, in the following equations    is the storage shear modulus, 

    is the loss shear modulus,    is the storage bulk modulus,     is the loss bulk modulus,    

is the instantaneous shear modulus,    is the instantaneous bulk modulus,    is the Poisson’s 
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dynamic ration,     is the Poisson’s loss ratio,    is the storage Young’s modulus and     is the 

loss Young’s modulus. 

                     (2.3) 

                     (2.4) 

                      (2.5) 

                     (2.6) 

 

Energy storage and dissipation cannot be negative, so both real and imaginary parts of a 

complex modulus have to be non-negative. Regarding the Poisson’s ratio in viscoelastic 

materials, many studies account for the difference between Poisson’s ratios in creep and in 

relaxation and its time dependence, concluding that the difference is minor unless there is a 

large relaxation strength. In this case, Poisson’s ratio is assumed constant in time for low-

density materials, especially honeycombs and foams [23]. This will be the assumption for the 

definition of the cork properties in the numerical model described in this work. Furthermore, 

given    and    , it is possible to determine both the complex shear modulus(  ) and complex 

bulk modulus (   ) by using the following expressions [22, 24] :  

 
   

  

       
 

(2.7) 

 
    

  

        
 

(2.8) 

 

The most widespread theory used to model polymers (including FRPs) is based in theory of 

linear viscoelasticity which describes that, at any given time and for small strain, there is a 

linear relationship between stress and strain. Any linear viscoelastic material behaviour may 

be represented by a hereditary approach based on the Boltzmann superposition principle, 

which will be analysed ahead in this work.  

 

Temperature effects on viscoelastic behaviour 

Polymeric materials widely used as damping treatments are more sensitive to temperature 

than general metals, plastics or composite materials. Viscoelastic properties, such as the 

complex modulus, present three main temperature regions of interest, namely the glassy 
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region, transition region, and rubbery region [16, 25, 26]. Low temperatures are represented 

by the glassy region where the storage modulus is generally much higher than that for the 

transition or rubbery regions. This region can be defined by different temperature values for 

different materials depending on the viscoelastic composition. Figure 7 illustrates the 

behaviour of the complex shear modulus and loss factor in the different temperature regions.  

For the glassy region, loss factor is characterized by small values due to the high storage 

modulus dimension. Thus, in this region, the viscoelastic material presents high stiffness 

being unable to deform at the same magnitude (per unit load) as it would operate in the 

transition or rubbery regions (where the material is softer). Hence, for high operation 

temperatures, viscoelastic materials present low storage moduli and, consequently, low 

stiffness. That low value is typical of the rubbery region where the loss factor is equally 

smaller due to the increasing structural breakdown of material as the temperature is 

increased being the viscoelastic material easily deformable. Devices as isolators or tuned 

mass dampers are the most appropriate to be used in this region of temperature because the 

shear modulus is nearly constant. 

 

 

Figure 7 - Temperature effects on complex modulus and loss factor. 

 

In the context of the present work, the most important region relies between the glassy and 

rubbery regions, known as transition region. Due to the fact that the maximum loss factor 

value is reached in this region, applications with viscoelastic materials for damping purposes 

generally should be used within the transition temperature range. Here, frictional molecular 

effects result in the increase of the mechanical damping characteristic of viscoelastic 

materials. Therefore, knowing the operating temperature range during the design phase of a 

host structure to which a viscoelastic damping treatment will be applied will be determinant 

to optimizing the damping effectiveness of the whole system.  
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 Frequency effects on viscoelastic behaviour 

As for the temperature effect described in the last section, frequency variation also has a 

significant effect in the complex modulus properties of a viscoelastic material. As Figure 8 

shows, frequency has an inverse relationship to complex shear modulus when compared with 

temperature, since the storage modulus and the loss factor are small at low frequencies. This 

is due to the low cyclic strain rates within the viscoelastic layer. As the frequency increases, 

the material converges to the transition region where the loss factor reaches a maximum 

value. With a further frequency increase, the storage modulus raises but loss factor 

decreases. As it happens with the temperature dependence, the transition region is the 

typical operating frequency range for loss factor maximization [27-29].  

 

Figure 8 - Frequency effects on complex modulus and loss factor  

 

 

2.2.3 Linear viscoelasticity response: Mathematical models 

Viscoelastic behaviour can be represented using mathematical models based on spring and 

dashpot elements corresponding to the elastic and viscous responses, respectively (as 

illustrated in Figure 9). Aiming at simplifying the analysis of this type of material, linear 

theory models are the most successful widespread methods, supporting extrapolation or 

interpolation of experimental data, reducing complex approximations and time-consuming 
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calculations. The description of a viscoelastic model can be resumed by considering the 

elastic and viscous terms formulated in equations (2.9) and (2.10), respectively: 

       (2.9) 

        (2.10) 

 

 

Figure 9 - Mathematical models for viscoelastic response 

 

 
The elastic term is modelled as springs and the other term, the viscous component, as 

dashpots. E represents the Young’s modulus,   is the viscosity of the material,   the 

correspondent strain and    is the strain rate. Instantaneous inherent deformations of the 

material are modelled like a spring response with a magnitude related to the fraction of 

mechanical energy stored reversibly as strain energy. The entropic uncoiling process is fluid 

like some cases in Nature, and can be modelled by a Newtonian dashpot. The main models 

used to describe the viscoelasticity in materials are listed below. 

 

The Maxwell model 

This model consists of an elastic spring in series with a viscous dashpot. When the ends are 

pulled apart with a certain force, the stress on each element is the same and equal to the 

imposed stress, as described in equation (2.11). 

                      (2.11) 

 

The total strain rate is equal to the sum of the spring rate and the dashpot rate, and the 

absolute total strain can be divided in the strain in each element, as described in equation 



 

 17 

(2.12). In a simplistic way, Maxwell model is usually applied in cases with small deformations. 

Instead, large deformations should include some geometrical non-linearity. The model 

characterizes a general material response under a constant strain, where the stresses 

gradually relax, and under a constant stress, where the strain can be divided in both elastic 

and viscous components. The elastic response occurs instantaneously, corresponding to the 

spring elastic contribution, and relaxes immediately upon stress release assumed by the 

viscous component which grows with time as long as the stress is applied.  

                      (2.12) 

 

By differentiating the strain equation and writing the spring and dashpot strain rates in terms 

of the stress, the following equations can be obtained:  

 
                         

  

 
  

 

 
 

(2.13) 

 
                         

 

 
    

 

 
 

(2.14) 

 

Where k is the elasticity constant of the spring,   is the stress and    is the material’s 

viscosity. In Maxwell model, stress decays exponentially with time, a well-known phenomenon 

for most polymers; however, its creep response prediction is difficult and limited. 

Additionally, at creep or even at constant-stress conditions, this model shows that strain will 

increase linearly with time, assuming that for most polymers cases the strain rate decreases 

with time [21, 30].  

 

The Kelvin-Voigt model 

 This model can be represented by a Newtonian damper and a purely elastic spring connected 

in parallel. Thus, this model can be viewed as a mixture of a linearized elastic solid and a 

linearly viscous fluid that co-exist, where the constitutive relation is a sum of the two terms. 

Hence, the total stress will be the sum of the stress in each component [31]:  

                      (2.15) 

             (2.16) 
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Another fact is that since the two components of the model are arranged in parallel, the 

strains in each component are the same: 

 

                       (2.17) 

 

For a situation with constant stress, Kelvin-Voigt model describes that a material deforms at a 

decreasing rate, approaching asymptotically the steady-state strain. Although the model does 

not accurately describe stress relaxation, dynamic response is characterized by a gradual 

relaxation to its undeformed state [30]. However, only certain thermoplastics with low 

degree of cross-linking will deform accurately according to this model.  

