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Abstract

We consider two-dimensional, inertia-free, flow of a constant-viscosity viscoelastic fluid obeying the FENE-CR equation past a cylinder
placed symmetrically in a channel, with a blockage ratio of 0.5. Through numerical simulations we show that the flow becomes unsteady
when the Deborah number (using the usual definition) is greater thanDe≈ 1.3, for an extensibility parameter of the model ofL2 = 144. The
transition from steady to unsteady flow is characterised by a small pulsating recirculation zone of size approximately equal to 0.15 cylinder
r with time.
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adius attached to the downstream face of the cylinder. There is also a rise in drag coefficient, which shows a sinusoidal variation
he results suggest a possible triggering mechanism leading to the steady three-dimensional Gortler-type vortical structures, whic
bserved in experiments of the flow of a viscoelastic fluid around cylinders. The results reveal that the reason for failure of the
teady numerical solutions at relatively high Deborah numbers is that the two-dimensional flow separates and eventually become
or a lower extensibility parameter,L2 = 100, a similar recirculation is formed given rise to a small standing eddy behind the cylinder
ecomes unsteady and pulsates in time for Deborah numbers larger thanDe≈ 4.0–4.5.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Rather than being resolved by improvements in numerical
rocedures and the increase in computer power, with the pas-
age of time new challenges in computational rheology seem
o have arisen. Early transition to three-dimensional steady
ow and/or time dependency seem to be the rule rather than
he exception for nominally two-dimensional, steady flow.
or relatively strong inertial flows in the laminar regime,
iscoelasticity has been found to promote stability in the
ense of increasing the critical Reynolds number. Examples
nclude the pitchfork transition of two-dimensional steady
ymmetric to two-dimensional steady asymmetric states in
ows through expansions (Oliveira[1]) and the decreasing
requency of the unsteady instability of shear layers (vortex
hedding, e.g. Oliveira[2], Sahin and Owens[3]). However,

∗ Corresponding author. Fax: +351 275329972.
E-mail address:pjpo@ubi.pt (P.J. Oliveira).

for low or negligible inertia, the situation is reversed. In
low Reynolds-number range, elastic effects predominate
nonlinear phenomena related to the constitutive equa
of the non-Newtonian media are common (McKinley[4];
McKinley et al.[5]). It is becoming more and more frequ
to see studies where the so-called benchmark flows us
computational rheology are found to reveal ever-more c
plex behaviour. For example, “steady” flow through cont
tions is seen to present unsteady characteristics, with p
ing formation and detachment of “lip vortices” (e.g. Olive
[6]). While such observations were already common in
perimental work (see, for example, the photographic co
lation of Boger and Walters[7] and the excellent review
the subject, encompassing both flows around cylinders a
contractions, by McKinley[4]), their resolution and captu
eluded numerical simulation for many years. Even sim
flows, such as the rectilinear channel flow of a viscoela
fluid, such as the simplified PTT fluid, do in fact give rise
some form of instability, as shown by Grillet et al.[8].

377-0257/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2005.02.003
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Fig. 1. Sketch of the flow geometry (L1 = 20R; L2 = 60R).

The topic of the present study is the flow past cylinders,
mainly under the situation in which a single cylinder is placed
symmetrically in a plane channel. This configuration (Fig. 1)
has been used as a numerical benchmark problem since the
proposal by Brown and McKinley[9] and a number of works
dealing with it have emerged[10–20]. Most of these have
considered either the upper convected Maxwell (UCM) or the
Oldroyd-B models (Refs.[11–16,18,20]), and the main quan-
tity of interest, representing the overall flow feature around
the cylinder under creeping flow conditions (Re= 0), has been
the evolution of the drag coefficientCD with the Deborah
numberDe. Noteworthy were the numerical results of Fan et
al. [11] and of Alves et al.[15] which, in both instances, re-
vealed almost coincidentCD variations up to a Deborah num-
ber ofDe≈ 1 based on calculations using different numeri-
cal methodologies. The former group used a highly accurate
h–p finite element formulation while the second group em-
ployed the finite volume method (FVM) on extremely refined
meshes with second-order high-resolution schemes. While it
has been recognised that accurate predictions ofCD does not
necessarily mean accurate predictions of the detailed flow
structure (see, e.g.[11,18]), particularly so far as the flow
features along the downstream cylinder wake are concerned,
it is worth noting that many predictions ofCD deviate at rela-
tively low levels of elasticity (sayDe≈ 0.5) from the results
of these two studies, a situation that may be considered as an
i
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tively low, extensional rate. On the other hand, those models
are known[4,21] not to represent adequately, except at very
low shear rates, the rheometrical behaviour of Boger fluids
(i.e. approximately constant viscosity, high solvent viscosity,
polymer solutions) for which they were supposed to be well
suited. In this respect, models based on the notion of finite ex-
tensibility are more accurate in representing the viscometric
functions of some Boger fluids[4], even when the viscosity
itself is still considered to be constant with shear rate. It is for
this reason that we have decided to use the FENE-CR model
[22] described in Section2.

Although numerical simulations of flow past a cylinder
avoid the inevitable problems associated with the existence
of geometrical singularities, for example in the case of flow
through contractions, they still present a number of chal-
lenges: thin viscous boundary layers which develop on the
cylinder surface; co-existence of zones having predominantly
shear-flow characteristics with zones of predominantly ex-
tensional characteristics; formation of a thin viscous wake
behind the cylinder (bi-refringence strand).

In past work with our FVM in this geometry[15],
only quasi-linear constitutive models have been considered,
namely the upper-convected Maxwell and the Oldroyd-B
models. As mentioned above, it was possible to pursue the
computations up to Deborah numbers (De) of the order of
unity and still obtain steady-state solutions. For higher levels
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A major area of concern is the level ofDeattained in the

revious predictions with the UCM or the Oldroyd-B mo
ls (typicallyDe≤ ∼ 1). The question which arises is “a

here physical reasons for those limitations, or do they re
numerical limitation related to the inability of present-
umerical procedures for non-Newtonian flow simulation
he flow around the cylinder is devoid of geometric sing
oints, in the sense of features like re-entrant corners ty
f contraction flows, and that has been one of the reaso

he preference of the former type of flows. Lack of geome
ingularities then calls for a justification for the numer
ailure based on possible constitutive singularities. It is
nown that both the UCM and the Oldroyd-B models h
ingularities in the extensional viscosities for a finite, r
f elasticity, as measured by a Deborah number defined
sual way in terms of the average velocity in the channe

he cylinder radius, steady solutions could not be obta
n the present work, we consider a rheological model
nite extensibility (measured by parameterL2), the modified
ENE-CR model[23], so that numerical problems associa
ith infinite extensional viscosities can be circumvented
igher levels of elasticity can (in principle) be reached.

he symmetrical geometry, we present accurate resul
he drag coefficient for Deborah numbers up to 10. W
he full cylinder is considered, without calling for symme
bout the channel centre plane, we show that the flow
omes unsteady and periodic at a Deborah number of
.3 (forL2 = 144), with a small time-periodic separation b
le behind the cylinder.

