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Abstract

We consider two-dimensional, inertia-free, flow of a constant-viscosity viscoelastic fluid obeying the FENE-CR equation past a cylinder
placed symmetrically in a channel, with a blockage ratio of 0.5. Through numerical simulations we show that the flow becomes unsteady
when the Deborah number (using the usual definition) is greatefkanl.3, for an extensibility parameter of the modelLdf= 144. The
transition from steady to unsteady flow is characterised by a small pulsating recirculation zone of size approximately equal to 0.15 cylinder
radius attached to the downstream face of the cylinder. There is also a rise in drag coefficient, which shows a sinusoidal variation with time.
The results suggest a possible triggering mechanism leading to the steady three-dimensional Gortler-type vortical structures, which have been
observed in experiments of the flow of a viscoelastic fluid around cylinders. The results reveal that the reason for failure of the search for
steady numerical solutions at relatively high Deborah numbers is that the two-dimensional flow separates and eventually becomes unsteady.
For a lower extensibility parameter? = 100, a similar recirculation is formed given rise to a small standing eddy behind the cylinder which
becomes unsteady and pulsates in time for Deborah numbers larg&dhas.0-4.5.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction for low or negligible inertia, the situation is reversed. In the
low Reynolds-number range, elastic effects predominate and
Rather than being resolved by improvements in numerical nonlinear phenomena related to the constitutive equations
procedures and the increase in computer power, with the pas-of the non-Newtonian media are common (McKinlg;
sage of time new challenges in computational rheology seemMcKinley et al.[5]). It is becoming more and more frequent
to have arisen. Early transition to three-dimensional steadyto see studies where the so-called benchmark flows used in
flow and/or time dependency seem to be the rule rather thancomputational rheology are found to reveal ever-more com-
the exception for nominally two-dimensional, steady flow. plex behaviour. For example, “steady” flow through contrac-
For relatively strong inertial flows in the laminar regime, tions is seen to present unsteady characteristics, with pulsat-
viscoelasticity has been found to promote stability in the ing formation and detachment of “lip vortices” (e.g. Oliveira
sense of increasing the critical Reynolds number. Examples[6]). While such observations were already common in ex-
include the pitchfork transition of two-dimensional steady perimental work (see, for example, the photographic compi-
symmetric to two-dimensional steady asymmetric states in lation of Boger and Walterg’] and the excellent review of
flows through expansions (Oliveifd]) and the decreasing the subject, encompassing both flows around cylinders and in
frequency of the unsteady instability of shear layers (vortex contractions, by McKinley4]), their resolution and capture

shedding, e.g. Oliveirf2], Sahin and Owen8]). However, eluded numerical simulation for many years. Even simpler
flows, such as the rectilinear channel flow of a viscoelastic
* Corresponding author. Fax: +351 275329972. fluid, such as the simplified PTT fluid, do in fact give rise to
E-mail addresspjpo@ubi.pt (P.J. Oliveira). some form of instability, as shown by Grillet et {8].
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tively low, extensional rate. On the other hand, those models
are known[4,21] not to represent adequately, except at very
low shear rates, the rheometrical behaviour of Boger fluids
(i.e. approximately constant viscosity, high solvent viscosity,
polymer solutions) for which they were supposed to be well
suited. In this respect, models based on the notion of finite ex-
tensibility are more accurate in representing the viscometric
functions of some Boger fluidg], even when the viscosity
itself is still considered to be constant with shear rate. Itis for
| this reason that we have decided to use the FENE-CR model
|< F|4 ’I [22] described in SectioA.

A fs Although numerical simulations of flow past a cylinder
avoid the inevitable problems associated with the existence
of geometrical singularities, for example in the case of flow
through contractions, they still present a number of chal-

The topic of the present study is the flow past cylinders, lenges: thin viscous boundary layers which develop on the
mainly under the situation in which a single cylinder is placed cylinder surface; co-existence of zones having predominantly
symmetrically in a plane channel. This configuratibig( 1) shear-flow characteristics with zones of predominantly ex-
has been used as a numerical benchmark problem since théensional characteristics; formation of a thin viscous wake
proposal by Brown and McKinlej@] and a number of works  behind the cylinder (bi-refringence strand).
dealing with it have emergeld0-20] Most of these have In past work with our FVM in this geometry15],
considered either the upper convected Maxwell (UCM) or the only quasi-linear constitutive models have been considered,
Oldroyd-B models (Ref$11-16,18,20], and the mainquan-  namely the upper-convected Maxwell and the Oldroyd-B
tity of interest, representing the overall flow feature around models. As mentioned above, it was possible to pursue the
the cylinder under creeping flow conditiori®d=0), hasbeen  computations up to Deborah numbeBg] of the order of
the evolution of the drag coefficiel@p with the Deborah unity and still obtain steady-state solutions. For higher levels
numberDe. Noteworthy were the numerical results of Fan et of elasticity, as measured by a Deborah number defined in the
al.[11] and of Alves et al[15] which, in both instances, re-  usual way in terms of the average velocity in the channel and
vealed almost coincidefp variations up to a Deborah num-  the cylinder radius, steady solutions could not be obtained.
ber of De~ 1 based on calculations using different numeri- In the present work, we consider a rheological model with
cal methodologies. The former group used a highly accuratefinite extensibility (measured by parametéy, the modified
h—p finite element formulation while the second group em- FENE-CR mode]23], so that numerical problems associated
ployed the finite volume method (FVM) on extremely refined with infinite extensional viscosities can be circumvented and
meshes with second-order high-resolution schemes. While ithigher levels of elasticity can (in principle) be reached. For
has been recognised that accurate predictio@afoes not the symmetrical geometry, we present accurate results for
necessarily mean accurate predictions of the detailed flowthe drag coefficient for Deborah numbers up to 10. When
structure (see, e.11,18), particularly so far as the flow the full cylinder is considered, without calling for symmetry
features along the downstream cylinder wake are concernedabout the channel centre plane, we show that the flow be-
it is worth noting that many predictions 6p deviate at rela- comes unsteady and periodic at a Deborah number of about
tively low levels of elasticity (safpe~ 0.5) from the results 1.3 (forL2 = 144), with a small time-periodic separation bub-
of these two studies, a situation that may be considered as arble behind the cylinder.
indication of inaccurate predictions.

