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a b s t r a c t

In this paper two test cases adequate for the assessment of viscoelastic flow codes under unsteady flow
conditions are investigated. For one of them an analytical solution is also derived.

First, the start-up of planar Poiseuille flow between two parallel plates was tackled. For upper-convected
Maxwell and Oldroyd-B models there exist analytical solutions making it possible to evaluate exactly
the discretization errors of the transient numerical method. Good agreement was found between the
present numerical results and those analytical solutions, especially for “shock” propagation. For the UCM
fluid, small numerical oscillations were observed at points where the time derivative of velocity was
discontinuous, but for the Oldroyd-B fluid a smooth development of the transient evolution was obtained.
Results with the PTT model without solvent viscosity and the FENE fluids were also obtained and, as
expected, the behaviour was similar to that found for the UCM and Oldroyd-B fluids, respectively.

Then, a pulsating flow problem was studied. In this test case the flow is generated by a periodic pressure-
gradient superimposed on a constant Poiseuille flow. The analytical solution for pulsatile Oldroyd-B flow
in a channel was derived as part of the work and, again, difficulties in obtaining accurate numerical

solutions with the UCM model were encountered, being necessary to employ extremely refined meshes.
For the Oldroyd-B fluid no difficulties were found and the accuracy tended to improve with larger solvent
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viscosity parameter.

. Introduction

Unsteady flows are gradually becoming the main focus of atten-
ion in computational rheology studies. Over the past two decades
table numerical algorithms were developed and optimized for
he solution of steady viscoelastic flow problems [1,2]. Currently,
he attention has largely been diverted towards the solution of
nsteady flow problems which are relevant not only because many
ctual flows of interest occur in variable regimes, as exemplified by
njection and blow molding, purely extensional flows, or blood flow
n arteries and veins, but also due to the tendency of non-Newtonian
ystems to develop time-dependent instabilities.

As a consequence, there has been a growing number of works
evoted to applying time marching procedures, typically used to

btain steady state solutions, to the calculations of actual time-
ependent flows, with either finite volume methods [3–5], finite
lement methods [2,6], with a combination of finite element and
nite volume methods [7,8], or even with spectral element meth-
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ds [9,10]. This is merely an illustrative list which is not meant to
e exhaustive, and many other works have been published deal-

ng with unsteady flows of viscoelastic liquids that may even not
ollow differential constitutive equations; the backward-tracking
agrangian method [11] for micro–macro simulations being a good
xample of such efforts. Also, linear stability analysis of flows sub-
ect to temporal instabilities have been conducted and we mention
ere the works of Keiller [12,13] which will be elaborated below. In
pite of these and other works on time-dependent non-Newtonian
ows, it is a fair statement, corroborated by others [8,10], that much
f the effort of the community has been on solving steady flows and
s now more directed towards unsteady flows.

A prerequisite before embarking into the simulation of complex
ime-dependent flows is the development of a set of sufficiently
imple test cases adequate to assess the numerical behaviour of
xisting codes and, to a large extent, useful time-dependent test
ases are missing. In this paper, a detailed numerical study of two

est problems involving viscoelastic flows in variable regime will
e presented: start-up and pulsating flows in a channel. While
he start-up flow is a well-established test problem used by many
orkers as discussed below, the pulsating flow in a plane chan-
el is a new proposition that we advance in this paper. These

http://www.sciencedirect.com/science/journal/03770257
mailto:pjpo@ubi.pt
dx.doi.org/10.1016/j.jnnfm.2008.04.009
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roblems are solved by application of the numerical simulation
rogram developed by Oliveira et al. [14], based on a multidimen-
ional finite volume formulation which was originally prepared to
olve steady viscoelastic flow problems [14] and was later extended
o unsteady viscoelastic flows with some degree of complexity [4],
uch as prediction of viscoelastic vortex shedding behind cylinders.
ere we take a step back, from those relatively complex geometries

o (apparently) simpler 1D cases, and have adapted the method
o solve effectively simple one-dimensional, time-dependent flow
roblems. These test problems are useful as benchmark cases
ecause they possess analytical solutions thus allowing exact eval-
ation of discretization errors. In addition, with the test cases here
roposed it is possible not only to assess discretization errors but
lso lagging-errors resulting from the sequential treatment of the
quations (momentum and constitutive).

The numerical simulation program was first applied to the
enchmark problem of the start-up of planar Poiseuille flow
etween two parallel plates, which has been used in many recent
tudies, e.g. [3,5,7–10,15]. This time-dependent transient flow is
riven by the instantaneous application of a spatially constant pres-
ure gradient to a fluid initially at rest. With the further assumption
hat the resulting flow is fully developed it becomes possible to
erive an analytical solution to the governing equations. For New-
onian fluids, this solution is well known and is described in several
ooks (e.g. White [16]); for non-Newtonian fluids obeying Maxwell
nd Oldroyd-B constitutive equations the analytical solution was
iven by Waters and King [17]. Thus, results from the analytical
olution and numerical simulations could be compared for different
alues of the elasticity number and, through the use of successively
efined meshes and progressively smaller time steps, a study was
ade on how those discretization errors decayed.
In two works most closely related to the present effort, Xue et al.

5] and Van Os and Phillips [10] have carried out thorough inves-
igations on the accuracy and stability of temporal algorithms in
he context of, respectively, the finite volume and the finite spec-
ral element methods, with both studies using the start-up flow as
est case. However, the approach followed in these studies to set
p the start-up flow was different: in Xue et al. a constant pressure
ifference was prescribed and the flow (apparently) solved for a 1D
lice of cells, as we have done here; in Van Os and Phillips the full
D channel was simulated with the known analytical solution of
aters and King imposed at inlet and outlet. In addition, Van Os

nd Phillips were more concerned with the stability of various ver-
ions and solution algorithms of their spectral element method,
nd the case considered was basically the Oldroyd-B fluid with
= 1/9; accuracy was not an issue and the more difficult UCM fluid
as not considered. On the other hand, Xue et al. examined the

ime accuracy of their various implementations of a finite volume
lgorithm (explicit or implicit; SIMPLE, PISO or SIMPLER pressure-
orrection algorithms) for the Oldoryd-B with ˇ = 1/9 on a rather
oarse mesh (NY = 10), while velocity profiles were graphically com-
ared with the analytical solution for the UCM at two values of
lasticity (E = 0.4 and 40) on a more refined mesh (NY = 50), but
n all these cases the order of convergence with �y and �t was
ot established. Webster et al. [8] have given more details for the
ldroyd-B ˇ = 1/9 and demonstrated convergence rates of �t1.3 and
y2, based on local point-wise velocity values, with their FV/FE
ethod at Wi = 4/3. It will be clear from the present study, and

ndeed it was already plain from Xue et al. who in Section 5.1
rite “in the purely elastic case some inherent difficulties for tran-
ient numerical analysis have arisen”, that the UCM is much more
ifficult that the Oldroyd-B model in terms of obtaining accurate
ime-dependent numerical solutions, unless the ˇ parameter of
he Oldroyd-B becomes smaller than about 0.001. Hence, from this
hort review, the question of establishing the rate of convergence
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f numerical algorithms for time varying flows of Oldroyd-B and
CM-like fluids is still open, and this is the purpose of the present

tudy, not only with the start-up flow used in those previous works,
ut also with the new problem here proposed of the pulsating UCM
nd Oldroyd-B flows.

It is relevant here to mention the linear stability analysis of
eiller [12] for plane Couette flow of UCM fluids. He found that
hen the problem is solved in a 2D domain the critical Weis-

enberg number (Wi) above which a finite-difference method
ecomes unstable scales with the ratio of the mesh spacings, that

s Wicrit ∼ �x/�y where x is the streamwise direction and y the
ransverse, velocity gradient direction. In a later work dealing with
oiseuille flow [13], instead of the simpler pressure-gradient free
ouette case, the same type of limiting Wi criterion was found for
particular finite-difference scheme but not for an alternative one
here apparently the near-wall node was treated more implicitly.

ietier and Deville [9], with a spectral method, did not find the same
ort of scaling in their simulations of plane start-up flow of Oldroyd-
fluids; Van Os and Phillips [10] probed various channel lengths

nd spectral element resolutions and reported that the maximum
ttainable Wi decreased when �x = 1/9 is reduced, but they do not
ubstantiate on Keiller findings, rather they correlate the diminu-
ion of Wecrit with refinement of discretization size, a well-known
utcome (e.g. Keunings [18]). In the present study we also cannot
onfirm that the critical Wi scales with �x/�y since we use only
vertical row of cells (along y), that is, we effectively solve the

D equations using a 2D procedure (cyclic boundary conditions are
pplied on the two faces of that vertical row of cells) and as a conse-
uence the �x cancels out from the final algebraic equations (our
esults do not depend on the assumed streamwise domain size).
owever some preliminary simulations using the 2D domain with

mposed inlet analytical profiles do suggest that Keller’s result is
alid, a matter left for future research.

Although the UCM and Oldroyd-B models are able to describe
ome of the elastic characteristics of actual macromolecular fluids
hey have known limitations. In this work, more complex mod-
ls were also considered, namely the Phan-Thien–Tanner (PTT)
odel [19,20], based on network theory, the finite extensible non-

inear elastic (FENE) model, based on kinetic theory [21], and the
onstant-viscosity FENE version of Chilcott and Rallison known as
ENE-CR [22]. These models present the desirable features of shear-
hinning and finite elongational viscosity which are not accounted
or in UCM and Oldroyd-B models. As will be seen, the constitutive
quation used to describe the fluid properties has a strong impact
n the results for velocity and stress evolution as well as on the
ethod stability, as already pointed out in previous studies (e.g.