 

 The standard linear solid or Zener model 

This model offers more realistic representation of the material’s behaviour over the whole 

frequency range from creep and stress relaxation to dynamic modulus, dynamic loss factor, 

rate effects and impact loading. It uses a linear combination of springs and dashpots, which 

basically consists in adding a spring in parallel with the Maxwell model. Since the Maxwell 

model does not describe creep or recovery, and the Kelvin–Voigt model does not describe 

stress relaxation, the standard linear solid is the simplest model capable to predict both [32]. 

Taking into consideration changes in stress and strain at the same time, the general 

viscoelastic behaviour in equilibrium can be summarized as:  

 

              (2.18) 

    
 

  

              
 

  

   (2.19) 

 

Where   is the true stress,    is the true strain,    the spring Young’s modulus in series with 

the dashpot and     the parallel spring Young’s modulus. Therefore, at stress relaxation, the 

strain is held at a constant value, thereby implying that the term (  ) is zero.  
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The Boltzmann superposition integral 

Remembering that in the dynamic response of a viscoelastic material, internal stresses are a 

function not only of the instantaneous deformation but also depend on the strain past history. 

Therefore, the most recent past history has more influence fostering the linear viscoelasticity 

as the simplest way to model the response of such materials. With the Boltzmann 

superposition principle, the current stress is determined by the superposition of the 

responses, using the strain increment. Let’s consider the function      representative of some 

shear strain acting on a viscoelastic material and      as the shear stress (which represents 

the effect resulting from the shear strain). A variation in shear strain occurring at time    will 

influence the effect some time later, which can be expressed by equation (2.20). Thus, for 

linear isotropic viscoelasticity response, the basic hereditary integral formulation is given by 

equation (2.21): 

                       (2.20) 

 
                          

 

 

 

 

              
 (2.21) 

   

  
 

 

         
 

(2.22) 

 
    

   

         

 

 

 
(2.23) 

 

Being    and      the mechanical deviatoric and volumetric strains, K is the bulk modulus and G 

is the shear modulus, functions of the reduced time  . This reduced time parameter is related 

to the actual time through the integral differential equation described in equations (2.22) and 

(2.23). In equation (2.20),          represents a relaxation function or relaxation modulus, 

which is a function of the time delay between cause and effect, known as independent of the 

strain amplitude, which represents the “fading memory” mentioned before. For equations 

(2.22) and (2.23),   is the temperature and    is the shift function (Williams-Landel-Ferry 

[WLF] equation is the most used shift equation), highly related with the temperature 

dependence of viscoelastic materials. The FEM software         used in this work allows 

the WLF equation to be used with any convenient temperature, for instance a reference 

temperature. Therefore, note that if          [33].  

Regarding the vibration analysis of a composite material, general structural vibration can be 

measured using electronic sensors which convert vibration motion into electrical signals. 
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These signals can be considered either in time or frequency domains, depending on the type 

of information required for the analysis of results. Any time history signal can be transformed 

into the frequency domain using a Fourier transform, which requires some complex math. 

However, today's signal analysers, as the one used in this work’s experimental testing, race 

through it automatically in real-time conditions. 

As it will be seen in chapter 4, the applied load used for the dynamic excitation of the 

composite beam under analysis in this work is small. Considering a shear test at small strain, 

in which a time varying shear strain,   , is applied to the material, the respective viscoelastic 

response is the shear stress,     , described as: 

     =                
 

 
 

(2.24) 

 

   is the time dependent shear relaxation modulus, whose respective behaviour can be 

illustrated by considering a relaxation test where a strain  

   is suddenly applied and held constant for a long time. For the initial condition t=0 and 

considering a fixed strain  , then: 

     =                
 

 
 =         (since             ) (2.25) 

 

Since the viscoelastic material model is long-term elastic, the response tends to a constant 

stress (          as t   ) after a constant strain has been applied for a long time. 

Resorting to the instantaneous shear modulus,          , the shear relaxation modulus can 

be written in a dimensionless form, as expressed in equation (2.26). Hence, the stress 

expression can be formulated like in equation (2.27): 

 
       

     

  
 

(2.26) 

     =                  
 

 
 (2.27) 

 

2.2.4 Viscoelastic frequency dependence: numerical model 

The dissipative part of the material dynamic response is defined by using the real and 

imaginary parts as function of frequency (for compressible materials).         allows to 

model the viscoelastic behaviour as a function of frequency in three different ways: by using 
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a power law, given an experimental tabular input, or by a Prony series expression for the 

shear and bulk relaxation moduli. In the         solver, the viscoelastic material is defined 

by a Prony series expansion of the dimensionless relaxation modulus [33]: 

 

           
     

 

   

     

  

  
 
  

(2.28) 

 

           
    

 

   

     

  

  
 
  

(2.29) 

Where X,   
     ,   

    ,   
 , i=1,2,...,X are material constants.  

During the numerical analysis, the solver will automatically perform the conversion between 

time and frequency domains. The time-dependent shear modulus can be obtained from the 

following expressions [33]: 

 

              
     

 

   

       
  

        
    

     
    

 

   

 

(2.30) 

 

          
  

          

     
    

 

   

 

(2.31) 

 

              
    

 

   

       
  

       
    

     
    

 

   

 

(2.32) 

 

          
  

         

     
    

 

   

 

(2.33) 

 

Where    is the storage shear modulus,     is the loss shear modulus,    is the storage bulk 

modulus,     is the loss bulk modulus,   is the instantaneous shear modulus and    is the 

instantaneous bulk modulus.  

Since it was assumed that dissipative losses acting in the analysed specimens were mainly 

caused by internal damping (“viscous”) effects, the frequency domain was adopted for the 

analysis of the viscoelastic material, describing frequency-dependent material behaviour in 

small steady-state harmonic. Thus, it was assumed that the shear (deviatoric) and volumetric 

behaviours are independent in multiaxial stress states. Therefore, the tabular form was used 

to model the dynamic motion of cork in         software. This was defined by giving the 

real and imaginary parts of     and     as functions of frequency in cycles per time, being   

the circular frequency. The real and imaginary parts of      and    are given by [24]: 
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(2.34) 

 
           

  

  

 
(2.35) 

 
         

  

  

 
(2.36) 

 
           

  

  

 
(2.37) 

 

Where   and    are the long-term shear and bulk modulus determined from the elastic or 

hyperelastic properties. 

 

 

2.2.5  Vibration theory applied to viscoelastic materials   

Structural mechanical vibrations can be subdivided according to the vibration sources or the 

systems’ constituents. On the other hand, vibration phenomena may occur in many areas of 

mechanical, civil and aerospace engineering.  

