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Abstract Uniform steady flow of viscoelastic fluids past a
cylinder placed between two moving parallel plates is
investigated numerically with a finite-volume method. This
configuration is equivalent to the steady settling of a
cylinder in a viscoelastic fluid, and here, a 50% blockage
ratio is considered. Five constitutive models are employed
(UCM, Oldroyd-B, FENE-CR, PTT and Giesekus) to assess
the effect of rheological properties on the flow kinematics
and wake patterns. Simulations were carried out under
creeping flow conditions, using very fine meshes, especial-
ly in the wake of the cylinder where large normal stresses

are observed at high Deborah numbers. Some of the results
are compared with numerical data from the literature,
mainly in terms of a drag coefficient, and significant
discrepancies are found, especially for the constant-viscosity
constitutive models. Accurate solutions could be obtained up
to maximum Deborah numbers clearly in excess of those
reported in the literature, especially with the PTT and FENE-
CR models. The existence or not of a negative wake is
identified for each set of model parameters.

Keywords Falling cylinder . Viscoelastic . UCM .

Oldroyd-B . FENE-CR . PTT. Giesekus .
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Introduction

The flow of a viscoelastic fluid past a cylinder has been
extensively studied both experimentally (Manero and Mena
(1981), Bush (1993), McKinley et al. (1993) and Broadbent
and Mena (1974)) and numerically (Bush (1993), Hu and
Joseph (1990), Huang and Feng (1995), Liu et al. (1998),
Oliveira et al. (1998), Fan et al. (1999), Sun et al. (1999),
Alves et al. (2001), Caola et al. (2001), Owens et al. (2002),
Phan-Thien and Dou (1999), Dou and Phan-Thien (2003),
Kim et al. (2004, 2005a), Oliveira and Miranda (2005) and
Gerritsma (2006)). The large number of works in this
geometry may be explained from two major motivations:
(1) it is representative of the fundamental flow dynamics of
viscoelastic fluids around solid bodies, and (2) it is
intrinsically related to many processes in chemical engi-
neering, namely, flows through porous media (McKinley et
al. 1993), enhanced oil recovery, composite and textile
coating operations (Liu et al. 1998) and food processes.
From a numerical point of view, the flow past a cylinder is
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a smooth flow because it does not introduce any geomet-
rical singularity, in contrast, for instance, with the salient
corner in entry flows. Nonetheless, the development of thin
stress boundary layers on the cylinder sidewalls and
especially the high normal stress developed along the rear
wake centerline, remain a challenge and impose a limiting
value on the Deborah number (De), at least as far as a
symmetric steady flow is concerned.

Two configurations are possible for flow around a
cylinder: either the cylinder is fixed relative to the confining
channel walls and a planar Poiseuille flow emerges from an
imposed pressure gradient, or it moves as in the case of a
cylinder falling freely along the middle of a channel, which is
equivalent to a uniform flow approaching a fixed cylinder
with channel walls moving with the fluid. The present paper
deals with the second situation which gives rise to the
interesting phenomenon of “negative wakes” (Sigli and
Coutanceau 1977 and Hassager 1979), to be discussed
further down in this section but essentially consisting of fluid
in the wake of the cylinder moving faster and in the opposite
direction to the wake-generating object. In a frame of
reference fixed to the cylinder, this correspond to velocities
in the wake that are faster and in the same direction as the
uniform approach flow, a situation that arises only with
viscoelastic fluids. The nature of negative wakes is not yet
well understood, and one of the motivations for this work
was numerical quantification of conditions for its formation.

The case of confined flow around a fixed cylinder has
been investigated more often than the settling of a cylinder
in bounded or unbounded domains, and Owens et al. (2002)
documented and summarized the main results in their book,
focusing primarily on the Oldroyd-B model. Phan-Thien
and Dou (1999) carried out simulations of confined
cylinder flows with the upper-convected Maxwell (UCM),
Oldroyd-B and PTT models where the flow was fully
developed well upstream of the cylinder. They found
negative wakes behind the cylinder for this flow at high
Deborah numbers and only for the PTT model. Alves et al.
(2001) implemented classical high-resolution interpolation
schemes for convection (the MINMOD and SMART
schemes) in the general collocated finite-volume method
(FVM) procedure for viscoelastic flows developed by
Oliveira et al. (1998). This implementation enhanced
numerical accuracy and was tested with the benchmark
problem of the flow past a confined cylinder with blockage
ratio of 0.5, using the UCM and the Oldroyd-B models.
Highly refined non-orthogonal meshes were used which
allowed a good comparison of the predicted drag force on
the cylinder (the benchmark result) with values from other
simulations in the literature (Liu et al. 1998, Fan et al. 1999,
Sun et al. 1999, Caola et al. 2001, Owens et al. 2002, Phan-
Thien and Dou 1999 and Kim et al. 2004). In particular,
predictions of the drag coefficient up to De≈0.7 were

consistent with the finite element method (FEM) simula-
tions of Fan et al. (1999). More recently, Gerritsma (2006)
presented results obtained with a spectral element method
and again in excellent agreement with the numerical results
obtained by Fan et al. (1999) and Alves et al. (2001).

