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Figure 1: (x2 + y2 + z2−2)2 · (sin(x)+ y+1) = 0.

Abstract

In computer graphics, most algorithms for sampling implicit sur-
faces use a 2-points numerical method. If the surface-describing
function evaluates positive at the first point and negative at the sec-
ond one, we can say that the surface is located somewhere between
them. Surfaces detected this way are called sign-variant implicit
surfaces. However, 2-points numerical methods may fail to detect
and sample the surface because the functions of many implicit sur-
faces evaluate either positive or negative everywhere around them.
These surfaces are here called sign-invariant implicit surfaces. In
this paper, instead of using a 2-points numerical method, we use a
1-point numerical method to guarantee that our algorithm detects
and samples both sign-variant and sign-invariant surface compo-
nents or branches correctly. This algorithm follows a continuation
approach to tessellate implicit surfaces, so that it applies symbolic
factorization to decompose the function expression into symbolic
components, sampling then each symbolic function component sep-
arately. This ensures that our algorithm detects, samples, and trian-
gulates most components of implicit surfaces.

CR Categories: I.3 [COMPUTER GRAPHICS]: ;— [I.3.5]:
Computational Geometry and Object Modeling—Curve, surface,
solid, and object representations.

Keywords: Implicit surfaces, polygonization, symbolic factoriza-
tion, numerical methods.

1 Introduction

Implicit surfaces are widely used in computer graphics and visual-
ization. An implicit surface S is a level set (or zero set) of some
function f from Rn to R, say S = {x ∈ Rn : f (x) = 0}. In this pa-
per, we consider the problem of representing 3D implicit surfaces

defined by real functions. In other words, we aim at computing
a polygonal approximation for a surface S defined implicitly by
f : Ω⊆ R3 → R, i.e. S = {(x,y,z) ∈ R3 : f (x,y,z) = 0}.

Basically, there are three categories of algorithms to render implicit
surfaces, namely:

• Spatial sampling techniques. These algorithms subdivide (ei-
ther regularly or adaptively) the space into a lattice of cells
to find those that intersect the implicit surface [Bloomenthal
1988] [Hall and Warren 1990] [Lorensen and Cline 1987]
[Muller and Stark 1993] [Stander and Hart 1997] [Velho
et al. 1999]. Usually, cells are either cubes or tetrahedra.
The sign of the surface-describing function at the cell ver-
tices determines a configuration type that guides the ongo-
ing polygonization. Unlike cubes, tetrahedra generate topo-
logically consistent triangular meshes (i.e. without ambigu-
ities), yet with distorted triangles. These distorted triangles
require some kind of post-processing procedure to repair the
resulting mesh. Even worse, the cubic cell-based polygoniza-
tion leads to ambiguous configurations because more than one
mesh may be created for the same configuration type. Some
disambiguation strategies have been proposed in the literature,
including simplex decomposition, modified look-up table dis-
ambiguation, gradient consistency heuristics and quadratic fit,
tri-linear interpolation techniques, and recursive subdivision
of space into smaller sub-cells.

• Surface tracking techniques. Also known as continuation
methods, they iteratively create a polygonal approximation of
the surface by using a mesh growing scheme from a starting
seed element on the surface [Dobkin et al. 1990] [Melville and
Mackey 1995]. This seed element results from the intersec-
tion between the seed cell and the surface. Neighbor surface
elements are found by intersecting the neighbor cells with the
surface, i.e. the mesh growth results from the growing of cells
straddling the surface. Unfortunately, the algorithm may miss
important shape details of the surface, including very small
components of the surface or even isolated points, because
cell size is constant. Another drawback of this technique
comes from the need of having a seed cell for each surface
component, which may be a rather difficult requirement to
satisfy. Still, other tracking techniques for tilling implicit sur-
faces include: predictor-corrector (PC) and piecewise-linear
(PL) techniques [Allgower and Gnutzmann 1987] [Rhein-
boldt and Burkardt 1983] [Rheinboldt 1987] [Brodzik 1998].
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• Surface fitting techniques. Unlike spatial sampling tech-
niques, surface fitting methods are not based on partition-
ing space into cells. Starting from a seed mesh that roughly
approximates the implicit surface, these techniques progres-
sively adapt and deform the current mesh to the implicit sur-
face [Schmitt et al. 1986] [Zhou et al. 1997] [Li et al. 2004].
The main problem comes from the difficulty in attaching tri-
angle patches together, which sometimes results in cracks or
even dangling triangles in the tessellation.