The general response of a mechanical system, with n degrees of freedom, can be represented 

by the next equation: 

 

In this equation, the terms [M], [C], [K] are the mass, damping and stiffness system matrices, 

respectively; [F(t)] is the external load vector to be considered in the numerical model;        

and   are the acceleration, velocity and generalised displacement vectors, respectively. In a 

vibrating structure, the system’s parameters are used to create the mathematical model, in 

which the mass and stiffness can be derived as a function of the system’s geometry and 

material characteristics. In terms of finite element formulation, and considering a harmonic 

vibration, the equilibrium equations can be described by: 

                            (2.38) 

                            (2.39) 
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The harmonic response assumes the form: 

              (2.40) 

 

Where   represents all eigenvectors of each vibration mode,   the frequency value and t the 

time domain. Now, by replacing equation (2.40) in (2.39) we will get: 

                             (2.41) 

 

Considering vector [F(t)] = 0, and noting that       cannot be equal to zero, equation (2.41) 

assumes the form: 

                      (2.42) 

 

In equation (2.42),    is    and represents the eigenvalues of the system. So if    =   , the 

solution of this expression corresponds to a conventional eigenvalue problem and has a 

correspondent eigenvector   that represents the system modes of vibration [12]. Thus, for a 

general damping system, the damped natural frequencies (   ) are given by:  

               (2.43) 

 

Where      and   are the undamped natural frequency and the damping ratio, respectively.  

From the numerical model using a conventional finite element code it is possible to 

determine the system’s mass and stiffness matrices. On the other hand, damping can be 

simulated from the mathematical theory concerning the Rayleigh damping model, where the 

energy dissipation of the system can be expressed by a damping matrix [C] with symmetric 

coefficients. In this model, the symmetric damping matrix [C] is a linear combination of the 

mass and stiffness matrixes of the system. Therefore it can be defined as:   

      α       β        (2.44) 
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In equation (2.44), α is the mass proportional damping factor and β is the stiffness 

proportional damping factor. Both have an important role in modelling damping, where α and 

β are the attributes of the lower and higher natural frequencies, respectively. In equation 

(2.45)     is the natural frequency obtained through modal analysis and ξi the respective 

modal damping ratio. Pointing out that the structural component developed in this work will 

typically operate at relative low frequencies (for example, for space applications or low 

frequency noise control) it is assumed that β‹‹1, resulting in higher structural dependency of 

α value. Therefore, relating equations (2.42), (2.43) and (2.45) allows concluding that the 

mass proportional damping factor and the stiffness proportional damping factor can assume 

the form:  

 
α          

                   
(2.46) 

 

Thus, 

In the abovementioned equations, for a given ith vibration mode,   is the damped natural 

frequency,   the damping ratio and   the loss factor. In a dynamic analysis relying upon a 

finite element model, damping is related with these  and  parameters, which directly 

affect the damping ratio, and consequently, the loss factor. Given that, for numerical 

purposes, the mass coefficient (α) is an input and should be based on experimental data 

obtained for the particular specimen geometry and types of materials considered in this 

analysis.The elastic and viscous stresses are related to the material properties through the 

storage modulus, which represents a ratio of stress to strain (if elastic stresses are 

considered) or loss modulus (in the case of considering viscous stresses) [4].  

       
        (2.45) 

 α                    α        (2.47) 
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2.3 Damping on Sandwich structures with constrained layer  

Due to the importance of layered composites in a wide range of industrial and aerospace 

applications and its increasing investment prospective, the vibration control of layered 

composites has been an area of fundamental research over the past fifty years. The sandwich 

structure solution depends on variable parameters, such as the skin, core layers and adhesive 

attachment in the interface regions [34]. The separation of the outer faces by the core 

increases the moment of inertia of the panel with little increase in weight, producing an 

efficient structure for resisting bending and buckling loads. Normally, sandwich structures are 

fabricated by attaching two thin stiff skins as laminate covers, a lightweight core with 

variable thickness to separate those skins and carry the loads between them, which in turn 

are joined by an adhesive element capable of transmitting shear and axial loads to and from 

the core [35]. Figure 10 illustrates some of the types of cores used in sandwich composite 

structures.  

 

(a) Foam          (b) Honeycomb      (c) Corrugated 

Figure 10- Types of cores used in sandwich components [34]. 

Ross, Kerwin and Ungar (RKU) [35] made a pioneering work consisting in modelling a three-

layer sandwich beam to predict damping in plates with embedded damping layer. The first 

theoretical approach was presented by Kerwin regarding damped thin structures with a 

constrained viscoelastic layer. This author concluded that the energy dissipation mechanism 

in the constrained core is attributed to its shear motion, and as such the viscoelastic core was 

represented by a complex modulus. Furthermore, the sandwich based upon Euler-Bernoulli 

beam theory, known as Mead and Markus model, disregards the longitudinal and rotational 

inertia from the outer layers, but it only includes transverse inertia and shear effects in the 

central core layer (i.e., longitudinal momentum, bending and extensional stresses are ignored 

in the core). Rao and Nakra included these same effects in their equation of motion using the 

energy method [36-38]. These are the most widespread basic theories and models for a 

layered sandwich beam with a viscoelastic material core, although most of them neglect the 

effect of shearing in the skins.  
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2.3.1 Ross-Kerwin-Ungar damping model 

The damping model developed by Ross, Kerwin and Ungar [35] is mainly used for three 

layered sandwich beams based on damping resulting from flexural waves induced by a 

constrained viscoelastic layer, although some modifications can adapt the model to more 

general applications regarding any sandwich type laminate. This model is based upon their 

researches in which the dynamic material properties of viscoelastic materials can be 

extracted from measurements made on composite beams or even on other homogenous 

materials through the application of the RKU equations, which is presented as the simplest, 

most readily used, and often the most reliable approach. As many models, the RKU model 

accounts for several assumptions that can be extrapolated to any other constrained layer 

damping treatment applied to a rectangular beam, namely:  

 For the entire composite structure cross section, there is a neutral axis whose 

location varies with frequency; 

 There is no slipping between the elastic and viscoelastic layers at their interfaces; 

 The major part of damping is due to the shearing of the viscoelastic material, whose 

shear modulus is represented by complex quantities in terms of real shear moduli and 

loss factors; 

 The elastic layers have the same amount of lateral displacement; 

 The beam is simply supported and vibrating at a natural frequency (or the beam is 

infinitely long so that the end effects may be neglected). 

 

Figure 11 represents a typical sandwich system with an embedded viscoelastic layer and 

stacking sequence that can be defined for analysis proposes. The flexural rigidity (EI) of such 

system can be formulated as indicated in equation (2.50): 

 

 
Figure 11- Schematic representation of the sandwich laminate 

considered for the analytical analysis. 

   HOST STRUCTURE 

    CONSTRAINING LAYER 

   VISCOELASTIC LAYER 
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 E= Young’s modulus [Pa]; 

G=Shear Modulus [Pa]; 

H= Layer Thickness [m]; 

   = Complex shear modulus; 

L= Length of the laminate; 

g = Shear parameter; 

   = Correction factor (                    

       CFRP’s density [     ]; 

   = Natural frequency [rad/s]; 
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Table 3 - Rao correction factors for shear parameter in RKU equations [16]. 

Boundary conditions Correction factors 

Mode 1 Mode 2 

Pined-pined 1 1 

Clamped - clamped 1.4 1 

Clamped - pined 1 1 

Clamped - free 0.9 1 

Free - free 1 1 

 

 

 

Therefore, the loss factor of a system with an embedded viscoelastic layer can be found from 

the ratio of the imaginary and real parts of EI, as shown in equation (2.57) [39]. Thus,       

(equation (2.57)) is the estimated loss factor obtained from the application of the RKU 

equations: 

 

 

 
      

         

         
 

 

(2.57) 

 

 

2.3.2 Direct frequency response technique 

The solution presented by Sun, Sankar and Rao [40] based on the direct frequency response 

technique developed by C.D Johnson, D.A Kienholz et al. is another option to estimate the 

structural loss factor value. These authors used it for analytical estimation of damping in 

beams under forced vibration. This technique presents itself as a simply and fast method to 

estimate the modal loss factor from the real part of the response, as explained in Figure 12 

and equation (2.58). 