A major area of concern is the level Dk attained in the
previous predictions with the UCM or the Oldroyd-B mod- 2. Governing equations
els (typicallyDe< ~ 1). The question which arises is “are
there physical reasons for those limitations, or do they reflect  As noted in Sectiord, many of the earlier works dealing
a numerical limitation related to the inability of present-day with viscoelastic flow around a cylinder (Liu et §.0], Fan
numerical procedures for non-Newtonian flow simulations?” et al.[11], Sun et al[12], Dou and Phan-Thief13], Alves
The flow around the cylinder is devoid of geometric singular et al.[15]) employed either the UCM or the Oldroyd-B mod-
points, in the sense of features like re-entrant corners typicalels to represent the fluid rheology. In the case of the latter
of contraction flows, and that has been one of the reasons formodel, it has been common to choose the solvent viscos-
the preference of the former type of flows. Lack of geometric ity ratio asg =ns/no=0.59, wherey is the zero-shear-rate
singularities then calls for a justification for the numerical viscosity given as the sum of solvent and “polymeric” contri-
failure based on possible constitutive singularities. It is well butions,ng=ns+ np. That particular value was based on the
known that both the UCM and the Oldroyd-B models have measured data for the MIT Boger fluid (McKinley et[@4]),
singularities in the extensional viscosities for a finite, rela- a solution of polyisobutylene dissolved in a polybutene and

Fig. 1. Sketch of the flow geometriz{=20R; L, = 60R).
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tetradecane mixture. Accurate numerical solutions based onand
those models were given p¥1,15], which fully agreed with 12 + (/) Tr(z)
each other and where a maximum Deborah number valuef[t] = 123 ®)

of aroundDe~ 1 was found for steady-state numerical so- .
Eq. (4) represents the stress tensor formulation of the

lutions. If attention is still focused on dilute or semi-dilute FENE-CR Gt tion. 10 b ved i uncti
polymer solutions, the next step in terms of complexity of =~~~ constilutive equation, fo be solved in conjunction
with the equation of motion:

molecular-based rheological modeling is to introduce finite
dumbbell extensibility, and thus evolve from the Oldroyd-B %
to the FENE-type models (see Bird et[@5]). Some authors Dt
have already followed that route (§24,10,17,19). The ex- and the incompressibility constraint:
pectation here is that by introducing more realism into the

. . . V.u=0 )
physical representation of the polymer molecular behaviour,
at the same time the numerical solution difficulties will be  Inthese equationpijs the pressure the fluid density, and
softened and higher values of Deborah number should be atthe solvent stress was assumed to follow a Newtonian rela-
tainable. Since we also want to separate elastic effects fromtionship. An additional simplification which allows existing
those due to shear thinning, we consider first the FENE-type numerical methods to be used for solving E4). with only
equation proposed by Chilcott and Rallig@2], which may minor modifications is to discard the variation of CfjiDt

=—-Vp+nsV-(Vu+Vu')+V-1 (6)

be written in terms of a configuration tensé) @s: and write:
A D A
v T+ =@ =n,(Vu+Va")+ Z(r-Vu + Vu' - 1) (8)
AA =—f[AIA-1T) (1) f Dt b f

] _ . This represents a modified FENE-CR model (designated by
from which the extra stress tensor can be expressed explicitlypgp E-MCR) first used by Coates et 3] in 1992 and later
by means of a Kramers expression: by a number of other authors in a range of studies. It should
np f1A] be emphasised that the steady-state rheometrical functions of
=——=(A-1 (2) FENE-CR and FENE-MCR are identical so that only minor
differences are anticipated in steady-state complex flows. The
wherel is the relaxation timd, the identity tensor, the square  reason is that the effect of v(1/f) can be important only in
brackets indicate a functional dependency, aﬂj denotes strong convective regions in a flow. This argument will be
the upper convected derivative. Eq4) and (2) comprise demonstrated with the present numerical results for the flow
the so-called FENE-CR model which, although derived from around a cylinder. Itis also important to note at this point that
empirical considerations (see discussiof2@], we note that a number of other authorf2¢,10,3) have simulated the flow
the empiricisms are of the same level as those invoked for theof the FENE-MCR fluid around a confined cylinder and in
well-known Peterlin approximation in the FENE-P model; this sense precise benchmark solutions, for exactly the same
see below), tend to provide a much better representation of thefluid model are needed, such as we present here.
material functions of a Boger fluid, especially regarding the
shear-thinning of the normal-stress coefficient. The stretch
functionf[A]in Eg. (1) depends on the extensibility parameter 3. Discretisation and solution procedure
L2, which represents the ratio of the maximum to equilibrium

A

average dumbbell extensions, and is given by: A fully implicit, sequential (decoupled) algorithm is em-
ployed to solve the set of differential governing equations
f1A] = 1 3) given in the previous section, which must first be transformed
1-—Tr(A)/L2 into algebraic equations by means of a finite volume discreti-

sation on a collocated, non-orthogonal mesh. Both the spatial
discretisation, which employs the CUBISTA scheme of Alves
et al.[28], and the temporal discretisation, with a three time
) level representation of the unsteady terms in the equations,
A=(QQ), Qis the dumbbell end-to-end vector agflasta-  re formally second-order accurate. The algorithm was ex-

tistical average). i , ) plained in detail in Oliveird2] and only an outline is given
For a matter of computational convenience, and indeed to here

spare memory resources, it may be advantageous to substitute THe discretised constitutive equation for any €eis:
the stress tensor for the conformation tensor in Etjsand

(2), giving: abtly ™ =3 ane Y 4 [S,[Vu*] + §Hos
F

This is the same function of the FENE-P model (referred to
asZ in the original paper, Bird et a]27]) and is derived by
invoking Peterlin’s approximationf{ QQ]) ~ f[{QQ)] where

D/t A
r— (=) =n,(Vu+Vu+=(z-Vu+Vu'.
vagy (5) = mut v+ L vk vl eV

" - .orl — o.5r(,i"1))} )
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with af, = (L5 +V + Y pa}); det=A/f[r}], and

where the stress coefficiert$ are made up of convective
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whereb encompasses the terms in curled brackets in @gs.
(10)and(13), and with the summation for indéxbeing over

fluxes. These are evaluated at the cell faces located betweefhe four cell neighbours of cef, in a two-dimensional appli-

cell P and any of its neighbouring cells. The stress source
termsS; comprise a part of the upper-convected derivative
proportional to velocity gradient€u (explicitly indicated in

cation, or over the six cell neighbours in three-dimensional
applications (for a local structured mesh). These large sys-
tems of equations are solved with iterative solvers: the conju-

Eq.(9)in order to highlight the interrelation between the kine-  gate gradient method preconditioned with an incomplete LU
matics and the stress fields), and a deferred correction pardecomposition, for the case of the symmefpicequation;

related to the implementation of the high-resolution scheme
CUBISTA, sHOS, In Eq. (9), V is the volume of a cell and
the factors 1.5, 2.0 and 0.5 arise from application of the three
time level scheme to represent the unsteady terfdt (dif-
ferent levels of time are denoted by superscriptand (*)
denotes existing, or previous iteration, values).

The discretised momentum equation is:
apu"j)* =

> apuy + {-Vp 4 5, (VO] 4 508
F

1% n .
+ %(Z.Ou;) — 054" 1))} (10)
with ap = (1.5% + > rar) and where the coefficients
have now both convective and diffusive contributions. In gen-
eral, the velocity fieldi™ obtained from implicit solution of
Eqg. (10) will not satisfy the discretised continuity equation:
V. utD =0 (11)

and for that reason™ and the intermediate pressyreneed

to be corrected by’ =u(™1 — y™ andp’ =pM™71 — p*. The
corrected velocity field is determined from a factored form
of the momentum equation:

< ) us,')Hl) + (Z aF> up
F

— ZaFu);’* o Vp(nJrl) + 8,V - .[(nJrl)] + SII;IOS
F

pV
15—
ot

1% _
+ pa—t(Z.Ousf) — 0548 Yy (12)

where, by comparison with E¢§10), we see that only the

and the bi-conjugate gradient method for the other variables
(velocity and stress components).