. Governing equations

As noted in Section1, many of the earlier works dealin
ith viscoelastic flow around a cylinder (Liu et al.[10], Fan
t al. [11], Sun et al.[12], Dou and Phan-Thien[13], Alves
t al.[15]) employed either the UCM or the Oldroyd-B mo
ls to represent the fluid rheology. In the case of the l
odel, it has been common to choose the solvent vis

ty ratio asβ =ηs/η0 = 0.59, whereη0 is the zero-shear-ra
iscosity given as the sum of solvent and “polymeric” con
utions,η0 =ηs +ηp. That particular value was based on
easured data for the MIT Boger fluid (McKinley et al.[24]),
solution of polyisobutylene dissolved in a polybutene
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tetradecane mixture. Accurate numerical solutions based on
those models were given by[11,15], which fully agreed with
each other and where a maximum Deborah number value
of aroundDe≈ 1 was found for steady-state numerical so-
lutions. If attention is still focused on dilute or semi-dilute
polymer solutions, the next step in terms of complexity of
molecular-based rheological modeling is to introduce finite
dumbbell extensibility, and thus evolve from the Oldroyd-B
to the FENE-type models (see Bird et al.[25]). Some authors
have already followed that route (see[24,10,17,19]). The ex-
pectation here is that by introducing more realism into the
physical representation of the polymer molecular behaviour,
at the same time the numerical solution difficulties will be
softened and higher values of Deborah number should be at-
tainable. Since we also want to separate elastic effects from
those due to shear thinning, we consider first the FENE-type
equation proposed by Chilcott and Rallison[22], which may
be written in terms of a configuration tensor (A) as:

λ
∇
A = −f [A](A − I) (1)

from which the extra stress tensor can be expressed explicitly
by means of a Kramers expression:

τ = ηpf [A]
(A − I) (2)
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f [τ] = L2 + (λ/ηp)Tr(τ)

L2 − 3
(5)

Eq. (4) represents the stress tensor formulation of the
FENE-CR constitutive equation, to be solved in conjunction
with the equation of motion:

ρ
Du

Dt
= −∇p+ ηs∇ · (∇u + ∇uT) + ∇ · τ (6)

and the incompressibility constraint:

∇ · u = 0 (7)

In these equations,p is the pressure,ρ the fluid density, and
the solvent stress was assumed to follow a Newtonian rela-
tionship. An additional simplification which allows existing
numerical methods to be used for solving Eq.(4) with only
minor modifications is to discard the variation of D(1/f)/Dt
and write:

τ + λ

f

D

Dt
(τ) = ηp(∇u + ∇uT) + λ

f
(τ · ∇u + ∇uT · τ) (8)

This represents a modified FENE-CR model (designated by
FENE-MCR) first used by Coates et al.[23] in 1992 and later
by a number of other authors in a range of studies. It should
be emphasised that the steady-state rheometrical functions of
FENE-CR and FENE-MCR are identical so that only minor
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hereλ is the relaxation time,I the identity tensor, the squa
rackets indicate a functional dependency, and (·)∇ denotes

he upper convected derivative. Eqs.(1) and (2) comprise
he so-called FENE-CR model which, although derived f
mpirical considerations (see discussion in[26], we note tha

he empiricisms are of the same level as those invoked fo
ell-known Peterlin approximation in the FENE-P mod
ee below), tend to provide a much better representation
aterial functions of a Boger fluid, especially regarding

hear-thinning of the normal-stress coefficient. The str
unctionf[A] in Eq.(1)depends on the extensibility parame
2, which represents the ratio of the maximum to equilibr
verage dumbbell extensions, and is given by:

[A] = 1

1 − Tr(A)/L2
(3)

his is the same function of the FENE-P model (referre
sZ in the original paper, Bird et al.[27]) and is derived b

nvoking Peterlin’s approximation (〈f[QQ]〉 ≈ f[〈QQ〉] where
= 〈QQ〉, Q is the dumbbell end-to-end vector and〈·〉 a sta-

istical average).
For a matter of computational convenience, and inde

pare memory resources, it may be advantageous to sub
he stress tensor for the conformation tensor in Eqs.(1) and
2), giving:

+ λ D

Dt

(
τ

f

)
= ηp(∇u + ∇uT) + λ

f
(τ · ∇u + ∇uT · τ)

(4)
ifferences are anticipated in steady-state complex flows
eason is that the effect ofu·�(1/f) can be important only i
trong convective regions in a flow. This argument wil
emonstrated with the present numerical results for the
round a cylinder. It is also important to note at this point
number of other authors ([24,10,3]) have simulated the flo
f the FENE-MCR fluid around a confined cylinder and

his sense precise benchmark solutions, for exactly the
uid model are needed, such as we present here.

. Discretisation and solution procedure

A fully implicit, sequential (decoupled) algorithm is e
loyed to solve the set of differential governing equat
iven in the previous section, which must first be transfor

nto algebraic equations by means of a finite volume disc
ation on a collocated, non-orthogonal mesh. Both the sp
iscretisation, which employs the CUBISTA scheme of A
t al.[28], and the temporal discretisation, with a three t

evel representation of the unsteady terms in the equa
re formally second-order accurate. The algorithm was
lained in detail in Oliveira[2] and only an outline is give
ere.

The discretised constitutive equation for any cellP is:

τ
Pτ

(n+1)
P =

∑
F

aτFτ
(n+1)
F +

{
Sτ [∇u∗] + SHOS

τ

+λefV

�t
(2.0τ

(n)
P − 0.5τ

(n−1)
P )

}
(9)
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with aτP = (1.5λefV
�t + V +∑

F a
τ
F ); λef = λ/f [τ∗P ], and

where the stress coefficientsaτF are made up of convective
fluxes. These are evaluated at the cell faces located between
cell P and any of its neighbouring cells. The stress source
termsSτ comprise a part of the upper-convected derivative
proportional to velocity gradients∇u (explicitly indicated in
Eq.(9)in order to highlight the interrelation between the kine-
matics and the stress fields), and a deferred correction part
related to the implementation of the high-resolution scheme
CUBISTA, SHOS

τ . In Eq. (9), V is the volume of a cell and
the factors 1.5, 2.0 and 0.5 arise from application of the three
time level scheme to represent the unsteady term∂τ/∂t (dif-
ferent levels of time are denoted by superscript (n) and (*)
denotes existing, or previous iteration, values).

The discretised momentum equation is:

aPu∗∗
P =

∑
F

aFu∗∗
F +

{
−∇p∗ + Su[∇τ(n+1)] + SHOS

u

+ ρV
�t

(2.0u
(n)
P − 0.5u

(n−1)
P )

}
(10)

with aP = (1.5ρV�t +∑
F aF ) and where the coefficientsaF

have now both convective and diffusive contributions. In gen-
eral, the velocity fieldu** obtained from implicit solution of
Eq.(10)will not satisfy the discretised continuity equation:

∇
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wherebencompasses the terms in curled brackets in Eqs.(9),
(10)and(13), and with the summation for indexF being over
the four cell neighbours of cellP, in a two-dimensional appli-
cation, or over the six cell neighbours in three-dimensional
applications (for a local structured mesh). These large sys-
tems of equations are solved with iterative solvers: the conju-
gate gradient method preconditioned with an incomplete LU
decomposition, for the case of the symmetricp′ equation;
and the bi-conjugate gradient method for the other variables
(velocity and stress components).