10]).
The other benchmark test problem here studied is a viscoleastic

ulsating periodic flow resulting from the application of a pressure
radient which varies sinusoidally in time. In contrast to the start-
p problem, this has been scarcely used as a test case in numerical
alculations in computational rheology; most of the existing litera-
ure is focused on the theoretical treatment of viscoelastic pulsating
ows in straight pipes with circular cross-section [23,24], recently
xtended to curved pipes [25]. A first and main motivation for this
roblem is to have a flow which is not dominated by the initial
onditions and will not develop shear stress fronts, with velocity
radient discontinuities as in the start-up flow case. A second moti-
ation is related with our interest in future simulations of blood
ow behaviour, which is unsteady (although not sinusoidal) and

iscoelastic, as shown in the recent study of Owens [26] where
FENE-type equation is proposed. Of course, the effort of using

laborated constitutive equations for blood flow like those of [26]
as to be left for future investigations. An analytical solution for
he velocity and stress distribution of UCM and Oldroyd-B models



nian F

u
w

2

a
r
s
f

∇
w
r
e
a
a
v

�

n
s
c
b
i
o
f

�

c

a

�

w
o
�

t
d

∇
�

e
t
s
a

�

w
t
c
U
d
A
e
t
a

a
e
f

f

w
m
d
v
a
a
m

o
[
e

f

w
d
m

d
S

3

a
v
t
t
i
t
a

s
m
a
g
t
o
l
t
w

f

a

t
t
d
i
a
c

A.S.R. Duarte et al. / J. Non-Newto

nder sinusoidal pulsating conditions was obtained as part of the
ork. This will be useful for the assessment of numerical methods.

. Governing equations

In this section, the basic conservation equations for isothermal
nd incompressible flows are presented as well as the constitutive
elations for the UCM, Oldroyd-B, PTT and FENE-CR models. Con-
ervation of mass and linear momentum in the absence of body
orces is expressed by:

· u = 0 and �
(

Du

Dt

)
= −∇p + ∇ · �tot (1)

here u is the local velocity vector with components u and v cor-
esponding to the Cartesian coordinates x and y, respectively. Fully
stablished conditions in a long planar channel imply ∂u/∂x = 0
nd v = 0; hence, the continuity equation is identically satisfied
nd the momentum equation for a Newtonian fluid with a constant
iscosity � can be simplified to:

∂u

∂t
= −dp

dx
+ �

∂2u

∂y2
(2)

However, for a viscoelastic fluid the extra-stress tensor, �tot, can-
ot be easily substituted by velocity gradients. This tensor will be
pecified by a third equation that determines the rheological vis-
oelastic behaviour of the fluid. In general �tot can be thought as
eing composed by a Newtonian (solvent) component, with viscos-

ty �s, and an additional elastic component �. So the conservation
f linear momentum for a viscoelastic fluid is written here under
ully developed conditions as

∂u

∂t
= −dp

dx
+

∂
(

�xy

)
tot

∂y
= −dp

dx
+ �s

∂2u

∂y2
+ ∂�xy

∂y
(3)

In these equations �, p and t are the fluid density (assumed
onstant), pressure and time, respectively.

Four differential rheological models are used along the paper
nd the constitutive equation for all models can be written as:

∇
� + f � = 2f ′�pD (4)

here � is the relaxation time of the fluid, f and f′ are functions
f invariants of � that enable to discriminate among the models,
p is the zero-shear rate polymer contribution to the viscosity, D

he deformation rate tensor and
∇
� is the upper-convected time

erivative of the stress tensor, defined as:

= ∂�
∂t

+ (u · ∇)� − � · ∇u − (∇u)T · � (5)

The relaxation time gives an indication of the magnitude of the
lastic nature of the fluid. As the relaxation time increases, so does
he fluid elasticity and a value of zero retrieves the Newtonian con-
titutive equation. The solvent and polymer viscosities �s and �p

re related in the following manner:

0 = �s + �p, ˇ = �s

�0
= �r

�
. (6)

here �0 is the total zero-shear rate viscosity and �r the retardation
ime of the fluid. The functions f and f′ are unity for both the upper-
onvected Maxwell (UCM) and Oldroyd-B models (f = f′ = 1). For the
CM, the solvent viscosity ratio is zero (ˇ = 0) and so it is a model

evoid of any explicit diffusion term in the momentum equation.
lthough the UCM is the simplest differential model incorporating
lastic effects it is also the hardest in terms of numerical calcula-
ions. For the Oldroyd-B model, ˇ /= 0 and it becomes equivalent to
linear combination of the UCM model and the Newtonian model.
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Shear-thinning characteristics of the PTT and FENE-CR models
re controlled by non-trivial functions f and f′. The expression here
mployed for the stress function in the PTT model is the linearized
orm given in the original paper [20]:

= 1 +
(

ε�

�p

)
tr(�), f ′ = 1 (7)

here ε is a parameter related to the elongational behaviour of the
odel and tr(�) is the trace of the stress tensor. The PTT model was

erived from network theory and predicts a bounded extensional
iscosity with a maximum value proportional to 1/ε, while the UCM
nd Oldroyd-B models yield an unbounded elongational viscosity
t a finite strain rate of �ε̇ = 0.5. It degenerates into the Oldroyd-B
odel when ε = 0, and the UCM if �s = ε = 0.
The FENE family of models is “molecular” based and was devel-

ped from kinetic theory by Bird et al. [21]. The Chilcott and Rallison
22] version yields a constant-shear viscosity fluid with finite spring
xtensibility, and corresponds to putting:

= (L2 + (�/�p) tr(�))
(L2 − 3)

, f ′ = f (8)

here the parameter L2 is a measure of the stretch of the basic
umbbell constituents in the molecular representation of the
odel fluid.
The simplified forms of the constitutive equations for the fully

eveloped planar flows under consideration here will be given in
ection 4.

. Numerical method

As already pointed out in Section 1, the computer program is
quite general simulation tool based on a fully implicit finite-

olume method and has been used in the calculation of two- and
hree-dimensional flows of fluids that follow differential viscoelas-
ic constitutive models. One of the purposes of the present study
s to assess the ability of this general code in relatively simple
ime-dependent problems for which analytical solutions are either
vailable or can be derived.

The governing equations given in Section 2 are integrated in
pace over the control volumes (cells) forming the computational
esh, and in time, over small time steps �t, so that sets of linearized

lgebraic equations are obtained. The method uses a non-staggered
rid arrangement, in which all dependent variables are located at
he centre of the control volumes, thus simplifying the adoption
f general curvilinear coordinates required in more complex prob-
ems. As a consequence, special procedures are required to ensure
he pressure/velocity coupling and velocity/stress coupling, which
ere described in Oliveira et al. [14].

The linearized algebraic equations obtained have the general
orm:



P 
P =

∑
F

a

F 
F + S
 (9)

o be solved for the velocity or stress components (
 = u or 
 = �). In
hese equations aF are coefficients, accounting for convection and
iffusion influences, S are source terms encompassing all terms not

ncluded in the coefficients, the index P denotes the cell in question
nd F its neighbour cells. For the present problems a single row of
ells aligned with the y-axis (see Fig. 1) will be sufficient due to the

ully developed conditions, so the index F varies from one to two
nly, to indicate the cell immediately above (+y) and below (−y)
ny given cell P.

Equation sets like Eq. (9) can be viewed under a matrix form
x = b typical of linear equation systems and are solved by a bi-
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Fig. 1. Schematic representation of the geom

onjugate gradient solver. The spatial discretization method is
econd-order accurate [14] and the temporal discretization is also
ccomplished through a second-order three-time level method [4]:

∂


∂t
= 3
n+1 − 4
n + 
n−1

2�t
(10)

here index n denotes time levels. This three-time level method,
nalogous to the BDF2 (backward differentiation formula) scheme
f Van Os and Phillips [10], offers improved accuracy compared to
he implicit Euler method which is only first-order accurate in time
e.g. [5]).

As commented before, the full features of the simulation code
re not required for the present problems and suffices to solve dis-
retization Eq. (9) for the axial velocity component u, and the shear
nd normal stress components �xy and �xx. These dependent vari-
bles are function only of y and t. The pressure gradient is given and
herefore the velocity/pressure algorithm is effectively switched
ff. Boundary conditions are applied at walls, where a no-slip con-
ition is assumed, and at inlet, where the initial fields are prescribed
usually zero velocity and stresses). At every iteration, the velocity
nd stress components calculated at the CVs centres are extrapo-
ated to the outlet plane; then, because of the single row of cells,
hose outlet values are assigned to the inlet plane, and the calcula-
ion proceeds. In this way, fully developed conditions ∂/∂x = 0 are
btained, provided the iterations within a time step are converged
o a tight tolerance (10−4 or 10−6 in the L1 norm of the residuals).

