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In this paper two test cases adequate for the assessment of viscoelastic flow codes under unsteady flow
conditions are investigated. For one of them an analytical solution is also derived.
First, the start-up of planar Poiseuille flow between two parallel plates was tackled. For upper-convected

Accepted 22 April 2008 Maxwell and Oldroyd-B models there exist analytical solutions making it possible to evaluate exactly

the discretization errors of the transient numerical method. Good agreement was found between the
present numerical results and those analytical solutions, especially for “shock” propagation. For the UCM
fluid, small numerical oscillations were observed at points where the time derivative of velocity was
discontinuous, but for the Oldroyd-B fluid a smooth development of the transient evolution was obtained.
Results with the PTT model without solvent viscosity and the FENE fluids were also obtained and, as
expected, the behaviour was similar to that found for the UCM and Oldroyd-B fluids, respectively.

Then, a pulsating flow problem was studied. In this test case the flow is generated by a periodic pressure-
gradient superimposed on a constant Poiseuille flow. The analytical solution for pulsatile Oldroyd-B flow
in a channel was derived as part of the work and, again, difficulties in obtaining accurate numerical
solutions with the UCM model were encountered, being necessary to employ extremely refined meshes.
For the Oldroyd-B fluid no difficulties were found and the accuracy tended to improve with larger solvent
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1. Introduction

Unsteady flows are gradually becoming the main focus of atten-
tion in computational rheology studies. Over the past two decades
stable numerical algorithms were developed and optimized for
the solution of steady viscoelastic flow problems [1,2]. Currently,
the attention has largely been diverted towards the solution of
unsteady flow problems which are relevant not only because many
actual flows of interest occur in variable regimes, as exemplified by
injection and blow molding, purely extensional flows, or blood flow
inarteries and veins, but also due to the tendency of non-Newtonian
systems to develop time-dependent instabilities.

As a consequence, there has been a growing number of works
devoted to applying time marching procedures, typically used to
obtain steady state solutions, to the calculations of actual time-
dependent flows, with either finite volume methods [3-5], finite
element methods [2,6], with a combination of finite element and
finite volume methods [7,8], or even with spectral element meth-
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ods [9,10]. This is merely an illustrative list which is not meant to
be exhaustive, and many other works have been published deal-
ing with unsteady flows of viscoelastic liquids that may even not
follow differential constitutive equations; the backward-tracking
Lagrangian method [11] for micro-macro simulations being a good
example of such efforts. Also, linear stability analysis of flows sub-
ject to temporal instabilities have been conducted and we mention
here the works of Keiller [12,13] which will be elaborated below. In
spite of these and other works on time-dependent non-Newtonian
flows, it is a fair statement, corroborated by others [8,10], that much
of the effort of the community has been on solving steady flows and
is now more directed towards unsteady flows.

A prerequisite before embarking into the simulation of complex
time-dependent flows is the development of a set of sufficiently
simple test cases adequate to assess the numerical behaviour of
existing codes and, to a large extent, useful time-dependent test
cases are missing. In this paper, a detailed numerical study of two
test problems involving viscoelastic flows in variable regime will
be presented: start-up and pulsating flows in a channel. While
the start-up flow is a well-established test problem used by many
workers as discussed below, the pulsating flow in a plane chan-
nel is a new proposition that we advance in this paper. These
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problems are solved by application of the numerical simulation
program developed by Oliveira et al. [14], based on a multidimen-
sional finite volume formulation which was originally prepared to
solve steady viscoelastic flow problems [ 14] and was later extended
to unsteady viscoelastic flows with some degree of complexity [4],
such as prediction of viscoelastic vortex shedding behind cylinders.
Here we take a step back, from those relatively complex geometries
to (apparently) simpler 1D cases, and have adapted the method
to solve effectively simple one-dimensional, time-dependent flow
problems. These test problems are useful as benchmark cases
because they possess analytical solutions thus allowing exact eval-
uation of discretization errors. In addition, with the test cases here
proposed it is possible not only to assess discretization errors but
also lagging-errors resulting from the sequential treatment of the
equations (momentum and constitutive).

The numerical simulation program was first applied to the
benchmark problem of the start-up of planar Poiseuille flow
between two parallel plates, which has been used in many recent
studies, e.g. [3,5,7-10,15]. This time-dependent transient flow is
driven by the instantaneous application of a spatially constant pres-
sure gradient to a fluid initially at rest. With the further assumption
that the resulting flow is fully developed it becomes possible to
derive an analytical solution to the governing equations. For New-
tonian fluids, this solution is well known and is described in several
books (e.g. White [16]); for non-Newtonian fluids obeying Maxwell
and Oldroyd-B constitutive equations the analytical solution was
given by Waters and King [17]. Thus, results from the analytical
solution and numerical simulations could be compared for different
values of the elasticity number and, through the use of successively
refined meshes and progressively smaller time steps, a study was
made on how those discretization errors decayed.

In two works most closely related to the present effort, Xue et al.
[5] and Van Os and Phillips [10] have carried out thorough inves-
tigations on the accuracy and stability of temporal algorithms in
the context of, respectively, the finite volume and the finite spec-
tral element methods, with both studies using the start-up flow as
test case. However, the approach followed in these studies to set
up the start-up flow was different: in Xue et al. a constant pressure
difference was prescribed and the flow (apparently) solved fora 1D
slice of cells, as we have done here; in Van Os and Phillips the full
2D channel was simulated with the known analytical solution of
Waters and King imposed at inlet and outlet. In addition, Van Os
and Phillips were more concerned with the stability of various ver-
sions and solution algorithms of their spectral element method,
and the case considered was basically the Oldroyd-B fluid with
B=1/9; accuracy was not an issue and the more difficult UCM fluid
was not considered. On the other hand, Xue et al. examined the
time accuracy of their various implementations of a finite volume
algorithm (explicit or implicit; SIMPLE, PISO or SIMPLER pressure-
correction algorithms) for the Oldoryd-B with 8=1/9 on a rather
coarse mesh (NY=10), while velocity profiles were graphically com-
pared with the analytical solution for the UCM at two values of
elasticity (E=0.4 and 40) on a more refined mesh (NY=50), but
in all these cases the order of convergence with Ay and At was
not established. Webster et al. [8] have given more details for the
Oldroyd-B B=1/9 and demonstrated convergence rates of At!3 and
Ay?, based on local point-wise velocity values, with their FV/FE
method at Wi=4/3. It will be clear from the present study, and
indeed it was already plain from Xue et al. who in Section 5.1
write “in the purely elastic case some inherent difficulties for tran-
sient numerical analysis have arisen”, that the UCM is much more
difficult that the Oldroyd-B model in terms of obtaining accurate
time-dependent numerical solutions, unless the 8 parameter of
the Oldroyd-B becomes smaller than about 0.001. Hence, from this
short review, the question of establishing the rate of convergence

of numerical algorithms for time varying flows of Oldroyd-B and
UCM-like fluids is still open, and this is the purpose of the present
study, not only with the start-up flow used in those previous works,
but also with the new problem here proposed of the pulsating UCM
and Oldroyd-B flows.

It is relevant here to mention the linear stability analysis of
Keiller [12] for plane Couette flow of UCM fluids. He found that
when the problem is solved in a 2D domain the critical Weis-
senberg number (Wi) above which a finite-difference method
becomes unstable scales with the ratio of the mesh spacings, that
is Wi ~ Ax/Ay where x is the streamwise direction and y the
transverse, velocity gradient direction. In a later work dealing with
Poiseuille flow [13], instead of the simpler pressure-gradient free
Couette case, the same type of limiting Wi criterion was found for
a particular finite-difference scheme but not for an alternative one
where apparently the near-wall node was treated more implicitly.
Fietier and Deville [9], with a spectral method, did not find the same
sort of scaling in their simulations of plane start-up flow of Oldroyd-
B fluids; Van Os and Phillips [10] probed various channel lengths
and spectral element resolutions and reported that the maximum
attainable Wi decreased when Ax=1/9 is reduced, but they do not
substantiate on Keiller findings, rather they correlate the diminu-
tion of We,;; with refinement of discretization size, a well-known
outcome (e.g. Keunings [18]). In the present study we also cannot
confirm that the critical Wi scales with Ax/Ay since we use only
a vertical row of cells (along y), that is, we effectively solve the
1D equations using a 2D procedure (cyclic boundary conditions are
applied on the two faces of that vertical row of cells) and as a conse-
quence the Ax cancels out from the final algebraic equations (our
results do not depend on the assumed streamwise domain size).
However some preliminary simulations using the 2D domain with
imposed inlet analytical profiles do suggest that Keller’s result is
valid, a matter left for future research.