There are two levels of iteration in the algorithm. The itera-
tions inside the solvers, termed the “inner” iterations, are pur-
sued until the initial residuals on entering the solver decay by
two orders of magnitude. The “outer” iterations, inside a time
step�t, arise because: (i)Sτ [�u] in the stress Eq.(9) depends
on the velocity field, andSτ [�·τ] in the velocity Eq.(10)de-
pends on the stress field; (ii) the factored momentum Eq.(12),
devised to deal with the linear velocity/pressure coupling, is
only approximate; (iii) explicit non-linearities are present in
the convection terms of the momentum equation and thef[τ]
function in the stress equation. These outer iterations are re-
peated through Eqs(9)–(13)until τ(n+ 1), u(n+ 1) andp(n+ 1)

do not change which, in practice, is achieved by controlling
the normalized residuals of the equations (L1 norm) which
are required to be below a tolerance of 10−4.

For time-dependent calculations, the procedure described
a l time
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c shes,
· u(n+1) = 0 (11)

nd for that reasonu** and the intermediate pressurep∗ need
o be corrected byu′ = u(n+1) − u** andp′ =p(n+1) − p∗. The
orrected velocity field is determined from a factored f
f the momentum equation:

1.5
ρV

�t

)
u

(n+1)
P +

(∑
F

aF

)
u∗∗
P

=
∑
F

aFu∗∗
F − ∇p(n+1) + Su[∇ · τ(n+1)] + SHOS

u

+ ρV
�t

(2.0u
(n)
P − 0.5u

(n−1)
P ) (12)

here, by comparison with Eq.(10), we see that only th
nertial and the pressure gradient terms have been up
o a new time level (n+ 1) stage. A Poisson-like pressu
orrection equation is derived by subtracting Eq.(10) from
q.(12)and imposing the divergence-free constraint(11), to
ield:

p
Pp

′
P =

∑
F

a
p
Fp

′
F + {−(∇ · u∗∗)} (13)

ith apP = ∑
F a

p
F andapF = A2

f /(1.5
ρV
�t ) (Af cell face area

From the above we see that all linearised sets of alge
quations to be solved can be cast into the standard for

PφP =
∑
F

aFφF + b⇔ [A]{φ} = {b} (14)
bove is repeated every time step until a prescribed fina
s reached. If such elapsed time is sufficiently long, and i
ow in question turns out to be steady, the solution will s
arying in time and the steady-state solution is approa
symptotically as the computation proceeds. In practice t
n expensive way of calculating a steady flow and it is b

n these cases to apply the procedure as a time-mar
terative solution method. For steady-state calculations
uter iteration cycle is switched off and time advancem
orks effectively as equivalent to iteration, with the ti
tep�t playing the role of an under-relaxation factor. In t
ase, a final value of time need not be prescribed and
dvancement will proceed until the residuals become sm

han a pre-specified tolerance (typically 10−4 for normalized
esiduals).

. Results

In this paper, we consider only the problem of flow aro
he bounded cylinder placed symmetrically in a plane c
el at negligible Reynolds number. A forthcoming publ

ion will deal with the case of unbounded flow, extend
he results presented in Ref.[2]. Except when explicitly in
icated, distances will be scaled with the cylinder radiuR,
elocities with the average velocity in the two-dimensio
hannelU, pressure and stresses withη0U/R, and the Debo
ah number is defined asDe=λU/R, whereλ is the relaxation
ime. In what follows, we discuss issues related to boun
onditions, numerical accuracy and computational me
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validation against experimental measurements, the predic-
tion of the drag coefficient as a function of elasticity level
and the occurrence of an unsteady flow regime.

4.1. Numerical issues (meshes; boundary conditions;
mesh refinement)

For the bounded flow with a cylinder-to-channel ratio of
B≡ R/H = 0.5, our initial computations were performed with
mesh M45 of our previous work (Alves et al.[15]) which was
a medium mesh for the UCM model. Due to shear thinning
in the first-normal stress difference, the FENE-CR model im-
poses much less burden upon the numerical method and that
mesh is perfectly adequate to resolve and capture with accu-
racy the features of the flow around the cylinder except for the
normal stress variation along the downstream viscous wake.
This is a very thin flow feature and proper resolution requires
refinement along theθ-direction forθ = 0

◦
(i.e. clustering the

mesh around the liney= 0,x> 0, from whichθ is measured).
Some of the main characteristics of the various meshes are

given inTable 1, including the total number of control vol-
umes (or cells, NC), the number of control volumes around
the surface of the cylinder NS, the number of cells placed
radially from the cylinder to the channel wall NR (this is the
figure given after theM indication), and the minimum cell
s dial
( s
l 45,
b ual-
i es-
i study
a 5 of
[ e
h (de-
n sh
M the
m side
o ou-
b ber
o sed
i 680
d inder
s

Fig. 2. Expanded view (x∈ [−3R, +5R], y∈ [−2R, +2R]) of mesh
M60(WR)-FO: blockage ratioB= 0.5, full cylinder with wake-refined mesh,
odd number of cells behind cylinder.

For the half-domain meshes, symmetry is assumed about
the longitudinal mid plane (y= 0) and therefore the boundary
conditions are:

• Inlet (x=−L1 =−20R): Dirichlet conditions based on an-
alytical profiles for fully developed Poiseuille flow of the
FENE-CR in a planar channel.

• Outlet (x= +L2 = +60R): Neumann conditions (∂/∂x≡ 0)
for all dependent variables, including the axial pressure
gradient∂p/∂x.

• Solid walls (channel wall,y=±2R; cylinder surface,
r =R): no slip boundary conditions for the velocity compo-
nents with stresses obtained from analytical expressions.

• Symmetry plane (y= 0): symmetry conditions, that is, zero
normal gradients for all variables and zero normal velocity
components. This boundary condition is not needed for full
domain meshes.

Results for the mesh-refinement study are presented in
Fig. 3, where theu-velocity profiles are given along the
transversal directiony in the narrow gap between cylinder
and channel wall, and inFigs. 4 and 5, where the longitudi-
nal variations of axial velocityu and normal stressτxx com-
ponents along the centerline are shown. These predictions
were obtained on the two consistently refined meshes for the
half-domain, M30(WR) and M60(WR) ofTable 1, and for
D ment
b d for
a nce
s y the

T
S

M NS

M 152
M 115
M 230
M 230
M 237
M 475
M 230×
M 230×
N inimum
pacing normalized with the cylinder radius along the ra
�r) and the azimuthal (�s= r �θ) directions. Mesh M30 ha
ess cells in the radial direction compared with mesh M
ut is more refined along the wake; for this reason the q

fication WR (for wake-refined) is added to this mesh d
gnation. In this sense all meshes used in the present
re refined along the wake, except the original mesh M4

15], and another difference with Ref.[15] is that here w
ave also used meshes deployed over the full domain
oted by F: full domain).Fig. 2 shows a detail of the me
60(WR)-FO, with an odd number (denoted by O in
esh designation) of control volumes on the downstream
f the cylinder. The resolution provided by this mesh d
les that of M30(WR)-FO, by having twice as more num
f cells along both directions, to give the finest mesh u

n the present two-dimensional calculations with 265,
egrees of freedom and 475 cells adjacent to the cyl
urface.