Specification of stress at solid walls requires further attention.
n important finding during the course of the present study is that

he simple procedure used in previous works, in which a local vis-
ometric flow is assumed and the stress components at the wall
re prescribed on the basis of corresponding analytical solutions,
ives rise to a deterioration of accuracy and it is better to obtain the
tress directly from the momentum equations. For the Oldroyd-B
uid the previous method for boundary conditions would give the
all shear stress as

xy = �0
∂u

∂y
⇒ (�xy)w = �0

uw − uP

�y/2
(11)

here w denotes the wall node and P the adjacent internal node at a
istance �y/2 from the wall. If the wall is fixed, then uw = 0. For the
hear-thinning models, the expression is the same but the viscosity
s calculated analytically based on the local shear rate (�(�̇ )). In the
ew method of implementing the boundary conditions, the wall
hear stress is calculated directly from Eq. (3) giving:
dp

dx
+ ∂�xy

∂y
= 0 ⇒ (�xy)w = (�xy)P +

(
dp

dx

)
P

�y

2
. (12)

here the viscous part is omitted for clarity. For the present prob-
ems the pressure gradient is known and may vary only with time.

s(
or the start-up and pulsating flow problems.

n general dp/dx is the pressure gradient parallel to the wall plane
valuated at the nearest centre of cell position P.

. Problems description and analytical solutions

We deal separately with the two problems: the start-up flow
nd the pulsating flow of viscoelastic fluids in a planar channel.
he simulations presented in this paper are valid for flow in a two-
imensional channel bounded by two parallel plates separated by
eight 2h in the (x,y) plane, with y representing the transverse
irection according to Fig. 1. The task is to determine how the veloc-

ty and stresses in the channel evolve in time until a stationary
egime is reached.

.1. Start-up flow

The transient flow resulting from the sudden application of a
patially constant pressure gradient to a fluid initially at rest is a
ood example of an actual time-dependent flow problem amenable
o exact mathematical analysis. For viscoelastic fluids, this problem
as initially studied by Waters and King [17] who determined the

nalytical solution for start-up of planar Poiseuille flow of UCM and
ldroyd-B models.

For the Newtonian case the equation to be solved is Eq. (2) which,
ith non-dimensional variables

= y

h
, T = �

�h2
t, U = u

ū∞
, (13)

here the average steady-state velocity (t → ∞) is ū∞ =
h2dp/dx/3� has the following analytical solution given in
any books (e.g. White [16]):

(T, Y) = 1.5(1.0 − Y2) − 48
∞∑

n′=1

[
n−3 sin

(
1
2 n(1 + Y)

)
e−(n2T/4)

]
(14)

here n = (2n′ − 1)�. We note again that here the non-dimensional
ime T is based on a diffusion time scale tD= �h2/�.

For viscoelastic fluid the equation of motion is now Eq. (3) and
n the case of the Oldroyd-B model (Eq. (4) with f = f′ = 1) under fully
eveloped condition, �yy = 0, the shear stress equation becomes:

xy + �
∂�xy

∂t
= �p

∂u

∂y
, (15)

After combining Eq. (15) with Eq. (3) in order to eliminate the

tress, we have:

1 + �
∂

∂t

)
∂u

∂t
= − 1

�

(
1 + �

∂

∂t

)
dp

dx
+ �0

�

(
1 + �r

∂

∂t

)
∂2u

∂y2
.

(16)
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hose solution for a constant dp/dx is [17]:

(T, Y) = 1.5(1.0 − Y2)

−48
∞∑

n′=1

[
n−3 sin

(
1
2 n(1 + Y)

)
e−(˛nT/2)G(T)

]
, (17)

here

(T) = cosh
(

1
2 ˇnT

)
+ �n

ˇn
sinh

(
1
2 ˇnT

)
, (18)

nd

n = (2n′ − 1)�, ˛n = 1 + 1
4 ˇEn2, ˇn =

√
˛n

2 − En2,

�n = 1 − 1
4 (2 − ˇ)En2. (19)

Eq. (18) is only valid for a real ˇn; if ˛n
2 − En2 < 0 then the

unction G(T) becomes:

(T) = cos

(
ˇnT

2

)
+ �n

ˇn
sin

(
ˇnT

2

)
(20)

here now ˇn =
√

En2 − ˛n
2. In the above expressions E is the

lasticity number defined by the ratio of Weissenberg (Wi) and
eynolds (Re) numbers:

i = �ū∞
h

, Re = �ū∞h

�0
, E = Wi

Re
= ��0

�h2
. (21)

The viscoelastic solution, Eq. (17), is rather similar to the New-
onian solution, Eq. (14), but it is noted that the time scale is now
he relaxation time of the fluid, T = t/�.

.2. Pulsating flow

For the pulsating flow problem we have the same geometry of
ig. 1 but now the fluid is subject to a pressure gradient varying
inusoidally in time, according to

1
�

dp

dx
= KS + KO cos(ωt) (22)

here �KO is the amplitude and ω the frequency of the oscillatory
ressure gradient superimposed onto a stationary pressure gra-
ient of magnitude �KS. Linear period and angular frequency are
elated by the usual expression T0 = 2�/ω. For a Newtonian fluid,
his problem is analysed for example in White [16] and, with the
ormalization

T = ωt; Y = y

h
; U = u

ω

KO
; ˛ = h√

�0/ω�
;

Txy = �xy
ωh

�0KO
(23)

here the time scale is now taken as the angular period and ˛ is the
tokes or Womersley number, it is possible to obtain the solution:

(Y, T) = ˛2

2
KS

KO
(1 − Y2) + Re

{
i

[
cosh

(√
i˛Y

)
cosh

(√
i˛

) − 1

]
exp(iT)

}

(24)

ere written in terms of complex numbers. Alternatively, by using
oivre expression for the imaginary expressions, it is possible to
rite the solution under the following explicit form:

(Y, T) = ˛2 KS (1 − Y2) +
[

1 − M(Y, ˛′)]
sin(T)
2 KO J(˛′)

−N(Y, ˛′) cos(T)
J(˛′)

(25) i
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here

˛′ ≡ ˛/
√

2 = h/
√

2�/ω

C(x) ≡ cosh(x) cos(x); S(x) ≡ sinh(x) sin(x); J(x) = C2(x) + S2(x)
M(Y, ˛′) = C(˛′Y)C(˛′) + S(˛′Y)S(˛′)
N(Y, ˛′) = C(˛′Y)S(˛′) + S(˛′Y)C(˛′)

Another relevant variable is the shear stress which can be
btained by differentiating Eq. (24) in order to Y:

xy = − ˛′

J(˛′)

{[
(A − B)C(˛′) + (A + B)S(˛′)

]
sin(T)

+
[
(A − B)S(˛′) − (A + B)C(˛′)

]
cos(T)

}
− ˛2 KS

KO
Y (26)

here

A = sinh(˛′Y) cos(˛′Y)
B = cosh(˛′Y) sin(˛′Y)

. (27)

The choice of values for the non-dimensional parameters
ere guided by the experiments of Khodadadi et al. [27], with
Reynolds number, based on the stationary mean stream-

ise velocity in the channel ūS = h2�KS/3�0 and channel height
= 2h, of Re = 102, and a Stokes number of ˛ = 4.864. The oscil-

atory pressure gradient frequency, ω = 2�f, was considered to be
= 1.1 cycles/s and its amplitude �KO = 190 Pa/m; the stationary
ressure gradient amplitude was �KS = 73.45 Pa/m. Physical prop-
rties were fluid density � = 1150 kg/m3 and kinematic viscosity
= 0.73 × 10−5 m2/s. Of course, only the non-dimensional param-
ters, ˛ = 4.864 and KO/KS = 2.587 are of relevance, together with E
nd the Weissenberg number Wi = 3.765 introduced below for the
iscoelastic case.

Pulsatile flow of an Oldroyd-B fluid in a channel subject to
n oscillatory pressure gradient is a much more difficult problem
hich was tackled initially by Hayat et al. [28] who arrived at a

olution only for the velocity profile. Here we take this problem a
tep further and derive the solution for the stress component pro-
les which are required for a complete assessment of the numerical
redictions. The starting equation is again Eq. (16) but the imposed
ressure gradient varies in time according to Eq. (22). Since Eq.
16) is linear, the resulting velocity will be given by the sum of
olutions for the stationary and the oscillatory pressure gradients,
= Us(Y) + Uo(Y,T). The stationary part Us(Y) is equal to the steady

tate velocity profile for a Newtonian fluid subject to a constant
ressure gradient �KS and is easily obtained as the 1st term on the
ight-hand side of Eq. (24). With the normalization introduced by
q. (23), the oscillatory part of the velocity profile is the solution
f:

1 + ω�
∂

∂T

]
∂UO

∂T
=

[
1 + ω�

∂

∂T

]
cos(T)

+ 1
˛2

[
1 + ω�r

∂

∂T

]
∂2UO

∂Y2
(28)

By assuming that velocity evolves in time with the same fre-
uency of the pressure gradient but with some phase lag, the
olution has the form:

O(Y, T) = Re [F(Y) exp(iT)] (29)

nd upon substitution in Eq. (28) we arrive at the ordinary differ-
ntial equation for F(Y):

1

The non-homogeneous ODE to be solved is then defined by:

z1F = z1 + z2

˛2
F ′′ (31)
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ith

1 = 1 + iω� and z2 = 1 + iω�r (32)

ubject to boundary conditions (no-slip at walls; symmetry at cen-
reline):

F(1) = F(−1) = 0
F ′(0) = 0

(33)

