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Resumo 

 

As células germinativas em desenvolvimento utilizam lactato, um produto do 

metabolismo da glicose das células de Sertoli (SCs), como a principal fonte de energia. O 

papel dos androgénios e estrogénios na modulação do metabolismo energético das células 

testiculares tem vindo a ser estudado, particularmente nas SCs. O presente estudo tem como 

objetivo explorar o efeito de hormonas esteróides sexuais sobre as vias envolvidas no 

metabolismo da glicose em SCs de ratos. Foram analisados os níveis de mRNA de 

transportadores de glicose (GLUT1 e GLUT3), fosfofrutoquinase-1 (PFK1) e lactato 

desidrogenase isoforma C (LHD C) por RT-PCR, e por Western Blot foram analisados os níveis 

proteicos de GLUTs, PFK-1, LDH e transportador de ácidos monocarboxílicos 4 (MCT4). Foram 

utilizadas para este estudo culturas primárias de SCs de ratos imaturos tratadas com 17β-

estradiol (E2) ou 5α -dihidrotestosterona (DHT). Os resultados obtidos demonstram que tanto 

o E2 como o DHT regulam os níveis de transcrição da PFK1, GLUT1 e GLUT3. No entanto, 

apenas as células tratadas com DHT apresentam uma diminuição nos níveis de transcrição da 

LDH C. Curiosamente, os níveis de proteína destas enzimas e transportadores permaneceram 

inalterados, exceto em células tratadas com DHT que apresentaram uma diminuição 

significativa nos níveis proteicos de GLUT1, pondo em evidência uma possível via para a 

regulação do metabolismo da glicose em SCs por androgénios. Em conjunto, estes resultados 

demonstraram uma relação entre a ação das hormonas esteróides sexuais e metabolismo 

energético das SCs, facultando novas evidências sobre os mecanismos através dos quais o E2 e 

a DHT exercem a sua função como moduladores do metabolismo da glicose em SCs de rato. 

 

 

Palavras-chave: 

 

Células de Sertoli; metabolismo energético, androgénios, estrogénios, transportadores de 

glicose  
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Resumo Alargado 

 

O metabolismo dos carboidratos em células de Sertoli (SCs) tem vindo a ser debatido 

desde a década de 80 do século passado, pois este processo bioquímico apresenta algumas 

características únicas. De facto, foi descrito que as SCs podem adaptar o seu metabolismo, a 

fim de assegurar uma concentração de lactato adequada no microambiente onde as células 

germinativas se desenvolvem. As células germinativas em desenvolvimento utilizam lactato, 

um produto do metabolismo da glicose das SCs, como a principal fonte de energia. O papel 

dos androgénios e estrogénios na modulação do metabolismo energético das células 

testiculares tem vindo a ser estudado, particularmente no das SCs.  

O presente estudo tem como objetivo explorar o efeito de hormonas esteróides sexuais 

sobre as vias envolvidas no metabolismo da glicose em SCs de ratos. Foram analisados os 

níveis de mRNA de transportadores de glicose 1 e 3 (GLUT1 e GLUT3), fosfofrutoquinase-1 

(PFK1) e lactato desidrogenase isoforma C (LHD C) por RT-PCR, e por Western Blot foram 

analisados os níveis proteicos de GLUT1 e GLUT3, PFK1, LDH e transportador de ácidos 

monocarboxílicos 4 (MCT4). Foram utilizadas para este estudo culturas primárias de SCs de 

ratos imaturos tratadas com 17β-estradiol (E2) ou 5α -dihidrotestosterona (DHT). 

No presente estudo, foi possível observar que tanto o E2 e a DHT diminuíram os níveis de 

mRNA de enzimas-chave relacionadas com a glicólise e de transportadores de glicose, embora 

os níveis de proteína nem sempre refletiram essas alterações. A diminuição dos níveis mRNA 

pode ser atribuída a alterações nas taxas de síntese ou degradação de mRNA ou a ambos. 

Assim, existe a possibilidade de que, em SC de ratos, a modulação das quantidades de mRNA 

analisadas pelo E2 e a DHT seja exercida ao nível da transcrição e/ou pós-transcricional ou 

que a modulação da expressão proteica seja regulada por outros mecanismos ou numa janela 

temporal distinta. Os resultados obtidos demonstram que tanto o E2 como o DHT regulam os 

níveis de transcrição da PFK-1, GLUT1 e GLUT3. No entanto, apenas as células tratadas com 

DHT apresentam uma diminuição nos níveis de transcrição da LDH C. Curiosamente, os níveis 

de proteína destas enzimas e transportadores permaneceram inalterados, exceto em células 

tratadas com DHT que apresentaram uma diminuição significativa nos níveis proteicos de 

GLUT1, pondo em evidência uma possível via para a regulação do metabolismo da glicose em 

SCs por androgénios.  

Em conclusão, e embora as culturas SCs primárias possam não representar exatamente a 

situação in vivo, a sua utilização permite um melhor conhecimento sobre o funcionamento do 

conjunto de eventos associados ao metabolismo destas células, que são cruciais para o 

desenvolvimento as células germinativas e, portanto, para a espermatogénese. Em conjunto, 

estes resultados demonstraram uma relação entre a ação das hormonas esteróides sexuais e 

metabolismo energético das SCs, facultando novas evidências sobre os mecanismos através 
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dos quais o E2 e a DHT exercem a sua função como moduladores do metabolismo da glicose 

em SCs de rato, com influência direta sobre a espermatogénese e a fertilidade masculina.  
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Abstract 

 

Developing germ cells use lactate, derived from glucose metabolism of Sertoli cells (SCs), 

as their main energy source. Androgens and estrogens have been implicated in the modulation 

of testicular cells energy metabolism, particularly in SCs. The goal of the present study was 

to shed light on the effects of sex steroid hormones on glucose metabolic pathways in rat SCs. 

The mRNA levels of glucose transporters 1 and 3 (GLUT1 and GLUT3), phosphofructokinase 1 

(PFK1) and lactate dehydrogenase chain C (LHD C) were analyzed by RT-PCR, and protein 

levels of GLUTs, PFK1, LDH and monocarboxylate transporter 4 (MCT4) were analyzed by 

Western Blot, in enriched primary cultures of immature rat SCs treated with 17β-estradiol 

(E2) or 5α-dihydrotestosterone (DHT). Our results show that both E2 and DHT downregulated 

the gene transcript levels of PFK-1, GLUT1 and GLUT3. However, only DHT-treated cells 

presented a downregulation of LDH C gene transcript levels. Interestingly, the protein levels 

of these enzymes and transporters remained unaltered except in DHT-treated cells that 

presented a significant decrease on GLUT1 protein levels evidencing a possible pathway for 

the regulation of glucose metabolism in SCs by androgens. Taken together, these results 

demonstrated a relationship between the action of sex steroid hormones and energy 

metabolism of SCs, providing evidences for the mechanisms by which E2 and DHT exert their 

function as modulators of rat SCs glucose metabolism.  

 

 

Keywords:  

 

Sertoli cells; energy metabolism; androgens; oestrogens; glucose transporters  

 

  



xi 
 

Table of Contents 

 

I. Introduction ................................................................................................1 

1. Sertoli cells ............................................................................................... 2 

1.1 .General Aspects ....................................................................................... 2 

1.2 .Sertoli cells and Spermatogenesis ................................................................. 5 

1.3 .Sertoli cells and Sex Steroid Hormones ........................................................... 8 

2. Sertoli Cells Metabolism .............................................................................. 11 

2.1 .Hormonal Regulation of Sertoli Cells Metabolism ............................................. 13 

II. Aim of the Project  ..................................................................................... 15 

III. Material and Methods .................................................................................. 17 

1. Chemicals ............................................................................................... 18 

2. Primary Cultures of Rat SCs .......................................................................... 18 

3. Hormonal Treatments ................................................................................. 19 

4. RNA Extraction ......................................................................................... 19 

5. RT-PCR ................................................................................................... 20 

6. Total Protein Extraction .............................................................................. 21 

7. Western Blot ............................................................................................ 22 

8. Statistical Analysis ..................................................................................... 22 

IV. Results ..................................................................................................... 23 

1. E2 decreases mRNA levels of GLUT1, GLUT3 and PFK ........................................... 24 

2. DHT modulates glucose transporters in cultured SCs ............................................ 25 

3. DHT decreases mRNA levels of PFK and LDH C ................................................... 26 

V. Discussion ................................................................................................. 28 

VI. References ............................................................................................... 31 

 

  



xii 
 

List of Figures 

 

Figure 1: Testis and epididymis............................................................................. 2 

Figure 2: Schematic illustration of the seminiferous tubule and the blood-testis barrier ....... 4 

Figure 3: Schematic representation of the blood-testis barrier and of spermatogenesis ........ 5 

Figure 4: Simplified diagram of the hypothalamus-pituitary-testis axis control of 

spermatogenesis.................................................................................. 7 

Figure 5: Schematic illustration of Sertoli cell metabolism ......................................... 11 

