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Abstract - In Brazil drainage patterns and slopes were studied in the Valley of Três Forquilhas near Terra de 
Areia on the seaward edge of the volcanic plateau of northeastern Rio Grande do Sul. We studied this area to ex-
plain why the escarpment of the plateau is closest to the sea here and to establish the erosional history of this 
small part of the escarpment. Here two small rivers, Três Forquilhas and Maquiné, follow the Torres Syncline 
to the Atlantic Ocean. These rivers probably started to significantly erode the syncline and the volcanic plateau 
starting in the Middle to Late Miocene in response to far field Andean tectonics and epirogenic uplift across 
most of South America. Subsequent erosion probably occurred in pulses rather than at an uniform rate in both 
watersheds much as short bursts of intense heavy rainfall “pulse” local erosion of the escarpment every few 
years today. Study of the offshore sequence stratigraphy of the Tertiary fill of the adjacent Pelotas Basin helped 
us establish this local erosional history (seven unconformity bound sequences, thickness variations between 
these unconformities, and large scale slumping). Study of an onshore subsurface cross section also identified 
two paleovalleys in Mesozoic rocks beneath the present valleys of Três Forquilhas and Maquiné Rivers. There 
is a strong structural control on drainage at all scales. Consideration of slope process contributed significantly 
to our understanding of drainage evolution and the origin of the escarpment of the volcanic plateau. 
Keywords: Três Forquilhas Valley, volcanic plateau, Paraná Basin, Pelotas Basin, Torres Syncline, mass move-
ments, drainage system.

Resumo - Vale Três Forquilhas no Sul do Brasil - evidência do soerguimento do planalto vulcânico. 
Os padrões de drenagem e a encosta foram estudados no vale do rio Três Forquilhas que é situado próximo da 
localidade de Terra de Areia, entre o mar e a borda nordeste do planalto vulcânico, no Rio Grande do Sul. Esta 
área foi estudada para explicar por que a escarpa do planalto vulcânico é mais próxima ao mar nesta sua por-
ção nordeste e estabelecer a história erosional desta porção da escarpa. Aqui dois rios relativamente curtos, os 
rios Três Forquilhas e Maquiné, seguem a Sinclinal de Torres em direção ao Atlântico. Esses rios, provavelmen-
te, iniciaram a erodir significativamente a sinclinal e a borda do planalto a partir do Mioceno Médio a Superior, 
em resposta à tectônica Andina de soerguimento tectônico de colisão ao longo da maior parte da América do 
Sul. A erosão subsequente, provavelmente, ocorreu em pulsos e não em uma fase uniforme em ambos os divi-
sores de águas, muito como as chuvas torrenciais atualmente, que a cada dois ou três anos “impulsionaram” a 
erosão local da escarpa. O estudo da sequência estratigráfica no Terciário quando da sedimentação da Bacia 
de Pelotas adjacente à área de estudo, nos ajudou a estabelecer esta história erosiva local (sete discordâncias 
entre as sucessões de depósitos, variações de espessura entre estas discordâncias e a grande escala de es-
pessuras). O estudo de uma seção transversal do continente em direção ao litoral identificou dois paleovales 
em rochas do Mesozoico abaixo do nível de base dos atuais rios Três Forquilhas e Maquiné. Há um controle 
estrutural forte da drenagem em todas as escalas. Essas considerações sobre os processos que se desenvolvem 
sobre a vertente contribuem, significativamente, para a compreensão sobre a evolução da drenagem e a origem 
da escarpa do planalto vulcânico.
Palavras-chave: Vale Três Forquilhas, planalto vulcânico, Bacia do Paraná, Bacia de Pelotas, Sinclinal de Tor-
res, movimentos de massa, sistema de drenagem.
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1 Introduction

Long coastal escarpments on passive continen-
tal margins are recognized as major global geomor-
phic features comparable in importance to continent-
-spanning, Alpine-type mountains. Such escarpments 
are well developed and best known mostly in southern 
Africa (Ollier & Marker, 1985; Partridge & Maud, 2000), 
western peninsular India (Widdowson, 1997), and 
eastern Australia (Bishop, 1988; Ollier & Pain, 1994).  
Southwestern Brazil, also a passive margin, has compa-
rable coastal escarpments ranging from Rio de Janei-
ro to near Porto Alegre, a distance of over 1.500 km, 
that includes the Serra do Mar and the seaward bor-
der of the volcanic plateau of southeastern Brazil. Most 
of the drainage of this plateau is away from the coast 
and flows a much longer distance to Buenos Aires via 
the many tributaries of the Paraná River. “Planalto” is 
a long used informal name for the lava-sandstone pla-
teau of the Paraná Basin (Ab’Saber, 1969; IBGE, 1990, 
1993; Ross, 1990). Other local names used include the: 
“Planalto Meridional”, “Planalto Basáltico” and “Planal-
to do Paraná”.

 We studied only a very small portion of this 
escarpment where it comes closest to the South Atlan-
tic Ocean in the Torres Syncline of northeastern Rio 
Grande do Sul and adjacent Santa Catarina states (Figs. 
1 and 2). We chose this area for two reasons: there is 
some rare subsurface data here both on and offshore 
and here the escarpment is closest to the sea, it is only 
separated from the South Atlantic Ocean by a 13 km 
wide stripe of coastal lagoons, swamps, well develo-
ped beaches and some low dunes. The escarpment ri-
ses abruptly 800 m above this coastal landscape. Here 
two small, parallel rivers Três Forquilhas and Maquiné 
(Fig. 3) flow directly into the coastal lagoons, both in 
spectacular, short valleys, where the watershed of Três 
Forquilhas River covers about 380 km2 and that of  Ma-
quiné River 422 km2. Both watersheds are almost all in 
slopes. Included in the study are adjacent portions of 
the volcanic plateau most of which drains inland and 
a small area of eastward drainage of the headwaters of 
Mampituba River, which flows into Santa Catarina. The 
northward and inland drainage behind the rim of the 
escarpment is into the Tainhas River, a tributary to the 
Antas-Taquari River which drains some 340 km sou-
thwest into the Jacuí River and the Guaíba Lagoon near 
Porto Alegre. This setting suggests three questions 
- why is the escarpment so close to the sea here, how 
were the twin valleys of Três Forquilhas and Maquiné 
Rivers localized, and when were they so spectacularly 
entrenched?  The last of these questions is directly re-
lated to the time of uplift of the volcanic plateau.  Be-
cause both valleys appear to be identical twins, we fo-
cused on the valley of Três Forquilhas.  

 To answer these questions we turned first to 
regional geology, used the 1:50,000 topographic maps 
of the Tainhas, Aratinga, Três Cachoeiras, Barra do 

Ouro, Maquiné and Arroio Teixeira quadrangles plus 
two 1:100,000 geologic quadrangles (Horn Filho et al., 
1984a and b) some special kinds of spatial images, en-
vironmental and engineering reports (Har Engenharia, 
1990; Figueró et al., 1998), onshore core drilling and 
offshore seismic sections plus insights from the Neoge-
ne uplift history of South America.