There are two levels of iteration in the algorithm. The itera-
tions inside the solvers, termed the “inner” iterations, are pur-
sued until the initial residuals on entering the solver decay by
two orders of magnitude. The “outer” iterations, inside atime
stepdt, arise because: (§;[vu] in the stress Eq9) depends
on the velocity field, an&,[V-7] in the velocity Eq(10)de-
pends on the stress field; (ii) the factored momentun{E),
devised to deal with the linear velocity/pressure coupling, is
only approximate; (iii) explicit non-linearities are present in
the convection terms of the momentum equation and| te
function in the stress equation. These outer iterations are re-
peated through Eq®)—(13)until z("* D, u(*+1) andp+1)
do not change which, in practice, is achieved by controlling
the normalized residuals of the equatiohg orm) which
are required to be below a tolerance of 10

For time-dependent calculations, the procedure described
above is repeated every time step until a prescribed final time
is reached. If such elapsed time is sufficiently long, and if the
flow in question turns out to be steady, the solution will stop
varying in time and the steady-state solution is approached
asymptotically as the computation proceeds. In practice thisis
an expensive way of calculating a steady flow and it is better
in these cases to apply the procedure as a time-marching
iterative solution method. For steady-state calculations, the
outer iteration cycle is switched off and time advancement
works effectively as equivalent to iteration, with the time
stepdt playing the role of an under-relaxation factor. In this
case, a final value of time need not be prescribed and time
advancement will proceed until the residuals become smaller
than a pre-specified tolerance (typically fGor normalized
residuals).

inertial and the pressure gradient terms have been updated

to a new time levelr{+ 1) stage. A Poisson-like pressure
correction equation is derived by subtracting E) from
Eqg.(12)and imposing the divergence-free constrélrit), to
yield:

ahpp =Y ahpr +1{—(V u™) (13)
F

with ap = 3" af anda. = A% /(1.547) (A cell face area).

4. Results

In this paper, we consider only the problem of flow around
the bounded cylinder placed symmetrically in a plane chan-
nel at negligible Reynolds number. A forthcoming publica-
tion will deal with the case of unbounded flow, extending
the results presented in R¢2]. Except when explicitly in-
dicated, distances will be scaled with the cylinder radiys

From the above we see that all linearised sets of algebraicvelocities with the average velocity in the two-dimensional

equations to be solved can be cast into the standard form:

appp =Y _ar¢r +b < [Al{g} = (b} (14)
F

channelJ, pressure and stresses wifgU/R, and the Debo-
rah number is defined &= AU/R, where is the relaxation
time. In what follows, we discuss issues related to boundary
conditions, numerical accuracy and computational meshes,
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validation against experimental measurements, the predic
tion of the drag coefficient as a function of elasticity level
and the occurrence of an unsteady flow regime.

4.1. Numerical issues (meshes; boundary conditions;
mesh refinement)

For the bounded flow with a cylinder-to-channel ratio of
B=R/H=0.5, our initial computations were performed with
mesh M45 of our previous work (Alves et f15]) which was
a medium mesh for the UCM model. Due to shear thinning Fig. 2. Expanded view x€[-3R, +5R], ye[-2R, +2R]) of mesh
in the first-normal stress difference, the FENE-CR model im- M60(WR)-FO: blockage.ratiB:.O.S, full cylinder with wake-refined mesh,
poses much less burden upon the numerical method and thadd number of cells behind cylinder.
mesh is perfectly adequate to resolve and capture with accu- ) )
racy the features of the flow around the cylinder exceptforthe  FOr the half-domain meshes, symmetry is assumed about
normal stress variation along the downstream viscous wake. (€ longitudinal mid planey(= 0) and therefore the boundary
This is a very thin flow feature and proper resolution requires conditions are:
refinement along the-direction ford =0 (i.e. clustering the
mesh around the ling= 0, x>0, from whiché is measured).

Some of the main characteristics of the various meshes are
given inTable 1 including the total number of control vol-
umes (or cells, NC), the number of control volumes around
the surface of the cylinder NS, the number of cells placed
radially from the cylinder to the channel wall NR (this is the
figure given after theM indication), and the minimum cell
spacing normalized with the cylinder radius along the radial
(3r) and the azimuthaldg=r 36) directions. Mesh M30 has
less cells in the radial direction compared with mesh M45,
but is more refined along the wake; for this reason the qual-
ification WR (for wake-refined) is added to this mesh des-
ignation. In this sense all meshes used in the present study
are refined along the wake, except the original mesh M45 of  Results for the mesh-refinement study are presented in
[15], and another difference with RdfL5] is that here we Fig. 3 where theu-velocity profiles are given along the
have also used meshes deployed over the full domain (de-transversal directioy in the narrow gap between cylinder
noted by F: full domain)Fig. 2 shows a detail of the mesh and channel wall, and iRigs. 4 and 5Swhere the longitudi-
M60(WR)-FO, with an odd number (denoted by O in the nal variations of axial velocity and normal stress com-
mesh designation) of control volumes on the downstream sideponents along the centerline are shown. These predictions
of the cylinder. The resolution provided by this mesh dou- were obtained on the two consistently refined meshes for the
bles that of M30(WR)-FO, by having twice as more number half-domain, M30(WR) and M60(WR) ofable 1 and for
of cells along both directions, to give the finest mesh used Deborah numbers of 1 and 2. It is clear that good agreement
in the present two-dimensional calculations with 265,680 between the results from the different meshes is achieved for
degrees of freedom and 475 cells adjacent to the cylinderall quantities except the normal stress in the birefringence

e Inlet (x=—L1 =—20R): Dirichlet conditions based on an-
alytical profiles for fully developed Poiseuille flow of the
FENE-CR in a planar channel.
e Outlet k=+Lo,=+60R): Neumann conditionsd(ox = 0)
for all dependent variables, including the axial pressure
gradientap/ox.
e Solid walls (channel wally=+2R; cylinder surface,
r =R): no slip boundary conditions for the velocity compo-
nents with stresses obtained from analytical expressions.
e Symmetry planey=0): symmetry conditions, that s, zero
normal gradients for all variables and zero normal velocity
components. This boundary condition is not needed for full
domain meshes.

surface. strand, thus indicating adequate resolution provided by the
Table 1

Some characteristics of the computational meshes

Mesh Dimension Domain NC NS dr, minimum ds, minimum 8s, minimum wake
M45 2D Half 9918 152 M0646 00207 00207

M30(WR) 2D Half 5310 115 0961 00314 001

M60(WR) 2D Half 21240 230 00471 00157 0005

M30(WR)-F 2D Full 10620 230 00961 00314 001
M30(WR)-FO 2D Full/odd 11040 237 .00961 00314 001
M60(WR)-FO 2D Full/odd 44280 475 .00471 00157 Q005

M30 3D Half 159300 23k 30 000961 00314 001

M30 3D Full 318600 23 30 000961 00314 Q01

NC, total number of cells; NS, number of cells on cylinder surfacgds minimum cell spacing (normalized b).
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1.0

0.8—
o
T 0.6—
>

1 - M30 (WR) 7
M60 (WR )
0.4—| De = 1 /

(x-R)/R

Fig. 5. Mesh refinement: normal stress distribution along the cylinder wake
(y=0) forDe=1 and 2 [2=144).

rising to 0.24% abe= 3.5, forL? = 100 on mesh M30(WR).
Thus, the estimated accuracy is generally better than 0.1%
and only gets larger at high Deborah numbers when the flow
u/u separates and eventually becomes unsteady, as reported in
Sectiord.4.