Figure 6: Effect of 17-β-Estradiol (E2) on Glucose transporter 1 (GLUT1), Glucose transporter 

3 (GLUT3), Phosphofructokinase (PFK) and Lactate Dehydrogenase C (LHD C) mRNA 

levels in rat Sertoli cells ...................................................................... 24 

Figure 7: Effect of 17-β-Estradiol (E2) on Glucose transporter 1 (GLUT1), Glucose transporter 

3 (GLUT3), Phosphofructokinase (PFK) and Lactate Dehydrogenase (LHD) and 

Monocarboxylate Transporter 4 (MCT4) protein levels in rat Sertoli cells ........... 25 

Figure 8: Effect of 5-α-Dihydrotestosterone (DHT) on Glucose transporter 1 (GLUT1), Glucose 

transporter 3 (GLUT3), Phosphofructokinase (PFK) and Lactate Dehydrogenase C 

(LHD C) mRNA levels in rat Sertoli cells ................................................... 26 

Figure 9: Effect of 17-β-Estradiol (E2) on Glucose transporter 1 (GLUT1), Glucose transporter 

3 (GLUT3), Phosphofructokinase (PFK-1) and Lactate Dehydrogenase (LHD) and 

Monocarboxylate Transporter 4 (MCT4) protein levels in rat Sertoli cells ........... 27 

  



xiii 
 

List of Tables 

 

Table 1: Oligonucleotides and Cycling Conditions for PCR Amplification of Glucose transporter 

1 (GLUT1), Glucose transporter 3 (GLUT3), Phosphofructokinase (PFK) and Lactate 

Dehydrogenase C (LHD C) and 18S. ........................................................... 21 

 

  



xiv 
 

Abbreviations  

 

AMPK – AMP-activated Protein Kinase 

ARKO - Androgen Receptor Knock-out 

ARs – Androgen Receptors 

bFGF – Fibroblast Growth Factor 

BSA - Bovine Serum Albumin 

BTB – Blood-Testis Barrier 

cAMP - Cyclic Adenosine Monophosphate  

cDNA - Complementary Deoxyribonucleic Acid 

DAB - 3,3’ Diaminobenzidine Hydrochloride 

DHT - 5-α-dihydrotestosterone 

DMEM: Ham’s F12 - Dulbecco’s Modified Eagle Medium Ham’s Nutrient Mixture F12 

DNA - Deoxyribonucleic Acid 

E2 – 17-β-Estradiol 

EDTA - Ethylene Diamine Tetra Acetic acid  

EGF – Epidermal Growth Factor 

ERKO - Estrogen Receptor Knock-out 

ERs – Estrogen Receptors 

ERα – Estrogen Receptor α 

ERαKO - Estrogen Receptor α Knock-out 

ERβ – Estrogen Receptor β 

ERβKO - Estrogen Receptor β Knock-out 

EtOH – Ethanol 

F-1,6-BP – Fructose-1,6-Biphospate 



xv 
 

FBS - Fetal Bovine Serum  

FSH – Follicle-Stimulating Hormone 

FSHRKO - Follicle-Stimulating Hormone Receptor Knock-out 

GLUT1 – Glucose Transporter 1 

GLUT14 – Glucose Transporter 14 

GLUT3 – Glucose Transporter 3 

GLUT8 – Glucose Transporter 8 

GLUTs – Glucose Transporters 

GnRH – Gonadotrophin-Releasing Hormone 

GnRH-R – Gonadotrophin-Releasing Hormone Receptor 

HBSS - Hank’s Balanced Salts Solution 

IGF–I – Insulin Growth Factor I 

ITS supplement - Insulin-Transferrin-Sodium Selenite supplement 

LDH - Lactate dehydrogenase  

LDH A - Lactate dehydrogenase A  

LDH B - Lactate dehydrogenase B  

LDH C - Lactate dehydrogenase C 

LDH C4 - Lactate dehydrogenase C4 

LH – Luteinizing Hormone 

LHRKO - Luteinizing Hormone Receptor Knock-out 

MCT1 – Monocarboxylate Transporter 1 

MCT2 – Monocarboxylate Transporter 2 

MCT3 – Monocarboxylate Transporter 3 

MCT4 – Monocarboxylate Transporter 4 

MCTs – Monocarboxylate Transporters 



xvi 
 

M-MLV RT - Moloney Murine Leukemia Virus Reverse Transcriptase 

mRNA - Messenger Ribonucleic Acid 

NADPH - Nicotinamide Adenine Dinucleotide Phosphate  

PBS – Phosphate Buffered Saline 

PCR – Polymerase Chain Reaction  

PFK – Phosphofructokinase  

PFK1 – Phosphofructokinase 1 

RIPA - Radio-Immunoprecipitation Assay 

RNA - Ribonucleic Acid 

RNAt - Total Ribonucleic Acid 

SCARKO – Sertoli Cells Androgen Receptors Knock-out 

SCs – Sertoli Cells 

SHs – Steroid Hormones 

T - Testosterone  

TBS - Tris-Buffered Saline Solution 

  



xvii 
 

 

  



1 
 

 

 

 

 

 

 

 

I. Introduction  

  



2 
 

1. Sertoli cells 

 

1.1 . General Aspects 

Sertoli cells (SCs) represent the main somatic component of the tubular compartment of 

the testes. The testes are the primary reproductive organs in the male that have two basic 

functions: the production of spermatozoa and the production of hormones (Mikos et al. 1993; 

Foley 2001; Rato et al. 2010). In each of the testes, the testicular parenchyma is composed by 

seminiferous tubules (Figure 1A) and interstitial tissue, and is enclosed by the tunica 

albuginea (Figure 1B). 

 

Figure 1: Testis and epididymis. A, One to three seminiferous tubules fill each compartment and drain 
into the rete testis in the mediastinum. Efferent ductules become convoluted in the head of 
the epididymis and drain into a single coiled duct of the epididymis. The vas is convoluted in 
its first portion. B, Cross section of the tunica vaginalis, showing the mediastinum and 
septations continuous with the tunica albuginea. The parietal and visceral tunica vaginalis are 
confluent where the vessels and nerves enter the posterior aspect of the testis (Brooks 2007) 

 

In each testis of the rat, the seminiferous tubules are organized as longitudinally 

oriented coils that are arranged in funnel shape geometry and stacked within each other 

(Figure 1A). At the end of each seminiferous tubule, short areas of transitional epithelium are 

joined to form the rete testis. The germ cells are located in the seminiferous tubules, 

associated with somatic SCs that are responsible for the formation of the simple columnar 

epithelium, resting on the basal lamina and extending complex processes to enclose the germ 

cells throughout the epithelium (Figure 2) (Rodriguez-Sosa and Dobrinski 2009). The areas 
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between the seminiferous tubules, called interstitial space, vary from specie to specie (Foley 

2001). Normally, the interstitial tissue contains the blood and lymphatic vessels that are the 

main responsibles for the movement of hormones and nutrients into and out of the testis 

(O'Donnell et al. 2001). Within the interstitial compartment are located the Leydig cells 

(Figure 2) that were firstly described in 1850, but, only in 1903, their endocrine role in the 

control of male sexual characteristics was disclosed (Bouin P. 1903). The importance of these 

cells for male sex differentiation and fertility is unquestionable as they produce testosterone 

(T), which is the key hormone for a normal sex differentiation and male reproductive function 

(Martin and Tremblay 2010). The orientation and density of Leydig cells are also species-

dependent. For example, rats have few Leydig cells, and they can be found within lymphatic 

spaces, clustered around blood vessels and largely bathed in lymph fluid; on the other hand 

interstitial areas of monkeys and dogs have discrete lymphatic channels and Leydig cells are 

embedded in the connective tissue (Fawcett et al. 1973; Foley 2001). In the rat testis, 

besides Leydig cells, a resident tissue of macrophages can also be found, as part of interstitial 

cell population (Dirami et al. 1991; Foley 2001). 