The settling of a cylinder in a confined viscoelastic fluid
is still a “work in progress” in rheological engineering, and
several contributions have come forward in the recent past.
Huang and Feng (1995) investigated the steady settling of a
cylinder through quiescent Newtonian and Oldroyd-B
fluids in a vertical channel, employing FEM with the
elastic–viscous stress split scheme (EVSS). For their higher
blockage case (50%), Huang and Feng (1995) predicted a
negative wake at high Deborah numbers, but this unusual
phenomenon was not replicated by Oliveira et al. (1998) in
their numerical work based on the FVM. The predictions of
Oliveira et al. (1998) for the unbounded flow case and the
confined case with blockage area of 33% were in agreement
with those of Huang and Feng (1995), but discrepancies
were found in the wake velocities for the higher blockage
case (50%). These discrepancies were attributed to the
response of viscoelastic fluids to intense local shear and
elongational flows at the proximity of the channel wall.
Dou and Phan-Thien (2004) carried out simulations of the
uniform flow of a viscoelastic fluid past a cylinder in a
moving channel using the UCM, PTT, Oldroyd-B, and the
FENE-CR models. They used a control volume finite
element method (CVFEM) with a DEVSS-ω formulation
under a distributed computing environment through a
Parallel Virtual Machine (PVM) library. Again, a negative
wake was not observed with the UCM and Oldroyd-B
fluids for various retardation ratios (β=0.125, 0.4, 0.6, 0.8),
thus corroborating the predictions of Oliveira et al. (1998)
in contrast to the results of Huang and Feng (1995).
However, for the PTT and FENE-CR models, a negative
wake appeared at a critical De. Regarding drag coefficient
(CD) predictions, the early calculations of Dou and Phan-
Thien (2003) found a monotonic decrease of CD with De for
the FENE-CR fluid with lower extensibility parameter (L2=
10). For a higher extensibility parameter (L2=100), how-
ever, they predicted a non-monotonic behaviour, with an
initial decrease followed by an increase for approximately
De>0.6, related to the strong increase of the extensional
effects. The numerical investigation of Kim et al. (2005a)
focused on the comparison of negative wake generation in
both uniform and Poiseuille flows past a cylinder, and on the
influence of the FENE-CR model parameters upon this flow
feature: viscosity ratio (β) and polymer extensibility (L2). By
employing a discrete elastic viscous split stress (DEVSS-G)-
streamline upwinding/Petrov–Galerkin (G/SUPG) formula-
tion with an efficient iterative solution method developed for
the mixed FEM by Kim et al. (2004), they found that the drag
coefficient monotonically decreased for both L2=10 and L2=
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100, in contrast with the results obtained by Dou and Phan-
Thien (2003). They also found that for all flow conditions
and model parameters, the negative wake generation is more
pronounced when the approach flow is uniform than when it
is a Poiseuille flow.

So, for some viscoelastic fluids, the steady flow behind a
cylinder is characterized by the appearance of a “negative
wake” which strongly depends on fluid rheology. Negative
wakes are overshoots of the streamwise velocity seen by the
moving body along the centreline and have been found in the
wake of cylinders, spheres and rising bubbles (Sigli and
Coutanceau (1977) and Hassager (1979)). One of the most
extensive early investigations of this phenomenon was the
visualization of the sedimentation of a sphere in shear-
thinning polyacrylamide (PAA) solutions by Arigo and
McKinley (1998), who also made an extensive review of
the literature. Early, however, McKinley et al. (1993) had
been unable to detect the appearance of negative wakes
downstream of a cylinder for Boger fluids, and up to the
present time, there is no experimental evidence of negative
wake formation with constant viscosity elastic fluids.
Negative wakes in the settling sphere problem have also
been extensively studied using numerical methods (Jin et al.
1991, Zheng et al. 1991 and Bush 1994). These works lead
to the general conclusion that both shear thinning and elastic
effects are necessary for the formation of a negative wake,
but the numerical simulations by Satrape and Crochet (1994)
and Harlen (2002) showed that a negative wake can also be
present for constant viscosity elastic fluids, such as those
represented by the FENE-CR model. The predicted velocity
profiles along the centreline downstream of the sphere wake
were intimately linked to the extensional properties of the
constitutive model, especially the extensibility parameter L2.
For small values of L2, a negative wake was predicted even
at low De values. On the other hand, increasing the strain-
hardening character of the model (by increasing L2), the
negative wake was reduced and eventually eliminated.

The physical conditions under which the negative wake
arises and the mechanisms involved in its formation are still
not fully understood in spite of several studies that have
focused on these issues. In the sphere/cylinder geometries,
Bush (1994) attributed the negative wake behaviour to the
relative proportion between elongational stresses in the
downstream region and fluid elasticity, and suggested that
the upstream shift in streamlines and the formation of
negative wake are a result of having a Deborah number
much greater than the Trouton ratio. For the sphere-flow
case, Harlen (2002) proposed that the origin of negative
wake was related to the circumferential gradient of shear
stress along the centreline and in particular with the
competition of shear and normal stress distributions. Based
on the suggestions of Bush (1994) and invoking also
arguments later used by Harlen (2002), Arigo and McKinley

(1998) proposed a criterion for the formation of negative
wake based on the ratio of axial tensile to shear stresses.
Dou and Phan-Thien (2004) also studied this phenomenon
numerically and proposed a different criterion, this time
based on the ratio between the gradient and the magnitude
of elongational viscosity, to predict the critical De marking
the onset of negative wake for several constitutive models
(PTT, FENE-CR, FENE-P and Giesekus models).

Identifying the conditions that lead to the onset of a
negative wake is one of the motivations for the present
work. In terms of outcome, this study leads to two
important contributions: (1) clarify the significant discrep-
ancies in the predicted drag coefficient of a FENE-CR fluid
obtained by Dou and Phan-Thien (2003) and Kim et al.
(2005a), and (2) confirmation of some sets of results
available in the literature which were obtained by different
numerical methods. It should thus be clear that the present
work is essentially numerical and aims at clarifying the
conditions under which negative wakes are formed for the
most common differential constitutive models, and giving
reliable data for the drag coefficient on the falling cylinder.
A detailed matching of existing experimental measurements
requires close fitting of the rheology of the fluids, most
certainly through the incorporation of a multimode model,
and as such it should be left for a future work.

The paper is organized as follows: in the “Governing
equations and numerical method” and in the “Problem
description and computational meshes” sections, we briefly
describe the general flow problem, present the governing
equations and outline the numerical method used to
simulate the settling of the cylinder in a confined
viscoelastic fluid. In the “Results and discussion” section,
results are presented for all constitutive models, encom-
passing the predicted drag coefficient, detailed profiles of
velocity and stress components in the vicinity of the
cylinder and stability criteria. A summary of the main
findings closes the paper in the “Conclusions” section.