able 1
ome characteristics of the computational meshes

esh Dimension Domain NC

45 2D Half 9918
30(WR) 2D Half 5310
60(WR) 2D Half 21240
30(WR)-F 2D Full 10620
30(WR)-FO 2D Full/odd 11040
60(WR)-FO 2D Full/odd 44280
30 3D Half 159300
30 3D Full 318600

C, total number of cells; NS, number of cells on cylinder surface;�r, �sm
eborah numbers of 1 and 2. It is clear that good agree
etween the results from the different meshes is achieve
ll quantities except the normal stress in the birefringe
trand, thus indicating adequate resolution provided b

�r, minimum �s, minimum �s, minimum wake

0.00646 0.0207 0.0207
0.00961 0.0314 0.01
0.00471 0.0157 0.005
0.00961 0.0314 0.01
0.00961 0.0314 0.01
0.00471 0.0157 0.005

30 0.00961 0.0314 0.01
30 0.00961 0.0314 0.01

cell spacing (normalized byR).
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Fig. 3. Lateral profile of theu-velocity component in the narrow gap
(x= 0)—effect of mesh refinement forDe= 1 (L2 = 144).

meshes used in this study. In terms of the drag coefficientCD
obtained from integration of the full stress tensor around the
cylinder surface, differences in the results obtained from the
various meshes (given inTables 2 and 3, forL2 = 144 and 100,
respectively) are undistinguishable in a graph and the corre-
sponding variation with elasticity will be discussed in Sec-
tion4.3, where insensitivity to further improvement in spatial
resolution will also be shown. Application of Richardson ex-
trapolation to theCD values obtained from the consecutively
refined meshes allowed us to estimate the discretization er-
rors: 0.08 and 0.02% on meshes M30(WR) and M60(WR),
respectively, forDe= 1 andL2 = 144; and 0.03% atDe= 1,

F
f

Fig. 5. Mesh refinement: normal stress distribution along the cylinder wake
(y= 0) for De= 1 and 2 (L2 = 144).

rising to 0.24% atDe= 3.5, forL2 = 100 on mesh M30(WR).
Thus, the estimated accuracy is generally better than 0.1%
and only gets larger at high Deborah numbers when the flow
separates and eventually becomes unsteady, as reported in
Section4.4.

The only quantity sensitive to azimuthal mesh refinement
is τxx in the wake but, clearly, its exact prediction does not
affect eitherCD or the distribution of the other dependent
variables (velocity, stress, etc.). As shown inFig. 6, theτxx

versusx variation along the liney= 0 can be predicted more
accurately by carrying out computations on a wake-refined
mesh (as in[15]): the results from mesh M45 should be com-
pared with those from M30(WR). The alternative is to em-
ploy a mesh with odd-spaced control volumes at the back
of the cylinder, with a row of cells placed exactly along the
“symmetry” liney= 0. In this case, the dependent variables
are calculated at positions (control volume centers) placed
exactly along the downstream centreline in a full-domain
mesh, without relying on interpolation, and hence, the sen-
sitivity of the τxx prediction on mesh refinement is greatly
reduced. Notice fromFig. 6 how mesh M30(WR)-FO, with
just 11,040 cells, leads to almost the same predictions as mesh
M60(WR) which would have 2× 21,240 = 42,480 cells for
the full domain. In addition, this figure shows that atDe= 1
predictions ofτxx on the half- and the full-domain meshes
a and
M

4
a

p w
o ned
c use-
f ns,
e non-
ig. 4. Mesh refinement: velocity distribution along the cylinder wake (y= 0)
or De= 1 and 2 (L2 = 144).
re almost undistinguishable (compare M30(WR)
30(WR)-F).

.2. Steady flow—velocity comparisons with Verhelst
nd Nieuwstadt (validation)

In a recent (2004) paper Verhelst and Nieuwstadt[29]
rovided local velocity data obtained with LDA for the flo
f both Newtonian and viscoelastic fluids around a confi
ylinder with a blockage ratio of 0.5. These data are very
ul as they allow further validation of our numerical solutio
specially regarding the Newtonian flow case. For the
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Table 2
Drag coefficients on the various meshes with FENE-MCR forL2 = 144 (β = 0.59;Re= 0)

De CD M45 CD M30(WR) CD M60(WR) CD M30(WR)-FO CD M60(WR)-FO CD FENE-CR

0 132.50 132.44 132.50 132.44 132.50 132.50
0.1 130.43 130.35 130.50 130.48 130.56
0.2 126.89 126.83 126.96 126.96 127.02
0.3 123.70 123.66 123.78 123.82
0.4 121.34 121.33 121.14 121.44 121.45
0.5 119.77 119.77 119.87 119.86 119.77
0.6 118.81 118.84 118.84 118.90 118.88
0.7 118.29 118.33 118.37 118.34
0.8 118.05 118.11 118.07 118.12 118.08
0.9 117.99 118.07 118.05 117.99
1.0 118.04 118.13 118.03 118.08 118.01 118.03
1.5 118.76 118.87 118.63 Time-dependence Time-dependence 118.69
2.0 119.35 119.43 119.13 119.23
2.5 119.68 119.73 119.55
3.0 119.85 119.88 119.62 119.83
3.5 119.93
4.0 119.97 119.96
5.0 119.96 119.88
6.0 119.98 119.76
7.0 119.78 119.62
8.0 119.66
9.0 119.53

10.0 119.39

Some FENE-CR values are also given on M45.

Newtonian fluid-flow experiments, the working fluid was a
solution of polyacrylamide (150 wppm) in a Newtonian glu-
cose (93%)/distilled water (7%), which was shown to be only
slightly shear thinning with a zero-shear-rate viscosity ratio of
β = 0.73. The cylinder was mounted across a channel having a
cross-sectional aspect ratio of 8 (spanwise dimension divided
by channel height), a value that was not large enough to en-
sure a two-dimensional flow in the mid-spanx–yplane and so
some three-dimensional effects were present, especially close
to the cylinder, as stressed by the authors themselves. For the
small flow rates considered the Reynolds number, although
not negligible, was sufficiently low (Re≈ 0.1–0.2) that iner-
tia plays only a small role. In spite of these shortcomings,
which limit the degree of expected quantitative agreement

between the experiments of Verhelst and Nieuwstadt and our
predictions (recall that we haveRe= 0 and a constant vis-
cosity viscoelastic model), the comparison is still useful and,
as will be seen, the important elastic effects observed in the
experiments are replicated by the numerical solution.