Our algorithm belongs to second category: continuation methods.
It tessellates the surface progressively from a seeding point that
works as the center of a first hexagon of triangles. The vertices of
each triangle are determined by a surface sampling process based
on a 1-estimate numerical algorithm, in particular a 3D Newton
Predictor-Corrector numerical algorithm. Although it normally re-
quires significant computation, triangulation followed by triangle
rendering is more efficient than direct rendering methods such as
volume visualization or ray tracing [Bloomenthal 1997].

The rest of this paper is organized as follows. Section 2 provides us
an overview of our algorithm. Section 3 shows us the importance
of the factorization techniques applied to multi-component implicit
surfaces. Section 4 describes how an implicit surface is sampled
through the Newton Predictor-Corrector. Section 5 describes the
surface triangulation based on the progressive mesh growth. Sec-
tion 6 describes some experiments we have carried out to validate
our algorithm. Section 7 comes up with the difficulties of current
continuation methods in dealing with singularities, making a com-
parison between our algorithm and others found in the literature.
Finally, in Section 8 we draw some relevant conclusions.

2 Algorithm Overview

As said before, our algorithm is in the class of continuation algo-
rithms. The main drawback of these algorithms is that we do not
know a priori the topology (or topological shape) of the surface to
be tessellated. This means that we do not know how many topolog-
ical components it possesses. Consequently, it is rather difficult to
devise a solution to find a seeding point in each surface component
in order to successfully polygonize the whole surface.

Our proposal to solve the previous problem is to proceed to fac-
torization of the function into function components, also called
symbolic components or irreducible components, before the surface
sampling. A function f is called irreducible if it is non-constant and
cannot be represented as the product of two or more non-constant
function components. Every function f can be factorized into ir-
reducible function components. This factorization is unique up to
permutation of the factors and the multiplication of constants. In
this context, an irreducible implicit surface is a surface represented
by an irreducible implicit function.

Let f be the implicit surface function and let f1, . . . , fn be irre-
ducible functions resulting from the symbolic factorization of f ,
i.e., f = f1 · . . . · fn. We consider that each fi is a function that rep-
resents one of the symbolic components of the main surface. The
overall algorithm can be then described as follows:

1. Factorization of f into irreducible function components fi.

2. For each fi apply the proposed sampling and triangulation al-
gorithm.

3. Determination of the curves of intersection between irre-
ducible components fi.

4. Render the surface, i.e. its triangles (using Java3D/OpenGL).

After sampling and triangulating all irreducible components of a
surface, it is necessary to determine their intersection curves. This
can be done easily by determining intersecting triangles of the irre-
ducible components. For example, the surface ((x2 +y2 +z2−2)2) ·
(sin(x) + y + 1) shown in Figure 9 (d) has two irreducible com-
ponents that intersect each other. We use the algorithm proposed
by Möller [Möller 1997] to determine intersection curves between
irreducible components of an implicit surface. This procedure is
not necessary for visualization purposes, but it is essential for rep-
resenting non-manifold surface meshes correctly into a geometric
data structure.

3 Function Factorization

Following the idea of decomposing a problem into more tractable
subproblems, we use factorization techniques to decompose a func-
tion expression into subexpressions (or symbolic components).
This is important because tessellating each symbolic component
separately is a priori simpler than tessellating the surface as a
whole.