Governing equations and numerical method

The flow is assumed to be steady, laminar, and the fluid is
incompressible. The governing equations are those express-
ing conservation of mass:

r � u ¼ 0 ð1Þ
and momentum balance:

r
@u
@t

þ rr � uu ¼ �rpþr � τþ hsr2u ð2Þ

where u is the velocity vector, p the pressure, t the time, ρ
the fluid density, ηs the Newtonian solvent viscosity and τ
the polymeric extra stress contribution. Five constitutive
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equations are employed: the upper-convected Maxwell
model (UCM), the Oldroyd-B model (Bird et al. 1987),
the linear form of the simplified PTT model (Phan-Thien
and Tanner 1977 and Phan-Thien 1978), the modified
FENE-CR model (Chilcott and Rallison 1988) and the
Giesekus model (Giesekus 1982). For an isothermal flow,
these five rheological equations of state can be written in a
compact form as:

P tr τð Þτþ 1

F

@τ
@t

þ u � rτ�ru � τ�ruT � τ
� �

þG ¼ 2ηpD ð3Þ

F ¼ L2 þ l=hPð Þtr τð Þ
L2 � 3

ð4Þ

P tr τð Þ ¼ 1þ "1

ηP
tr τð Þ ð5Þ

G ¼ ατ2 ð6Þ
where 1 is a relaxation time, ηp is the polymer viscosity
coefficient, D is the rate of deformation tensor and F is the
stretch function that depends on the extensibility parameter
L2, representing the ratio of the maximum to equilibrium
average dumbbell extensions. The stress coefficient func-
tion, P(tr τ), depends on the trace of τ, and G is the
nonlinear term of the Giesekus model, with α representing
a dimensionless “mobility factor”. The stress coefficient
function of the PTT model, P(tr τ), introduces the
dimensionless parameter ɛ which is closely related to the
steady-state elongational viscosity in extensional flows
(ηE∽1/ɛ for low ɛ).

The viscosity ratio is defined here as the ratio of the
solvent to total viscosities (note that in some works, β is
instead defined as ηp/η0 (e.g. Dou and Phan-Thien 2003 and
Kim et al. 2005a):

b ¼ hs
hs þ hP

¼ hs
h0

ð7Þ

A specific constitutive model can be chosen by an
appropriate selection of parameters α, L2, ɛ and β, and the
range of all parameters used in this work is listed in
Table 1. Elastic effects are quantified by a nondimensional
Deborah number, defined here as

De ¼ lU
R

ð8Þ

with U representing the bulk velocity in the channel and R
the cylinder radius. In the numerical simulations, the inlet

bulk velocity and the cylinder radius were kept constant,
therefore the Deborah number was varied by changing the
value of the relaxation time. Of course in an experiment
with a given fluid and geometry the elasticity number E ¼
1η0

�
ρR2 is kept constant and the Deborah number is varied

by changing the flow rate, that is U, and consequently the
Reynolds number. However, since we force the Reynolds
number to be zero and are concerned with steady flows, the
only parameter left is De and it is theoretically irrelevant
whether it is 1 or U that is varied.

All the calculations were carried out with a finite-volume
method (for details see Oliveira et al. 1998 and Alves et al.
2000, 2001, 2003) for the limiting case of Re=0, which was
imposed numerically by neglecting the convective terms of
the momentum equation. Accurate representation of the
convective terms in the constitutive equation is of extreme
importance in viscoelastic simulations, and the CUBISTA
high-resolution scheme developed by Alves et al. (2003)
was applied for this purpose. The CUBISTA scheme has
the advantage over classical high-resolution schemes (e.g.,
the SMART scheme by Gaskell and Lau 1988) of
promoting better iterative convergence when employed in
conjunction with implicit methods. It is a simpler alterna-
tive to Lagrangian approaches whose implementation in
conjunction with finite element methods is addressed in the
review of Baaijens (1998). Additional details of the present
method regarding the implementation of the Giesekus
model, so that numerical stability is improved, can be
found in Oliveira (2001).

Problem description and computational meshes

A Galilean transformation shows that the settling of a
cylinder in a medium confined by two parallel plates is
equivalent to the steady uniform flow of a fluid around and
past a cylinder in a channel, whose walls move at the same
velocity of the approach flow, as shown in Fig. 1. The ratio
of channel half-height h to cylinder radius R is set equal to
2 which corresponds to a 50% blockage case. The
computational domain is 80R long, with 19R upstream
and 59R downstream of the forward and rear stagnation
points of the cylinder, respectively. The downstream length

Table 1 Range of the model parameters used in this work

Models ɛ β α L2

UCM 0 0 0 ∞
Oldroyd-B 0 0.125; 0.4 and 0.8 0 ∞
PTT 0.02 and 0.25 0 0 ∞
FENE-CR 0 0.1 0 10 and 100
Giesekus 0 0.59 0.02 ∞
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is sufficient for the flow to become fully developed and to
avoid any effect of the outflow boundary condition upon
the flow in the vicinity of the cylinder. Vanishing axial
gradients are applied to all variables, including the pressure
gradient, at the outlet plane. No-slip conditions are imposed
at both the cylinder surface (r=R: u=0, v=0) and the
channel wall (y=h: u=U).

The main characteristics of the meshes used in this
work are given in Table 2, including the total number of
cells (NC), the number of control volumes around the
surface of the cylinder (NS), the number of cells placed
radially from the cylinder to the channel wall (NR), and
the minimum cell spacing along the radial (Δr) and the
azimuthal (Δs=rΔθ) directions both normalized with the
cylinder radius. The first numerical simulations were
carried out with mesh M60 of our previous work (for
complete details see Alves et al. 2001). Mesh M60WR has
the same number of cells in the radial direction as mesh
M60, but is more refined along the wake (hence the
subscript WR for “wake-refined”). The total number of
cells is 22,560. The high degree of refinement in the rear
wake region of the cylinder of mesh M60WR leads to a
minimum normalized cell spacing along the azimuthal
direction of 0.0006 compared with 0.0157 for mesh M60.
Mesh M120WR was used to check the convergence with
mesh refinement at Deborah numbers near the critical
value. This mesh has twice the number of cells along both
directions as mesh M60WR with NC=90,240 cells. The

number of cells on the cylinder surface of mesh M120WR

is 520, and the minimum normalized cell spacing along
the radial and azimuthal directions is 0.002 and 0.0003,
respectively.

Results and discussion

Results of computations are presented as a scalar integral
quantity representative of the flow and as detailed profiles
of velocity and stress components in the vicinity of the
cylinder. The integral quantity selected was the dimension-
less drag coefficient, CD, calculated as:

CD ¼ 1

η0U

Z
S

τtot � pIð Þ � n � i d S ð9Þ

where I is the unit tensor, n is the unit vector normal to the
cylinder surface and i is the unitary vector in the x-direction
(streamwise direction). Stress profiles are shown in the thin
stress boundary layer around the cylinder and on the thin
high normal stress region downstream the rear wake, to
ascertain the quality of the predictions.