Within the seminiferous tubules, closely associated to the basement membrane and 

surrounded by the peritubular myoid cells, we can find the SCs (Figure 2) (Dym and Fawcett 

1970; O'Donnell et al. 2001; Johnson et al. 2008). The SCs are arranged in a columnar shape, 

with long and thin mitochondria and at within their cytoplasm they possess lipofuscin and 

lipid droplets. The nuclei of these cells may have a variety of shapes, but normally they are 

oval or pear-shaped, with an irregular nuclear membrane. In face of its high metabolic rates, 

they possess an appropriate nuclear envelope, euchromatic nucleoplasm and large distinctive 

nucleolus as essential features (Johnson et al. 1991; Johnson et al. 2008). These cells have 

large dimensions, so they can support more than one germ cell. In fact this is a very 

important characteristic of SCs, not only to allow them to support multiple germ cells per 

each SC, but also to allow the movement of germ cells during the spermatogenesis (Mruk and 

Cheng 2004). SCs are the major responsibles for the regulation of spermatogenesis and for the 

different rates of spermatozoa production (Orth et al. 1988; Walker and Cheng 2005). These 

cells, known as “nurse cells” (Foley 2001), have many functions important not only for the 

development of the testicular function, but also to the expression of the male phenotype 

(Sharpe et al. 2003; Mruk and Cheng 2004). The main functions of the SCs are: (1) provide 

structural support and nutrition to developing of germ cells; (2) phagocytosis of residual 

bodies and degenerating germ cells; 3) production of a host proteins that regulate the release 

of spermatids; and 4) influence of mitotic activity of spermatogonia controlling the response 

to pituitary hormone release (Dym and Raj 1977; Feig et al. 1980; Jutte et al. 1982; Johnson 

et al. 2008).  
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Figure 2: Schematic illustration of the seminiferous tubule and the blood-testis barrier (BTB). The BTB 
is a physical barrier between the blood vessels and the seminiferous tubule lumen and is 
formed by tight connections between Sertoli cells (SCs). Outside the BTB is the basal 
compartment where spermatogonial renewal occurs and inside the BTB is the apical 
compartment where meiosis, spermiogenesis and spermiation take place. At the interstitial 
space are located the blood vessels and the Leydig cells. The cytoplasmic extensions that 
enwrap the developing germ cells are responsible for the structural support through a 
microtubular filament present in the cytoplasm of SCs. External to the basement membrane 
are several layers of modified myofibroblastic cells, termed peritubular cells, responsible for 
the irregular contractions of the seminiferous tubules, which propel fluid secreted by the SCs. 
Adapted from Rato et al. (2011) 

 

The adjacent SCs form tight junctions with each other, creating a tight barrier known as 

the blood-testis barrier (BTB) (Figure 2). These junctions have a porosity of approximately 

1000 Daltons, hence nothing with higher weight can pass to the tubule interior (Walker and 

Cheng 2005; Lie et al. 2009; Siu et al. 2009). The BTB creates a specialized microenvironment 

in the apical compartment of the seminiferous epithelium and segregates the entire event of 

post-meiotic germ cell development from the systemic circulation (Mruk and Cheng 2004; 

Wong et al. 2007; Li et al. 2009). Hence, BTB can also act as an immunological barrier since it 

separates the mature germ cells (spermatocytes and spermatids) from the immune system. 

This immune barrier continues into the epididymal ducts that transport and store 

spermatozoa (Johnson et al. 2008). Since the BTB is the barrier between germ cells localised 

in the basal and the adluminal compartments, molecular events of junctional disassembly and 

assembly in SCs membranes are responsible for the movement of the germ cells from the 

basal to the adluminal compartments of the seminiferous epithelium (Wong and Cheng 2005; 

Li et al. 2006; Johnson et al. 2008). 
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1.2 . Sertoli cells and Spermatogenesis 

Spermatogenesis is the maturation process of germ cells that undergo division, meiosis 

and differentiation to generate haploid elongated spermatids. For the success of this process, 

which takes place within seminiferous tubules, it is necessary a close association of germ cells 

with the SCs (Figure 3) (O'Donnell et al. 2001; Rato et al. 2010). 

 

   

Figure 3: Schematic representation of the blood-testis barrier and of spermatogenesis. The seminiferous 
epithelium is composed of Sertoli (SCs) and developing germ cells at different stages. Leydig 
cells and blood vessels are in the interstitium. Spermatogenesis is the cellular division and 
transformation that produces male haploid germ cells from diploid spermatogonial stem cells. 
Continuous sperm production is dependent upon several intrinsic (SCs and germ cells), 
extrinsic (hormonal) factors. The supporting Scs adhere to the basement membrane where 
spermatogonia are also adherent. Spermatogonia type A divide and develop into 
spermatogonia type B, which enter meiotic prophase and differentiate into primary 
spermatocytes that undergo meiosis I to separate the homologous pairs of chromosomes and 
form the haploid secondary spermatocytes. Meiosis II yields four equalized spermatids that 
migrate toward the lumen where fully formed spermatozoa are finally released. 
Abbreviations: BTB, Blood-testis Barrier. Adapted from Rato et al. (2012)  

 

The spermatogenesis in the rodent testes begins a short time after the birth and takes 

place within the seminiferous epithelium. The development of the germ cells is a process 

complex, extremely well regulated and divided in four steps, mitosis, meiosis, spermiogenesis 

and spermiation (O'Donnell et al. 2001; Lie et al. 2009). These events can be described as a 

cycle of cellular changes that can be further divided in stages. In rats there are 14 stages 

(Cheng et al. 2010), during which germ cells can be found from the periphery until the centre 
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of the seminiferous tubule, according to their degree of maturation (Figure 2) (Wang et al. 

2011).  

Spermatogonia are the undifferentiated germ cells that enter in mitosis originating type 

A, intermediate and type B spermatogonia (de Rooij and Russell 2000; Lie et al. 2009). Only 

type B spermatogonia differentiate into leptotene spermatocytes that cross the BTB into the 

adluminal compartment of the seminiferous epithelium (Wong et al. 2005; Lie et al. 2009). 

The next stage of the spermatogenesis is the transformation in pachytene spermatocytes and 

posterior entrance in meiosis I, followed by meiosis II and consequent formation of 

spermatids. The spermatids are localized near to tubule lumen, and suffer spermiogenesis, 

characterized by extensive morphological, chromosomal condensation and formation of the 

acrosome, tail and residual body (Lie et al. 2009). At the end of this process, the mature 

spermatids are released into to the tubule lumen (Figure 2), and proceed through the duct 

system to the epididymis where they suffer several biochemical changes, to become the 

motile spermatozoa capable of fertilization (O'Donnell et al. 2001). 

Spermatogenesis is a complex process that is finely regulated by multiple hormones (Bull 

et al. 2000; O'Donnell et al. 2001). This regulation starts in the hypothalamus, by the 

intermittent releasing of gonadotrophin-releasing hormone (GnRH), which binds with high-

affinity to the gonadotrophin releasing hormone -receptor (GnRH-R) on the anterior pituitary 

(Naor 1990; Bull et al. 2000; Harrison et al. 2004). In the anterior pituitary, GnRH regulates 

the production and releasing of luteinizing hormone (LH) and follicle-stimulating hormone 

(FSH) (Naor 1990; Shupnik 1996; Botte et al. 1999) that stimulate the synthesis of the sex 

steroid hormones (SHs) and gametogenesis in the testis (Figure 4) (Botte et al. 1999; Harrison 

et al. 2004). Allan and collaborators (2004) have described the vital role of FSH in 

determining the mitotic proliferation capacity of SCs, and its important role in stimulating 

mitotic germ cell proliferation and meiotic germ cell development, but the limited and 

incomplete postmeiotic progress initiated by FSH, confirmed that LH activity is critical for the 

conclusion of spermatogenic progress.  

In the testis, LH which is a heterodimeric glycoprotein hormone, plays crucial roles in the 

regulation of vertebrate reproductive functions (Chopineau et al. 1999). This hormone 

controls, via Leydig cells, the production of SHs, namely T (Dym and Raj 1977; McLachlan et 

al. 2002) and hence seems to be crucial to a normal spermatogenesis (Figure 4) (Zhang et al. 

2004). Pakarainen and colaborators (2005) have described that in luteinizing hormone 

receptor knock-out (LHRKO) mice, spermatogenesis is arrested at round spermatids, adult-

type Leydig cells are absent, and T production is dramatically decreased; although T 

treatments in hypogonadal LHRKO male mice restored spermatogenesis, and fertility.  
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Figure 4: Simplified diagram of the hypothalamus-pituitary-testis axis control of spermatogenesis. The 
two pituitary hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are 
responsible for the connection between the brain and the testis. The production of inhibin by 
Sertoli Cells (SCs) and testosterone (T) by Leydig cells provide a negative feedback control 
that results in reduction of gonadotrophin-releasing hormone (GnRH) production in the 
hypothalamus and reduce LH and FSH production on pituitary, thus maintaining the 
homeostasis of FSH, LH, T and inhibin. All these hormones and factors have a tight control on 

spermatogenesis. Abbreviations:  -positive feedback;  - negative feedback.  

 

FSH is also a glycoprotein that regulates the development, growth, puberty and the 

reproductive function (Grigorova et al. 2010). In the testes, FSH receptors are exclusively 

located on SCs (Figure 4), and this hormone has an important role in the development of the 

immature testis, acting predominantly on SCs proliferation (McLachlan et al. 2002; Walker 

and Cheng 2005). Krishnamurthy and collaborators (2000) have described that follicle-

stimulating hormone receptor knock-out (FSHRKO) male mice presented a reduction in testis 

and epididymis weight, smaller seminal vesicles and seminiferous tubular diameter, and a 

reduction in serum T levels, that most likely accounts for the lowering of the weight of sex 

accessories. It has also been described that FSHRKO-Sertoli cell androgen receptor knock-out 

(SCARKO) mice presented reduced total germ cell numbers, and that although those cells 

entered meiosis, their development stopped at early pachytene (Abel et al. 2008). 
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It has been demonstrated that the direct effects of FSH are independent of androgens 

(O'Shaughnessy et al. 2010). FSH acts only during the initial stages of spermatogenesis to 

optimise germ cell number and cannot stimulate completion of meiosis, which is entirely 

dependent on androgen action. FSHRKO mice are fertile, although their testis weight is 

reduced (Abel et al. 2000), showing that the inability to respond to FSH does not impair 

fertility, even if testicular weight is reduced and if the feedback regulation of pituitary 

gonadotrophins and intratesticular paracrine connections is disturbed. Used in infertility 

treatments of aligospermic or teratozzospermic men, FSH increases the number of sperm with 

normal ultrastructural characteristics (Acosta et al. 1992; Bartoov et al. 1994; Glander and 

Kratzsch 1997). 