There are three types of symbolic components, namely:

1. One symbolic component embodies a topological component.
Many times, a symbolic component corresponds to a topo-
logical component. For example, the surface depicted in Fig-
ure 9(e) has two symbolic components, (x2 +y2 +z2−2)2 = 0
and (x2 +(y+3)+z2−1)2 = 0, each corresponding to a topo-
logical component, a sphere and a paraboloid, respectively.
That is, we know a priori the overall topology of the sur-
face, i.e. the number of their topological components. This
allows us to sample and polygonize each surface component
surrounding the main drawback of continuation algorithms.

2. Two or more symbolic components embody a topological
component. This is the case of the surfaces shown in Fig-
ure 9(a), (c), and (d). In this case there is intersection between
the symbolic components, being each symbolic component
tessellated independently of the others. The separate tessel-
lation of each symbolic component ensures that intersection
curves need not be computed symbolically or have a partic-
ular procedure to treat these surface self-intersections during
triangulation stage. It is enough to apply the Möller’s triangle-
to-triangle algorithm to polylinearize the intersection curves
after triangulating all symbolic components [Möller 1997].

3. One symbolic component has two or more topological compo-
nents. In this case, our algorithm only detects and tessellates
one topological component of the target symbolic component.
For example, the hyperboloid of two sheets −x2−y2 + z2 = 1
has a single symbolic component with two topological com-
ponents. Taking into account that we use a single seeding
point for each symbolic component, then only one topolog-
ical component can be tessellated. To overcome this prob-
lem we need to know a priori the topological type of the
symbolic component, i.e. its number of topological compo-
nents. Recent results about the computation of the topological
type of implicit curves and surfaces will be certainly useful to
solve this problem in the near future [Gonzalez-Vega and Nec-
ula 2002] [Seidel and Wolpert 2005] [Mourrain and Técourt
2005].

Thus, factorization seems to be the appropriate technique to cor-
rectly polygonize multi-component implicit surfaces through a con-
tinuation method. Possibly, this is one of the main contributions of
this paper.
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4 Surface Sampling

After decomposing a surface into its symbolic components or irre-
ducible surfaces, we proceed to sample and triangulate each irre-
ducible surface. Sampling a symbolic component is carried out by
means of a Predictor-Corrector algorithm.

4.1 Predictor: Points on the Tangent Plane

The leading idea of triangulating a surface here is to generate a
nearly regular mesh. Thus, in general, every sampled point of the
surface will be sooner or later the center of a nearly regular hexagon
(Figure 2). Let us then consider an arbitrary point inside the consid-
ered bounding box. Applying the Newton Corrector to such a point
we obtain the point p0 on the surface after some iterations. The star
of the hexagon vertices q1,q2, . . . ,q6 are first predicted on the plane
that is tangent to the surface at p0. Then, each predicted point qi
is corrected towards a point pi belonging to the surface. This cor-
rection is done through the 3-dimensional counterpart of Newton-
Raphson’s root-finding algorithm, as described in the next subsec-
tion. The calculation of the hexagon vertices may be either total or
partial. It is total when p0 is the center of the former hexagon. On
the other hand, some hexagon vertices surrounding p0 may already
exist in the surface-triangulating mesh so that we need only to de-
termine the remaining hexagon vertices around p0 (Figures 5 and
6). In this case, the calculation of the hexagon vertices is said to be
partial.

4.2 Newton Corrector: Surface as Attractor of
Points

In numerical analysis, the iteration formula has the following
generic form

xk+1 = Fk(xk,xk−1, . . . ,xk−n+1). (1)

This is called an n-points iteration function. Most surface polygo-
nizers use 2-points iteration functions, i.e. polarity-based polygo-
nizers. They use two estimates xk and xk−1 to compute the next
one xk+1. The false position method (or regula falsi) and the secant
method are two examples of numerical methods that use 2-points
iteration functions. In this case, we say that a root is bracketed in
the interval defined by two points xk and xk−1 if f (xk) and f (xk−1)
have different signs, where f is the function that represents the im-
plicit surface. This is so because, according to the Intermediate
Value Theorem, there must be at least one root in [xk−1,xk], unless
a singularity is present. The well-known algorithm of the marching
cubes is a sort of algorithm that uses a 2-points iteration function
for each pair of vertices bounding each cubic cell edge of the parti-
tioning space.