Figure 1. The State of Rio Grande do Sul on the passive margin of 
South America. Regional setting, major structural features (Ponta 
Grossa Arch, Sul-Rio-Grandense Shield) and study area.

Figure 2. Looking northeast along the dissected front of the volcanic 
plateau from the shores of Quadros Lagoon.
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Figure 3.  Watersheds of Três Forquilhas and Maquiné rivers.

2 Regional setting

2.1 Geology

The Torres Syncline (Fig. 4 – A, B, C) lies about half 
way between two major regional structural features, 
the Ponta Grossa Arch to the northeast and the Sul-Rio-
-Grandense Shield to the southwest. Both directly in-
fluence the morphology of the valley and the location of 
the escarpment and thus affect its retreat. To the nor-
theast the Ponta Grossa Arch carries the escarpment to 
over 1600 m above sea level and Proterozoic, mostly 
crystalline rocks extend inland to about 350 km, whi-
le to the southwest of the Torres Syncline, the Sul-Rio-
-Grandense Shield is the dominant structural feature 
and also causes the escarpment to extend inland some 
370 km. As traced southwestward from Santa Catarina, 
the volcanic plateau and its escarpment become gra-
dually lower. Above the Precambrian basement in the 
Torres Syncline is a thin section of Upper Paleozoic and 
Mesozoic rocks, mostly sandstones, of which only the 
Jurassic-Cretaceous Botucatu Sandstone, an eolianite 
(Almeida, 1952; Scherer, 2000), has a few outcrops in 
and near the syncline. In Três Forquilhas Valley all the 
outcrops of the Botucatu are near the city of Terra de 
Areia and none are higher than 60 m above sea level. 
Overlying the Botucatu are about 700 to 900 m of lava 
flows of the Jurassic-Cretaceous Serra Geral Formation 
(Fig. 5), the widespread flood volcanics of the intra cra-
tonic Paraná Basin (Bellieni et al., 1986; Mantovani et 

al., 2000; Milani & Zalán, 2000). These flows cover an 
area of about 1,100,000 km2 in Brazil, Argentina, Para-
guay, and Uruguay and everywhere form a distinctive 
escarpment (Fig. 1). Locally, in the Torres Syncline the-
re appear to be between 15 to 20 m such flows in the 
escarpment some of which, in the upper part of the sec-
tion, can be traced as far as 10 to 15 km or more. In the 
lower half of the escarpment their composition is do-
minantly that of basalt, but higher in the section rhyoli-
te is dominant and there are even some glass-rich flows 
(Belliene et al., 1986; CPRM & FEPAM, 1998; Mantova-
ni et al., 2000). These compositional variations, along 
with variations in texture and fracture density, marke-
dly affect the weathering profile of the escarpment and 
the surface processes acting on it. The upper acid flows 
form prominent, near vertical cliffs (Fig. 6), some as 
high as 30 to 40 m or more, and have steep intervening 
slopes, whereas the lower slopes developed on basalt, 
have fewer cliffs, gentler slopes and thicker colluvium. 
Consequently, the overall topographic profile of the es-
carpment steepens upward as its volcanic rocks chan-
ge from easily weathered basalt to more resistant acid 
volcanic.    

The study area has three prominent fracture sets, 
the strongest generally trends N 60°E and is approxi-
mately at right angles to the trend of Maquiné and Três 
Forquilhas rivers and Josafaz Stream (Fig. 7). Other 
fracture systems trend N 10°-20E and N 40°-50°W (Fi-
gueró et al., 1998). The N 60°E fracture system strongly 
influences drainage systems at virtually all scales and 
also may be related to  the origin of the abrupt termi-
nation of the escarpment above the coastal plain (Figs. 
2 and 7).

 Unconsolidated Quaternary sands, silts and muds 
form a narrow 13 km wide, coastal plain between the 
base of the escarpment and the South Atlantic Ocean 
and consist of a large Holocene coastal sandy barrier 
behind which are several large shallow lakes, swamps, 
a few small isolated dune fields and some low scatte-
red terrace deposits and remnants of coastal barriers 
at the base of the escarpment (Horn Filho et al., 1984a 
and b). Except for a few dunes and low terraces, most 
of this coastal plain is only a few meters above sea level, 
although the city of Terra de Areia lies on a low terrace 
some 10 to 15 m above sea level. The general geology of 
the unconsolidated coastal deposits is summarized by 
Villwock & Tomazelli (1995). Below these coastal plain 
sediments are about 1000 m of Triassic and Permian 
sediments above Precambrian basement (Aboarrage & 
Lopes, 1998), fig. 4A. This thicker section of Permian 
and Triassic sediment preserved beneath the Torres 
Syncline shows that a low has been in existence as a 
topographic low since at least since the Triassic.

 The Pelotas Basin, a marginal Atlantic Basin 
(Dias et al., 1994; Fontana, 1990, 1996; Cainelli & Mo-
hriak, 1998), lies offshore and extends the length of Rio 
Grande do Sul State into Santa Catarina State almost 
to Florianópolis. The Pelotas Basin is known from 17 
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wells and from extensive seismic study. It contains 
a Cretaceous section and thick Cenozoic section. We 
found the stratigraphic sequence and geologic history 
of the Tertiary fill of the Pelotas Basin to be essential 
for understanding nearby Tertiary erosional history 
onshore.

 In broad overview, the relief of Rio Grande do 
Sul State and most of southeastern Brazil has been as-
signed to four major erosion surfaces or cycles − Gon-
dwana, Post Gondwana, Sul Americana and Velhas 
− following King (1953, 1956), Ab’Saber (1969) and 
Justus et al. (1986). We tentatively recognize in the 
study area the volcanic plateau as a Sul Americana sur-
face. In our study area elevations of the plateau surfa-

ce range from about 880 m in the southwest to more 
than 1020 m in the northeast (Fig. 8). These surfaces 
are defined by elevation, dissection, distance from the 
sea and weathering crusts. Only remnants of the plate-
au remain in most of the watershed of Três Forquilhas 
so that most of it is in slopes (Fig. 9). In addition, there 
are minor remnants of a surface between 200 and 300 
m, probably the Velhas surface. The Sul Americana sur-
face has been considered to range from Cretaceous to 
Pliocene in age and the Velhas to be Plio-Pleistocene in 
age (Brown, 1971). Everywhere in the study area the 
topographic contrast between the plateau and direct 
Atlantic drainage to the southeast is clear and great as 
are contrasts in soils and surface processes (Table 1).

Figure 4. Cross sections based on Aborroage & Lopes (1998, fig. 96): A) Structural cross section and topography of  Torres  Synclinal seen 
from  the  coast; B) stratigraphic cross section using the middle of the Irati Formation as a level line; C) plateau surface (gray) with  line of 
cross sections A and B.  Note the three paleochannels below the location of Três Forquilhas River. 
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Figure 5. Generalized stratigraphic column of Serra Ge-
ral Formation near Terra de Areia, Rio Grande do Sul.