For the UCM and Oldroyd-B models, we used two
different criteria to assess numerical stability. One method
consisted simply in examining the positive definiteness of
the conformation tensor, A, that is det A>0; in addition,
Hulsen (1988) demonstrated that for the Oldroyd-B model,

Fig. 1 Schematic representation
of the flow geometry

Table 2 Main characteristics of the computational meshes

Mesh NC DOF NR NS (Δr/R)min (Δs/R)min

M60 17,400 104,400 60 200 0.00481 0.0157
M60WR 22,560 135,360 60 260 0.004 0.0006
M120WR 90,240 541,440 120 520 0.002 0.0003

NC Total number of cells, DOF number of degrees of freedom, NR number of cells placed radially, NS number of cells around the cylinder surface
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one should have det A≥1. The conformation and polymer
stress tensors are related by

τ ¼ ηP
1

A� Ið Þ: ð10Þ

The other criterion for judging the performance of the
numerical discretisation is to determine whether the elastic
tensor, T,

T ¼ τþ ηP
1
I ¼ ηP

1
A; ð11Þ

is positive definite (Dupret and Marchal 1986). Alternatively,
the system condition number, S, can also be used to indicate
a temporal loss of evolution. For a 2D flow, S is given by
(Kim et al. 2005b),

S ¼ 2
l1l2

l21 þ l22
¼ 2

det T

tr T2
� � ; ð12Þ

where 11 and 12 are the nontrivial eigenvalues of the elastic
tensor, T. To guarantee no loss of evolution, S needs to be
positive.

In this work, x and y Cartesian coordinates are nor-
malized with the cylinder radius, R, the velocity compo-
nents (u and v) with the characteristic velocity U, and the
extra stress tensor τ and the pressure p by η0 U/R.

Mesh refinement studies

It is recognized that this flow problem is difficult to
solve accurately because to resolve the very thin stress
boundary layer at the cylinder wall and the normal
stresses downstream of the rear stagnation point, very
refined meshes are required in these regions. The effect
of mesh refinement for the UCM model is shown in
Fig. 2, where the normalised streamwise normal stresses
along the cylinder sidewalls and wake centreline are
plotted for De=0.6 and 0.7. In the region of maximum
stresses on the cylinder sidewall and the rear wake, there
is a small mesh dependency, especially at De=0.7. For
comparison, Fig. 2 also presents the τxx profile along the
rear wake centreline predicted by Dou and Phan-Thien
(2003) with their mesh M4 at De=0.6. A small inaccuracy
might result from extracting their data from the original
figures; however, their maximum value of τxx in the wake
still deviates approximately by 9.2% from our predictions
(cf. zoom included in Fig. 2), and such differences are
probably related to the insufficient mesh refinement of
Dou and Phan-Thien (2003). In fact, their mesh M4 has
only a typical hp mesh size of O(10−2), compared with our
mesh size O(10−3; 10−4) in mesh M120WR. Slight differ-
ences present in the results obtained with meshes M60WR

and M120WR may be observed in the stress contour plot
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Fig. 2 Effect of mesh refine-
ment: stress profiles along cyl-
inder wall and downstream
centreplane for UCM fluid.
Mesh M60WR (dashes);
M120WR (lines). Symbols
(empty circles) from Dou and
Phan-Thien (2003) for De=0.6
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map in Fig. 3, whereas the velocity contours are visually
indistinguishable. In contrast to the Newtonian case, the
inertialess UCM flow is clearly asymmetric about the X=0
plane, particularly the stress fields, with τxx exhibiting
maxima along the cylinder sidewall and at the centreline
downstream of the cylinder. For the Oldroyd-B model,
Fig. 4 shows normal stress profiles along the cylinder
sidewalls and centreline under nearly critical conditions.
These profiles are for β=0.125 (De=1.0), β=0.4 (De=1.1)
and β=0.2 (De=1.4). Small differences between the
solutions on the two meshes are visible near the points
of maximum stress, but it should be emphasized that these
flow conditions are close to the critical De, when the
differences are more discernible. In fact, for lower De,
discrepancies in the normal stress profiles, and also in the
corresponding peak values, are significantly smaller and

even negligible. It has been checked that iteratively
converged numerical solutions can still be obtained when
De is increased by 0.1 for the above three cases, but the
discrepancies in the predicted peak normal stresses in the
wake region with the M60WR and M120WR meshes tended
to accentuate. Figure 4 also shows a comparison between
our predictions of τxx along the rear wake centreline with
those of Dou and Phan-Thien (2003) on their mesh M4; a
significant difference of the order of 50% is observed due
to the high level of azimuthal refinement of M120WR

mesh.
Previous works have shown mesh refinement not to

be so crucial with constitutive models exhibiting shear-
thinning or bounded extensional viscosity (Oliveira et
al. 1998, Oliveira 2001, Oliveira and Miranda 2005 and
Alves et al. 2000, 2001, 2003), such as FENE-CR, PTT or
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Giesekus models, and therefore, we decided not to use the
finer mesh M120WR and restrict the simulations with these
models to meshes M60 and M60WR. This decision is
corroborated by the comparisons shown in Fig. 5 for the
FENE-CR model, where τxx predictions are presented near

critical Deborah numbers of 5.0 and 4.0 for L2=10 and L2=
100, respectively, using meshes M60 and M60WR. Both
meshes yield normalized normal stress profiles in good
agreement, and also the corresponding peak stresses, an
indication of the good accuracy achieved by M60 with the
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FENE-CR model. This mesh independence is also con-
firmed in the comparison with Kim et al. (2005a) results
presented in the inset of Fig. 5. Their predictions at De=
2.5 with L2=10 were obtained with their mesh UM3
having a minimum mesh size of O(10−4), whereas mesh
M60 is only O(10−2) and yet has similar level of accuracy.
Those authors also employed a “high resolution” FEM,
and the matching against our data is excellent.

After demonstrating the accuracy of our predictions, in
the following sections, we present and discuss separately
the results for each constitutive model.