However, these 2-points iteration functions are not able to detect
sign-invariant branches and components of an implicit surface, sim-
ply because its function does not change sign in the neighborhood
of each one of their points. For example, the spherical surface
(x2 +y2 +z2−9)2 = 0 cannot be sampled by the traditional 2-points
iteration functions because the surface-describing function is posi-
tive everywhere, unless on the surface itself where it is zero.

Instead, we use the 3-dimensional counterpart of classical New-
ton method, which is polarity-independent. It uses 1-point iteration
function that is given by

Fk(pk) = pk−
f (pk)

∇ f (pk)2 ∇ f (pk). (2)

where ∇ f (pk) is the gradient of f at pk ∈ R3. It produces succes-
sive estimates pk+1 that converges to a surface point p from a first
guess p0 = q. This iterative process stops when ||pk+1 −pk|| ≤ ε

is sufficiently small, i.e. p≈ pk+1.

Recall that the Newton method has quadratic convergence, though
it may not converge when the function oscillates rapidly. In the case
of implicit surfaces, the divergence phenomenon is rare, even when
there are significant curvature variations locally. Obviously, nobody
expects that the algorithm works well for pathological surfaces like
f (x,y,z) = sin( 1

x ). Nevertheless, given a symbolic component of
the surface and any point in the pre-defined bounding box, it is al-
ways possible to find a surface point of such a symbolic component
by applying the formula (2) after some iterations. This means that
such a symbolic component works as an attractor for any points in
the bounding box, in particular for those on the tangent plane to a
surface at a point. Note that there is here a subtle fact when we say
that given a point in a bounding box it always (apart from patholog-
ical surfaces) converges to the current symbolic component, not to
other part of the surface.

5 Surface Triangulation

Paving a surface with approximately regular hexagons (partitioned
into six triangles) comes from the common idea that the hexagon
is the best geometric figure to tessellate a surface. Tessellating a
surface means here to tessellate each of its symbolic components.

As usual, polygonizing each symbolic component of the surface re-
quires a pre-definition of a bounding box where it lies in totally or
partially. Taking in account that a symbolic component may pos-
sess one or more boundaries on the bounding box, its corresponding
mesh ends up by having one or more boundaries as well. But, at the
beginning of the triangulation, we have only a single mesh bound-
ary that is just the boundary of the first hexagon. Thus, we need
a way of splitting mesh boundaries (Figure 7). Besides, there may
be a need for merging mesh boundaries when they get very close to
each other (Figure 8).

5.1 Starting hexagon

As for any other continuation algorithm, the polygonization starts
with a seeding point. Let p be a arbitrary point in the bounding
box containing a surface’s symbolic component or part of it. The
first sampling point p0 of the symbolic component is calculated by
applying the Newton Corrector to p. It is necessary to compute and
store the vectors −→n (the normal vector to the surface at p0), −→t1 and−→t2 , in order to construct an orthonormal basis at p0. After this, let
α be the tangent plane to the symbolic component at the point p0.
Considering a circle with radius δ on α centered in p0, we calculate
the points q1, . . . ,q6 as follows:

qi+1 = p0 +δ cos(iπ/3)−→t1 +δ sin(iπ/3)−→t2 (3)

Note that the points qi are the vertices of a regular hexagon in-
scribed in a disk centered at p0 having six equilateral triangles in-
side. The disk is placed on the plane tangent to the surface at p0. To
calculate the corresponding six sampling points on the surface we
apply the Newton Corrector to the points qi. The resulting points
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Figure 2: Starting hexagon.

p1, . . . , p6 are the six vertices of the starting hexagon of the surface,
that is, the first mesh boundary. This is illustrated in Figure 2.