Figure 6. Massive thick flows in upper part of Serra Geral volcanics (A) and 
vertical cliffs (B).

Figure 7.  Fractures and geomorphology in the study area.
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Figure 8. Generalized elevations of the volcanic plateau surface rise to the northeast toward the Ponta Grossa Arch.

Figure 9. Plateau surface and its dissection: A) typical topography of the volcanic plateau east of São Francisco de Paula a few kilometers 
northwest of its scarp; B) wide valley of Antas-Taquari River draining the back slope of the plateau about 18 km from its scarp (note open, 
shallow, swampy valley and contrast with narrow valleys flowing directly to the Atlantic Ocean); C) and D) valleys of streams flowing di-
rectly to the Atlantic in front of the scarp.
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2.2 Climate and Vegetation

The valley of Três Forquilhas River has a subtro-
pical climate with marked seasons; summers typically 
have temperatures between 25 to 30°C and winters 
between 5 and 15°C. Average rainfall in the valley is 
1800 mm (one of the wettest regions in Rio Grande do 
Sul). Year to year variation is great, however; for exam-
ple, between 1975 and 2010 the driest year at Terra 
de Areia had 970 mm of rainfall and the wettest 2768 
mm, almost three times as much. Intense rainfalls have 
also been recorded and, because of the great local re-
lief, they play an important role in local geomorphic 
processes. It is intense single and successive day rain-
fall; however, that saturates slopes to failure. In Três 
Forquilhas Valley, single day rainfall maxima (Table 2) 

range from 91 to 206 mm for the years 1975 to 2010. 
Successive days of high rainfall are more dangerous 
and damaging, however, because after the first day of 
high rainfall, the soil is already largely or totally satu-
rated. For example, in 2010, 324 mm in 11 days caused 
widespread slope failures and debris flows (data from 
Departamento Nacional de Águas e Energia Elétrica - 
DNAEE and Companhia de Pesquisa de Recursos Mine-
rais - CPRM, 1975-2010).

Three types of vegetation are recognized in the 
valley of Três Forquilhas. These vary with landscape, 
altitude and climate and are the Campos de Cima da 
Serra (the open grasslands of the volcanic plateau) and 
the Araucária and Atlantic Forests of which the Atlan-
tic is the most widespread. Originally these two forests 
covered all the valley floor and all but the steepest slo-

Morphology Soils Drainage Processes

P
L
A
N
A
L
T
O

Broad, low relief, 
gently inclined 
surface between 880 
– 1020 m with open, 
wide to shallowly 
entrenched valleys 
and low slopes 
commonly less than 
5° to 10°. Some small 
irregular hills of 
rhyodacite

Thin to locally 
moderately thick 
strongly acid humic 
brown Cambisols, with 
low base saturation; 
non plastic A horizons, 
but AB and B horizons 
are very plastic. Soils 
typically between 2.5 
and 4.0 m thick.

Open networks with 
low gradients, 0.012 
to 0.050 m/km, flow 
420 km to Atlantic 
via Taquari and Jacuí 
Rivers to Patos Lagoon 
only 2 to 3 m above 
sea level.

Minor mass wasting 
on interfluves and 
little erosion and 
down cutting near 
escarpment, where 
there is probably 
much internal 
drainage in fracture 
systems.

T
R
Ê
S

F
O
R
Q
U
I
L
H
A
S

S
L
O
P
E

Almost total 
dissection of plateau 
surface by steep-
sided (20 to 30°) 
tributary valleys;  
cliffs common (60° to 
85°) on upper slopes, 
but colluvium, 2 to 8 
m  thick dominates 
below 300 to 500 
m on gentle, almost 
concave upward 
slopes. Volcanic flows 
produce stepped 
relief on all slopes.

Thin soils between 
cliffs above 400 to 600 
m, but thicker soils 
on colluvium below;   
commonly thin, slightly 
acid incept sols and 
reddish Brunosols with 
high base saturation. 
The A horizons are 
plastic, but B horizons 
contain angular blocks 
and are non plastic. Soil 
typically 3.0 to 4.5 m 
thick. Rocky substrates 
almost everywhere.

Dense networks 
of steep gradient 
streams, 0.18 to 0.27 
m/km, flow to Atlantic 
only 30 to 50 km 
distant; strong fracture 
control at all scales.

Mostly down cutting 
in upper tributary 
valleys, but some 
lateral planation in 
lower half of principal 
valley; episodic 
rock failures in acid 
volcanics high on 
slopes cause debris 
flows, create long 
side valley scars, and 
seem to the principal 
process of slope 
retreat?

B
A

   S
I
N

V
A
L
L
E
Y

Well developed 
floodplain in lower 
half of valley largely 
free of terraces 
except at mouth, but 
some debris fans and 
abandoned channels 
in upper reaches.

Two major types: 
reddish Brunosols are 
moderately acid to 
neutral with high base 
saturation where as 
Entisols, developed on 
unconsolidated sand 
are acid to neutral with 
low base saturation.

Mostly straight to 
weakly meandering 
except just above 
well developed, low 
energy delta in Itapeva 
Lagoon.

Lack of widespread 
terraces suggests 
valley not closely 
linked to Pleistocene 
sea level changes?

Table 1. Geomorphic summary (adapted from HAR Engenharia, 1990: tables 1.1 to 1.3, and Uberti, 1980).
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pes and cliffs of Três Forquilhas Valley. Today, however 
almost all of the valley bottom and most of the lower 
slopes have been cleared. See IBGE (1993, p. 123-129), 
Domingos (1997) and Verdum (2009) for detailed des-
criptions of vegetation and its distribution in coastal 
southern Brasil.

 Key for geomorphology is that Atlântica and 

Araucária Forests have dense understory of vegeta-
tion that reduce runoff; these two forest types also and 
equally have dense interpenetrating networks of roots 
that bind and stabilize soil and colluvium. Where this 
forest has been cut, however, this root system rots and, 
after a few years, soil and colluvium are much less re-
sistant to creep and failure.

Single Days Sequential Days
  94 - 24/02/75
  75 - 12/05/76
  84 - 21/07/80
140 - 03/12/80
125 - 28/06/82
136 - 13/06/83
140 - 09/08/85
150 - 21/02/93
100 - 14/05/94
120 - 05/11/99
116 - 04/10/00
103 - 29/11/02
103 - 04/05/04
108 - 20/11/06
117 - 04/03/07 
142 - 22/04/08
122 - 03/01/09 

162 - 12, 13 & 14/12/75
159 - 11, 12 & 13/05/76
156 - 12 & 13/06/83
172 - 19 & 20/06/84
192 - 16, 17 & 18/01/87
198 - 13 & 14/05/94
130 - 05 & 06/11/99
124 - 29 & 30/11/02
108 - 22, 23 & 24/03/05
180 - 18, 19 & 20/11/06
165 - 01 to 04/03/07
231 - 16 to 21/03/07
202 - 02, 03, & 04/01/09
324 - 14 to 24/02/10 

Table 2. Extreme Rainfall (mm) at Terra de Areia 1975 to 2010 (Data from DNAEE and CPRM, 1975-2010).