By making the change of variables G = F + i an homogeneous sec-
nd order ODE is obtained:

′′ − i˛2 z1

z2
G = 0 (34)

hose characteristic equations is:

2 − i˛2 z1

z2
= 0 ⇒ z = ˛

√
i
z1

z2
= ˛

√
i

1 + iω�

1 + iω�r
⇒ z

= ˛

√
i

1 + i˛2E

1 + iˇ˛2E
(35)

here E = �0�/�h2 (Eq. (21)), and general solution

= A cosh(zY) + B sinh(zY) (36)

With the BCs G(1) = G(−1) = i and G′(0) = 0 we obtain A = i/cosh z
nd B = 0, and the solution in terms of the oscillatory velocity profile
ecomes:

O(Y, T) = Re
{

i
[

cosh(zY)
cosh(z)

− 1
]

exp(iT)
}

(37)

The channel velocity for the Oldroyd-B fluid with both stationary
nd oscillatory contributions to the pressure gradient is then:

(Y, T) = ˛2

2
KS

KO
(1 − Y2) + Re

{
i
[

cosh(zY)
cosh(z)

− 1
]

exp(iT)
}

(38)

In this case, unlike the Newtonian problem, stresses need to be
erived from integration of the two constitutive equations, for �xy

nd �xx. Having obtained the velocity profile, we can go back to the
omentum Eq. (3) and express it in terms of the elastic component

f the shear stress:

xy = �

y∫
0

∂u

∂t
dy′ − �(KS + KO cos ωt)y − �s

∂u

∂y
(39)

ith the spatial and time derivatives of u(y,t) readily calculated
rom the dimensional form of the velocity solution, Eq. (38):

∂u

∂y
= −h�KS

�0

(
y

h

)
+ KO

ω
Re

{
i
z

h

[
sinh(z(y/h))

cosh(z)

]
exp(iωt)

}
(40)

∂u

∂t
= −KORe

{[
cosh(z(y/h))

cosh(z)
− 1

]
exp(iωt)

}
(41)

Upon substitution of Eqs. (40) and (41) into Eq. (39), and after
egrouping the various terms, we arrive at the dimensional expres-
ion for the elastic shear stress:

xy = −�hKS(1 − ˇ)
y

h
− �hKORe

{
exp(iωt)

sinh(zy/h)
cosh(z)

[
1
z

+ iˇz

˛2

]}
(42)
For the quasi-linear Oldroyd-B model the axial normal stress
oes not influence the fluid motion but its analytical expression
ill be useful to assess the numerical method. Under the present

T
T
t

d
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implifying assumptions, Eq. (4) for the normal component reduces
o:

xx + �
∂�xx

∂t
= 2��xy

∂u

∂y
(43)

hich has the general solution:

xx = exp
(−t

�

)∫ t

−∞
2�xy

∂u

∂y
exp

(
t′

�

)
dt′ (44)

Now, with �xy from Eq. (42) and ∂u/∂y from Eq. (40), the integral
n Eq. (44) can be performed and, after a lengthy derivation which is
ere omitted for the sake of conciseness, we arrive at the following
esult for the normal stresses in dimensional form:

xx = 2�

�0
(�hKS)2(1 − ˇ)

y

h

2
− 2

(
KO

KS

)
�(�hKS)2

�h2ω

y

h
Re

×
{

exp(iωt)
1 + iω�

sinh(zy/h)
cosh(z)

[
iz(1 − 2ˇ) − ˛2

z

]}

−2
(

KO

KS

)2 �(�hKS)2

�h2ω
Re

{
exp(i2ωt)
1 + i2ω�

(
sinh(zy/h)

cosh(z)

)2

×
[

i − ˇz2

˛2

]}
(45)

Under non-dimensional form, with standard scaling based on
he average channel velocity for the steady pressure gradient �KS
nd wall shear stress in channel flow �w = 3�0ūS/h the solution is
ritten as:

(Y, T) ≡ u

ūS
= 3

2
(1 − Y2) + 3KO

˛2KS
Re

×
{

i
[

cosh(zY)
cosh(z)

− 1
]

exp(2�iT)
}

(46)

xy(Y, T) ≡ �xy

�w
= −(1 − ˇ)Y − KO

KS
Re

×
{

exp(2�iT)
sinh(zY)
cosh(z)

[
1
z

+ iˇz

˛2

]}
(47)

xx(Y, T) ≡ �xx

�w
= 6Wi(1 − ˇ)Y2 − 6

(
KO

KS

)
Wi

˛2
YRe

×
{

exp(2�iT)
1 + i˛2E

sinh(zY)
cosh(z)

[
iz(1 − 2ˇ) − ˛2

z

]}

−6
(

KO

KS

)2 Wi

˛2
Re

{
exp(4�iT)
1 + i2˛2E

(
sinh(zY)
cosh(z)

)2

×
[

i − ˇz2

˛2

]}
(48)

Here time is scaled with the period of the oscillation T ≡ t/TO,
nstead of the angular frequency as in Eq. (23); the results to be pre-
ented in the next section are compared with the analytical solution
iven by Eqs. (46)–(48). It is interesting to notice that while U and

xy depend only on ˛, KO/KS, ˇ and E, the normal stress component
xx also depends on Wi, reflecting the influence of elasticity through
he first-normal stress difference.

These analytical solutions will be helpful to compute exactly the
iscretization error of the numerical predictions. To do this, an error
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an elasticity number of E = 1. For this case, the numerical results for
the centreline velocity (y = 0) using MESH 2 and a small time step
equal to 1.25 × 10−3 are shown in Fig. 4 where are compared with
the analytical profile Eq. (17). Clearly, hardly any difference is seen
A.S.R. Duarte et al. / J. Non-Newto

easure based on the Euclidian norm was calculated for the axial
elocity U(T,Y) as:

(T) =
√

1
NY

∑
i

(U�y(Yi, T) − U(Yi, T))2 (49)

here U is the analytical solution and U�y the numerical solution
n a mesh with NY control volumes and mesh spacing �y = h/NY.
ote that the error calculated in this way is a global value eval-
ated by integration over the channel cross-section but varies
ith time T. It is also possible to measure the error based on a

ocal velocity value, for example by taking the centreline velocity
nd comparing the predicted value against the theoretical result,
(Uo)=|U�y(0,T) − U(0,T)|, as in Ref. [5], but we found this procedure
o yield a less smooth error variation.

. Numerical results and discussion

In this section the results obtained with the numerical method
utlined in Section 3, applied to the two benchmark flow prob-
ems described in Section 4, are presented and discussed. First,
he study of start-up planar Poiseuille flow of a Newtonian fluid is
hortly addressed (Section 5.1) and then the UCM model is consid-
red in more detail, with results discussed in terms of the accuracy
chieved with respect to mesh and time step refinement (Sec-
ion 5.2). The analysis is extended to Oldroyd-B, PTT and FENE-CR

odels, where the optimal mesh size and time step previously
etermined are employed, and velocity profiles corresponding to
everal specific moments in time are shown and discussed (Section
.3). An analogous study is presented for the pulsating flow test case
here results for the Newtonian (Section 5.4), UCM and Oldroyd-B

Section 5.5) fluids are shown and a comparison between theoreti-
al and numerical results was possible. In these two subsections the
on-dimensional frequency, measured by the Womersley number,
nd the pressure-gradient ratio were fixed at the values ˛ = 4.864
nd KO/KS = 2.587, respectively.

.1. Start-up planar Poiseuille flow of a Newtonian fluid

As a preliminary check, the program was first used for the sim-
lation of a Newtonian fluid. Several consistently refined meshes
ere employed with NY = 20, 40, 80, 160, etc., uniform control vol-
mes along the y direction, corresponding to normalized mesh
pacings of �y = 0.05, 0.025, 0.0125, etc.

Fig. 2 shows the evolution of centreline velocity during the start-
p of planar Poiseuille flow of a Newtonian fluid predicted on mesh
Y = 80. As can be seen, the numerical results fit very well the
nalytical curve of Eq. (14). In this case the time step used was
t = 0.0125 in terms of the diffusive time scale of Eq. (13), a rather

mall value. With larger time steps the numerical results were still
ery accurate and no differences could be perceived in a graph. This
s due to the good accuracy of the second-order temporal scheme
ere utilized based on a three time level discretization scheme for
he time derivative, Eq. (10). The inset in Fig. 2 shows the conver-
ence rates for the three-time level (3TL) and the implicit Euler
ethods in terms of the absolute norm of the error of the centre-

ine velocity at time T = 0.5 during the transient process. Symbols
re the actual results and the lines are power-law best fits provided
y the graph program. Rates of convergence of 0.98 and 2.04 are
ound for the formally 1st and 2nd order Euler and 3TL methods.

nother important point demonstrated by the inset in Fig. 2 is that

he 3TL method requires careful attention to the first time step and
he initial conditions to the method. When care is not exercised,
s shown by the cross symbols in the inset, the convergence rate
s only p = 1.03 typical of a 1st order method. To achieve 2nd order,

F
(

ig. 2. Evolution of centreline velocity with time during the start-up of a Newto-
ian fluid (�t = �y = 1.25 × 10−2). Inset: convergence rate for 3 schemes: three-time

evel (squares), same without using Euler for initial step (crosses), and implicit Euler
diamonds).

e employed in all calculations the Euler method for the first time
tep when starting from a quiescent field.