Although the UCM and Oldroyd-B models are able to describe
some of the elastic characteristics of actual macromolecular fluids
they have known limitations. In this work, more complex mod-
els were also considered, namely the Phan-Thien-Tanner (PTT)
model [19,20], based on network theory, the finite extensible non-
linear elastic (FENE) model, based on kinetic theory [21], and the
constant-viscosity FENE version of Chilcott and Rallison known as
FENE-CR [22]. These models present the desirable features of shear-
thinning and finite elongational viscosity which are not accounted
for in UCM and Oldroyd-B models. As will be seen, the constitutive
equation used to describe the fluid properties has a strong impact
on the results for velocity and stress evolution as well as on the
method stability, as already pointed out in previous studies (e.g.
[10]).

The other benchmark test problem here studied is a viscoleastic
pulsating periodic flow resulting from the application of a pressure
gradient which varies sinusoidally in time. In contrast to the start-
up problem, this has been scarcely used as a test case in numerical
calculations in computational rheology; most of the existing litera-
ture is focused on the theoretical treatment of viscoelastic pulsating
flows in straight pipes with circular cross-section [23,24], recently
extended to curved pipes [25]. A first and main motivation for this
problem is to have a flow which is not dominated by the initial
conditions and will not develop shear stress fronts, with velocity
gradient discontinuities as in the start-up flow case. A second moti-
vation is related with our interest in future simulations of blood
flow behaviour, which is unsteady (although not sinusoidal) and
viscoelastic, as shown in the recent study of Owens [26] where
a FENE-type equation is proposed. Of course, the effort of using
elaborated constitutive equations for blood flow like those of [26]
has to be left for future investigations. An analytical solution for
the velocity and stress distribution of UCM and Oldroyd-B models
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under sinusoidal pulsating conditions was obtained as part of the
work. This will be useful for the assessment of numerical methods.

2. Governing equations

In this section, the basic conservation equations for isothermal
and incompressible flows are presented as well as the constitutive
relations for the UCM, Oldroyd-B, PTT and FENE-CR models. Con-
servation of mass and linear momentum in the absence of body
forces is expressed by:

V.u=0 and p(%):—Vp+V-Tmt (M

where u is the local velocity vector with components u and v cor-
responding to the Cartesian coordinates x and y, respectively. Fully
established conditions in a long planar channel imply du/dx = 0
and v = 0; hence, the continuity equation is identically satisfied
and the momentum equation for a Newtonian fluid with a constant
viscosity w can be simplified to:

ou dp %u
’Oﬁ =T ix + “872 (2)

However, for a viscoelastic fluid the extra-stress tensor, T, can-
not be easily substituted by velocity gradients. This tensor will be
specified by a third equation that determines the rheological vis-
coelastic behaviour of the fluid. In general Ty can be thought as
being composed by a Newtonian (solvent) component, with viscos-
ity ns, and an additional elastic component 7. So the conservation
of linear momentum for a viscoelastic fluid is written here under
fully developed conditions as

du dp a(fxy)wt dp ?u Oty
FTax gy A Papr Ty
In these equations p, p and t are the fluid density (assumed
constant), pressure and time, respectively.
Four differential rheological models are used along the paper
and the constitutive equation for all models can be written as:

(3)

AT +ft=2f'npD (4)

where A is the relaxation time of the fluid, f and f are functions
of invariants of 7 that enable to discriminate among the models,
np is the zero-shear rate polymer contribution to the viscosity, D

the deformation rate tensor and Z is the upper-convected time
derivative of the stress tensor, defined as:
z:%—i-(u-V)T—T-Vu—(Vu)T-T (5)

The relaxation time gives an indication of the magnitude of the
elastic nature of the fluid. As the relaxation time increases, so does
the fluid elasticity and a value of zero retrieves the Newtonian con-
stitutive equation. The solvent and polymer viscosities ns and 7p
are related in the following manner:

Ms Ar

B=ro=7 (6)
where 1) is the total zero-shear rate viscosity and A, the retardation
time of the fluid. The functions fand f are unity for both the upper-
convected Maxwell (UCM) and Oldroyd-B models (f=f =1). For the
UCM, the solvent viscosity ratio is zero (f=0) and so it is a model
devoid of any explicit diffusion term in the momentum equation.
Although the UCM is the simplest differential model incorporating
elastic effects it is also the hardest in terms of numerical calcula-
tions. For the Oldroyd-B model, 8 + 0 and it becomes equivalent to
a linear combination of the UCM model and the Newtonian model.

No =17s + Np,

Shear-thinning characteristics of the PTT and FENE-CR models
are controlled by non-trivial functions fand f. The expression here
employed for the stress function in the PTT model is the linearized
form given in the original paper [20]:

f=1+ (“) tr(t), f'=1 (7)
Ip

where ¢ is a parameter related to the elongational behaviour of the
model and tr(7) is the trace of the stress tensor. The PTT model was
derived from network theory and predicts a bounded extensional
viscosity with a maximum value proportional to 1/¢, while the UCM
and Oldroyd-B models yield an unbounded elongational viscosity
at a finite strain rate of A& = 0.5. It degenerates into the Oldroyd-B
model when €=0, and the UCM if ns=£=0.

The FENE family of models is “molecular” based and was devel-
oped from kinetic theory by Bird et al. [21]. The Chilcott and Rallison
[22]versionyields a constant-shear viscosity fluid with finite spring
extensibility, and corresponds to putting:

(L% + (A/np) tr(T))

f= 2 _3) ;

fr=f (8)
where the parameter L2 is a measure of the stretch of the basic
dumbbell constituents in the molecular representation of the
model fluid.

The simplified forms of the constitutive equations for the fully
developed planar flows under consideration here will be given in
Section 4.

3. Numerical method

As already pointed out in Section 1, the computer program is
a quite general simulation tool based on a fully implicit finite-
volume method and has been used in the calculation of two- and
three-dimensional flows of fluids that follow differential viscoelas-
tic constitutive models. One of the purposes of the present study
is to assess the ability of this general code in relatively simple
time-dependent problems for which analytical solutions are either
available or can be derived.

The governing equations given in Section 2 are integrated in
space over the control volumes (cells) forming the computational
mesh, and in time, over small time steps At, so that sets of linearized
algebraic equations are obtained. The method uses a non-staggered
grid arrangement, in which all dependent variables are located at
the centre of the control volumes, thus simplifying the adoption
of general curvilinear coordinates required in more complex prob-
lems. As a consequence, special procedures are required to ensure
the pressure/velocity coupling and velocity/stress coupling, which
were described in Oliveira et al. [14].

The linearized algebraic equations obtained have the general
form:

afge = abr+5? (9)

F

to be solved for the velocity or stress components (¢ =uor ¢ =7).In
these equations ag are coefficients, accounting for convection and
diffusion influences, S are source terms encompassing all terms not
included in the coefficients, the index P denotes the cell in question
and F its neighbour cells. For the present problems a single row of
cells aligned with the y-axis (see Fig. 1) will be sufficient due to the
fully developed conditions, so the index F varies from one to two
only, to indicate the cell immediately above (+y) and below (-—y)
any given cell P.

Equation sets like Eq. (9) can be viewed under a matrix form
Ax=Db typical of linear equation systems and are solved by a bi-
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Fig. 1. Schematic representation of the geometry for the start-up and pulsating flow problems.

conjugate gradient solver. The spatial discretization method is
second-order accurate [14] and the temporal discretization is also
accomplished through a second-order three-time level method [4]:

3¢ B 3¢n+l _4¢n _,’_¢n—l

ot 2At (10)

at
where index n denotes time levels. This three-time level method,
analogous to the BDF2 (backward differentiation formula) scheme
of Van Os and Phillips [10], offers improved accuracy compared to
the implicit Euler method which is only first-order accurate in time
(e.g. [5D).

As commented before, the full features of the simulation code
are not required for the present problems and suffices to solve dis-
cretization Eq. (9) for the axial velocity component u, and the shear
and normal stress components Ty, and Txx. These dependent vari-
ables are function only of y and t. The pressure gradient is given and
therefore the velocity/pressure algorithm is effectively switched
off. Boundary conditions are applied at walls, where a no-slip con-
ditionis assumed, and atinlet, where the initial fields are prescribed
(usually zero velocity and stresses). At every iteration, the velocity
and stress components calculated at the CVs centres are extrapo-
lated to the outlet plane; then, because of the single row of cells,
those outlet values are assigned to the inlet plane, and the calcula-
tion proceeds. In this way, fully developed conditions d/0x = 0 are
obtained, provided the iterations within a time step are converged
to a tight tolerance (10~4 or 10~ in the L1 norm of the residuals).

Specification of stress at solid walls requires further attention.
An important finding during the course of the present study is that
the simple procedure used in previous works, in which a local vis-
cometric flow is assumed and the stress components at the wall
are prescribed on the basis of corresponding analytical solutions,
gives rise to a deterioration of accuracy and it is better to obtain the
stress directly from the momentum equations. For the Oldroyd-B
fluid the previous method for boundary conditions would give the
wall shear stress as

Uw — Up
Ay/2

Ty = oy = (Thy = 1o (11)
where w denotes the wall node and P the adjacent internal node at a
distance Ay/2 from the wall. If the wall is fixed, then u,, =0. For the
shear-thinning models, the expression is the same but the viscosity
is calculated analytically based on the local shear rate (n(y )). In the
new method of implementing the boundary conditions, the wall
shear stress is calculated directly from Eq. (3) giving:

Ay
p 2

0Ty

=0=(my)y =(mylp + (%)

dx ' oy

(12)

where the viscous part is omitted for clarity. For the present prob-
lems the pressure gradient is known and may vary only with time.