The only quantity sensitive to azimuthal mesh refinement
IS Txx in the wake but, clearly, its exact prediction does not
affect eitherCp or the distribution of the other dependent
variables (velocity, stress, etc.). As showrFig. 6, the txy
versusx variation along the ling=0 can be predicted more

Fig. 3. Lateral profile of theu-velocity component in the narrow gap
(x=0)—effect of mesh refinement fire=1 (L2 = 144).

meshes used in this study. In terms of the drag coeffi€ignt
obtained from integration of the full stress tensor around the

cylinder surface, differences in the results obtained from the X : '
various meshes (givenfrables 2 and For L2 = 144 and 100, accurately by carrying out computations on a wake-refined

respectively) are undistinguishable in a graph and the corre-meSh (a_s IRL5]): the results from mesh M45 sho_uld_be com-
sponding variation with elasticity will be discussed in Sec- p;ared with trt]ogehfro drg M3O(VZR)' Thel alttlarnatlve |sr':o %m'k
tion 4.3, where insensitivity to further improvement in spatial  P'0Y @ mesh with odd-spaced control volumes at the bac

resolution will also be shown. Application of Richardson ex- ?f the Cy“n,fj?r’ W'Eh a rovrllof cells plhaced exactly alon_g tlhe
trapolation to th&Cp values obtained from the consecutively symmetry” liney=0. _Ir_1 this case, the dependent variables
refined meshes allowed us to estimate the discretization er-2'¢ calculated at positions (control volume centers) placed

rors: 0.08 and 0.02% on meshes M30(WR) and M60(WR) exactly along the downstream centreline in a full-domain
resp.ec.tively foDe=1 andL2= 144 and 0.03% abe=1 ____Mesh, without relying on interpolation, and hence, the sen-
’ ’ ' ’ sitivity of the 7y prediction on mesh refinement is greatly

reduced. Notice fronfrig. 6 how mesh M30(WR)-FO, with
just11,040 cells, leads to almost the same predictions as mesh
7 M60(WR) which would have % 21,240 =42,480 cells for

De =2 7 the full domain. In addition, this figure shows thatCe=1

- predictions ofryx on the half- and the full-domain meshes

1.0
5 4 are almost undistinguishable (compare M30(WR) and
3 4 i M30(WR)-F).
0.5—| : 4.2. Steady flow—velocity comparisons with Verhelst
----- M30 (WR) and Nieuwstadt (validation)

In a recent (2004) paper Verhelst and Nieuwstad]

0.0 — T T T T T T T provided local velocity data obtained with LDA for the flow
of both Newtonian and viscoelastic fluids around a confined
cylinder with a blockage ratio of 0.5. These data are very use-
Fig. 4. Mesh refinement: velocity distribution along the cylinder waiked) ful as they allow further validation of our numerical solutions,
for De=1and 2 [2=144). especially regarding the Newtonian flow case. For the non-

(x-R)/R
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Table 2

Drag coefficients on the various meshes with FENE-MCR_for 144 (8=0.59;Re=0)

De Co M45 Cb M30(WR) Co M60(WR) Cb M30(WR)-FO Cb M60(WR)-FO Cp FENE-CR
0 13250 13244 132.50 132.44 132.50 132.50
0.1 13043 13035 130.50 130.48 130.56
0.2 12689 12683 126.96 126.96 127.02
0.3 12370 12366 123.78 123.82
0.4 12134 12133 121.14 121.44 121.45
0.5 11977 11977 119.87 119.86 119.77
0.6 11881 11884 118.84 118.90 118.88
0.7 11829 11833 118.37 118.34
0.8 11805 11811 118.07 118.12 118.08
0.9 11799 11807 118.05 117.99
1.0 11804 11813 118.03 118.08 118.01 118.03
15 11876 11887 118.63 Time-dependence Time-dependence 118.69
2.0 11935 11943 119.13 119.23
25 11968 11973 119.55
3.0 11985 11988 119.62 119.83
35 11993
4.0 11997 11996
5.0 11996 11988
6.0 11998 11976
7.0 11978 11962
8.0 11966
9.0 11953

10.0 11939

Some FENE-CR values are also given on M45.

Newtonian fluid-flow experiments, the working fluid was a between the experiments of Verhelst and Nieuwstadt and our
solution of polyacrylamide (150 wppm) in a Newtonian glu- predictions (recall that we hawe=0 and a constant vis-
cose (93%)/distilled water (7%), which was shown to be only cosity viscoelastic model), the comparison is still useful and,
slightly shear thinning with a zero-shear-rate viscosity ratio of as will be seen, the important elastic effects observed in the
B=0.73. The cylinder was mounted across a channel having aexperiments are replicated by the numerical solution.
cross-sectional aspect ratio of 8 (spanwise dimension divided  Fig. 7shows the comparison of the velocity profiles mea-
by channel height), a value that was not large enough to en-sured by Verhelst and Nieuwstaf#t9] for the Newtonian
sure a two-dimensional flow in the mid-spafy planeandso  glucose/water solution at=—21, —3, —1.5 (upstream of
some three-dimensional effects were present, especially close¢he cylinder) anck=+1.5, +3, (downstream of the cylinder),

to the cylinder, as stressed by the authors themselves. For thevith the numerical predictions fdRe=0. The fore-aft sym-
small flow rates considered the Reynolds number, althoughmetry of creeping flow is well captured by both the experi-
not negligible, was sufficiently lonRe~ 0.1-0.2) thatiner- = mental and numerical results (coincidenceXer+3, +1.5),

tia plays only a small role. In spite of these shortcomings, and the detailed agreement between the two is good except
which limit the degree of expected quantitative agreement for the profiles closest to the cylindex=£+1.5); the mi-

Table 3

Drag coefficients on the various meshes with FENE-MCR_for 100 (8 =0.59;Re=0)