 

     
   

  
  

 
 

   
  
  

   
 

 

(2.58) 
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Figure 12 - Numerical prediction of the loss factor based on the real part of the response 

spectrum [40]. 

 

 

 

 

2.4 Half-power bandwidth method for modal data extraction 

The half-power bandwidth method consists of determining the frequencies at which the 

amplitude of two consecutive points, A1 and A2 (see Figure 13), in the response curve of a 

dynamic system will equal      of the peak amplitude. This method has been successfully 

used for different types of material configurations in experimental testing. The modal loss 

factor can be determined by the ratio of the frequency interval between    and   ,    

     , and the natural frequency value of each peak (equation (2.59)):  

    
  

  
  (2.59) 

 

Where             and             .  
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Figure 13 – Half-power bandwidth method. 

 

 
 
 
 

2.5 Advantages of using CFRP and cork for aerospace 

applications 

During this work, it was already mentioned some benefits of using composites with 

viscoelastic layers as a passive damping method. In the next paragraphs, the advantages of 

combining the viscoelastic properties of cork with a stiff CFRP laminate will be explored.  

In an aircraft, the fuel consumption stands for a considerable part of the operating cost. 

Aeronautical engineers work in the development of new forms to create more efficient aero-

engines, minimization of the aerodynamic drag, optimization of flight trajectories and more 

efficient light materials, aiming at reducing the operations fuel costs [41]. Therefore, the 

application of carbon fiber composite materials as structural components is growing rapidly 

due to the high specific stiffness and specific strengths combined with its great corrosion 

resistance, low volumetric density and maintenance cost [42].  

Figure 14 illustrates the specific strength and stiffness comparison between different metals 

and alloys, quasi-isotropic glass fiber reinforced plastic (Glass/QI) and quasi-isotropic carbon 

fiber reinforced plastic (Carbon/QI), strengthening the idea of a general trend regarding 
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replacing metal by CFRPs.  As an example, Figure 15 indicates the amount of composite 

materials used in the new Boeing 787.  

 

Figure 14 - Specific strength and stiffness comparison between different metals and alloys 

(quasi-isotropic glass fiber reinforced plastic (Glass/QI) and quasi-isotropic carbon fiber 

reinforced plastic (Carbon/QI)) [41]. 

 

 

 

Figure 15 - Materials used in the new Boeing 787 (with a clear prevalence of CFRPs) 

 

Regarding the viscoelastic material used in this work, the choice has been relying upon cork. 

Portugal and Spain are the world's main producers and exporters of cork based materials, and 
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a raising investment in research activities for engineering applications using this natural 

material has been booming over the last years. Cork is extracted from the outer layer of the 

cork tree, and its natural intrinsic properties are in the base of its great versatility in many 

types of applications, such as fishing boats, road pavements, floor tiles, garment ornaments, 

shoe soles and in stoppers for wine bottles, which is its most widespread use.  

One remarkable propriety of this material is its low density due to the high gas content of the 

small structural cells (typically 40 μm average size). The high amount of gas entrapped in the 

closed cellular structure leads to excellent thermal insulating properties. Moreover, the low 

density and high porosity also provides great damping capabilities and low acoustic-vibration 

transmissibility.   

When compared with other engineering materials, cork has lower stiffness. However, cork 

cells are strong and the specific strength of cork is as good as most rigid synthetic foams. 

Recently, the use of cork based materials has been investigated for different aerospace 

applications due its thermal properties, slow burn rate and shock absorption capacity [5] (see 

examples in Figure 16 and Figure 17). Silva et al. [43] analysed the damage tolerant 

properties of CFRP sandwich with cork-epoxy agglomerates as a core material through low 

velocity impact testing. Additionally, this work intended to evaluate the possibility of using 

such sandwich configuration combined with cork agglomerate as a form of improving the 

aeroelastic properties of aeronautical components. Results were conclusive about the 

superior energy absorption properties of cork based composites, which have an inferior 

extension of damage of both the core and facesheet materials when compared with 

polymethacrylimide foams. 

Nevertheless, the life of aerospace structures and their inherent fatigue resistance 

optimization depends on a controlled vibration’s amplitude that can be provide by sandwich 

components with cork agglomerates layers, which present an high energy absorption capacity 

with minimum damage probability, resulting in better crashworthiness limits during service 

[44]. Moreover, as a natural material, cork has considerable advantages in terms of 

sustainability and recyclability compared with other synthetic core materials. Therefore, it 

can become a suitable and effective material for innovative applications which require low 

cost, low density and high energy absorption. 
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Figure 16 - Example of cork application in the propulsion system of Space Shuttle [45]. 

 

 

 

 

Figure 17 – Lightweight phenolic cork as a thermal protection material used in SCOUT Rockets 

[45]. 
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Chapter 3 

Numerical model 

 

3.1 Introduction 

Common structural systems exhibit fairly straightforward dynamic response in terms of 

numerical simulations. However, viscoelastic materials are slightly more difficult to model 

mathematically. Some of the biggest challenges in a viscoelastic materials’ numerical model 

refers to the necessity of an accurate representation of the influence of different 

parameters, as seen in the previous chapter, such as temperature, frequency, cyclic strain 

amplitude, and environmental dependencies between the viscoelastic material properties and 

their associated effect on a structure dynamics [16].  

The main objective of the numerical analysis implemented in this work is the dynamic 

response characterization of a rectangular flat plate representative of a sandwich component 

with a cork agglomerate core, which was attained using the commercial finite element 

method (FEM) code ABAQUS®. This code is widely used to analyse static deformations and for 

modal analysis, as it allows determining approximate solutions to boundary value problems, 

analysing the geometry by connecting many simple element equations over small subdomains 

and to approximate a more complex equation over a larger domain.[18, 46]. This has several 

benefits, like accurate representation of complex geometry, capacity to handle a wide 

variety of engineering problems, inclusion of dissimilar material properties, ability to 

represent complex loadings and to analyse local effects [26, 47].  

In the present case, CFRP laminates were modelled based in a composite shell and the 

dissipative effect of the viscoelastic layer is evaluated having the behaviour of a plain CFRP 

(i.e., without cork) as a baseline material. For the analysis of modal loss factor, a free 

boundary condition was applied to the plate (Figure 18a), since this is representative of the 

experimental conditions described in the following section. On the other hand, and to study 

the harmonic response of the plate and the influence of cork on damping, a second case was 

considered fixed at one end (Figure 18b). In both cases, the plate was subjected to an 

impulsive concentrated 1N load applied at the centre of the free tip. The impulsive force 

simulates an hypothetic operational condition of the system represented here by the impact 

of the hammer. Ideally, if the impulse time is small, it causes a constant amplitude vibration 

over the frequency domain and all modes of vibration of the structure will be excited. Impact 

hammers are suitable for smaller, lightweight structures where the signal-to-noise ratio is 

http://en.wikipedia.org/wiki/Boundary_value_problem
http://en.wikipedia.org/wiki/Domain_of_a_function
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better for taking measurements. Moreover, the small force value was selected to avoid large 

displacements and to maintain the validity of linear theory. 

 

 

 

(a) Free-to-free boundary condition with 

impulsive load. 

(b) Fixed end boundary condition with 

impulsive load. 