In general dp/dx is the pressure gradient parallel to the wall plane
evaluated at the nearest centre of cell position P.

4. Problems description and analytical solutions

We deal separately with the two problems: the start-up flow
and the pulsating flow of viscoelastic fluids in a planar channel.
The simulations presented in this paper are valid for flow in a two-
dimensional channel bounded by two parallel plates separated by
height 2h in the (x,y) plane, with y representing the transverse
direction according to Fig. 1. The task s to determine how the veloc-
ity and stresses in the channel evolve in time until a stationary
regime is reached.

4.1. Start-up flow

The transient flow resulting from the sudden application of a
spatially constant pressure gradient to a fluid initially at rest is a
good example of an actual time-dependent flow problem amenable
to exact mathematical analysis. For viscoelastic fluids, this problem
was initially studied by Waters and King [17] who determined the
analytical solution for start-up of planar Poiseuille flow of UCM and
Oldroyd-B models.

For the Newtonian case the equation to be solved is Eq. (2) which,
with non-dimensional variables

y [

u
Y=+ T=— == 1

h 9 phz t’ U uoo 9 ( 3)
where the average steady-state velocity (t— o) iS 1y =

—h2dp/dx/3u has the following analytical solution given in
many books (e.g. White [16]):

oo
U(T,Y)=1.5(1.0 - Y2) - 482 [zr3 sin ($n(1+Y)) e’("ZT/‘”}
n'=1
(14)
where n=(2n’ — 1)m. We note again that here the non-dimensional
time T is based on a diffusion time scale tp= ph2/ .
For viscoelastic fluid the equation of motion is now Eq. (3) and
in the case of the Oldroyd-B model (Eq. (4) with f=f = 1) under fully
developed condition, Tyy =0, the shear stress equation becomes:

0y _ du
a Py
After combining Eq. (15) with Eq. (3) in order to eliminate the

stress, we have:
d
1 —
( + Ar 3[)

d '\ du 1 d
(1es2) o1 (1002)

Ty + A (15)

i
a2’
(16)

dp  no
T
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whose solution for a constant dp/dx is [17]:
U(T,Y) = 1.5(1.0 — Y?)

—482 3sin % +Y)) e‘("‘"T/Z)G(T)], (17)
where
G(T) = cosh (1 + ¥ inn (18,T). 18
(T) (zﬁn ) B ( Bn ) (18)
and
n=02n'-1)r,  an=1+3pEn%,  fn=+/an? —En?,
Yo =1-1(2 - BEn?. (19)

Eq. (18) is only valid for a real By; if ay2 — En? < 0 then the

function G(T) becomes:

G(T) = cos (’3“ >+’35m<’3” ) (20)

where now f8; = \/En2 —a,2. In the above expressions E is the
elasticity number defined by the ratio of Weissenberg (Wi) and
Reynolds (Re) numbers:

. Al pllsch Wi Ano
Wi=—>= Re = E=—=—=. 21
i -t e o’ Re = ph? (21)
The viscoelastic solution, Eq. (17), is rather similar to the New-
tonian solution, Eq. (14), but it is noted that the time scale is now

the relaxation time of the fluid, T=t/\.

4.2. Pulsating flow

For the pulsating flow problem we have the same geometry of
Fig. 1 but now the fluid is subject to a pressure gradient varying
sinusoidally in time, according to

1dp

p dx
where pKg is the amplitude and w the frequency of the oscillatory
pressure gradient superimposed onto a stationary pressure gra-
dient of magnitude pKs. Linear period and angular frequency are
related by the usual expression Tp =27/w. For a Newtonian fluid,
this problem is analysed for example in White [16] and, with the
normalization

=Ks + Ko cos(wt) (22)

y w h
T = wt; Y==2; U=u—; o= —;
h Ko Vno/wp
wh
Tx.y = Wy UOKO (23)

where the time scale is now taken as the angular period and « is the
Stokes or Womersley number, it is possible to obtain the solution:

o? Ks | cosh (ViaY) ]
Uiy, T)= 5 Ko(l—Y?) +Re {1 [cosh(«/iot)_] exp(iT)
(24)

here written in terms of complex numbers. Alternatively, by using
Moivre expression for the imaginary expressions, it is possible to
write the solution under the following explicit form:

a” Ks M(Y, o) .
2K0(1—Y2)+[1— i } sin(T)
_N(Y, o') cos(T)

J(@)

Uy, T) =

(25)

where

o =a/v2=h/\/2v/w

C(x) = cosh(x) cos(x); S(x) = sinh(x) sin(x); Jx)=
M(Y, ') = C(a'Y)C(e') + S('Y)S(e)

N(Y, o) = C(o'Y)S(e¢') + S(’Y)C(e')

C?(x) + 5%(x)

Another relevant variable is the shear stress which can be
obtained by differentiating Eq. (24) in order to Y:

Ty = *J((XT/) {[(A-B)C(@)+(A+B)S(@)] sin(T)
+[(A=B)S() — (A+B)C(a)] cos(T)} — a2 KS (26)
where

A =sinh(a’'Y) cos(«'Y)

B = cosh(a'Y) sin(@’Y)" (27)

The choice of values for the non-dimensional parameters
were guided by the experiments of Khodadadi et al. [27], with
a Reynolds number, based on the stationary mean stream-
wise velocity in the channel iis = h2 pKs /319 and channel height
H=2h, of Re=102, and a Stokes number of o=4.864. The oscil-
latory pressure gradient frequency, @ =27f, was considered to be
f=11cycles/s and its amplitude pKp=190Pa/m; the stationary
pressure gradient amplitude was pKs =73.45 Pa/m. Physical prop-
erties were fluid density p=1150kg/m3 and kinematic viscosity
v=0.73 x 10~> m2/s. Of course, only the non-dimensional param-
eters, & =4.864 and Ko /Ks =2.587 are of relevance, together with E
and the Weissenberg number Wi =3.765 introduced below for the
viscoelastic case.

Pulsatile flow of an Oldroyd-B fluid in a channel subject to
an oscillatory pressure gradient is a much more difficult problem
which was tackled initially by Hayat et al. [28] who arrived at a
solution only for the velocity profile. Here we take this problem a
step further and derive the solution for the stress component pro-
files which are required for a complete assessment of the numerical
predictions. The starting equation is again Eq. (16) but the imposed
pressure gradient varies in time according to Eq. (22). Since Eq.
(16) is linear, the resulting velocity will be given by the sum of
solutions for the stationary and the oscillatory pressure gradients,
U=Us(Y)+Uo(Y,T). The stationary part Us(Y) is equal to the steady
state velocity profile for a Newtonian fluid subject to a constant
pressure gradient pKs and is easily obtained as the 1st term on the
right-hand side of Eq. (24). With the normalization introduced by
Eq. (23), the oscillatory part of the velocity profile is the solution
of:

9 | dUg 9
[1-1— ABT} a7 = [ + )L{)T} cos(T)
1 d | 92Uo
i [1+a)kr84 il (28)

By assuming that velocity evolves in time with the same fre-
quency of the pressure gradient but with some phase lag, the
solution has the form:

Uo(Y, T) = Re[F(Y) exp(iT)] (29)

and upon substitution in Eq. (28) we arrive at the ordinary differ-
ential equation for F(Y):

i(1 4+ iwh)F = (1 +iwA) + %(1 + iwA;)F” (30)
The non-homogeneous ODE to be solved is then defined by:

iz1F =21 + = 22 pr (31)
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with
z1=1+iwA and 2z =1+iwk; (32)

subject to boundary conditions (no-slip at walls; symmetry at cen-
treline):

F(1)=F(-1)=0

By making the change of variables G = F+ian homogeneous sec-
ond order ODE is obtained:

¢ —iat?lc =0 (34)
22

whose characteristic equations is:

. .1 +iwA
22— 0 z=a, it —ay i
2 Z2 1 +iwh;
. 1+ia2E
=y fi— (35)
1+ iBa?E

where E=noA/ph? (Eq. (21)), and general solution
G =A cosh(zY) + B sinh(zY) (36)

With the BCs G(1)=G(—1)=1i and G'(0)=0 we obtain A=i/coshz
and B=0, and the solution in terms of the oscillatory velocity profile
becomes:

Uo(Y.T) = { [cosh(zY)

g - 1} exp(iT)} (37)

The channel velocity for the Oldroyd-B fluid with both stationary
and oscillatory contributions to the pressure gradient is then:

o? Ks 5 cosh(zY)
TR i TRES

In this case, unlike the Newtonian problem, stresses need to be
derived from integration of the two constitutive equations, for 7y
and 7xx. Having obtained the velocity profile, we can go back to the
momentum Eq. (3) and express it in terms of the elastic component
of the shear stress:

U(Y, T) = 1} exp(iT)} (38)

ou ou
Tay = 0 / 5% dy’ — p(Ks + Ko cos wt)y — s (39)

ay

with the spatial and time derivatives of u(y,t) readily calculated
from the dimensional form of the velocity solution, Eq. (38):

ou _ hpKs (y Ko .z | sinh(z(y/h)) .
i (E) + wRe{lh [cosh( ) exp(iwt) »  (40)

ou KoRe { [cosh(z(y/h))

ot cosh(z)

- 1] exp(iwt)} (41)

Upon substitution of Egs. (40) and (41) into Eq. (39), and after
regrouping the various terms, we arrive at the dimensional expres-
sion for the elastic shear stress:

Txy = —phKs(1 — ﬁ)% — phKgRe {exp(ia)t)m {; + g} }
(42)

For the quasi-linear Oldroyd-B model the axial normal stress
does not influence the fluid motion but its analytical expression
will be useful to assess the numerical method. Under the present

simplifying assumptions, Eq. (4) for the normal component reduces
to:

O0Txx Ju

Tax + A —— 3t = Z}L‘L'Xy@ (43)

which has the general solution:

t
Txx = €XP (_Tt) / 2Ty gu exp ( ) dt’ (44)

Now, with 74, from Eq. (42) and du/dy from Eq. (40), the integral
in Eq. (44) can be performed and, after a lengthy derivation which is
here omitted for the sake of conciseness, we arrive at the following
result for the normal stresses in dimensional form:

Ko) )\,(ths) X
KS ,th h

exp(iwt) sinh(zy/h)
X{ 1+iwh cosh(z) [ 2(1-2p) _H

2 (Ko) 2 Mphks)? | [ exp(i2on) ( sinh(zy/h) 2
Ks ph2w 1+ i2wA cosh(z)

X |:i - /ZZZZ:| } (45)

Under non-dimensional form, with standard scaling based on
the average channel velocity for the steady pressure gradient pKs
and wall shear stress in channel flow t,, = 31ils/h the solution is
written as:

2\ 2
T = 22 (phKs)2(1 - Y~ 2 (
No h

3K,

UYT)= g = 5(1=¥2) 4 0 Re
{' [%rg(zzy)) - 1} eXP(Zm'T)} (46)
Ty(Y, T) = w —(1-B)Y - Ili—OR
.sinh(zY) |1 ifz
X {exp(ZmT)cosh(z) L + az} } (47)
T (Y, T) = % — 6Wi(1 - B)Y2—6 (I;o) Wi e,

1 +ia2E cosh(z)

y {exp(ZmT) sinh(zY) [ 28y 052] }

Ks) a? 1+ i202E \ cosh(z)

o2
2

x {i - izz} } (48)

Here time is scaled with the period of the oscillation T=t/Tgp,

instead of the angular frequency as in Eq. (23); the results to be pre-

sented in the next section are compared with the analytical solution

given by Eqs. (46)—(48). It is interesting to notice that while U and

Ty depend only on «, Ko/Ks, 8 and E, the normal stress component

Txx also depends on Wi, reflecting the influence of elasticity through
the first-normal stress difference.

These analytical solutions will be helpful to compute exactly the
discretization error of the numerical predictions. To do this, an error

6 ( Ko ) 2 wi re { exp(47iT) (sinh(zY) > 2
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measure based on the Euclidian norm was calculated for the axial
velocity U(T,Y) as:

o) = | 5o S (Uay ¥, T) = UCY;, TIY (49)

where U is the analytical solution and U, the numerical solution
on a mesh with NY control volumes and mesh spacing Ay =h/NY.
Note that the error calculated in this way is a global value eval-
uated by integration over the channel cross-section but varies
with time T. It is also possible to measure the error based on a
local velocity value, for example by taking the centreline velocity
and comparing the predicted value against the theoretical result,
e(Uo)=|UAy(0,T) - U(0,T)}, as in Ref. [5], but we found this procedure
to yield a less smooth error variation.

5. Numerical results and discussion

In this section the results obtained with the numerical method
outlined in Section 3, applied to the two benchmark flow prob-
lems described in Section 4, are presented and discussed. First,
the study of start-up planar Poiseuille flow of a Newtonian fluid is
shortly addressed (Section 5.1) and then the UCM model is consid-
ered in more detail, with results discussed in terms of the accuracy
achieved with respect to mesh and time step refinement (Sec-
tion 5.2). The analysis is extended to Oldroyd-B, PTT and FENE-CR
models, where the optimal mesh size and time step previously
determined are employed, and velocity profiles corresponding to
several specific moments in time are shown and discussed (Section
5.3).Ananalogous study is presented for the pulsating flow test case
where results for the Newtonian (Section 5.4), UCM and Oldroyd-B
(Section 5.5) fluids are shown and a comparison between theoreti-
cal and numerical results was possible. In these two subsections the
non-dimensional frequency, measured by the Womersley number,
and the pressure-gradient ratio were fixed at the values o =4.864
and Kq/Ks =2.587, respectively.

5.1. Start-up planar Poiseuille flow of a Newtonian fluid

As a preliminary check, the program was first used for the sim-
ulation of a Newtonian fluid. Several consistently refined meshes
were employed with NY =20, 40, 80, 160, etc., uniform control vol-
umes along the y direction, corresponding to normalized mesh
spacings of Ay=0.05, 0.025, 0.0125, etc.

Fig. 2 shows the evolution of centreline velocity during the start-
up of planar Poiseuille flow of a Newtonian fluid predicted on mesh
NY=80. As can be seen, the numerical results fit very well the
analytical curve of Eq. (14). In this case the time step used was
At=0.0125 in terms of the diffusive time scale of Eq. (13), a rather
small value. With larger time steps the numerical results were still
very accurate and no differences could be perceived in a graph. This
is due to the good accuracy of the second-order temporal scheme
here utilized based on a three time level discretization scheme for
the time derivative, Eq. (10). The inset in Fig. 2 shows the conver-
gence rates for the three-time level (3TL) and the implicit Euler
methods in terms of the absolute norm of the error of the centre-
line velocity at time T=0.5 during the transient process. Symbols
are the actual results and the lines are power-law best fits provided
by the graph program. Rates of convergence of 0.98 and 2.04 are
found for the formally 1st and 2nd order Euler and 3TL methods.
Another important point demonstrated by the inset in Fig. 2 is that
the 3TL method requires careful attention to the first time step and
the initial conditions to the method. When care is not exercised,
as shown by the cross symbols in the inset, the convergence rate
is only p=1.03 typical of a 1st order method. To achieve 2nd order,

1.6
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1.2 — 1E-002 Mw
i 3 1E-003
2
T 1E-004
o
D 08— 1E-005
o 1E-006 ‘ T \HHH‘ T TTTI
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——&—— numerical
N analytical
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Fig. 2. Evolution of centreline velocity with time during the start-up of a Newto-
nian fluid (At= Ay =1.25 x 10~2). Inset: convergence rate for 3 schemes: three-time
level (squares), same without using Euler for initial step (crosses), and implicit Euler
(diamonds).

we employed in all calculations the Euler method for the first time
step when starting from a quiescent field.

Fig. 3 shows analytical and numerical velocity profiles at differ-
ent instants in time of the transient process leading eventually to
the steady state parabolic profile. This state occurs when the time,
normalized by a diffusion time scale, is greater than approximately
T > 3-4. Only half of the profiles are shown because the calculations
were made using half of the geometry by assuming symmetry at
y=0. Again, it can be seen that the program mimics very well the
theoretical response.

5.2. Start-up planar Poiseuille flow of an UCM fluid

First we look at the spatial discretization error, which was deter-
mined using five computational meshes with 50 (MESH 1), 100
(MESH 2), 200 (MESH 3), 400 (MESH 4) and 800 (MESH 5) uniform
CV for the discretization of the flow domain along the y direction.
We ran several numerical calculations using these five meshes at
an elasticity number of E = 1. For this case, the numerical results for
the centreline velocity (y=0) using MESH 2 and a small time step
equal to 1.25 x 103 are shown in Fig. 4 where are compared with
the analytical profile Eq. (17). Clearly, hardly any difference is seen

1
Newtonian fluid
. Analytical
0.8 - — %- - Numerical
0.6 T=1.3
y | T=1.5
0.4 1 T7=2.0
. % 7=10.0
A =12
0.2
7=0.1 T=0.5 7=1.0 ‘
O T ‘ T ‘ T I T
0 0.4 0.8 1:2 1.6

U

Fig. 3. Velocity profiles of a Newtonian fluid at different non-dimensional times
(At=1x10"3and Ay=1x10"2).
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Fig.4. Evolution of centreline velocity with time during the start-up of an UCM fluid
atE=1(At=125x10"3 and Ay=1 x 10-2).

in this figure, indicating an accurate solution and that this mesh is
perfectly adequate to resolve the velocity variation.