UCM and Oldroyd-B models

We start with the two simpler quasi-linear differential
constitutive models, the upper-convected Maxwell (UCM)

Fig. 6 Drag force coefficient for UCM and Oldroyd-B fluids. Mesh M60 (×); Mesh M60WR (-ο-); Mesh M120WR (empty diamonds) and Dou and
Phan-Thien (2003) data (filled circles)

Table 3 Drag force coefficient for the UCM and Oldroyd-B models.

De Oldroyd-B β=0.8 Oldroyd-B β=0.4 Oldroyd-B β=0.125 UCM

M60 M60WR M120WR M60 M60WR M120WR M60 M60WR M120WR M60WR M120WR

0.0 99.393 99.366 99.393 99.366 99.393 99.366 99.366
0.1 98.653 97.290 96.286 95.896
0.2 97.354 93.354 90.477 89.225
0.3 96.059 89.407 84.625 82.476
0.4 94.955 86.057 79.622 76.676
0.5 93.988 94.067 83.960 83.384 75.702 75.607 71.981
0.6 93.378 81.327 72.495 68.286 68.047
0.7 92.858 79.797 70.142 65.420 64.993
0.8 92.483 78.707 68.410 63.242
0.9 92.230 77.989 67.178 66.992
1.0 91.807 92.081 77.767 77.573 77.293 66.633 66.354 66.045
1.1 92.024 77.429 77.187 65.925 65.860
1.2 92.049 77.508 65.654
1.3 92.149 77.885
1.4 92.317 92.207
1.5 92.633 92.541
1.6 92.842
2.0 94.425
2.5 95.953
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and Oldroyd-B models. Evidence from the literature on
viscoelastic flow past a confined cylinder shows that an
increase in viscoelasticity tends to reduce the drag force. As
shown in Fig. 6 and Table 3, this tendency is replicated by
our predictions for the case of sedimentation of a cylinder
in a viscoelastic fluid medium obeying the UCM and
Oldroyd-B models. Figure 6 also compares the CD values
obtained using meshes M60WR and M120WR with those of
Dou and Phan-Thien (2003) obtained with a CVFEM
method. All sets of data show a decrease in CD with
Deborah number, but in contrast to the present data, the
drag coefficient predicted by Dou and Phan-Thien (2003)
always show an increase at high De numbers, whereas our
data only exhibits this increase for large values of β.
Another important difference is that for all retardation
ratios, the results are well below the predictions of Dou and
Phan-Thien (2003), with agreement only in the range De≤
0.3. As higher values of drag coefficient are usually
associated with coarse meshes (Alves et al. 2001) or
insufficient accuracy, the discrepancies in Fig. 6 are an
indication of loss of accuracy in the results of Dou and
Phan-Thien (2003). With the UCM model, stable and
iteratively converged simulations could be obtained up to
De=0.85 with mesh M60WR and De=0.7 with mesh
M120WR. For De=0.85 and mesh M60WR, a periodic
solution leading to oscillating drag force values was
observed.

Figure 7 presents the two stability factors discussed
above, the system condition number and the determinant of
the conformation tensor, along the cylinder surface and the

downstream centreline for a range of Deborah numbers. For
all simulations, the minimum values of S and det A are
always positive, showing no loss of evolution when the
flow is steady. It can also be observed that the determinant
of the conformation tensor increases with Deborah number
both on the cylinder sidewall and in the rear wake zone,
indicating strong normal stress effects (in shear and
extension, respectively), while S behaves inversely (the
two quantities are seen to have symmetric shapes relative to
S=det A=1 line when plotted in a log-scale). In the rear
stagnation point, both system condition numbers S and det
A tend to unity. The results in Fig. 7 suggest S as being a
better indication of loss of evolution.

Figure 8 presents normal stress and velocity profiles
along the cylinder surface and the centreline downstream
of the cylinder as function of Deborah number for the
UCM model. The τxx profiles in Fig. 8a show increasing
stresses and peak values with Deborah number, with the
maximum at the cylinder sidewall larger than the peak at
the wake. Near the critical Deborah number (De=0.8), the
wake maximum normal stress is only 20% of the larger
normal stress at the cylinder wall, in contrast to the related
problem with stationary channel walls where the wake
normal stress maxima attains similar values to the cylinder
peak.

According to Oliveira et al. (1998), Alves et al. (2001)
and Dou and Phan-Thien (2003, 2004), there is no
“negative wake” with UCM fluids for both Poiseuille and
uniform approach flows. This is confirmed here for uniform
flow in Fig. 8b, where no velocity overshoots in the wake
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are observed. A small global upstream shift in the velocity
profiles with respect to the Newtonian case is seen up to
De≈0.5 (the inset shows the difference, Δu=u−uNewtonian).
Then, for De>0.5 the behaviour observed becomes more
complex with the velocity profiles exhibiting both an
upstream shift near the rear stagnation point followed by a

downstream shift further downstream of the cylinder.
Similar observations of a downstream shift in the elastic
wake behind a cylinder in a channel were reported by
McKinley et al. (1993). This phenomenon has been found
to increase monotonically with De in all experimental
studies to date.
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For the Oldroyd-B model, the results are globally similar
to those obtained with the UCM model, with slight
differences discussed below. Using three different viscosity
ratio values (β=0.125, β=0.4 and β=0.8), stable and
converged simulations on mesh M60WR could be obtained

up to De=1.2, De=1.3 and De=1.6, respectively. In terms
of the normalized velocity components and the normal
stress contour maps for these cases, the behaviour follows
closely Fig. 3 for the UCM, and the plots are therefore not
shown here for conciseness. An important difference
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between Oldroyd-B and UCM fluids can be observed by
comparing the normal stress profiles for β=0.125 in Fig. 9a
with those for β=0 in Fig. 8a. At low elasticity and as for
the UCM model, the normal stress on the cylinder sidewall
increases significantly with Deborah number up to De=0.9;
however, above De=1.0, there is a change of trend for the

Oldroyd-B fluid, and τxx starts decreasing with De. The
behaviour in the rear wake zone is also noteworthy: for the
Oldroyd-B model, the normal stress increases strongly with
De, and near the critical value, the maximum value of τxx in
the rear wake is higher than in the cylinder sidewall,
whereas for the UCM model, the rear peak values are well
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below the cylinder peak values. This feature occurs for all
models except for the UCM fluid, probably because for this
model, we cannot obtain steady results for De above unity.