De Co M30(WR) Cp MBO(WR) Cp M30(WR)-FO Cp MBO(WR)-FO
0 13244 13250 132.44 132.50
0.1 13038 13054 130.51 130.60
0.2 12694 12707 127.07 127.14
04 12160 12168 121.71 121.73
0.6 11915 11918 119.23 119.22
0.8 11833 11832 118.36 118.34
1.0 11815 11811 118.14 118.11
15 11834 11824 118.24 118.18
2.0 11855 11841 118.37 118.32
25 11863 11851 118.64 118.37
3.0 11863 11853 118.61 118.36
35 11860 11852 118.53 118.32
4.0 11853 11848 Time-dependence 118.26
4.5 11845 11842 118.19

5.0 11836 11836 Time-dependence
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nor differences must be at.mbUte.d to three-dllmensmn_allef- Fig. 8. Comparison of predicted velocity profiles for the FENE-MCR at
fects because the three-dimensional numerical predlctlonsDe= 1.2 (L? = 144) with experimental measurements of Verhelst and Nieuw-
of Verhelst and Nieuwstadt follow the data closely. We stadt[29] for a PAA solution at a flow rate of 0.020 I/B¢= 1.42). Dashed
have also performed two-dimensional simulations at the lines correspond to predicted downstream profiles.

Reynolds number of the experimen®es pUg2R/1n9=0.23;

Up = centreline velocity) but, when plotted in dimensionless
form, these predictions are indistinguishable from those for
Re=0.

So far as viscoelastic fluid flow is concerned, our numeri-
cal predictions with the FENE-MCR witk? = 144,8=0.59,
De=AU/R=1.2, are compared, iRig. 8 with the measure-
ments for a flow rate d®=0.020 /s, corresponding to a Deb-

of viscosity: (a) the fore-aft symmetry present in the Newto-
nian flow is lost due to history effects in the stress evolution:
the velocity distribution ak=—1.5 deviated considerably
from that atx=+1.5; (b) there is a local velocity minimum
on the centreline for the velocity profiles behind the cylin-
der atx=+3, in contrast to the Newtonian fluid flow; and (c)

a L) ) there is also a very localised velocity maximum for the ve-
orah number oDe=1.42[29]. The qualitative modifications locity profile atx=+1.5. This last effect is not as accentuated

induced by elasticity are well represented by the predictions, i, yhese simulations as it is in the experiments because the
even without accounting for the slight shear-rate dependencypep o rah number is lower, but the effect is visible. In fact, the

influence of the birefringence strand upon the velocity field is
: more readily apparent in the axial velocity contour§igf. 9,
where a highly localised distortion is perceptible along the
cylinder wake flow.
i In conclusion, some peculiar elastic effects visible in the
experimental velocity data of Verhelst and Nieuwstadt are
7 reproduced by the present two-dimensional simulations and
the Newtonian fluid-flow data are well predicted in spite of
some indication of three-dimensional effects being presentin
. the experiments. In addition, it is worth noting that Verhelst
and Nieuwstadt29] (as well as Shiang et §B0] in previous
experiments for a smaller blockage of 1/16) do not refer to
- any flow instabilities, in contrast to McKinley et §24] and
Shiang et al[31], hence highlighting the point that such in-
stabilities and the critical conditions for their occurrence are
sensitive to the precise fluid rheology. While the viscoleas-
tic fluid of Verhelst and Nieuwstad29] exhibits a slightly
T shear-thinning viscosity, the fluid of McKinley et §4] has
00 05 1.0 1.5 20 a constant viscosity but a decreasing first normal stress coef-
u/u ficient with shear rate, and that of Shiang e{a0,31]shows
Fig. 7. Comparison of predicted velocity profiles for Newtonian fluid flow POth constant viscosity arh over the range of shear rates
with measurements of Verhelst and Nieuws{28. of interest.

1.0—oe

y/2H
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Fig. 9. Predicted contours of the axial velocity componefit) for the FENE-MCR foDe= 1.2 (L2 = 144) on mesh M60(WR)-FO.

4.3. Steady flow—drag and loss coefficients fluid obtained by Alves et dJl15] and for the FENE-CR model
ataslightly different.2 = 100 by Liu et al[10]. ForDe> 0.5,

A convenient measure of the quality of the numerical pre- the predictions of Liu et al. begin to deviate from the trend
dictions is provided by the drag coefficient obtained by in- established by the current simulations, an effect that cannot
tegrating the total (solvent plus polymeric) stress and pres- be explained by the somewhat different extensibility param-
sure contributions over the cylinder surface. This constitutes eter (2= 100, instead of 144). In order to check this point we

therefore a global solution functional, evaluated as: have carried out additional simulations 7= 100 and the
1 T . correspondin@p versusDe predictions, shown by a dashed
Cp = U I(—PI +t+ns(Vu+Vu'))-n-xdA (15) lines in the figure (see datarable 3, lie slightly below our
cyl

predictions for.2 = 144. For the Oldroyd-B fluid, Fan et al.
and representing the longitudinal component of the force ex- [11] and Alves et al[15] identified numerical divergence or
erted by the fluid upon the cylinder, normalized by a diffusive unrealistic wiggles in theyx variation behind the cylinder
force scale appropriate to the inertia-free conditions under for De>1 and therefore no steady-state solutions could be
consideration. When conditions depart from creeping flow obtained for the higher Deborah number range. There was,
(Re>0) it is more common to scale the drag force using the however, a remarkable level of agreement betweerCihe
dynamic pressurepU?R) when definingCp. The predicted  predictions of those authors in the range De< 1 giving
variation ofCp with elasticity is shown irFig. 10for an ex- confidence on the correctness of their results. In addition,
tensibility parametet ? =144 (see alsd@ables 2-}, where very recent numerical work by Kim et §20] with FEM and
comparison is made with the predictions for the Oldroyd-B Sahin and Owen§3] with a pressure-free FVN32] lead

T T T T T T T T T
*#x** FENE -MCR ( L2 =144)
132 00000 FENE -CR ( L2 =144) T
xxxxx Liu et al (L2=100)
. 00000 Qldroyd -B .

Fig. 10. Variation of the drag coefficie@p with the Deborah numbde (FENE-MCR and FENE-CR,2 = 144, mesh M45) and comparison with predictions
for the Oldroyd-B15] and FENE-CRI(? = 100)[10] models. Additionally, predictions with the full-domain mesh M60(WR)-FO are shown with ddlid {44)
and dashed € = 100) lines.
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to predictedCp versusDe variations which are remarkably
close to the solutions of bofii1,15]
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Fig. 10shows a higher rate of decay©f with De, in the

range 0.5< De < 1.0, for the infinite extensibility Oldroyd-B

1.00 N S N N N N R

T FENE -MCR L® =144 .
0.98—
0.96— *oxoxxx K/ Ky i

_ 00000 Cp/Cpy

fluid compared with the FENE-MCR &f = 144. This result
suggests a stronger drag increase at higher elasticity, although Z 0.94—
results could not be obtained for these conditions either be- = ]
cause of numerical difficulties or because the flow eventu- O'ggt
ally becomes unsteady or three dimensional. This figure is 0.90—]
also important to demonstrate that the solution obtained with s
the exact FENE-CR model (E¢4)) essentially follows the 0.88
solution with the modified model (E¢8)), at least for the ]