Fig. 7shows the comparison of the velocity profiles mea-
sured by Verhelst and Nieuwstadt[29] for the Newtonian
glucose/water solution atx=−21, −3, −1.5 (upstream of
the cylinder) andx= +1.5, +3, (downstream of the cylinder),
with the numerical predictions forRe= 0. The fore-aft sym-
metry of creeping flow is well captured by both the experi-
mental and numerical results (coincidence forx=±3,±1.5),
and the detailed agreement between the two is good except
for the profiles closest to the cylinder (x=±1.5); the mi-

Table 3
Drag coefficients on the various meshes with FENE-MCR forL2 = 100 (β = 0.59;Re= 0)

De CD M30(WR) CD M60(WR) CD M30(WR)-FO CD M60(WR)-FO

0 132.44 132.50 132.44 132.50
0.1 130.38 130.54 130.51 130.60
0.2 126.94 127.07 127.07 127.14
0.4 121.60 121.68 121.71 121.73
0.6 119.15 119.18 119.23 119.22
0.8 118.33 118.32 118.36 118.34
1.0 118.15 118.11 118.14 118.11
1.5 118.34 118.24 118.24 118.18
2
2
3
3
4
4
5 e
.0 118.55 118.41

.5 118.63 118.51

.0 118.63 118.53

.5 118.60 118.52

.0 118.53 118.48

.5 118.45 118.42

.0 118.36 118.36
118.37 118.32
118.64 118.37
118.61 118.36
118.53 118.32
Time-dependence 118.26

118.19
Time-dependenc
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Fig. 6. Effect of mesh distribution on the normal-stress profile along the
centreline (y= 0) for De= 1 (L2 = 144).

nor differences must be attributed to three-dimensional ef-
fects because the three-dimensional numerical predictions
of Verhelst and Nieuwstadt follow the data closely. We
have also performed two-dimensional simulations at the
Reynolds number of the experiments (Re≡ ρU02R/η0 = 0.23;
U0 ≡ centreline velocity) but, when plotted in dimensionless
form, these predictions are indistinguishable from those for
Re= 0.

So far as viscoelastic fluid flow is concerned, our numeri-
cal predictions with the FENE-MCR withL2 = 144,β = 0.59,
De≡ λU/R= 1.2, are compared, inFig. 8, with the measure-
ments for a flow rate ofQ= 0.020 l/s, corresponding to a Deb-
orah number ofDe= 1.42[29]. The qualitative modifications
induced by elasticity are well represented by the predictions,
even without accounting for the slight shear-rate dependency

F ow
w

Fig. 8. Comparison of predicted velocity profiles for the FENE-MCR at
De= 1.2 (L2 = 144) with experimental measurements of Verhelst and Nieuw-
stadt[29] for a PAA solution at a flow rate of 0.020 l/s (De= 1.42). Dashed
lines correspond to predicted downstream profiles.

of viscosity: (a) the fore-aft symmetry present in the Newto-
nian flow is lost due to history effects in the stress evolution:
the velocity distribution atx=−1.5 deviated considerably
from that atx= +1.5; (b) there is a local velocity minimum
on the centreline for the velocity profiles behind the cylin-
der atx= +3, in contrast to the Newtonian fluid flow; and (c)
there is also a very localised velocity maximum for the ve-
locity profile atx= +1.5. This last effect is not as accentuated
in these simulations as it is in the experiments because the
Deborah number is lower, but the effect is visible. In fact, the
influence of the birefringence strand upon the velocity field is
more readily apparent in the axial velocity contours ofFig. 9,
where a highly localised distortion is perceptible along the
cylinder wake flow.

In conclusion, some peculiar elastic effects visible in the
experimental velocity data of Verhelst and Nieuwstadt are
reproduced by the present two-dimensional simulations and
the Newtonian fluid-flow data are well predicted in spite of
some indication of three-dimensional effects being present in
the experiments. In addition, it is worth noting that Verhelst
and Nieuwstadt[29] (as well as Shiang et al.[30] in previous
experiments for a smaller blockage of 1/16) do not refer to
any flow instabilities, in contrast to McKinley et al.[24] and
Shiang et al.[31], hence highlighting the point that such in-
stabilities and the critical conditions for their occurrence are
sensitive to the precise fluid rheology. While the viscoleas-
t
s
a coef-
fi
b tes
o

ig. 7. Comparison of predicted velocity profiles for Newtonian fluid fl
ith measurements of Verhelst and Nieuwstadt[29].
ic fluid of Verhelst and Nieuwstadt[29] exhibits a slightly
hear-thinning viscosity, the fluid of McKinley et al.[24] has
constant viscosity but a decreasing first normal stress

cient with shear rate, and that of Shiang et al.[30,31]shows
oth constant viscosity andN1 over the range of shear ra
f interest.
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Fig. 9. Predicted contours of the axial velocity component (u/U) for the FENE-MCR forDe= 1.2 (L2 = 144) on mesh M60(WR)-FO.

4.3. Steady flow—drag and loss coefficients

A convenient measure of the quality of the numerical pre-
dictions is provided by the drag coefficient obtained by in-
tegrating the total (solvent plus polymeric) stress and pres-
sure contributions over the cylinder surface. This constitutes
therefore a global solution functional, evaluated as:

CD = 1

η0U

∫
cyl

(−pI + τ + ηs(∇u + ∇uT)) · n · x̂ dA (15)

and representing the longitudinal component of the force ex-
erted by the fluid upon the cylinder, normalized by a diffusive
force scale appropriate to the inertia-free conditions under
consideration. When conditions depart from creeping flow
(Re> 0) it is more common to scale the drag force using the
dynamic pressure (ρU2R) when definingCD. The predicted
variation ofCD with elasticity is shown inFig. 10for an ex-
tensibility parameterL2 = 144 (see alsoTables 2–4), where
comparison is made with the predictions for the Oldroyd-B

fluid obtained by Alves et al.[15]and for the FENE-CR model
at a slightly differentL2 = 100 by Liu et al.[10]. ForDe≥ 0.5,
the predictions of Liu et al. begin to deviate from the trend
established by the current simulations, an effect that cannot
be explained by the somewhat different extensibility param-
eter (L2 = 100, instead of 144). In order to check this point we
have carried out additional simulations forL2 = 100 and the
correspondingCD versusDepredictions, shown by a dashed
lines in the figure (see data inTable 3), lie slightly below our
predictions forL2 = 144. For the Oldroyd-B fluid, Fan et al.
[11] and Alves et al.[15] identified numerical divergence or
unrealistic wiggles in theτxx variation behind the cylinder
for De> 1 and therefore no steady-state solutions could be
obtained for the higher Deborah number range. There was,
however, a remarkable level of agreement between theCD
predictions of those authors in the range 0 <De≤ 1 giving
confidence on the correctness of their results. In addition,
very recent numerical work by Kim et al.[20] with FEM and
Sahin and Owens[3] with a pressure-free FVM[32] lead

F ENE-M ons
f predict
a

ig. 10. Variation of the drag coefficientCD with the Deborah numberDe (F
or the Oldroyd-B[15] and FENE-CR (L2 = 100)[10] models. Additionally,
nd dashed (L2 = 100) lines.
CR and FENE-CR,L2 = 144, mesh M45) and comparison with predicti
ions with the full-domain mesh M60(WR)-FO are shown with solid (L2 = 144)
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to predictedCD versusDe variations which are remarkably
close to the solutions of both[11,15].

Fig. 10shows a higher rate of decay ofCD with De, in the
range 0.5≤ De≤ 1.0, for the infinite extensibility Oldroyd-B
fluid compared with the FENE-MCR atL2 = 144. This result
suggests a stronger drag increase at higher elasticity, although
results could not be obtained for these conditions either be-
cause of numerical difficulties or because the flow eventu-
ally becomes unsteady or three dimensional. This figure is
also important to demonstrate that the solution obtained with
the exact FENE-CR model (Eq.(4)) essentially follows the
solution with the modified model (Eq.(8)), at least for the
steady-state conditions under consideration.