The discretization error was calculated along the simulations
by using Eq. (49) and the results on the first 3 meshes are given
in Fig. 5 for decreasing values of Ay and a fixed At=1.25x 1073,
It can be seen that the error diminishes with mesh refinement, as
would be anticipated, and it is small for all meshes—tipically around
order 10-3 on the finest mesh. A qualitative estimate of the order
of convergence can be done by considering errors at a given time;
for example, at T= 1.5 the errors on the 3 meshes are 7.81, 3.95 and
2.04 (x1073), indicating an error reduction of about 2 as the mesh
is doubled.

A similar study of the effect of time step refinement on the error
evolution for a fixed mesh (MESH 2), starting with At=0.01 and
halving it until a value of At=1.25 x 10~3 is reached, also showed
that the error decay scales approximately with At and tends to sat-
urate as the time step gets smaller. An explanation for such lack of
2nd, and even 1st, order behaviour when At is refined may reside on
two points: first, the spatial discretization is controlling the error,
having a stronger influence when compared to time step refine-
ment, and therefore one should use much finer meshes to study in
detail the temporal error decay; and second, the discontinuities in

UCM, E=1, At=1.25x10"3

—=&—— NY=50
——=—— NY=100
—o—— NY=200

Fig. 5. Influence of mesh refinement on the evolution of the discretization error
during the start-up of an UCM fluid at E=1 (At=1.25 x 10-3; MESH 1 with Ay =0.02;
MESH 2 with Ay =0.01; MESH 3 with Ay=0.005).
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Fig. 6. Influence of consistent mesh and time step refinement on the evolution of
the discretization error during the start-up of an UCM fluid at E=1 (At=0.5Ay).

the solution, to be further commented below, are such that error
accumulation decreases the rate of convergence to only 1st order
in time.

Regarding the first of these points, it is possible to devise a better
refinement procedure which overcomes that limitation. Since the
method is formally 2nd order in space and time, the error should
scalease=AAt? +BAy?, and by using a proportional space and time
refinement, At=CAy, we should end up with a global 2nd order
behaviour,

e =(AC? + B)Ay? = Cte x Ay? = Cte x AyP (50)

where p is the order of convergence of the method. With the meshes
mentioned above, and with a corresponding series of progressively
smaller time steps (for the UCM we used At=0.5Ay, thatis C=0.5)
then the computed errors evolution are shown in Fig. 6. Under this
representation there is a clear convergence with simultaneous Ay
and At refinement, with uniform separation of the error decay
curves (ideally should be 2log2 for a 2nd order scheme). A con-
vergence plot of errors evaluated using Ay=(1/C)At=C At (C' =1
for > 0.1and C' =2 for $ <0.1) is shown in Fig. 7 for Oldroyd-B flu-
ids in a range of 8 and the UCM (8 =0) for both the three-time level
and the Euler methods, with the lines corresponding to power-law
best fits. For the Oldroyd-B fluids the convergence rate is p=2.00
for all B cases on the 3 most refined meshes (decreasing to p=1.83
for $=0.001 when all 5 discretizations are considered); for the
UCM the rate is 0.99 for the 3TL and 0.78 for the implicit Euler
scheme which also exhibits errors higher by about a factor of 3.
And worst, the dissipative nature of the Euler scheme leads to very

0.01
0.001
=
T 0.0001 v p-10
A =01
& p=0.01
1E-005 O B=0.001
o B=00
W UCM, Euler
1E'005| T T IIiIIII T T IIII!II
0.001 0.01 0.1

Ay=C'At

Fig. 7. Convergence rates for the start-up of UCM (8=0) and Oldroyd-B
(=0.1-0.001) fluids at E=1 (Ay= At for >=0.1; Ay=2.0At for <=0.01).
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strong damping of the periodic and localised error oscillations seen
in Fig. 6, separated by time delays of 1 unit. These features corre-
spond to shear wave propagation to be discussed in more detail in
the next paragraphs. Based on the results of Figs. 5 and 6, it was
decided to use MESH 2 and At=1.25 x 103 on most other simu-
lations of the start-up flow as they give adequate results within a
reasonable time frame. It is also relevant to point out at this stage
that 2nd order accuracy could be obtained due to the use of the new
method of implementing wall boundary conditions, Eq. (12); with
the previous method, Eq. (11) the order of convergence would be
reduced to p = 1.11 with Oldroyd-B 8=0.01, and p=1.01 with 8=0.1.

Additionally, a number of points already discussed can be
observed in those figures. Errors are magnified periodically, with
a non-dimensional period of unity, on account of discontinuities in
the time derivative of the velocity field. These discontinuities are
recognized as a front of shear waves propagating from the wall
towards the centreline with a certain propagation speed c. This
speed can be evaluated from a simplified analysis, starting with
the momentum equation (Eq. (3), without solvent viscosity) and
the UCM equation (Eq. (4) with f=f =1 and ng=n5) for the shear
stress component (T = Tyy) here re-written as:

ou dp Ot ot Jau
Par = " dx 3 and T+)\§ = r)O@

In order to transform these two equations into a typical hyper-
bolic equation having the form 82¢)/9t2 = c29%¢/dy?, where cis the
wave speed (e.g. the equation for a vibrating string), the first is dif-
ferentiated with respect to space and the second with respect to
time, giving:

0 ou 9%t d ot Aa% 0 du
Pocay “ay2 ™ o e T Moy

Substituting the first of this latter set into the second of them,

gives:

#t 19t no 9%t

e TR Aoy

and comparing with the above typical hyperbolic equation we
recognise a similar equation, possessing an additional attenua-
tion term and implying a dimensional shear-stress wave speed of
c2 =ng/\p. In non-dimensional terms, which is more useful to com-
pare with our start-up flow results, we set t*=t/tw, T=t/\, Y=y/h,
E=1no/\ph? (as in Eq. (21)), and the damped hyperbolic equation
becomes:

o%t* N ar* L 0*r*
aT? aT ~— ~ 9Y2

showing that the non-dimensional speed for propagation of stress
waves is:

c=+vE (52)

(51)

The non-dimensional period, on the other side, is obtained by
considering that space equals time multiplied by velocity, which
for a non-dimensional space of unity (dimensionally, it is h) gives:
Te— L (53)

‘T VE

For the present case of E=1, leading to a (non-dimensional)
propagation velocity of c=1 according to Eq. (52), and so oscil-
lations should appear separated by time intervals of unity, as
confirmed by the first peak in Fig. 4. Although all these discon-
tinuities are too subtle to be observed in Fig. 4 for larger times,
they do exist and are magnified in the error plots of Figs. 5 and 6.
The oscillatory response of velocity to the instantaneously applied
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Fig. 8. Velocity profiles of an UCM fluid at different non-dimensional times at E=1
(At=1.25x 1073 and Ay=1x10-2): (a) T=0.01-0.1; (b) T=0.8-20.0.

pressure gradient is better seen by using larger elasticity num-
bers. It was confirmed that with E =2 error peaks appear separated
by a period of 1/+/2 = 0.7, and with E=4 the period is 0.5. From
the zoomed insets in Fig. 4(b) and (c) the differences between
numerical and analytical responses become more discernible. The
discontinuities of the analytical solution for the temporal velocity
profile at y =0 lead to numerical oscillations. As a consequence, the
numerical and analytical results agree very well except in the vicin-
ity of these peaks, where small oscillations and damping motions
can be observed in the numerical solution. We also noticed that the
frequency of the small oscillations from numerical origin is accen-
tuated when the time step becomes smaller, but globally the answer
is closer to the analytical solution given by Waters and King [17].
We turn attention now to the local velocity variation at E=1
with the UCM model. Fig. 8(a) and (b) present velocity profiles
on MESH 2 at different time moments and provide a comparison
between numerical results and analytical solution. These profiles
were obtained at times shortly after start-up (T=0.01-0.1), during
the first peak (T=0.8-1.2) and when the flow had reached steady
state (T=20). With this model and for the earlier times, shortly
after start-up, some differences are perceived but in relative terms
they are small. It can be observed that the velocity gradient in the
analytical solutions has discontinuities which are hard to resolve
numerically without resorting to local mesh refinement. These dis-
continuities correspond to shear wave front positions, as discussed
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Fig.9. Evolution of centreline velocity with time during the start-up of an UCM fluid
atE=10 (At=125x10"%and Ay=1x 1072).

above; a shear wave starts from the upper wall at T=0, propagates
towards the centreline, is reflected on the other wall, propagates
back to the first wall, and so on. This shear wave causes the low-
frequency oscillatory movement previously seen in Fig. 4.