 

1.3 . Sertoli cells and Sex Steroid Hormones 

Sex SHs are lipophilic molecules derived from cholesterol and synthesized in the adrenal 

cortex (glucocorticoids, mineralocorticoids, and adrenal androgens), in the testes (testicular 

androgens and estrogens), and in the ovary and placenta (estrogens and progestagens or 

progestins). The bloodstream delivers these hormones, via a carrier protein and due to their 

lipophilic nature they can cross the cellular membrane freely by simple diffusion (Beato and 

Klug 2000). 

Androgens are known as the male sex hormone and include a number of steroids, such as 

T, androstenediol and 5-α-dihydrotestosterone (DHT), amongst others. The testes are 

responsible for 90-95% of the androgens production and the remaining are produced in the 

adrenal glands (Liang and Liao 1992; Chuu et al. 2011). They have a central role in 

masculinisation of the reproductive tract, genitalia, and other organ systems during the 

sexual differentiation process (Hughes 2001; Sultan et al. 2001). During the adulthood, the 

androgens action on seminiferous tubules has a crucial role for the maintenance of a normal 

spermatogenesis and fertility. These androgen-related effects are essentially mediated by 

SCs, although their exact mechanisms remain unclear (Hill et al. 2004; Tan et al. 2005). 

The androgen receptors (ARs) are responsible for mediating the action of androgens. 

They are members of the nuclear receptor super family, encoded by an X chromosomal gene 

(Lubahn et al. 1988; Quigley et al. 1995). The main circulating androgen is T, that once in the 

cells may be converted to DHT by 5α-redutase (Grossmann et al. 2001; Le et al. 2006; 

Thackare et al. 2006) in an irreversible reaction (Thackare et al. 2006). DHT has 

approximately three times more affinity for ARs than T and has 15-20 times more affinity than 

adrenal androgens (Liang and Liao 1992; Grossmann et al. 2001; McLachlan et al. 2002; Le et 

al. 2006). 
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De Gendt and collaborators (2004) described that the adult male androgen receptor 

knock-out (ARKO) mice presented a phenotype consistent with complete androgen 

insensitivity syndrome. When compare with the ARKO males, SCARKO males displayed normal 

development of epididymis, ductus deferens, coagulating gland, seminal vesicles, and 

prostate. Morphological analysis of SCARKO testes described apparently normal germ cells 

that entering meiosis, but as the spermatogenic cycle progresses the efficiency of a normal 

spermatogenesis was lost. The serum levels of T and LH in SCARKO animals revealed no 

significant difference, that were reflected in similar organ weights of most androgen target 

tissues (De Gendt et al. 2004). Nevertheless, Chang and collaborators (2004) have described 

that SCARKO mice have smaller testis, hypotestosteronemia, and are infertile whit 

azoospermia, with spermatogenesis arrested at the pre-meiotic diplotene stage. Abel and 

collaborators (2008) have showed that SCARKO mices presented less germ cells and there was 

an apparent loss of pachytene spermatocytes, with a clear decrease in the number of 

secondary spermatocytes and few round spermatids. 

Estrogens also play an important role in the development and maintenance of the male 

reproductive function and fertility (Nilsson et al. 2001; O'Donnell et al. 2001; Carreau et al. 

2008). Estrogen biosynthesis is catalysed by a microsomal member of the cytochrome P450 

superfamily, the aromatase cytochrome P450 (O'Donnell et al. 2001). The capacity of the 

mammalian tissues to express aromatase and synthesize estrogens can be observed in the 

ovaries and testes, the placenta and fetal liver, adipose tissue, chondrocytes and osteoblasts 

of bone, and the hypothalamus, limbic system, and cerebral cortex (O'Donnell et al. 2001). In 

rats, aromatase and the capacity to synthesize estrogens is a characteristic of the adipose 

tissue (Monteiro et al. 2008), the corpus luteum (Doody et al. 1990) and the brain (Lephart 

1996). In the testes, aromatase is also expressed, particularly in immature SCs (Fritz et al. 

1976; Abney 1999), in Leydig cells of adult male rodents (Valladares and Payne 1979; Abney 

1999), in round spermatids, in elongating spermatids and in the late spermatids (Janulis et al. 

1996). 

Estrogens have two action pathways, the classic genomic pathway of ligand via the 

interaction of specific estrogen receptors (ERs) with target genes (Kuiper et al. 1997) or by 

changing the intracellular concentration of calcium or cyclic adenosine monophosphate 

(cAMP) second messengers (Morley et al. 1992; Aronica and Katzenellenbogen 1993). In the 

genomic pathway, estrogens actions involve ligand binding to estrogen receptor, dissociation 

of chaperone complexes and receptor phosphorylation; receptor dimerization; nuclear 

translocation; DNA binding and interaction with cofactors; and modulation of transcriptional 

activity (O'Donnell et al. 2001). The estrogens can also rapidly induce increases in the 

concentration of calcium or cAMP second messengers (Morley et al. 1992; Aronica and 

Katzenellenbogen 1993) in what seems to be a non genomic mechanism of action (Revelli et 

al. 1998), apparently via receptors on the plasma membrane. Additionally, physiological 
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concentrations of estradiol can also induce a rapid release of nitric oxide in endothelial cells 

via membrane-bound receptors (Caulin-Glaser et al. 1997). 

ERs are members of the large ligand-activated nuclear receptor super-family (O'Donnell 

et al. 2001; Boukari et al. 2007). The classic action of estrogens is mediated by the activation 

of two specific receptors in target cells, estrogen receptor α (ERα) and estrogen receptor β 

(ERβ), with highly homologous ligand-inducible transcription factors being responsible for 

regulation of the expression of specific genes (Boukari et al. 2007). The ERα are expressed in 

various cellular types of the testicular tissue (Cavaco et al. 2009), namely SCs (Taylor and Al-

Azzawi 2000), Leydig cells (Pelletier and El-Alfy 2000; Taylor and Al-Azzawi 2000), 

spermatocytes (Pentikainen et al. 2000), spermatids (Durkee et al. 1998) and spermatozoa 

(Durkee et al. 1998; Aquila et al. 2004; Solakidi et al. 2005). The ERβ are also expressed in 

the various cell types of the testicular tissue (Cavaco et al. 2009), namely in SCs (Pelletier 

and El-Alfy 2000; Saunders et al. 2001; Saunders et al. 2002), Leydig cells (Pelletier and El-

Alfy 2000; Saunders et al. 2001), myoid peritubular cells (Saunders et al. 2001), 

spermatogonia (Makinen et al. 2001; Saunders et al. 2001; Saunders et al. 2002), 

spermatocytes (Pentikainen et al. 2000; Makinen et al. 2001; Saunders et al. 2002), 

spermatids (Pentikainen et al. 2000; Makinen et al. 2001; Saunders et al. 2002; Lambard et 

al. 2004) and spermatozoa (Pentikainen et al. 2000; Aquila et al. 2004; Lambard et al. 2004; 

Solakidi et al. 2005). 

In mice, it has been demonstrated that estrogen receptor knock-out (ERKO) males 

presented a reduced mating frequency, low sperm numbers, and defective sperm function 

(Eddy et al. 1996). Animal models with ERKO presented compromised spermatogenesis, 

steroidogenesis and fertility (Eddy et al. 1996; Dupont et al. 2000; Lazari et al. 2009). Weiss 

and collaborators (2008) demonstrated that the seminiferous epithelium of ERKO mice was 

thinner and spermatogenesis was decreased. Lee and collaborators (2000) have described that 

in estrogen receptor α knock-out (ERαKO) mice the concentration of sperm in the caudal 

epididymis was reduced, and that those animals had a disruption of spermatogenesis with 

dilated seminiferous tubules and rete testis. It has also been showed that the testis weight of 

ERαKO mice was significantly reduced (Gould et al. 2007), and that these animals presented 

disrupted seminiferous tubules with a partial or complete loss of germ cells, spermatogonia, 

spermatocytes and spermatids, and also plasma and testicular T concentrations significantly 

increased; they have described, as well, in estrogen receptor β knock-out (ERβKO) mice, that 

the number of Leydig cells and spermatogonia per testis was significantly increased, although 

the increase of Leydig cells number was not followed by a significant increase in testicular or 

plasma T concentrations.  
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2. Sertoli Cells Metabolism 

 

During the development of spermatogenesis, germ cells energetic needs are altered 

(Brauchi et al. 2005). In the early stages of development the germ cells use glucose as 

nutrient, which is freely available from the systemic circulation (Riera et al. 2002; Brauchi et 

al. 2005). In later stages of their development, germ cells loose this ability to metabolize 

glucose (Boussouar and Benahmed 2004). In fact, whereas spermatogonia use glucose for 

energy supply, spermatids and spermatocytes are dependent on lactate (Figure 5) (Jutte et 

al. 1982; Nakamura et al. 1984; Bajpai et al. 1998). However, spermatozoa can use glucose 

and fructose as their main energy sources (Jutte et al. 1982; Bajpai et al. 1998). 