The velocity profiles presented in Fig. 9b illustrate the
absence of negative wake for the Oldroyd-B model and
show the same trends seen previously with the UCM
model, i.e., an upstream shift at all De near the rear
stagnation point followed by a downstream shift for De≥
0.5. The axial position where the transition from upstream
to downstream shift occurs decreases with Deborah number
from x/R≈2.2 at De=0.6 to x/R≈1.6 at De=1.2.

When decreasing polymer concentration of the Oldroyd-B
model (increasing the viscosity ratio factor to β=0.4 and β=
0.8), the global behaviour for all variables remains qualita-
tively similar to that of the β=0.125 case discussed above.
Figure 10a shows the normalized normal stress profiles at
high Deborah numbers (De=1.2, 1.3 for β=0.4 and De=1.5,
1.7 for β=0.8). The peak values on the cylinder sidewalls
saturate and then decrease, whereas in the wake, the second
peak exceeds the first at high De. As the critical De has
increased with the increase of β, the peaks values of Cxx in
the wake, due to viscoelastic extensional effects, can rise to
higher values than before (smaller β). Regarding the profile
at De=1.7 and β=0.8 in Fig. 10a, although some oscillations
are visible on the cylinder wall zone and in the total drag
force, the corresponding simulation did not show signs of
iterative divergence, presenting positive values of min(S) and
min(det A). These results are not shown here for concise-
ness; anyway, the waviness of Cxx is most certainly the first
indication that the maximum allowable De is about to be
reached.

FENE-CR Model

A slightly modified version of the FENE-CR model was
proposed and used by Coates et al. (1992) and later by a

number of other authors in a variety of studies, such as in
cylinder and sphere problems, both with uniform and
Poiseuille approach flow conditions (McKinley et al.
1993, Kim et al. 2005a, Oliveira and Miranda 2005,
Satrape and Crochet 1994, Harlen 2002 and Dou and
Phan-Thien 2004). In all these works, the constant viscosity
FENE-CR model predicted the onset of negative wake in
the velocity profiles for sufficiently low levels of the
extensibility parameter. In the present investigation, the
FENE-CR model was applied with β=0.1 and two
extensibility values, L2=10 and L2=100, to assess the
influence of this model parameter on the negative wake
phenomenon.

Table 4 Drag force coefficient for the FENE-CR model

De FENE-CR L2=10 FENE-CR L2=100

M60 M60WR M60 M60WR

0.1 97.715 97.709 96.426
0.2 94.575 90.775
0.3 91.308 85.072
0.4 88.419 80.178
0.5 85.988 85.935 76.263 76.218
1.0 77.902 77.881 66.144 66.037
1.5 73.188 73.156 62.502 62.343
2.0 69.875 69.862 60.458 60.261
2.5 67.380 67.329 59.009 58.769
3.0 65.341 65.306 57.839 57.578
3.5 63.679 63.629 56.846 56.618
4.0 62.273 62.222 56.119 55.796
5.0 60.017 59.968 54.612 55.069
6.0 58.199
7.0 56.764
7.8 55.716

Fig. 11 Drag force coefficient
for the FENE-CR fluid. Mesh
M60WR (-ο-); Mesh M60 (×);
Kim et al. (2005a) data (filled
diamonds)
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Fig. 12 τxx, u contour plots
for FENE-CR with a L2=100
and b L2=10 fluid at De=3.0
on mesh M60WR
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Figure 11 compares the values of CD obtained in this
work with those of Kim et al. (2005a). Our simulations
were carried out on meshes M60 and M60WR; the data are
given in Table 4, and it was found that the drag force

coefficient decreases monotonically with the Deborah
number. Iterative convergence was possible up to De=7.8
and De=5.0 for L2=10 and L2=100, respectively. Remark-
ably good agreement was found with the recent results of
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Kim et al. (2005a) for the two extensibility parameters
considered, but values of De three times higher could be
attained here.

Figure 12a and b show axial velocity and stress contour
plots for the FENE-CR model with β=0.1, De=3.0 at two
values of extensibility, L2=10 and L2=100, respectively.
For L2=100 (Fig. 12a), i.e., when the F term in Eq. 3 tends
to unity and the FENE-CR model approaches the Oldroyd-
B model, the maximum values of the normal stress are
located along the cylinder sidewall, due to shear flow and
in the birefringent strand in the centreline downstream of
the cylinder, here due to extensional flow. The birefringent
strand at higher value of extensibility L2=100 is much
longer and exhibits higher stress values than the
corresponding case with a lower value of extensibility,
L2=10, as shown in Fig. 12b. In both cases, the fore–aft
asymmetry is more pronounced than was the case with the
previous models (cf. Fig. 3), and a negative wake
downstream of the cylinder is now visible (contours of
u/U>1).

As briefly discussed in the “Introduction” section, the
onset and strength of the negative wake depends strongly
on the extensibility parameter L2 of the FENE-CR model,
and for uniform approach flow, several authors (Satrape
and Crochet 1994, Harlen 2002 and Dou and Phan-Thien
2004) indicated the absence of a negative wake for high
values of L2, as the fluid behaviour approaches that of the
Oldroyd-B model. Dou and Phan-Thien (2003) suggested
that the absence of negative wake in the experiments of
McKinley et al. (1993) can be attributed to the high
extensibility of the fluid (which was modelled with the
FENE-CR having L2=144 based on rheological measure-
ments). This trend is also observed in our results, when
comparing Fig. 13a and b. For the FENE-CR model with
L2=100 (Fig. 13a), and for small values of De (<1.5), no

negative wake is observed. Only upstream, followed by
downstream shifts (0.5<De<1.5) in the velocity profiles
are observed with respect to the Newtonian case, and these
variations are similar to those reported for the Oldroyd-B
fluid in Fig. 10. Then, for De>1.5 there is also an initial
small upstream shift, followed by a downstream shift
extending to x/R≈4.5, and finally, a negative wake appears
that extends further downstream to x/R≈16. The magni-
tude of the negative wake, measured by the relative

Fig. 14 Drag force coefficient
for a PTT fluid with β=0. Mesh
M60WR (-ο- or -□-); Mesh M60
(×); and Dou and Phan-Thien
(2003) data (filled circles)