Figure 18 – Illustration of the boundaries conditions and applied load as considered in the 

numerical model. 

 

 A field output was created to extract the displacement of the beam for further evaluation in 

frequency domain and to characterize the influence of using cork as embedded viscoelastic 

material in the dynamic response. Hence, it is fundamental that the model of the beam 

system can be able to accurately represent the strain energy due to the shearing effects in 

the core material, since this mechanism is considered the dominant source of damping 

followed by the dissipative effects arising from the interactions between fibres and matrix of 

the composite material. Such analyses lead to a development of a general viscoelastic 

numerical model. Hence, numerical results were validated from a direct comparison with 

experimental data obtained for identical conditions, which allows an extrapolation of the 

adopted modelling procedures to other cases (depending on the abovementioned test 

variables). 

 

3.2 Material and configuration 

Most of the computational methods predict viscoelastic damping characteristics based in 

preconceived damping ratios or other damping parameters estimated by experimental results. 
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Modelling viscoelastic behaviour in         requires some input parameters, as the mass 

proportional damping factor (α) and the stiffness proportional damping factor (β) defined in 

chapter 2. Hence, for the numerical model, these values will be estimated using equations 

(2.47) and (2.49) from section (2.2.5). The respective modal damping factor, which is half of 

the modal loss factor, is given by experimental results. Such experimental calculations 

involve the fraction of critical damping for the first mode of resonant vibration, which may be 

defined as in equation (3.1), being   the specific damping capacity value. This equation is 

valid for vibrating systems having a value of    < 100.  

 
   

 

  
 

(3.1) 

 

Hence, α has an important influence in the numerical results. Since this parameter is 

dominant for low frequencies, α values are averaged for the first two vibration modes for 

each laminate’s configuration type. As expected, the values obtained for β were very low, or 

even zero, for all specimens. Moreover, the complex Poisson's ratio plays an important role in 

characterizing the linear dynamic behaviour of solid materials. The ratio of the imaginary 

part to the real part of complex Poisson's ratio is referred to as Poisson's loss factor and its 

magnitude does not exceed 0.1 even if shear damping is high. Nonetheless, typical Poisson's 

loss factor based on a high loss rubbery material may be lesser than 0.1 [48].  Besides, the 

Poisson's ratio of Cork is close to zero showing very little lateral expansion when compressed 

[5]. Herewith, for a given finite element model with certain mass and stiffness matrices, it is 

quite clear that the results of the dynamic analysis depend hugely on the numerical 

assignment of those parameters, corroborating the importance of the validation of results 

through experimental data.  

As a consequence of the anisotropy of cork viscoelastic properties, the storage modulus is 

higher towards the transverse prismatic direction. For the other directions, the properties can 

be considered almost uniform. Thus, as in other numerical works, the cork based sandwich 

has been modelled considering isotropic conditions [49]. 

There is also a possible resin transferring from the facesheets to the cork core during the 

curing cycle. The existence of resin inside the cork layer means a rigidity increase and 

therefore a higher Young’s modulus. This type of uncertainty has to be taken in consideration 

when analysing possible deviations in the numerical results.   

In the particular case of the cork agglomerates used in this thesis, the main mechanical 

properties were provided by the material’s manufacturer, Amorim Cork Composites 

(Portugal), which were obtained by a dynamic mechanical thermal analysis technique (DTMA).  
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A total number of 11 batches were considered, divided in plain CFRP laminates (i.e., without 

viscoelastic layer) and CFRP + viscoelastic layer. Table 4 shows all the 11 batches considered 

according to the intended testing variables, namely, lay-up staking sequence, inclusion of 

viscoelastic layer and its relative position within the laminate. The viscoelastic layer 

consisted of a 1mm thick NL 10® cork agglomerate. The main mechanical properties of the 

cork agglomerate material can be found in Table 5, whereas the characteristics of the CFRP 

laminate are summarized in Table 6. 

Table 4 - CFRP laminates staking sequences 

Type Stacking sequence  Type Stacking sequence 

A1          D1           

A2 [   / C /   ]  D2 [(0/90    / C / (90/0   ] 

B1              E1 [   / C /   ] 

B2 [0/90/0/ C /0/90/0]  F1 [   /    /   ] 

C1          G1 [   / C /   / C /   ] 

C2 [   / C /   ]    

 

 

Table 5 – Mechanical properties of the cork agglomerate core 

Density 120 [kg/m3] 

Poisson’s ratio 0.1 

Tensile strength 0.6 [MPa] 

Shear modulus 5.9 [MPa] 

Loss factor (at 1kHz) 0.022 

 

 

Table 6 – Mechanical properties of CFRP laminate 

Density 1500 [kg/m3] 

Poisson’s ratio 0.25 

Longitudinal Young’s Modulus 170 [GPa] 

Transversal Young’s Modulus 6.7 [Gpa] 

Shear modulus 5 [GPa] 
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3.2.1 – Laminate preparation and experimental set-up 

The experimental part of this work consisted in the fabrication of 33 specimens made of a 

high strength unidirectional carbon-epoxy laminate using a hand layup process. Specimens 

with dimension 400 x 50 mm were cut from a carbon-fibre unidirectional roll tape with a 215 

g/   mass fraction. To account for final trimming process, the cut dimensions had a 3 mm 

exterior margin. Prior to the hand layup process, an acrylic glass mould surface was prepared, 

cleaned and dried. Then, a mould release agent was applied, in circular movements, using a 

small piece of cloth following the respective time and applications instructions. For the lay-

up process, an epoxy resin system (SR1500 and respective SD2503 hardener) was used at room 

temperature according to the manufacturer’s datasheet. After curing, all specimens were 

submitted to a final finishing process using sand-paper and a cutting disk to obtain the 

required nominal dimension. Figure 19 shows some photos of the fabrication process, whereas 

Figure 21 refers to some images of the cork based agglomerate used in this work. 

  

(a) Unidirectional carbon fiber roll-tape. (b) Three specimens with embedded cork 

layer made from a hand lay-up process.  

 

 

 

(c) Final look of a CFRP specimen. (d) Cross section detail of a G1 type 

specimen. 

Figure 19 – Photos of the laminates’ preparation and some final details. 

 

 

As mentioned before, specimens were analysed using the half-power bandwidth method, 

following the general procedures indicated in ASTM E756 (1998) [50], aiming at characterizing 
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the loss factor for each sample. These tests were made in the Vibrations and Experimental 

Analysis Laboratory of EST/IPS (Setúbal, Portugal).  

An illustration of the testing apparatus is shown in Figure 20. Specimens were placed free in 

space (suspended by two nylon threads on a rigid frame) and excited with a Dyna Pulse 

(Dytran Instruments) instrumented impact hammer. The frequency response was obtained by 

indirect measure with a Brüel&Kjær 4374 accelerometer, located on the lengthwise direction 

at the opposite side of the hammer impact point. The hammer impact characteristic was 

obtained from a sensor placed on the hitting face. 

A total of four tests were made for each type of specimens and a series of ten shots was 

performed in each specimen which were acquired by the transducer considering a valid shot 

whenever the coherence value was close to unity. The data were processed on a computer 

using two software programs: Vibpro® and LabView®. The first code is used for pre-

processing purposes in conjunction with a spectrum analyser and a signal conditioner to 

obtain the representation of the frequency response. The latter code is used to determine the 

resonant frequencies and the loss factor using an in-house routine consisting of an algorithm 

that automatically extracts points 3dB below each peak. 