5.2 External angle at a mesh boundary vertex

The mesh expansion or growth is determined by the external an-
gle at each vertex vi of each mesh boundary. Figure 3 illustrates
the concept of external angle θ at a vertex vi, as well as the corre-
sponding internal angle φ = 2π − θ . Note that the external angle
θ is not necessarily the angle between the vectors −→u = −−−→vivi−1 and−→v = −−−→vivi+1. Recall that, by definition, ∠(−→u ,−→v ) yields the mini-
mum angle between −→u and −→v . There are cases, like in Figure 3,
where the external angle θ is not equal to ∠(−→u ,−→v ); it is precisely
2π−∠(−→u ,−→v ). To correctly determine the external angle at vi, we
have to check whether the normal vector −→n at vi and −→t =−→u ×−→v
have opposite signs or not. If −→t .−→n > 0, then the external angle
θ = ∠(−→u ,−→v ); otherwise, θ = 2π−∠(−→u ,−→v ). The correct compu-
tation of the external angle at a mesh boundary vertex prevents the
re-meshing backwards.

5.3 Approximately uniform partition of the mini-
mum external angle

Let Λ0 = {v1,v2, . . . ,vn} be the current mesh boundary with exter-
nal angles θ1,θ2, . . . ,θn, respectively. The mesh expansion occurs
around the vertex at which the external angle is minimum. Once
found the minimum external angle θ , it must be partitioned into a
set of angles with approximately π

3 radians, provided that we are
constructing approximately regular hexagons and equilateral trian-
gles.

In this step we want to find the optimal number of triangles that fit
θ . Thus, we consider a range of acceptable angles around the ideal
angle π

3 that goes from θin f to θsup. These two bounds result, re-
spectively, from the addition and subtraction of a pre-defined toler-
ance to and from π

3 . Next, it is necessary to calculate the numbers
of triangles nin f and nsup that result from dividing θ by θin f and
θsup, respectively, rounding them to the nearest integer afterwards.
Then, we choose either nin f or nsup as the optimal number n∆ of
triangles, i.e. triangles whose angles are closest to π

3 :

n∆ =

{
nin f if | θ

nin f
− π

3 | ≤ | θ

nsup
− π

3 |
nsup if | θ

nin f
− π

3 |> | θ

nsup
− π

3 |

Figure 3: External angle.

As an example, the angle illustrated in Figure 4 would be parti-
tioned in 3 triangles, i.e., nt = 3, because this partition creates an-
gles closest to π

3 .

Sometimes, it happens that n∆ evaluates to 0. It may also happen
that the distance between the previous vertex vi−1 and next vertex
vi+1 is less than the circle radius δ on the tangent plane to the sur-
face at vi(see 5.1). It is clear that n∆ cannot be equal to 0, so it is set
to 1.

5.4 Mesh growth

Once calculated the number of triangles that fit θ around vi, the
current mesh is ready to grow. The mesh grows as follows:

• Attaching only one triangle. This case occurs when n∆ = 1.
For that, as illustrated in Figure 5 it is enough to connect vi−1
to vv+1 by a new edge to form the triangle defined by vi−1, vi
and vv+1.

• Attaching two or more triangles. In this case, n∆ ≥ 2, the mesh
grows by attaching two or more triangles around vi, as illus-
trated in Figure 6 (grey triangles represent previously polygo-
nized mesh). For that, one first determines the angle α = θ

n∆

of each slice triangle. Next, one computes the point that re-
sults from the orthogonal projection of vi−1 on a plane tangent
to the surface at vi. Then, one rotates the projected point by
α radians about an axis perpendicular to the surface at the
point vi. This way, we obtain a new point on the tangent plane
that is attracted by the surface by using the Newton Corrector.
The result is a new sampled surface point and a new triangle
for the surface mesh. This procedure is repeated n∆−2 times,
viewing that the last triangle is attached according to first case
above.
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Figure 4: Approximately uniform angle partition.

Figure 5: Attaching only one triangle.