Table 5 Drag force coefficient for the PTT model

De PTT ɛ=0.25 PTT ɛ=0.02

M60 M60WR M60WR

0.1 87.672 94.948
0.2 74.035 86.716
0.3 64.257 78.760
0.4 57.133 72.102
0.5 51.681 51.690 66.814
0.6 47.370 62.540
0.7 43.839 59.115
0.8 40.886 56.147
0.9 38.372 53.763
1.0 36.227 36.202
1.5 28.655 28.584
2.0 24.081 23.936
2.5 20.970 20.774
3.0 18.788 18.462
3.5 16.836 16.713
4.1 15.082
5.1 13.061
6.5 11.151
7.0 10.626
7.5 10.158
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velocity overshoot Δu/U=(u−uNewt)/U, increases with De
and is approximately 11.7% at De=5.0. When the
extensibility parameter is reduced, the wake behaviour
changes significantly, as illustrated in Fig. 13b. Now, for
all values of De, no initial upstream shift is observed, and
the negative wake appears earlier at De>0.5, after a small

downstream shift of the velocity profile near the rear
stagnation point. The magnitude of the negative wake is
higher than for the L2=100 case, increasing with De from
approximately 1% at De=1.0 to 32.8% at De=7.8.
However, the negative wake is shorter for L2=10 (x/R≈
10) than for L2=100 (x/R≈16).
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PTT Model

The PTT model includes the stress coefficient function,
see Eq. 5, bringing in a new parameter ɛ that imposes an
upper limit to the elongational viscosity (ηE∽1/ɛ for low ɛ).

This model is shear-thinning in viscosity, in contrast with
the FENE-CR of the previous section, and was used in
several numerical works of flow past a cylinder with both
uniform and Poiseuille inlet conditions (Phan-Thien and
Dou 1999 and Dou and Phan-Thien 2003). Here, the PTT
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model is employed without a solvent viscosity (β=0), for
two typical parameters ɛ=0.02 and 0.25. Note that when
ɛ→0 the PTT model approaches the UCM model.

Figure 14 compares the computed CD values with those
obtained by Dou and Phan-Thien (2003). The present
predictions obtained on meshes M60 and M60WR are
virtually indistinguishable and show the drag coefficient
(listed in Table 5) to decrease monotonically with the
Deborah number, up to limiting values of De=0.9 and De=
7.5, for ɛ=0.02 and ɛ=0.25, respectively. Generally,
numerical simulations are easier, the higher the value of ɛ
and the lower the Deborah number, and this is borne out in
the good agreement observed in Fig. 14 for ɛ=0.25
against the results of Dou and Phan-Thien (2003), to be
contrasted with the poor comparison involving constant
viscosity models (ɛ=0.0) in Fig. 6. Above De≈0.9, our
results are below those of Dou and Phan-Thien (2003) and
furthermore we could attain a maximum Deborah number
four times higher.

Figures 15 and 16 present our predictions of axial
normal stress and streamwise velocity along the cylinder
wall and rear centreline for the two cases ɛ=0.25 and ɛ=
0.02, respectively. Generally speaking, the stress levels are
much lower than those of previous models on account of
shear-thinning which affects both the shear viscosity and
the normal stresses. For the PTT model with the higher
value of extensional parameter (ɛ=0.25) the Cxx predictions
present some features not previously seen. Figure 15a
shows that on the cylinder sidewalls for De>0.5, all Cxx
profiles decrease with an increase of Deborah number due
to shear-thinning, this decrease being more intense at
smaller De values. For small values of De, not shown here,
the profiles of Cxx exhibit a progressive increase with De,
these corresponding to situations where the shear-thinning
is very weak and the effect of elasticity prevails. This is
actually seen to a larger extent in Fig. 16a where the low

value of ɛ imparts a weaker shear-thinning. Above De≈5
the decrease in the normal stress peak at the cylinder
sidewalls is not so intense, with a constant maximum
normalized value of approximately 7 to 8. In the near wake
region, the Cxx profiles increase with De up to De≈5, and
then a small decrease and shift to downstream locations
occurs for higher De values.

For the PTT model with a low value of ɛ (ɛ=0.02), the
behaviour of the Cxx profiles is akin to that obtained with the
UCM model (cf. Figs. 16a and 8a). The Cxx profiles increase
with De up to De≈0.5 and then decrease up to the critical
value (De=0.9). In the rear wake zone, there is a slow
monotonic increase in Cxx on account of extensional effects
and the small amounts of shear-thinning.

Table 6 Drag force coefficient for the Giesekus model

Giesekus

De M60 M60WR

0.1 97.672
0.2 94.394
0.3 91.151
0.4 88.401
0.5 86.190 86.178
1.0 80.217 80.198
1.5 77.739 77.713
2.0 76.192 76.160
2.5 75.040 75.002
3.0 74.114 74.063
3.5 73.300
4.0 72.652
5.0 71.623
6.0 70.837
7.0 70.201
8.0 69.684

Fig. 17 Drag force coefficient
for a Giesekus fluid (α=0.02
and β=0.59). Mesh M60WR

(-ο-) and M60 (×)
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As expected, the formation of a negative wake depends on
the ɛ parameter, with an absence of this flow feature for low
values of ɛ. These behaviours are illustrated by our results
presented in Figs. 15b and 16b. The formation of a negative
wake for De≥1 with ɛ=0.25 is obvious in Fig. 15b, as well
as a small downstream shift in the velocity profiles with
respect to the Newtonian condition near the rear stagnation

point. The negative wake seen with ɛ=0.25 extends to
approximately x/R≈9 for De=7.5. The relative velocity
overshoot increases with De up to De≈5, then asymptotes
to a constant value of about 34% and shifts further
downstream. With the reduction of the parameter ɛ, the flow
behaviour becomes similar to that seen with the UCM
model, as observed in Fig. 16b. For ɛ=0.02 there is an
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upstream shift in the velocity profiles with respect to the
Newtonian profile up toDe≈0.6. At higher Deborah numbers,
the velocity profiles also exhibit an upstream shift near the
stagnation point in the rear wake of the cylinder, followed by
a downstream shift further downstream of the cylinder, but no
negative wake appears regardless of the value of ɛ.