Another possible overall flow parameter that may be useful
to characterise localised losses associated with viscoelastic-
ity, but has not been much utilised in previous studies with
this flow geometry, is a loss coefficientK defined as the in-
crease in normalized pressure drop due to the presence of the
cylinder. That is:

K = �p− (�p)0
η0U

(16)

where (�p)0 is the pressure drop between inlet and outlet, for
the same conditions, but without the cylinder.K is indepen-
dent of the channel lengthsL1 andL2 (seeFig. 1) provided
the flow conditions are fully developed at the inlet and out-
l e
a lled.
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Fig. 11. Variation of the loss and drag coefficients,K andCD, with Debo-
rah number (FENE-MCR,L2 = 144). Lines: mesh M60(WR)-FO; symbols:
mesh M30(WR)-FO.

Fig. 12. Pressure and shear components of the drag coefficient (symbols:
M30(WR)-FO; lines: M60(WR)-FO).

the cylinder surface, that is,CD, plus additional losses on the
channel walls due to the higher shear promoted by the flow
constriction in the cylinder-channel gap.

It was also possible to separate bothCD and K into
pressure-related (form drag) and shear-related components,
and these are shown inFig. 12(cf. Table 4). The larger com-
ponent is that due to the pressure distribution which controls
the shape of theCD variation withDe. In fact, the shear com-
ponent remains approximately constant whenDe is raised.

4.4. Unsteady flow

The drag results ofFig. 10were obtained with mesh M45
(or, similar results, with M30(WR)) ofTable 1, which was
deployed over only half of the flow domain (y≥ 0), sym-
metry being assumed about the centre plane,y= 0. For the
full domain, theCD values obtained from Eq.(15) need
not be multiplied by a factor of 2 to account for integra-
tion over the entire cylinder surface, but otherwise no dis-
cernable differences can be seen between predictions on the
et planes: care was taken, by choosing sufficiently largL1
ndL2 values, to ensure that these conditions were fulfi
alues ofK are given inTable 4and the variation ofK with
e is compared inFig. 11with that of the drag coefficien
D. Again, it is noted that mesh refinement results in n

igible variations. In addition, it may be observed that
ariations ofK andCD with elasticity follow essentially th
ame trend but withK being larger thanCD. This is not unex
ected since the total pressure lossK comprises the losses

able 4
rag and loss coefficients on mesh M60(WR)-FO with FENE-M

L2 = 144;β = 0.59;Re= 0)

e CD CD,p CD,s K

132.50 92.25 40.25 44.35
.05 131.93 91.73 40.20 44.18
.1 130.56 90.50 40.06 43.80
.15 128.82 88.96 39.86 43.32
.2 127.02 87.38 39.64 42.81
.3 123.82 84.64 39.18 41.92
.4 121.45 82.72 38.73 41.27
.5 119.86 81.54 38.32 40.86
.6 118.88 80.95 37.93 40.62
.7 118.34 80.77 37.57 40.52
.8 118.08 80.84 37.24 40.49
.9 117.99 81.04 36.94 40.52
.0 118.01 81.32 36.69 40.58
.1 118.08 81.61 36.46 40.65
.2 118.18 81.91 36.27 40.73
.5 119.84a 40.76a

ressureCD,p and shearCD,s components of drag are also given.
a Oscillates in time.
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half and full domain meshes, or indeed with the more refined
meshes M60(WR) and M60(WR)-FO. However, forDe> 1.3
it proved impossible to converge steady-state calculations on
the full domain mesh M30(WR)-FO to arbitrarily low stop-
ping tolerances (we recall that the time-marching method
used for these calculations is iterative and some convergence
criterion must be met); the residuals of the algebraic equa-
tions initially stagnate at a certain value and subsequently
start fluctuating around that level. If the calculations are then
pursued by tracking the solution accurately in time (with the
second-order method described in Section3), it is possible to
observe that a definite time-varying regime sets in, basically
confined to a small region in the near wake of the cylinder
(say 1≤ x≤ 1.2,y≤ ± 0.2), while in the rest of the domain the
flow remains unvarying and steady. Since the drag coefficient
is a particularly sensitive parameter to possible time-varying
events occurring downstream of the cylinder (such as sep-
aration and localized recirculation), the above observations
can be substantiated by trackingCD in time, as in the plot of
Fig. 13(for De= 1.5). A perfectly sinusoidal variation ofCD
versus time is observed, with a period≈4.7R/U (this scales
with the nondimensional time for convective transport around
the cylinder, 2π, divided by the nondimensional relaxation
time, De). The time-average drag coefficient for this time-
dependent simulation was found to beC̄D = 120.52, which
is substantially larger than the result from steady calculations
o
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very close to the centerline, withψ =±0.01 and±0.001. The
key flow feature observed inFig. 14is the formation of a very
small recirculation zone attached to the rear of the cylinder,
which changes and pulsates in time: it gradually becomes
filled with the viscoelastic fluid, followed by a gradual de-
crease in size while the fluid partly leaves the bubble. When
the bubble attains its minimum size and recirculating flow
strength, at time instant five, the drag coefficient is also at
a minimum; similarly, when the bubble attains its maximum
size, approximately at instants 14–15,CD is at a maximum. It
is noted that the bubble remains symmetric about thex-axis
during the whole pulsating period, but the dynamic process
leading to its formation can only be resolved by simulations
with the full flow domain which do not rely on flow symmetry.

It is relevant to mention that the size of the time step (�t)
used in the computations is automatically adjusted in order
to guarantee convergence of the iterations within a time step
cycle. We started with a value of�t = 0.01 (normalized with
R/U), typical for this type of computation with fully implicit
methods (e.g. Oliveira[6]), but as the simulation proceeded
that time step was successively decreased until a value of
�t ∼= 2.4× 10−3 was reached. This time step then remained
constant during the computations of the periodic flow repre-
sented inFig. 13. The streamlines ofFig. 14are separated by
a time interval corresponding to 100 such time steps.

In their experiments with a polyisobutylene (0.31%)
p
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n the symmetrical domain (CD = 118.87, cf.Table 2, shown
y a “star” symbol inFig. 10).