Next we analyse the centreline velocity evolution obtained dur-
ing the start-up planar Poiseuille flow of the UCM fluid at higher
values of the elasticity number, namely for E=10 and 100, com-
pared with the previous value of E = 1. For both cases we used MESH
2 but smaller time-steps than with E=1, because of the expected
higher frequency of the response. Fig. 9 shows the evolution of cen-
treline velocity at E=10 using At=1.25 x 10~ and Fig. 10 shows
the evolution of the centreline velocity at E=100 using a time
step of 2.5 x 10>, In each figure there is a local plot zooming into
the first peak so that the numerical oscillations already discussed
for E=1 are better seen. As a consequence of increased elasticity,
much higher oscillatory frequencies and amplitudes are observed
in the transient process: Eq. (53) predicts periods of 1/+/10 and
1/+/100 separating the velocity peaks in Figs. 9 and 10, respectively;
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Fig. 10. Evolution of centreline velocity with time during the start-up of planar
Poiseuille flow of an UCM fluid at E=100 (At=2.5 x 10~ and Ay =1 x 102).
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Fig. 11. Evolution of centreline velocity with time during the start-up of an
Oldroyd-B fluid (8=1/9) on mesh Ay=1x 102 at three elasticity numbers: E=1
(At=125x1073); E=10 (At=1.25x 10"4); E=100 (At=2.5 x 107°).

these predictions are exactly confirmed by the numerical results.
The analytical solution is once more fairly well reproduced by the
numerical predictions, even if the error in frequency gets larger as
time proceeds, tending to accumulate and eventually leading to an
erroneous response in frequency (cf. phase lag in Fig. 10, E=100,
for large times). This error in frequency can be reduced by using
smaller steps in time.

5.3. Start-up planar Poiseuille flow of Oldroyd-B, PTT and
FENE-CR fluids

Results for start-up Poiseuille flow of Oldroyd-B, PTT and FENE-
CR fluids are now presented. In these calculations we shall use the
most cost-effective mesh and time step, as determined from the
previous section. We begin with the Oldroyd-B flow which has an
analytical solution [17]. For this model it was already shown (Fig. 7)
that the method converges in a second order manner (p=2.00 for
B=1.0, 0.1 and 0.001; p=1.98 for £=0.001 on the 3 more refined
discretizations; on all 5 discretizations, p =1.99 for f=1.0 and 0.01,
p=2.02 for 8=0.1, and p=1.83 8=0.001). Fig. 11 presents the tem-
poral variation of centreline velocity at E=1, 10 and 100 for 8=1/9,
a commonly used value; for the start-up flow, it was adopted by
Webster et al. [8], Fietier and Deville [9] and Van Os and Phillips
[10], while Xue et al. [5] applied 8=0.4 and 0. Agreement between
analytical and numerical solutions is very good, showing that accu-
racy is much better when some solvent viscosity is present. The
steady state, indicated by Ug = 1.5, is reached much faster now than
for the UCM model, and the transient is also seen to be shorter (in
relaxation time units) for the larger elasticity cases.

Velocity profiles for the Oldroyd-B fluid with E=1 are shown
in Fig. 12 where it is plain to notice that they are markedly differ-
ent from those obtained with the UCM model (Fig. 8). Unlike this
latter fluid, the linear momentum conservation equation for the
Oldroyd-B fluid includes a term equivalent to a Newtonian viscos-
ity. Hence, the diffusion speed is infinite inhibiting the formation of
ashear wave and the gradient discontinuities observed in the previ-
ous section are smeared out in Figs. 11 and 12. These show a smooth
development of the transient centreline velocity evolution and of
the spatial variation of the flow field, which is a consequence of the
introduction of some physical diffusion in the equation of motion
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Fig. 12. Velocity profiles of an Oldroyd-B fluid (8=1/9) for E=1 at different non-
dimensional times (At=1.25x 1073 and Ay=1 x 10-2).

by means of the finite solvent viscosity. Notice how the numer-
ical results are now free of numerically induced oscillations and
extraneous peak attenuation.

Next we look at the start-up planar Poiseuille flow of a PTT fluid
without solvent viscosity and contrast it with the results already
discussed. Fig. 13 shows the numerical results for the evolution of
the centreline velocity of a PTT fluid with E=1, 10 and 100. Since the
PTT fluid with 8=0 is a purely elastic fluid (devoid of “solvent vis-
cosity”), the behaviour displayed in Fig. 13 is similar to that found
for the UCM fluid in what concerns the velocity response after start-
up, evidencing the moments the front of the shear wave reaches
the centreline and is then successively reflected on the channel
walls. A damped travelling wave and sharp localised oscillations
are features that can be observed, much like the UCM cases in
Figs.4,9 and 10. However, due to the shear-thinning property inher-
ent to the PTT model, the steady state is accomplished earlier. Once
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Fig. 13. Evolution of centreline velocity with time during the start-up of a PTT
fluid (=0 and £=0.1) on mesh Ay=1x10"2, at E=1 (At=125x103), E=10
(At=125x 1074) and E=100 (At=2.5 x 10~3).
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Fig. 14. Evolution of centreline velocity with time during the start-up of a PTT fluid
(B=0)atE=10(At=125x10"* and Ay=1x 10-2), for ¢=0.1 and £=0.3.

the front of the shear wave reaches the opposite wall after start-
up, the degree of damping following successive reflections, seen by
local maxima of Uy, is significantly reduced compared to the UCM
model (cf. [5]).

The effect of the extensibility parameter in the PTT model was
also studied. At E=10 we obtained the temporal profiles shown in
Fig. 14 with two different values of £ (0.1 and 0.3). Clearly, the veloc-
ity magnitude during start-up depends on ¢ as could be expected
on account of shear-thinning in viscosity: for the same applied
pressure-gradient, the average (and maximum, at centreline) veloc-
ity is larger for the PTT fluid with larger &. It is observed that as the &
value grows, and the maximum plateau levels of extensional viscos-
ity are greatly reduced, the PTT model yields results that are further
away from those of the UCM model, and a smoother behaviour is
achieved. For a smaller value of ¢ the oscillations become more
accentuated, but the frequency of those oscillations, however faint,
seems to be independent of ¢.

Finally, Fig. 15 presents results obtained from numerical calcu-
lations of start-up planar Poiseuille flow for a FENE-CR fluid. In
this case, we compare the centreline velocity profiles obtained with
elasticity numbers of E=1, 10 and 100, and extensibility parame-
ter L2 =100 which is a common value used in benchmark problems
when the purpose is to study the influence of extensibility, and a
B value equal to 0.5, implying the same proportion of solvent and
polymer viscosities. Fig. 15 shows that with such a model fluid the
equivalent to the “shocks” of the UCM fluid are not generated and
consequently numerical oscillations are absent, so that a smooth
development of the velocity is patent in the figure. These results
resemble those obtained with the Oldroyd-B model and are essen-
tially a consequence of the solvent viscosity contribution. At E= 10,
results were also obtained for a smaller value of L2 =10. These are
shown in Fig. 15 by the dashed line and the evolution of the cen-
treline velocity follows a somewhat different path compared with
the case L2 =100, which can be interpreted as the dumbbell having
smaller extensibility tending to be fully stretched faster, followed
by recovery and some tendency to a slightly oscillating pattern.

5.4. Pulsating planar flow of a Newtonian fluid

This subsection deals with code verification using Newtonian
fluid test cases. Before considering the pulsating flow test case,
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FENE-CR fluid, B =0.5,L?=100

—— E=1
4 & —o— E=10
v\ —_— E=100
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Fig. 15. Evolution of centreline velocity with time during the start-up of a FENE-
CR fluid (8=0.5, L>=100) on mesh Ay=1x 1072, at E=1 (At=1.25x1073), E=10
(At=1.25x10"4)and E=100 (At=2.5 x 10~°). Dashed line: E=10, L% =10.

preliminary steady calculations showed that numerical results for
velocity and shear stress profiles in channel flow generated by
the imposition of a stationary pressure gradient (that is, planar
Poiseuille flow) presented a very good level of accuracy on the
uniform 100 CV mesh (MESH 2). These results are useful as initial
conditions for the pulsating regime. Then, after adding the oscilla-
tory part to the stationary pressure gradient, transient numerical
simulations were carried out for a number of periods using the
three-time level method on the same MESH 2 and a time-step of
1 x 1072 (time is normalized with the oscillatory period, 27/w).
It was important to carefully verify in these calculations that a
fully established oscillatory regime was achieved, with repetition
at every cycle.

Fig. 16 shows a comparison of analytical (lines) and numeri-
cal (symbols) velocity profiles at several moments in time during
one cycle (at phase angles separated by 90°) with o=4.864 and
Ko/Ks =2.587 (to be used throughout this and the next subsections).
Itis observed that during the whole cycle there is a very good agree-
ment between results, leading to the conclusion that the time step

2.0+
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D 1.04
0.5+
= == == numerical
o analytical
0.0 T T T T T T T T T ]
0.0 0.5 1.0

Y

Fig. 16. Velocity profiles of a Newtonian fluid in the oscillatory regime during one
cycle (At=1x10"2 and Ay=1x1072).
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Fig. 17. Evolution of centreline (Up) and average (U,,) velocities with time during
the pulsating planar flow of a Newtonian fluid (At=1x 1072 and Ay=1 x 10-2).