 

 

Figure 20- Schematic representation of the experimental installation. 

 

 - Spectrun analyser CSI 2120  

 - Conditioner and Amplifier Brüel&Kjær 2635 

 - Instrumented hammer Dytran Instruments, DYNA PULSE  

 - Acelerometer Brüel&Kjær 4374 with 0.65g mass (excluding cable)  
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(a) Roll of           NL10 used in this work. 

 

(b) Used cork detail. 

Figure 21 -           NL10 used for the experimental set. 

 
 
 

 

3.3 Mesh 

The discretization of the structure domain into sub-elements allows to create a mesh, which 

is dependent on geometry, material properties, load and boundary’s conditions. In this work 

the geometry of the plate is quite simple providing an easy mesh application. Like similar 

works with plane shell parts, a structured type mesh was used. In this case, each node is 

defined by a position (x; y; z) referred to Cartesian axis in the general domain. The elements 

were applied to the model by a sweep generated mesh technique composed of several 

quadrilateral-dominated S4 elements. These are general-purpose shell elements which are 

widely used in numerical simulations due to their suitability for both thin and thick shell 

problems. Regarding these specifications, a mesh quality performance evaluation was 

performed using a convergence analysis of the natural frequencies as the targeting output in 

order to settle a compromise between computing time and results accuracy aiming at 

obtaining an adequate mesh refinement. The convergence analysis lead to a structured mesh 

with a total of 3600 shell type element and 3819 nodes, as shown in Figure 22. A detailed 

image of the final mesh is illustrated in Figure 23. 
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Figure 22 – Mesh convergence study for the first resonant frequency (A1 sample). 

 

 

 

Figure 23 – Detail of the final mesh after the convergence study. 

 

 

3.4   Model validation 

To confirm that the numerical model is capable of providing a realistic response 

representative of a CFRP sandwich with a constrained cork layer, results were compared with 

experimental data obtained in similar conditions. The plate was simulated with free-to-free 

boundary conditions with an instantaneous concentrated force (1N amplitude) applied at the 
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centre of the plate tip. Thus, the damping characteristics were evaluated by comparison 

between the obtained numerical and experimental loss factors.  

Figure 24 presents the experimental and numerical results in order to verify the model 

precision for two representative cases: a) a         unidirectional CFRP laminate without 

viscoelastic layer; b) a [(0/90   / C / (0/90  ] cross-plied CFRP laminate with an embedded 

viscoelastic layer. 

  

(a) (b) 

 

Figure 24 - Comparison between numerical and experimental data considering two different 

specimens types: a) unidirectional CFRP without viscoelastic layer; b) cross-plied CFRP with 

embedded viscoelastic layer. 

 

As it can be seen, there is a good correlation between numerical and experimental data 

whichever the case. This matching in the results has been also observed for all others 

specimens’ configurations, which allowed determining an average deviation of 7.9% on the 

loss factor value, which is less than typical experimental scatter. Similar results for the other 

specimens studied in this thesis can be found in Annex A. 

As far as the numerical loss factor determination is concerned, it was related with each 

resonant peak and the respective mass proportional damping factor (α) value. Since α is 

dominant at low frequency ranges, which are of particular interest in this study, the results 

dependency on the mass proportional damping effect becomes obvious. Thus, and to ensure a 

greater accuracy of results, the component’s natural frequencies extracted in the numerical 

simulations were related to the corresponding mass proportional damping factor values 

according to the following expression:  
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 = 

         

      
 

 

(3.2) 

In equation (3.2),         is the damping ratio acquired in the experimental set and        is 

the natural frequency estimated in the numerical analysis. The results in the following 

section summarize the experimental and numerical analyses for each specimen tested 

regarding the effects of design parameters on loss factor.  
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Chapter 4 

Results  

 

4.1 Effects of design parameters on loss factor 

Numerical model offers the possibility to estimate the loss factor of composite laminates 

depending on the effect of several design parameters, providing a better understanding and 

characterization of the embedded viscoelastic layer effect on damping for each resonant 

frequency. The following sections summarizes these effects on damping results having a plain 

CFRP specimen as baseline material. In all cases, simulations follow identical conditions to 

the ones adopted during experimental testing.  

 

 4.1.1 Effect of ply orientation angle 

Figure 25a shows the behaviour of two material’s samples (A1 and B1) with different stacking 

sequences. Note that in either cases there is not any viscoelastic layer embedded in the 

laminate since it is intended to assess the solely effect of  the ply orientation angle in the 

damping characteristics of the material. As it can be seen, the loss factor variation as a 

function of frequency is identical in both cases, but presenting higher values for the cross-ply 

laminate towards the upper limits of the frequency range. Also, a slight decrease of the 

modal resonance frequencies is noted for the 90 degrees ply orientation (specimen B1). 

Figure 25b presents the comparison between samples A2 and B2, both with a viscoelastic 

layer. Again, the trend in the loss factor variation is identical but now the unidirectional 

laminate presents marginally higher values, particularly for frequencies above 800 Hz. 

Alongside with the damping increase resulting from the use of the viscoelastic material, a 

reduction in the modal natural frequencies regarding the use of 90 degrees ply orientation 

(specimen B2) is also observed. 

The effect of the laminate thickness was also evaluated by extending the numerical analysis 

to specimens with twice the number of layers but maintaining the same layup stacking 

sequence. Figure 26a refers to unidirectional and cross-ply specimens with 12 layers but 

without the inclusion of cork (specimens C1 and D1, respectively). As it happens with samples 

without viscoelastic layer, there is a low damping effect as a consequence of the ply 

orientation change. In this case, it seems that the effect of angle orientation is lessened by 



 

 46 

the mass and stiffness increase as a result of the higher number of laminate’s plies. However, 

the inclusion of a viscoelastic layer causes a notable change in the loss factor values for the 

whole frequency test range, compared to the thinner specimens, which is particularly 

significant for the unidirectional type laminates (specimens C2), as visible in Figure 26b.  

 

 

Figure 25 – Loss factor variation as a function of layup stacking orientation: a) unidirectional 

(A1) and cross-ply (B1) specimens without viscoelastic layer; b) unidirectional (A2) and cross-

ply (B2) specimens with viscoelastic layer in the middle-plane. 

 

 

  

(a) (b) 

 

Figure 26 – Loss factor variation as a function of layup stacking orientation for thicker 

laminates: a) unidirectional (C1) and cross-ply (D1) specimens with 12 layers without cork; b) 

unidirectional (C2) and cross-ply (D2) specimens with 12 layers and considering a cork-based 

layer in the middle-plane. 

  

(a) (b) 
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4.1.2   Effect of laminate’s thickness 

The laminate’s thickness effect was assessed by determining the loss factor variation for 

specimens having the same layup stacking sequence but with a distinct number of composite 

layers, namely 6 or 12 layers. Whichever the case, a cork based layer was always considered 

in the laminate’s middle plane as it was demonstrated before that the utilization of this 

viscoelastic material favours the damping characteristics of the host material. 

Figure 27a compares the thickness effect in cross-ply specimens, whereas Figure 27b refers to 

unidirectional type specimens. It can be seen that the thickness effect is nearly negligible in 

both cases though the unidirectional specimens shows higher average loss factor values 

(especially for frequencies above 400 Hz). 

 

  

(a) (b) 

 

Figure 27 – Loss factor variation as a function of the laminate’s thickness: a) cross-ply 

specimens; b) unidirectional specimens. 