0.86

steady-state conditions under consideration.
Another possible overall flow parameter that may be useful
to characterise localised losses associated with viscoelastic-

0.0

De

ity, but has not been much utilised in previous studies with Fig. 11. Variation of the loss and drag coefficiertsandCp, with Debo-

this flow geometry, is a loss coefficiektdefined as the in-  rah number (FENE-MCR,?=144). Lines: mesh M60(WR)-FO; symbols:

crease in normalized pressure drop due to the presence of th&'esh M3OWR)-FO.

cylinder. That is: 100

Ap—(A
k= Ap—(Ap)o

where (Ap)o is the pressure drop between inlet and outlet, for 75—
the same conditions, but without the cylindéris indepen-

dent of the channel lengthhs andL, (seeFig. 1) provided .
the flow conditions are fully developed at the inlet and out-
let planes: care was taken, by choosing sufficiently large 50—
andL» values, to ensure that these conditions were fulfilled.

Cp

Cpp

FENE -MCR L? =144
(16) .
nolU

Values ofK are given inTable 4and the variation oK with Feeee—wwe o 5 o o0 oo o

Deis compared irFig. 11with that of the drag coefficient

Cpb. Again, it is noted that mesh refinement results in neg- 25
ligible variations. In addition, it may be observed that the 0.0
variations ofK andCp with elasticity follow essentially the
same trend but witK being larger thap. This is not unex-

De

pected since the total pressure l&ssomprises the losses on  p30(wWR)-FO: lines: M60(WR)-FO).

the cylinder surface, that i€p, plus additional losses on the
channel walls due to the higher shear promoted by the flow
constriction in the cylinder-channel gap.

Table 4
Drag and loss coefficients on mesh M60(WR)-FO with FENE-MCR
(L2=144;8=0.59;Re=0)

Fig. 12. Pressure and shear components of the drag coefficient (symbols:

De CD CD,p CD,s K

0 13250 9225 4025 4435
0.05 13193 9173 4020 4418
0.1 13056 9050 4006 4380
0.15 12882 8896 3986 4332
0.2 12702 8738 3964 4281
0.3 12382 8464 3918 4192
04 12145 8272 3873 4127
0.5 11986 8154 3832 4086
0.6 11888 8095 3793 4062
0.7 11834 8Q77 3757 4052
0.8 11808 8084 3724 4049
0.9 11799 8104 3694 4052
1.0 11801 8132 3669 4058
11 11808 8161 3646 4065
12 11818 8191 3627 4073
15 119842 40.76%

Pressuré&Cp p and sheaCp s components of drag are also given.

2 QOscillates in time.

It was also possible to separate bdfp and K into
pressure-related (form drag) and shear-related components,
and these are shown ifig. 12(cf. Table 4. The larger com-
ponent is that due to the pressure distribution which controls
the shape of th€p variation withDe. In fact, the shear com-
ponent remains approximately constant wiberis raised.

4.4. Unsteady flow

The drag results dfig. 10were obtained with mesh M45

(or, similar results, with M30(WR)) oTable 1 which was
deployed over only half of the flow domairy £ 0), sym-
metry being assumed about the centre pla¥e). For the

full domain, theCp values obtained from Eq.15) need

not be multiplied by a factor of 2 to account for integra-
tion over the entire cylinder surface, but otherwise no dis-
cernable differences can be seen between predictions on the
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half and full domain meshes, or indeed with the more refined very close to the centerline, with=40.01 andt0.001. The
meshes M60(WR) and M60(WR)-FO. However, B> 1.3 key flow feature observed Ifig. 14is the formation of a very

it proved impossible to converge steady-state calculations onsmall recirculation zone attached to the rear of the cylinder,
the full domain mesh M30(WR)-FO to arbitrarily low stop- which changes and pulsates in time: it gradually becomes
ping tolerances (we recall that the time-marching method filled with the viscoelastic fluid, followed by a gradual de-
used for these calculations is iterative and some convergencerease in size while the fluid partly leaves the bubble. When
criterion must be met); the residuals of the algebraic equa-the bubble attains its minimum size and recirculating flow
tions initially stagnate at a certain value and subsequently strength, at time instant five, the drag coefficient is also at
start fluctuating around that level. If the calculations are then a minimum; similarly, when the bubble attains its maximum
pursued by tracking the solution accurately in time (with the size, approximately at instants 14—0p, is at a maximum. It
second-order method described in Sec8ypiit is possible to is noted that the bubble remains symmetric aboutthgis
observe that a definite time-varying regime sets in, basically during the whole pulsating period, but the dynamic process
confined to a small region in the near wake of the cylinder leading to its formation can only be resolved by simulations
(say 1=x<1.2,y<+0.2),whileintherestofthe domainthe withthe full flow domain which do notrely on flow symmetry.
flow remains unvarying and steady. Since the drag coefficient It is relevant to mention that the size of the time st&) (

is a particularly sensitive parameter to possible time-varying used in the computations is automatically adjusted in order
events occurring downstream of the cylinder (such as sep-to guarantee convergence of the iterations within a time step
aration and localized recirculation), the above observations cycle. We started with a value 8f=0.01 (normalized with
can be substantiated by tracki@g in time, as in the plot of R/U), typical for this type of computation with fully implicit
Fig. 13(for De=1.5). A perfectly sinusoidal variation @p methods (e.g. Oliveir§6]), but as the simulation proceeded
versus time is observed, with a periedl.7R/U (this scales  that time step was successively decreased until a value of
with the nondimensional time for convective transportaround 8t= 2.4 x 10~2 was reached. This time step then remained
the cylinder, 2, divided by the nondimensional relaxation constant during the computations of the periodic flow repre-
time, De). The time-average drag coefficient for this time- sented irFig. 13 The streamlines dfig. 14are separated by
dependent simulation was found to 6g = 12052, which a time interval corresponding to 100 such time steps.

is substantially larger than the result from steady calculations  In their experiments with a polyisobutylene (0.31%)
on the symmetrical domairt€p =118.87, cf.Table 2 shown polymer solution in the same geometry (blockde0.5),

by a “star” symbol inFig. 10). McKinley et al.[24] observed a transition to a periodic time-