Fig. 3 shows analytical and numerical velocity profiles at differ-
nt instants in time of the transient process leading eventually to
he steady state parabolic profile. This state occurs when the time,
ormalized by a diffusion time scale, is greater than approximately
≥ 3–4. Only half of the profiles are shown because the calculations
ere made using half of the geometry by assuming symmetry at
= 0. Again, it can be seen that the program mimics very well the

heoretical response.

.2. Start-up planar Poiseuille flow of an UCM fluid

First we look at the spatial discretization error, which was deter-
ined using five computational meshes with 50 (MESH 1), 100

MESH 2), 200 (MESH 3), 400 (MESH 4) and 800 (MESH 5) uniform
V for the discretization of the flow domain along the y direction.
e ran several numerical calculations using these five meshes at
ig. 3. Velocity profiles of a Newtonian fluid at different non-dimensional times
�t = 1 × 10−3 and �y = 1 × 10−2).
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ig. 4. Evolution of centreline velocity with time during the start-up of an UCM fluid
t E = 1 (�t = 1.25 × 10−3 and �y = 1 × 10−2).

n this figure, indicating an accurate solution and that this mesh is
erfectly adequate to resolve the velocity variation.

The discretization error was calculated along the simulations
y using Eq. (49) and the results on the first 3 meshes are given
n Fig. 5 for decreasing values of �y and a fixed �t = 1.25 × 10−3.
t can be seen that the error diminishes with mesh refinement, as
ould be anticipated, and it is small for all meshes—tipically around

rder 10−3 on the finest mesh. A qualitative estimate of the order
f convergence can be done by considering errors at a given time;
or example, at T = 1.5 the errors on the 3 meshes are 7.81, 3.95 and
.04 (×10−3), indicating an error reduction of about 2 as the mesh

s doubled.
A similar study of the effect of time step refinement on the error

volution for a fixed mesh (MESH 2), starting with �t = 0.01 and
alving it until a value of �t = 1.25 × 10−3 is reached, also showed
hat the error decay scales approximately with �t and tends to sat-
rate as the time step gets smaller. An explanation for such lack of
nd, and even 1st, order behaviour when �t is refined may reside on

wo points: first, the spatial discretization is controlling the error,
aving a stronger influence when compared to time step refine-
ent, and therefore one should use much finer meshes to study in

etail the temporal error decay; and second, the discontinuities in

ig. 5. Influence of mesh refinement on the evolution of the discretization error
uring the start-up of an UCM fluid at E = 1 (�t = 1.25 × 10−3; MESH 1 with �y = 0.02;
ESH 2 with �y = 0.01; MESH 3 with �y = 0.005).

a
b
f
f
U
s
A

F
(

ig. 6. Influence of consistent mesh and time step refinement on the evolution of
he discretization error during the start-up of an UCM fluid at E = 1 (�t = 0.5�y).

he solution, to be further commented below, are such that error
ccumulation decreases the rate of convergence to only 1st order
n time.

Regarding the first of these points, it is possible to devise a better
efinement procedure which overcomes that limitation. Since the
ethod is formally 2nd order in space and time, the error should

cale as e = A�t2 + B�y2, and by using a proportional space and time
efinement, �t = C�y, we should end up with a global 2nd order
ehaviour,

= (AC2 + B)�y2 = Cte × �y2 ≡ Cte × �yp (50)

here p is the order of convergence of the method. With the meshes
entioned above, and with a corresponding series of progressively

maller time steps (for the UCM we used �t = 0.5�y, that is C = 0.5)
hen the computed errors evolution are shown in Fig. 6. Under this
epresentation there is a clear convergence with simultaneous �y
nd �t refinement, with uniform separation of the error decay
urves (ideally should be 2log2 for a 2nd order scheme). A con-
ergence plot of errors evaluated using �y = (1/C)�t = C′�t (C′ = 1
or ˇ ≥ 0.1and C′ = 2 for ˇ ≤ 0.1) is shown in Fig. 7 for Oldroyd-B flu-
ds in a range of ˇ and the UCM (ˇ = 0) for both the three-time level
nd the Euler methods, with the lines corresponding to power-law
est fits. For the Oldroyd-B fluids the convergence rate is p = 2.00
or all ˇ cases on the 3 most refined meshes (decreasing to p = 1.83

or ˇ = 0.001 when all 5 discretizations are considered); for the
CM the rate is 0.99 for the 3 TL and 0.78 for the implicit Euler

cheme which also exhibits errors higher by about a factor of 3.
nd worst, the dissipative nature of the Euler scheme leads to very

ig. 7. Convergence rates for the start-up of UCM (ˇ = 0) and Oldroyd-B
ˇ = 0.1–0.001) fluids at E = 1 (�y = �t for ˇ > = 0.1; �y = 2.0�t for ˇ < = 0.01).
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trong damping of the periodic and localised error oscillations seen
n Fig. 6, separated by time delays of 1 unit. These features corre-
pond to shear wave propagation to be discussed in more detail in
he next paragraphs. Based on the results of Figs. 5 and 6, it was
ecided to use MESH 2 and �t = 1.25 × 10−3 on most other simu-

ations of the start-up flow as they give adequate results within a
easonable time frame. It is also relevant to point out at this stage
hat 2nd order accuracy could be obtained due to the use of the new

ethod of implementing wall boundary conditions, Eq. (12); with
he previous method, Eq. (11) the order of convergence would be
educed to p = 1.11 with Oldroyd-B ˇ = 0.01, and p = 1.01 with ˇ = 0.1.

Additionally, a number of points already discussed can be
bserved in those figures. Errors are magnified periodically, with
non-dimensional period of unity, on account of discontinuities in

he time derivative of the velocity field. These discontinuities are
ecognized as a front of shear waves propagating from the wall
owards the centreline with a certain propagation speed c. This
peed can be evaluated from a simplified analysis, starting with
he momentum equation (Eq. (3), without solvent viscosity) and
he UCM equation (Eq. (4) with f = f′ = 1 and �0 = �p) for the shear
tress component (� ≡ �xy) here re-written as:

∂u

∂t
= −dp

dx
+ ∂�

∂y
and � + �

∂�

∂t
= �0

∂u

∂y

In order to transform these two equations into a typical hyper-
olic equation having the form ∂2
/∂t2 = c2∂2
/∂y2, where c is the
ave speed (e.g. the equation for a vibrating string), the first is dif-

erentiated with respect to space and the second with respect to
ime, giving:

∂

∂t

∂u

∂y
= ∂2�

∂y2
and

∂�

∂t
+ �

∂2�

∂t2
= �0

∂

∂t

∂u

∂y

Substituting the first of this latter set into the second of them,
ives:

∂2�

∂t2
+ 1

�

∂�

∂t
= �0

��

∂2�

∂y2

nd comparing with the above typical hyperbolic equation we
ecognise a similar equation, possessing an additional attenua-
ion term and implying a dimensional shear-stress wave speed of
2 = �0/��. In non-dimensional terms, which is more useful to com-
are with our start-up flow results, we set �* = �/�w, T = t/�, Y = y/h,
= �0/��h2 (as in Eq. (21)), and the damped hyperbolic equation
ecomes:

∂2�∗

∂T2
+ ∂�∗

∂T
= E

∂2�∗

∂Y2
(51)

howing that the non-dimensional speed for propagation of stress
aves is:

=
√

E (52)

The non-dimensional period, on the other side, is obtained by
onsidering that space equals time multiplied by velocity, which
or a non-dimensional space of unity (dimensionally, it is h) gives:

c = 1√
E

(53)

For the present case of E = 1, leading to a (non-dimensional)
ropagation velocity of c = 1 according to Eq. (52), and so oscil-
ations should appear separated by time intervals of unity, as
onfirmed by the first peak in Fig. 4. Although all these discon-
inuities are too subtle to be observed in Fig. 4 for larger times,
hey do exist and are magnified in the error plots of Figs. 5 and 6.
he oscillatory response of velocity to the instantaneously applied

a
t
a
n
c

ig. 8. Velocity profiles of an UCM fluid at different non-dimensional times at E = 1
�t = 1.25 × 10−3 and �y = 1×10−2): (a) T = 0.01–0.1; (b) T = 0.8–20.0.

ressure gradient is better seen by using larger elasticity num-
ers. It was confirmed that with E = 2 error peaks appear separated
y a period of 1/

√
2 = 0.7, and with E = 4 the period is 0.5. From

he zoomed insets in Fig. 4(b) and (c) the differences between
umerical and analytical responses become more discernible. The
iscontinuities of the analytical solution for the temporal velocity
rofile at y = 0 lead to numerical oscillations. As a consequence, the
umerical and analytical results agree very well except in the vicin-

ty of these peaks, where small oscillations and damping motions
an be observed in the numerical solution. We also noticed that the
requency of the small oscillations from numerical origin is accen-
uated when the time step becomes smaller, but globally the answer
s closer to the analytical solution given by Waters and King [17].