1 x 102 is sufficient to accurately resolve the theoretical solution
for the Newtonian fluid. From a convergence rate study, using both
mesh and time step refinement according to Eq. (50) (At=Ay),
the rate was found to be p=2.00 based on error Eq. (49), thus in
agreement with second order behaviour.

Since the pressure gradient varies as a cos(wt), during one cycle
there is a minimum of dp/dx at wt=180°, a maximum at wt=360°,
and zeros at wt=90° and 270°; we verify from Fig. 17, showing the
centreline and cross-sectional average channel velocities, that the
velocity variation has a phase difference when compared with pres-
sure. Looking at the maximum velocity at the channel centreline,
there is a phase difference of approximately 90° when compared
with the pressure gradient. The evolution of the maximum velocity
(Up = u(y = 0, t)/1is) and of the average cross-sectional velocity in

the channel ( Uy = ui(t)/ils = foh u(y, t)dy/hﬁs) evolves with time

as shown in Fig. 17 where a perfect match between numerical and
analytical results is evident.

Another variable of interest in many applications is the shear
stress. The evolution of this variable during one cycle is presented
in Fig. 18 where a comparison between the numerical and theoret-
ical (Eq. (26) with rescaling of txy and t) results is made. Again, a
very good agreement between numerical results and the analytical
solution is observed as it was the case for the velocity profiles; the
wall shear stress attains a maximum (in absolute terms) at 0° and
90°.

20°

4 emsae numerical
analytical

-1.5 T T T T T
0.0 0.5 1.0
Y

Fig. 18. Shear stress profiles of a Newtonian fluid in the oscillatory regime during
one cycle (At=1x10"2 and Ay=1x 10-2).
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Fig. 19. Evolution of centreline velocity during one cycle for the pulsating flow of
a Newtonian and an UCM (E = 1) fluid: influence of mesh and time-step refinement
on predictions (At=10"2 to 10~3and Ay=10"2 to 10-3).

5.5. Pulsating planar flow of a non-Newtonian fluid

We consider now the more interesting situation of a viscoelastic
fluid model subject to an oscillatory pressure gradient, in which we
shall specifically employ either the UCM or the Oldroyd-B fluids,
whose theoretical solution was derived in Section 4.2.

By comparing the evolution of the centreline velocity during one
cycle for a Newtonian fluid and a viscoelastic UCM fluid with E=1
(see Fig. 19) we observe that the behaviour of the Maxwell fluid
differs significantly from the Newtonian one: both the amplitude
and the phase of the maximum velocity oscillation are substantially
different, for the Stokes number here considered of o =4.864.

In contrast to the start-up test case, it is surprising to verify that
for the UCM fluid a mesh with 100 CV is wholly inadequate to yield
numerical results close to the theoretical ones, as shown in Fig. 19.
This figure reinforces the idea already commented before (Section
5.2) that it is mesh refinement that controls the error. It presents
the theoretical variation of the centreline velocity (Y=0in Eq. (46))
during one period and various numerical solutions. A mesh with
100 CV and time steps of 1 x 1072 and 1 x 10~3 were employed,
together with a more refined mesh with 1000 CV and time step
of At=10-3. Only by using this finer mesh and the refined step in
time could we gather sufficient conditions to obtain good agree-
ment between theory and numerical simulations. This is reflected
in the velocity profiles presented in Fig. 20 for wt = 0°, 90°, 180° and
270° where, for the spatial resolution of 1000 CV, almost no dis-
crepancies between the theoretical solution and numerical results
are seen. Fig. 21(a) and (b) shows the corresponding predictions
of shear and normal stress components (denoted by various sym-
bols) contrasted against the theoretical solution of Eqs. (47) and
(48) (denoted by lines), and there is clearly a good match due to the
use of such a refined mesh, in spite of some localised discrepancies
(especially for Tyy).

Both Figs. 20 and 21 reveal the propagation of short-wave oscil-
lating motions across the channel, and about 8 wave peaks can
be counted from either the velocity or stress variations. Thus the
wavelength normalized with h is estimated as 1/4. This estima-
tion can be approximately confirmed from the theoretical solution
of Section 4.2; in Eq. (38) the only possible term responsible for
spatial wave propagation is cosh(zY) and for large «2E and small
B, Eq. (35) gives z ~ ia2/E. Therefore cosh(zY) ~ cos(a2+EY) with
wavelength £ = 27/a?+/E; for the present case we have E=1 and
o =4.864, yielding [=0.265=1/3.8 in agreement with the estima-
tion from the figures.

wt=180°

wt=0"
0.5
0.0 analytical
—————— numerical
-0.5 T T T T T T T T !
0.0 0.5 1.0

Y

Fig. 20. Velocity profiles of an UCM fluid in the oscillatory regime during one cycle
(At=1x10"3and Ay=1x1073).

It is well known that the UCM model can be viewed as a particu-
lar case of the more general Oldroyd-B model when the retardation
time is zero (A; =0), which is equivalent to the absence of a New-
tonian solvent contribution to the total viscosity (8=ms/10=0). As
anticipated, itis easier to find accurate numerical solutions with the
Oldroyd-B model than with the UCM. Fig. 22 shows a comparison
of the evolution of the centreline velocity with time for Newtonian,

(a) 0.5

UCM, NY=1000

xy

theory

-1.0 4 coococo gt=0°
wt=90°
wt=180°

wwaww ot=270°

-1.5 T T T T T T T T )
0.0 0.5 1.0
Y

UCM, NY=1000

2.5.04

theory

evecoco pt=0°

b wt=190°
wt=180°

wewwx qt=270°

15.0

0.0 0.5 1.0

Fig. 21. (a) Shear and (b) normal stress profiles of an UCM fluid in the oscillatory
regime during one cycle (At=1x 1073 and Ay=1x 1073).
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Fig. 22. Evolution of centreline velocity with time for the pulsating flow (o =4.864)
of various fluids: Newtonian (theoretical solution); UCM (E = 1, theoretical solution);
Oldroyd-B (8=0.01; 0.005; 0.001; E=1; lines- theory; symbols-predictions with
At=1x10"2; Ay=1x1072).

UCM and Oldroyd-B (8=0.01; 0.005; 0.001) fluids. As can be seen
from the graph, the Newtonian and Oldroyd-B (8> 0.005) fluids
present a similar behaviour which differs significantly in amplitude
and phase from that for the UCM fluid. The numerical prediction for
the Oldroyd-B fluid with the typical value of 8=0.1 (recall that the
solvent viscosity ratio is often taken as 8=1/9), or §=0.01 shown

(a) 2.0

Oldroyd-B, =0.1

1.5+

i analytical

----- numerical
0.0 T i
0.0 0.5 1.0
Y
(b) 2.0 Oldroyd-B, =0.01

i analytical
«+«++numerical

0.0 T T T T T T T
0.0
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in the figure, matches well the analytical solution even when a 100
CV mesh and a time step of 1 x 10~2 are employed, but that is not
possible with the UCM model (for which 8=0).

Some point-wise results using the Oldroyd-B model, showing a
comparison between analytical solutions and the predicted veloc-
ity profiles obtained by the computer program at four time instants
during the oscillatory period, with phase angles wt=0°, 90°, 180°
and 270°, are now presented. Fig. 23(a)-(d) show these results for
a range of the viscosity parameter §=0.1, 0.01, 0.005 and 0.001.
We recall that =1 corresponds to the Newtonian model for which
there is no elastic contribution to the stress tensor, while 8 — 0
leads to the UCM model. The predictions seen in these figures
were calculated on MESH 2 (Ay=1x 10~2) with a time step of
At=1x 1072, which appears adequate at 8=0.1 and 0.01, where
excellent agreement between analytical and numerical solutions
is observed. In contrast, Fig. 23(c) and (d) show velocity profiles
for the Oldroyd-B fluid with §=0.005 and 0.001 and in these fig-
ures some discrepancies between the numerical results and the
analytical solution are discernible, reflecting a feature common to
all numerical simulations with viscoelastic fluids: amongst all rhe-
ological models, the UCM appears as the most problematic and
difficult in numerical terms. Difficulties in achieving both itera-
tive convergence and sufficient accuracy found for the Oldroyd-B
model, tend to increase as the § value decreases and the UCM model
is approached. Then, mesh refinement is mandatory in order to
improve the predictions, as demonstrated in Fig. 23 (d) for the

(c) 2.0+

Oldroyd-B, =0.005

1.54

2 1.0+
0.5 ™ ‘
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----- numerical \
0.0 T T T T i
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1.5 1
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Fig. 23. Velocity profiles of an Oldroyd-B fluid in the oscillatory regime during one cycle (E=1, At=1x 10-2 and Ay=1x 10-2): (a) =0.1, (b) 8=0.01, (c) 8=0.005 and (d)

B=0.001 (circles- Ay=0.25 x 1072).
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Fig. 24. Evolution of discretization error during one period of the pulsating flow of
two Oldroyd-B cases, $=0.1 and 0.001 (E=1), calculated with various meshes and
time steps, such that At=Ay.

case of f=0.001 where further predictions with a mesh having
Ay=0.25 x 10~2 (after doubling twice the number of cells of the
base mesh, from NY=100 to NY=400) are also plotted as round
symbols; these fall virtually on the line corresponding to the ana-
lytical solution.