Giesekus model

In this section, we discuss the results obtained with the
Giesekus model for α=0.02 and β=0.59. This viscosity
ratio, β, is frequently used in numerical works and can be
traced back to the value adopted in the experimental work
of McKinley et al. (1993) for the Boger fluid used in their
experiments. Hulsen et al. (2005) applied an implementa-
tion of the log-conformation methodology with a finite
element method to the benchmark flow of Oldroyd-B and
Giesekus fluids past a fixed confined cylinder. An almost
unbounded convergence limit for the Giesekus model was
reported, whereas for the Oldroyd-B, the solution became
unsteady at high Deborah numbers while exhibiting
symptoms of mesh dependency.

Figure 17 presents the CD values obtained with meshes
M60 and M60WR for the Giesekus model (quantified in
Table 6). The drag force coefficient decreases monotoni-
cally with the Deborah number, and convergent simulations
could be obtained up to De≈8. A direct comparison cannot
be made against the results of Hulsen et al. (2005) because
these are for the flow around a fixed cylinder, but it is clear
that the log-conformation formulation offers a much larger
range of allowable Deborah numbers.

Figure 18a shows the Cxx profiles for the Giesekus
model, where it can be observed that along the cylinder
sidewalls, all profiles decrease with increasing Deborah
number (De≥2), again a consequence of shear-thinning. As
for the PTT case, this decrease is more intense at low
Deborah numbers (up to De≈6) than at higher De. On the
other hand, in the rear wake zone, the Cxx profiles increase
for all De, and the maximum value is greater than in the
cylinder sidewalls above De=1. Although the simulations
were stable and convergent, some oscillations in the stress
profiles are observed in the cylinder sidewalls and in the
rear wake zone at high De.

The formation of a negative wake at De≥1 is also seen for
the Giesekus model in Fig. 18b, where initially an upstream
shift in the velocity profiles, with respect to the Newtonian
profile, is present near the rear stagnation point and is
followed by a downstream shift that extends to approximately
x/R≈5. The length of the negative wake increases with De so
that at De=8, it extends in the axial direction up to x/R≈25.
Even though the relative velocity overshoot increases with De,
its magnitude is not as large as seen with the previous models,
attaining a maximum value of only about 3% at De=8.

Conclusions

In this work, we present detailed results of a numerical
investigation of the flow of viscoelastic fluids past a
confined cylinder settling between two parallel plates with
a 50% blockage ratio, using a finite-volume method. To
properly assess the effect of various rheological properties,
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five constitutive models have been used: UCM, Oldroyd-B,
FENE-CR, PTT and Giesekus models.

Simulations were carried out under creeping flow
conditions, using very fine meshes, especially in the wake
of the cylinder where large normal stress gradients are
observed for high Deborah number flows. Numerical
solutions could be obtained up to Deborah numbers in
excess of those reported previously in the literature,
especially in the case of the PTT, FENE-CR and Giesekus
models. Special care was exercised to guarantee that all
solutions are well converged iteratively, with stopping
tolerances of around 10−4 and that sufficient mesh
convergence is also provided, with smaller mesh spacing
of order Δr=0.002, allowing estimation of drag coefficients
which are exact up to the first decimal place, corresponding
to an accuracy of around 0.1–0.3% on average. Besides
providing reliable data for the drag coefficient variation and
graphs of velocity and normal stress profiles along the
wake, we reached some other conclusions worth mentioning:

1. Drag coefficient: For the UCM and the Oldroyd-B
fluids with low solvent viscosity contribution (β=
0.125), the drag coefficient on the cylinder decreases
monotonically with increasing Deborah number. When
the solvent viscosity contribution is high (β=0.8), the
drag coefficient first decreases with De followed by a
levelling out and marginal, very slight increase, for
De≥1.1. For all retardation ratios, our results are well
below the predictions of Dou and Phan-Thien (2003),
with agreement only between the Newtonian cases up
to De≈0.3. For the other models with bounded
extensional viscosity, the FENE-CR, PTT and Giese-
kus, the latter two being shear-thinning, the drag
coefficient decreases monotonically with increasing
Deborah number. For the FENE-CR model, good
agreement was found with the CD results of Kim et
al. (2005a) for both extensibility parameters, L2=10
and L2=100, whereas the predictions of Dou and Phan-
Thien (2003) with L2=10 lie well below both sets of
results, close to the predictions for the L2=100 case.
For L2=100, the results from Dou and Phan-Thien
(2003) show a non-monotonic behaviour, diverging
from both our predictions and those of Kim et al.
(2005a), with agreement only for De≤0.6.

2. Negative wake: Regarding the existence of negative
wake, these sets of simulations have shown that models
with unbounded or bounded but very large extensional
viscosities do not exhibit this feature. Figure 19
summarizes our findings on the maximum magnitude
of the negative wake for all models tested. For the
UCM and Oldroyd-B fluids, there was no sign of a
negative wake regardless of the values of β, with the
velocity profiles presenting an upstream shift close to

the back of the cylinder (x/R≤1.5–2) followed by a
downstream shift for De>0.5. For the FENE-CR model
with L2=100, there is a negative wake for De>1.5,
starting about 3 radii from the rear of the cylinder and
extending up to x/R≈16. The magnitude of the negative
wake increases with De and is approximately 11.7% at
De=5.0, as seen in Figure 19. For the FENE-CR fluid
with L2=10, there is no upstream shift of the velocity,
and the negative wake is more intense and clearly
marked appearing at De>0.5, and formed at about one
radius distance behind the cylinder. For L2=10, the
magnitude of the negative wake is larger than for L2=
100, being 32.8% at De=7.8, whereas its length is
actually smaller, with x/R≈10 for L2=10 and x/R≈16
for L2=100. For the PTT fluid with the highest
elongational parameter ɛ=0.25, a negative wake in the
velocity overshoot is found at De>0.5, starting at x/R≈2
and extending to approximately x/R≈9. The relative
velocity overshoot increases with De up to De≈5 and
then asymptotes to a constant value of about 34%, while
its location shifts further downstream, as seen in Fig. 15.
For lower values of the ɛ parameter, the flow behaviour
becomes similar to that seen with the UCM model. The
Giesekus model produces an initial upstream shift
followed by a downstream shift and a negative wake
for De≥2, starting at x/R≈5.5 and extending in the axial
direction up to x/R≈25. The negative wake magnitude
increases with De, attaining a maximum value of about
3% for De=8.
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