 

4.1.3   Effect of the viscoelastic layer relative thickness 

Considering the same laminate’s number of layers and ply angle orientation but with the 

twice of viscoelastic material thickness placed in the same position (i.e., middle-plane), 

Figure 28 demonstrates, as expected, an increase of the loss factor as a result of the addition 

of a higher amount of viscoelastic material. The loss factor variation with frequency is nearly 

linear and the modal natural frequencies are slightly shifted mainly because of the greater 

mass and damping contribution of the extra thickness of the cork-based layer.  
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A         program using the Ross-Kerwin-Ungar damping model [35] described in section 

2.3.1 was developed to obtain an estimation of the loss factor variation as a function of the 

thickness of the cork layer. This procedure allowed determining the viscoelastic behaviour for 

the first three vibration modes of an A2 type laminate, i.e., with a [  /C/  ] stacking 

arrangement.  

 

 

Figure 28 – Loss factor variation as a function of the viscoelastic layer thickness. 

 

Figures 29, 30 and 31 present the analytical plots against numerical results considering the 

first three vibration mode. It is clear that there is a good correlation between the two 

approaches, which is visible by the identical variation trend of loss factor with frequency and 

discrete results for higher frequencies. As a general conclusion, it can be said that the 

damping capabilities of the material follows directly the thickness of the viscoelastic layer up 

to a 4-5 mm threshold, although with different slope rates. However, the increase of the 

damping effect seems to diminish as the viscoelastic layer thickness increases, which is 

noticeable by the plateau in both analytical and numerical results for high thicknesses values. 

In fact, the loss factor predicted for the third mode converges more quickly as the 

viscoelastic layer thickness increases, enabling to choose the best design option for each 

modal frequency range.   This is an important conclusion as it means that the damping 

capabilities of a composite material do not necessarily follow a direct relation (in terms of 

the loss factor variation) with the thickness increase of the viscoelastic layer (having the 

same laminate thickness as baseline). Actually, the gain in the loss factor due to the addition 

of viscoelastic material may not compensate for the weight increase affecting the overall 

component, which is a critical requirement in certain types of applications (such as 

aeronautic structures). 
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Figure 29 - Analytical vs numerical results regarding the loss factor variation with viscoelastic 

layer thickness for the first vibration mode. 

 

 

Figure 30 - Analytical vs numerical results regarding the loss factor variation with viscoelastic 

layer thickness for the second vibration mode. 
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Figure 31- Analytical vs numerical results regarding the loss factor variation with viscoelastic 

layer thickness for the third vibration mode. 

 

 

4.1.4   Effect of the viscoelastic layer relative position 

The relative position of the viscoelastic layer along the thickness wise direction of the 

laminate is another important parameter with a likely effect in the loss factor value. Having 

this in mind, two different specimen configurations were considered for numerical analysis 

having the cork-based layer in two distinct positions: in the laminate’s plane of symmetry 

(specimen A2); towards the laminate´s outer surface (specimen E1). Figure 32 shows the loss 

factor variation for these two cases considering a unidirectional type specimen with 6 layers. 

These results show that there is a slight effect of the viscoelastic layer position regarding the 

damping characteristics of the material. This can be explained by the small relative distance 

between the two cases herein considered which, in part, has been constrained by the limited 

laminate’s thickness and consequent difficulties of reproducing experimental specimens with 

an embedded cork layer positioned near the surface.  
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Figure 32 - Loss factor variation as a function of the viscoelastic layer’s relative position 

(single layer case) 

 

To overcome this issue, another approach has been followed consisting in the simulation of 

the damping behaviour of an identical laminate but with two viscoelastic layers. This allows 

to strengthen the energy loss contribution of the damping material (as it is now two times 

thicker than the previous case) and therefore try to perceive any effect resulting from the 

variation of the position of the viscoelastic layer. A similar approach has been adopted by 

Zhang et al. [51] who successfully demonstrated that there is an optimum thicknesswise 

location for the viscoelastic layer in order to obtain a maximum loss factor value. 

The plots in Figure 33 refer to unidirectional type specimens also having the cork-based 

material (now in the form of two layers instead of the single one considered in the previous 

case) in two distinct positions: in the laminate’s plane of symmetry (specimen F1); towards 

the laminate´s outer surface (specimen G1). Now, the effect of the relative position of the 

viscoelastic layers in the loss factor variation is quite clear, as the middle-plane case provides 

higher damping capabilities than the one with the cork-based layer shifted towards the 

specimen’s outer surface. This effect is particularly perceptible in the upper limit of the 

testing frequency range, where the loss factor value is around 20% higher than that for 

specimens with two viscoelastic layers offset from this position.  
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Figure 33 - Loss factor variation as a function of the viscoelastic layer’s relative position 

(double layer case) 

 

 

 

4.2  Vibration response  

A secondary goal of the numerical simulations was to determine the magnitude 

(displacement) response of each type of specimen’s configuration in the frequency domain. 

For the sake of demonstration purposes, results regarding specimens A1 and A2 

(unidirectional type) are presented in Figure 34. . The plots concerning the remaining 

laminate’s types can be found in Annex B. As expected, the displacement peaks are obtained 

in the vicinity of resonant frequencies and the damping effect due to the embedded cork 

layer is reflected by the reduced displacement field of specimen A2. Moreover, the 

viscoelastic properties of cork cause a shifting effect of the resonant frequencies when 

compared to the plain CFRP A1 specimen. This type of information is important to support the 

design criteria of certain types of structures which may be subjected to detrimental effects 

(fatigue, fretting, etc.) caused by dynamic loading conditions.   

From the Figure it is also clear that the inclusion of cork increases the natural frequency 

values and decreases the respective peak amplitude. Additionally, and despite the prevalence 

of bending modes, some peaks corresponding to torsional modes and residual frequencies are 

possible to observe, especially near high displacements. Such residual modes can be 

explained because the        output source is a direct consequence of the point of force 
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application. Figure 35 presents the first four mode shapes obtained from the numerical model 

for a A2 type laminate (with cork, left fixed end). 

 

Figure 34 – Dynamic response in frequency domain of specimens A1 and A2. 

 

 
 

(a) 1st mode shape (b) 2nd mode shape 

  

(c)3rd mode shape (d)4th mode shape 

Figure 35 - Mode shapes obtained from the numerical model for a CFRP + Cork (A2 type with 

left fixed end). 
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4.3  Summary of results    

Given the various effects of design parameters on the loss factor variation, we are now in 

position to point out the best material’s configuration for the maximization of the damping 

characteristics. This information is determinant to support a judicious design phase of 

composite laminates with embedded viscoelastic layers. 

Table 7 is a summary of numerical results regarding the best laminate configurations for each 

vibration mode. The percentage variation are calculated having the plain CFRP sample as 

reference and considering and identical number of reinforcing plies. As far as damping is 

concerned, configuration G1 ([  / C /  / C /  ]) is the best solution for the first mode of 

vibration, presenting a 6% increase in the loss factor. For the second mode, the increase on 

damping ascends up to 129% for the C2 type configuration ([   / C /   ]), which in fact is the 

one with greater loss factor. The increase tendency on the loss factor is particularly notable 

for high frequencies, as the variation for the third mode is 198% and 276% for the last mode 

analysed. In both cases, the best material configuration is specimen F1, which corresponds to 

a material’s configuration with a double-cork layer in the laminate’s middle plane.   