3 Results

3.1 Drainage pattern and profiles

 There is a close relation between drainage pat-
tern and structure in the Torres Syncline that is appa-
rent at all scales (Figs. 4 and 7). Both the Três Forqui-
lhas and Maquiné Rivers flow south observation shows 
dips up to 15° along some of the straight reaches of the-
se small streams as reported elsewhere in the Paraná 
Basin. Thus it seems that many, perhaps all, of the lar-
ger tributaries in the watershed of Três Forquilhas and 
nearby developed along important fractures in under-
lying densely fractured bedrock; this greatly facilitated 
down cutting and headward stream erosion into the 
plateau surface. Notable is that the eastern tributaries 
of Três Forquilhas River are longer than its western 
ones. Could this be a consequence of flowing downdip 
on steeper gradients of the eastern limb of the syncli-
ne? Overall, the fracture-lineament system in the study 
area is directly responsible for its rectangular-dendri-
tic to directional-trellised drainage pattern (Howard, 
1967). Also of importance is that west of the watershed 
of Maquiné River, drainage parallels the coast and flo-
ws into Patos Lagoon, a distance of about 160 km, ra-
ther than flowing directly into the Atlantic. On a much 
smaller scale, this mirrors closely the drainage pattern 

of the Uruguay and Paraná Rivers, both of which take 
the “long way” to the Atlantic (Araújo et al., 1999).

        Another example of drainage away from the 
escarpment rim is the northward drainage down its 
backslope into the headwaters of the Antas-Taquari Ri-
ver. Here drainage pattern is mostly open and dendritic 
(instead of dense, steep and subparallel on the front 
of the volcanic plateau) and gradients are low. These 
shallow valleys on the plateau are separated by a few 
low, irregular scattered hills of acid volcanics. Although 
outside of the main volcanic plateau and now draining 
directly to the Atlantic, Josafaz Stream flows northwest 
13 km following a fracture before abruptly turning 
eastward to the Atlantic (Fig. 8). We interpret this nor-
thwest trending segment of Josafaz Stream to be a relic 
of an earlier tributary to the Antas-Taquari River before 
its capture by the Mampituba River in the present cycle 
of erosion. The main trunk of the Três Forquilhas River 
and its principal tributaries appear to lack any signifi-
cant knickpoints except at the lip of the plateau surface, 
where there are two short tributaries of an earlier cycle 
of erosion (Fig. 10).

 In sum, the watersheds of Três Forquilhas and 
Maquiné Rivers are limited by the Torres Syncline and 
flow sub parallel to its axis following fractures or faul-
ting to the nearby South Atlantic Ocean, whereas many 
of their larger tributaries are localized by the densely 
spaced, south-southwest trending fracture system. Be-



Pesquisas em Geociências, 40 (3): 189-208, set./dez. 2013

197

cause the lithologies are similar in the two watersheds, 
so too are their stream densities. Lack of knickpoints 
in longitudinal profiles points to a landscape in equili-
brium.

Figure 10. Longitudinal profiles of Três Forquilhas River and its 
three principal tributaries. Note low remnant gradients in several 
headwaters upstream from knick points at edge of volcanic plateau.

3.2 Slopes

The study of slopes in the watershed of Três For-
quilhas Valley provided many insights to the surface 
processes that act on the escarpment of the plateau 
and how it retreats. These processes of mass wasting 
include creep, rotational and translational slides, rock 
falls and debris flows (Hunt, 2005, table 1-9; Filho & 
Virgili, 1998, Ch. 15). The different lithologies of the 
Volcanic Plateau (basalts and rhyolites) control the 
weathering processes and, consequently, the topogra-
phic profile. Very broadly, the valleys of rivers Três 
Forquilhas and Maquiné and their larger tributaries all 
share a common cross valley profile − an upper part 
consisting of near vertical cliffs, some as high as 30 to 
40 m separated by steep slopes above a lower, almost 
convex upward, smoother profile that largely lacks cli-
ffs. These two parts reflect not only a compositional 
change in the flow composition (more acid above and 
more basic below), but also different surface processes 
as well. In addition rock falls from acid cliffs high on 
the escarpment form prominent, long landslide scars 
with debris flows at their base. Thin colluvium on 
upper steep slopes has mostly shallow translational 
slides whereas low on the escarpment rotational slides 
in thicker colluvium prevail. Creep, on the other hand, 
occurs on all the slopes, but is most important low on 
the escarpment where colluvium is the thickest (Fig. 5). 
Where deforested, these lower slopes have many small 
shallow rotational slumps as well as some deep ones 
in their thicker colluvium. In addition, there are a few 
prominent, long landslide scars that extend from the 
acid volcanics high on the escarpment to the bottom 
of large tributaries such as Pinto Stream, where they 
terminate in debris cones some of which displace the 
principal stream of the valley. 

The sudden release of debris from high above is 

typically funneled into the steep channel of a first or-
der stream, where it erodes all unconsolidated mate-
rial down to bedrock to form a distinctive, long scar 
(Fig. 11). See Figueró et al. (1998) for a good summary 
of surface processes on the lower slopes and how the 
different volcanic rock types weather and affect cons-
truction. In addition, an alternating wet and dry climate 
in the Quaternary has been inferred from both valley-
-side deposits and their topographic profile in nearby 
Santa Catarina and Paraná States − see the summary 
by Clapperton (1993, p. 221-228) and the original re-
search by Bigarella & Mousinho (1966). Thus we fully 
recognize that the slope deposits of Três Forquilhas 
Valley have a history - have a stratigraphy - that deser-
ves consideration in future studies.  Fundamental to 
understanding slope processes in the valley is the de-
gree of fracturing of its underlying flows, their capacity 
to transmit water and their susceptibility to chemical 
weathering (Chart 1). There is still another key factor 
− whether the flows locally dip into the valley or away 
from it (Fig. 12). Whether or not a flow brings water (is 
an aquifer) to a slope is important, because wet slopes 
are much more likely to fail than dry ones − wet collu-
vium weighs more and also has lower effective stresses 
(Hunt, 2005, p. 721-722).

