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Abstract. The problem of Protein Structure Prediction (PSP) is known to be
computationally expensive, which calls for the application of high performance
techniques. In this project, parallel PSP algorithms found in the literature are
being accelerated and ported to different parallel platforms, producing a set of
algorithms that it is diverse in terms of the parallel architectures and parallel
programming models used. The algorithms are intended to help other research
projects and they have also been made publicly available so as to support the de-
velopment of more elaborate prediction algorithms. We have thus far produced
a set of 16 algorithms (mixing CUDA, OpenMP, MPI and/or complexity reduc-
tion optimizations); during its development, two algorithms that promote high
performance were proposed, and they have been written in an article that was
accepted in the International Conference on Computational Science (ICCS).

1. Introduction

Proteins are biological macromolecules consisting of a chain of smaller monomers, the
amino acids. They are omnipresent in living beings, and are essential to their correct
functioning, so much that problems in their synthesis are directly related to proteases like
Alzheimer’s and Parkinson’s diseases [Bourne and Weissig 2003]. From a more positive
point of view, proteins are also closely related to chemical phenomenons of interest, such
as bioluminescence (luciferins and luciferases), degradation of PET bottles (petases) and
conversion of light to electrical signals (photopsins). In this light, a better understanding
of proteins and their synthesis process seems to be of medical, biological and environ-
mental interest; for example, if petases could be improved, this could help cleaning PET
bottles, whose degradation process is unsustainably long, from the environment, espe-
cially the sea.

The function of a protein depends on its three dimensional structure which, in
turn, is known to be uniquely determined by its amino acid sequence. Protein Structure
Prediction (PSP) is the study of how computers can be used to predict the 3D structure
of a protein whose amino acid sequence is given. This can avoid the high cost and time
requirements of in vitro experiments, and also circumvent the difficulty of simulating
in vivo aspects, such as agents (e.g., chaperones) that interact with proteins during the
folding process [Balchin et al. 2016]. There exist many ways to perform such prediction
computationally, which can be grouped as 1) template-based, which use knowledge that
is available about existing proteins in openly available data banks; and 2) ab initio al-
gorithms, whose input is solely the amino acid sequence of the protein to predict. Each
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group has its own utility, and PSP algorithms used in global competitions such as the
CASP may combine results of both types [Moult et al. 2016].

This Scientific Initiation project aims to contribute to the area of scheduling dif-
ferent parallel PSP algorithms over multiple available hardware devices whose com-
putation power can differ a lot from each other. The problem of efficient schedul-
ing is NP-complete in many of its formulations [Norman and Thanisch 1993], and a
better understanding of each algorithm’s performance characteristics can help find-
ing a computational model that is more easily dealt with [Norman and Thanisch 1993,
Kwok and Ahmad 1999]. This requires a set of parallel PSP algorithms that are diverse
in terms of the parallel platforms they can exploit, which are not publicly available in a
sufficient amount; our project would help solve this deficiency.

The objectives of our project would be threefold: 1) implement parallel PSP algo-
rithms for usage by other research projects; 2) port the implemented algorithms to exploit
different kinds of parallelism; and 3) search for opportunities to accelerate them. We have
thus far implemented a total of 16 algorithms: four algorithms found in the literature (two
sequential and two parallelizations thereof); and twelve versions that resulted from this
project by accelerating the first four, either by porting them to use different combinations
of cluster, multicore and/or GPU platforms, or by reducing the computational complexity
of a sequential procedure. Algorithms we have devised were written in an article that
was accepted in the International Conference on Computational Science (ICCS) (already
available as preprint [Saldanha and de Souza 2019]).

By fulfilling these objectives, we expected to help research in the area of PSP, by
providing a set of algorithms that were diverse in terms of supported parallel platforms
and performance characteristics. The implemented algorithms have been documented and
made publicly available1, so they can also be used by students interested in learning about
PSP or by other projects that attempt to orchestrate multiple PSP algorithms to achieve a
more ambitious objective.

We begin narrating the present project by exposing methods used for investigation
(Section 2), and then describe the course followed to pursuit the defined objectives (Sec-
tion 3). In Section 4 are shown two algorithms that we proposed, and in Section 5 the set
of algorithms produced is described by means of experimental results.