In order to explain the periodic variation ofCD we have
onsidered 20 equally spaced instants in time within a
iod, which are marked inFig. 13and have been denoted
umbers from 1 to 20, and we have observed the corres

ng instantaneous streamline plots. These plots are sho
ig. 14for alternate instants in time, the number on top of e
lot, along the main flow direction, from left to right. Twen
ne streamlines are shown having equally spaced norma
tream-function values ranging fromψ = 0 to±1 (with inter-
als of 0.1) and, in addition, four other streamlines are sh

ig. 13. Time-dependent evolution of the drag coefficient forDe= 1.5
FENE-MCR,L2 = 144, mesh M30(WR)-FO).
olymer solution in the same geometry (blockageB= 0.5),
cKinley et al.[24] observed a transition to a periodic tim
ependent flow at a shear-rate dependent Deborah nu
f De(γ̇) ≈ 1.85, but that regime was preceded by a

ransition from a steady two-dimensional to a steady th
imensional flow at a lowerDe(γ̇) ≈ 1.3. This steady three
imensional flow corresponded to the formation of a cell
ake structure, with zones of high and low axial veloci

n the wake repeated every characteristic wavelength a
he spanwise, neutral direction (here taken asz). It is eviden
hat three-dimensional simulations are required to cap
his cellular structure but the few attempts we have ta
owards that goal have been unsuccessful (these are n
orted here in the interests of space, but some details
eshes already employed are quoted inTable 1so that the

ize of the problem becomes apparent). Future attempt
ave to consider cyclic boundary conditions on the end pl
long thez-direction in order to have adequate spanwise m
esolution while still keeping the total number of control v
mes (and degrees of freedom) within the limits impose
urrently available computer resources. The impositio
hose boundary conditions is not without difficulties, as
avelength of the cellular structure is not known a priori

hat information influences the choice of the computati
omain size alongz. Based on the experiments of McK

ey et al. we may conjecture that the time-dependent
imensional flow resulting from the present simulations,
epresented inFig. 14, could be the triggering mechanis
eading to the formation of the three-dimensional cell
tructure in the wake (cf. their photograph inFig. 14).
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Fig. 14. Instantaneous streamline plots at equally spaced instants in time during a period, forDe= 1.5 (L2 = 144).
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In this respect, it is important to emphasise that the present
solution shows signs of unsteadiness only in the region within
the attached recirculation bubble, i.e. for 1≤ x≤ 1.15 and
y≤ ±0.15. Outside the bubble, the flow remains basically
stationary without any visible point-wise time fluctuation of
the velocity and stress components. The measurements of
McKinley et al. [24] closest to the cylinder are atx= 1.5,
which is outside the bubble region predicted here and also
where the flow is essentially steady. On the other hand, the
present unsteady flow differs from the typical vortex shed-
ding mechanism occurring at much higher Reynolds num-
bers; hereReis exactly equal to zero and there is no sign of
an alternating shear layer mechanism. This may be illustrated
by tracking streak particles released at a number of fixed
points within the recirculation region and near the cylinder
surface. The traces of these mass-less particles do not show
any undulating motion, but essentially follow the instanta-
neous streamline patterns outside the recirculation (where
the flow is basically steady) and leave the attached recircula-
tion region from its furthest downstream point, aty= 0. So far
as the critical Deborah number for the first flow transition is
concerned, we have found the value to beDe≈ 1.3, based
on the zero-shear-rate relaxation time of the FENE-MCR
model, while McKinley et al.[24] found the same value of
De(γ̇) ≈ 1.3, but with a De number based on a shear-rate de-
pendent relaxation time which, for a FENE-CR withL2 = 144
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show a periodic variation with time (albeit not exactly sinu-
soidal). With the mesh M30(WR)-FO a small standing eddy
(without pulsation) was observed to be formed atDe= 2.5
and unsteadiness only started for Deborah numbers above
De≈ 3.9. Hence, essentially the same phenomenon as de-
scribed above is predicted forL2 = 100 but being triggered at
higher levels of elasticity. Since the simulations of Sahin and
Owens[3] at their highest Deborah number, for increasing
Reynolds number (see theirFig. 7), were effected atDe= 1.2
there is no basic disagreement with the present findings, in
which flow separation at the back of the cylinder is predicted
to occur only at Deborah numbers above 2.5.

4.5. Discussion of the viscoelastic flow separation

An explanation for the mechanism leading to numerical
divergence of the simulations of steady two-dimensional vis-
coelastic flow around a confined cylinder at relatively low
De has yet to be found, and must surely be related to the
dynamic transition observed in the experiments. Based on
the present predictions it seems clear that two-dimensional
flow around the cylinder undergoes a bifurcation from a
steady two-dimensional regime to an unsteady periodic two-
dimensional flow regime (preceded by flow separation and
later followed by aperiodic and chaotic states) and arguably
this should be related to both the difficulties in obtaining
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ndβ = 0.59, corresponds to zero-shear rate Deborah nu
f De1 = 3.8 (equivalent to ourDe). In similar experimenta
ork with a somewhat different PIB solution, having m
lastic characteristics compared with those of McKinl
IB fluid, Shiang et al.[31] found a critical Deborah numb
f Decr ≈ 0.21, but with visible effects on the flow patte
ccurring only atDe= 0.66. Their fluid had constant visco

ty and constantψ1 for γ̇ ≤ 10 s−1, well within the typica
hear rates of their experiments (it should be pointed ou
ocal shear rates will be well above the average, calcu
sγ̇ = U/R), and so their criticalDe is defined in a simila
ay as ours.
Along the previous paragraphs the extensibility para

er of the FENE-CR model was fixed at the base valu
2 = 144, as suggested by[24] on account of their exper
ental data, and later used by[3] in their numerical calcu

ations. It is interesting now (following the recommenda
f one referee) to assess the effect on the phenomen
cribed above of varyingL2, especially at that allows som
larification regarding the recently published work of Sa
nd Owens[3], who have carried out careful time-depend
imulations on very fine meshes of flow around a cylin
ith the same blockage ratio as here. To this purpose
ave considered an additional value ofL2 = 100, often use

n connection with viscoelastic simulations with the FEN
R model (see references in[2]). For this lower extensibi

ty parameter, our predictions on both meshes M30(WR
nd M60(WR)-FO show that the recirculation becomes
teady at aboutDe≈ 4.0–4.5, above which the drag coe
ient and other flow features near the back of the cyli
-

teady numerical solutions at higherDe, and the formation o
oertler-type three-dimensional steady regular cell-pat
long the wake of the cylinder as observed in experim

n the light of this argument, the question that arises is
oes the flow separate near the trailing edge of the cyli
t negligible inertia (Re= 0)? Most previous numerical stu

es ([10–16,18]) pinpoint the presence of a thin extensio
iscous wake, which is also observed in experiments u
he birefringence technique[33–35], and appears as a zo
f high longitudinal normal stressesτxx in the downstream
egion of the cylinder wake. In addition, Alves et al.[15]
ention the fact that the pressure behind the cylinder d

o very low values whenDe increases, while the MIT grou
Smith et al.[14], Caola et al.[16]) prefers to explain the nu
erical limit as being due to the high shear stresses fo
etween the cylinder and the channel walls being conve

nto the wake.
It should be clear by inspecting the variation ofτxx with

behind the cylinder (cf.Fig. 5 given before) that the e
eedingly high rates of growth very close to the back of
ylinder must be related to the numerical breakdown p
em. With models which do not incorporate an unboun
xtensional stress behaviour under simple uniaxial or p
tretching, such as the FENE-CR, the answer to the a
uestion cannot be connected to the singular behaviour
al of UCM or Oldroyd-B viscoelastic models. Some gu
ines can be obtained by inspecting the stress fields aroun
ylinder resulting from the numerical simulations. These
sually given as contours of the Cartesian stress compo
xx, τyy andτxy (as in[11,12,15]among others). Howeve
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stress tensor components written in cylindrical coordinates
can be advantageous due to the symmetry of the geometry
in question. We have thus decided to examine the cylindrical
stress components which were obtained from the basic depen-
dent variables, the Cartesian stress components, by making
use of the transformation from (x, y) to (r, θ) coordinates.