 

 

Figure 5: Schematic illustration of Sertoli cell metabolism. Sertoli Cells (SCs) are capable of consuming 
a variety of fuels including glucose, lactate and fatty acids. SCs preferentially metabolize 
glucose, the majority of which is converted to lactate. Lactate and pyruvate are transported 
out of SCs via the family of proton-linked plasma membrane transporters known as MCTs, 
while glucose is imported via the GLUT family of membrane proteins. Glucose enters the 
glycolytic pathway, which results in the production of pyruvate, which can be converted into 
lactate, or alanine, or be transported, to the mitochondrial matrix, where it is oxidized and 
decarboxylated by pyruvate dehydrogenase, forming acetyl-CoA, which can enter the Krebs 
cycle. The oxidation of these substrates is coupled with ADP phosphorylation, via the electron 
transport chain to form ATP. Abbreviations: ALT: Alanine aminotransferase; GLUT1, glucose 
transporter 1; GLUT3, glucose transporter 3;LDH, Lactate dehydrogenase; TCA, tricarboxylic 
acid; MCT2, monocarboxylate transporter 2; MCT4, monocarboxylate transporter 4. Adapted 
from Rato et al. (2012) 
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SCs, due to their localization and function, have to meet the energy demands of 

developing germ cells. In SCs, carbohydrate metabolism presents some unique characteristics 

since the majority of glucose they metabolize is used to produce lactate and not directed for 

the Krebs cycle (Robinson and Fritz 1981; Grootegoed et al. 1986).  Robinson and Fritz (1981) 

reported that, once in culture, these cells use the majority of glucose to produced lactate, 

and only a small part (approximately 25%), is used to produce pyruvate for the Krebs cycle 

(Figure 5) (Grootegoed et al. 1986). Furthermore, in in vitro conditions, SCs pentose 

phosphate pathway is not at a maximum rate, and the rate of oxidative activity is determined 

by the rate of nicotinamide adenine dinucleotide phosphate (NADPH) oxidation (Robinson and 

Fritz 1981; Grootegoed et al. 1986). It has also been reported that SCs have the capacity to 

adapt their cellular metabolism according to the available substrates in order to supply the 

germ cells with the required lactate as they still produce lactate even in absence of glucose 

(Riera, Galardo et al. 2009). 

The SCs import glucose from the external medium (Hall and Mita 1984), using the glucose 

transporters (GLUTs) present on their membrane. The GLUTs are a family of structurally 

related glycoproteins. Until now there have been identified 14 GLUTs isoforms, named as 

glucose transporter 1 (GLUT1) to glucose transporter 14 (GLUT14) (Manolescu et al. 2007). 

Presently, GLUT1, glucose transporter 3 (GLUT3) and glucose transporter 8 (GLUT8) isoforms 

have been identified in SCs (Ulisse et al. 1992; Kokk et al. 2004; Carosa et al. 2005; Galardo 

et al. 2008; Oliveira et al. 2011; Oliveira et al. 2012). However, GLUT8 is not localized in the 

plasma membrane, so it is not expected to be involved in glucose transport from the 

extracellular milieu (Reagan et al. 2001; Piroli et al. 2002). GLUT1 and GLUT3 are present in 

the plasma membrane and can mediate the incorporation of glucose from the extracellular 

medium by the SCs (Figure 5) (Galardo et al. 2008; Oliveira et al. 2011; Oliveira et al. 2012). 

Once inside the cells, glucose enters in the glycolytic process, and after a series of 

reactions is transformed into pyruvate, in a process catalysed by multiple enzymes. 

Phosphofructokinase 1 (PFK1) is a key enzyme in this process and catalyses the irreversible 

conversion of fructose-6-phosphate to fructose-1-6-bis-phosphate (F-1,6-BP) (Chehtane and 

Khaled 2010). The energy status levels of the cells is usually related with the regulation of 

this enzyme making this step the most important control point, and the first rate-limiting 

step in glucose metabolism (Jutte et al. 1982; Mor et al. 2011). At the end of the glycolytic 

process, the conversion of pyruvate to lactate in a step catalyzed by lactate dehydrogenase 

(LDH) isozyme occurs (Figure 5), with the synchronized oxidation/reduction of NADH to NAD+ 

(Everse and Kaplan 1973).  

The LDH isoenzymes are encoded by a multigene family in the vertebrates. The lactate 

dehydrogenase A (LDH A) and lactate dehydrogenase B (LDH B) genes code for protein 

subunits that combine to form five different tetrameric isoenzymes, expressed in several 

somatic tissues, with specific characteristics correlated with the metabolic conditions 
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(aerobic and anaerobic) prevailing within the tissue (Markert et al. 1975; Nadal-Ginard 1978). 

In immature testis, LDH A is the principally expressed isoform thus assuming a crucial role 

(Blackshaw and Elkington 1970). There is a third functional LDH gene (lactate dehydrogenase 

C (LDH C)) which encodes the testis-specific isoenzyme lactate dehydrogenase C4 (LDH C4), 

that seems to be expressed predominantly in differentiating germ cells within the 

seminiferous epithelium (Goldberg and Hawtrey 1967; Meistrich et al. 1977; Odet et al. 2008), 

although its expression as also been observed in SCs (Goldberg et al. 2010). 

In SCs, after being produced, lactate is exported to germ cells via the cytoplasmic 

membrane by specific proton/monocarboxylate transporters (MCTs) (Figure 5) (Boussouar and 

Benahmed 2004), that catalyse the facilitated diffusion of the lactate together with a proton 

(Halestrap and Price 1999; Brauchi et al. 2005). 

The MCT family has a total of 14 members, but only MCTs 1–4 have been identified to 

function as proton-linked MCTs (Halestrap 2012). The isoforms monocarboxylate transporter 1 

(MCT1), monocarboxylate transporter 2 (MCT2) and monocarboxylate transporter 4 (MCT4) 

are widely expressed in all tissues while monocarboxylate transporter 3 (MCT3) is specifically 

expressed in the retina (Brauchi et al. 2005). The MCT1 is expressed in the head of the sperm 

and the epididymis (Garcia et al. 1995) and was also identified in germ cells (Goddard et al. 

2003) and in SCs (Galardo et al. 2007). The MCT2 can be found in the tail of spermatozoa in 

the epididymis (Garcia et al. 1995) and elongated spermatids (Goddard et al. 2003). The 

MCT4 is expressed in SCs and seems to play an important role in these cells (Bonen 2001; 

Galardo et al. 2007; Oliveira et al. 2011; Oliveira et al. 2012; Rato et al. 2012), as it has been 

involved in the export of lactate to the extracellular medium in cells with high glycolytic 

capacity (Bonen 2001; Bonen et al. 2006; Galardo et al. 2007). 

 

2.1 . Hormonal Regulation of Sertoli Cells Metabolism 

Multiple factors that control the lactate production have been described, such as FSH 

(Mita et al. 1982), epidermal growth factor (EGF), insulin and insulin growth factor-I (IGF-I) 

(Oonk et al. 1989), paracrine factor P-Mod-S (Mullaney et al. 1994), tri-iodothyronine 

(Palmero et al. 1995), basic fibroblast growth factor (bFGF) (Schteingart et al. 1999), 

cytokines (Riera et al. 2002), arachidonic acid (Meroni et al. 2003) and carnitine (Palmero et 

al. 2000). The cellular energy homeostasis is mediated by the AMP-activated protein kinase 

(AMPK) that activates the signal transduction pathways influencing the SCs metabolism 

(Hardie 2003). The AMPK present in SCs, when activated, is responsible for the increase in 

lactate production, glucose uptake and GLUT1 and MCT4 expression (Galardo et al. 2007). On 

the other hand, the decrease of glucose levels activates the AMPK leading to an increase of 

glucose uptake, GLUT1 expression and decrease of GLUT3 expression (Riera et al. 2009). In 

absence of glucose, the production of lactate is maintained most probably due to aminoacids 
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or glycogen metabolism (Leiderman and Mancini 1969). It is also known that glutamine and 

leucine can be energy sources for the SCs (Grootegoed et al. 1986). The SCs can also actively 

metabolize fatty acids very actively too (Hurtado de Catalfo and de Gomez Dumm 2002).  