Figure 11. Debris scar and valley bottom deposit in Pinto Stream 
south of Aratinga.
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Where aquifer beds dip into a slope, they may 
drain water from it (if colluvium is neither too thick 
nor too impermeable), but where they dip toward the 
slope, they add water to it − not only during rains, but 
throughout the year − so that wet colluvium and soil 
are never too far from failure. Conversely, where water 
is diverted from a slope, colluvium and soil can adsorb 
much more water from a rain and thus be less likely to 
fail. In either case, the more fractured the aquifer, the 
greater its transmission of water and its internal solu-
tion and weathering (yielding more expandable clays), 
all of which contribute to additional instability. Greater 
density of fractures also produces smaller blocks that 
weaken a face. Additionally, near vertical to sub verti-
cal fractures that dip toward a valley reduce its stabili-
ty more than those that dip into the side of the valley. 
In Três Forquilhas Valley, the worst case for failure is a 
well fractured flow dipping into the valley. Because of 

the extensive vertical fracture system of the lavas of the 
Serra Geral Formation and the great local relief of the 
valley, a fractured flow dipping into a slope can collect 
water with a high hydraulic head from a wide area and 
thus will bring an enhanced flow rate to its outcrop and 
quickly destabilize it. 

Topographic cross sections provided insight for 
a better understanding of slope processes (Fig. 13A-
C). Eight cross sections were made in the watershed 
of Três Forquilhas River and three outside of it. These 
were constructed from enlargements of the 1:50,000 
topographic maps. Spacing of control points varies 
with slope ranging from 0.1 to 0.95 km apart for much 
of the plateau to as close as 0.05 km for some of the ste-
epest slopes depending on topography (Fig. 13B). For 
Três Forquilhas Valley, these sections always began and 
ended at the plateau surface or close to it. All sections 
were made along interfluves.

Composition
Rhyolites and rhyodacites – Weather notably less than basalt and form prominent cliffs high on the escarpment or low, 
irregular hills on the volcanic plateau; thin to moderately thick soils and colluvium.
Basalt – Relatively few cliffs and thick colluvium and soils low on escarpment.

Structure and Texture
Hard, dense and fresh rocks

Little fractured – Weather slowly into large blocks; likely to form a ledge or cliff and be an aquiclude.
Much fractured – Mechanically unstable, closely packed blocks, which weather rapidly; may form steep talus and commonly 
transmit much water.
Amygdaloidal beds – Commonly fairly thin, but likely to be aquicludes unless much fractured.
Volcanic breccias – Tend to be aquifers, especially where fractured.
Glasses – Weather readily to clay and form reentrants; generate much colluvium
Laminated rocks – Weather chemically and physically  more rapidly than massive  acid or   basic volcanic rocks
Paleosoils and altered rocks – Act as aquicludes and readily form colluvium were exposed.   Sandstones are thin and 
uncommon, but are good aquifers

Figure 12. Gentle dips of fractured lava flows can bring water to a hillside, when the dip is toward the valley.

Chart 1. Geomorphic and engineering characteristics of lava flows (adapted from Figueró et al., 1990).
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Sections 1, 1A and 2 are at right angles to small, 
first order tributaries that drain to the Atlantic, relic 
stream valleys not yet consumed by the new encroa-
ching cycle of erosion. Profile 2 illustrates rapid entren-
chment just below the escarpment only 4.6 km downs-
tream. Here valley sides slope at about 30°. Profiles 3 
and 4 are 9 and 14 km downstream both with distinctly 
wider valleys. Along profile 4, slopes range from 5° to 
45°. Profile 5 has an even wider valley with a convex 
upwards surface while Profile 6.35 km downstream, 
lacks remnants of the volcanic plateau surface, shows a 
broad bench at about 450 m and has a wide flood plain 
of 3 to 4 km. Sections 7 and 8 (Fig. 13C) extend down 
the front of the escarpment into Quadros and Itapeva 
Lagoons. Here, in all of southern Brazil, the volcanic 
plateau is closest to the Atlantic. In profile 7 the escar-

pment slopes uniformly seaward and in only 4 km ele-
vations decrease from over 800 m to almost sea level. 
Profile 8 has a similar, but more irregular, abrupt des-
cent to sea level. Two detailed profiles of isolated, small 
hills provide detailed insight to the above topographic 
cross sections (Fig. 14).

We also made three cross sections, profiles 9, 10, 
and 11, along the east side of the escarpment just out-
side of the Três Forquilhas watershed, These  show  a 
distinct shoulder, a surface between 200 and 300 m, 
possibly the Velhas surface, along the east side of the 
escarpment as it trends north of Três Cachoeiras. This 
distinct surface, 2 to 4 km wide and over 10 km long, 
parallels the east side of the escarpment and overlooks 
the broad lowland drained by Mampituba River.

Figure 13. Topographic cross sections: A) index map to cross sections; B) Três Forquilhas valley and similarity to the model of parallel 
retreat (Davis, 1908, apud King & Schumm, 1980) and; C) possible Velhas surface just to the east of the watershed.
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Figure 14. Two detailed profiles of small basaltic hills.

Three principal observations result from the se-
rial cross sections of Três Forquilhas Valley. As the 
upper resistant acid volcanics were consumed by ero-
sion, topographic relief within the valley was reduced, 
slopes became lower, and floodplains widened. In Três 
Forquilhas Valley the rate of valley widening downs-
tream, calculated from the junction of Carvalho and 
Pinto Streams, is about one km per 7 km downstream 
whereas in the Maquiné valley this rate is about one ki-
lometer per 10 km downstream. In both valleys width 
seems to increase exponentially downstream.

Davis`s 1908 model (see King & Schumm, 1980) 
of slope development in a landscape underlain by al-
ternating resistant and less resistant beds seems to ap-
ply well to the escarpment of the plateau and suggests 
that the resistant acid flows retreat mostly by rock falls, 
whereas the lower basaltic flows weather more easi-
ly and generate more colluvium. Additional colluvium 
and blocks are added from above by debris flows and 
creep so that most massive flows on lower slopes are 
buried by it. This process invokes parallel retreat for 
the upper, resistant, acid cliff-forming flows and pos-
sibly non parallel retreat for the more easily weathe-
red basaltic flows of the lower slopes. Exceptions occur 
where a stream impinges against a valley wall, or whe-
re an acid flow is exceptionally closely fractured and 
thus never forms a cliff. We fully recognize, of course, 
that more superficial mapping on scales of 1:10,000 to 
1:2000, such as that made by Uberti (1981) for soils or 
by Figueró et al. (1998) for construction, are needed 
to fully understand in detail all the processes acting on 
the slopes of the escarpment, their relative importance, 
and the scales on which they operate. Thus the above 
discussion of slope evolution should be taken as a point 
at departure for more detailed future studies. See King 
(1967, p. 158-169), Selby (1985, p. 233-238 and 576-
586), Bloom (2004, p. 197-204), and Nott et al. (1996) 
for an introduction to the vast literature of the larger 
question of back wearing and how slopes retreat. 