In the graphs ofFig. 15contours of these cylindrical com-
ponents of the elastic extra-stress tensor (made dimensionless
with η0U/R) are given forDe= 1.2. At this level of elastic-
ity the flow is still entirely steady and there is at this stage
no sign of recirculation downstream. Contours of the radial
normal stress show the typical wake pattern already present
in the τxx distribution (see, e.g.[11,15]), without showing

the cylinder and channel-wall contributions characteristic of
the high shear rates present in the constricted section (x= 0).
These patterns ofτrr are the typical signature of extensional-
flow behaviour. The shear stress distribution,τrθ, exhibits
relatively mild gradients and therefore the suggestion of the
MIT group[16] does not seem to be soundly based (although
it may be argued that the large azimuthal normal stresses, the
effect of which is discussed below, are due to the shear flow
around the cylinder). More important is theτθθ stress distri-
bution inFig. 15b; we believe it is the fore-aft asymmetry of
this stress component, which may explain the flow separation
behind the cylinder with the ensuing consequences (either
two-dimensional unsteady behaviour or three-dimensional

F
s

ig. 15. Contours of the stress components in cylindrical coordinates forDe= 1.1
tressτθθ ; (c) shear-stressτrθ .
on mesh M60(WR)-FO: (a) radial normal stressτrr ; (b) tangential normal
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steady cell patterns). Such asymmetry is not present for a
Newtonian fluid and it is therefore a consequence of elasticity
alone. Laminar-flow boundary-layer separation of a Newto-
nian fluid is usually explained on the basis of the influence
of ∂p/∂x (wherex is a streamwise coordinate) at the wall:
if ∂p/∂x< 0 the flow accelerates and no separation occurs; if
∂p/∂x>(∂p/∂x)critic > 0 separation occurs (see White[36]). In
the viscoelastic case in terms of cylindrical coordinates the
relevant measure must be the full “streamwise” (around and
along the surface of the cylinder) normal stress gradient, i.e.
∂(p− τθθ)/r ∂θ.

The semi-empirical theory of Stratford explained in p.
274 of White’s book gives the critical condition for lami-
nar separation of a Newtonian fluid in terms of the momen-
tum thickness and it is therefore only applicable to bound-
ary layers. At very low Reynolds numbers the flow around
the confined cylinder cannot be thought of in boundary-layer
terms. In order to obtain a quantitative value for the value of
(∂p/r ∂θ) at which separation occurs, we have carried out a
series of simulations at increasingReand evaluated the crit-
ical condition from the numerical results. It should be noted
that these were the only simulations in the present work in
which the Reynolds number differed from zero. For a block-
age ratio of 0.5 with a Newtonian fluid, the criticalRe for
formation of a recirculation region behind the cylinder was
found to beRe = 12.5± 0.5 and for larger Reynolds num-
b rease
i
i with
t
c rate
o e
i
B n of
t sing
R ition
i ses to
a ant

F New-
t

for higherRe(e.g. (∂p′/r ∂θ)max≈ +1.30 atRe= 20). Herep′
denotes pressure made dimensionless withρU2, the appro-
priate scale for inertial flows, and hence the relation to our
dimensionless pressurep is p=Re× p′. The critical pressure
gradient based on theη0U/Rscale thus varies from 16 to 26,
for Re= 13 and 20.

With the elastic fluid there is no need to increase inertia
(that is,Re) to provoke flow separation. Even at zero Reynolds
number conditions, a critical normal-stress (pressure plus
elastic normal stress) condition similar to that found for the
Newtonian case may be reached by the interplay between the
pressure gradient and the elastically induced normal stress
gradient. AtDe= 1.2 the pressure decays rapidly behind the
cylinder, giving rise to a negative (i.e. favourable) streamwise
pressure gradient, but the normal stress decays even faster and
the net result is a positive∂(p− τθθ)/r ∂θ≈ 24.2. According
to the Newtonian result above (which should be considered
only as an estimated value) this “total” pressure gradient is
on the verge of the critical condition and hence, for a slightly
higherDe, the adverse pressure gradient cannot sustain an
attached flow and separation will occur.

In summary, large positive (meaning tensile) hoop stresses
τθθ are generated by elastic effects as the flow passes around
the cylinder. At the same time,τθθ must go to zero at the “stag-
nation” point (x=R, y= 0) behind the cylinder (cf.Fig. 15b).
It is this mechanism that induces a large negative∂τ /r ∂θ
w

5

me
m of
a ned
i state
r -
p with
s ever,
f hes
h ake,
t
( n-
c ating
f wn-
s ub-
b h the
s itude
v

CR
m ere
p rah
n ed at
D 3.9
w

ber
o teris-
cr
ers the size of the attached eddies was found to inc

nitially (up to Re≈ 30) almost linearly withRe, as shown
n Fig. 16, where the present predictions are compared
hose of Chen et al.[37]. These authors giveRecr = 12.15 in
lose agreement with our value, and mention that the
f growth of the vortex sizeXr, as shown by the solid lin

n Fig. 16, is linear only in a limited range (Xr ≤ 0.4, for
= 0.5). We have also examined the azimuthal variatio

he pressure distribution around the cylinder for increa
eynolds numbers. We find that, when the critical cond

s approached, the normalized pressure gradient increa
value of (∂p′/r ∂θ)cr = +1.22, and remains almost const

ig. 16. Size of attached eddy as a function of Reynolds number for a
onian fluid, and comparison with results of Chen et al.[37].
θθ

hich eventually leads to flow separation.

. Conclusions

Computations have been performed with a finite volu
ethod for the inertia-free (zero Reynolds number) flow
viscoelastic FENE-MCR fluid around a cylinder confi

n a planar channel with a blockage ratio of 0.5. Steady-
esults were obtained in the rangeDe= 0–10 when the com
utational meshes covered only half of the flow domain
ymmetry conditions assumed along the centerline. How
or the full domain with a set of specially designed mes
aving a row of cells along the centerline in the cylinder w

he flow was found to be unsteady and periodic forDe> 1.3
when L2 = 144). A small recirculation bubble, which i
reases and decreases in magnitude with time in a puls
ashion, was found to form attached to the cylinder do
tream of the “stagnation” point. Due to the recirculation b
le, the drag coefficient tends to increase, compared wit
teady-state situation without the bubble, and its magn
aries sinusoidally in time at the particular value ofDe= 1.5.

With a smaller extensibility parameter of the FENE-
odel,L2 = 100 instead of 144, similar flow features w
redicted but their formation was shifted to higher Debo
umbers: separation at the back of the cylinder occurr
e= 2.5, with a small standing eddy visible for De up to
hen unsteadiness sets in.
Such a phenomenon for the flow at zero Reynolds num

f non-Newtonian fluids possessing viscoelastic charac
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tics has not been reported in previous studies of flow around
a cylinder. In some experimental investigations, however, un-
steadiness behind the cylinder has been reported (see discus-
sion in[4]) and Baaijens et al.[33] even mention the presence
of measured negative axial velocities in the wake forx≤ 1.15.
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