It has been described that DHT modulates glucose consumption and lactate production 

and that both DHT as well as 17β-estradiol (E2) decrease messenger ribonucleic acid (mRNA) 

expression levels of metabolism associated genes, in cultured SCs. In rat (Rato et al. 2012) 

and human (Oliveira et al. 2011) cultured SCs, glucose consumption was found to be 

stimulated after DHT treatment. Interestingly, that increase in glucose consumption is not 

followed by an increase in lactate production thus, it is probably related with a reduced 

transport of lactate to the extracellular medium, via MCTs, or a decrease of the conversion of 

pyruvate into lactate catalyzed by LDH A (Rato et al. 2012). In fact, the mRNA levels of MCT4 

decrease after DHT treatment, which is concomitant with the lower lactate production and 

export. The decrease of lactate production by DHT-treated cells can also be a consequence of 

a lower cellular conversion of pyruvate to lactate catalyzed by LDH A, as the mRNA levels of 

LDH A were found to be decreased. The role of E2 in rat (Rato et al. 2012) and human 

(Oliveira et al. 2011) SCs metabolism was also investigated and E2-treated cells produced high 

amounts of alanine.  This fact is remarkable as the appearance of high alanine content can be 

associated with a reduced redox cytosolic state (Oliveira et al. 2011; Rato et al. 2012). 

Recently, Oliveira and collaborators (2012) have described, for human SCs-enriched 

primary cultures, that insulin deprivation markedly modulated glucose consumption, lactate 

secretion and the expression of metabolism-associated genes involved in lactate production 

and export. Those authors reported that in human SCs cultured in vitro the first hours of 

insulin-deprivation are critical (Oliveira et al. 2012). Noteworthy, an adaptation on the 

glucose uptake was reported in these insulin-deprived SCs, that differentially modulated the 

expression of GLUT1 and GLUT3 (Oliveira et al. 2012), and also presented a significant 

decrease in the mRNA levels of MCT4 and LDH A, suggesting that lactate interconversion from 

pyruvate and the export of lactate are modulated by insulin. That hypothesis was 

concomitant with the lower lactate concentration detected in extracellular media of insulin-

deprived SCs. 
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II. Aim of the Project 
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In this project, we aimed to disclose the SCs’ metabolic pathways modulation associated 

to sex hormone levels. Under this perspective, we evaluated mRNA and protein expression of 

membrane metabolite transporters (GLUTs, MCTs) and metabolic enzymes (LDH for lactate 

production and PFK-1 for glycolysis), in rat SCs, in order to identify changes associated with 

the levels of androgens (DHT) and oestrogens (E2). 
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III. Material and Methods  
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1. Chemicals  

 

Hank’s Balanced Salts Solution (HBSS), Dulbecco’s Modified Eagle Medium Ham’s Nutrient 

Mixture F12 (DMEM: Ham’s F12), Ethylene Diamine Tetra Acetic acid (EDTA), Soybean Trypsin 

Inhibitor, DNAse, Collagenase type I, E2, DHT, Bovine Serum Albumin (BSA), ExtrAvidin-

Peroxidase Staining Kit, 3,3’ Diaminobenzidine Hydrochloride (DAB), trypsin-EDTA, Insulin-

Transferrin-Sodium Selenite supplement (ITS supplement), TRI reagent and other drugs were 

obtained from Sigma-Aldrich (St. Louis, MO, USA). Fetal Bovine Serum (FBS) was obtained 

from Biochrom AG (Germany). Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV 

RT) and random hexamer primers were obtained from Invitrogen (CA, USA). dNTPs were 

obtained from GE Healthcare (Buckinghamshire, UK). 1x Buffer and Taq DNA Polymerase were 

obtained from Fermentas Life Sciences (Ontario, Canada).The LDH C, GLUT1, GLU3, PFK-1 

primers were obtained from STABVIDA, Oeiras, Portugal. Tween 20 was obtained Applichem, 

Darmstadt, Germany. Dried milk was Regilait, France. Polyclonal antibodies were obtained 

from Santa Cruz Biotechnology (Heidelberg, Germany), Millipore (Temecula, USA), Sigma-

Aldrich (Roedermark, Germany) and Abcam (Cambridge). 

 

 

2. Primary Cultures of Rat SCs 

 

Male Wistar rats (20-day-old) were sacrificed by cervical dislocation, the testis were 

immediately excised in aseptic conditions and washed two times in a 50 mL conical tube in 30 

mL of ice cold HBSS (potassium chloride 0,4 g/L, potassium phosphate monobasic anhydrous 

0,06 g/L, sodium chloride 8 g/L, sodium phosphate dibasic 0,045 g/L, D-Glucose 1 g/L, 

Sodium bicarbonate 0,35 g/L) containing 10000 U/mL of penicillin, 10 mg/mL streptomycin 

and 25 µg/ml amphotericin B (pH 7,4). After removal of the adherent epididymis and vas 

deferens, the testis were decapsulated in HBSS, and the loosen tissue was washed three times 

in HBSS. SCs were isolated by slight modifications of the method previously described by 

Oliveira and collaborators (2012), which consists in two types of treatment: mechanic and 

enzymatic. Briefly, to remove contaminating peritubular cells, the tissue from decapsulated 

testes were washed in a conical tube and dispersed in glycine solution (HBSS plus 1 M glycine, 

2 mM EDTA, 0,002% (w/v) Soybean Trypsin Inhibitor; pH 7,2). To further remove residual 

peritubular cells, the tubules were placed and dispersed in a Petri dish containing in glycine 

solution containing 0,5 mg/ml DNAse during 10 minutes at room temperature. To "unravel" 
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the tubules and further release the interstitial tissue/cells, the dispersed tubules were forced 

to pass several times through a large-pore Pasteur pipette. The tubular pellet was then 

digested for 15-20 minutes at room temperature with 0,225 mg/ml collagenase type I and 

0,05 mg/mL DNase in HBSS. After the collagen digestion, the disaggregated seminiferous 

tubules were washed three times in HBSS by centrifuging the cell suspension 3 minutes at 

300.g. The SC suspension was collected and resuspended in Sertoli culture medium which 

consisted of a 1:1 mixture of DMEM: F12 Ham, supplemented with 15 mM HEPES, 50 U/ml 

penicillin and 50 mg/mL streptomycin sulfate, 0,5 mg/mL fungizone, 50 µg/mL gentamicin 

and 10% heat inactivated FBS. In order to disaggregate large SC clusters, the cellular 

suspension was forced though a 20G needle. For cell culture, the concentration of the 

clusters on the cellular suspension obtained was adjusted to 5000 clusters/ml,plated on 25 

cm2 culture flasks (Cell+; Sarstedt), and incubated at 33ºC in an atmosphere of 5% CO2, 95% 

O2. The cultures were left undisturbed until day 2, considering the day of plating day 0 of 

culture. 

 

 

3. Hormonal Treatments 

 

When the SCs cultures presented a 90-95% confluence, culture medium was replaced by 

serum-free medium supplemented with insulin, DMEM: F12 supplemented with ITS, pH 7,4. In 

order to evaluate the effects of hormones on this work SCs were treated with 100 nM of E2 or 

100 nM DHT prepared in 0,025% ethanol (EtOH). Sex steroid hormone concentrations were 

chosen based on published data which reported that intratesticular interstitial fluid 

concentrations of those hormones are notably higher than those of circulating plasma, 

reaching values up to 200 nanomolar (Setchell et al. 1983; Turner et al. 1984; Hess 2000; 

Jarow and Zirkin 2005; Roth et al. 2010). Control group was treated with 0,025% EtOH. 

Treatments were performed during 50 hours in an atmosphere of 5% CO2, 95% O2 at 33ºC. 

 

 

4. RNA Extraction 

 

SCs were detached from the culture flasks using a trypsin-EDTA solution. To remove 

residual trypsin, detached cells were washed with 3 mL of phosphate buffered saline (PBS), 
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by centrifugations 5 minutes at 3000.g. Total ribonucleic acid (RNAt) was extracted from 

isolated SCs with TRI reagent, following the manufacturer’s instructions. Briefly, after the 

last centrifugation, the cellular pellet was homogenised with 500 μL of TRI for lysing the cells 

and dissociating the nucleoprotein complexes. The samples were left to stand for 5 minutes 

at room temperature and then 100 μL of chloroform were added for phase separation, to 

ensure a complete dissociation of nucleoproteins complexes. The samples were shaken 

vigorously for 15 seconds, left to stand for 5 minutes at room temperature and centrifuged at 

12000.g for 15 minutes at 4ºC, to separate the mixture into 3 phases: a colorless upper 

aqueous phase (containing RNAt), an interphase (containing deoxyribonucleic acid (DNA)) and 

a red organic phase (containing proteins). To isolate RNAt, the aqueous phase was transferred 

to a fresh tube, 250 μL of 2-propanol were added to precipitate ribonucleic acid (RNA), and 

the mixture was centrifuged at 12000.g for 10 minutes at 4ºC. The supernatant was discarded 

and the RNA pellet was washed with 500 μL of 75% EtOH at -20ºC. This mixture was 

centrifuged at 7500.g for 5 minutes at 4ºC. This washing step was repeated once more. The 

supernatant was discarded and the RNA pellet was air-dried for 5-10 minutes. The RNA pellet 

was dissolved in 10 μL DEPC-H2O. RNAt concentration and absorbance ratio (A260/A280) were 

spectrophotometry determined (NanophotometerTM, Implen, Germany). 