When slope retreat on the escarpment occurs see-
ms much clearer to us, however, than the process ques-
tion of how it occurs. We suggest that the slope retreat 
of the plateau is largely episodic and mostly occurs du-
ring intense rainfall such as has been well documented 

in Santa Catarina (Bigarella & Becker, 1975, p. 200-206; 
Hermann et al., 1993; Pellerin et al., 1997), and recen-
tly in Rio Grande do Sul (Correio do Povo, 2000, p. 17; 
Primeira Hora, 2001, p. 14). Intense rainfall triggers 
failure (Fig. 15) on both colluvial slopes and cliffs, be-
cause it adds weight to the slope or face and at the same 
time reduces effective stress (Hunt, 1984, p. 721-723) 
in near surface deposits, so that a few hours of intensi-
ve rain will create ideal conditions for closely spaced 
landslides and debris flows. These locally strip collu-
vium and soil from a slope of the escarpment and re-
deposit it on valley floors as thick debris flow deposits 
− the deposits of large isolated of boulders seen on the 
floodplains of the larger tributaries represent old splay 
deposits. This is most likely to happen when slopes are 
still wet from earlier rains. See Pellerin et al. (1997) for 
such an event in nearby Santa Catarina, Jones (1973) in 
the coastal mountains of the city of Rio de Janeiro, and 
Williams (1973) for erosion from extreme rainfall from 
a hurricane in the Appalachian Mountains of Virginia.

Figure 15. Debris scars and debris flows in nearby Santa Catarina 
State after intense rainfall (A). Abandoned channel and flash flood 
deposition in Pinto Stream, Três Forquilhas Basin (B and C).

3.3 Age and origin of Três Forquilhas Valley: implications 
for the origin of the escarpment

Four lines of evidence provide insights to the drai-
nage history of Três Forquilhas and Maquiné Valleys: 
the far field effects of the uplift history of the Andes 
Mountains, the subsidence history (seismic stratigra-
phy evidence) of the bordering Pelotas Basin (Fig. 16), 
the broad regional geology of the Ponta Grossa Arch 
and the Rio Grande do Sul Shield, and an onshore sub-
surface cross section. 
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South America in the Middle and Upper Miocene

The uplift of the Andes Mountains in the Middle 
and Late Miocene included development of high plate-
aus, new and reactivated thrust belts, igneous activity 
and major faulting plus new intermontane basins (Ta-
ble 2, Chart 2). Starting at its southern end, examples of 
these events include the thrusted and uplifted Neuquén 

Andes in western Argentina between 37 to 39o S (coe-
val with extensive granitic intrusions) between 11to 6 
Ma (Melnick et al., 2006, p. 91); the increase at 7.5 Ma 
of headward erosion from the Pacific in northern co-
astal Chile (Mortimer, 1973; Kober et al., 2006); uplift 
in the central Andes across the Antiplano Plateau of 
Bolivia was mostly between 10 and 7 Ma in the Upper 
Miocene (Ghosh et al., 2006; Garzione et al., 2008, Fig. 
4); three periods of folding occurred in the Miocene in 
south-central Peru, the last two at about 13 and 6 Ma 
(Tosdal et al., 1984, Fig. 10); and uplift occurred in the 
Middle Miocene in the Merida Andes to Colombia (Par-
nuad et al., 1995).

Far field consequences east of the Andes include 
the development of the present Amazonas River near 
the transition between the Middle and Late Mioce-
ne (Figueiredo et al., 2009); the course change of the 
Orinoco from the Caribbean to the Atlantic in the late 
Middle Miocene (Diaz de Gomero, 1994), and the wi-
thdrawal of the Miocene seaway in Argentina and Para-
guay (Sprechmann et al., 1999) as well as the abandon-
ment of several Andean embayments (Marengo, 2000). 
Nearby, the thickest, 1200-to-3800 m fill of the Chaco 
basin in Bolivia was deposited in the late Miocene (Uba 
et al., 2006, Fig. 4) and in the Llanos Basin mudstones 
changed from fossiliferous gray-green to non fossilife-
rous reddish brown near the Middle-Upper Miocene 
boundary (Cooper et al., 1995, p. 1435). Along much on 
the Brazilian coast, quartz-rich reddish brown gravels 
- the Barreiras Formation - were deposited both above 
and below the widespread Tortonian unconformity at 
10.5 Ma (Arai, 2006), thus demonstrating widespread 
epirogenic coastal  uplift far from the Andes. Such re-
gional evidence points to probable early Middle Mio-
cene deeping of Três Forquilhas and Maquiné Valleys 
with likely accelerated deepening in the Upper Mioce-
ne. See Potter & Sztamari (2009) for other evidence of 

• Principal uplift of the Andes in Middle and Upper Miocene (Tosdal et al., 1984; Silva et al., 1999; Poage & 
Chamberland, 2006).

• Altiplano of Bolivia uplifted between 10.3 to 6.7 Ma as shown by carbon and oxygen isotopes of caliches in Late 
Miocene (Ghosh et al., 2006; Garzione et al., 2008).

• Mérida Andes rise in Middle Miocene (Parnaud et al., 1995).
• Mudstones of Llanos Basin of Columbia change from marine, greenish grey to non marine, brownish red at about 

10 Ma (Cooper et al., 1995, fig. 4 and p. 1445).
• Molassic Chaco basin of Bolivia principally filled in Late Miocene.
• Amazonas River System takes present form in Late Miocene (Figueiredo et al., 2009) and the Orinoco River System 

in Middle Miocene (Di Croce, 1995; Diaz de Gomero, 1996, figs. 6 and 9)
• Entrerriense-Paranense seaway of parts of Paraná-Paraguay river basins abandoned in Late Miocene (Marengo, 

2000; Sprechmann et al., 2001)
• Present canyons of Atacama Desert started in Late Miocene (Mortimer, 1973; Kober et al., 2006)
• Far field fracture pattern of Miocene age inferred across much of southern South America (Costa & Hasui, 1997)
• Barreiras-type gravels of Brazil deposited as earlier Tertiary regolith is stripped from interior highlands in Middle 

and Late Miocene (Costa et al., 1993; Arai, 2006).

Figure 16.  Location map of seismic lines in the central and nor-
thern Pelotas Basin offshore of the states of Rio Grande do Sul and 
southern Santa Catarina, southernmost Brazil.  Note the important 
Rio Grande High with the Quintão Escarpment (Lines 1 and 2) on its 
south side and the large Rio Grande Cone 9 Line 3.

Chart 2. Relevant South American geomorphic and paleogeographic events.
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tectonic activity in South America and globally in the 
Middle and Upper Miocene. 