In order to explain the periodic variation @ we have dependent flow at a shear-rate dependent Deborah number
considered 20 equally spaced instants in time within a pe- of De(y) ~ 1.85, but that regime was preceded by a first
riod, which are marked ifrig. 13and have been denoted by transition from a steady two-dimensional to a steady three-
numbers from 1 to 20, and we have observed the corresponddimensional flow at a lowebe(y) ~ 1.3. This steady three-
ing instantaneous streamline plots. These plots are shown indimensional flow corresponded to the formation of a cellular
Fig. 14for alternate instantsin time, the number ontop of each wake structure, with zones of high and low axial velocities
plot, along the main flow direction, from leftto right. Twenty- in the wake repeated every characteristic wavelength along
one streamlines are shown having equally spaced normalizedhe spanwise, neutral direction (here takem)ak is evident
stream-function values ranging frogn=0 to+1 (with inter- that three-dimensional simulations are required to capture
vals of 0.1) and, in addition, four other streamlines are shown this cellular structure but the few attempts we have taken
towards that goal have been unsuccessful (these are not re-
ported here in the interests of space, but some details of the
meshes already employed are quotedable 1so that the
size of the problem becomes apparent). Future attempts will
have to consider cyclic boundary conditions on the end planes
along thez-direction in order to have adequate spanwise mesh
resolution while still keeping the total number of control vol-
umes (and degrees of freedom) within the limits imposed by
currently available computer resources. The imposition of
those boundary conditions is not without difficulties, as the
wavelength of the cellular structure is not known a priori and
that information influences the choice of the computational
domain size along. Based on the experiments of McKin-

NS 4T T 7T T T T T T T T T T T ley et al. we may conjecture that the time-dependent two-
325 330 335 340 345 dimensional flow resulting from the present simulations, and
time represented ifrig. 14, could be the triggering mechanism
Fig. 13. Time-dependent evolution of the drag coefficient Be=1.5 leading to the formation of the three-dimensional cellular
(FENE-MCR,L? = 144, mesh M30(WR)-FO). structure in the wake (cf. their photographFiy. 14).
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Inthis respect, itis important to emphasise that the presentshow a periodic variation with time (albeit not exactly sinu-
solution shows signs of unsteadiness only in the region within soidal). With the mesh M30(WR)-FO a small standing eddy
the attached recirculation bubble, i.e. fock<1.15 and (without pulsation) was observed to be formeddat=2.5
y <+0.15. Outside the bubble, the flow remains basically and unsteadiness only started for Deborah numbers above
stationary without any visible point-wise time fluctuation of De~ 3.9. Hence, essentially the same phenomenon as de-
the velocity and stress components. The measurements obcribed above is predicted fbf = 100 but being triggered at
McKinley et al.[24] closest to the cylinder are at=1.5, higher levels of elasticity. Since the simulations of Sahin and
which is outside the bubble region predicted here and alsoOwens[3] at their highest Deborah number, for increasing
where the flow is essentially steady. On the other hand, theReynolds number (see thé&iig. 7), were effected dde=1.2
present unsteady flow differs from the typical vortex shed- there is no basic disagreement with the present findings, in
ding mechanism occurring at much higher Reynolds num- which flow separation at the back of the cylinder is predicted
bers; herdReis exactly equal to zero and there is no sign of to occur only at Deborah numbers above 2.5.
an alternating shear layer mechanism. This may be illustrated
by tracking streak particles released at a number of fixed 4.5. Discussion of the viscoelastic flow separation
points within the recirculation region and near the cylinder
surface. The traces of these mass-less particles do not show An explanation for the mechanism leading to numerical
any undulating motion, but essentially follow the instanta- divergence of the simulations of steady two-dimensional vis-
neous streamline patterns outside the recirculation (wherecoelastic flow around a confined cylinder at relatively low
the flow is basically steady) and leave the attached recircula-De has yet to be found, and must surely be related to the
tion region from its furthest downstream pointyat0. So far dynamic transition observed in the experiments. Based on
as the critical Deborah number for the first flow transition is the present predictions it seems clear that two-dimensional
concerned, we have found the value tolbe~ 1.3, based flow around the cylinder undergoes a bifurcation from a
on the zero-shear-rate relaxation time of the FENE-MCR steady two-dimensional regime to an unsteady periodic two-
model, while McKinley et al[24] found the same value of dimensional flow regime (preceded by flow separation and
De(y) =~ 1.3, but with a De number based on a shear-rate de- later followed by aperiodic and chaotic states) and arguably
pendent relaxation time which, for a FENE-CR wlith= 144 this should be related to both the difficulties in obtaining
andp =0.59, corresponds to zero-shear rate Deborah numbersteady numerical solutions at high2e, and the formation of
of De; = 3.8 (equivalent to oube). In similar experimental, Goertler-type three-dimensional steady regular cell-patterns
work with a somewhat different PIB solution, having more along the wake of the cylinder as observed in experiments.
elastic characteristics compared with those of McKinley’s In the light of this argument, the question that arises is why
PIB fluid, Shiang et a[31] found a critical Deborah number  does the flow separate near the trailing edge of the cylinder,
of Degr ~ 0.21, but with visible effects on the flow patterns at negligible inertialRe=0)? Most previous numerical stud-
occurring only aDe=0.66. Their fluid had constant viscos- ies (10-16,18] pinpoint the presence of a thin extensional
ity and constaniyy for y < 10s, well within the typical viscous wake, which is also observed in experiments using
shear rates of their experiments (it should be pointed out thatthe birefringence techniqU83—-35] and appears as a zone
local shear rates will be well above the average, calculatedof high longitudinal normal stressesy in the downstream
asy = U/R), and so their criticaDe is defined in a similar ~ region of the cylinder wake. In addition, Alves et §l5]
way as ours. mention the fact that the pressure behind the cylinder drops

Along the previous paragraphs the extensibility parame- to very low values whee increases, while the MIT group
ter of the FENE-CR model was fixed at the base value of (Smith et al[14], Caola et al[16]) prefers to explain the nu-
L2=144, as suggested §g4] on account of their experi-  merical limit as being due to the high shear stresses formed
mental data, and later used [8] in their numerical calcu-  between the cylinder and the channel walls being convected
lations. It is interesting now (following the recommendation into the wake.
of one referee) to assess the effect on the phenomena de- It should be clear by inspecting the variationw@f with
scribed above of varying?, especially at that allows some  x behind the cylinder (cfFig. 5 given before) that the ex-
clarification regarding the recently published work of Sahin ceedingly high rates of growth very close to the back of the
and Owen$3], who have carried out careful time-dependent cylinder must be related to the numerical breakdown prob-
simulations on very fine meshes of flow around a cylinder lem. With models which do not incorporate an unbounded
with the same blockage ratio as here. To this purpose, weextensional stress behaviour under simple uniaxial or planar
have considered an additional valueldf= 100, often used  stretching, such as the FENE-CR, the answer to the above
in connection with viscoelastic simulations with the FENE- question cannot be connected to the singular behaviour typi-
CR model (see references|[2]). For this lower extensibil-  cal of UCM or Oldroyd-B viscoelastic models. Some guide-
ity parameter, our predictions on both meshes M30(WR)-FO lines can be obtained by inspecting the stress fields around the
and M60(WR)-FO show that the recirculation becomes un- cylinder resulting from the numerical simulations. These are
steady at aboube~ 4.0-4.5, above which the drag coeffi- usually given as contours of the Cartesian stress components
cient and other flow features near the back of the cylinder yx, tyy andzyy (as in[11,12,15]among others). However,
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stress tensor components written in cylindrical coordinates the cylinder and channel-wall contributions characteristic of
can be advantageous due to the symmetry of the geometnthe high shear rates present in the constricted sectiol),
in question. We have thus decided to examine the cylindrical These patterns af; are the typical signature of extensional-
stress components which were obtained from the basic depenflow behaviour. The shear stress distributiop,, exhibits
dent variables, the Cartesian stress components, by makingelatively mild gradients and therefore the suggestion of the
use of the transformation from,(y) to (r, 6) coordinates. MIT group[16] does not seem to be soundly based (although
In the graphs oFig. 15contours of these cylindrical com- it may be argued that the large azimuthal normal stresses, the
ponents of the elastic extra-stress tensor (made dimensionlessffect of which is discussed below, are due to the shear flow
with noU/R) are given forDe=1.2. At this level of elastic-  around the cylinder). More important is thg stress distri-
ity the flow is still entirely steady and there is at this stage bution inFig. 15; we believe it is the fore-aft asymmetry of
no sign of recirculation downstream. Contours of the radial this stress component, which may explain the flow separation
normal stress show the typical wake pattern already presentehind the cylinder with the ensuing consequences (either
in the T4y distribution (see, e.d11,15]), without showing two-dimensional unsteady behaviour or three-dimensional