2. Utilized Methods

Experimental analysis was mainly guided by two laws. Amdahl’s law gives the
ideal speedup of parallelizing a program over p processors, namely 1

f+(1−f)/p
where

f is the portion of execution time used by routines that will remain sequential; this
guides us to focus on parallelizing portions that consume most of the execution time.
Gustafson’s law expands the ideal speedup analysis on the dimension of the problem size
[Rauber and Rünger 2013], saying that the ideal speedup might differ a lot between small
and big problem sizes depending on the computational complexity of internal procedures.
This leads the analysis to take the expected problem size into consideration and apply
Amdahl’s law with an extra level of care. Supported by these laws, algorithms are then
profiled in order to determine their performance characteristics on different problem sizes

1More information at https://mjsaldanha.com/sci-projects/1-psp-project-1/.
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or on a single, reasonable one. Theoretical analysis was guided by computational com-
plexity concepts and the notions of depth- and work-complexity [Blelloch 1996], which
are specific for parallel algorithms.

For the design of algorithms we used Foster’s PCAM methodology [Foster 1995],
in which the analyst goes through four phases. In the partition phase, the algorithm is split
into as many tasks as possible, each of which consists of instructions and a small private
memory. In communication the necessary inter-task communication is established, and in
agglomeration, tasks are joined together in order to minimize communication. Finally, in
mapping, tasks are assigned to physical processors, possibly using a scheduling algorithm.
In this project, two PCAM analyses were performed and enabled the proposal of many
algorithms, the most fruitful of which are commented in Section 4.

3. Course of Investigation

We initially gathered, from the literature, ten articles that propose parallel PSP al-
gorithms, then ranked them according to number of citations and relevance of the
publishing conference or journal. We chose to investigate the second and third best
ranked ([Chu and Zomaya 2006] and [Benı́tez and Lopes 2010] respectively), since the
first one’s complexity and dependency on external libraries seemed to leave the project’s
scope.

Investigation began with article [Benı́tez and Lopes 2010], which applies Artifi-
cial Bee Colony Optimization in solving the PSP problem and proposes a distributed
version thereof, using MPI library for parallelization. After implementing both the se-
quential and parallel versions ourselves, experiments were performed to profile them. We
found that two procedures consumed most of the execution time: 1) counting collisions
among beads in the 3D space, which represent the protein’s subunits; and 2) given a se-
quence of relative movements (e.g., front–left–up–up) reconstruct the protein as a set of
beads in the 3D space. However, complying with Gustafson’s law (see Section 2) we also
identified that counting collisions is a O(N2), whereas reconstruction is O(N).

PCAM analysis was then applied to these two procedures, being more fruitful for
collision counting, to which we devised the two algorithms elaborated in Section 4. For
reconstruction, the analysis yielded that it could be formulated as a reduction operation,
which is not nearly as parallel as collision counting, would be more complex to implement
and would result in diminishing returns for bigger problem sizes (due to Gustafson’s law
and the lower complexity compared with collision counting); for all these reasons, we did
not investigate it further.

We followed a similar course for investigating the second article, namely
[Chu and Zomaya 2006], which applies Ant Colony Optimization to the PSP problem.
In this case, profiling showed that execution time was well spread over multiple proce-
dures; at a higher level, however, most of it was evenly spread over the work performed by
each of the N ants in the colony. PCAM analysis was then applied, focusing in how ants
could operate in parallel; then parallelizations were proposed and implemented. Results
are shown in Section 5.



4. High Performance Algorithms for Collision Counting
As mentioned previously, the investigation of PSP algorithms led to the proposal of algo-
rithms for counting collisions or, more generally, summing symmetric pairwise interac-
tions (SPI). This problem considers a set of objects {b1, ..., bN} upon which is defined a
commutative operation bi ◦bj; this could return, for example, gravitational forces between
planets, or a boolean value representing whether b1 and b2 collide or are in contact. In
such framework, if the interest resides in the sum over the set {bi ◦ bj : 1 ≤ i < j ≤ N}
then the algorithms discussed here apply.

The problem as formulated above appears frequently in many areas: in com-
puter graphics and virtual reality, collision among objects or friction among hair strands
(as done in [Selle et al. 2008]) has to be calculated on a per-frame basis; in simula-
tions, gravitational, electrical or magnetic forces are often of interest; in robotics, it is
important to calculate intersection relations between the robot’s current direction and
each visible object. This problem is known to be a major bottleneck in many ap-
plications [Lin and Gottschalk 1998], as there are O(N2) interactions to be evaluated,
so it has been extensively investigated. However, most approaches focus on pruning
the set of objects within which sum of SPI is performed (mainly by spatial division
[Elseberg et al. 2012] and bounded volume hierarchies [Stich et al. 2009]), or in approx-
imating the forces of distant objects (mainly by means of the Fast Multipole Method
[Greengard and Rokhlin 1987]). In any case, within these algorithms the usual SPI count-
ing algorithm is still used, so accelerating it implies improvement in all aforementioned
methods.