Evidence from offshore seismic stratigraphy

Sequence stratigraphy study of the three long seis-
mic lines in the Pelotas Basin off the coast of Rio Gran-
de do Sul (Fontana, 1990, 1996, p. 113-183; Dariva et 
al., 2008; Holz et al., 2008) provides a time equivalent 
record of the erosional history of coastal Rio Grande 
do Sul and southern Santa Catarina (Figs. 16 and 17). 
Our analysis of the offshore is based on a recently con-
cluded research project, sponsored by Brazilian Pe-
troleum Agency (ANP), was carried out in the Pelotas 
Basin to update its stratigraphy and to reevaluate its 
possible petroleum systems (Holz et al., 2008). Earlier 
published studies include the pioneer work by Fonta-
na (1990, 1996, p. 113-183) followed by Dariva et al. 
(2008). Four second-order depositional sequences (1 
to 4) form the infill of the Pelotas Basin (Table 3). Seis-
mic stratigraphic analysis integrated to well log analy-
sis permitted the uppermost Tertiary depositional se-
quence to be divided into seven third order sequences, 
labeled 4A to 4G. This shows that the sedimentation 
during the drift period of the basin recorded at least 
seven major base level falls and unconformities; i.e., 
sequence boundaries.  The age of each depositional se-
quence implies a fall of base level and thus enhanced 
potential for erosion onshore. The age of each sequen-
ce is also the age of the unconformity at its base. Each of 
these unconformities represents episodes of base level 
fall - implying, rejuvenation of the source area followed 
by increased sediment influx to the adjacent Pelotas 
Basin. The indicated time frames of table 3 are approxi-
mations based mostly upon biostratigraphic data.

Three of the Tertiary unconformities recorded in 
the basin are widespread and pronounced. From this 
point-of-view, the story of entrenchment of the onsho-
re valleys is punctuated by at least three episodes of 
important uplifts and denudation of the source area 
induce base-level changes; these three erosional episo-
des led to the generation of three third order unconfor-
mities in the Miocene of the Pelotas Basin.

The first of these important unconformities oc-
curs between depositional sequences 4D and 4E, and 
has an Early Miocene age (Aquitanian, approximately 
24 Ma), as calibrated by available biostratigraphic data. 
The second unconformity is between sequences 4E and 
F, with an age of Early Middle Miocene (Langhian, ap-
proximately 15 Ma), and the third relevant unconfor-
mity is between sequences 4F and 4G which was for-
med during the Middle to Late Miocene, Serravalian to 
Tortonian at approximately 12 Ma. Bueno et al. (2007, 
p. 559), additionally noted, unconformities at 10 Ma 
and 5 Ma, although the three lines of figure 19 do not 
confirm them.

Other evidence for periods of increased sediment 
influx is given by analysis of three seismic lines (Figs. 

17 and 18). These lines were supplied by ANP and are 
simply identified as line 01, 02 and line 03 due to confi-
dentiality restrictions.

First, all three seismic lines show that sequences 
4F and 4G are thicker than the earlier Tertiary sequen-
ces.  This implies accelerated erosion onshore and 
more accommodation in the basin offshore.  Secondly, 
seismic study of seismic lines 01 and 02 (Fig. 18) reve-
aled that in the northern part of the basin, close to the 
Florianópolis High (which delimits the Pelotas Basin 
from the adjacent Santos Basin) there is a sedimenta-
ry buildup forming a huge plateau-like structure his-
torically known as the Rio Grande High (Fig. 17). This 
sedimentary feature is located seawards in front of the 
study area. Here sequences 4A to G show a very inte-
resting pattern regarding deposition and erosion quite 
possibly linked to the onshore uplift and entrenchment 
of the two nearby valleys during Early to Middle Mio-
cene time, 

Seismic line 01 (Fig. 18) clearly reveals the sedi-
mentary nature of the Rio Grande High, with deposi-
tional sequences 4A to 4G forming a thick sedimentary 
pile suggesting intense sediment influx at that part of 
the basin. The thickness of each depositional sequence 
is greater at their flanks than over the high (less accom-
modation space), showing that this structural features 
was controlling the sedimentation in that area since 
the Late Cretaceous; i.e., the bulk of sediments were de-
posited at the flanks of that structure. 

Within this scenario, a particular feature seems 
to indicate times of increased sediment influx. This fe-
ature, here named the Quintão Escarpment, is a huge 
escarpment generated by slides or slumps at the sou-
thern margin of the Rio Grande High. Seismic line 02 
crosses the Quintão Escarpment revealing two impor-
tant stratigraphic relationships: first, depositional se-
quences 4A to C drape its relief decreasing in thicknes-
ses from its flank towards the capping structural high, 
and secondly, sequences 4D to 4G are partly deformed 
on the steep escarpment surface at the southern mar-
gin of the Rio Grande High.  This deformation (collapse) 
affects mainly sequences 4E and 4F, sequence 4D to a 
lesser extent, and the basal part of sequence 4G. Hence, 
the epoch of onset of each of these sequences (which 
is a time of base level fall generating unconformities in 
the stratigraphical record) seems to be coincident with 
a very huge sediment input, which caused rapid sedi-
mentary up building and consequent instability of the 
sedimentary pile, and thus the slides and slumps of the 
Quintão Escarpment.

Seismic line 03, about 300 km to the southwest of 
the Quintão Escarpment, crosses a large deltaic feature 
known as the Rio Grande Cone. This line shows both 
increased sediment influx during the deposition of the 
Mid- to Late Miocene sequences and a large system of 
normal, synthetic and antithetic faults plus reverse and 
thrust faults, caused by collapse of the delta front; this 
décollement affects mainly sequence 4F and the base 
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of sequence 4G of latest Miocene age  (Chart 3). 
In sum, we propose that the initiation of most of 

the relief of the valleys of Três Forquilhas and Maqui-
né is a far field response in the Middle to Late Miocene 
to the distant Andean orogeny, an orogeny coincident 
with many other events throughout South America 
(Chart 2). Locally, our interpretation is fully supported 
and amplified by the seismic stratigraphy of the Pelotas 
Basin.  In the Pelotas Basin there are at least three third-
-order base level changes, which generated sequences 
4E, 4F and 4G.  The approximate ages of the implied 
unconformities are 24, 15, and 12 Ma (Chart 3). All of 
these three sequences were affected by slumps and sli-

des apparently due to overloading by rapid sediment 
input. The dominance of shale in the basin in these se-
quences is consistent with humid climate weathering 
of the Serra Geral volcanics that form the escarpment. 

We found seven Tertiary unconformity-bound se-
quences in all three lines (Chart 3).  Two occurs when 
many Andean far field events across South America 
were in progress - one at 15 Ma (Middle-Lower Mio-
cene boundary) and the other at 12 Ma (Middle Mioce-
ne); Bueno et al. (2007) reported one at the Upper-Mi-
ddle boundary at 10 Ma. These unconformities result 
from relative sea level fall — implying rejuvenation of 
the source area followed by increased flux to the Pelo-

Composition
Rhyolites and rhyodacites – Weather notably less than basalt and form prominent cliffs high on the 
escarpment or low, irregular hills on the volcanic plateau; thin to moderately thick soils and colluvium.
Basalt – Relatively few cliffs and thick colluvium and soils low on escarpment.

Structure and Texture
Hard, dense and fresh rocks.

Little fractured – Weather slowly into large blocks; likely to form a ledge or cliff and be an aquicludes.
Much fractured – Mechanically unstable, closely packed blocks, which weather rapidly; may form steep 
talus and commonly transmit much water.