.2 /’ﬂ:ﬁj S 2?

(©)

Fig. 15. Contours of the stress components in cylindrical coordinatd3eerl.1 on mesh M60(WR)-FO: (a) radial normal stregs (b) tangential normal
stressrgg; (C) shear-stressy.
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steady cell patterns). Such asymmetry is not present for afor higherRe(e.g. @p'/r 39)max~ +1.30 atRe=20). Herep
Newtonian fluid and it is therefore a consequence of elasticity denotes pressure made dimensionless witR, the appro-

alone. Laminar-flow boundary-layer separation of a Newto-
nian fluid is usually explained on the basis of the influence
of ap/ox (wherex is a streamwise coordinate) at the wall:
if ap/ox<0 the flow accelerates and no separation occurs; if
op/dx>(0p/9X)critic > 0 separation occurs (see Whigs]). In

the viscoelastic case in terms of cylindrical coordinates the

priate scale for inertial flows, and hence the relation to our
dimensionless pressupds p=Rex p'. The critical pressure
gradient based on thgU/R scale thus varies from 16 to 26,
for Re=13 and 20.

With the elastic fluid there is no need to increase inertia
(thatis,Rée to provoke flow separation. Even at zero Reynolds

relevant measure must be the full “streamwise” (around and number conditions, a critical normal-stress (pressure plus

along the surface of the cylinder) normal stress gradient, i.e.

a(p — te)/r 96.

The semi-empirical theory of Stratford explained in p.
274 of White's book gives the critical condition for lami-
nar separation of a Newtonian fluid in terms of the momen-
tum thickness and it is therefore only applicable to bound-
ary layers. At very low Reynolds numbers the flow around
the confined cylinder cannot be thought of in boundary-layer
terms. In order to obtain a quantitative value for the value of
(oplr 96) at which separation occurs, we have carried out a
series of simulations at increasigand evaluated the crit-
ical condition from the numerical results. It should be noted
that these were the only simulations in the present work in
which the Reynolds number differed from zero. For a block-
age ratio of 0.5 with a Newtonian fluid, the criticRk for
formation of a recirculation region behind the cylinder was
found to beRe,;=12.5+£ 0.5 and for larger Reynolds num-

elastic normal stress) condition similar to that found for the
Newtonian case may be reached by the interplay between the
pressure gradient and the elastically induced normal stress
gradient. AtDe= 1.2 the pressure decays rapidly behind the
cylinder, giving rise to a negative (i.e. favourable) streamwise
pressure gradient, butthe normal stress decays even faster and
the net result is a positive(p — tgg)/r 30 ~ 24.2. According

to the Newtonian result above (which should be considered
only as an estimated value) this “total” pressure gradient is
on the verge of the critical condition and hence, for a slightly
higherDe, the adverse pressure gradient cannot sustain an
attached flow and separation will occur.

In summary, large positive (meaning tensile) hoop stresses
Tgp are generated by elastic effects as the flow passes around
the cylinder. Atthe same timeyy mustgo to zero atthe “stag-
nation” point k=R, y=0) behind the cylinder (cfig. 15).

It is this mechanism that induces a large negadiwg/r 30

bers the size of the attached eddies was found to increasavhich eventually leads to flow separation.

initially (up to Re~x 30) almost linearly withRg as shown
in Fig. 16 where the present predictions are compared with
those of Chen et a]37]. These authors givRe,=12.15in

close agreement with our value, and mention that the rate

of growth of the vortex siz&;, as shown by the solid line

in Fig. 16 is linear only in a limited rangeX; < 0.4, for
B=0.5). We have also examined the azimuthal variation of
the pressure distribution around the cylinder for increasing
Reynolds numbers. We find that, when the critical condition

5. Conclusions

Computations have been performed with a finite volume
method for the inertia-free (zero Reynolds number) flow of
a viscoelastic FENE-MCR fluid around a cylinder confined
in a planar channel with a blockage ratio of 0.5. Steady-state
results were obtained in the ranDe=0-10 when the com-

is approached, the normalized pressure gradient increases tputational meshes covered only half of the flow domain with

a value of gp'/r 39)¢r=+1.22, and remains almost constant

T T T T T T T 4
_ o
8.0 ooeee present
Chen et al. -
— /’g -
,g/’
2.0 4 E
=< | |
1.0 -
0.0 T T T

40
Re

80

Fig. 16. Size of attached eddy as a function of Reynolds number for a New-
tonian fluid, and comparison with results of Chen efair].

symmetry conditions assumed along the centerline. However,
for the full domain with a set of specially designed meshes
having arow of cells along the centerline in the cylinder wake,
the flow was found to be unsteady and periodicDer> 1.3
(when L?=144). A small recirculation bubble, which in-
creases and decreases in magnitude with time in a pulsating
fashion, was found to form attached to the cylinder down-
stream of the “stagnation” point. Due to the recirculation bub-
ble, the drag coefficient tends to increase, compared with the
steady-state situation without the bubble, and its magnitude
varies sinusoidally in time at the particular valueDe=1.5.

With a smaller extensibility parameter of the FENE-CR
model,L? =100 instead of 144, similar flow features were
predicted but their formation was shifted to higher Deborah
numbers: separation at the back of the cylinder occurred at
De=2.5, with a small standing eddy visible for De up to 3.9
when unsteadiness sets in.

Such a phenomenon for the flow at zero Reynolds number
of non-Newtonian fluids possessing viscoelastic characteris-
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tics has not been reported in previous studies of flow around[15] M.A. Alves, F.T. Pinho, P.J. Oliveira, The flow of viscoelastic flu-

acylinder. In some experimental investigations, however, un-
steadiness behind the cylinder has been reported (see discu
sion in[4]) and Baaijens et gJ33] even mention the presence
of measured negative axial velocities in the wakeferl.15.
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