We turn attention now to the local velocity variation at E = 1
ith the UCM model. Fig. 8(a) and (b) present velocity profiles

n MESH 2 at different time moments and provide a comparison
etween numerical results and analytical solution. These profiles
ere obtained at times shortly after start-up (T = 0.01–0.1), during

he first peak (T = 0.8–1.2) and when the flow had reached steady
tate (T = 20). With this model and for the earlier times, shortly
fter start-up, some differences are perceived but in relative terms

hey are small. It can be observed that the velocity gradient in the
nalytical solutions has discontinuities which are hard to resolve
umerically without resorting to local mesh refinement. These dis-
ontinuities correspond to shear wave front positions, as discussed



162 A.S.R. Duarte et al. / J. Non-Newtonian Fluid Mech. 154 (2008) 153–169

F
a

a
t
b
f

i
v
p
2
h
t
t
s
t
f
m
i
1

F
P

F
O
(

t
T
n
t
e
f
s

5
F

ig. 9. Evolution of centreline velocity with time during the start-up of an UCM fluid
t E = 10 (�t = 1.25 × 10−4 and �y = 1 × 10−2).

bove; a shear wave starts from the upper wall at T = 0, propagates
owards the centreline, is reflected on the other wall, propagates
ack to the first wall, and so on. This shear wave causes the low-
requency oscillatory movement previously seen in Fig. 4.

Next we analyse the centreline velocity evolution obtained dur-
ng the start-up planar Poiseuille flow of the UCM fluid at higher
alues of the elasticity number, namely for E = 10 and 100, com-
ared with the previous value of E = 1. For both cases we used MESH
but smaller time-steps than with E = 1, because of the expected

igher frequency of the response. Fig. 9 shows the evolution of cen-
reline velocity at E = 10 using �t = 1.25 × 10−4 and Fig. 10 shows
he evolution of the centreline velocity at E = 100 using a time
tep of 2.5 × 10−5. In each figure there is a local plot zooming into

he first peak so that the numerical oscillations already discussed
or E = 1 are better seen. As a consequence of increased elasticity,

uch higher oscillatory frequencies and amplitudes are observed
n the transient process: Eq. (53) predicts periods of 1/

√
10 and

/
√

100 separating the velocity peaks in Figs. 9 and 10, respectively;

ig. 10. Evolution of centreline velocity with time during the start-up of planar
oiseuille flow of an UCM fluid at E = 100 (�t = 2.5 × 10−5 and �y = 1 × 10−2).
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ig. 11. Evolution of centreline velocity with time during the start-up of an
ldroyd-B fluid (ˇ = 1/9) on mesh �y = 1 × 10−2 at three elasticity numbers: E = 1

�t = 1.25 × 10−3); E = 10 (�t = 1.25 × 10−4); E = 100 (�t = 2.5 × 10−5).

hese predictions are exactly confirmed by the numerical results.
he analytical solution is once more fairly well reproduced by the
umerical predictions, even if the error in frequency gets larger as
ime proceeds, tending to accumulate and eventually leading to an
rroneous response in frequency (cf. phase lag in Fig. 10, E = 100,
or large times). This error in frequency can be reduced by using
maller steps in time.

.3. Start-up planar Poiseuille flow of Oldroyd-B, PTT and
ENE-CR fluids

Results for start-up Poiseuille flow of Oldroyd-B, PTT and FENE-
R fluids are now presented. In these calculations we shall use the
ost cost-effective mesh and time step, as determined from the

revious section. We begin with the Oldroyd-B flow which has an
nalytical solution [17]. For this model it was already shown (Fig. 7)
hat the method converges in a second order manner (p = 2.00 for
= 1.0, 0.1 and 0.001; p = 1.98 for ˇ = 0.001 on the 3 more refined
iscretizations; on all 5 discretizations, p = 1.99 for ˇ = 1.0 and 0.01,
= 2.02 for ˇ = 0.1, and p = 1.83 ˇ = 0.001). Fig. 11 presents the tem-
oral variation of centreline velocity at E = 1, 10 and 100 for ˇ = 1/9,
commonly used value; for the start-up flow, it was adopted by
ebster et al. [8], Fietier and Deville [9] and Van Os and Phillips

10], while Xue et al. [5] applied ˇ = 0.4 and 0. Agreement between
nalytical and numerical solutions is very good, showing that accu-
acy is much better when some solvent viscosity is present. The
teady state, indicated by UO = 1.5, is reached much faster now than
or the UCM model, and the transient is also seen to be shorter (in
elaxation time units) for the larger elasticity cases.

Velocity profiles for the Oldroyd-B fluid with E = 1 are shown
n Fig. 12 where it is plain to notice that they are markedly differ-
nt from those obtained with the UCM model (Fig. 8). Unlike this
atter fluid, the linear momentum conservation equation for the
ldroyd-B fluid includes a term equivalent to a Newtonian viscos-

ty. Hence, the diffusion speed is infinite inhibiting the formation of

shear wave and the gradient discontinuities observed in the previ-
us section are smeared out in Figs. 11 and 12. These show a smooth
evelopment of the transient centreline velocity evolution and of
he spatial variation of the flow field, which is a consequence of the
ntroduction of some physical diffusion in the equation of motion
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ig. 12. Velocity profiles of an Oldroyd-B fluid (ˇ = 1/9) for E = 1 at different non-
imensional times (�t = 1.25 × 10−3 and �y = 1 × 10−2).

y means of the finite solvent viscosity. Notice how the numer-
cal results are now free of numerically induced oscillations and
xtraneous peak attenuation.

Next we look at the start-up planar Poiseuille flow of a PTT fluid
ithout solvent viscosity and contrast it with the results already
iscussed. Fig. 13 shows the numerical results for the evolution of
he centreline velocity of a PTT fluid with E = 1, 10 and 100. Since the
TT fluid with ˇ = 0 is a purely elastic fluid (devoid of “solvent vis-
osity”), the behaviour displayed in Fig. 13 is similar to that found
or the UCM fluid in what concerns the velocity response after start-
p, evidencing the moments the front of the shear wave reaches
he centreline and is then successively reflected on the channel

alls. A damped travelling wave and sharp localised oscillations

re features that can be observed, much like the UCM cases in
igs. 4, 9 and 10. However, due to the shear-thinning property inher-
nt to the PTT model, the steady state is accomplished earlier. Once

ig. 13. Evolution of centreline velocity with time during the start-up of a PTT
uid (ˇ = 0 and ε = 0.1) on mesh �y = 1 × 10−2, at E = 1 (�t = 1.25 × 10−3), E = 10
�t = 1.25 × 10−4) and E = 100 (�t = 2.5 × 10−5).
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ig. 14. Evolution of centreline velocity with time during the start-up of a PTT fluid
ˇ = 0) at E = 10 (�t = 1.25 × 10−4 and �y = 1 × 10−2), for ε = 0.1 and ε = 0.3.

he front of the shear wave reaches the opposite wall after start-
p, the degree of damping following successive reflections, seen by

ocal maxima of UO, is significantly reduced compared to the UCM
odel (cf. [5]).
The effect of the extensibility parameter in the PTT model was

lso studied. At E = 10 we obtained the temporal profiles shown in
ig. 14 with two different values of ε (0.1 and 0.3). Clearly, the veloc-
ty magnitude during start-up depends on ε as could be expected
n account of shear-thinning in viscosity: for the same applied
ressure-gradient, the average (and maximum, at centreline) veloc-

ty is larger for the PTT fluid with larger ε. It is observed that as the ε
alue grows, and the maximum plateau levels of extensional viscos-
ty are greatly reduced, the PTT model yields results that are further
way from those of the UCM model, and a smoother behaviour is
chieved. For a smaller value of ε the oscillations become more
ccentuated, but the frequency of those oscillations, however faint,
eems to be independent of ε.

Finally, Fig. 15 presents results obtained from numerical calcu-
ations of start-up planar Poiseuille flow for a FENE-CR fluid. In
his case, we compare the centreline velocity profiles obtained with
lasticity numbers of E = 1, 10 and 100, and extensibility parame-
er L2 = 100 which is a common value used in benchmark problems
hen the purpose is to study the influence of extensibility, and a
value equal to 0.5, implying the same proportion of solvent and

olymer viscosities. Fig. 15 shows that with such a model fluid the
quivalent to the “shocks” of the UCM fluid are not generated and
onsequently numerical oscillations are absent, so that a smooth
evelopment of the velocity is patent in the figure. These results
esemble those obtained with the Oldroyd-B model and are essen-
ially a consequence of the solvent viscosity contribution. At E = 10,
esults were also obtained for a smaller value of L2 = 10. These are
hown in Fig. 15 by the dashed line and the evolution of the cen-
reline velocity follows a somewhat different path compared with
he case L2 = 100, which can be interpreted as the dumbbell having
maller extensibility tending to be fully stretched faster, followed
y recovery and some tendency to a slightly oscillating pattern.
.4. Pulsating planar flow of a Newtonian fluid

This subsection deals with code verification using Newtonian
uid test cases. Before considering the pulsating flow test case,
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ig. 15. Evolution of centreline velocity with time during the start-up of a FENE-
R fluid (ˇ = 0.5, L2 = 100) on mesh �y = 1 × 10−2, at E = 1 (�t = 1.25 × 10−3), E = 10
�t = 1.25 × 10−4) and E = 100 (�t = 2.5 × 10−5). Dashed line: E = 10, L2 = 10.

reliminary steady calculations showed that numerical results for
elocity and shear stress profiles in channel flow generated by
he imposition of a stationary pressure gradient (that is, planar
oiseuille flow) presented a very good level of accuracy on the
niform 100 CV mesh (MESH 2). These results are useful as initial
onditions for the pulsating regime. Then, after adding the oscilla-
ory part to the stationary pressure gradient, transient numerical
imulations were carried out for a number of periods using the
hree-time level method on the same MESH 2 and a time-step of
× 10−2 (time is normalized with the oscillatory period, 2�/ω).

t was important to carefully verify in these calculations that a
ully established oscillatory regime was achieved, with repetition
t every cycle.