Amygdaloidal beds – Commonly fairly thin, but likely to be aquicludes unless much fractured.
Volcanic breccias – Tend to be aquifers, especially where fractured.
Glasses – Weather readily to clay and form reentrants; generate much colluvium.
Laminated rocks – Weather chemically and physically more rapidly than massive acid or basic volcanic 
rocks.
Paleosoils and altered rocks – Act as aquicludes and readily form colluvium were exposed.   Sandstones are 
thin and uncommon, but are good aquifers.

Chart 3. Geomorphic and engineering characteristics of lava flows (adapted from Figueró et al., 1990).

tas Basin; for example, Unit G (12 Ma <) is the thickest 
of all the Neogene units in all three seismic sections. 
This large relative fall in sea level, resulted in rapid se-
dimentation up building (decrease in accommodation) 
and consequent instability (overpressure) in the sedi-
mentary pile of the Pelotas Basin. This caused slides 
and slumps on the Quintão Escarpment and induced 
collapse of the delta front of the Rio Grande Cone (who-
se displaced units are capped by latest Miocene beds). 
Thus we suggest that much of the present relief of Três 
Forquilhas and Maquiné Valleys was initiated in the 
Middle Miocene or even possibly as late as the Upper 
Miocene judging by Bueno et al. (2007, p. 558-559), 
who also identified unconformities at 10 and 5 Ma. 
Thus three types of offshore evidence - unconformities, 
enhanced thicknesses between these unconformities 
and slumping - point to onshore rejuvenation starting 
in the Middle Miocene with probable acceleration in 
late Miocene time (Fig. 18).

Earlier evidence for paleorivers

What can be inferred about the age of the oldest 
drainage in the study area? The uplift history of the 
Ponta Grossa Arch and the Sul-Rio-Grandense Shield 
plus the cross section of figure 4 provide insights to this 
interesting question. Remembering that the watershe-
ds of Três Forquilhas and Maquiné Valleys occupy the 
lowest structural point (the Torres Syncline) between 
the two structural highs of the Rio Grande Shield and 
Ponta Grossa Arch, the age of uplift of these two regio-
nal highs gives the earliest age of ancestral drainage. 
Using apatite fission tract dating (Vignol-Lelarge, 1993, 
p. 91-93) found that initial uplift of the Ponta Grossa 
Arch occurred at 110 Ma and its maximum rate was be-
tween 90 to 110 Ma (Turonian through Albian). Thus, 
sometime in the late Cretaceous there must have been 
a river system occupying the present structural low of 
Três Forquilhas and Maquiné Valleys that flowed into a 
narrow, but rapidly widening Atlantic Ocean.  This im-
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Figure 17. Offshore seismic lines: note the greater thickness of the third order sequences 4G and 4F in all three lines, the mound structure 
and scarp of the Rio Grande High on Line 2, and the décollement of the Rio Grande Cone of Line 3. Faulted slices within the décollement of 
Line 3 have a Lower Miocene seismic signature showing that movement was post Lower Miocene.

Figure 18. Summary of drainage evolution in the study area.
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plies that somewhere at sea there should be a delta, fan 
delta or deep sea fan supplied by sediment from this 
early drainage system. From studies of vitrinite reflec-
tance along the east side of the Paraná Basin, Zanotto 
(1993) inferred as much as 2,500 m of erosion - so such 
possible deposits might be considerable.

The stratigraphic and topographic cross sections 
of the Torres Syncline permit us to identify even ear-
lier paleodrainage near Terra de Areia. The stratigra-
phic cross sections of figure 4 show two erosional val-
leys, one at the base of the eolian Botucatu Formation 
(Jurassic-Cretaceous) and the other at the base of the 
lavas of the Serra Geral Formation (Triassic-Jurassic).  
One is above the other and both are close to the axis 
of the Torres Syncline. In addition - and most signifi-
cantly - both are directly below the present mouths of 
the Três Forquilhas and Maquiné Rivers. Thus in late 
Triassic time, the Torres Syncline was already a topo-
graphic low focusing drainage to the sea. Consequently, 
we infer that the present valleys of Três Forquilhas and 
Maquiné Rivers had their most distant beginnings as 
long ago as the Late Triassic some 200 Ma ago.  

In sum, we propose that the valleys of Três For-
quilhas and Maquiné Rivers both have had similar ages 
and origins. The beginnings of much of their present 
landscape came into existence in response to Andean 
far-field tectonics in the Middle Miocene with accele-
rated uplift and erosion beginning in the Late Miocene. 
Both rivers follow well defined south southeast tren-
ding fractures in a broad, gently, seaward-dipping syn-
cline toward the Atlantic Ocean. The presence of two 
broad paleovalleys in the subsurface - one as old as 
Triassic - implies that the Torres Syncline was a topo-
graphic low even in the middle of the Mesozoic.

4 Conclusions

The initial relief of the present valleys of Três For-
quilhas and Maquiné was initiated as the volcanic pla-
teau in the region of the Torres Syncline was uplifted 
in the Middle Miocene in response to far field Andean 
orogeny; this caused accelerated erosion of the escarp-
ment of the volcanic plateau as shown by unconformi-
ties, increased thicknesses and slumping in the nearby 
the offshore Miocene section. Judging by offshore seis-
mic unconformities, later rejuvenation followed at 12, 
10 and 5 Ma.

Inferences about earlier drainage are based on da-
ting by apatite fission track studies and a subsurface 
cross section: 

a. Uplift of the Rio Grande de Sul Shield (74 Ma) 
and the Ponta Grossa Arch (90 to 100 Ma) in the late 
Cretaceous left the Torres Syncline as a structural low 
between two highs and focused drainage into a wide-
ning South Atlantic Ocean.  

b. A subsurface cross section across the Torres 
Syncline shows two paleovalleys, one filled by the 
Triassic-Jurassic Botucatu Formation the other by lavas 

of the Jurassic-Cretaceous Serra Geral Formation, indi-
cating even earlier drainage in this structural low. This 
paleodrainage suggests that there may be hidden deltas 
or subsea fans offshore.

c. The spatial coincidence of both present valleys 
and ancient buried valleys in the Torres Syncline de-
monstrates an exceptional long term, 200 Ma tectonic 
control of paleotopography in this part of coastal Brazil.

Drainage, at all scales in both watersheds, is stron-
gly controlled by a fracture pattern closely related to 
that of the opening of the South Atlantic Ocean.

In both valleys episodic erosion today and in the 
past powered headward erosion dominantly by paral-
lel slope retreat through creep, rock fall, slope failures 
and debris flows. 

Today, most headward erosion occurs in pulses 
during heavy rainfall; it thus seems probable that simi-
lar processes operated on scales from 104 to 105 years 
in the past.

Judging by the absence of knickpoints in longitudi-
nal profiles, both valleys have equilibrium landscapes 
graded to present sea level and seemingly no record of 
earlier rejuvenations.
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