The distribution of the discretization error along one period
of the imposed oscillations using four different uniform meshes
and corresponding smaller time steps is plotted in Fig. 24. Two
Oldroyd-B cases are shown, one with the typical value of 8=0.1
and the other with a much smaller 8=0.001, thus very close to a
UCM fluid. In general, the error is seen to follow a sinusoidal-like
variation during the cycle and, in the log scale shown, it is reduced
by a constant amount due to the technique here employed (cf. Sec-
tion 5.2, Eq. (50)) of simultaneously refining the mesh spatially and
the step forward in time in a consistent manner: Ay; = Aty =1/50,
Ay,=At;=1/100, Ay3=At3=1/200 and Ays=At4=1/400. A good
“parallelism” between the error variations is observed in Fig. 24(a)
for =0.1, with a constant separation of about 2log2 typical of
2nd order accuracy, while in part (b) for =0.001 a phase lag is
patent, especially for the coarser level of simultaneous mesh and At
refinement, but the error reduction of 4 is also seen on the finer dis-
cretizations (an additional discretization level of Ays = Ats =1/800
isincluded in Fig. 24(b) to make this fact clearer). Hence, very small
B values in the Oldroyd-B model, and consequently also the UCM
model, require even smaller time steps and finer meshes. It is note-
worthy that the error for the Oldroyd-B $=0.001 is smaller than
10—30only for meshes having more than 400 CVs (Ay < 0.0025) while

Oldroyd-B,3=0.001, E=1, 0=4.864

Fig. 25. Convergence of centreline velocity with mesh refinement for the pulsating
flow (o = 4.864) of an Oldroyd-B fluid (8 =0.001; E=1): predictions on 4 successively
refined levels with At=Ay.

if Bisincreased to 0.1 the mesh NY =100 s sufficient to obtain errors
bounded by 10-3.

Convergence of the numerical results with mesh refinement is
illustrated more directly in Fig. 25, showing the predicted cen-
treline velocity for the Oldroyd-B with $=0.001 obtained using
4 consistently refined meshes. Starting with MESH1, NY =50, the
number of cells was successively doubled until reaching NY=400
and Ay=0.0025, while the time step was simultaneously halved
from the initial value of At=0.02. The conclusions of the previ-
ous paragraph regarding the error decay are now plainly seen: for
such low value of Bmaintaining the accuracy of the predictions
to within a reasonable error band requires meshes with as much
as 400 cells. In addition Fig. 26 shows with symbols the conver-
gence rates obtained for the Oldroyd-B model with 8=0.001 (open
squares), $=0.01 (triangles), 8=0.1 (circles), and the UCM (circu-
lar symbols). The data were obtained by integrating the local errors,
calculated with Eq. (49), over one period: e = Zée(T)/NT (NTisthe
corresponding number of time steps). A graphical fitting routine
yields rates of p=1.98 for the UCM, and for the Oldroyd-B p=1.98,
1.99 and 2.01 for 8=0.001, 0.01 and 0.1, respectively, on the 3 finer
discretizations. If all the 5 meshes are taken into account when eval-
uating the convergence rate, there is a deterioration as § is reduced:
p=2.00,2.02, 198, 1.83 and 1.72, for 8=1.0, 0.1, 0.01, 0.001 and 0.0,
respectively. Although the error decaying rates are almost the same
for all cases, when going from the Oldroyd-B model with 8=0.1 to
the UCM, the magnitude of the RMS errors for the latter are much

Oldroyd-B & UCM, E=1,0:=4.864
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Fig. 26. Convergence plots for the pulsating flow (« =4.864, E = 1) of Oldroyd-B, UCM
(B=0) and Newtonian (8 =1) fluids. Discretization refinement with At= Ay. Error e
calculated over a period.
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Fig. 27. Normal stress profiles of an Oldroyd-B fluid in the oscillatory regime during one cycle (E=1, At=1x 10-2 and Ay=1 x 10-2): (a) 8=0.1, (b) 8=0.01, (c) 8=0.005 and

(d) B=0.001.

higher (by about 3 orders of magnitude). In conclusion, the over-
all rate of convergence is about 2 for all the viscoelastic pulsating
cases, as in the previous start-up problem, except that in that case
the UCM showed a 1st order convergence due to the discontinu-
ous character of the shear waves generated. However, the rate of
convergence is not the only useful information from Fig. 26: it also
reveals that the UCM model requires a discretizetion of order 10-3to
get the same error magnitude of the Oldroyd-B having $=0.1 on a
discretization ~2 x 102,

In terms of stress predictions Fig. 27(a)-(d) shows the normal
stress profiles at four time instants during the oscillatory period
and a comparison between analytical results and numerical solu-
tions for B values ranging from 0.1 to 0.001. Analogous features
to the ones already commented upon in relation to the velocity
profiles (Fig. 23(a)-(d)) are patent in these figures. This point is
made even clearer in Fig. 22 above, where we observe the approach
of the Oldroyd-B fluid results to the UCM ones when S decreases
and tends to 0. A degradation of the accuracy of the results is also
observed on the mesh with 100 CV especially as 8 becomes lower
than 0.005.

Regarding the short-wave propagation across the channel, it
is interesting to notice by comparing Fig. 27 against Fig. 23 that
the wavelength is the same as for the UCM fluid, therefore being
independent of g8 as the above analysis showed. About the same
8 peaks are observed in these figures. When § increases, wave
propagation is killed because z now tends to z ~ x/fa/\/ﬁ and the
cosh(zY) does not lead to a sinusoidal function (either a sinus or
a co-sinus).

6. Conclusions

In this paper, numerical and analytical modelling of time-
dependent viscoelastic fluid flow was addressed. In particular, one
important test case for the assessment of computational simulation
programs was proposed and its theoretical solution derived.

Initially the start-up planar Poiseuille flow test case was anal-
ysed. Comparison between Newtonian and UCM fluids showed
different behaviour during the transient regime before reaching
a steady state, with an oscillatory response for the UCM. It was
also verified that the Maxwell fluid took longer to attain a steady
state, more so as the elasticity number was increased and the period
of the physical oscillations decreased. Small numerical oscillations
were present next to the locations where a discontinuity of the
time derivative would physically occur. Besides that, the results
obtained were sufficiently accurate to predict the shear wave prop-
agation along time with an almost exact prediction of the instants
in time when those “shocks” generated at each wall passed through
the channel centreline and interfere with each other, giving rise to
strong error oscillations. With the Oldroyd-B model we observed a
smoother development of the transient evolution and of the spatial
variation of the flow field, as already reported in previous studies
[5,8,10]. The actual rate of convergence of our method was veri-
fied to be 2 for all the Oldroyd-B cases studied (8=0.1 —0.001) and
decreasing to 1 for the UCM model.

For the PTT model without a solvent viscosity, behaviour similar
to that produced by the UCM fluid was observed but due to the
shear-thinning viscosity implied in the PTT equation, the stationary
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state was attained quicker. For the FENE-CR fluid the behaviour
observed was similar to that found for the Oldroyd-B fluid but in
this case there was a reduction in the oscillatory frequency of the
response as well as an attenuation of the peak of the oscillation.

For the pulsating viscoelastic flow case, the most interesting
of the two considered, some similar and some new conclusions
could be drawn. Good agreement between theoretical and numer-
ical solutions could be observed for the Newtonian fluid under
steady and unsteady regimes but the viscoelastic fluids showed
very different behaviour. While for the Oldroyd-B fluid there was no
trouble in obtaining accurate results for 8>0.005 using reasonable
meshes and time steps (of order 0.01), the accuracy would deteri-
orate as 8 became smaller and the UCM model was approached, in
spite of having established 2nd order convergence rate for all pul-
sating flow cases (including the UCM). For this latter model very
fine meshes were required (Ay=1/1000) together with very small
time steps (At=1/1000). Even for a low elasticity number of E=1
the UCM model, possessing no purely viscous dissipation, tended
to develop short-wave pulses propagating across the channel and
such local phenomena seem to require very tight resolution. The
pulsating planar channel problem with the UCM model is thus a
most adequate test case for assessment of viscoelastic codes under
unsteady flow conditions. This test flow offers some advantages in
comparison to the start-up flow:

e it is periodic instead of transient, therefore being less sensitive
to the exact initial conditions and thus enabling a check on the
repeatability of the numerical solution at every period;

¢ it does not generate “shocks” that lead to the propagation of
velocity-gradient discontinuities, which are harmful because
high-order numerical schemes tend to loose accuracy near those
points;

* hence, the control of discretization errors and convergence rate
of the method can be done much more effectively.
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