Fig. 16 shows a comparison of analytical (lines) and numeri-

al (symbols) velocity profiles at several moments in time during
ne cycle (at phase angles separated by 90◦) with ˛ = 4.864 and
O/KS = 2.587 (to be used throughout this and the next subsections).

t is observed that during the whole cycle there is a very good agree-
ent between results, leading to the conclusion that the time step

ig. 16. Velocity profiles of a Newtonian fluid in the oscillatory regime during one
ycle (�t = 1 × 10−2 and �y = 1 × 10−2).
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ig. 17. Evolution of centreline (UO) and average (Uav) velocities with time during
he pulsating planar flow of a Newtonian fluid (�t = 1 × 10−2 and �y = 1 × 10−2).

× 10−2 is sufficient to accurately resolve the theoretical solution
or the Newtonian fluid. From a convergence rate study, using both

esh and time step refinement according to Eq. (50) (�t = �y),
he rate was found to be p = 2.00 based on error Eq. (49), thus in
greement with second order behaviour.

Since the pressure gradient varies as a cos(ωt), during one cycle
here is a minimum of dp/dx at ωt = 180◦, a maximum at ωt = 360◦,
nd zeros at ωt = 90◦ and 270◦; we verify from Fig. 17, showing the
entreline and cross-sectional average channel velocities, that the
elocity variation has a phase difference when compared with pres-
ure. Looking at the maximum velocity at the channel centreline,
here is a phase difference of approximately 90◦ when compared
ith the pressure gradient. The evolution of the maximum velocity

UO = u(y = 0, t)/ūS) and of the average cross-sectional velocity in

he channel
(

Uav = ū(t)/ūS =
∫ h

0
u(y, t) dy/hūS

)
evolves with time

s shown in Fig. 17 where a perfect match between numerical and
nalytical results is evident.

Another variable of interest in many applications is the shear
tress. The evolution of this variable during one cycle is presented
n Fig. 18 where a comparison between the numerical and theoret-
cal (Eq. (26) with rescaling of �xy and t) results is made. Again, a

ery good agreement between numerical results and the analytical
olution is observed as it was the case for the velocity profiles; the
all shear stress attains a maximum (in absolute terms) at 0◦ and
0◦.

ig. 18. Shear stress profiles of a Newtonian fluid in the oscillatory regime during
ne cycle (�t = 1 × 10−2 and �y = 1 × 10−2).
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tonian solvent contribution to the total viscosity (ˇ = �s/�0=0). As
anticipated, it is easier to find accurate numerical solutions with the
Oldroyd-B model than with the UCM. Fig. 22 shows a comparison
of the evolution of the centreline velocity with time for Newtonian,
ig. 19. Evolution of centreline velocity during one cycle for the pulsating flow of
Newtonian and an UCM (E = 1) fluid: influence of mesh and time-step refinement
n predictions (�t = 10−2 to 10−3and �y = 10−2 to 10−3).

.5. Pulsating planar flow of a non-Newtonian fluid

We consider now the more interesting situation of a viscoelastic
uid model subject to an oscillatory pressure gradient, in which we
hall specifically employ either the UCM or the Oldroyd-B fluids,
hose theoretical solution was derived in Section 4.2.

By comparing the evolution of the centreline velocity during one
ycle for a Newtonian fluid and a viscoelastic UCM fluid with E = 1
see Fig. 19) we observe that the behaviour of the Maxwell fluid
iffers significantly from the Newtonian one: both the amplitude
nd the phase of the maximum velocity oscillation are substantially
ifferent, for the Stokes number here considered of ˛ = 4.864.

In contrast to the start-up test case, it is surprising to verify that
or the UCM fluid a mesh with 100 CV is wholly inadequate to yield
umerical results close to the theoretical ones, as shown in Fig. 19.
his figure reinforces the idea already commented before (Section
.2) that it is mesh refinement that controls the error. It presents
he theoretical variation of the centreline velocity (Y = 0 in Eq. (46))
uring one period and various numerical solutions. A mesh with
00 CV and time steps of 1 × 10−2 and 1 × 10−3 were employed,
ogether with a more refined mesh with 1000 CV and time step
f �t = 10−3. Only by using this finer mesh and the refined step in
ime could we gather sufficient conditions to obtain good agree-

ent between theory and numerical simulations. This is reflected
n the velocity profiles presented in Fig. 20 for ωt = 0◦, 90◦, 180◦ and
70◦ where, for the spatial resolution of 1000 CV, almost no dis-
repancies between the theoretical solution and numerical results
re seen. Fig. 21(a) and (b) shows the corresponding predictions
f shear and normal stress components (denoted by various sym-
ols) contrasted against the theoretical solution of Eqs. (47) and
48) (denoted by lines), and there is clearly a good match due to the
se of such a refined mesh, in spite of some localised discrepancies
especially for Txx).

Both Figs. 20 and 21 reveal the propagation of short-wave oscil-
ating motions across the channel, and about 8 wave peaks can
e counted from either the velocity or stress variations. Thus the
avelength normalized with h is estimated as 1/4. This estima-

ion can be approximately confirmed from the theoretical solution
f Section 4.2; in Eq. (38) the only possible term responsible for
patial wave propagation is cosh(zY) and for large ˛2E and small

, Eq. (35) gives z ≈ i˛2

√
E. Therefore cosh(zY) ≈ cos(˛2

√
EY) with

avelength � = 2�/˛2
√

E; for the present case we have E = 1 and
= 4.864, yielding l = 0.265 = 1/3.8 in agreement with the estima-

ion from the figures.
F
r

ig. 20. Velocity profiles of an UCM fluid in the oscillatory regime during one cycle
�t = 1 × 10−3 and �y = 1 × 10−3).

It is well known that the UCM model can be viewed as a particu-
ar case of the more general Oldroyd-B model when the retardation
ime is zero (�r = 0), which is equivalent to the absence of a New-
ig. 21. (a) Shear and (b) normal stress profiles of an UCM fluid in the oscillatory
egime during one cycle (�t = 1 × 10−3 and �y = 1 × 10−3).
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Fig. 22. Evolution of centreline velocity with time for the pulsating flow (˛ = 4.864)
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difficult in numerical terms. Difficulties in achieving both itera-

F
ˇ

f various fluids: Newtonian (theoretical solution); UCM (E = 1, theoretical solution);
ldroyd-B (ˇ = 0.01; 0.005; 0.001; E = 1; lines- theory; symbols–predictions with
t = 1 × 10−2; �y = 1 × 10−2).

CM and Oldroyd-B (ˇ = 0.01; 0.005; 0.001) fluids. As can be seen
rom the graph, the Newtonian and Oldroyd-B (ˇ ≥ 0.005) fluids

resent a similar behaviour which differs significantly in amplitude
nd phase from that for the UCM fluid. The numerical prediction for
he Oldroyd-B fluid with the typical value of ˇ = 0.1 (recall that the
olvent viscosity ratio is often taken as ˇ = 1/9), or ˇ = 0.01 shown

t
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ig. 23. Velocity profiles of an Oldroyd-B fluid in the oscillatory regime during one cycle
= 0.001 (circles- �y = 0.25 × 10−2).
Fluid Mech. 154 (2008) 153–169

n the figure, matches well the analytical solution even when a 100
V mesh and a time step of 1 × 10−2 are employed, but that is not
ossible with the UCM model (for which ˇ = 0).

Some point-wise results using the Oldroyd-B model, showing a
omparison between analytical solutions and the predicted veloc-
ty profiles obtained by the computer program at four time instants
uring the oscillatory period, with phase angles ωt = 0◦, 90◦, 180◦

nd 270◦, are now presented. Fig. 23(a)–(d) show these results for
range of the viscosity parameter ˇ = 0.1, 0.01, 0.005 and 0.001.
e recall that ˇ = 1 corresponds to the Newtonian model for which

here is no elastic contribution to the stress tensor, while ˇ → 0
eads to the UCM model. The predictions seen in these figures

ere calculated on MESH 2 (�y = 1 × 10−2) with a time step of
t = 1 × 10−2, which appears adequate at ˇ = 0.1 and 0.01, where

xcellent agreement between analytical and numerical solutions
s observed. In contrast, Fig. 23(c) and (d) show velocity profiles
or the Oldroyd-B fluid with ˇ = 0.005 and 0.001 and in these fig-
res some discrepancies between the numerical results and the
nalytical solution are discernible, reflecting a feature common to
ll numerical simulations with viscoelastic fluids: amongst all rhe-
logical models, the UCM appears as the most problematic and
ive convergence and sufficient accuracy found for the Oldroyd-B
odel, tend to increase as the ˇ value decreases and the UCM model

s approached. Then, mesh refinement is mandatory in order to
mprove the predictions, as demonstrated in Fig. 23 (d) for the

(E = 1, �t = 1 × 10−2 and �y = 1 × 10−2): (a) ˇ = 0.1, (b) ˇ = 0.01, (c) ˇ = 0.005 and (d)
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p = 2.00, 2.02, 1.98, 1.83 and 1.72, for ˇ = 1.0, 0.1, 0.01, 0.001 and 0.0,
respectively. Although the error decaying rates are almost the same
for all cases, when going from the Oldroyd-B model with ˇ = 0.1 to
the UCM, the magnitude of the RMS errors for the latter are much
ig. 24. Evolution of discretization error during one period of the pulsating flow of
wo Oldroyd-B cases, ˇ = 0.1 and 0.001 (E = 1), calculated with various meshes and
ime steps, such that �t = �y.

ase of ˇ = 0.001 where further predictions with a mesh having
y=0.25 × 10−2 (after doubling twice the number of cells of the

ase mesh, from NY = 100 to NY = 400) are also plotted as round
ymbols; these fall virtually on the line corresponding to the ana-
ytical solution.