The straightforward algorithm for counting SPI is presented in Algorithm 1. It can
be seen that all iterations of the nested loops would be fully data-parallel if it were not
for the reduction variable interactions. This is often parallelized to GPU in two phases:
first the interactions are calculated by each GPU thread, and then are reduced to a sin-
gle value. The reduction operation has known efficient parallel implementations; for the
first phase, however, the straightforward parallelization would consist of assigning each
iteration of the outer for-loop to one GPU thread. This parallelization indeed allows for
intensive usage of the GPU’s computational resources and available memory bandwidth,
even though the outer for’s iterations are not balanced in terms of work performed. The
GPU manages to hide most of the inefficiency that could be caused by threads performing
a different amount of work compared with “neighbor” threads; in particular, the separa-
tion of threads in groups (called warps) of 32 prevents most of the idle work that could be
caused by this imbalance.

Algorithm 1: Standard algorithm for
calculating SPI.

for (i = 0 to N-1)
for (j = i+1 to N-1)

interactions += interact(obj[i],
obj[j]);

Algorithm 2: Proposed algorithm for
calculating SPI.

for (i = 0 to N-1)
for (j = 1 to (N-1)/2)

interactions += interact(obj[i],
obj[(i+j)%N]);

Within a warp, though, such inefficiency still happens. In Algorithm 2 is shown
our proposal, which is a small alteration of the sequential algorithm that, when paral-
lelized to the GPU, overcomes this inefficiency. In this case, each outer iteration is also
assigned to a thread, so that thread i compares bead bi with exactly (N − 1)/2 following



beads (in a circular way, so bead b1 “follows” bN ). This is in contrast to the previous par-
allelization, in which thread i compared bead bi with all following beads up to bN , hence
threads with higher index performed fewer comparisons.

In [Saldanha and de Souza 2019] this proposal is proved to be equivalent to the
original algorithm, using modular arithmetic. In short, there are N(N − 1)/2 distinct
symmetric pairwise interactions to be evaluated, which is precisely what the original al-
gorithm considers. We first prove that the proposed algorithm evaluates N(N − 1)/2
interactions, and then prove they are different, concluding the proof of equivalence.

Both algorithm versions were implemented, with shared memory being used in the
same way and using the same reduction function, and experiments were performed with
an NVIDIA Tesla P100 with 16GB of memory, 3584 CUDA cores and 56 multiproces-
sors. The results are presented in Figure 1 (left), in which it can be seen that the proposed
approach is faster than the straightforward one. For all problem sizes higher than 525 000
the proposed approach is at least 12% faster (p < 0.01 using a t-test assuming unknown
and different variances).

In contrast with the first proposal, which considers beads in Rm, the second pro-
posal imposes a restriction on such space. Here beads must be in an S3 such that{

S3 = S × S × S
S = {−a, −a+ 1, . . . , a− 1, a} ⊂ Z

which means that the space is discrete and bounded. Besides this, it is also required that
the interaction of interest is either collision (b1 = b2) or contact (||b1 − b2|| = 1). For
counting contacts among beads in such space, we propose Algorithm 3, which receives as
argument the vector of beads and a pointer to a memory region that has one element for
each point in S3. For simplicity, we assume the pointer can be dereferenced with negative
indices; for now we also assume it is zero-initialized, which is elaborated later.

Algorithm 3: Counting the number of contacts among a vector of beads.

1 int countContacts(point3D beads[], int space[][][]){
2 int contacts = 0;
3 for (b in beads) space[b.x][b.y][b.z] += 1;
4 for (b in beads){
5 contacts += space[b.x+1][b.y][b.z] + space[b.x-1][b.y][b.z];
6 contacts += space[b.x][b.y+1][b.z] + space[b.x][b.y-1][b.z];
7 contacts += space[b.x][b.y][b.z+1] + space[b.x][b.y][b.z-1];
8 }
9 return contacts / 2;

10 }

The algorithm begins by incrementing memory elements associated with each
bead’s position (line 3). After this process, each memory element holds the number of
beads located in the associated position. Following, the algorithm iterates over the vector
of beads again: for each bead, it reads the number of beads located in each neighboring
position, and adds it to the contacts variable. A problem arises here because each contact
is being counted twice: if bi and bj are in contact, then it is being counted in iterations