Figure 6: Attaching two or more triangles.

Figure 7: Two non-consecutive vertices belonging to the same mesh
boundary are near to each other.

5.5 Mesh overlapping

As in many continuation-based algorithms it is necessary to pre-
vent that the mesh overlaps itself, i.e. to re-polygonize surface
regions. This control must be performed immediately before the
mesh growth, being based on two proximity criteria:

• Two non-consecutive vertices of the same mesh boundary
are near to each other. If the distance d between two non-
consecutive vertices belonging to the same expansion bound-
ary is less that the radius δ of the disk used in the mesh growth
step, then they must be connected by a new edge of a new tri-
angle, which splits their expansion boundary into two. This
boundary splitting operation is illustrated in Figure 7. (The
existence of thin triangles in Figure 7, when triangle regular-
ity is claimed, can be justified by the cut done by the bounding
box faces).

Let Λ0 be a mesh boundary, and let vi and v j (with i < j) be
two vertices of Λ0 having at least two vertices of Λ0 in be-
tween. If the Euclidean distance between vi and v j is less than
δ (see Figure 7 (a)), Λ0 splits into two new mesh boundaries,
Λ0 itself and Λm. Thus, after splitting the former Λ0, the new
Λ0 is given by {v1, . . . ,vi,v j, . . . ,vN} (where N is the number
of vertices of the former Λ0) and Λm consists of {vi, . . . ,v j}.

• Two vertices belonging to distinct mesh boundaries are near
to each other. In this case, two vertices are within a distance
that is less than δ , but they do not belong to the same ex-
pansion boundary. Consequently, their boundaries are merged
into a single one. This boundary merging operation is illus-
trated in Figure 8.

Let Λ0 and Λm two expansion boundaries. If there is a vertex
v0i ∈ Λ0 and another vertex vm j ∈ Λm such that the Euclidean
distance between them is less than δ , the boundaries are going
to be merged into each other (Figure 8). Thus, Λm is elimi-
nated and his vertices are transferred into Λ0, i.e.

Λ0 = {v01, . . . ,v0i,vm j, . . . ,vmNm ,vm1, . . . ,vm j,v0i, . . . ,v0N0},

where N0 and Nm are, respectively, the numbers of vertices of
the former Λ0 and Λm.

6 Development tools and experiments

The experiments were carried out on a laptop computer with In-
tel Pentium 4 processor at 2.4 GHz, 736 MB RAM and ATI
RADEON IGP 340M graphical card with 32 MB of memory,
running the Microsoft Windows XP Professional operating sys-
tem with the Java Sun J2SE 5.0 virtual machine. Our proto-
type for implicit surfaces, called iLicitAces (impLicit Surfaces),
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Figure 8: Two vertices belonging to distinct mesh boundaries are
near to each other.

has been encoded using several ready-to-use Java APIs to shorten
its implementation time. In addition to Java programming lan-
guage, Java3D API for graphics, and Swing API for user inter-
face, three symbolic computing libraries were also used for pars-
ing, differentiation, and factorization of functions, namely: JEP
(Java Expression Parser, http://www.singularsys.com/jep), DJEP
(http://www.singularsys.com/jep/doc/html/djep), and JSCL (Java
Symbolic Computing Library, http://jscl-meditor.sourceforge.net).

For all experiments, we used the seeding point p0 = (1,1,1), the
axis-aligned cubic bounding box centered at (0,0,0) with length
equal to 6, the hexagon-inscribing disk radius δ = 0.3, and floating-
point precision ε = 0.001. Note that the algorithm does not depend
on the position of the seeding point. It can be any point inside
the bounding box. This is so because of the attractor effect of the
surface on the estimates computed by the Newton corrector.

During our experiments, we have considered algebraic and tran-
scendental surfaces, i.e. surfaces defined by polynomials and tran-
scendental functions, respectively, independently of whether they
were reducible by factorization or not. Let us enumerate some of
them:

1. f (x,y,z) = x2− y2 = 0
(Time: 6.739 sec; Figure 9(a))
(1st component x− y = 0: 1746 triangles)
(2nd component x+ y = 0: 1731 triangles)
This is an algebraic surface with two intersecting symbolic
components x− y and x + y, i.e. two planes. They both form
a topological component.