 

Table 7 – Best CFRP type configuration for optimum modal loss factor 

Mode of 

vibration 

Maximum 

loss factor 

(      Configuration Type 

Percentage 

variation (compared 

with the plain sample) 

Mode 1 

0.0110 

G1 

[   / C /   / C /   ] 

 

6 % 

Mode 2 

0.0125 

C2 

[   / C /   ] 

 

129 % 

Mode 3 

0.0159 

F1 

[   /    /   ] 

 

198 % 

Mode 4 

0.0204 

F1 

[   /    /   ] 

 

276 % 
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Chapter 5  

 

Conclusions 

This study characterizes the effects and dynamic response resulting from the application of a 

constrained viscoelastic layer in CFRP laminates as a passive damping treatment. Numerical 

results, supported by experimental data, are quite conclusive about the improvement of 

damping characteristics as a result of the inclusion of a viscoelastic cork based material. The 

effect of the distinct design variables was evaluated through a parametric study which 

allowed to draw the following major conclusions: 

 The introduction of a viscoelastic layer proved to be an effective solution to improve 

structural damping without implying a significant increase in the system’s structural 

weight. In general terms, loss factor values for hybrid cork-based composites revelled 

to be twice of those for plain composites (average numbers and for the same layup 

stacking sequence); 

 The damping effects become predominant towards the upper limit of the frequency 

range considered in this work (from 10 to 1500 Hz); 

 Layup stacking sequence has a distinct influence on the damping properties of 

laminates depending on the presence of a viscoelastic layer. In fact, while plain CFRP 

specimens showed an undistinguished effect regarding the fibre arrangement, 

unidirectional cork-based materials presented a higher loss factor value against cross-

ply laminates. Furthermore, this effect becomes more evident for higher laminate 

thicknesses, indicating that the layup sequence can be a very important design 

variable in thicker composites; 

 The thickness of the viscoelastic layer has a strong influence in the loss factor value, 

showing a nearly linear dependency up to 4-5 mm. Beyond this threshold, the loss 

factor variation is much smaller and tends to a stable value, which means that the 

gain in damping capabilities can be compromised by the considerable weight increase 

of the laminate. Such conclusion is of a particular interest for aerospace applications 

regarding the systems’ weight saving; 

 Specimens with the viscoelastic layer placed in the laminate’s middle-plane provide 

higher loss factor values than other relative positions along the thickness wise 
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direction, which can be explained by the dissipative effect resulting from high shear 

loading between the damping layer and constraining layers; 

 From the loss factor percentage variation observed between specimens with and 

without cork layer, it is possible to conclude that the damping effect resulting from 

the viscoelastic material is more substantial for high frequencies. In fact, for the first 

mode of vibration the percentage variation is only around 6%, whereas in the fourth 

mode loss factor increases more than twice; 

 The model validation provides useful information concerning the results’ accuracy 

and validity. The average percentage difference between experimental and numerical 

results was inferior to 7.9%, which is less than typical experimental scatter. Such 

numerical model may be presented as a great study platform capable to provide 

easier, cheaper and faster damping characteristics estimation (especially of 

composites with constrained viscoelastic layers) when compared with experimental 

methods. 

These conclusions are unquestionable about the feasibility of using composite materials with 

viscoelastic materials in many engineering applications where vibration control is required, 

without compromising (in a significant scale) the system weight.  However, such widespread 

solution will constantly entail viscoelastic numerical models concerning the respective 

dynamic behaviour of the overall structure.  Consequently, engineers have to persistently 

continuing the development of more accurate models, with less limitations, to characterize 

the impact of vibrations on the integrity of aircraft structures. 

 

Future work 

Despite of the good correlation between numerical and experimental results, there are some 

viscoelastic theories needing to be implemented to improve the model accuracy and to 

validate its applicability for others types of viscoelastic materials. Furthermore, an 

optimization procedure could be developed to provide additional information about important 

design aspects for this type of materials, allowing a more precise and throughout full 

knowledge about damping optimization.  
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Annex A – Experimental versus Numerical results plots. 

 

  

Figure A.1 – Numerical and experimental results obtained for type A2. 

 

 

Figure A.2 – Numerical and experimental results obtained for type B1. 
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Figure A.3 – Numerical and experimental results obtained for type B2. 

 

 

 

Figure A.4 – Numerical and experimental results obtained for type C1. 
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Figure A.5 – Numerical and experimental results obtained for type C2 

 

 

Figure A.6 – Numerical and experimental results obtained for type D1. 
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Figure A.7 – Numerical and experimental results obtained for type E1. 

 

 

Figure A.8 – Numerical and experimental results obtained for type F1. 
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Figure A.9 – Numerical and experimental results obtained for type G1. 
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Annex B – Dynamic response in frequency domain plots. 

 

 

Figure B.1 – Dynamic response in frequency domain of specimens B1 and B2. 

 

 

Figure B.2 – Dynamic response in frequency domain of specimens C1 and C2. 
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Figure B.3 – Dynamic response in frequency domain of specimens D1 and D2. 
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C.1   

 
 

A Passive Approach to the Development of High Performance 

Composite Laminates with Improved Damping Properties 

 

J.M. Silva1, M. Píriz1, P.V. Gamboa1, R. Cláudio2,3, N. Nunes2, and J. Lopes1 

 

 
1 AeroG/LAETA – Aeronautics and Astronautics Research Center, University of Beira Interior, Covilhã, Portugal 

2  Department of Mechanical Engineering, Instituto Politécnico de Setúbal, Portugal 

3 ICEMS, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal. 

 

Abstract 

This paper explores the use of a viscoelastic material as a passive and straightforward 

solution towards the development of a hybrid composite material with improved damping 

properties.  A cork based composite was elected as viscoelastic material due to its low weight 

combined with excellent damping properties, showing a great potential for vibration control. 

Two forms of specimens were considered: 1) a sandwich consisting of carbon-epoxy 

facesheets and a cork agglomerate core; 2) a carbon-epoxy laminate with embedded cork 

granulates. The experimental determination of the loss factor was based on the bandwidth 

method, being a determinant step to obtain relevant dynamic properties of the material for 

the development of an accurate computational model based on the different types of 

geometries.  

Results are encouraging about the possible use of cork based composites as a viable passive 

solution to improve the damping properties of high performance composites according to the 

design requirements for particular applications.   

 

Keywords: Sandwich components, viscoelastic material, composite material, structural 

damping, loss factor, cork. 
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2  Department of Mechanical Engineering, Instituto Politécnico de Setúbal, Portugal 
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Abstract 

This paper addresses the problem of improving the loss factor of carbon-epoxy laminates with 

embedded viscoelastic layers. A cork based agglomerate was elected as viscoelastic material 

due to its low weight combined with excellent damping properties, showing a great potential 

for vibration control. A micro-sandwich type geometry was adopted as this provides a good 

compromise between structural efficiency and easiness of inclusion of the damping material.  

A numerical model was developed in order to obtain the best material configuration in terms 

of its damping response. Distinct design variables were considered to assess their influence in 

the loss factor variation, namely: damping layer thickness and its relative position within the 

laminate, number of viscoelastic layers and effect of different layup stacking sequences. 

Numerical results were compared with experimental data as this was a determinant step to 

obtain accurate computational models regarding the different types of geometries.  

Results are encouraging about the possible use of cork based composites as a viable passive 

solution to improve the damping properties of high performance composites, giving rise to an 

increase of the loss factor as well as a change of the natural frequencies of the structure 

according to the design requirements for particular applications. 

 

 

Keywords: Viscoelastic material, composite material, structural damping, loss factor, cork. 