Figure 1. Experimental results. Each sample point is the mean taken from 100
executions, and the vertical length of the black error bars equals 4 standard de-
viations. (left) Comparison of the straightforward parallelization for GPU with
the proposed one. (right) Comparison of the sequential approaches: the usual
algorithm and the proposed one with O(N) complexity.

for both bi and bj . Consequently, the function returns half of the counted contacts. Ini-
tialization of the space memory region is done by iterating over the vector of beads one
more time, initializing the six memory elements associated with neighbor positions of
each bead.

It is readily seen that the proposed algorithm has O(N) complexity, though it can
consume a large amount of memory. Using a computer with an Intel i7-4790 3.6GHz and
32GB of primary memory, we performed experiments with the usual and proposed ap-
proaches for calculating contacts among beads of multiple randomly generated proteins,
obtaining results shown in Figure 1 (right). Bigger proteins require a larger memory re-
gion, which is why the proposed approach allocated about 52GB of virtual memory at
problem sizes of about 1900 beads. In [Saldanha and de Souza 2019] we argue that many
problems, such as one of the PSP algorithms investigated, will perform contact counting
multiple times, so the memory region can be reused. Further, the probability distribution
of the beads’ positions may be concentrated in a certain region, as happens in PSP where
compact proteins are favored by the optimization algorithm. This prevents swapping and
allows a good speedup to be obtained when compared with the O(N2) approach.

5. Heterogeneous Platform PSP Algorithms

Complying with the objectives initially defined for the project, we have produced 16
algorithm versions, 14 of which use some sort of high performance artifice: CUDA, MPI,
OpenMP and/or sequential optimizations; therefore they are algorithms that can exploit
GPUs, multicore CPUs and/or clusters of computers.

In [Benı́tez and Lopes 2010] is proposed the first PSP algorithm we investigated.
The authors apply the Artificial Bee Colony optimization algorithm to predict the struc-
ture of a protein modelled according to their proposed model, in which each amino acid
is represented by two relevant mass centers (the backbone and side-chain centers). They
also propose an MPI parallelization, where the available processing nodes are divided in
groups called hives, each running the optimization algorithm in a master-slave fashion,
and the masters of each hive periodically exchange proteins with each other in a ring
topology. We have implemented their sequential and parallel versions; let them be called
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Figure 2. Execution time of the PSP algorithms produced. Each sample point
is the mean of 10 executions, and the black error bar’s vertical length equals 4
standard deviations. (left) Algorithms from the first investigated algorithm. (right)
From the second investigated algorithm.

the S1 set of versions. Each of these was enhanced in this project by using other accel-
eration techniques. First, the contact and collision counting procedures were changed to
the linear version elaborated in Section 4, generating a new set S2. Second, both sets S1

and S2 were parallelized to evaluate different proteins simultaneously in multiple threads,
using OpenMP, generating set S3 of versions. Finally, set S1 had its counting procedures
parallelized to CUDA, using the efficient algorithm that we proposed (see Section 4).

Experiments to evaluate these versions were performed in a computer with a GPU
GeForce 940M, an Intel i7-5500U 2.40GHz and 8GB primary memory. Since the MPI
parallelization is not a product of this project, and due to the large number of versions,
we experimented only with the original sequential version and its enhancements proposed
in this project. Results are shown in Figure 2 (left), where it can be seen that the initial
sequential version (big blue dots) is the slowest. Its parallelization with OpenMP (small
yellow dots) yielded a speedup slightly above 2.0, which is reasonable for a machine with
two physical cores (four virtual). The linear approach (thick green solid line) provided
the best results (reasons are given in Section 4), although the machine could only provide
enough virtual memory up to problem size 768. Its parallelization for two threads (thick
cyan dashed line) resulted in a 1.30 speedup, much less than the ideal, likely due to com-
petition between both threads for accessing memory. In this case, the virtual memory was
exhausted at problem size 384 because each thread requires its own memory region. Fi-
nally, the CUDA parallelization (thin orange solid line with small dots) initially performs
worse than all other versions, due to the high fixed cost of data transfer between primary
and GPU memory. At larger problem sizes, however, this version becomes better than
both other versions that use O(N2) procedures for collision and contact counting.