2. f (x,y,z) = z− 1
(x2+y2) = 0

(Time: 6.469 sec; Figure 9(b))
(Number of triangles: 1472)
This rational surface also possesses a single topological com-
ponent (Figure 9(b)), described by only one symbolic com-
ponent. We did not use any gcd (greatest common divisor)
symbolic computation here to transform this rational function
into an algebraic function.

3. f (x,y,z) = x lnx+ lnxcosz− xy− ycosz = 0
(Time: 6.069 sec; Figure 9(c))
(1st component lnx− y = 0: 1143 triangles)
(2nd component cosz+ x = 0: 1546 triangles)
This is a surface with two intersecting symbolic components,
lnx− y = 0 and cosz + x = 0, obtained after factorizing the
expression of f .

4. f (x,y,z) = (x2 + y2 + z2−2)2 · (sin(x)+ y+1) = 0
(Time: 7.871 sec; Figure 9(d))
(1st component (x2 + y2 + z2−2)2 = 0: 856 triangles)
(2nd component sin(x)+ y+1) = 0: 1468 triangles)
This surface has two intersecting symbolic components. The
second component is transcendental. The first is a sign-
invariant algebraic component (x2 + y2 + z2− 2)2 = 0 (i.e. a
sphere). In fact, the value of its exponent is 2, so it is posi-
tive everywhere, except on the surface where it is zero. Thus,
this component cannot be sampled by a conventional 2-points
numerical method (e.g. secant method).

5. f (x,y,z) = ((x2 +y2 + z2−2)2)((x2 +(y+3)+ z2−1)2) = 0
(time: 5.167 sec; Figure 9(e))
(1st component (x2 + y2 + z2−2)2 = 0: 856 triangles)
(2nd component (x2 +(y+3)+ z2−1)2 = 0: 208 triangles)
This surface also has two intersecting symbolic components,
though they are both algebraic. The first is a sign-invariant
sphere (x2 + y2 + z2−2)2 = 0. The second is a sign-invariant
paraboloid (x2 + (y + 3) + z2 − 1)2 = 0. Again, these com-
ponents cannot be detected and sampled by a conventional
2-points numerical method.

These examples show us that symbolic components of a surface can
be triangulated separately, so surrounding the difficult problem of
triangulating surface with self-intersections.

These examples also show us that our algorithm is capable of sam-
pling and triangulating sign-invariant components. This is due to
the fact that the Newton-Raphson is a 1-point numerical method.
That is, the surface works as an attractor of the first predicted or es-
timated point, making the subsequent estimates to converge towards
the surface.

As known, the Newton-Raphson method has quadratic conver-
gence, which explains the reasonable rendering times, even taking
into account that iLicitAces has been developed using Java tech-
nologies. The performance of the prototype could be much better if
we had used a compiled programming language, like C++, instead.

7 Comparison to other Continuation Algo-
rithms

Polygonizing and rendering multi-component implicit surfaces is
straightforward through spatial decomposition of the bounding box
into cubic cells. However, continuation methods do not cope well
with multi-component surfaces because it is necessary to find a
point on each component to start tessellating it. At the best knowl-
edge of the authors, the algorithm here described is the first contin-
uation algorithm to do so.

As far as self-intersections are concerned, similar continuation al-
gorithms cannot cope with them. They simply ignore this impor-
tant issue. On the contrary, we have solved this problem though
not fully. In fact, we are able to handle self-intersections that result
from intersecting symbolic components, using for that the triangle-
to-triangle intersection algorithm due to Möller. However, we are
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Figure 9: Examples of implicit surfaces.

not able yet to process self-intersections belonging to the same sym-
bolic component such as, for example, the self-intersection along
the positive z-axis of the Cartan-Whitney umbrella x2 − zy2 = 0.
This is an open problem that can be solved using the Implicit
Function Theorem and symbolic processing to compute such 1-
dimensional singularities. The same also applies to 0-dimensional
singularities such as isolated singularities (e.g. the apex of the dou-
ble cone) and isolated points.