 

 

5. RT-PCR 

 

The RNAt obtained was reversely transcribed in a mixture containing 0,5 mM of each 

dNTP, 250 ng of random hexamer primers, 1 µg of RNAt and H2O sterile until a volume of 20 

µl, and incubated 5 minutes to 65ºC. Then, 200 U of M-MLV RT and Reaction Buffer were 

added and incubated 60 minutes at 37ºC. The resulting complementary deoxyribonucleic acid 

(cDNA) was used with exon-exon spanning primer sets designed to amplify LDH C, GLUT1, 

GLU3, PFK-1 cDNA fragments and the housekeeping gene 18S. Polymerase chain reactions 

(PCR) were carried out using 1 μL of cDNA in 25 μL of total volume. A mixture containing 2.5 

μL of 10X PCR Buffer, 1.5 mM of Magnesium Chloride, 10 mM of dNTP, 50 μM of each primers 

(Table 1), 0.5 U of Taq DNA Polymerase and H2O sterile was prepared. After preparation of 

the mixture in PCR tubes, 1 μL of cDNA was added. The conditions of PCR reactions, 

performed in a thermocycler, were optimized and are described in Table 1. PCR products 

were visualized in ethidium bromide stained 1% agarose gel electrophoresis at 120V for 30 

minutes. The gels were charged with total of 11 μL (10μL of sample and 1μL of loading 

buffer). Finally, the agarose gel was visualised using software Molecular Imager FX Pro Plus 

MultiImager (Biorad, Hercules, USA) coupled to an image acquisition system (Vilber Lourmat, 
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Marne-la-Vallée, France). The densities for each band were obtained with BIO-PROFIL Bio-1D 

Software from Quantity One, according to standard methods. 

 

Table 1: Oligonucleotides and Cycling Conditions for PCR Amplification of Glucose transporter 1 

(GLUT1), Glucose transporter 3 (GLUT3), Phosphofructokinase 1 (PFK1) and Lactate 

Dehydrogenase C (LHD C) and 18S.  

Gene Sequence (5'- 3') AT (ºC) 
Amplificon 

Size (bp) 
C 

LDH C 

AN: NM_017266.2 

Sense: ATG TGG GCA TGG CGT GTG CC 

65 477 40 

Antisense: CCC AGC CAT GGC AGC TCG AA 

GLUT1  

AN: NM_138827.1 

Sense: TCC GGC GGG AGA CGC ATA GT 

61 842 35 

Antisense: CCC GCA TCA TCT GCC GAC CC  

GLUT3  

AN: NM_017266.2 

Sense: GCG CAG CCC TTC CGT TTT GC 

63 806 35 

Antisense: CCC CTC GAA GGC CCG GGT AA  

PFK1  

AN: NM_013190.4 

Sense: GAG TGC TGA CAA GCG GCG GT  

61 839 35 

Antisense: GTG GCC CAG CAC GGT CAC TC 

18 S  

AN: NR_046237.1 

Sense: AAG ACG AAC CAG AGC GAA AG 

56 149 25 

Antisense: GGC GGG TCA TGG GAA TAA 

Abbreviations: AT - annealing temperature; C - Number of cycles during exponential phase of 

amplification; AN – Genbank Accession Number 

 

 

6. Total Protein Extraction 

 

Once detached from culture flasks, SCs were washed in PBS and centrifuged for 5 minutes 

at 3000.g. Cells were lysed in an appropriate volume (2,5 mL for each culture flask) of Radio-

Immunoprecipitation Assay (RIPA) buffer (1x PBS, 1%NP-40, 0,5% sodium deoxycholate, 0,1% 

SDS, 1 mM PMSF) supplemented with 1% protease inhibitor cocktail, aprotinin and 100 mM 

sodium orthovanadate. The lysed cells were allowed to stand 15 minutes on ice and the 

suspension was centrifuged at 14000.g for 20 minutes at 4ºC. The resulting pellet was 

discarded. The total protein concentration was measured using the Bradford assay.  
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7. Western Blot  

 

Western Blot procedure was performed as previously described by Alves and 

collaborators (2011). Briefly, proteins samples (50 µg) were fractionated on a 12% SDS-PAGE 

at.30 mA/gel for 90 minutes. After electrophoresis, proteins were electrotransferred to a 

PVDF membrane at 750 mA for 75 minutes. The membranes were blocked in a Tris-buffered 

saline solution (TBS) with 0,05% Tween 20 containing 5% skimmed dried milk for 90 minutes. 

The membranes were then incubated at 4ºC overnight with rabbit anti-GLUT1 (1:300, 

Millipore, Temecula, USA, CBL242), or rabbit anti-GLUT3 (1:500, Abcam, Cambridge, MA, 

ab41525), or rabbit anti-PFK-1 (1:1000, Santa Cruz Biotechnology Heidelberg, Germany, Sc 

67028), or rabbit anti-MCT4 (1:1000, Santa Cruz Biotechnology Heidelberg, Germany, Sc 

50329), or rabbit anti-LDH (1:10000, Abcam, Cambridge, MA, ab52488). Mouse anti-actin was 

used as protein loading control (1:1000, Sigma, Roedermark, Germany, A 5441). The immune-

reactive proteins were detected separately with goat anti-rabbit IgG-AP (1:5000, Santa Cruz 

Biotechnology Heidelberg, Germany, Sc 2007) or goat anti-mouse IgG-AP (1:5000, Santa Cruz 

Biotechnology Heidelberg, Germany, Sc 2008). Membranes were reacted with ECF detection 

system (GE, Healthcare, Weßling, Germany) and read with the BioRad FX-Pro-plus (Bio-Rad, 

Hemel Hempstead, UK). The densities from each band were obtained using the Quantity One 

Software (Bio-Rad, Hemel Hempstead, UK), according to standard methods.  

 

 

8. Statistical Analysis  

 

The statistical significance of protein variation and mRNA expression among the 

experimental groups was assessed by two-way ANOVA, followed by Bonferroni post-test. All 

experimental data are shown as mean ± SEM (n=5 for each condition). Statistical analysis was 

performed using GraphPad Prism 5 (GraphPad Software, San Diego, CA). P<0.05 was 

considered significant.  
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IV. Results 

  



24 
 

1. E2 decreases mRNA levels of GLUT1, GLUT3 and PFK  

 

To analyse the possible effect of E2 on the expression of glucose metabolism associated 

enzymes and transporters, SCs were cultured for 50 h in media containing 100 nM of E2 (E2 

group), or not (Control group). SCs viability was not altered by culture conditions as 

evaluated by trypan blue exclusion. The possible effect of E2 on mRNA transcript levels of 

GLUT1 and GLUT3 was evaluated by a semi-quantitative RT-PCR. The mRNA expression of 

GLUT1 and GLUT3 in E2-treated cells was significantly lower when compared with the control 

group (0.53 ± 0.11 and 0.40 ± 0.05 fold reduction, respectively) (Figure 6B). This mRNA 

decrease in GLUT1 and GLUT3 in E2-treated cells was not followed by a significant decrease 

in the protein expression levels of these transporters as determined using a western blot 

analysis (Figure 7B). 

 

 

Figure 6: Effect of 17-β-Estradiol (E2) on Glucose transporter 1 (GLUT1), Glucose transporter 3 (GLUT3), 
Phosphofructokinase (PFK) and Lactate Dehydrogenase C (LHD C) mRNA levels in rat Sertoli 
cells. Panel A shows a representative agarose gel electrophoresis. Panel B shows pooled data 
of independent experiments, indicating the fold variation of mRNA levels found in cultures 
with 100 nM E2 when compared with cultures on control condition (dashed line). Results are 
expressed as means ± SEM (n=5 for each condition). Significantly differently results (p< 0,05) 
are indicated: * relatively to control.   

 

Usually, the first rate-limiting step in glucose metabolism is PFK1 activity thus, we 

analysed the mRNA and protein levels expression of this enzyme. The mRNA levels of PFK1 

were also significantly decreased in E2-treated cells (0.64 ±0.07 fold reduction to control) 

(Figure 6B). However the protein expression levels did not present significant differences 

relatively to the control group (Figure 7B). Although it has been reported that E2 has an 

effect on gene expression levels of LDH A in rat cultured SCs (Rato et al. 2012), we found no 
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differences regarding LDH C mRNA expression levels relatively to control group (Figure 6B). 

Also, the protein expression of LDH was not altered by E2 treatment (Figure 7B). It has also 

been reported that E2 treatment decreases the mRNA transcript levels of MCT4 (Rato et al. 

2012). However, the protein levels of MCT4 did not suffers an alteration on in E2-treated SCs 

when compared to control (Figure 7B). 