The second investigated PSP algorithm comes from [Chu and Zomaya 2006],
where Ant Colony Optimization (ACO) is applied to the PSP problem, and four dis-
tributed versions thereof are also proposed. We implemented, and then enhanced, the
authors’ sequential approach and the proposed distributed version named “round robin
– multiple colonies”. In this version, the available processors execute the ACO indepen-
dently, periodically exchanging best solutions with neighbor processors in a ring topology.
As mentioned in Section 3, the execution time for this algorithm is well spread over mul-
tiple procedures, so we opted to parallelize the whole activity of an ant, which comprises
multiple procedures. This was also an attempt to make the GPU version provide speedups



even for small problem sizes, which was not the case with the first algorithm.

Experiments with the versions produced in this project were performed in the same
conditions as the first algorithm; the results are shown in Figure 2 (right). Again, as the
MPI parallelization is not ours, we here show experiments only with the original sequen-
tial versions and enhancements thereof made in this project; all versions are available in
public repositories2. The original versions were parallelized with OpenMP (green solid
line), by distributing ants to each thread and synchronizing their access to the pheromone
matrix. Besides that, we also implemented the ant colony in the CUDA programming
model (red dashed line), which involved migrating hundreds of lines of CPU code to run
in GPU. As seen in Figure 2, both produced versions are faster than the original algorithm.
The OpenMP parallelization resulted in 2.39 speedup, which is reflects the machine hav-
ing 4 virtual cores (2 physical). The CUDA version was the fastest one for all problem
sizes, which is a positive characteristic when compared with results from the first algo-
rithm investigated. However, this version resulted in 2.95 speedup for the largest problem
size tested, which does not seem to be good considering the amount of energy consumed
and the computational power provided by the GPU. Investigation of this version has not
ended, and we are now attempting to devise ways of increasing such speedup.

The set of algorithms produced is not without limitations. The area of PSP is very
large, and there are multiple ways to tackle the problem of predicting protein structures.
Some algorithms use data available in international protein data banks, others consider
more aspects of protein folding, such as the interaction of the protein with the surrounding
fluid or the ribosome during folding. Moreover, PSP algorithms used in competitions such
as the CASP [Moult et al. 2016] may also combine results from multiple algorithms with
diverse characteristics. In this project, both investigated PSP algorithms are part of a
class called ab initio, which predicts the structure solely based on the protein’s amino
acid sequence; not using data available in data banks is seen as a better way of predicting
proteins to which there does not exist similar “templates” (similar proteins). Also, both
algorithms use HP (hydrophobic-polar) models, in which each amino acid is represented
by a small number of beads. It could instead model all of the protein’s atoms, which
would characterize a full-atom representation; in this case, the protein can be encoded,
for example, with a few beads per amino acid (representing relevant mass centers) and
the angle between amino acids [Xu and Zhang 2012]. Full-atom models tend to have
more mathematical calculations, so they take longer than HP models, but may result in
more precise predictions. One limitation of our project is thus having investigated only
HP models.

6. Conclusion

As the performance growth of a single processor core decreases, it is all the more impor-
tant to use high performance computing (HPC) techniques to accelerate programs that,
despite their great importance, take too long to execute. This project brings a contribu-
tion to the area of Protein Structure Prediction (PSP) by applying parallel programming
and other algorithmic optimizations into existing PSP algorithms. The implemented al-
gorithms are available for other researchers in the area of PSP, who could use them to

2Available at https://mjsaldanha.com/sci-projects/1-psp-project-1/ under Sec-
tion “Public Resources”.
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perform predictions more quickly or to compose a bigger algorithm that combines the
output of multiple algorithms to produce a better prediction.

The investigation also resulted in a contribution that reaches many areas other
than PSP. As said in Section 4, the proposed algorithms for counting interactions could be
used in computer graphics, virtual reality, robotics and simulations of natural phenomena.
This contribution resulted in an article [Saldanha and de Souza 2019] in which one of
the algorithms is mathematically shown to be correct, and both algorithms are shown
experimentally to yield benefits in terms of execution time.

The CUDA parallelization of the second algorithm is on the process of being in-
vestigated, aiming to use shared memory more efficiently or reduce thread divergence
caused by ants (which are executed by a thread) that end up following different con-
trol flow paths, which impacts performance in the GPU. Future work should also focus on
applying HPC in other kinds of PSP algorithms, such as those that use full-atom represen-
tations of proteins. Finally, we believe that all objectives established upon this project’s
conception were achieved, and the obtained results and contributions exceeded our initial
expectations.
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