In fact, as a consequence of the Implicit Function Theorem, we can
say that the singularities or singular points of a surface f (x,y,z) = 0
are those at which all the partial derivatives simultaneously vanish.
For example, the double cone x2 +y2−z2 = 0 consists of two cones
placed apex to apex. Its double apex can be determined by solving
the following system of equations:


∂ f
∂x = 0
∂ f
∂y = 0
∂ f
∂ z = 0

The apex of the double cone is then the origin (0,0,0). Found this
0-dimensional singularity, we can devise a strategy around it to lo-
cate two seeding points, one on each single cone. The first is deter-
mined by using the Newton corrector from an arbitrary point inside
the bounding box. The second requires a starting point near the sec-
ond cone in order to guarantee it converges to a point of the second
cone.

Looking at other continuation methods it seems that their au-
thors were not concerned about these issues, namely surfaces with
various components, singularities, and sign-invariant components.
Their focus seems to be on the quality of the mesh, i.e. aesthetics
aspects of the mesh.

Recall that, according to Bloomenthal [Bloomenthal 1997], there
are two major classes of continuation methods: piecewise linear
continuation methods and predictor-corrector continuation meth-
ods. In the first class, the mesh growth results from the expansion
of cells (typically cubes or tetrahedra) straddling the surface, be-
ing the surface sampled by a 2-point numerical method that outputs
the intersection points between the cell edges and the surface it-
self [Allgower and Schmidt 1985] [Allgower and Gnutzmann 1987]
[Dobkin et al. 1990].

In the second class, the mesh grows by creating new vertices and
their triangles beyond the current polygonization’s border. The
initial predicted position of each vertex is on the tangent plane at
the border, which is then settled onto the implicit surface, its cor-
rected position. The correction is done by some numerical method.
We use the Newton-Raphson corrector that is a 1-point numeri-
cal method, but we could have used a 2-points corrector similar
to that employed by Karkanis and Stewart [Karkanis and Stewart
2001]. New polygons are then attached to the current polygoniza-
tion border to join the vertex [Rheinboldt 1988]. Alternatively, a
tangent plane’s disk centered on a border vertex may be created
with an inscribed hexagon of triangles, projected onto the surface,
and merged with the current mesh [Henderson 1993] [Henderson
2002]. As described above, we basically use the Henderson’s disk
with some additional heuristics to obtain an approximately uniform
partition of the external angle and, consequently, a mesh with reg-
ular triangles (i.e. approximately equilateral triangles). Hartmann
[Hartmann 1998] and Karkanis and Stewart [Karkanis and Stewart
2001] use similar heuristics, although Karkanis and Stewart also
uses the curvature criterion to produce good triangles in those sur-
face regions where the triangle size changes quickly.
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8 Conclusions and Future Work

The first goal of our work was to design a comprehensive algorithm
for implicit surfaces, and implement it as quickly as possible using
Java technology. We were not concerned about performance issues
such as rendering speed and time.

The second goal of our work was to design and implement an algo-
rithm capable of rendering a wide range of implicit surfaces, in par-
ticular those having sign-invariant components that are undetected
by 2-points numerical methods during the sampling stage.

The third goal was to render surfaces having two or more compo-
nents, independently of whether they were connected or not. In this
respect, decomposing a surface into components by factorizing its
function expression is an important tool. As a consequence, many
non-manifold surfaces can be sampled and rendered.

In the near future, we hope to overcome the problem of self-
intersections of surface components (e.g. Whitney umbrella is an
irreducible surface that crosses itself along the positive z-axis), as
well as to resolve other 0- and 1-dimensional singularities such as
cusps and dangling line segments.
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