The distribution of the discretization error along one period
f the imposed oscillations using four different uniform meshes
nd corresponding smaller time steps is plotted in Fig. 24. Two
ldroyd-B cases are shown, one with the typical value of ˇ = 0.1
nd the other with a much smaller ˇ = 0.001, thus very close to a
CM fluid. In general, the error is seen to follow a sinusoidal-like
ariation during the cycle and, in the log scale shown, it is reduced
y a constant amount due to the technique here employed (cf. Sec-
ion 5.2, Eq. (50)) of simultaneously refining the mesh spatially and
he step forward in time in a consistent manner: �y1 = �t1 = 1/50,

y2=�t2 = 1/100, �y3=�t3 = 1/200 and �y4=�t4=1/400. A good
parallelism” between the error variations is observed in Fig. 24(a)
or ˇ = 0.1, with a constant separation of about 2 log 2 typical of
nd order accuracy, while in part (b) for ˇ = 0.001 a phase lag is
atent, especially for the coarser level of simultaneous mesh and �t
efinement, but the error reduction of 4 is also seen on the finer dis-
retizations (an additional discretization level of �y5 = �t5 = 1/800
s included in Fig. 24(b) to make this fact clearer). Hence, very small
values in the Oldroyd-B model, and consequently also the UCM
odel, require even smaller time steps and finer meshes. It is note-
orthy that the error for the Oldroyd-B ˇ = 0.001 is smaller than

0−3only for meshes having more than 400 CVs (�y < 0.0025) while

F
(
c

ig. 25. Convergence of centreline velocity with mesh refinement for the pulsating
ow (˛ = 4.864) of an Oldroyd-B fluid (ˇ = 0.001; E = 1): predictions on 4 successively
efined levels with �t = �y.

f ˇ is increased to 0.1 the mesh NY = 100 is sufficient to obtain errors
ounded by 10−3.

Convergence of the numerical results with mesh refinement is
llustrated more directly in Fig. 25, showing the predicted cen-
reline velocity for the Oldroyd-B with ˇ = 0.001 obtained using

consistently refined meshes. Starting with MESH1, NY = 50, the
umber of cells was successively doubled until reaching NY = 400
nd �y = 0.0025, while the time step was simultaneously halved
rom the initial value of �t = 0.02. The conclusions of the previ-
us paragraph regarding the error decay are now plainly seen: for
uch low value of ˇmaintaining the accuracy of the predictions
o within a reasonable error band requires meshes with as much
s 400 cells. In addition Fig. 26 shows with symbols the conver-
ence rates obtained for the Oldroyd-B model with ˇ = 0.001 (open
quares), ˇ = 0.01 (triangles), ˇ = 0.1 (circles), and the UCM (circu-
ar symbols). The data were obtained by integrating the local errors,
alculated with Eq. (49), over one period: e = ∑1

0e(T)/NT (NT is the
orresponding number of time steps). A graphical fitting routine
ields rates of p = 1.98 for the UCM, and for the Oldroyd-B p = 1.98,
.99 and 2.01 for ˇ = 0.001, 0.01 and 0.1, respectively, on the 3 finer
iscretizations. If all the 5 meshes are taken into account when eval-
ating the convergence rate, there is a deterioration as ˇ is reduced:
ig. 26. Convergence plots for the pulsating flow (˛ = 4.864, E = 1) of Oldroyd-B, UCM
ˇ = 0) and Newtonian (ˇ = 1) fluids. Discretization refinement with �t = �y. Error e
alculated over a period.
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ig. 27. Normal stress profiles of an Oldroyd-B fluid in the oscillatory regime during
d) ˇ = 0.001.

igher (by about 3 orders of magnitude). In conclusion, the over-
ll rate of convergence is about 2 for all the viscoelastic pulsating
ases, as in the previous start-up problem, except that in that case
he UCM showed a 1st order convergence due to the discontinu-
us character of the shear waves generated. However, the rate of
onvergence is not the only useful information from Fig. 26: it also
eveals that the UCM model requires a discretizetion of order 10−3to
et the same error magnitude of the Oldroyd-B having ˇ = 0.1 on a
iscretization ≈2 × 10−2.

In terms of stress predictions Fig. 27(a)–(d) shows the normal
tress profiles at four time instants during the oscillatory period
nd a comparison between analytical results and numerical solu-
ions for ˇ values ranging from 0.1 to 0.001. Analogous features
o the ones already commented upon in relation to the velocity
rofiles (Fig. 23(a)–(d)) are patent in these figures. This point is
ade even clearer in Fig. 22 above, where we observe the approach

f the Oldroyd-B fluid results to the UCM ones when ˇ decreases
nd tends to 0. A degradation of the accuracy of the results is also
bserved on the mesh with 100 CV especially as ˇ becomes lower
han 0.005.

Regarding the short-wave propagation across the channel, it
s interesting to notice by comparing Fig. 27 against Fig. 23 that
he wavelength is the same as for the UCM fluid, therefore being

ndependent of ˇ as the above analysis showed. About the same

peaks are observed in these figures. When ˇ increases, wave
ropagation is killed because z now tends to z ≈

√
i˛/

√
ˇ and the

osh(zY) does not lead to a sinusoidal function (either a sinus or
co-sinus).

fi
d

t
s

ycle (E = 1, �t = 1 × 10−2 and �y = 1 × 10−2): (a) ˇ = 0.1, (b) ˇ = 0.01, (c) ˇ = 0.005 and

. Conclusions

In this paper, numerical and analytical modelling of time-
ependent viscoelastic fluid flow was addressed. In particular, one

mportant test case for the assessment of computational simulation
rograms was proposed and its theoretical solution derived.

Initially the start-up planar Poiseuille flow test case was anal-
sed. Comparison between Newtonian and UCM fluids showed
ifferent behaviour during the transient regime before reaching
steady state, with an oscillatory response for the UCM. It was

lso verified that the Maxwell fluid took longer to attain a steady
tate, more so as the elasticity number was increased and the period
f the physical oscillations decreased. Small numerical oscillations
ere present next to the locations where a discontinuity of the

ime derivative would physically occur. Besides that, the results
btained were sufficiently accurate to predict the shear wave prop-
gation along time with an almost exact prediction of the instants
n time when those “shocks” generated at each wall passed through
he channel centreline and interfere with each other, giving rise to
trong error oscillations. With the Oldroyd-B model we observed a
moother development of the transient evolution and of the spatial
ariation of the flow field, as already reported in previous studies
5,8,10]. The actual rate of convergence of our method was veri-

ed to be 2 for all the Oldroyd-B cases studied (ˇ = 0.1 − 0.001) and
ecreasing to 1 for the UCM model.

For the PTT model without a solvent viscosity, behaviour similar
o that produced by the UCM fluid was observed but due to the
hear-thinning viscosity implied in the PTT equation, the stationary
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tate was attained quicker. For the FENE-CR fluid the behaviour
bserved was similar to that found for the Oldroyd-B fluid but in
his case there was a reduction in the oscillatory frequency of the
esponse as well as an attenuation of the peak of the oscillation.

For the pulsating viscoelastic flow case, the most interesting
f the two considered, some similar and some new conclusions
ould be drawn. Good agreement between theoretical and numer-
cal solutions could be observed for the Newtonian fluid under
teady and unsteady regimes but the viscoelastic fluids showed
ery different behaviour. While for the Oldroyd-B fluid there was no
rouble in obtaining accurate results for ˇ > 0.005 using reasonable

eshes and time steps (of order 0.01), the accuracy would deteri-
rate as ˇ became smaller and the UCM model was approached, in
pite of having established 2nd order convergence rate for all pul-
ating flow cases (including the UCM). For this latter model very
ne meshes were required (�y = 1/1000) together with very small
ime steps (�t = 1/1000). Even for a low elasticity number of E = 1
he UCM model, possessing no purely viscous dissipation, tended
o develop short-wave pulses propagating across the channel and
uch local phenomena seem to require very tight resolution. The
ulsating planar channel problem with the UCM model is thus a
ost adequate test case for assessment of viscoelastic codes under

nsteady flow conditions. This test flow offers some advantages in
omparison to the start-up flow:

it is periodic instead of transient, therefore being less sensitive
to the exact initial conditions and thus enabling a check on the
repeatability of the numerical solution at every period;
it does not generate “shocks” that lead to the propagation of
velocity-gradient discontinuities, which are harmful because
high-order numerical schemes tend to loose accuracy near those
points;
hence, the control of discretization errors and convergence rate
of the method can be done much more effectively.
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