 

 

 

Figure 7: Effect of 17-β-Estradiol (E2) on Glucose transporter 1 (GLUT1), Glucose transporter 3 (GLUT3), 
Phosphofructokinase (PFK) and Lactate Dehydrogenase (LHD) and Monocarboxylate 
Transporter 4 (MCT4) protein levels in rat Sertoli cells. Panel A shows a representative 
western blot experiment. Panel B shows pooled data of independent experiments, indicating 
the fold variation of protein levels found in cultures with 100 nM E2 when compared with 
cultures on control condition (dashed line). Results are expressed as means ± SEM (n=5 for 
each condition). Significantly differently results (p< 0,05) are indicated: * relatively to 
control.     

 

 

2. DHT modulates glucose transporters in cultured Sertoli Cells   

 

One of the major functions of SCs is to produce lactate for the developing germ cells, 

from glucose. Thus, the effects of DHT on glucose membrane transport proteins in rat 

cultured SCs were analysed. DHT-treated cells presented a significant decrease on GLUT3 and 

GLUT1 mRNA expression levels, 0.31 ± 0.02 fold and 0.44 ± 0.12 fold relatively to control, 

respectively (Figure 8B). Following the noted decrease on these glucose transporters mRNA 

levels, we also investigated the possibility of an alteration on the protein levels. We found 

that only GLUT1 presented a significant decrease on protein expression, 0.52 ± 0.05 fold 
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variation relatively to control (Figure 9B), while GLUT3 protein expression levels remained 

unchanged. 

 

Figure 8: Effect of 5-α-Dihydrotestosterone (DHT) on Glucose transporter 1 (GLUT1), Glucose 
transporter 3 (GLUT3), Phosphofructokinase (PFK) and Lactate Dehydrogenase C (LHD C) 
mRNA levels in rat Sertoli cells. Panel A shows a representative agarose gel electrophoresis. 
Panel B shows pooled data of independent experiments, indicating the fold variation of 
mRNA levels found in cultures with 100 nM DHT when compared with cultures on control 
condition (dashed line). Results are expressed as means ± SEM (n=5 for each condition). 
Significantly differently results (p< 0,05) are indicated: * relatively to control.   

 

 

3. DHT decreases mRNA levels of PFK and LDH C   

 

DHT-treated cells presented a significant decrease on PFK1 mRNA transcript levels (0.53 

± 0.06 fold when compared with the control) (Figure 8B), but the protein levels of PFK-1 were 

not significantly altered (Figure 9B). Also, as previously reported for LDH A (Rato et al. 2012), 

DHT-treated cells presented significantly decreased gene transcript levels of LDH C (0.54 ± 

0.04 fold) when compared to cells in control conditions (Figure 8B). Nevertheless, the protein 

levels of LDH remained unchanged after the 50h treatment with DHT (Figure 9B). It has been 

previously reported that DHT-treated cells presented a decrease in MCT4 gene transcript 

levels (Rato et al. 2012) however, in the present study, MCT4 protein levels were not affected 

by DHT treatment (Figure 9B). 
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Figure 9: Effect of 17-β-Estradiol (E2) on Glucose transporter 1 (GLUT1), Glucose transporter 3 (GLUT3), 
Phosphofructokinase (PFK-1) and Lactate Dehydrogenase (LHD) and Monocarboxylate 
Transporter 4 (MCT4) protein levels in rat Sertoli cells. Panel A shows a representative 
western blot experiment. Panel B shows pooled data of independent experiments, indicating 
the fold variation of protein levels found in cultures with 100 nM DHT when compared with 
cultures on control condition (dashed line). Results are expressed as means ± SEM (n=5 for 
each condition). Significantly differently results (p< 0,05) are indicated: * relatively to 
control. 
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V. Discussion  
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In cultured cells, glucose is one of the most reliable substrates for ATP production and 

cell maintenance. Carbohydrate metabolism in SCs has been under debate since the 80’s 

(Robinson and Fritz 1981; Grootegoed et al. 1986) because these cells present some unique 

characteristics in these processes and germ cells depend upon lactate production by SCs 

(Griswold 1998). In fact, it has been reported that SCs can adapt their metabolism in order to 

ensure a satisfactory lactate concentration in the microenvironment where germ cells 

develop (Riera et al. 2009; Oliveira et al. 2012). Thus, changes in SCs carbohydrate 

metabolism may result in a compromised spermatogenesis. Recently, our group have focused 

our research on the hormonal control of SCs metabolism and the possible mechanisms behind 

the hormonal-related effects (Oliveira et al. 2011; Oliveira et al. 2012; Rato et al. 2012). It 

was reported that E2 and DHT are key modulators of in vitro rat (Rato et al. 2012) and human 

(Oliveira et al. 2011) cultured SCs. In both cases, lactate production, which is the preferred 

energy substrate for spermatocytes and spermatids (Jutte et al. 1981; Mita and Hall 1982), 

was severely affected by hormonal treatment. Nevertheless, the mechanisms of glucose 

transport and glucose metabolism remained undisclosed.  In this work, was observed that 

mRNA transcript levels of GLUT1 and GLUT3 are under strict hormonal control. This is 

concomitant with previous works in human SCs where insulin regulates both transporters 

(Oliveira et al. 2012) and DHT-treated cells decreased GLUT3 mRNA transcript levels (Oliveira 

et al. 2011). However, only DHT-treated cells presented a significant decrease in GLUT1 

protein levels. It has been reported that DHT stimulates glucose overall consumption (Rato et 

al. 2012) and thus could hypothesized that GLUTs mRNA and protein expression should be 

increased. Nevertheless, it was also reported that glucose consumption rate remains high 

until 35th hour of culture but then significantly decreases until the 50th hour culture hours 

(Rato et al. 2012). Others (Mahraoui et al. 1994) have reported that mRNA and protein levels 

of GLUTs are in close relation with glucose consumption rates thus explaining why DHT-

treated cells are able to consume high glucose and present a decrease on GLUT1 mRNA and 

protein levels after 50 hours. It was also reported (Rato et al. 2012) that DHT decreased 

lactate production in rat SCs cultured under the same experimental conditions as in this 

study. In fact, DHT-treated cells present less mRNA transcript levels of PFK1, which is one of 

the most important enzymes in glucose metabolism, being responsible for the conversion of 

fructose-6-phosphate to F-1,6-BP after glucose enters the cells. Interestingly, the protein 

expression of PFK1, LDH and MCT4 remained unchanged. This is concomitant with the 

suggestion made by Rato and collaborators (2012) that DHT can modulate rat SCs metabolism 

by redirecting their normal functioning, i.e. lactate production, to Krebs cycle. This would 

compromise spermatogenesis thus explaining why some pathological conditions associated 

with altered androgen levels, such as the Klinefelter syndrome (Smyth and Bremner 1998), 

develop subfertility or infertility associated problems. Others (Gupta et al. 1991) have 

reported an androgen stimulatory effect on the activity of succinate and malate 

dehydrogenases in castrated estrogen and DHT-treated animals thus suggesting that sex 

steroids stimulate the activity and expression of enzymes involved in the Krebs cycle and in 
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the related metabolic pathways. Interestingly and also concomitant with this suggestion is the 

fact that LDH C, which converts pyruvate into lactate, was only down-regulated by DHT at 

mRNA level.  E2-treated cells presented a significant decrease on MCT4 gene transcript levels 

but not on LDH C, although it was previously (Rato et al. 2012) showed that LDH A gene 

transcript levels are decreased under the same conditions. Nevertheless, one cannot 

disregard that in immature testis, LDH A is the predominantly expressed isoform (Hawtrey and 

Goldberg 1968; Skidmore and Beebee 1991), and although LDH C is a testis-specific isoform, 

we expect that LDH A better reflects changes in lactate metabolism in this situation. Indeed, 

it has been suggested that in cells with high glycolytic activity, such as tumour cells, LDH A 

could be a therapeutic target as these cells greatly depend upon LDH A activity (Granchi et 

al. 2010). Furthermore, stimulation of LDH A related activity, rather than LDH C, has also 

been shown to be a key step in the effect of EGF on lactate production in cultured SCs 

(Boussouar and Benahmed 1999). Thus, results our group point to a crucial role of LDH A in 

lactate production by immature SCs rather than LDH C. The present study show that both E2 

and DHT decreased the levels of mRNA of glycolysis related key enzymes and glucose 

transporters in cultured immature SCs, although the protein levels did not always reflect the 

changes on mRNA transcript levels. Diminished mRNA levels could be explained by differential 

rates of synthesis or degradation or both. mRNA half-lives can increase or decrease in 

response to a variety of stimuli including hormones and growth factors (Hollams et al. 2002). 

Thus, the possibility exists that, in rat SCs, E2 and DHT modulation of the analyzed mRNA 

quantities is exerted at a transcriptional and/or post-transcriptional level and/or that the 

modulation of protein quantities is regulated by other mechanisms or on a different 

timeframe. 

In conclusion, although SCs primary cultures may not exactly represent an in vivo 

situation, they allow further knowledge on the functioning of these cells metabolism, which 

are crucial for the developing germ cells and thus for spermatogenesis. This work increases 

the knowledge about sex hormones metabolic control over SCs and the mechanisms by which 

they can exert such modulation, with direct influence over spermatogenesis and male 

fertility. 
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